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Abstract

Many transform coders use a type of nonlinear approximation that selects
all coeÆcients with magnitudes above a threshold, encodes their positions, and

then quantizes their values. This kind of two-stage scheme is very e�ective at

low rates. We derive an upper bound on the operational rate distortion function

of such threshold-based nonlinear approximations. The bound is applied to the

spike process, which is a generic model for sparse transform coeÆcients, and

to a Gaussian mixture process that is a better model for wavelet coeÆcients

in image transform codes. The results exhibit the same change in distortion

decay between low and high rates which is typical for such image coders.

1 Introduction

The term \nonlinear approximation" obviously has many di�erent meanings. We give
a de�nition which is signi�cant in the context of signal approximation in orthonormal
bases and, on the practical side, in transform coding. Threshold-based, quantized
nonlinear approximation is a two-stage process: in the �rst pass, the positions of the
coeÆcients above threshold are encoded. After that, the values of these so-called
signi�cant coeÆcients are quantized and encoded. The main contribution of this
paper is an upper bound on the operational distortion rate that is achievable with
such two part schemes. In conjunction with computed D(R) functions this bound can
be used to study the performance of these algorithms for a given coeÆcient model.
It is trivially also an upper bound on the true distortion rate function.

After the necessary de�nitions and an example, we derive the bound in Section 3.
In the Sections thereafter, we use the bound to study two models of transform coef-
�cients. A short discussion ends the paper.

�M. Vetterli is also with the Department of EECS, UC Berkeley, Berkeley CA 94720
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2 De�nitions

De�nition 1 (Threshold-based Nonlinear Approximation (NLA)) Given a
threshold T , a vector of i.i.d. real random variables XN

1 = [X1; : : : ; XN ] is approxi-
mated by the binary position vector UN

1 with

Ui = 1jXij�T (1)

and a value vector V N
1 with

Vi = UiXi (2)

This process is sometimes called hard thresholding in the denoising literature. As
alternative to (2), we could de�ne a variable length value vector of length K =

PN
i=1 Ui

that contains only the nonzero components of V .

De�nition 2 (Quantized Nonlinear Approximation (QNLA)) Same de�ni-
tion as above, but with quantized values V̂i = UiX̂i.

In this paper we will restrict our attention to i.i.d. real random variables with
symmetric probability density functions f(x) = f(�x), though most results can be
extended to non-symmetric pdf's. The density of the thresholded random variable is:

�f (T )(v) :=

�
0; jvj < T

1
�(T )

f(v); jvj � T
(3)

where � is the probability of a non-zero value:

�(T ) := E[U ] = PrfjXj � Tg = 2

Z 1

T

f(x) dx (4)

If V (respectively V̂ ) is de�ned as in (2), the position vector U is actually re-
dundant. But in many practical QNLA schemes, a two part code is used: �rst, the
position information Ui is sent. Only if it equals one, a code for V̂i 6= 0 is appended
(scalar quantization). This can be extended to vectors. It can be easily shown that
the two part code with scalar quantization has the same asymptotic rate as directly
coding V̂ [9]. That is, NLA followed by scalar quantization (the two part code) is
equivalent to simple scalar quantization with a prescribed zero bin (�T; T ) (aka dead
zone quantizer), i.e. there is only an implementation di�erence.

Example We consider two and four level Lloyd-Max quantization of thresholded
Gaussian random variables. Figure 3 (at end) shows the parametric distortion rate
curves achieved with this method, together with the Gaussian D(R) as a lower bound
and the Gish-Pierce high rate asymptote for uniform quantization: D(R�0:255 bits).
The two curves start at the respective (R;D) points for Lloyd-Max quantization
(T = 0) and end in (R;D) = (0; 1) for T ! 1. They show that by varying the
threshold one can achieve a whole set of (R;D) points which are actually below
simple time sharing of the original Lloyd-Max solutions. It is remarkable that NLA
with four level quantization at a rate of 2.1 bits per sample is only 0.8 dB above the
lower bound.
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3 Upper Bound on NLA Distortion Rate

Nonlinear approximation as considered in this paper is a two-stage process, consisting
of thresholding followed by quantization of the samples that are above the threshold.
Ideally one would use a variable-dimension vector quantizer, since the number of
samples varies from block to block (assuming data is processed in blocks). In practical
schemes, scalar quantization is often preferred thanks to its simplicity and speed. And
at low rates it performs quite well, as illustrated by the example in Section 2.

In general we can never achieve a rate distortion optimal encoding, if we use
two-stage quantized nonlinear approximation to lossily encode a block of i.i.d. ran-
dom variables. Except in \constructed" cases, hard thresholding yields a suboptimal
encoder even if it is followed by an optimal quantizer. In this Section we present
an upper bound on distortion rate as a tool to study the low rate performance of
threshold-based quantized nonlinear approximations.

An optimal two-stage encoder is composed of an ideal lossless encoder for the po-
sition variable U , indicating the samples above threshold, and a R-D optimal encoder
for the values V of these samples. Therefore we �rst characterize the R-D behavior
of thresholded random variables.

D(R) of a single thresholded random variable V can be upper bounded with the
distortion rate function of a Gaussian with the same variance. The unnormalized
variance is

A(T ) := 2

Z 1

T

f(x)x2 dx (5)

where f(x) is the pdf of the non-thresholded rv and A(0) = �2 its variance. After
normalization with (4) the upper bound becomes

DV (RV ) � E �f V
22�2RV =

A(T )

�(T )
2�2RV (6)

For each sample we need H(U) = h(�(T )) bits to indicate whether it is signi�cant, i.e.
above threshold (h is the binary entropy function). Given the total rate per sample
R, the rate RV available to code each signi�cant sample is

RV (T;R) =
R� h(�(T ))

�(T )
: (7)

Taking into account the distortion resulting from the uncoded sub-threshold samples,
we can write the following bound on the distortion rate function of the original rv X:

D(R) � �(T )DV (RV (T;R)) + (1� �(T ))E[X2
���jXj < T ]

or

D(R) � B(T;R) := A(T ) exp

�
�2 ln(2)R� h(�(T ))

�(T )

�
+ �2 � A(T ): (8)

Direct minimization of B(t; R) with respect to t is very diÆcult. Instead we sweep
the threshold t from 0 to 1 and compute candidate points of the convex hull of
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the resulting bounds D(R) � B(t; R) in the (R;D) plane. To further simplify the
task, we assume that two bounds B(t; r) and B(t + �t; r) have a common tangent
(equivalently: they intersect each other). This tangent can then be used to �nd
candidate convex hull points. We get the parametric upper bound outlined below.

Proposition 1 The distortion rate function of threshold-based nonlinear approxima-
tion of a memoryless continuous random variable X with symmetric pdf f(x) and
variance �2 is upper bounded by

D( �R(t)) � A(t)

�
exp

�
�2 ln(2)

�R(t)� h(�(t))

�(t)

�
� 1

�
+ �2; 8 t � 0 : 9 �R(t) (9)

where the rate �R(t) is given by (primes denote derivatives)

�R(t) =
�(t)

2 ln(2)

�
2h(�(t))

�(t)
� 2h0(�(t))� �(t)�W�1

�
��(t)e�2h0(�(t))��(t)

��
(10)

with

�(t) :=
�(t)

A(t)
t2 (11)

The expression for �R(t) involves Lambert's W function, which solves W(x)eW(x) = x.
The subscript -1 indicates the second real branch of W, taking values on [�1;�1[.
A real-valued solution for �R exists only if the argument of the W function is larger
than �1=e (see remarks).

Sketch of proof: We take two curves of the family (8), say B(t; r0) and B(t+�t; r1),
and determine their common tangent by solving the following system of equations:

@

@r
(B)(t; r0) =

@

@r
(B)(t+�t; r1) := s (12)

B(t; r0)� B(t+�t; r1)

r0 � r1
= s (13)

We solve (12) for r1, plug this solution into (13) and solve for r0. Taking the limit for
�t! 0 leads to (10). This solution is purely symbolic in the sense that for a speci�c
pdf f(x) and threshold t no common tangent might exist. That case is explained
next.

Remarks As pointed out above, for some values of the threshold t there might
be no solution to the common tangent problem. This is the case when increasing t
produces a bound B(t + �t; r) that for all r is larger than B(t; r). It can be shown
that there is no common tangent for all t satisfying

min
r

@

@t
(B)(t; r) � 0: (14)

Computing the above minimum yields a reassuring result: (14) is true exactly i� the
argument of the W function in (10) is less than or equal to �1=e, i.e. when there
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is no real-valued solution. But this condition alone does not guarantee that we �nd
only convex hull points, since one of the constituent bounds B(t; r) might be below all
others for a threshold t satisfying (14). In all examples we have studied, it happened
to be the trivial bound B(0; r), if at all. For Gaussian data, obviously no upper
bound can be better than B(0; r), while for Laplacian all thresholds above a critical
value yield slight improvements. For pdf's that are even more peaked around zero,
such as those studied in the next two Sections, the critical threshold is (almost) zero.
Informally, these \forbidden" threshold values mean that the reduction in number of
coded signi�cant samples is not suÆcient to o�set the increased position rate h(�(t)).
From this reasoning it becomes evident that such t can only lie between 0 and t0:5,
with �(t0:5) = 0:5. On the other hand, this means that the bound will be useful at
low rates (i.e. for high thresholds), a rate region for which few bounds are known.

4 Spike Processes

Nonlinear approximation plays a key role in the design and understanding of trans-
form coding methods [4]. While it is diÆcult to come up with a realistic statistical
model for e.g. wavelet coeÆcients in an image coder, transforms that are popular in
compression generally concentrate a large part of the signal energy in relatively few
coeÆcients. This is the case for wavelet transforms of piecewise regular signals, since
there will be only a small number of non-zero coeÆcients, mostly around the signal
singularities [4]. But even transforms of the Fourier family show a similar behavior
if they operate on small blocks, like the JPEG image coding standard. Another ex-
ample are the coeÆcients in LPC speech coding. A strongly simpli�ed model would
be a transform vector that is zero everywhere except in a few positions, where large
\spikes" stick out. In [8] we presented a deterministic spike model: one assumes to
know a priori that in a vector of length N there will be exactly K nonzero entries. In
the present paper we introduce a probabilistic de�nition that generalizes this concept.

De�nition 3 (Bernoulli-Gaussian (BG) spike process) An i.i.d. Bernoulli-
Gaussian spike source (process) emits a memoryless random variable X that is the
product of a Bernoulli rv with Prf1g = p, Prf0g = 1� p with a zero mean Gaussian
rv. Using the Æ(�) distribution, its pdf can be written as

f(x) = (1� p)Æ(x) + p
1p
2��

e�x
2=2�2 : (15)

This pdf can also be seen as a mixture of two zero mean Gaussian random vari-
ables, with one of them having zero variance (a special case of the model studied
in Section 5). The bound (9) can be easily evaluated if one replaces T by T + � in
the lower integration boundary of (4), with an arbitrarily small number � > 0. By
doing this we exclude the Dirac (1 � p)Æ(x) from the integral, and hence we have
�(T ) � p 8T � 0. This is obviously correct, since we never have to code a spike of
zero amplitude.

Figure 1(a) shows the bound and the empiricalD(R) for p = 0:11. The asymptote
shown is actually the trivial upper bound B(0; R), i.e. when all spikes are coded (thus
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Figure 1: (a) Bernoulli-Gaussian spike with p = 0:11: empirical D(R), upper bound
(9) and trivial upper bound B(0; R) (bottom to top curve). Normalized to unit
variance. (b) Upper bounds for memoryless BG spike with p = 1=16 (top curve)
and �rst order Markov Gaussian spike with � = 1=30 and � = 1=2, yielding same
marginal probability p = 1=16 (bottom curve).

at least R = h(0:11) = 0:5 bits are required before distortion decreases). The �gure
illustrates the change in D(R) behavior between low and high rates that is typical of
spike processes, regardless whether the continuous part of the pdf is a Gaussian or
some other density.

4.1 First Order Markov Spikes

A natural extension of the memoryless model is to consider bursts of spikes. To model
such a bursty behavior we can simply replace the Bernoulli process by a �rst order
binary Markov process, with states S0 (no spike) and S1 (spike). Thus we get a spike
process with correlated positions, but uncorrelated values. The Markov process is
speci�ed by two transition probabilities, � = PrfS0 ! S1g and � = PrfS1 ! S0g.

To compute a bound like (9) we �rst threshold the Markov-Gaussian spike process.
It is easy to show that the resulting process is the product of a new �rst order
Markov process and a thresholded i.i.d. Gaussian process. The parameters of the
new (\thresholded") Markov process can be computed from �; � and the threshold t.
Then we compute the entropy rate of the thresholded process, i.e. the spike position
indicator (1), and use it to replace h(�(T )) in equation (7).

Figure 1(b) compares upper bounds for memoryless and Markov spikes with the
same marginal spike probability, p = �=(�+�). At low rates the two bounds are quite
close, while at higher rates their horizontal spacing approaches the di�erence between
zero-th and �rst order entropy (entropy rate). The low rate behavior can be explained
as follows: low rates correspond to high thresholds, which means that the thresholded
spikes are very sparse and there is thus less dependency among them. Therefore the
di�erence between zero-th and �rst order entropy gets smaller. This �nding indicates
that for QNLA it is harder to exploit the correlation between neighboring coeÆcients
at low rates .
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5 Gaussian Mixture Models

In the previous Section we have brie
y studied the spike process, which we proposed
as a model for sparse transform coeÆcients. But its R(D) behavior is very di�erent
from the one observed in actual image coders. Therefore we tried to �nd a better
model, that allows e.g. a comparison with Mallat and Falzon's analysis of the low rate
behavior of image transform coders [6]. Using high rate quantization results, they were
able to derive the D(R) curves that are typical for these image compression systems,
i.e. steeper distortion decay at low rates that slows down to the usual exponential
decay (D / 2�2R) at rates above 1 bit per pixel. On the other hand, their result
cannot be directly applied to assess the performance of a threshold-based compression
scheme for a speci�c coeÆcient model, since they rely on approximations to measured
statistics.

Here we take a di�erent approach: we compute our bound for a simple i.i.d. model
of wavelet coeÆcients and compare it with the empirical D(R) curve obtained with
the Blahut-Arimoto algorithm. If the curve and the bound stay close together, then
we may use the quantities used in the bound as estimates for practical encoder design.
The most interesting one is certainly the rate RV allocated to each signi�cant coeÆ-
cient, or more generally the rate tradeo� between coding the position U (signi�cance
map) and the values V .

As an example of a coeÆcient model, we have chosen a simple i.i.d. Gaussian mix-
ture model, where a hidden Bernoulli-p source picks one of two zero mean memoryless
Gaussian sources. It is also apparent that this is a generalization of the spike model,
where one source has zero variance. The model pdf is:

f(x) = pf(xjS = 1) + (1� p)f(xjS = 2) (16)

where S is the hidden state selecting a distribution, and

f(xjS = i) =
1p
2��i

e�x
2=2�2

i : (17)

Such models have been used quite successfully in various applications, see [3] and
references therein. To get realistic estimates for the parameters, we used a version of
the EM algorithm [2] on the wavelet coeÆcients of the Lena image (transformed with
SPIHT [7]). The scaling coeÆcients were discarded beforehand, since the model (16)
does not �t them (due to nonzero mean); and therefore they are not accounted for in
the rate distortion bound.

Figure 2(a) shows the obtained bound and the empirical D(R) computed with
Blahut's algorithm. Up to the knee, which is typical for image coding distortion rate
curves, the distortion decays more rapidly. This means that mainly the sparse coef-
�cients from the high variance source are retained by the thresholding operation. At
higher rates, also the coeÆcients from the low variance source start being signi�cant.
The empirical D(R) curve crosses the bound for numerical precision reasons: the pdf
input to Blahut's algorithm should be more �nely quantized around zero, where the
low variance source is determinant. Another apparent fact is that at higher rates
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the bound becomes loose, because it converges to the trivial Gaussian upper bound
B(0; R). At high rate (very low threshold), D(R) of a thresholded rv is close to D(R)
of the non-thresholded rv, which is far from the Gaussian upper bound for the mixture
density in our example. A tighter upper bound is presented in the next Section.

The rate tradeo� between position and value codes is shown in Figure 4. Quite
interestingly, the rate per signi�cant sample never falls below 2.2 bits and remains
below 5.5 bits in a wide range of low rates. Only at abysmally low rates it starts to
grow again, e.g. RV = 2:8 at R = 10�8. The \plateau" at 1 bit per sample is again a
sign that low variance samples are getting signi�cant (at that point, the threshold t
equals about 2�1).

5.1 Other D(R) Bounds for Gaussian Mixtures

Since Gaussian mixtures are a popular tool to approximate unknown pdf's, it is
interesting to have rate distortion bounds that are tighter than (9). We derive an
upper bound (without assuming NLA) and a lower bound.

Upper bound In Section 3 we bounded the rate distortion function of the samples
above threshold with eqn. (6), since we were looking at threshold-based NLA. But
a better D(R) bound may result if also the samples below threshold are considered,
i.e. upper bounded as Gaussians. Optimizing the bound then becomes a weighted
rate allocation problem between two random variables with variance �2T;0 := (�2 �
AT )=(1 � �T ), weight 1 � �T , and variance �2T;1 := AT=�T , weight �T , respectively
(for readability the argument T is shown as index). The average rate per sample is
R = h(�T )+(1��T )RV 0+�TRV 1, and the average distortion �D = (1��T )�2T;02�2RV 0+
�T�

2
T;12

�2RV 1. We assume that �D � �2T;0, which after carrying out the optimization
corresponds to

R � Rmin(T ) :=
1

2
�T log2

AT (1� �T )

�T (�2 � AT )
+ h(�T ):

An upper bound for all R � Rmin(T ) is

D(R) � Dub(T;R) := C(T )2�2R; (18)

where C(T ) = 23h(�T )+(1��T ) log2(�
2�AT )+�T log2 AT :

To plot a bound for all R � 0, we numerically search tmin 2 [0;1) that minimizes
C(t), yielding the best asymptotic (8R � Rmin) upper bound of the family (18).
Then we sweep t from 0 to 1 to get candidate points (Rmin(t); Dub(t; Rmin(t)). If
�R(t) given by (10) is larger than Rmin(t), we keep the point. In the opposite case,
the NLA upper bound (9) is tighter.

Lower bound The Gaussian mixture source can be seen as a �nite alphabet discrete
memoryless source S that switches between jSj Gaussian sources N (ms; �

2
s) with

selection probabilitiesws = PrfS = sg. A lower bound onD(R) is found by assuming
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Figure 2: (a) Gaussian mixture model for wavelet (detail) coeÆcients: upper bound
on NLA distortion rate function and empirical D(R). The top curve is the trivial
Gaussian upper bound B(0; R). Model parameters, normalized to unit variance:
p = 0:9141, �21 = 0:01207 and �21 = 11:51. (b) Upper and lower distortion rate
bounds for Gaussian mixture model. The middle curve is the empirical D(R), the
boxes denote (R;D) points achieved with a practical QNLA encoder.

that an oracle provides the hidden state variable S to the source encoder. Since
S ! X ! bX form a Markov chain, we have

I(X; bXjS) � I(X; bX): (19)

But Rlb(D) := minp(x̂jx;s)2QD
I(X; bXjS) (with QD = fp(x̂jx; s) : E(X � bX)2 � Dg)

can be computed exactly by solving the following standard rate allocation problem:

minDlb(Rlb) = min
fRsg

X
ws�

2
s2

�2Rs subject to
X

wsRs = Rlb and Rs � 0:

This yields the lower bound D(R) � Dlb(R).
Figure 2(b) shows these bounds, together with the (R;D) points achieved by a

simple QNLA scheme with octavely decreasing thresholds (on 3 � 105 pseudo-random
samples from mixture source; signi�cance maps are entropy coded, sign and re�ne-
ments bits left uncoded). At low rates, thresholding with simple scalar quantization
performs very close to the R-D optimum.

6 Conclusion

The example in Figure 3 shows that NLA followed by Lloyd-Max quantization can
achieve remarkable low bit rate performance, and at a very reasonable computational
cost (linear in the block size). Similar observations were already made in [5]. This
is one reason why QNLA is popular in image coding applications that require low
complexity and embedding. These two features are harder to achieve simultaneously
with methods such as vector quantization or trellis-coded quantization.

In all our examples the bound is close to the actual D(R) at low rates. This means
that two-stage threshold-based nonlinear approximation is a good choice at low rates,
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provided that the quantizer stage is close to optimal. In fact simple scalar quantization
is more than suÆcient, as Figure 2(b) demonstrates. Section 4.1 illustrates that
one should not expect much tighter low rate bounds by including correlation in the
coeÆcient model. The bound (9) provides also an explicit rate tradeo� between the
encoding of the signi�cance map and the encoding of the sample values. This could
be used in practical encoder design, at least at low target rates. For higher rates the
bound becomes too loose due to the Gaussian (over)estimate in (8), and therefore the
rate tradeo� will be less reliable.

Finally Gaussian mixture models are shown to be a useful tool for the rate dis-
tortion analysis of wavelet image coding. By allowing more than two mixture com-
ponents, the actual R-D behavior can be approximated even better than in Figure 2.
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