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ABSTRACT

The problemof separatingindividual soundsourcesfrom a mix-
ture of these,known asSourceSeparationor ComputationalAu-
ditory SceneAnalysis(CASA), hasbecomepopularin the recent
decades.A number of methods have emergedfrom the studyof
thisproblem,someof whichperformverywell for certaintypesof
audiosources,e.g. speech.For separationof instrumentsin mu-
sic, thereareseveral shortcomings. In generalwheninstruments
play togetherthey arenot independentof eachother. More specif-
ically thetime-frequency distributionsof thedifferentsourceswill
overlap.Harmonicinstrumentsin particularhave high probability
of overlappingpartials.If theseoverlappingpartialsarenot sepa-
ratedproperly, theseparatedsignalswill haveadifferentsensation
of roughness,andtheseparationquality degrades.

In thispaperwepresentamethodto separateoverlapping par-
tials in stereosignals.This methodlooks at the shapesof partial
envelopes, andusesminimizationof the differencebetweensuch
shapesin order to demix overlappingpartials. The methodcan
beappliedto enhanceexisting methodsfor sourceseparation,e.g.
blind sourceseparationtechniques,modelbasedtechniques,and
spatialseparationtechniques.Wealsodiscussothersimplermeth-
odsthatcanwork with monosignals.

1. INTRODUCTION

Wheninstrumentsplay together, their signalsaremixed together.
Sourceseparationis simply theproblemof obtainingtheoriginal
sourcesignalsfrom therecordedmixture. Theproblemwith mu-
sic signals,asopposedto othertypesof signalslike e.g. speech,
is that the sourcesarenormally not independent. First of all, the
instrumentsaredependent amongeachothersin time, dueto the
fact that they all follow the sameunderlyingtempoand rhythm
of the music piece. In addition, for melodic instrumentswhich
have a pitch andharmonicstructure,thenotesareoftenrelatedby
harmonicintervalsaswell. Whentwo partialsfall within onecrit-
ical band,theearwill not heartwo separatesounds,but ratherone
combinedsound. This is explainedin [1]: “When two sinusoids
with slightly different frequenciesare addedtogether, they resem-
ble a singlesinusoid,with frequency equal to themeanfrequency
of thetwocomponents,but whoseamplitudefluctuatesat a regular
rate. Thesefluctuationsin amplitudeareknownas’beats’.” These
beatsoccurat a rateequalto the frequency differenceof the two
components.

If the beatsareslow, this resultsin audibleloudnessfluctu-
ations. In the combinedsoundthesefluctuationssounds natural,
but in the separatedsignalssuchfluctuationscanbe very annoy-
ing if present.For fasterbeatsthe fluctuationscannot be heard
separately, but ratherasanincreasein theroughnessof thesound.

This roughnessis relatedto the consonance[2], anddepends on
frequency. Maximumroughnessoccursfor beatfrequenciesin the
range30-70Hz [3]. However, partialsthatare30-70Hz apart,are
quitewell handledby existingsourceseparationmethods.Wewill
thereforeconcentrateon slow beats.

Figure1 shows thespectrogramof two trumpetnotes,anF at
about 349Hz, anda C at about523Hz. Every third partialof the
F overlapsevery secondpartial of the C. For the partialsslightly
above 1, 2 and3 kHz, onecanseethebeatsasamplitudefluctua-
tions. By countingthenumber of fluctuationspersecond,we can
seethat the beat frequenciesfor theseare about3, 6 and 9 Hz,
respectively. All the otherpartialshave quite constantamplitude
during their duration. Obviously, the fluctuationswe seein the
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Figure1: Spectrogramof two trumpetnoteswith overlappingpar-
tials andbeats(just above1, 2 and3 kHz).

figureis aneffectof thetime-frequency representationwe choose.
If we hadchosenlongertime windows, the“overlapping” partials
couldhave beenseenastwo separatepartialswith very closefre-
quencies. However, sincewe studyfrequency separationsof less
than10 Hz, this would requirea window that is longer than the
sound itself, andis not feasible.Also, weseethattheperiodof the
loudnessfluctuationsis not constant,andeffectively the two par-
tials may crosseachotherover time. Still it is interestingto note
that this time-frequency representationmatchesthepsychoacous-
tical effect thatbeatsrepresent.

Clearly, theseparationproblemis anill-posedproblem.How-
ever, a humanmaybeableto follow thetuneof oneof the instru-
mentsin the mixture, andthis gives the motivation for attacking
theproblem.

This article is organizedasfollows. In section2, we give an
overview of the existing typesof methodsfor sourceseparation,
anddiscusstheshortcomings of thesefor separationof musicsig-
nals. Section3 is devotedto our work on how to overcomethese
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problems.In particular, it explainsthemethodweproposefor sep-
arationof overlappingpartials in multi-channelrecordings. We
alsoproposemethods for partial shapereconstructionthatcanbe
usedfor monosignalsaswell. Finally, thereis theconclusion.

2. EXISTING SOURCE SEPARATION METHODS

Thereareseveral approachesto the problemof separatingsound
sources. We briefly presentthree different types of separation
methods,anddiscusstheir drawbacksandshortcomingswith re-
spectto musicsignals.

2.1. Model based source separation

Thereareseveralmethodsthatuseamodelof thesoundsourcesto
helpseparatingthem.Themodelsrangefrom low-level sinusoidal
represenatations[4] to specificinstrumentmodelsandhigherlevel
perceptualandcognitive models.Still, mostmethods in this cat-
egory arebasedon sinusoidalmodels,e.g. [5, 6, 7, 8, 9]. These
methodsextractsinusoidal tracksfrom sometime-frequency rep-
resentationof thesignal,andthenapplygrouping principlesto as-
signthesetracksto thedifferentsources.Typically, thesemethods
operateon monosignals.

Thereare two major problemswith thesemethodswith re-
spectto instrumentseparation.Firstly, the methodsdo not work
well for sourcesthatdon’t exhibit a sinusoidal structure(partials).
Secondly, evenwhenthesourceshavepartials,eachpartialis allo-
catedto one(or more)sources. Thus,any beatsdueto overlapping
partialswill be presentin the separatedsignals,and this can be
perceptuallyvery annoying.

2.2. Blind source separation

In the last ten years,a number of different approaches to blind
sourceseparationhave evolved[10]. Early worksstudiedthesep-
arationof instantaneousmixturesundervariousframeworks, e.g.
neuralnetworks [11], informationtheory[12], andstatistics[13].
Laterthemethodswereextendedto convolved mixtures,[14, 15].

Although theseapproachescomefrom differentareasof in-
terest,they are all built on similar principles. Usually, iterative
algorithmsupdatethe coefficients in a deconvolution matrix by
minimizing someerror measurement or by maximizingsomein-
formationmeasurement. Thenthis matrix is usedto separatethe
sources(deconvolve the mixtures). The basicassumptionthese
methodsarebuilt on is that the sourcesarestatisticallyindepen-
dent. Even thoughthis is not true in generalfor music,themeth-
odscanperformquite well. However, therearesomedrawbacks.
They only work for multichannelmixtures,and in generalthere
canbeno moresourcesthansensors(numberof channels). In ad-
dition, for realworld mixtures,theFIR demixingfiltersneedto be
sufficiently long,whichmakes thecomputationalcomplexity very
high.

The costly deconvolution algorithm in the time-domaincan
be tranformedinto a setof instantaneous demixingalgorithmsin
time-frequency [16, 17]. This makes thecomputationalcostmore
affordable,but introducesa new problem.In generaltheinstanta-
neousdemixingdoesnot converge for thefrequency bands where
thereareoverlappingpartials,dueto the fact that the sourcesare
not statisticallyindependent.

2.3. Spatial separation

Thereexist somemethodsthat exploits the physicallocationsof
thesourcesin orderto separatethem,like e.g.beamforming [18].
Recently, the DUET methodfor separatingsourcesin the time-
frequency domainbasedon spatialcueswas introduced in [19].
It is fast,simpleand still performsquite well for music signals.
In the following we are explaining this methodin more detail.
Themethodtakesastereorecordingof theaudioscene,��������� and�
	������ , andcomputesthe ShortTime Fourier Transforms(STFT)
for both channels, 
 ����������� and 
 	 ��������� . Basedon these,the
relative amplitudes, � ���������������� 
 �����������
 	 ��������� ���� � (1)

andphasedelays,

� ����������� ��� �"!$#&%$' (*)�"+,# %
' (*).-� � (2)

betweenthechannelsarecomputed. Fromtheseonecangenerate
a2-D histogram,asshown in figure2. In thisexample,thereis one
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Figure2: 2-D Histogram showingwhere the sources are located
in (phasedelay, relativeamplitude)space.

sourceontheleft side(delayof two samplesbetweenleft andright
microphone), andonesourceon the right side(“delay” of minus
onesamplebetweenleft andright microphone). We alsonotethat
thereis a phantom sourcein the middle (about0 delay). This is
in fact dueto the overlapping partials,sincethe net effect of one
sinusoidcomingfrom theleft andonefrom theright is a sinusoid
comingfrom somewhere in between.

By applyinga clusteringalgorithmto this histogram,onede-
cidewherethesourcesare,andhow thebinsof theSTFTshould be
assignedin theseparationphase. For eachtime-frequency bin, the
relative amplitudeandphasedelaybetweenthechannelsareused
to assignthebin to onesource.Therearetwo interestingproperties
of this. Firstly this meansthat themethodcanwork with sources
that don’t exhibit a strongpartialsstructure,which wasa major
limitation of thesinusoidalmodels.Secondly, theremaybemore
sourcesthantherearesensors,which is astronglimitation in blind
separationtechniques. Although themethodis very promisingin
theserespects,we notethe following constraints:The methodis

DAFX-2



Proc.of the5th Int. Conferenceon Digital AudioEffects(DAFx-02),Hamburg, Germany, September26-28,2002

basedontheassumption thatthesourcesareW-disjointorthogonal
[19]. Basicallythis meansthat eachtime frequency bin contains
energy from only one source. Apparently this is not at all true
for music. Also, the fact that eachbin is assignedto onesource
exclusively canintroducenew beatsor binary“on/off ” effects(the
signal“comes”and“goes” in onefrequency bandastimeevolves).
Figure3 clearlyshowsthis in thebandswherethepartialsoverlap;
thebinsin thesebandsareassignedto eithersourcein analternat-
ing way.
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Figure3: SeparatedsignalsusingtheDUET method.Noticehow
theoverlapping partials(justabove1,2 and3 kHz)areexclusively
assignedto eithersource in analternatingway. Theotherpartials
are correctlyassignedto onesourceonly.

Despitethe mentioneddrawbacks, the DUET methodshows
promisingresults,andwe will sehow thequality of theseparated
signalscanbeimprovedby usingour proposed methods.

3. DEALING WITH OVERLAPPING PARTIALS

In the previous sectionwe saw that the main problemwith sep-
arationof instrumentsis relatedto overlappingpartials. In this
sectionwe first proposea methodfor separationof 2 overlapping
partialsin a stereomixture. Thenwe discussothermethodsfor
partialshapereconstructionthatcanbeusedwith monosignalsas
well. We alsodiscusshow theseparationquality canbeimproved
whenthereareoverlapping partialsbut no beats.

Themethodswe areintroducingarebasedon theobservation
thatthepartialsof aharmonicinstrumenthavesimilarshapes.Fig-
ure 4 shows the envelopeof the first 5 harmonicsfor the trumpet
mixture ( /�0 and 132 ). We seethatall the nonoverlapping partials
havesimilarshapes(upto ascalingfactor),andthatwecandeduce
thewishedshapefor theoverlappingpartialsfrom these

3.1. Partial Separation

To beableto separateoverlapping partials,we needa multi chan-
nel mixture. At this point, themethodwe proposeis only suitable
for 2 overlapping partials,andwethereforeconsider thecasewith
2 sourcesand 2 sensors.Note, however, that sincethe method
workson thefrequency bands independently, it canstill beusedin
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Figure4: First five partials of the /40 (left) and the 152 (right) in
thetrumpetmixture.

systemswith morethan2 sources.Theassumption is thatfor each
frequency band,only two of thesourcesaresignificant.

In thetimedomain,themixing of thesourcescanbedescribed
asfollows:6 �879������
:;�����=< � 6?>A@ ����� > 7B�����> :;����� >AC �����D<FE 6HG 79�����G :;�����=<JI (3)

where �AK arethemixturesignals,

G K arethesourcesignals,and

> K
arethemixing filters. We assumethatthesefilters aretime invari-
ant. Without lossof generality, we canassumethat

>L@
and

> C
are

the identity filters M ����� . If we take the short time Fourier trans-
form (STFT), (convolution in time corresponds to multiplication
in frequency), (3) becomes:6 
 7B���������
 :N���������=< � 6 O P 79���3�P :Q���5� O < 6HR 79���������R :;���������D<SI (4)

Now, we considera fixed � that corresponds to a frequency
bandwith overlappingpartials.Weobserve thefollowing:T If the frequency band is narrow enough, the

P 7B���3� and
P : ���3� in (4) canbe assumedto be constantover the fre-
quency range,andarethussimply two complex numbers.
For simplicity we thereforeomit theparameter� in theno-
tation.T With a suitablesensorsetup(i.e., two microphonesclosely
spaced),the relative signal strengthsbetweenthe sensor
signalsare closeto 1. This meansthat

P 7 and

P : both
lie closeto theunit circle. In othersetups,the relative sig-
nal strengthscanbe estimatedfrom the relative amplitude� ��������� for theneighbouring non-overlappingpartials.

We estimatethe valuesof the two complex unknowns in the
mixing matrix, UP 7 and UP : . The inverseof this estimatedmixing
matrix (unscaled)can then be applied to estimatethe separated
sources UR K6 UR 7B���������UR : ��������� < � 6 O V UP 7V UP : O < 6 
 7B���������
 : ��������� < � (5)
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which canbewrittenout as:6 UR 7B���������UR :N��������� < � 6�OWV UP 7 P : P 7 V UP 7P : V UP : O5V UP : P 7 < 6HR 79���������R :;���������D<SI
(6)

The closeroneof theseestimatedvaluesis to the real value,
the lessthepresenceof theunwantedsignalin thecorresponding
separatedsource.Whenit reachestheoptimalvalue,theseparated
partial is simply a scaledversionsof the original partial before
mixing. Thisappliesto thetwo unknownsindependently.

The estimationalgortihmwe proposeis a simplerecursively
refinedsearchfor the two unknowns on the unit circle. For any
chosenpoint, we calculatethe separatedpartials. Then we cal-
culatedistancemeasurementsbetweenthe normalizedshapesof
thesepartialsandthedesiredshapes(deduced from neighbouring
non-overlappingpartials).

Westartwith valuescoarslydistributedon theunit circle,and
thenrefineon shorterintervals in the searchfor the global mini-
mum. Figure5 shows thepartial shapedistancefor thedemixing
of thefirst overlappingpartial.Weseethatthis is in line with what
we foundin thehistogram.Theoptimaldemixingcoefficientsare
foundfor delaysof X and
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Figure5: Iteratively refinedsearch for the demixingcoefficientsUP 7 and UP : .
Figure6 shows the envelopes of the corresponding separated

partials.In thetoptheshapesof theneighbouringnon-overlapping
partialsareshown, the secondharmonicof / 0 , and the first har-
monicof 132 . Bothhavequiteconstantamplitudeovertheduration
of thesignal. Whenthe two notesareplayedtogether, thesepar-
tials overlap,andtherearebeats,asseenin the secondplot. The
third plot shows how the DUET methodperformsfor this case.
Noticethatthebeatsarestill present.In additionthepartial is ex-
clusively assignedto eithersourcein analternatingway. This in-
troducesadditionalartefacts.In thebottomweseetheenvelopeof
theseparatedpartialswhenusingour partialseparationalgorithm.

Theresultwhenweseparatethethreefirst overlapping partials
to improve the DUET separationcanbe seenin Fig. 7. Compare
theseparatedpartials(frequenciesjust above 1, 2 and3 kHz) with
thosein Fig. 3.
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Figure6: Neighbouring non-overlappingpartials(top),partials in
mixedsignalswith beats(next-to-top),DUETseparation (next-to-
bottom),andseparatedpartials usingour method(bottom).

3.2. Partial shape reconstruction

Whenonehasonly a monosignalto work with, clearlythepartial
separationmethodcannot beused.Thesameappliesfor thecase
where thereare more than two sourcesthat overlapsin a given
frequency band. We briefly discusssomeothermethodsthat can
be usedin thesecases,even though they are not asgood as the
separationalgorithm.

3.2.1. Partial removal

Thefirst methodis partial removal. Whenbeatsaredetected,this
can be avoided in the separatedsignalssimply by removing the
partial in question. This leadsto a lessrich sound,but can be
lessannoying thanthe beats.For just onepartial, this may be an
acceptablemethod, butwhenyouremovemorepartials,thequality
of theseparatedsignalsdegradesvery fast.

3.2.2. Partial flattening

If theoverlappingpartialsnever totally canceleachother, i.e. the
valleys in thepartialsof themixedsignalsarenot toodeep,wecan
scaleup/ amplify thevalleys to producea flatterenvelope. There
are limits as to how much this can be donewithout introducing
artefacts(phaseproblems). Also, the partial envelopesare only
correctup to a scalefactor.

3.2.3. Partial synthesizing

This methoddeducesthe shapeof the partial in questionfrom
theneighbouring non-overlappingpartials,andthenmodulatethis.
Hereonemustbecarefulwith thephase.If theoriginal partialhas
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Figure7: Final resultby improving DUET with our partial sepa-
ration algorithm. Thefirst threeoverlapping partials (just above
1, 2 and3 kHz)havebeenseparated.Compare with Fig. 3.

frequency fluctuations(vibrato, etc), or if the frequency resolu-
tion is not fine enough, thesynthesizedpartialmayactuallycause
the full separatedsourceto soundout of tune. Pitchtrackingwill
not beusefulto avoid this,sincetheoverlappingpartialsinterfere.
Thereis alsothescalefactoruncertainty.

3.2.4. Partial splitting

Themethodsmentionedabove all dealwith beats.Basically, slow
beats( Z 20 Hz) arethe mostannoying. For fasterbeats,andfor
beatsmasked by other frequency fluctuations(e.g. vibrato), it
is sufficient to simply split the partial energy amongthe implied
sources.

4. CONCLUSION

In this articlewe have presenteda methodto separateoverlapping
partials in stereosignals,and seenhow this can be usedto im-
prove many of the existing sourceseparationtechniques. Other
techniques for beatremoval/ partial reconstructionthat canwork
for other caseshave also beendiscussed. We have appliedour
methodsto mixturesof instrumentsandseenhow it canbe used
to improve theperceptualquality of theseparatedsignals.Sound
examplescanbefoundat http://lcavwww.epfl.ch/˜viste.
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