
Video Multicast in (Large) Local Area Networks
Sergio D. Servetto

�
Rohit Puri � Jean-Paul Wagner

�
Pierre Scholtes

�
Martin Vetterli

�
��

School of Electrical and Computer Engineering, Cornell University.�
Lab. de Communications Audiovisuelles, Ecole Polytechnique Fédérale de Lausanne (EPFL).

� Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley.

Abstract— We consider the problem of distributing high-quality video
signals over IP multicast in large Local Area Networks (LANs), under real-
time delay constraints, and with software-only processing. In a large LAN
(such as the network of a university campus, or the network of a large com-
pany), the source of channel heterogeneity that the video communications
system must cope with is not that of different bandwidth constraints avail-
able to each receiver, but it is essentially variations in the available CPU
power that each receiver will have in order to decode the incoming signal.
In this paper we propose a new architecture for a video multicast system,
present the design of the different components of this system, and show re-
sults obtained in a real implementation. Our feeds consist of video encoded
at about 3 Mbits/sec and 16 frames/sec, capable of tolerating the loss of
about 300 Kbits/sec worth of data. Decoding is performed on Linux PCs,
and the quality of our reconstructed signals degrades gracefully with the
speed of the CPU on which the receiver runs.

I. INTRODUCTION

A. The Internet Multicast Backbone (MBone)

In 1990, under the sponsorship of the U.S. Defense Advanced
Research Projects Agency, the DARTNet (DARPA Research
Testbed Network) was created. The DARTNet was a wide-
area network consisting of Unix workstations acting as pro-
grammable routers, interconnected via T1 links. Programming
these routers with multicast capabilities was easy, and therefore
early on a preliminary version of IP multicast was deployed in
this network, thus providing a real platform on which to experi-
ment with wide-area, reasonably large scale multicast.

With a multicast infrastructure already in place, it was only
a matter of time until applications that made use of it started to
appear. By 1991 (about a year after the initial deployment of the
DARTNet), vt, an audio conferencing application had already
become popular, and this sparked interest in extending the mul-
ticast infrastructure beyond the DARTNet testbed. Since back
then existing Internet routers could not carry multicast traffic,
experimental multicast routers were programmed to be able to
forward packets and exchange control messages among them
over regular point-to-point connections. This was the origin of
the MBone, an experimental network of multicast enabled sub-
nets connected via IP tunnels, which started operations in 1992.

The initial success of the MBone motivated further interest
in the development of tools that make use of that infrastruc-
ture. Examples of audio and/or video conferencing tools are
INRIA’s ivs, Schulzrinne’s nevot [1], Xerox PARC’s nv [2],
UCB/LBNL’s vic and vat [3], and more. There were also tools
that required a different type of multicast service: whereas audio
and video data can tolerate some amount of packet loss without
severely degrading the quality of the reproduced signal, appli-
cations which involve the transport of binary data (such as text)
cannot. Examples of tools that require reliable multicast (mean-
ing, multicast with some kind of guarantee that all receivers will

eventually receive a particular piece of data) are LBNL’s wb [4]
(a shared whiteboard application), and UCL’s nte [5] (a shared
text editor). Most of these tools were already available in 1996.

During its first four years of existence, the MBone went from
an initial configuration in 1992 with a couple dozen subnets to
one with about 3000 subnets in 1996. In the same period of
time, significant advances were made in the design of protocols
capable of providing both layered-unreliable and “TCP like”-
reliable multicast service on top of the raw best-effort multicast
packet forwarding service. Extrapolating from the previous four
years, it would have been perfectly reasonable to predict in 1996
that massive deployment of IP multicast in the Internet was only
a matter of time, and that by the turn of the century all kinds of
multicast applications would be in widespread, commercial use.
However, that did not happen.

Contrary to what one would have expected only five years
ago, the MBone has not seen a growth until today which is any-
where comparable to that, for example, of the World Wide Web
during the same period. There is not a single major TV sta-
tion broadcasting live over the Internet, and none of the MBone
tools gained the popularity that web browsers enjoy today. Fur-
thermore, even though IP multicast did eventually make it into
commercial routers, the technology is in general deemed not re-
liable enough, to the extent that even some research universities
turn off completely the multicast capabilities of routers in their
internal networks. When compared with the Web over the last
five years, it is safe to say that IP multicast has not lived up to
expectations. So a natural question arises: why?

B. Shortcomings of Existing Video Multicast Systems

As argued above, applications that make use of IP multicast
are very different, and hence it is likely that many factors, not
necessarily uniform across applications, have combined to cause
the current state of affairs. In the specific context of the appli-
cation of video distribution we are interested in here, we feel
key factors are (a) poor scalability to large numbers of users, (b)
poor reliability of existing multicast mechanisms, and (c) poor
quality of the signals reconstructed at the receivers.

The state-of-the-art in IP multicast systems for video is based
on layering techniques: the video source is sliced into a number
of multiresolution layers, each layer is transmitted over a sepa-
rate multicast group, and different receivers adapt to bandwidth
fluctuations by adjusting the number of layers to which they sub-
scribe. This is the approach pioneered by McCanne in his the-
sis [3], and of much of the recent work in this area (e.g., [6],
[7], [8], [9]). Now, despite its many successes, layered multicast
suffers from three basic deficiencies:

� Lack of fairness among different multicast sessions. With-
out some additional machinery (e.g., RED gateways [10]), it is

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 733 IEEE INFOCOM 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147900781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in general not possible to guarantee that all receivers in all ses-
sions will subscribe to all the layers their fair share of bandwidth
would allow them to [11].

� Lack of fairness to competing TCP flows. When a number
of multicast flows are present in steady-state in a network, and
then a new TCP flow is added, the bandwidth that this TCP flow
converges to may be less that one half of its fair share [11], [12].

� High complexity requirements to scale up to potentially large
numbers of users and sessions. For each multicast session, un-
der existing protocols (RLM-like [11]), the network is required
to maintain a significant amount of state information in the
routers [3]. And since this amount grows with the number of
sessions as well as with the number of receivers in a session,
serious concerns are raised about how well these schemes could
scale up.

When enough bandwidth is available, from a practical point
of view issues with moderate unfairness are not enough to ques-
tion the use of layered multicast. And furthermore, such fairness
issues have been considered in more recent work on reliable
multicast at the IETF (see http://rmt.motlabs.com/).
However, the scalability issue is, since in this case the network
may turn out to be unable to provide service in important practi-
cal situations (e.g., under the volumes that would be handled by
public TV broadcasts).

Besides issues specifically related to layered multicast, we be-
lieve there are other factors that have contributed to prevent a
massive deployment of video services over IP multicast. Salient
among these is the unreliability of existing multicast support,
which causes severe fluctuations in the throughput and loss rates
observed by receivers, translating into fluctuations (i.e., poor
quality) of the signals these receivers are able to reconstruct,
finally resulting in a lack of demand for these services. This lat-
ter point is particularly important: users have high expectations
regarding the quality of audio and video services: for most peo-
ple, “video” means television quality video, and “audio” means
telephone quality audio—that is, high quality signals (as in TV
signals) and extremely high reliability (as delivered by the tele-
phone network). So it seems natural that to most people, a
small window with video coded at rates in the low hundreds
of Kbits/sec and with frequent outages should simply be not ap-
pealing enough. Yet this is the best that MBone tools have been
able to offer so far.

In summary: we believe that until a video multicast system
is deployed, capable of scaling up to very large audiences, and
capable of delivering signals of a quality and reliability signif-
icantly higher than what current systems deliver today, video
over IP multicast will remain at the level of toy applications.
The design and implementation of a system that does deal with
these issues is the main problem tackled in this paper.

C. The Key Step: Video Multicast in Large LANs

We claim that a key step in the design of a global scale system
for the distribution of broadcast-television quality video over IP
multicast is the solution of that same problem, but in the simpler
context of a large LAN (such as, for example, the network of
a university campus, or the network of a large company). We
observe the following:

� Today, such networks are typically 100 Mbits/sec Ethernets,

with native IP multicast capabilities. With such bandwidths, us-
ing about 3 Mbits/sec to multicast a good-quality video stream
is perfectly feasible.

� On existing, inexpensive PCs, it is perfectly feasible to
decode—in real time and only in software—such high quality
video encodings. And even though this is not yet comparable
to full motion NTSC video (much less to HDTV), such a sys-
tem would represent a significant improvement in quality, when
compared to existing popular unicast streaming solutions.

So, from a pure “technological feasibility” point of view, the
design of a system like the one we propose does not pose any
problems: in the campus and/or business environments, the last
mile is already there and with high bandwidth—that is what we
take advantage of. Therefore, under the assumption that high-
quality video streams can be fed into a LAN, their efficient dis-
tribution within the LAN is indeed an important problem.

As for the assumption of being able to feed high-quality video
streams into a LAN, we claim that is the simplest of the prob-
lems to deal with. This is so because there exist already a num-
ber of proven technologies, in widespread use, that can be used
to accomplish this task. For example, communication satellites
would be a natural candidate technology to bring high-quality
video streams all the way to the edge of the network, and do this
at a fraction of the cost that would be incurred into by sending
everything over IP.1) Alternatively (and more conventionally),
emerging approaches based on DiffServ could be used to solve
this problem as well.

D. Main Contributions and Organization of the Paper

In this paper we present the design, some implementation
experiences, and preliminary performance results for a system
used to distribute high-quality video over large LANs. Key fea-
tures of our system are:

� The encoder and decoder run only in software. On a state-
of-the-art PC, the encoder produces in real time a bit stream of
about 3 Mbits/sec, some amount of FEC protection included.

� Since in the LAN environments we consider bandwidth is not
the bottleneck, it is safe to assume that most of the transmitted
3 Mbits/sec will reach all receivers. However, whereas some re-
ceivers may run on high-end powerful workstations, others may
run in cheap PCs incapable of processing all the incoming data
in real-time. Therefore, our decoder needs to be adaptive: the
quality of the video signal reproduced scales down gracefully
with the power of the CPU on which the receiver runs.

� In one particular LAN environment, we have performed mea-
surements of packet loss statistics. And much to our surprise,
we have observed complex dynamics in the packet loss process,
that our system needs to deal with if it is going to provide good
QoS.

Now, whereas these are all important contributions, we feel
that perhaps the single most important contribution of this paper
is that of reporting on actual experiences, obtained in a work-
ing prototype of our proposed system. A motivation for all of
our work came from trying to answer a simple question: what
if we didn’t have to worry about bandwidth issues in the last

�

The New York Times published an interesting article on this sub-
ject, available from http://www.nytimes.com/library/tech/
99/12/circuits/articles/02next.html.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 734 IEEE INFOCOM 2002

mile? Could bandwidth alone solve all the problems of video
multicast? Or are there interesting systems issues to consider as
well? We find that cranking up bandwidth is not going to solve
all these problems, and we describe a concrete system in which
we deal with these issues to some extent.

The rest of this paper is organized as follows. In Section II we
present details of our study on the statistics of packet losses in a
LAN environment, in Section III we present details on our pro-
posed video coding techniques, and in Section IV we present
performance results obtained in a real implementation of the
system. The paper concludes with a summary and a discussion
of work in progress in Section V.

II. MULTICAST PACKET LOSS STATISTICS

In the design of any communications system, a fundamental
problem that needs to be addressed is that of understanding the
nature of the noise that the system will have to deal with. For ex-
ample, in our system: what is the average rate at which packets
are lost? Is knowledge of this average enough to design cod-
ing strategies that will allow reliable communication even in the
presence of losses? Or do we require knowledge of higher or-
der moments of the loss process? And how do we code for this
channel?

To start providing answers to these questions, we have per-
formed some measurements of packet losses in a multicast en-
vironment. In this section, we first describe the data collection
setup, then we show some statistics computed based on those
measurements, and we use these statistics to make some simple
inferences about the probabilistic structure of the loss process.

A. Data Collection Setup

We performed a number of experiments in two different net-
works. A first group was collected during the summer of 2001,
in the campus network of the Ecole Polytechnique Fédérale de
Lausanne (EPFL, Switzerland). Collection of a second group
of measurements started in November 2001, in the campus net-
work of Cornell University. The collection of data at Cornell is
still in progress—in this paper, we will present results based on
the data collected at EPFL.

The experimental setup at EPFL was as follows. We installed
a transmitter in lcavpc36, and receivers in icapc3 and ioapc29

(all Linux PCs within the .epfl.ch domain, on three different
100 Mbits/sec Ethernets). The topology of this portion of the
network is illustrated in Fig. 1.

The transmitter in lcavpc36 sends a packet roughly every
4 miliseconds (255 packets/sec), to an IP multicast address
(239.255.100.21). The ttl field is set to 16, to make sure that
these packets do not leave the campus network. At each re-
ceiver we record the sequence number and local arrival times
for each packet, plus some information common to all packets
(IP addresses of transmitter and receiver, time of day, size of the
packets, socket buffer size). Initially, 50 traces were collected,
each lasting about 1000 seconds, over periods of about 13 hours.

B. Measurements

So as to develop some intuition on what were the patterns we
were looking for in this data, we decided to start by looking at
some of these traces. A typical trace is shown in Fig. 2.

icapc3.epfl.ch

lcavpc36.epfl.ch

ioapc29.epfl.ch

Fig. 1. Topology of the multicast trees under consideration. lcavpc36 is
the transmitter, icapc3 and ioapc29 are the receivers, and circles denote
internal routers. This configuration was discovered using the traceroute
and mtrace utilities. We have also observed that this tree topology does
not change if we move the transmitter from lcavpc36 to any of the other
machines: of course the intermediate routers will change, but we always
have a topology with two routers from the transmitter to any receiver—one
shared, one private.

4500 5000 5500 6000 6500
0

500

1000

1500

Time (sec)

Bur
st L

eng
th (

pac
ket

s)

Fig. 2. A section of a raw trace. Observe how there is a period of almost 20
minutes (roughly, between seconds 4300 and 5400) in which there is a large
number of bursts of packet losses, most of them short (in the order of 30
packets—at an injection rate of 255 packets/sec, about 1/8-th of a second),
but a few long bursts as well. This period of frequent bursts of losses was
followed by another period of over 20 minutes (roughly between seconds
5400 and 6700), in which there was not a single lost packet.

The same type of behavior that we observed in the trace of
Fig. 2 we observed in many other traces, and lead us to conjec-
ture that the loss process we are dealing with may be in general
one in which packets are lost in bursts, and that these bursts in
turn tend to cluster over time. To tests these hypotheses we per-
form two experiments, reported next.

B.1 Bursts of Packet Losses

In our first test, we first process our traces to extract the length
of all bursts of packet losses: an isolated loss would count as a
burst of length 1, two consecutive losses as a burst of length
2, a loss then a received packet then another loss then another
received packet would count as two bursts of length 1, and so
on. Then we form a histogram of the length of these bursts.
Now consider two possible scenarios:

� If losses were independent, the histogram of burst lengths
should obey a geometric law: � � � burst of length
 � � � � � � � � .
Plotting then this expression in logarithmic scale as a function
of the burst length
 , it takes the form � � � � � � � � !
 � � � � � � ,
forming a straight line with slope and zero-crossing determined
by � .

� We do know however that long bursts occur with low prob-
ability under a geometric model. Therefore, we also consider
the possibility that the distribution of burst lengths might have
heavy tails (the heavier these tails, the higher the probability as-
signed to long bursts). For example, if the probability of a burst
of length
 was dominated by a term of the form) *
 , - (for
some constants) . 0 2 4), then in logarithmic scale this takes
the form � � � �) � � 0 * � � � �
 � .

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 735 IEEE INFOCOM 2002

We see from these considerations that a measure of burstiness
of the data is how much the measured log-histogram deviates
from a straight line, to resemble a logarithmic curve. In Fig. 3
we plot the log-histogram measured from these traces, and we
compare it against a geometric law with parameter estimated
from the traces as =� # of lost packets

total # of packets sent
.

10
0

10
1

10
2

10
3

10
4

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Burst Length (packets)

Pro
bab

ility

Measured
Geometric

Fig. 3. To illustrate the point that packet losses are highly bursty. Note that
since we also plot the horizontal axis in logarithmic scale, the plot of the
geometric pmf is not a straight line. The measured log-histogram appears
to favor the notion that long bursts of lost packets occur with non-negligible
probability.

B.2 Clustered Occurrence of Bursts

The statement that “bursts of losses tend to cluster” means
that, over time, there exist periods over which the distance be-
tween bursts of losses is small, and there exist other periods dur-
ing which that distance is large: long bursts of correctly received
packets also occur with non-negligible probability. Therefore,
we repeat the same test as in the previous subsection, but this
time the traces are processed to extract the length of all bursts of
no-losses. The corresponding plots are shown in Fig. 4.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Distance bettwen bursts (packets)

Pro
bab

ility

Measured
Geometric

Fig. 4. To illustrate the point that bursts of losses tend to cluster. Here we mea-
sure from our traces the log-histogram of runs of correctly received packets,
and again, long bursts apparently occur with non-negligible probability.

C. Implications for System Design

In terms of the design of a real-time communications system,
these observations are definitely not good news. What they say
is that, to a first order approximation, the channel appears to be-
have as if it were switching over time between good and bad
states: in the good state there are virtually no packet losses,
whereas in the bad state the number of losses can be enough
to virtually shut down the channel. The way to deal with this
type of impulsive noise is to try to find “diversity” in the sys-
tem. By diversity we mean mechanisms by which data can be
sent over multiple independent “subchannels”. The indepen-
dence requirement among subchannels is crucial, so that even
if some of them enter bad states, the chance that all of them do
so simultaneously is lower, and therefore the time-critical flow
of information is not interrupted.

Unfortunately, with packets going over IP multicast, and with
real-time delay constraints, there is not much diversity in the
system to exploit. One possibility would be to take advantage of
multipath diversity: by this we mean sending data over different
disjoint paths. But this is not possible, since applications have
little/no control over the route followed by each packet. An-
other possibility is to create the illusion of multiple independent
subchannels by means of an interleaver: this is a device which
produces a random permutation of the data prior to transmission,
so that a long burst of losses on the real channel appears like in-
dependent losses on the subchannels. But this is not an option
either in our case: with bursts which can last for 5-10 seconds,
the delay introduced by an interleaver capable of spreading out
such long bursts would be unacceptable for our application (in
the order of a couple of minutes, at least).

In the current implementation of our system, we have resorted
to a rather simplistic approach: we protect the outgoing data
stream with a Reed-Solomon code of parameters (255,225,31),
capable of correcting up to 30 losses in a block. The choice of
parameters for this code is justified in Fig. 5.

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Burst Length (packets)

Cu
mu

lati
ve

Pro
bab

ility

Fig. 5. On the choice of parameters for the Reed-Solomon code. This plot
shows the cumulative histogram. We see here that using a code capable
of correcting 30 losses we can correct 78% of all the bursts. Combining
this with the fact that the relative frequency of lost packets we measured is
approx. 0.0032, we have that the probability of not being able to decode one
second of video is less than 0.0007—this translates to a mean time between
failures of 1420 seconds, or roughly 1 second every 24 minutes.

D. Remarks

We would like to conclude this section with a couple of re-
marks about the work presented so far.

D.1 On the Irrelevance of Spatially Correlated Losses for Video

There has been work before ours in which the problem of
modeling packet loss in multicast had been considered. In
studies performed in 1996-97, one by Yajnik, Kurose and
Towsley [13], and another by Handley [14], it was observed that
there is both spatial and temporal correlation in packet losses in
the MBone. Although our measurements agree with these pre-
vious studies in the suggestion that losses are bursty, there are
significant differences worth pointing out:

� Whereas previous work focused on performance of the
MBone on a world-wide scale, our work focuses on much
smaller network scales.

� An issue studied extensively in previous work is the correla-
tion in losses among nodes close to each other (in the network
topology sense). However, that particular kind of structure in
the loss process is of limited interest in the context of protocols
to support real-time services such as video.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 736 IEEE INFOCOM 2002

Correlation in the losses seen by nearby nodes has been recog-
nized as an important feature that can be exploited to improve
the performance of reliable multicast protocols [15]. However,
in protocols that support real-time services such as video, the
ability to exploit spatial correlations in the loss process is much
more limited, since there is often not enough time to complete
local repair work. In these cases, data is decoded independently
by each receiver, and it is up to the video decoding algorithm
to deal with the fact that some information may missing by the
time a given video frame needs to be displayed.

D.2 On the Use of Reed-Solomon Codes

The work presented in this section is not a thorough attempt
at solving the problem of building a statistical model for the
packet loss process in multicast: that modeling task is an inter-
esting problem in itself, and is beyond the scope intended for
this paper. Our goal here is to come up with a working system.
While working towards that goal, we encountered the problem
of long bursts of losses, something we did not anticipate in the
context of a LAN. The use of a single Reed-Solomon code is
probably not the best solution, but it is a simple solution chosen
because of two reasons: (a) due to its simplicity and low com-
plexity, it allowed us to move forward with our systems work,
and (b) while interruptions of one second every 24 minutes are
not yet enough to claim TV-like reliability, this is a significant
improvement over what MBone tools can claim. Future work
will deal with all these important issues, only glanced over here.

III. COMPLEXITY-SCALABLE SOFTWARE-ONLY CODING

OF HIGH-QUALITY VIDEO

We have seen in Section II that with a simple (and proba-
bly suboptimal) form of FEC protection, we can deliver all of
the transmitted data to any receiver with high probability: only
bursts of length comparable to that of the delay constraints under
which our system needs to operate will cause errors, and there is
not much that can be done about these. But random losses, and
short bursts of losses, are taken care of by means of FEC. Given
these observations, as well as the characteristics of the target en-
vironment we consider (large, high-speed LANs), in the design
of a complete communications system it seems perfectly rea-
sonable to assume that most of the transmitted data will reach
its destination.

In most previous work on video multicast, the bandwidth
available to each receiver was the key source of heterogeneity
that the comm system had to deal with—yet we just saw that
such is not the case in our setup. Does this mean our prob-
lem is trivial? Not at all. In our case, even if most of the time
all the transmitted data makes it to destination, there is yet an-
other source of heterogeneity to deal with: variations in the CPU
power of the machines on which the receivers of our system
need to run. Recall that our goal is to develop a tool that a large
community will find useful and appealing: for that goal we need
to come up with a software-only implementation of our receiver,
without making any assumptions about the speed of the machine
on which these receivers run. Therefore, we see that we have an-
other challenge at hand: that of producing a real-time, software-
only, complexity-scalable video coder.

At a coarse level of description, our encoder/decoder pair

works as follows. A video signal is split into groups of pictures
(GOPs) which are independently encoded, so that decoding of
a stream can start at the beginning of any of these GOPs. To
encode each GOP, we perform the following steps:
1. Split the GOP into independent components.
2. Quantize and entropy code each component.
3. Protect the encoded stream using FECs.

To decode, we perform the following steps:
1. Decode (FEC) a received GOP.
2. Estimate of how long it will take to decode components.
3. Decide which subset of components maximizes the quality
of the reconstructed video signal subject to the constraint that
decoding can be completed within a given alloted time—then
decode.

A schematic description of the system architecture is shown
in Fig. 6.

A. System Components

We see in Fig. 6 that there are three main components that
make up our video coding system:

� Split/merge a GOP into independent components.
� Quantization and entropy coding.
� Bit stream syntax.
We provide details next on each one of these components.

A.1 Split/Merge a GOP into Independent Components

At a coarse level, depending on how correlations in the video
signal are exploited to achieve good compression performance,
video coding algorithms can be grouped into two main camps:
coders are either based on motion compensation, or on subband
filtering techniques. Motion compensated coders are known to
achieve the highest compression efficiency, although their abil-
ity to provide rate/frame/spatial scalability is limited at best.
Certain subband coders have been empirically found to not
achieve quite the same compression efficiency of motion com-
pensated coders, although they are ideally suited to deal with
scalability issues. The discussion on which technique yields
the best results is far from settled, and lies outside the intended
scope of this paper.

In this work, (a) because of their suitability to deal with the
scalability issues of interest to us in this system, (b) because
of the excellent systems-related results we obtained, and (c),
last but not least, because of our familiarity with the properties
of subband data [16], we have chosen to work with a spatio-
temporal subband representation of video signals:

� Each subband can be processed (encoded/decoded) indepen-
dently of every other, without sacrificing compression effi-
ciency.

� Subbands contribute in different (well defined) amounts to the
quality of the reconstructed signal, and have different (well de-
fined) requirements in terms of the amount of CPU needed to
decode them. This gives rise to interesting complexity/distortion
tradeoffs that a smart receiver can take advantage of when
pressed for time, by selectively discarding subbands with low
contributions to the quality of the reconstructed signals.

The proposed subband decomposition is illustrated in Fig. 7.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 737 IEEE INFOCOM 2002

Subband
Filtering

? ?@ @

A A A
A A A
B B B
B B BC C C
C C C
D D D
D D D
E EF F

Quantization +
Entropy Coding

Reed-Solomon
Coding

G G G G G G GH H H H H H H
I I I I IJ J J J J
K K K K K K K K KL L L L L L L L L

M M M MN N N N

Packetization IP Multicast

Fig. 6. System architecture. Groups of frames of video are passed through the analysis stage of a filter bank, to produce a set of independent subbands. The
coefficients in each of these subbands are quantized, and compressed using Huffman codes, thus producing a variable length bit stream for each subband. All
these data bits are byte aligned, and put in packets of equal length. A few parity packets are added, and and then all sent over IP multicast. To decode, the
receiver selects a subset of the bit streams to entropy decode and dequantize, performs inverse filtering, and outputs a reconstruction of the original video signal.

L H

HL

LL LH

HH
LHL LHH

HLL HLH

HHL HHH

0 0

0 0

00
LLL0 LLH0

00

0 0

00

Fig. 7. Splitting a video signal into subband components. A suitable pair of lowpass/highpass filters is applied on a cube of video data of size 16x16x16 (blocks of
size 16x16 on each frame, taking 16 consecutive blocks from adjacent frames). By iterating the application of the filter bank on the row, column, and time axes
of the cube 8 subbands of size 8x8x8 are produced. Then the process is iterated on subband O O O P (the one which results from always applying the lowpass
filters in the three axes), to produce another 8 subbands of size 4x4x4, then 2x2x2, then 1x1x1. The same process is applied on all cubes of size 16x16x16 of
a GOP and, after processing, all the coefficients in the GOP a that belong to the same subband (O O O P , R O R S , etc), are grouped together. These groups of
subband coefficients form the independent components into which the video signal is split.

A.2 Quantization and Entropy Coding

Once the original signal is split into subbands, we quantize the
subband coefficients using a standard uniform scalar quantizer,
and then the quantization indices are compressed using Huffman
codes.

Although arithmetic coding is known both from theory as
well as from practical experience to perform better than Huff-
man codes (in terms of delivered compression performance), its
computational complexity is significantly higher: an arithmetic
coder needs to perform multiple additions and multiplications
per encoded symbol, whereas a Huffman encoder/decoder in-
volves simple table lookups.

In practice, when coding data generated by unknown distribu-
tions, a key element that explains the high performance of arith-
metic coding is its ability to quickly learn these unknown distri-
butions and essentially spend as many bits as if the distribution
had been known to start with. In our system, we introduce some
a-priori knowledge about these distributions: we model subband
data as being generated by some unknown distribution parame-
terized by the energy level of that subband. Then we use a large
number of test video sequences to generate Huffman tables for
each subband and for each energy level within a subband. Dur-
ing real-time encoding, the transmitter computes the energy in a
given subband (and sends it to the receiver), based on this picks
a Huffman table, and uses it to encode all the coefficients in that
subband. During real-time decoding, the receiver reads from the

bit stream the energy level of each subband, based on this knows
which Huffman tables were used to encode each of them, and
then decodes. Using this hybrid of training and adaptive rules,
we are able to obtain some of the good properties of arithmetic
codes without sacrificing the low complexity of Huffman codes.

A.3 Bit Stream Syntax

To protect the compressed data stream against loss of data we
use Reed-Solomon codes of length 255, of which 225 are data
symbols. The syntax of this data, as well as the way in which
data is distributed into packets, is shown in Fig. 8.

energy[1]

energy[2]

energy[n]

length[1]

length[2]

length[n]

031

031
GOP sequence number

Packet size

Parameters of RS Code

Pos. in GOP

n bitstreams payload

Fig. 8. Bit stream syntax. The packetization step in Fig. 6 produces a stream
of bytes as with a syntax shown in the left figure. This continuous stream of
bytes is then chopped into equal length pieces, parity packets are computed
by a Reed-Solomon encoder, which produces packets with a header structure
as shown in the right figure.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 738 IEEE INFOCOM 2002

A.4 Time-Constrained Decoding of Subbands

The algorithm for deciding when to stop decoding subbands
is as follows. We assume the decoder does not need to share the
CPU with other processes, or that there is some mechanism in
place for reserving CPU time—e.g., the real-time extensions to
Linux. Then:

� We display 1 GOP per second (16 frames/sec), and we have 29
subbands to decode. Subbands are sorted by energy content: the
amount of signal energy contained in any one particular subband
is information available to the encoder, and explicitly sent as
header bits (see Fig. 8).

� There are two main components of the decoding process that
determine the amount of time it takes to decode a subband: en-
tropy decoding and inverse subband filtering:

– The entropy decoding time is linear in the number of bits to
decode. Therefore, we compute an estimate of the time it takes
to decode a chunk of
 bits (by repeatedly feeding
 random
bits into the Huffman decoder a fixed number of times and aver-
aging these running times), and then we use it in the rest of the
computation.

– The time to peform inverse subband filtering depends only
on the number of coefficients in a subband, and this number is
known a-priori. Therefore again, we compute an estimate of the
time it takes to decode
 subband coefficients (by repeatedly
decoding a subband with
 values a fixed number of times and
averaging these running times), and then we use it in the rest of
the computation.

� Based on the above estimates of the time it takes to decode
each subband, we reset a timer (set to expire 1 second later),
and start decoding them in decreasing order of energy content.
When we reach a subband whose estimated decoding time is
longer than the time remaining until the timer expires, we stop.
If all subbands are decoded before the timer expires, the decoder
sits idle, releasing the CPU until the timer does expire, point at
which decoding of the next GOP starts.

B. Implementation Details

We have performed a number of optimizations for speed in
our code. All our programs are implemented in C (using the gcc

compiler), for a Linux environment. The routines to compute the
subband analysis and synthesis operations were implemented in
assembler, to take advantage of MMX instructions. The trans-
mitter has been tested on lcavpc36, a Pentium III PC with two
933 Mhz CPUs and 1 Gb of RAM. Receivers have been tested
on three platforms:

� One running on lcavpc36.
� One running on lcavpc35, a Pentium III PC with two 800
Mhz CPUs and 256 Mb of RAM.

� One running on lcavpc27, a Pentium III PC with two 450
Mhz CPUs and 256 Mb of RAM.
It is important to mention that our programs do not take advan-
tage of parallel execution threads which can be scheduled on
multiple CPUs, so having two CPUs does not make much of a
difference. All our programs run as standard user processes—
we do not make use of special root primitives, e.g., to raise the
priority of some processes, or to pin pages into main mem-
ory. We have not yet implemented (although it is in our

plans) extensions that make use of the real-time scheduling fea-
tures of RTLinux. In our initial experiments, we downloaded
a live MPEG-2 stream from the european TV satellites AS-
TRA/HOTBIRD, and we decoded that MPEG-2 stream in a set-
top box that produced as output an analog signal. That analog
signal was digitized on lcavpc36 using a Hauppauge WinTV
card, compressed using our video coding algorithm, and sent
over a multicast socket. At the receiver, data is read from a mul-
ticast socket, decoded, and sent both to the X server for display
of the images and to the soundcard for audio playback.

IV. EXPERIMENTAL RESULTS

In this section we present results obtained in a real implemen-
tation of our system. We classify our experiments into two main
groups:

� In one group we explore to what extent the representation of
the source induced by our video coding algorithm is suitable for
complexity-constrained adaptive processing at the receivers: if
the representation is such that without processing all the data
generated by the transmitter then the quality of the decoded sig-
nals is low, then this is not a useful representation. Our goal here
will be to try to develop some criteria for deciding what data to
discard and when.

� In the other group, we measure the quality of the signals de-
coded by the receivers—both in terms of Peak Signal-to-Noise
ratios, as well as by means of showing pictures. Of particular in-
terest will be to measure the amount of time required to produce
a reconstructed signal of a given quality.

A. Quickly Extracting the Important Data

As in Section II, where the first thing we did was to look at
raw trace data in an attempt to develop some intuition on what
were the properties of the data that we were interested in, here
we will look at the energy distribution across subbands of a cou-
ple of typical video signals that our system would have to deal
with. Such energy distribution plots are shown in Fig. 9.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0

2

4

6

8

10

12

14
x 10

8

Subband Number

En
erg

y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

2

4

6

8

10

12

14
x 10

8

Subband Number

En
erg

y

Fig. 9. Energy distribution across subbands. Top: a sequence with high motion
content; bottom: a sequence with low motion content. Observe how both
sequences have most of their energy concentrated on a few subbands, but
also note that these active subbands are not the same. (In these plots, the
labels for subbands are arbitrary, but identical in both cases.)

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 739 IEEE INFOCOM 2002

From basic signal processing theory, we know that subband
decompositions of a signal (like the one computed in our video
coder) tend to concentrate most of the energy in the original
signal into a few subbands: that is one of the aspects that make
such subband representations useful for compression in the first
place. What is interesting to observe in Fig. 9 however is that the
location of these few active subbands will depend on the content
of the signal, thus calling for some form of adaptive processing.
Indeed, suppose that due to complexity constraints, the decoder
running on a particular machine is only able to decode only a
subset of all the transmitted subbands: which subbands should
be decoded and which should be discarded?

To illustrate that a one-size-fits-all type of answer is not ap-
propriate here, to show that this decision should depend on the
actual signal content, we performed a simple experiment. Sup-
pose that we take a signal with high motion content (we will call
these temporal signals), and we find what is the best subband
to keep if complexity considerations allowed us to decode only
one subband, which are the best two if we can afford to decode
two subbands, the best three, etc, all the way to decoding all the
data. As we increase the number of subbands allowed, we also
increase the PSNR of the reconstructed video signal. Suppose
now that we use that same ordering for decoding subbands on a
spatial sequence, i.e., a sequence with low motion content and
primarily complexity in the space dimensions. If the ordering
made no difference, then the PSNR improvement due to adding
subbands should be basically the same with any ordering for de-
coding subbands. These PSNR profiles are compared in Fig. 10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

500

1000

1500

2000

2500

3000

3500

Number of Subbands

No
rma

lize
d M

ean
 Sq

uar
ed

Err
or

Temp−seq−Temp−ord
Temp−seq−Spat−ord

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

50

100

150

200

250

300

350

400

450

Number of Subbands

No
rma

lize
d M

ean
 Sq

uar
ed

Err
or

Spat−seq−Spat−ord
Spat−seq−Temp−ord

Fig. 10. To illustrate that a careful selection of which subbands to decode can
have significant impact in the quality of the reconstructed signal. Observe
that in both cases, after decoding 9-10 subbands, the difference in PSNR
between the reconstruction obtained by the best ordering of subbands for a
given sequence and a mismatched one can be significant: 5-7 dB of PSNR.

At this point there is something we need to emphasize. From
a signal processing perspective, the remarks above nearly obvi-
ous. But from a systems perspective they are not. What we are
saying here is that, in our mechanism for representing a video
signal, there are parts of the representation which are more im-
portant than others. But unlike in an MPEG stream, where the
fact that I frames are more important than P frames and these in
turn more important than B frames for the quality of reconstruc-
tions does not depend on actual video signal being coded, in

our representation the importance of the different parts does de-
pend on the content of the signal. Therefore, a receiver capable
of looking into the content of packets, and adaptively selecting
which ones to decode, in general will be capable of reconstruct-
ing signals of a significantly better quality.

B. Computing Good Quality Reconstructions under Time Con-
straints

The key tradeoff in our application is one of quality against
complexity: how much time do we have to spend processing a
signal until we can obtain a reconstruction of a given quality? In
Fig. 11 we plot the PSNR achievable on the three PCs mentioned
above, as a function of the amount of time spent decoding the
signal.

0.2 0.4 0.6 0.8 1 1.2 1.4
10

15

20

25

30

35

Decoding Time (sec)

PS
NR

 (dB
)

lcavpc27
lcavpc35
lcavpc36

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

Decoding Time (sec)

Bitr
ate

 (M
bps

)

lcavpc27
lcavpc35
lcavpc36

Fig. 11. Complexity-quality tradeoff: these plots essentially show how long
it takes for our decoders to process feeds of increasing complexity. Top:
PSNR against decoding time; bottom: bit rate against decoding time. “De-
coding time” refers to the time it takes to decode a GOP of 16 YUV frames,
of size 320x240—it should be possible to decode this much data in 1 sec-
ond. Observe how the faster PCs can decode the full quality feeds, whereas
lcavpc27 exhausts its time budget after decoding slightly more than 2
Mbits: even so, the PSNR for the GOP is about 27 dB. As a rule of thumb,
for video we can say that nearly lossless quality is obtained at about 30 dB
PSNR.

To give a more subjective measure of quality, in Fig. 12 we
show one video frame decoded by lcavpc35, as well as the orig-
inal (uncoded) frame for comparison.

V. CONCLUSIONS

A. Summary

In this paper we have presented our first results in the de-
velopment of a large scale system for distributing high-quality
video feeds over IP multicast. First we argued that solving this
problem in the context of a large LAN is indeed an important
problem, since feeding high-quality video signals into these en-
vironments is nearly trivial (e.g., using existing TV satellites)—
the challenge is to maintain that high quality while distributing
the signal within the LAN. Then we studied some characteristics
of the packet loss process in multicast, and suggested that burst
losses may be the type of noise our system needs to deal with.
Then we presented the design of complexity-scalable, software-
only video encoding and decoding algorithms. We also argued

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 740 IEEE INFOCOM 2002

Fig. 12. Sample reconstructions. Top: an original frame from a GOP with a significant amount of motion (the camera is panning over a relatively complex scene,
with rich textures); bottom: a frame from the GOP reconstructed by lcavpc35 in 0.6 seconds. The PSNR for this GOP is 33 dB—in real-time playback, it is
impossible to tell the difference between the original frame and the reconstructed one.

that being able to decode a video signal on any PC (with a qual-
ity of reconstructed data proportional to the speed of the un-
derlying CPU) is fundamental to make our system attractive to
a large community of users. Finally, we studied the tradeoffs

between complexity and performance that are attainable within
our framework, and we showed how an existing fast PC (Pen-
tium III 800 Mhz) can decode a full quality 3 Mbits/sec stream,
whereas a slower PCs (Pentium III 450 Mhz) can still decode

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 741 IEEE INFOCOM 2002

a reasonable quality signal out of substreams of size roughly 2
Mbits/sec.

B. Distribution over IP Multicast of the Seminar Series on Com-
munications Research at Cornell

Our current work focuses on the implementation of a system
for distributing in real time our seminar series on research top-
ics in communications. However, progress on that front has
been slower than expected. When we repeated at Cornell the
same experiments performed in Switzerland (reported in Sec-
tion II), we could not make any valid statistical inferences—the
data was simply too noisy, we observed traces with average (not
peak) loss rates of up to 44%, even when injecting less than
2 Mbits/sec; it was on this basis that we decided to not report
on these measurements in this paper. This situation we were
informed is due to an obsolete and highly error-prone network
infrastructure, which is in the process of being replaced as of the
writing of this paper. To get a sense for the current state of this
network, see Fig. 13.

Fig. 13. Two cable rooms, part of the network of the School of Electrical and
Computer Engineering at Cornell. Top: one where the old cabling has not
been replaced yet; bottom: new infrastructure. The rewiring of our network
started around 11/2001, and it is expected that by 4/2002 it will be complete.

As soon as the rewiring process is complete, we expect
to be able to start transmitting in real-time our seminars. A
web page will be maintained for this project, reachable from
http://people.ece.cornell.edu/servetto/.

C. Acknowledgements

We would like to thank a number of people that have been of
great assistance in the development of our system. The first steps
of these work were carried out while the first author was with
the Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzer-
land). At that time, accounts to run some measurements of
packet loss in IP multicast were provided by Catherine Boutre-
mans, Thomas Gross, and Michael Unser; Williams Devadason
and Richard Timsit also provided assistance with systems ques-
tions. At Cornell, Ryan Hsu and Bob Beaver are helping signifi-
cantly with the set up of an appropriate video lab. The comments
made by the anonymous reviewers were particularly useful. Fi-
nally, we would also like to acknowledge feedback we received
from Professor Don Towsley at an early stage of this work.

REFERENCES

[1] H. Schulzrinne, “Voice Communication across the Internet: A Network
Voice Terminal,” Tech. Rep. TR 92-50, Univ. of Massachusetts—Amherst,
1992.

[2] R. Frederick, “Experiences with Real-Time Sofware Video Compression,”
in Proc. 6th Packet Video Workshop, Portland, OR, 1994.

[3] S. R. McCanne, Scalable Compression and Transmission of Internet Mul-
ticast Video, Ph.D. thesis, University of California, Berkeley, 1996.

[4] S. Floyd, V. Jacobson, S. McCanne, and C.-G. Liu L. Zhang, “A Reliable
Multicast Framework for Light-Weight Sessions and Application Level
Framing,” in Proc. ACM SIGCOMM, Boston, MA, 1995.

[5] M. Handley and J. Crowcroft, “Network Text Editor (NTE): A Scalable
Shared Text Editor for the MBone,” in Proc. ACM SIGCOMM, Cannes,
France, 1997.

[6] P. A. Chou, A. E. Mohr, A. Wang, and S. Mehrotra, “Error Control for
Receiver-Driven Layered Multicast of Audio and Video,” IEEE Trans.
Multimedia, vol. 3, no. 1, pp. 108–122, 2001.

[7] W.-T. Tan and A. Zakhor, “Video Multicast Using Layered FEC and Scal-
able Compression,” IEEE Trans. Circ. Syst. Video Tech., vol. 11, no. 3, pp.
373–386, 2001.

[8] M. Luby, V. K Goyal, and S. Skaria, “Wave and Equa-
tion Based Rate Control: A Massively Scalable Receiver Driven
Congestion Control Protocol,” IETF Reliable Multicast Transport
Working Group Internet-Draft, October 2001, Available on-line
at http://www.ietf.org/internet-drafts/draft-ietf-
rmt-bb-webrc-00.txt. Work in progress. Expires April 2002.

[9] M. Luby, V. K Goyal, S. Skaria, and G. B. Horn, “Wave and Equa-
tion Based Rate Control Using Multicast Round Trip Time,” Submitted
to ACM SIGCOMM, January 2002.

[10] S. Floyd and V. Jacobson, “Random Early Detection for Congestion
Avoidance,” IEEE/ACM Trans. Networking, vol. 1, no. 4, pp. 397–413,
1993.

[11] S. R. McCanne, V. Jacobson, and M. Vetterli, “Receiver-Driven Layered
Multicast,” in Proc. ACM SIGCOMM, Stanford, CA, 1996.

[12] I. Stoica, S. Shenker, and H. Zhang, “Core-Stateless Fair Queueing: a
Scalable Architecture to Approximate Fair Bandwidth Allocations in High
Speed Networks,” in Proc. ACM SIGCOMM, 1998.

[13] M. Yajnik, J. Kurose, and D. Towsley, “Packet Loss Correlation in the
MBone Multicast Network,” in Proc. IEEE Global Internet Conf., London,
England, 1996.

[14] M. Handley, “An Examination of MBone Performance,”
USC/ISI Research Report: ISI/RR-97-450. Available from
http://www.icir.org/mjh/papers.html.

[15] S. R. McCanne, “Scalable Multimedia Communication: Using IP Mul-
ticast and Lightweight Sessions,” IEEE Internet Computing, pp. 33–45,
March/April 1999.

[16] S. D. Servetto, Compression and Reliable Transmission of Digital Im-
age and Video Signals, Ph.D. thesis, University of Illinois at Urbana-
Champaign, 1999.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 742 IEEE INFOCOM 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

