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Abstract 

Assuming that the photoreceptor response of the 
human visual system is adaptive and non-linear, we can 
derive mathematical properties that can account for both 
color discrimination and chromatic adaptation. This 
could be due to the photoreceptors’ response to 
illumination, which is non-linear and varies according to 
the adaptation state. Assuming the Naka-Rushton non-
linear function and an automatic gain control function, 
we can derive color discrimination and chromatic 
adaptation data. We extend the discussion to a three-
layer model of retinal color processing, and show how 
we could predict corresponding color data. 

Introduction 

Many studies have shown that the response of the 
human visual system to color stimuli is non-linear and 
adaptive. Color discrimination and chromatic adaptation 
are two visual phenomena that underline these 
properties. First, to derive a perceptually uniform color 
space, for example CIELab, a non-linear function is 
applied to XYZ tristimulus values. Second, the 
appearance of a color is not constant over space and 
time; rather it is dependent on the illuminant and 
surround, i.e. the state of adaptation of the visual system 
at a given moment in time.  

We know from the physiology literature that the 
photoreceptors’ response to light is non-linear and 
adaptive. However, we can assume that they are not the 
only elements of the visual system responsible for color 
vision. But to understand what their role is remains an 
interesting and unsolved question. The functionality of 
photoreceptors is known from physiology, while color 
experiments are based on psychophysical tests. It is still 
unclear how a particular neuron function can influence 
the whole behavior of color vision.  

Color discrimination data is usually based on 
simultaneous psychophysical experiments, and reveal the 
non-linearity of the visual system. On the other hand, 
chromatic adaptation data, i.e. corresponding colors, are 
usually based on successive tests, and reveal the visual 
system’s response to adaptation. In this paper, we make 
the hypothesis that the photoreceptor’s non-linearity is 
modified by the adaptation state. However, for a given 

adaptation state, non-linearity remains constant. This 
allows us to consider only the non-linearity in case of a 
fixed adaptation state. Additionally, the relationship is 
linear with respect to a change in the state of adaptation. 
To simplify the discussion, we restrict our study to one 
particular non-linearity function and one particular 
adaptation scheme. 

We demonstrate how non-linearity and adaptation of 
a photoreceptor function is compatible with line elements 
of a color space and the von Kries hypothesis.  We also 
explain in detail why we need more than the 
photoreceptor function to explain color discrimination 
data, and we compare adaptation in photoreceptors with 
the classical model of chromatic adaptation. 

Once we have established that photoreceptor 
adaptive non-linearity accounts for both sets of 
experimental data, we extend our analysis to the 
functionality of the whole retina. In particular, we 
present a three-layer model that includes a non-linear 
encoding and two adaptation levels. The advantage of 
this approach is that such a model is more meaningful 
from a physiological point of view. We show how this 
model could predict corresponding color data. 

Adaptive non-linearity 

Photoreceptors are the light-sensitive elements of the 
human visual system. They are responsible for the 
spectral sensitivities of color vision, and they also 
respond non-linearly and adaptively to allow for a large 
dynamic response under different illumination 
conditions. As the regulation of input light is very 
important for matching neuron dynamics, we could think 
intuitively that this behavior strongly relates to 
adaptation and color discrimination. Practically, we will 
show in this part that assuming an adaptive non-linearity 
for the photoreceptor’s light transduction is compatible 
with both the von Kries hypothesis, i.e. the model for 
chromatic adaptation, and line elements, used to account 
for color discrimination data. 

Photoreceptor non-linearity is modeled by the Naka-
Rushton law [5], a generalization of the Michaëlis-
Menten homographic function, which was designed for 
enzyme kinetics. This model is very similar to the 
behavior found regulating the GMP (guanosine 
monophosphate) responsible for transforming light into 
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electrical current in the photoreceptors [6]. Finally, it is 
confirmed by the microelectrode suction response [7].  

The Naka-Rushton law is given by the following 
function f : 
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Where { }, ,X L M S=  represents the excitation of the 
photoreceptors, meaning color values in LMS-cone 
space. { }0 0 0 0, ,X L M S=  is the adaptation state of a 
particular photoreceptor, α  is a parameter (in this study, 
we assume 1α = ). We can show that the adaptation 
parameters modify the curvature of the non-linear 
function. 

The way adaptation operates is often explained as 
automatic gain control. This means applying the 
function in 0/X X  instead of X . 0X is a scaling factor 
equal to the adaptation state calculated from the 
environment, such as the illuminant contribution or 
spatio-temporal statistics. 0X  modifies the gain of the 
function and is calculated automatically from the input 
statistics. 

The Naka-Rushton law can therefore be rewritten as 
follows: 
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This formulation shows that the adaptation state 0X  
operates as a scaling factor. As already shown in [4], 
assuming a constant adaptation state for the 
photoreceptor non-linearity is a reasonable hypothesis 
for MacAdam ellipses.  

Actually, color discrimination data are represented 
by ellipsoids in LMS space, which represent the loci of 
just noticeable difference (JND) with the reference color 
in the center of the ellipsoid. In fact, ellipsoids in cone 
space define a Riemanian metric rather than a Euclidian 
metric. The Euclidian space is a particular case of a 
Riemanian space. In color science, a Euclidian space is 
known as a perceptually uniform color space, where as a 
Riemanian space is characteristic of color discrimination 
data representation. Line elements [13] is a mathematical 
formalism that allows to construct a relation between 
these metrics. This relation is known to be non-linear and 
depends on the location in the color space. If we take the 
linear approximation1 of the Naka-Rusthon function 
around the center of ellipsoid, we can write: 
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Consequently, adaptive non-linearity operates as a 
scaling factor, depending on the adaptation condition 0X  
and the position in color space cX . This transformation 
allows converting ellipsoids into spheres as shown in 
figure 1. 

                                                           
1 This approximation is correct if we consider small thresholds 
of color difference 
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Figure 1: Adaptive non-linearity allows the transformation of a 
discrimination ellipsoid into a sphere.   

When considering chromatic adaptation, we wish to 
map the appearance x  of an object having color X  
under one adaptation condition 0X  to the appearance 'x  
under another condition '

0X : 
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If the appearance of the two colors is the same, then 
'x x= , which is equivalent to: 
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Since 1f f− o  is the identity function, the ratio 
between the colors X  and 'X  is equal to the ratio of the 
adaptation state. This is equivalent to the von Kries 
hypothesis, where we assume that the linear gain factors 
depend on the ratio of the illuminants. Note that in case 
of incomplete adaptation, this model still applies. 
However, the adaptation parameters are not equal to the 
illuminant values anymore.  

Thus the adaptive, non-linear behavior of the 
photoreceptors explains both color discrimination and 
chromatic adaptation. In the next two sections, we will 
see how accurate this model is. 

Color Discrimination 

We assume that non-linearity applies in each color 
channel L, M and S independently, and that the 
adaptation state is constant (equal to illuminant C in the 
MacAdam experiment) during all the measures. We call 
the uppercase letter TL M S= ∆ ∆ ∆  X  the differential 
element in LMS space and lowercase letter 

Tm s= ∆ ∆ ∆  x l  its transformation through the Naka-
Rushton non-linearity. 

Defining x  as a perceptually uniform color space is 
equivalent to express color discrimination as a sphere of 
unitary diameter: 



 2 2 2( ) ( ) ( ) 1c c cm m s s− + − + − =l l  or 1T =x Ix  (6) 

with T
c c cm m s s m s= − − − = ∆ ∆ ∆      x l l l  and 

I  the identity matrix. 
Since the threshold of color differences is small, we 

can approximate non-linearity by a linearity around the 
ellipse centers so that: 
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where cX  is the color center around which color 
discrimination is measured, and X∆ , x∆  are the distances 
of each point of the ellipsoid with respect to the center in 
LMS space and msl  space, respectively.  

Ellipsoid i  in LMS space is defined by the 
following equation: 

 1=T
iX G X  (8) 

The non-linear model transforms the ellipsoid such 
that it becomes: 
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where [ ]cL i , [ ]cM i , [ ]cS i  represent the LMS center 
for ellipse i . 

Otherwise said, the model predicts that 
( )T-1 -1

i i iT G T = I . We have computed ( )=
T-1 -1

i i i ig T G T  for 
all the 25 ellipses of MacAdam’s original data, assuming 
a constant adaptation state equal to illuminant C. 
MacAdam’s data is given in xy chromaticity coordinates; 
the complete transformation into the LMS space is given 
in Annex A.  

All ig  are not equal to the identity matrix. 
Therefore, we have chosen to define a mean matrix 
parameter as ig = g  and reconstruct ellipses from g , 
through T

i i iG = T gT% , which results in a good 
approximation [14]. 

One reason why ig  is not equal to identity is that the 
ellipsoids in LMS space are not oriented along the LMS 
axis. However, the transformation matrix iT (a diagonal 
matrix) applies a scaling factor only along the L, M and 
S axis. Therefore, assuming that only photoreceptor non-
linearity is responsible for the color discrimination 
ellipses is not enough to fully account for the 
experimental data.  

We can argue that photoreceptors are not the only 
site of adaptation and non-linearity in the visual system. 
For example, Vos and Walraven [13] have already 
suggested applying line elements additionally on 
luminance and opponent colors. There is other evidence 
in the literature that this kind of non-linearity and 

adaptation is only a first order approach to the reel 
phenomenon and that a second mechanism is needed 
[12]. In discrimination tasks, Yeh, Smith and Pokorny 
[9] argue for two non-linearities. Webster and Mollon 
[10] also proposed a second adaptive process for taking 
into account all adaptation properties. Sharpley and 
Enroth [12] call this second adaptation site the contrast 
gain control.  

Ganglion cells, which form the relay between the 
retina and the cerebral cortex, should also be modeled 
with adaptive non-linearity. These cells also need to 
guarantee maximum dynamic range response for the 
entire signal carried by previous neurons in the retina. 
The maximum of the difference of signals is in general 
less than the maximum of each. Additionally, ganglion 
cells are known to carry color opponent signals. For 
these reasons, ganglion cells should adapt to the dynamic 
range. We therefore assume that the ganglion cells also 
function with adaptive non-linearity. 

We suppose that color signals (L, M and S cone 
responses) are coded into luminance and two color 
opponent channels, and then the adaptive ganglion cell 
operates non-linearly. Thus, the complete retinal 
processing model we propose is composed of three 
layers and is as follows: 
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Figure 2: Three-layer model of the retina. 

This model is able to account for ellipsoids in every 
orientation, as shown in [11]. Moreover, the model 
successfully predicted several discrimination data sets 
for several observers in different experimental 
conditions. 

In the following section, we will demonstrate why it 
is interesting to consider this model in the case of 
chromatic adaptation. 

Chromatic Adaptation 

Chromatic adaptation models and transforms are 
usually evaluated on sets of experimental corresponding 
color data, which is available encoded in CIE 1931 XYZ 
tristimulus values [15]. If P  is a (Nx3) matrix of color 
triplets of N color surfaces under illuminant i , S (Nx3) 
is another set of color triplets corresponding to the same 
appearance perceived under a second illuminant j . i and 



j  are [3x1] vectors containing illuminant tristimulus 
values. 

According to the von Kries chromatic adaptation 
model, the relationship between corresponding colors is 
linear. S  values can therefore be derived as a linear 
combination of P values. In matrix notation, this is given 
by: 

 S = TP  (10) 

Many studies exist that have tested and confirmed 
the relevance of the linear model to account for 
chromatic adaptation. However, the question remains as 
to what exactly the meaning of this linear relation is. We 
have already seen that the photoreceptor adaptive non-
linearity is compatible with this model. However, what is 
the role of the photoreceptors, and what can we say about 
the other retinal encoding parameters? 

A way for estimating the matrix T  is to minimize 
the least-squares error between the estimate S%  given by 
the linear model and S : 

min min− = ⇒ -1S S TP - S T = SP'(PP')%  

with 
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For all known corresponding color data sets, this 
gives a full [3x3] matrix T . This matrix can be 
decomposed as: 

 -1T = MDM  (12) 

Where D  is a diagonal matrix and M a full [3x3] 
matrix. M  is the linear transformation from XYZ space 
to LMS cone space, or the “response space” where von 
Kries scaling applies, and D  is composed of scaling 
factors for the individual channels.  

There are several decompositions possible with this 
formalism. The one that results in minimum error (see 
Table 1) is given by taking M  and D  as eigenvector and 
eigenvalue matrices, respectively, of the space spanned 
by T . However, this decomposition is neither related to 
human vision, such as XYZ to LMS transforms, nor to 
the ratio of adapting illuminants. 

The Hunt, RLAB, and Nayatani et. al. color 
appearance models [16] use the HPE (Hunt-Pointer-
Estevez) linear transform, which relates XYZ to relative 
LMS cone responses. The diagonal matrix is composed 
of the ratios of the illuminants encoded in LMS:  

 -1S = M DMP% , )/.( MiMjD diag=  (13) 

(./) denotes an element-by-element division. Giving 
such constraints to the choice of M  and D  allows to 
give more meaning to the linear transformation, in the 
sense of relating it to the human visual system and the 
illuminants. As a matter of fact, equation (13) describes 
the linear chromatic adaptation transform (CAT) model 
most often applied today. The differences between the 
CATs are in the response space the scaling operates. The 
diagonal matrix, consisting of the ratios of the two 

adapting illuminants, is called the von Kries coefficient 
matrix.  

The HPE CAT is widely used today, but it generates 
a larger error than the eigenvalue decomposition (see 
Table 1).  

Lam [2] chose M  by minimizing perceptual error 
( E∆ ) between predicted and actual corresponding 
colors. He optimized his matrix so that the transform is 
reversible. The resulting Bradford CAT also includes a 
non-linear exponent for the blue. However, in many 
imaging applications, this non-linearity is neglected and 
the linear form of the Bradford CAT is used. The 
interpretation is that we don’t know where the von Kries 
scaling coefficients operate, but that it is in a space that 
minimizes perceptual error. 

Finlayson and Süsstrunk [3] based their transform 
on white-point preserving data-based spectral sharpening 
of Lam’s corresponding color data set. They also apply 
eigenvalue decomposition to the general matrix T . They 
conclude that scaling is applied in a more decorrelated 
response space than LMS. 

 
Method Error 

Eigenvalue 
decomposition 

6.95 

HPE 14.51 
Linear Bradford 9.53 
Sharp 8.30 
3-layer model 6.76 

Table 1: XYZ least squares errors for several chromatic 
adaptation models, applied to Lam’s corresponding color data. 

Applying the photoreceptor model, as outlined 
above, corresponds to the HPE transform. While it has 
the advantage of taking into account the physiological 
plausible XYZ to LMS transform and to relate adaptation 
parameters to the illuminant values, it results in a larger 
error than other chromatic adaptation transforms. 

As in the previous section, we can therefore test if 
the three-layer model better predicts corresponding color 
data than photoreceptor adaptive non-linearity by itself. 
Note that the three-layer model is not linear, and that it is 
not possible to determine all model parameters by a 
linear optimization, such as eigenvalue decomposition. 

Conforming to the notation defined in figure 2, LMS 
data is transformed to msl  through the Naka-Rusthon 
function. Then, msl  is transformed to ACD, which is 
representative to encoding in luminance A and two 
opponent colors C and D. The data is then transformed to 
acd through a second non-linearity. 

We have chosen to compute the corresponding color 
data in msl  space. We use the HPE matrix to transform 
XYZ into LMS. We then apply the Naka-Rushton law on 
LMS, with the adaptation parameters equal to the (LMS) 
illuminant values. Now, the correspondence between 

msl  and ' ' 'm sl  can be expressed as a linear relation. 
This linear relation could be decomposed as in equation 
(12). However, this decomposition is not possible with 
Lam’s data as the eigenvalues become complex. We use 
the singular value decomposition instead, so we write:  



 [ ] [ ]' ' 'm s m s=
T TTUDVl l   

Where 

[ ] [ ]A C D m s=
T TTV l

[ ] [ ]' ' ' ' ' 'A C D m s=
T T-1U l  

 [ ] [ ]' ' 'A C D A C D=
T TD  (14) 

The inability to use eigenvalue decomposition on 
Lam’s data can be interpreted that the encoding into 
luminance and opponent color is not constant and varies 
with the state of the adaptation. The singular value 
decomposition allows the mathematical formulation of 
the modified encoding and to find the two encoding 
transformations in the two adaptation conditions:  

 0.1912   -0.2188   -0.9569
 0.9662   -0.1299    0.2228
-0.1731   -0.9671    0.1866

 
 =  
  

U

-0.1647    0.9815   -0.0979
-0.2470   -0.1372   -0.9593
 0.9549    0.1338   -0.2650

 
 =  
  

TV  

 )6811.09442.03808.1(diag=D  (15) 

We found that the error in S%  is significantly smaller 
than with HPE, and even less than with the generalized 
linear method (see Table 1). 

D contains the adaptation scaling factors applied in 
the opponent color encoding and can be considered, 
borrowing the notation of Sharpley and Enroth [12] as 
the contrast gain control. 

Conclusion 

We have shown that a model of adaptive non-
linearity in photoreceptors can explain both visual 
phenomena of color discrimination and chromatic 
adaptation. An adaptive, non-linear photoreceptor model, 
which is equivalent to line element and von Kries 
adaptation in LMS space, can be considered as a first 
order approximation of the reel phenomenon. 

The von Kries chromatic adaptation model does not 
give good results when applied in cone space, as already 
shone in [8]. However, a three-layer model of the retina 
that includes the relationship of encoding into cone space 
and afterwards into opponent color space could relate the 
physiological processes with the von Kries chromatic 
adaptation model. It could also confirm why the Sharp 
transform, which predicts a much more de-correlated 
response space, performs so well. 

However, we still have to investigate if the three-
layer model has properties that fully explain chromatic 
adaptation. For example, we have to show that it is 
possible to predict corresponding colors for illuminants 
other than A and D65. Additionally, as this model works 
well for color discrimination data, we can investigate 

how to combine both experiments to be able to predict 
perceptually corresponding colors. 
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Annex A 

For transforming ellipses in CIE-xy space to Smith 
and Pokorny LMS space, we first transform the xy center 
coordinates of the ellipse into XYZ through the 
following transformation: 



 (1 )100xY x y YX Y Z
y y

− −
= = =  (16) 

Because MacAdam realized his experiment at 
constant luminance, we can assume 100Y = . Then, we 
compute the LMS values from XYZ: 
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For transforming the ellipse parameter iH , such that 
1=T

iX H X  with dx dy=   
TX  and 
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we first extend arbitrary ellipses into an ellipsoid as 
follows: 
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The Jacobian is then computed as follows: 
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which we extend artificially to a 3x3 matrix: 

 

2

2

/ / 0
0 0 1
/ (1 2 ) / 0

Y y xY y
J

Y y x y Y y

 −
 

=  
 − − − 

 (21) 

And finally, we compute the parameters of the 
ellipsoid in LMS space: 

 ( ) ( )-1 -1 -1 -1
i iG = M' J' H J M  (22) 

Once the model estimates the parameter iG% , we can 
return to xy coordinates in the following way:  

 i iH = J'M'G MJ%%  (23) 
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