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ABSTRACT
The Laguerre transform and its time-varying version are general DSP techniques for frequency-warping audio signals. By
means of this exact and computable transform, the frequency content of the original signal is altered via a mapping of the
frequency axis. The interesting effects that are obtained include transformation of harmonic into inharmonic sounds, time-
varying pitch shifting for vibrato and modulation, dispersive model-based pitch shifting of piano tones and sound morphing.

However, the computation of the Laguerre transform is non-causal and not suitable for real-time applications. Due to the
frequency dependent group delay of the basis elements of the transform, the time-localization of the signal is altered, e.g.,
the amplitude envelopes of the partials are non-uniformly deformed according to the frequency range. As a result, the
Laguerre transform of long audio signals leads to the time fusion of certain frequency components that were originally re-
lated to distinct events.

In this paper we introduce the Short-Time Laguerre Transform (STLT) as a new method for frequency warping, which
circumvents most of the drawbacks of the Laguerre Transform. The sound stream is subdivided into overlapping frames and
the windowed Laguerre transform is computed on each frame. Due to the time spread of the components, this process gener-
ates frames whose size is theoretically infinite while in practice not conformal to the size of the original frames. We address
the problem of forming the warped signal by means of overlap add techniques.
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1 INTRODUCTION that if 6(w)is continuously differentiable and maps the
interval [—r,+7] one-to-one onto itself, then the sequences
Frequency warping consists of modifying the frequenc i

q y warpmg fying q y h, (k) =IDTFT|:€ jnf)( );1_3)] 4

spectrum of a signal s(k) by displacing its frequency content

to other frequencies [2]. This is achieved by means of a
map Q =60(w) transforming each frequency into a new one

according to the following law:

SO(w)) =S(w). (D
Frequency warping may be performed with the help of
arbitrary maps and the quality of the effect is intimately
related to the mathematical properties of the function 6(w) .

If the map is invertible then the warped frequency spectrum
of a discrete-time signal s(k) is obtained as follows:

S(w) =8O () = Ts(k)e @ ()
k

The time domain counterpart of (2) gives the warped signal
§(n) in terms of the original signal s(k) :

§(n)=2x Iﬁé(w)ef"“’dw =2 s(k)h, (k) , (3)
- k

where
Bk = [ @l
n 2n
This shows that frequency warping a signal is equivalent to
orthogonally project it onto the set 4,(k). It can be shown

do

form a complete set -- useful for the expansion of any finite
energy signal -- biorthogonal to the set

g, (k)= IDTFT [ ].

In this case

s(k) =2 8(n)g, (k).

If 6(w) is monotonically increasing one can factor the
(positive) derivative

do _ 2

do |F 0 (a))|

and obtain the following orthogonal and complete set
f,(k) = IDTFT[ e Fy(w)] . 5)

Projection on this set obtains frequency warping combined
with spectrum scaling;:

Fy(0)8(6(w)) = S(0) .

An arbitrary frequency band [B, , B;] is mapped into a
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warped band [6(B,) , 6(B;)]. Orthogonal warping has the
following property: in the warped frequency band the
warped spectrum has the same energy as the original spec-
trum in the original band [B,, B1]:

0(B))

o 1S(e)|*doo .

o lse)dew =

The sequences (5) can be generated by iteratively filtering
the sequence f,(k) by the all-pass
A(w) =e™ @,

If the input signal is causal then only the causal part of f,(k)
gives non-zero contribution to the expansion and one can
make these filters into causal filters. However, the transfer
functions are not necessarily rational and their implementa-
tion can only be approximate. One can show that the unique
continuously differentiable, one-to-one and onto map 6(w)

fixing the points 0 and 7 that can be implemented by means
of a rational transfer function is obtained by the sign-
reversed phase of a first order real all-pass filter [1]:

-1 _

with —-1<b<1 .

z
A(2) =
1-bz"
In this case
O() = - arg A(e’”) = w+2tan™" (—b o ) ©6)
I-bcosw
belongs to a one-parameter family of warping maps. The
corresponding unitary signal transform is called the
Laguerre transform. The basis elements A, (k) are discrete-
time counterparts of the Laguerre functions and their z-
transforms are given by the following iteration:
Ao(2) =325
A, (2)=A(2)A(z)™, r=0,1, .... @)
A structure for computing frequency warping via the
Laguerre transform is shown in Fig. 1. It consists of a dis-
persive delay line implemented in a chain of all-pass filters.
Each filter introduces a frequency dependent group delay
7 (@) _d0__ 1-b
& do 1-2bcosw+b’

=|A, (a))|2 )

The signal is time-reversed, filtered by A,(z) and fed to the
delay line. The output of the filter A,(z) and of each delay
element is read at time k=0 to form the frequency warped
signal §(n). Theoretically, an infinite-length delay line is
required in order to compute the transform. However, one
can show [3] that for a finite-length N full-band input signal
the line can be truncated to a number M of sections equal to
the maximum group delay experienced by the N samples:

M~ 1+p| N.

=T
The computational complexity of the warping structure is of
the order of N?. The inverse transform can be computed by
means of the same structure of Fig. 1 provided that one

reverses the sign of the Laguerre parameter. This can be
shown to be equivalent to compute the transform over the

transposed sequences A (k) = A, (n) , which have the same
form as (7), with a reversed sign of b.
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Fig. 1 Dispersive delay-line structure for frequency warp-
ing via the Laguerre transform.

2 THE SHORT-TIME LAGUERRE TRANSFORM

The Laguerre transform is not suitable for real-time fre-
quency warping. In order to compute the transform by
means of the structure in Fig. 1 all the signal samples must
be available and, because of the time-reversal operation,
samples are processed in reverse order. Another intrinsic
drawback of the transform is that long dispersive delays
considerably alter the time structure of the signal, e.g., ac-
cording to the sign of the parameter b, higher frequencies
are perceived long after or long before lower frequencies. In
order to implement real-time frequency warping an ap-
proximate and modified scheme must be employed. As a
first step, consider a finite-length N window sequence w(n)

satisfying the following requirement:

2 w(n—rL)=1 forsomeintegerL>0. (8)

A trivial example is given by the rectangular window with
L=N:

1 ifn=0,.,L-1

0 otherwise

rect,(n) = {

The Hanning window gives a better-behaved example:
hy (n) = Lrect,(n) (1 —cos (2"7"))

with N =RL, R integer. Given a window w(n) satisfying
(8) one can put the Laguerre transform in the following
framewise form:

sm=Y E w(k)s(k+rL)A, (k+7L). )

r k=0

By taking the DTFT of both sides of (9) one obtains

S@)=Y e g (w), (10)
where
0.@) =3 wk)s(k + L)AL () (11



is the DTFT of the Laguerre transform of the windowed
signal w(k)s(k+rL) , i.e.,

q,(n)= E w(k)s(k +rL)A, (k). (12)

Equation (10) denotes an alternate way of computing the
Laguerre transform, which has no practical advantage other
than being in block form. However, equation (12) can be
interpreted as a Short-Time Laguerre Transform (STLT).
Due to their frequency dependent delay the terms

e in (10) introduce a strong time spreading of the
signal components in different areas of the frequency spec-
trum. One way to resynchronize these components is to
replace LO~'(w) by a linear phase term. In this way one

can frequency warp the short-time frequency spectrum
while preserving the long-term evolution of the signal. In
other words we replace (10) with a new definition of fre-
quency warping obtained by overlap adding the short time
warped spectra:

S(w)= "0, (). (13)

The problem is: how do we choose the linear delay coeffi-
cient B so that the transitions between warped segments

are smooth enough to avoid amplitude modulation or enve-
lope distortion effects? The answer requires a deeper inves-
tigation of the terms Q. (@) . Since

DIFT[w(k)s, (0)(@) = [ W (@-Q)S, (a0
where s,(k)=s(k+rL), k=0,1...,L-1 is the r-th signal
frame, then (11) can be written as follows:

0, (@)= Ay (@)% [T WO @)-Q)S,(VdQ. (14)
By performing the change of variable

a=0(Q-0"(w)+w
in the integral, (11) becomes
0.(@) = A (@)% [ W (©=-0)S,07 (@)+67 (@-w)da,
where
W(@)=|As @) W©" @)

is a warped version of the window. Since W (w) is narrow

band then also W(®) is narrow band and the largest contri-
butions to the integral are for o = w . Hence

0, ()= £ [ W(@-a)A; @)S,07 (@)der

In this approximation
q,(n) = w(n)s, (n)
where
§,(n) = IDTFT[Aq (0)S, (6" (0))](n)
is a warped version of the signal frame, while

w(n) = IDTFTIW (0)(n)

and

~ 2 _ 1-b _

W (@) =[A;O) WO O)*0)=—W (i} 0).
Therefore, each output frame g, (n) is approximately equal
to a warped version of the input frame modulated by a
scaled version of the window. As a result, if the window
w(n) satisfies (8) then the warped window w(n) will ap-
proximately satisfy

ZW(n— rK)=1 for K =round (:2)L.

Hence, we have found that the factor § required in (13) for

performing a synchronized overlap add operation on the
warped frames is
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Fig. 2 Difference error of warped vs. scaled window: (a)
rectangular, (b) Hanning and (c) Chebychev.

The quality of the approximation depends on the choice of
the window. This is illustrated in Fig. 2 where warped win-

dows are compared with scaled windows and the difference

error is reported. For a warping parameter b =—1 one has

B =2,hence K=2L. This allows for a comparison free

of rounding effects. The Hanning window compares fa-
vorably with both the rectangular and Chebychev window,
with a maximum error of the order of 10~. Notice that, with
proper normalization, the Hanning window satisfies prop-
erty (8) for any integer L dividing the length of the window
N, i.e., for N=QL, Q integer. For this reason the Hanning



window is a good candidate for the computation of the
short-time Laguerre transform.

3. EXPERIMENTS AND RESULTS

We tested the STLT algorithm on several isolated sounds
and musical phrases of a single instrument. Compared to the
strict frequency-warping algorithm via Laguerre transform,
the STLT offers the advantage of preserving the time
structure of the sounds. This is especially important in se-
quences, which would otherwise be scrambled or their time
organization destroyed by pure warping. However, the
STLT presents some drawbacks. The choice of the window
length influences the quality of warping. A short window
generally introduces a low-pass filtering effect of the tones,
while a long window alters the envelopes of the tones, espe-
cially on sharp attacks. In other words, long windows pro-
vide a more exact frequency-warping algorithm while
shorter windows tend to preserve the boundaries between
sounds and more faithfully reproduce their transitions. This
effect is somewhat reduced by choosing a large overlap
factor.

The approximation described in the previous section is
illustrated in Fig. 3, where to a warped frame of a trumpet
sound we superimposed the properly [-stretched Hanning
window. The fit is very good and provides experimental
support of our hypotheses. In order to use overlap add tech-
niques, the factor L must be rounded to an integer. In this

way (13) becomes a sum of time domain delayed warped
frames. We experimented with several factors and warping
parameters. The error due to rounding does not seem to
affect the overall quality of the signal. The expected effect
would be an amplitude modulation of the warped signal.

We conclude that the warping effect adds richness and
texture to natural or synthetic sounds. The strict harmonic
relationships of voiced sounds can be broken at will.
Warping is present in natural instruments such as piano in
the low register [7, 8]. The STLT provides a real-time solu-
tion for warping the short-time spectrum while preserving
the macrostructure of sound. The algorithm can be gener-
alized to time-varying warping [9,10], by changing the
warping factor at each frame. For slow variations of the
parameter this creates minor distortion of the overlap add
method. This technique allows us to insert interesting pitch
and frequency-content modulations of the signal, including
vibrato and detuning effects.

Other applications of warping include the realization of
perfect reconstruction filter banks based on perceptual
scales [4, 6] and the decomposition of inharmonic sounds in
transients and noise plus resonant component via the Fre-
quency-Warped Wavelet Transform [3,5].
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Fig. 3 Warped frame of trumpet sound with superimposed
stretched Hanning window.
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