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Abstract—We propose a novel model-based coding system
for video. Model-based coding aims at improving compres-
sion gain by replacing the non-informative image elements
with some perceptually equivalent models. Images enclosing
large textured regions are ideal candidates. Texture movies
are obtained by filming a static texture with a moving cam-
era. The integration of the motion information within the
generative texture process allows to replace the “real” tex-
ture with a “visually equivalent” synthetic one, while pre-
serving the correct motion perception. Global motion esti-
mation is used to determine the movement of the camera
and to identify the overlapping region between two succes-
sive frames. Such an information is then exploited for the
generation of the texture movies. The proposed method
for synthesizing 2D+1 texture movies is able to emulate any
piece-wise linear trajectory. Compression performances are
very encouraging. Compared to MPEG-4 state-of-the-art
video CODEC, the proposed method achieves on texture
movies compression rates more than 10 times lower with
sensibly better perceptual quality. Importantly, the current
implementation is real-time on P3 processors.

I. Introduction

Classical coding techniques for still images and videos
are reaching their full potential. A new perspective must
be taken to improve coding performances. In this paper,
we propose a new model-based approach to coding, based
on the redefinition of the notion of relevance. The so-called
model-based approach to coding exploits the semantics of
the scene for improving compression performances. For
those regions that are not “informative”, it is assumed that
the relevance resides in the “visual appearance”. The real
information can thus be replaced by some “visually equiv-
alent” synthetic representation generated by an adequate
model. The practical use of such a model within a coding
system adds some constrains to the modeling task. The
model must be concise (e.g. require a relatively small num-
ber of parameters) to be competitive towards classical cod-
ing techniques. Furthermore, the generative process must
be fast to enable real-time applications.

Images and videos containing large amounts of texture
are appropriate candidates for model-based coding. Tex-
tures are difficult to code by classical schemes based on the
exploitation of the spatial, temporal and statistical redun-
dancy. Often they create a bottleneck in the coding chain.
Moreover, they usually constitute a non informative part
of the scene, so that their replacement by a visually equiva-
lent pattern would not degrade the global perceived quality
of the resulting image. Another factor that makes textures
particularly appealing for model-based coding is that in the

last decade a great research effort has been devoted the field
of texture modeling, resulting in a wide number of possi-
ble solutions. The strict connections with the investigation
of human vision makes it a powerful tool for the determi-
nation of the parameters, or perceptual primaries, which
are extracted by the visual system and the way they are
translated to higher level perceptual units. Besides the pio-
neering work of Heeger and Bergen [1], particularly relevant
in this respect are the contributions of Portilla & Simon-
celli [2] and Zhu [3]. These probabilistic texture models
have grown on the insights coming from neural sciences.
The main guidelines are in the assumption that the visual
system responds to the statistics of the stimuli to which
it is exposed and processes the visual information in order
to maximize the “efficiency” of the representation [4]. The
correct match between the derived bases functions with the
receptive fields in primary visual cortex [5] have validated
such works. An alternative approach aiming primarily at
texture replication, as opposed to the identification of the
perceptual features, has been followed by other authors.
Some noteworthy examples are the solutions proposed by
De Bonet [6], [7], Menegaz [8] Efros and Leung [9], Wei and
Levoy [10], Xu et al [11] and Ashikhmin [12].

Conversely, the field of “dynamic” texture modeling is
relatively under-investigated. Dynamic textures are usu-
ally meant as multi-dimensional stochastic processes ex-
hibiting some stationarity over time [13]. Some examples
are smoke, waves and foliage. This can be regarded as
a generalization of the bi-dimensional case, where tempo-
ral evolution is a feature of the global stochastic process.
Examples are the solutions proposed by Soatto [13], Bar-
Joseph [14] and Szummer [15].

The novelty of our contribution is that we address the
problem of modeling a different class of dynamic textures,
for which the motion is not an intrinsic property of the con-
sidered process, but the result of a continuous change of the
observation point of view. We aim at modeling the motion
features as perceived by a moving observer. To make the
distinction with respect of the 3D dynamic processes men-
tioned above, we call the considered class 2D+1 Texture
Movies (TM). In this case, the key point is the preservation
of the temporal correlation between subsequent images, or
frames. More specifically, we consider here the case of a
static texture - the grass - shot by a moving camera. This
situation is indeed representative of the typical set of appli-
cations we are considering. The synthesis of 2D+1 textures
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Fig. 1. Sublattice covered by the observation at time t.

is integrated in a wavelet-based coding system and com-
bined with classical compression of the remaining parts of
the images.

This paper is organized as follows. Sec. II proposes a
simple theoretical presentation of the issue. Sec. III revisits
the modeling technique for static textures proposed in [8]
and details the specificity of the current implementation.
Sec. IV describes the core of the proposed system, namely
the movement-simulating algorithm. Sec. V provides some
results for all the steps involved, i.e. static and dynamic
texture synthesis as well as video coding performances, and
Sec. VI derives conclusions.

II. Modeling of 2D+1 texture movies

Probabilistic static texture modeling aims at generating
a new image from a sample texture, such that it is suffi-
ciently different from the original yet appears to be gener-
ated by the same underlying stochastic process.

The goal of the proposed algorithm is to generalize such
an idea to the generation of a progressively “growing” tex-
ture, where the direction and speed of growth is given a-
priori by a predefined motion model. More specifically, we
focus here on piece-wise linear trajectories. In this case,
the main issue is the preservation of the perception of mo-
tion, namely the preservation of those visual features which
determine the sensation of continuity in the texture flow.

It is worth pointing out that the trivial juxtaposition of
temporally subsequent patches respectively sampled from
successive frames is not a solution. The aliasing phenomena
due to the sampling as well as the mismatch between the
sampling grids associated to two successive frames would
result in a discontinuity along the boundary. Importantly,
such sampling artifacts are the origin of the failure of
prediction-based coders when applied to texture sequences.

In what follows, we provide a simple formalization of the
proposed solution.

Let Ω be the infinite lattice, and let Ωt be the domain
which is observed at time t, e.g. the spatial support asso-
ciated with the observation at a given instant in time, as
illustrated in fig. 1. Let then I(Ωt) be the observation at
time t and Ĩ(Ωt) be the synthetic counterpart. Clearly:

Ωt ⊂ Ω ∀t (1)

Accordingly, Ωt1 and Ωt2 denote the domains covered by

the observations at times t1 and t2, respectively. The speci-
ficity of the proposed approach is that it provides a solution
to the following problem:

Given two sub-lattices Ωt1 and Ωt2 such that:

Ωt1 ∩ Ωt2 = Ω∆t 6= ∅, (2)

generate a synthetic texture over Ωt2 by growing it from
the seed already present on Ω∆t such that the impression
of visual continuity is preserved.

If the two sets were disjoint, then the independent gener-
ation of the texture over the two domains would have been
adequate. Conversely, where there is an overlap between
the two domains, the independent generation of the tex-
ture would produce an apparent edge at the boundary or,
equivalently, a flickering on the representation as a tem-
poral sequence which destroys the continuity of the visual
flow.

The key feature of the proposed model is the ability to
synthesize a textures Ĩ(Ωt2) over the domain Ωt2 by grow-
ing the texture over Ω∆t = Ωt2\Ω∆t but keeping unchanged
the texture already present over Ω∆t and avoiding discon-
tinuities along the boundary.

The previous discussion can be generalized to the case
where the observations are themselves realizations of the
stochastic process represented by the considered model for
static textures. This is indeed the case when focusing on
video coding. In such a framework, the idea is to trans-
mit the model of the texture to reproduce, and use it to
generate the texture all along the sequence. 1

In this case, the following relation holds:

Ĩ(Ωt+∆t) = Ĩ(Ωt)⊕ Ĩ(Ω∆t) (3)

where Ĩ(Ωt+∆t) is the synthetic texture simulating the ob-
servation at time t + ∆t, Ĩ(Ω∆t) is the texture seed, and
where the operator ⊕ indicates the juxtaposition of the
textures stated.

The spatial position of Ωt+∆t can be easily recovered
from the underlying motion model. Let x, y ∈ R be the
spatial coordinates of the upper left corner of Ωt and let
h and w, with h, w ∈ R+

∗ , be the height, respectively the
width, of the spatial domain Ωt, assumed to be of rectan-
gular shape. Given the estimated speed −→v = (vx, vy) at
which the point of observation moves, it is straightforward
to derive the position of the domain Ωt+∆t concerned by
the observation at time t + ∆t as the one whose upper left
corner has coordinates:

x + ∆x = x + vx ·∆t (4)
y + ∆y = y + vy ·∆t (5)

Therefore, one can easily identify Ω∆t and Ω∆t. How-
ever, growing Ĩ(Ω∆t) from the seed covering Ω∆t is not
trivial. We refer to Sec. IV for further details

1Of course this only holds when assuming that the texture is homo-
geneous. A simple generalization would be to assume that a model
for an homogeneous texture would be suitable as long as the model
parameters are contained within a predefined region of the feature
space. We leave this subject for further investigation.
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III. DWT-based Multiresolution Probabilistic
Texture Modeling

Static texture synthesis is achieved using the Dis-
crete Wavelet Transform-based Multiresolution Probabilis-
tic Texture Modeling (DWT-MPTM) method proposed
in [8]. The model consists in an implicit (non-parametric)
representation and reproduction of intra- and inter-scale
dependencies between DWT multiresolution coefficients.
These dependencies are captured and regenerated using the
multiresolution conditional sampling technique. This is a
direct sampling from a distribution by a Parzen estimator.
Since the theoretical link between the size and shape of the
Parzen window and the quality of the perceptual features
of the synthesized texture is still to be established (apart
from the well-known impact of the window width), the size
of the window is set empirically and is allowed to vary to
ensure it that it englobes a ”sufficient” amount of samples
(we refer to the Appendix for further explanations).

Linking model parameters to perceptual features is a
very difficult problem. Even though many statistical pa-
rameters have been proposed by different authors [1], [2],
[3] as those relevant to texture in terms of ”visual appear-
ance”, the way each of such parameters maps to perception
and to higher visual cues is still unknown. Namely, the gap
between low-level parameters and mid- to high-level visual
features is still unsolved. The fact that non-parametric
models, such as the DWT-MPTM, which are based on a
decomposition too simple to be representative of the one
performed by the visual system, provide results comparable
in quality to other parametric state-of-the-art techniques
suggests some redundancy in the more complex represen-
tations at least as far as perceptual features are concerned.

The algorithm that inspired the DWT-MPTM [6] gen-
erates a new texture image by shuffling coefficients of the
original texture at different spatial resolutions. This shuf-
fling is constrained in two ways:
• The local characteristics inside a frequency band must
be preserved
• Coefficients in a frequency band depend on the corre-
sponding ones at lower resolution
An analysis pyramid is built using a Laplacian pyramidal
formulation [6]. A conditioning pyramid is built by ap-
plying a set of orientation selective filters to each level of
the analysis pyramid. The conditioning pyramid describes
the local properties of each frequency band. A synthesis
pyramid, the counterpart of the analysis pyramid for the
synthetic texture, is then filled with coefficients obtained
by conditional sampling on the corresponding levels of the
analysis pyramid.

The distinguishing feature of the approach proposed
in [8] is that a single hyper-pyramid, the DWT hyper-
pyramid, combines the functions of both the analysis and
the conditioning. The algorithm is illustrated in fig. 2.
The three detail subbands of the DWT are used as the lo-
cal descriptors of the frequency bands. Accordingly, the
synthesis pyramid is also a DWT hyper-pyramid.

In order to reproduce the characteristic structure of a
texture, the statistical intra and interscale relationships ob-
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Fig. 2. Principles of the DWT MPTM. Three levels of decomposition
for the DWT are represented.

served in the original sample between coefficients must be
preserved [2]. In that regard, we define the terms of parent,
tree and parent vector as follows:
• Given the total number N of levels in the pyramid, let
F j

i (x, y) be the coefficient of coordinates (x, y) of the fea-
ture image F j

i of level 0 < i < N and orientation 0 < j ≤ 3,
i, j ∈ N. Then, the parent of this coefficient is the sample
F j

(i+1)(bx
2 , y

2 c). By extension, we say that the former coef-
ficient is the son of the latter.
• Inspired by the wavelet quad-tree, we call tree any group
of coefficients in a pyramid linked by a parent-son relation-
ship throughout the levels.
• The parent vector of the coefficient F j
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(6)

where the notation is the same as above.
The parent vector holds all the information necessary

for conditioning: local features of coarser levels as well as
inter-level dependencies. Conditional sampling consists of
two successive steps:
1. Build a candidate set Cj

i (x, y) for the coefficient
F j

i (x, y);
2. Randomly sample from Cj

i (x, y)
The candidate set Cj

i (x, y) contains all coefficients
F j,a

i (x′, y′) of the corresponding analysis pyramid subband
which have ”similar” parent vectors

−→
S j

i (x
′, y′):

Cj
i (x, y) = {(x′, y′) : D(

−→
V j

i (x, y),
−→
S j

i (x
′, y′) ≤ −→

T i} (7)
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In (7),
−→
T i is a threshold vector:

−→
T i = [T 1

i+1, T
2
i+1, T

3
i+1, . . . , T

1
N , T 2

N , T 3
N ] (8)

and D(·) represents the component-wise absolute difference
operator (information on the selection of the threshold vec-
tor can be found in the Appendix). Accordingly, condi-
tion (8) can equivalently be written in the form:

|V j
i,k(x, y)− Sj

i,k(x′, y′)| ≤ Ti,k (9)

where the subscript k indicates the kth component of the
respective vectors. Once the candidate set Cj

i (x, y) is de-
termined, one of its member is randomly chosen and its
value is assigned to the coefficient F j

i (x, y) of the synthesis
pyramid.

The synthesis process starts by filling the highest level of
the synthesis hyper-pyramid, namely the three detail sub-
bands of level N and the approximation, by copying the
corresponding subbands of the analysis pyramid. Succes-
sive finer levels are then filled by conditional sampling.

A. Conditional Tiling in Transform Space

Results show that in many cases the structure of the
texture is better preserved by limiting the sampling to the
higher levels of the pyramid. In this particular implemen-
tation of the DWT-MPTM, conditional sampling is limited
to the level N − 1. Hence, subbands of the level N of the
synthesis pyramid are copied from the analysis one, those
of level N −1 are filled through conditional sampling while
the remaining levels are filled by retaining the entire trees
emerging from the last synthesized samples.

As explained in the Appendix, groups of coefficients are
sampled at once to improve the efficiency of the algorithm
while better preserving texture characteristics. Because
they share the same parent vector, coefficients of coordi-
nates (x, y), (x + 1, y), (x, y + 1) and (x + 1, y + 1), where
x and y are even numbers, of all three subbands of level
N − 1 are sampled together.

The two ideas explained above, which are crucial to mak-
ing the DWT-MPTM fast enough for real-time applica-
tions, influence the randomness of the algorithm. In fact, a
careful analysis shows that implemented in such a way, the
DWT-MPTM is reduced to what corresponds to a tiling
of 2N by 2N blocks at image level. We speak of Condi-
tional Tiling in Transform Space (CTTS). The advantages
of CTTS over conventional tiling are twofold. Because it
takes place in transform space, and because tiles are condi-
tionally positioned next to one another, feature mismatches
and block effects are greatly reduced. This enables the use
of smaller tiles than would be possible at image level, which
reduces the chance of apparent replica of the original sam-
ple.

B. Generating Pictures of Any Size

The guideline of the DWT-MPTM algorithm is to recre-
ate parental relationships between pixels of different levels.

The generative process starts by copying the highest level
of the analysis pyramid in the synthesis pyramid. However,

when synthesizing a larger image, the original subbands are
not enough to fill completely their synthetic counterpart.
In [8] and [6], subbands are scaled or tiled to cover the
desired area. Tiling is feasible only if the depth of the de-
composition is sufficiently high to produce strongly homo-
geneous subbands. Ideally, these subbands should contain
just one pixel [6]. Since in practical applications this is
usually not the case, tiling would then generate blocking
artifacts. For example, if a texture illuminant were not con-
stant but fading from right to left, tiling would be visible
and the resulting output image would be vitiated.

To solve this problem, one idea is to recursively fill empty
coefficients at the border of those filled by values which are
close to that of their filled neighbor. In doing so, we as-
sume that those subbands have attained a certain level of
smoothness. One advantage of this method is that the pool
of coefficients somewhat like the filled neighbor is already
computed for conditional sampling. This operation there-
fore requires no additional computation.

IV. Incorporation of the DTW-MPTM in a
movement-simulating algorithm

As stated in Sec. II, the specificity of the proposed ap-
proach is to integrate the DWT-MPTM in a solution to the
following problem:

Given two sub-lattices Ωt1 and Ωt2 such that:

Ωt1 ∩ Ωt2 = Ω∆t 6= ∅,
generate a synthetic texture over Ωt2 by growing it from
the seed already present on Ω∆t such that the impression
of visual continuity is preserved.

We propose a method based on synthesizing a texture
area larger than the video frame size, preserving the tex-
ture over Ω∆t while generating a limited amount of new
texture, only when necessary, to cover Ω∆t without creat-
ing apparent discontinuities.

It is worth pointing out that the straightforward solution
of synthesizing each frame independently with the DWT-
MPTM is not suitable because it creates a disjointed suc-
cession of rapid texture changes that fails to generate an
impression of movement. One also quickly comes to the
conclusion that a cut-and-paste approach at image level,
in which the common section is correctly displaced and
remaining empty parts of the frame are filled with newly
synthesized patches of texture, creates unacceptable dis-
continuities.

Another trivial solution would be to synthesize a much
larger texture area than the frame size and to select the
covered domain to be part of the frame according to the
camera movement. This method is however subject to ap-
plication concerns. First, the required size of the synthetic
texture should be known a-priori. Moreover, large amounts
of texture could be produced without ever being needed.

A way to answer those concerns is to work in feature
space. Although the DWT used for compression purposes
is in general not shift-covariant, covariance properties hold
for translations in transform space which correspond to
translations at image level which can be broken down in
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horizontal and vertical shifts of k · 2N and h · 2N pixels
respectively, where k, h ∈ Z and N is the number of de-
composition levels of the DWT. Working in feature space,
we are consequently able to generate from a synthetic im-
age S the following set:

Γ ={S(k,h), k, h∈ Z|S(k,h) = T(k,h)I} (10)

where T(k,h) is the translation operator that applied to S

produces a shift of k · 2N and h · 2N units in the horizontal
and vertical directions, respectively.

As the translation from S to S(k,l) takes in fact place
in feature space, the remaining empty parts of S(k,l) can
be filled in feature space by applying the DWT-MPTM
algorithm locally without creating discontinuities.

Considering the above, any random translation can be
obtained by extending the size of S so as to add to it a
border of 2N pixels on all sides. Therefrom, simulating
a random translation is a two-step process: obtaining the
correct S(k,h); selecting the correct area of S(k,h) which
is to make up the video frame. An example is shown in
fig. 3. Let p and q, with p, q ∈ {0, 2 · 2N} be the width in
pixels of the border zone respectively in the horizontal and
vertical direction of movement. To generate a horizontal,
respectively vertical, movement of m, respectively n, pixels
at image level, with m ≥ p corresponding to ∆x and n ≥ q
corresponding to ∆y in Sec. II, the correct S(k,h) is chosen
so that:

k = mink̃{(p + k̃ · 2N ) ≥ m} (11)

h = minh̃{(q + h̃ · 2N ) ≥ n} (12)

The window of visibility is then correctly positioned inside
S(k,h), namely:

new p = p + k · 2N −m (13)
new q = q + h · 2N − n (14)

Proceeding in such a way, we avoid both having to know
beforehand the amount of texture needed and generating
large useless amounts of it.

Another aspect of the procedure is that, for obvious
memory concerns, synthesized textures are not saved once
they aren’t needed anymore. This leads to the regeneration
of texture in the case of movement in one direction then
in the opposite one. However, because we deal with highly
stochastic textures, subsequent changes are in our opinion
very difficult to discern.

V. Results and Discussion

The correct way for evaluating the performances of any
texture model, either static or dynamic, would be to design
an ad-hoc subjective test characterizing it from a percep-
tual point of view. However, this task is beyond the scope
of this contribution, so we leave it an open issue for fu-
ture work. Instead, we did some informal subjective tests
involving people of the laboratory who were not familiar
with the subject, as well as some objective measures on

S

Original frame size

Window of visibility

m

n

h.2N
q

p

2N

k.2N

S � ��� � �

new_p

new_q

Fig. 3. Simulation of movement. The size of S is bigger than that
of the original. When the added border is not enough to simulate
the required movement, a shifted version of S is created. The win-
dow of visibility is then moved inside S(k,h) to reproduce the correct
movement.

both the motion information and the compression perfor-
mances.

As the DWT-MPTM, which has been taken as the
ground for our algorithm, has already been extensively
tested [8], here we provide only a few examples of its per-
formances. Fig. 4 shows the original (left column) and the
synthesized (right column) images for two structured tex-
tures from the Brodatz album [16]. In general, results show
that the method performs well on a wide variety of random
and structured textures.

As mentioned throughout this paper, care has been de-
voted to attain a high level of efficiency. It is worth pointing
out that entire frames of texture rarely have to be gener-
ated. In fact, for most frames, no new texture is synthe-
sized at all. This is due to the added border, which can be
interpreted as a buffer. When it is not enough, only a small
percentage of the image size needs to be newly synthesized.
Three cases must therefore be examined. If a scene change
has been detected, an entire new frame of texture based
on the sample sent must be generated. It takes around 45
milliseconds for a frame of 432×352 pixels to be generated
from a 128 × 128 sample. When movement is such that
a portion of new texture must be generated, the synthesis
process takes about 15 milliseconds. Finally, the process is
instantaneous (0.002 ms) for most frames where the win-
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Fig. 4. Results for different types of texture.

dow of visibility must simply be adjusted.

Our texture movie synthesis model is particularly suit-
able for the integration within a coding system. First, it
is entirely based on the DWT, which is the transforma-
tion exploited for coding, and classical motion estimation
techniques [17]. Second, the implementation by the lifting
scheme [18] has a number of features that are particularly
adapted for the implementation on a device: it enables
the in-place processing as well as the use of integer arith-
metic [19], it simplifies the management of border condi-
tions and reduces the complexity by up to a factor 4 [20].
Furthermore, the model is very concise and the synthesis
algorithm is computationally efficient (single-step).

We therefore built a complete codec to measure the com-
pression ability of our proposed method. The codec fo-
cuses on movies containing only texture with the intent of
adding segmentation tools in the future to deal with video
sequences containing large amounts of texture, as is often
the case for sports sequences (football, rugby, ...). Let us
point out right away that in regard to compression, syn-
thesizing a larger picture than the one displayed is not a
problem since no extra information is needed. Compression
rates are consequently unaffected.

The first results concerning compression performances

are promising2. The total rate corresponding to the pro-
posed model-based system, e.g. needed to encode the
model itself and the approximation subbands of the chro-
maticities for a 2D+1 grass texture, is of 104 kbits/s. It
is worth pointing out that the decoding process works in
real-time (40 frames per second) on Pentium III processors.
By comparison, the minimum rate attainable by a state-
of-the-art MPEG4 [21] encoder on the same sequence was
more than ten times higher, namely 1408 kbits/s.

Even though the movement of the camera is reduced to
simple translations, predictive coders like MPEG4 struggle
with such texture sequences. Indeed, the analog texture
is captured and sampled by the digital recording device.
Because of the high frequency content of the texture, the
conditions required for perfect reconstruction of the signal
by the Nyquist theorem are not fulfilled and aliasing occurs.
Moreover, the limited acquisition speed of the camera intro-
duces additional frequency smoothing. Successive frames
in the original movie are therefore not an exact translated
version of one another. For the same reason, it is not pos-
sible to encode with a lossless method the extra amount of
texture needed from one frame to another and ”paste” it
alongside the previous frame without creating discontinu-

2A wide set of synthesized as well as MPEG4 decoded sequences is
available at http://www.visiowave.com/gmbv2002/.
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ities. This leads us to believe that our codec fills a gap in
the range of coding techniques.

The ability of the proposed algorithm to reproduce the
correct temporal correlation between successive frames or,
equivalently, the motion information present in the original
sequence, has been tested by comparing the motion vector
field estimated on the original sequence (fig. 5(a)) with that
obtained by applying the motion estimation algorithm to
the synthesized sequence (fig. 5(b)). As a counter-example,
fig. 5(c) shows the motion vector field for the case where
each frame was generated independently. The similarity
between fig. 5(a) and (b), as opposed to the random dis-
tribution of the vectors in (c) proves that the proposed
method is able to preserve the temporal link between the
frames of the sequence and, consequently, to induce the
same motion perception in the human observer. It is worth
mentioning that the vectors on the right of fig. 5(b) simply
translate the introduction of new texture that cannot be
matched to previous blocks. This has been also verified by
an informal test on some non-trained observers. All could
correctly identify the situation and provided the same de-
scription of the dynamic scene for both the original and
the synthesized test sequences.

Another very interesting feature of the synthesized se-
quence is that the perceptual quality of the frames is the
same all over the sequence, for a given rate, namely, with-
out an additional cost in terms or resources. This has a
direct impact on the applications, enabling for example
the pause with same quality on any image. Furthermore,
frame-by-frame analysis shows that because of the move-
ment and the limited capabilities of the acquisition device,
many frames of the original sequence seem completely out
of focus. These artifacts are no more present in the syn-
thesized sequence, which also looks less noisy, jittery and
blurry than the original (see fig. 6).

A different choice would be to exploit the degradation
of the performances of the visual system to perceive high
spatial frequency in presence of motion. This would further
simplify the synthesis process at the expenses of the frame-
wise resolution.

A major shortcoming of the present codec is its inability
to render perspective. Because of this, most existing video
texture sequences, like movies of football games for exam-
ple, cannot be correctly processed. In the future, we hope
to resolve this problem by filtering the texture according
to its position in the frame. To complete the codec, other
types of camera movement must also be added, like zooms
and rotations. Rotations could be dealt with as a sum of
infinitesimal translations.

VI. Conclusion

We propose a novel model-based coding system for video.
The generalization of the DWT-MPTM modeling method
for static textures to 2D+1 moving textures results in an
algorithm able to synthesize any 2D+1 texture movie with
any piece-wise linear trajectory. A representative texture
patch is extracted from a frame of the original sequence
and is used as model for synthesizing the other frames. The

motion vector field is estimated at any frame and is used
to constrain the generating process such that the correct
temporal correlation between the images is preserved. The
global model-based video coding system is highly computa-
tionally efficient. The current implementation is real-time
on P3 processors. Furthermore, first results show that it
outperforms the considered MPEG4 encoder in both coding
gain and quality of the decoded information when evalu-
ated either framewise or on the entire video. Among the
issues deserving further investigation are the emulation of
other camera functions like zooming and rotation and the
integration of the synthesis procedure within an object-
based coding framework.

VII. Appendix

A. Determining the Threshold Vector Values

The threshold values making up the vector
−→
T i repre-

sent one of the most sensitive parameter of the algorithm.
Roughly, large values do not hold enough discerning power
making the resulting candidate set is too vast to be repre-
sentative of the texture structure. Conversely, small values
overconstrain the sampling generating some replica of the
model.

The difficulty in finding the optimal threshold values is
increased by the fact that they are texture-dependent. Our
solution consists in fixing the minimum number Cmin of
candidates and progressively updating the threshold values
until such a condition is met. The initial values

−→
T i,0 used

for
−→
T i are the standard deviations of the corresponding

analysis subbands:

T j
i,0 =

√
1

n− 1

∑
x

∑
y

(F j
i (x, y))2 (15)

where n is the number of coefficients in the subband F j
i .

A wide range of values has been tested for both T j
i and

Cmin. (between 0.2 and 1.5 times the standard deviation
for the first, and 4 to 32 candidates for the second) but no
sensible improvement has been observed.

B. Improving the Speed of the DWT-MPTM

One specificity of the current implementation is that the
computational efficiency is sensibly improved with respect
to [8]. This is due to the strategy followed for designing
and implementing the multiscale conditional sampling.

First, the synthesis pyramid is filled tree by tree instead
of level by level, e.g. by proceeding “vertically” instead of
“horizontally” through the pyramid. This is based on the
following property:

F j,a
i+1(b

x′

2
,
y′

2
c) ∈ Cj

i+1(x, y) → F j,a
i (x′, y′) ∈ Cj

i (x, y)

(16)
namely, a coefficient can only belong to the candidate set
Cj

i (x, y) if its parent belongs to Cj
i+1(bx

2 , y
2 c). However,

this is a necessary but not sufficient condition. The can-
didates for F j

i (x, y) are the subset of descendants of the
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Fig. 5. Motion vector fields as estimated on (a) the original sequence (b) the synthesized sequence (c) the sequence obtained by synthesizing
each frame independently.

(a) (b) (c)

Fig. 6. Some frames of a movie are blurred because of the movement and the limitations of the acquisition device. (a) Original frame; (b)
Corresponding synthetic frame; (c) Minimum rate MPEG4 decoded frame.

elements Cj
i+1(x, y), F j

i+1(
x′
2 , y′

2 ) satisfying the additional
condition:

|F j
i+1(b

x

2
,
y

2
c)− F j,a

i+1(b
x′

2
,
y′

2
c)| ≤ T j

i+1 ∀j = 1, . . . , 3

(17)
Basically, the candidate set of the “just filled” sample

brings all the a-priori information needed to build the can-
didate set for its descendants. The gain in efficiency is due
to the (progressive) filling of all the positions within the
current tree before, switching to other positions of the cur-
rent level. Therefore, the synthesis tree is built branch by
branch.

Second, the definition of the parent structure allows to
sample groups of coefficients at once. More specifically:
samples of coordinates (x, y) of their respective subbands
in a common level share the same parent vector. Subse-
quently, if a coefficient of the analysis pyramid F 1,a

i (x′, y′)
belongs to the candidate set C1

i (x, y), then F 2,a
i (x′, y′) and

F 3,a
i (x′, y′) belong to C2

i (x, y) and C3
i (x, y), respectively.

We exploit this property by linking such coefficients for
sampling the subbands of a common level. Instead of
randomly choosing three different coefficients for F 1

i (x, y),
F 2

i (x, y) and F 3
i (x, y), the three coefficients F 1,a

i (x′, y′),
F 2,a

i (x′, y′) and F 3,a
i (x′, y′) are chosen at once and as-

signed to their respective position. Furthermore, because

of the subsampling implied by the DWT, four pixels per
subband share the same parent vector. If x and y are
both even numbers, then the coefficients of coordinates
(x, y), (x, y + 1), (x + 1, y) and (x + 1, y + 1) of all detail
subbands of a common level share the same parent vector.
We also choose to link the sampling of those four coeffi-
cients. Accordingly, if F j,a

i (x′, y′) is chosen for F j
i (x, y),

then the three other sons of the same father are assigned
the following values:

F j
i (x + 1, y) = F j,a

i (x′ + 1, y′) (18)

F j
i (x, y + 1) = F j,a

i (x′, y′ + 1) (19)

F j
i (x + 1, y + 1) = F j,a

i (x′ + 1, y′ + 1) (20)

For this to be correct, x, y, x′ and y′ must all be multiples
of 2. If not, coefficients which do not share a common
parent vector could be grouped.

In all, twelve coefficients are linked together. It is
worth mentioning that besides the gain in complexity (a
single candidate set is built for 12 coefficients, and the
random function is called only once), the linking tends
to strengthen the relationship between coefficients both
within and across scales, improving the representation of
the texture structure, for a given subband pyramid. Fi-
nally, to keep the complexity low, the size of both the orig-
inal and synthetic images is constrained to be a power of
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two.

C. Processing Boundary Samples

In our implementations of the DWT and IDWT, bound-
aries of the subbands are extended by symmetry. A virtual
neighborhood is therefore created to enable convolution.
While this does not have an impact for static texture syn-
thesis, problems arise when movement is generated. When
coefficients are shifted, some of them which lied at the bor-
der of their respective subbands are now surrounded by
other pixels. Their neighborhoods have changed. Hence
the result of convolution will change, which in turn will
affect pixels at image level.

To minimize the artifacts, we use the lifting scheme im-
plementation of the wavelet transform with the (5,3) filter,
which has the particularity that each lifting step involves
only the current and the previous or following samples. The
size of the local neighborhood is then one. Consequently,
only the border coefficient of each subband is concerned by
changing neighborhoods. But since a coefficient at highest
level of decomposition corresponds to 2N pixels at image
level, a border of 2N pixels at image level is affected by
changing values from one frame to another.

To avoid this problem we extend once again the size of
the synthesized texture image, so that changing pixels are
contained within a border of 2N pixels which is never visi-
ble. Artifacts due to the border effect are always kept out
of the actual video frame.
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