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ABSTRACT

In recentyears, waveletbasedalgorithmshavebeen
successfulin different signal processingtasks. The
wavelettransformis a powerfultool becausét manages
to representboth transientand stationarybehavious of
a signalwith few transformcoeficients.In this paperwe
presentnew expansionsand algorithmswhich improve
waveletalgorithms. First we focuson onedimensional
piecavisesmoothsignalsand proposea new representa-
tion of thesesignalsin termsof elementsvhich we call
footprints. Thenwe considertwo dimensionalsignals
and presenta new directionalwavelettransform,which
keepsthe simplicity of the standad sepanble wavelet
transformbut allows for more directionalities. Denois-
ing and compessionalgorithmsbasedon footprintsand
directional waveletsshowinterestingimprovementover
traditional waveletmethods.

1 INTRODUCTION

The designof a completeor overcompleteaxpansion
thatallows for compactepresentationf certainrelevant
classesof signalsis a centralproblemin signal/image
processingandits applications.Parsimoniougepresen-
tation of datais importantfor compressiofl], further
more,achiezing acompactepresentationf asignalalso
meangdntimateknowledgeof the signalfeaturesandthis
canbe usefulfor mary othertasksincluding denoising,
classificatiorandinterpolation.

The succes®f the wavelettransformis mainly dueto
its ability to characterizecertainclasseof signalswith
few transformcoeficients.In particular waveletsastime
frequeng localizedbasesare particularly suitedto rep-
resentpiecavise smoothfunctions and this is in con-
trastwith the Fourier baseswhich areinadequatevhen
discontinuitiesare present.Although waveletsrepresent
piecavise smoothsignalswell, the wavelet coeficients
generatedy discontinuitiesaredependenacrossscales.
Thus,it is possibleto characterizéhemmoreefficiently.

We presenta new way to represenpieceavise smooth
signalsin termsof objectswhich we call footprintsand
~which make up an overcompletealictionaryof elements.
Thefootprintsdictionaryis built from the wavelettrans-

form. Given a signal of interest,we first perform the
wavelettransformof this signalandthenthe waveletco-
efficientsareexpressedn termsof footprints. The main
propertyof footprintsis thatthey characterizefficiently
the singularstructuresof the signal,which usuallycarry
importantinformation. By constructinghe footprint ex-
pansionon the wavelet transform,we remove the de-
pendenyg acrossscalesof the wavelet coeficientscom-
pletely Thus,by representingury discontinuitywith the
combinatiorof afew footprints,we cangetasparserep-
resentatiorof the signalunderconsideration.

In two dimensiong(2-D), the situationis muchmore
open. In fact, waveletsare not goodat modellingpiece-
wise smooth signals (where discontinuitiesare along
smoothcurves). Thetwo dimensionalvavelettransform
is a separabld@ransformgiven by the tensorproductof
two one dimensional1-D) waveletsalongthe horizon-
tal and vertical direction. For this reason this separa-
ble transformis goodat isolatinghorizontalandvertical
edgeshutit is notadequatattreatingmorecomplex dis-
continuities.

Non-separablapproache§?], in particularusing di-
rectionalfilter bankg3, 4], have beeninvestigatedshow-
ing the potentialof truly non-separablenethods. Such
methodscomeat a pricein termsof designandcomputa-
tional compleity. Someseparabl@approachetiave been
madein [5] but noton discretespaces.

In our work, we wish to retain the simplicity of the
separablavavelettransformwhile realizingsomeof the
potentialof non-separableschemes.We do this by in-
troducinga directionalwavelettransformthatactsmuch
likeastandardseparabléransformbut allows moredirec-
tionalities. This is doneby introducingdigital directions
that partitionthe discreteplane. Along thesedirections,
it is thenpossibleto apply the wavelet transformor the
footprintexpansionMany usefulpropertiesareagainin-
heritedfrom the one-dimensionatase.

The paperis organizedas follows. The next section
is dedicatedto one dimensionalsignals. We introduce
the footprint expansionand develop footprint basedal-
gorithms for compressionand denoisingof piecavise
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smoothsignals. Section3 focuseson two-dimensional
signals. We definedigital directionsandthe associated
partitionsof Z2. We alsoshav how directionalelements
in an image are treatedby separablalirectionaltrans-
forms. In Section4, we presentnumericalresultsfor
both onedimensionalandtwo dimensionakignals. We
concludein Sectionb.

2 REPRESENTATION OF 1-D SIGNALS

We startby studyingonedimensionakignalsandthen
we moveto thetwo-dimensionatase.In thenext section,
we demonstrat@a decompositiorof a piecevise smooth
signalinto a piecavise polynomial signaland a regular
residual(Theoreml). We thenintroducethe notion of
footprintsandpresenfootprint basedalgorithmsfor de-
noisingandcompression.
2.1 Signalmodels

We considerl-D piecavisesmoothsignalsthatis, sig-
nalswhich aremadeof smoothpieces.For example,we
definea piecavise smoothfunction f(t), t € [0, T] with
K + 1 piecesasfollows

K

F@) =D fil) L) (8), (1)

=0

wherety = 0, txy1 = T and f;(t) is uniformly Lips-
chitz a over [0,T] 1. Thosesignalsareinteresting,be-
causemary signalsencounteredn practicecanbe well
modeledas piecavise smooth. Thereis alsoanotherset
of functionswe will considerandwhich form the more
restrictedclassof piecavise polynomialsignals.A func-
tion p(t) t € [0,T] is piecevise polynomialwith K + 1

piecesif
Z pit

wherety = 0, tky1 = T andp;(t), ¢ =0,1,..K are
polynomialsof maximumdegreeD.

Despite their simplicity, piecevise polynomial sig-
nalsrepresentinimportanttool to characterizéhe non-
stationarybehaiour of piecavise smoothfunctions. It
follows[7]

Theorem1 Givenis a piecavisesmoothsignal f(t) de-
finedasin Eq. (1), thatis, with piecesof Lipscditz regu-
larity a.. Then there existsa piecavisepolynomialsignal
p(t) with piecesof maximumdegreed = || sud that
the differencesignal ro(t) = f(t) — p(t) is uniformly
Lipsdhitz . over [0, T.

Theoreml indicatesa practicalway to dealwith piece-
wise smoothsignals.It shavs thatarny piecavise smooth
signal f (t) canbe expressedasthe sumof a piecavise
polynomialsignalandaresidualhichis uniformly Lip-

schitza. Thatis

tl,t1+1] ) (2)

f@) = p(t) + ra(t).

Now, sincethe residualis regular, it canbe well repre-
sentedvith wavelets(thewaveletdecompositiomf r, (t)
resultsin smallcoeficientswith fastdecayacrosscales).

1For adefinitionof Lipschitzregularity referto [6].

Thereforethe only elementsve needto analysearedis-
continuitiesin the piecevise polynomialfunctionand,in
particular the dependeng acrossscalesof the wavelet
coeficientsgeneratetby thesepiecavise polynomialdis-
continuities? In thenext sectionwe presentinev wayto
expressdiscontinuitiesin piecavise polynomialsignals.
Togetheywith Theoreml, thiswill leadto efficientalgo-
rithmsto represenpiecevise smoothsignals.Although,
we could performthis analysisin continuoustime, we
concentrateon the discrete-timecase. This is because
our final targetis to develop efficient algorithmsthatact
ondiscrete-timesignals.
2.2 WaveletFootprints: Theory

We move from continuous-timeo discrete-timesig-
nals and introduce the notion of footprints which are
scale-spaceectorscontainingall thewaveletcoeficients
generatedy particularpolynomialdiscontinuitiess We
shav that ary piecavise polynomial discontinuity is
specifiedby the linear combinationof a few footprints,
andthatfootprintscanbeinterpretecasanovercomplete
expansionwith goodapproximatiorproperties.

Consider first, a piecavise constantsignal z[n], n €
[0, N — 1] with only onediscontinuityat positionk. Con-
sidera J level waveletdecompositiorof this signalwith
aHaarwavelet:

J N/27-1 N/2J71
=> Z yabalnl + > a¢nl]  (3)
j=1 =0 =0

wherey;; = (z,%;), ande; = {(z,¢5) *. Now, since
the Haar wavelet has one vanishingmomentand finite
supportthe non-zerowvaveletcoeficientsof thisdecom-
positionareonly in the coneof influenceof k. ThusEq.
(3) becomes

N/27 -1

> adaln],

J

] = ik Pins[n] +

j=1 1=0
wherek; = |k/27| — 1. Moreover, all thesecoeficients
dependonly on the amplitudeof the discontinuityat k.
Thus,if onedefinesa vectorwhich containsall of them,
onecanspecifyary otherstepdiscontinuityat £ by mul-
tiplying thisvectorby theright factor This consideration
leadsto thefollowing definition:
Definition 1 Givena pieceavise constantsignal z with
only onediscontinuityat positionk, wecall footprint f,, (0)
the norm one scale-spaceector obtainedby gathering
togetherall the waveletcoeficientsin the coneof influ-
enceof k andthenimposing]|f.” || = 1.
Expressedn the wavelet basis, this footprint can be

written as f(o)[ | = ijl djk;Vjk;[n], wheredy,, =

Yik; /A /Ej:1 yjkj. Now, ary piecavise constantsignal

z[n] with a stepdiscontinuityat k¥ canbe representeth

2For simplicity, we call piecavise polynomialdiscontinuitya singu-
larity betweertwo polynomials.

3In continuougime, onecandefinefootprintsequialently but they
areof infinite dimensionandsoof little computationalalue.

4Notethatwe areassumingV to bea power of 2.



tenms of the scalingfunctions ¢ s;[n] and of f,go). For
instancethesignalz[n] in Eq.(3) becomes

N/27 -1

Z adnln] + af,ﬁo) [n],

=0

z[n] =

wherea = (z, (0)) EJ o Yik; djk; - Thatis, (z, (0))

representthelnnerproducﬂaetweenf,go) andthewavelet
coeficients of z locatedat the samescale-spacgosi-
tions of the coeficients of f,§°>. The above discussion
can be repeatedor ary other stepdiscontinuityat dif-
ferentlocations. For eachlocation! we have a differ-
ent footprint f,(o). Now, given the completedictionary
= {9k = 1,2,.N — 1.} of footprints, we can
expressary piecaviseconstansignalin termsof the ele-
mentsof this dictionaryandof the scalingfunctions.

The notion of footprints canbe easily generalizedo
the caseof piecavise polynomial signals(for more de-
tails referto [7]). In this case,it canbe shavn thatthe
waveletcoeficientsin the coneof influenceof a polyno-
mial discontinuityatlocationk have only D + 1 degrees
of freedom(D is themaximumdegreeof arny polynomial
in the signal). Thus, one cancharacterizehis disconti-
nuity usingD + 1 footprintsf,gd), d=0,1,..,D. More-
over, thesefootprintsaredesignedn a way to guarantee
thetwo following conditions

1751=1 d=0,1,.,D;

(9 f9y =6, i=0,1,.,D; j=0,1,.,D.

4)
To characterizeary polynomialdiscontinuity we needa
dictionaryD = {f,gd),d =0,1,..,D;k = 0,1,..,N —
1.} of (D + 1) N footprints. With this dictionaryof foot-
prints and with the scalingfunctions,we canrepresent
ary piecavise polynomialsignal. In particular a piece-
wise polynomialsignalz with K discontinuitiesatloca-

tionsky, ks, .., ki is givenby
N/27 -1 K D
el = > agaln] + > > ol f 0. (©)
=0 =0 d=1

Footprintsare orthogonalto the scalingfunctions. Foot-
prints relatedto the samelocationsare orthogonaltoo
(seeEg. (4)). But footprints relatedto close discon-
tinuities are biorthogonal. In particular we have that
( l(d),f,gc)) =0for|l—k > (L—-1)-27, whereL
is the length of the wavelet filter. Thus, the orthogo-
nality of footprintsdependon the number.J of wavelet
decompositionlevel. Now, assumethat we know the
discontinuitylocationsandcall k,,,_1, k,, the two clos-
estdiscontinuitiesin (5). If J is chosensuchthatJ =
|logy (km — km—1) —log, (L — 1) |, thanwe aresurethat
footprintsrelatedto locationsky, ks, .., kx areorthogo-
nal. In the next section,we presentan iterative denois-
ing algorithmwherethe numberJ is chosenadaptvely
accordingo thedistancebetweerdiscontinuitiesln this
way, thereareno biorthogonafootprintsto representhat

signal. It is alsoof interestto notethatfootprintsmanage
to provide a sparserepresentationf piecavise polyno-
mial signalsthanthe wavelettransform.Moreover, when
J = log, N, footprintsform an unconditionalbasisfor
piecavise polynomialsignals. Thatis, ary linear com-
bination of footprints givesa signalwhich is piecavise
polynomial[7].

2.3 Wavelet Footprints: Applications

We focusontwo mainapplicationgor whichwavelets
are successfulpnamelydenoisingand compression.We
presentalternatve algorithmsbasedon the footprint ex-
pansiorandshaow thatthesemethodsanfurtherimprove
waveletbasedalgorithms.The maincharacteristiof the
footprint methodsis thatthey candeal more efficiently
with discontinuities.

2.3.1 Denoising

The term denoisingusually refersto the removal of
noisefrom acorruptedsignal.In thetypical problemfor-
mulation,the original signalz hasbeencorruptedby ad-
ditive noise.Oneobseresy[n] = z[n] + e[n] wheree[n]
are independenand identically distributed (i.i.d.) zero
meanGaussiarvariableswith variances? andthe origi-
nal signalis deterministicandindependenbf the noise.
The goal of the denoisingalgorithmis to obtainan es-
timate Z of the original signal which minimizesa risk
function, usuallythe meansquareerror E[|| = — 2 ||?].
The wavelet baseddenoisingalgorithm introducedby
DonohoandJohnstong8] simply shrinksthewaveletco-
efficients. Thatis, it setsall wavelet coeficientssmaller
thanathresholdto zeroandkeepsthe coeficientsabore
the threshold(hard thresholding)or shrinksthem by a
fixed amount(soft thresholding). The thresholdis usu-
ally settoT' = 0v/21n N, whereN is thesizeof thesig-
nal[8]. A limit of thisapproachs thatit doesnotexploit
the dependengacrossscalesof the wavelet coeficients.
Thus,to overcomethis limit, we applyathresholdn the
footprint domainratherthanin the waveletdomain. Do-
ing so, we betterexploit the dependeng of the wavelet
coeficientsacrossscales.As a matterof fact,denoising
in the footprint domainis equivalentto applyinga vec-
tor thresholdin the waveletdomainratherthana scalar
thresholdasin the usualmethods.

Assumethatz[n] is piecavise polynomial.We canex-
prespiecavisepolynomialsignalsin termsof footprints,
thusour denoisingsystemattemptgo estimatethis foot-
print representatiofrom theobsenednoisyversiony[n].

For simplicity let us focuson piecavise constantsig-
nals. We first performan estimationof the discontinu-
ity locationsandthenwe estimatethe valuesof the foot-
prints coeficients aﬁo) . Thediscontinuitylocationsare
estimatedn thefollowing way:

1. Choose a dictionary D =  {f\”
S dik ik k= 0,1,.N — 1} of foot-
printswith J = log, N. This dictionaryrepresents
abiorthogonabasis.

2. Computethe dual basisof D and call f}§°> k =
1,2,.., N — 1 theelementf this dualbasis®.

51t is of interestto emphasizehat this dual basisturnsout to be a



3. Computethe N — 1 inner products(y, i) k =

1,2,..,N —1.

4. Considerasdiscontinuitylocationsthe onesrelated
to theinnerproductdargerthanthe thresholdl}, =
17O T. Thatis, if [(y, /") > Ty, thenassume
thatthereis a discontinuityat locationk. T is the

universalthreshold7T = o+/(21n N)) [8]

Now, we have a setof estimatedliscontinuitylocations:
ki, ko, .., kg. The problemis that,dueto the noise,this
estimationcanhave errors. Thus, this problemmustbe
consideredn the next stepwherethe footprints coefi-

cientsareevaluated.

1. Giventhe setof estimateddiscontinuitylocations,
take J; = |logy (km — km—1) —logs (L —1) |, where
km_1, km arethetwo closestestimateddiscontinu-
ity locations.

2. For eachpossiblelocationk € [kp_1, k] com-

7@
putetheinnerproduct(y, 7 (0)”) wheref,go) is the

sub-footprintobtainedby consideringonly thefirst
Jy wavelet coeficients of f{”. Thatis: f” =

Z}-’Ll dijk; Yjk; 1]

£(0)

3. Chooseéhelocationk; suchthat|(y, ”; )| is max-
imum.
4. If
f(o)
(v, )N =T, (6)
Rl
thencomputetheresidue:
1 i 0
Ry=y— s~y -
ST QIR

5. Iteratestep3-4 on the residueuntil condition(6) is
notverifiedanymore.

6. Oncecondition(6) is not verified anymore,remove
thetwo discontinuitylocationsk;_1, ;. If thesetof
remainingdiscontinuitylocationsis not empty find
anew decompositiortevel J, andgoto step2. Oth-
erwise,if all discontinuitieshave beenconsidered,
stop.

Finally, theestimatedsignalz is:

M—1 1 f(o) ©
—— < R}, —m_ > fO[p]
(0 Yy (0 m ’

= 1F2) 1£2]
(7)

whereM is thetotal numberof iterationsanng =y.

First, noticethat, sincethe footprints f(o) in Eq. (7)
areobtainedtakingawavelettransformwith .J = logy, N
decompositiorievel, thenwe aresurethatthe estimated
signalz is piecavise constan@asz. Thisis animportant

& =<y, ds > ¢sn]+

first orderderiative.

property becausen this way we are surethat the esti-
matedsignaldoesnot presengrtifactarounddiscontinu-
ities (pseudo-Gibbgffect). This algorithmcanbe easily
generalizedo the caseof piecavise polynomial signals
and,thus,we do not detailthis generalizatiorere.

Now, assumethat the original signal z[n] is piece-
wise smooth. In this case,we usea two stepdenois-
ing algorithm. First, we estimatethe piecavise poly-
nomial behaiour of z using this footprints basedalgo-
rithm. Thenwe usethe standardthresholdingmethod
basedon the wavelet transformto denoisethe residual
rln] = y[n] — &[n].

Denoisingin thewaveletdomainsuffersfrom thelack
of shift invarianceof thewaveletbasis.Onewayto over-
comethis limitation is to usea denoisingmethodcalled
cycle-spinning[9]. For arangeof shifts, cycle spinning
shiftsthenoisysignal,denoisegachshiftedversionand,
finally, unshiftand averagethe denoisedsignals. Since
footprintssuffer from the sameack of shiftinvarianceas
wavelets,onecanusetheideaof cycle spinningto reduce
this shift dependeng Theonly differencebetweercycle
spinningwith waveletsandcycle spinningwith footprints
isthat,in thissecondase gachshiftedversionof thesig-
nalis denoisedwvith footprintsratherthanwavelets.

In Section4, we considerboth methods(denoising
with footprints and cycle spinningwith footprints) and
comparethemwith the equivalentwavelet basedalgo-
rithms.

2.3.2 Compession

Waveletsarewidely usedin compressionThereason
is thatwaveletshave very goodapproximatiorproperties
for representingertainclasse®f signalslike piecavise
smoothsignals.While goodapproximatiorpropertiesare
necessaryor goodcompressionit mightnotbeenough.
In compressiomnehasto considethecostscorrespond-
ing to indexing andcompressingheretainedelementsn
theapproximatiorandindependentodingof thesecoef-
ficientsmight beinefficient[10].

Considera piecavise smoothsignaldefinedasin Eq.
(1), thatis, a function with piecesthat are a-Lipschitz
regularandwith afinite numberof discontinuitieslt was
shawn in [11] thatstandardvaveletbasedschemesuch
aszerotree$12] canachievethefollowing distortion-rate
performance:

D(R) < ¢1R;*™ + ¢y1/R.27VEe, (8)

whereR = R, + R. andR, arethebits usedto quantize
the waveletcoeficientsgeneratedy the discontinuities,
while R, arethebitsusedto codethewaveletcoeficients
correspondingo the smoothpartsof the signal. Now,
supposehat the signalis pieceavise polynomial. Then
thewaveletcoeficientsrelatedto the smoothpartsof the
signal are exactly zero, and so thereis no needto use
ary bits to codethem. The distortionof a waveletbased
schemeébecomes

D(R) < c;VR2™VE, 9)

However, adirectapproacho compressiomnf piecavise
polynomialsignals,basedon an oracletelling uswhere



discontinuitiesare, will leadto D(R) < ¢,27¢% [13]
and such behaiour is achievable using dynamic pro-
gramming[13]. This large gap betweenideal perfor
mancegiven by the schemebasedon dynamicprogram-
ming andwaveletperformances mainly dueto theinde-
pendentodingof thewaveletcoeficientsacrossscales.
Statisticalmodeling[14] of suchdependenciesanim-
prove the constantsn (9), but going from v/R to R in
the exponentrequirestaking the deterministicoehaiour
of wavelet coeficientsacrossscalesat singularitiesinto
account. This is well doneusingfootprints, which thus
closethe gapwith theidealperformancég7]
Theorem2 Considermiecevisepolynomialsignalswith
polynomialsof maximumdegree D and no mote than
K discontinuities. A coder which representshesesig-
nalsin the footprints basisand which scalar quantizes
the discontinuitylocationsand the footprint coeficients
achieves

D(R) < cg2 H. (10)

Thus,thistheorenmshawvsthat,in caseof piecevisepoly-
nomial signals, footprints significantly improve perfor
manceof wavelet coders. Footprints can be usedfor
piecavise smoothsignalstoo. Theoreml shows thata
piecavise smoothsignal can be separatednto two con-
tributions a piecevise polynomial part p[n] anda resid-
ualr[n] whichis regular(a-LipschitzoverR). Now, p[n]
canbecompressedith footprintsandthiscoderachieres
(10). Theresidualr[n] canbecompressewith ary other
coderwhichachieves[11]

D(R) < csR™2. (11)

It is worth noticingthat,becausef theregularity of r[n],
the performancen (11) can be achieved with a simple
coderbasedn linearapproximatiorof [n] in awavelet
or Fourierbasiq11]. Combining(10)and(11)shavsthat
a two stagecompressioralgorithm basedon footprints
andon linearapproximatiorof theresidualachieses

D(R) < cgR;%™ 4 ¢g2 7R, (12)

Comparing8) and(12), we canseerthatthis coderdoes
notchangeheasymptoticof thedistortion-ratdunction
of waveletcoders(~ cgR;2%). But, by codingthe dis-

continuitiesefficiently, this coderreacheshe asymptotic
behaiour morerapidly. Finally, noticethat, for this last
performancethe underlyingassumptions that the en-
coderknowsin advancethe signalto code,in thisway it

canseparatehe polynomialandthe smoothpartsof the
signal. In the experimentalresults,we will show thata
realisticencodercanobtainsimilar performanceavithout
knowing thesignalcharacteristicen advance.

3 EXTENSIONSTO 2-D SIGNALS

In this section,we briefly outline, possibleextensions
of the previous resultsto the caseof 2-D signals. Re-
call thatour targetis to keepthe simplicity of separable
transformswhile realizingsomeof the potentialof non-
separabléransformsWe definedigital directionsandas-
sociatedpartitionsof Z2 andalsoshow, with anillustra-
tive example,how directionalelementsn animageare
treatedby a separablelirectionaltransforms.

A line in R? is a simple object, but its equivalentin
72 is a bit more complicated,as well known in raster
graphicsfor example.We definea digital line of angled
asaone-dimensionadetof pixelsapproximatelyalonga
line of angled. In addition,thedigital line andits shifts
alongorthogonaldirectionhave to tile Z2. While there
aremary solutiongto this problem.asimpleandtractable
oneis to usethe analyticaldefinition of a discreteline
[15]. Theline is determinedy its slopeandshift by the
following equation:

yln] = [kz[n]| + | B] (13)

wherek = tan(6) representtheslopeandbelonggo the
rangel < k < 1, and B representshe real-valuedshift
parameterThedefinitionof adiscreteapproximatiorof a
line insureghateachpixel belongsexactly to oneline for
a choserslope. Lineswith slopesout of the rangemay
be obtainedby symmetryrotatingandflipping vertically
the space.This givesaccesgo a wealthof directionsin
VAS

Now, the standardcseparablavavelettransformsimply
consistof two transformsalongthe horizontalandverti-
cal directions.This only permitsthe characterizatioand
compressionf phenomenalongthosetwo directions.

In our approachpneis freeto chooseary of thedigi-
tal directionsgiven by Eq. (13) andto apply the wavelet
transform(or any otherone dimensionatransformsuch
as footprints) along that direction. Moreover, the pro-
cescanbeiteratedandateachiterationonecanchoosea
new direction. Thus,building multi-resolutiondecompo-
sitionsalongmultiple directionspermitscharacterization
andcompressiorf phenomenatherthanjust horizon-
tal andverticalones asin the standardseparablevavelet
transform.

NN &
\ / / > -
/ / ~— |~

a) b) ©)

Figure 1: A simple object and its standardand directional
transform;(a) Originalimage,(b) standardhorizontal-ertical
transform 1 step,(c) 3-directiontransform 1 step.

Figurel1 conceptuallyshows this. Figure 1(b) shons
the onelevel wavelet decompositiorof the imagegiven
in Figure1(a)with the standarcseparablevavelettrans-
form. In this casewe have four channelsandonly hori-
zontalandverticaldirectionsareefficiently isolated.Fig-
ure1(c) depictsa onelevel waveletdecompositiorof the
sameimage but with wavelets transformstaken along
three different directions. This secondapproachdoes
isolatethe differentdirections,as well as combinations
thereof,andthisin anintuitive way.

4 SIMULATION RESULTS
4.1 Denoisingwith footprints

In this case,we consideronly piecavise polynomial
signals. In Table 4.1, we comparethe performanceof



our denoisingsystemswith a classicahardthresholding
algorithm[8] andcycle-spinning9]. In this experiment,
we considerpiecavise linear signalswith no morethan
three discontinuities. The performanceis analysedin

function of the size N of the signal. The table clearly
shavs that denoisingwith footprints outperformsthe
hard thresholding system, while cycle-spinning with

footprints outperform traditional cycle-spinning. In

Figure2, we shav anexampleof thedenoisingalgorithm
on a piecavise linear signal. We can seethat signals
denoisedwith footprints presentbetter visual quality
sincethey do notsuffer from pseudo-Gibbeffects.

L L L
30 35 40 45

L L L
50 55 60
Rate

L L L
65 70 75 80

N 64 128 256 512
Footprints 16.2dB | 18.5dB | 19.8dB | 22.1dB
Hardthresholding 12.9dB | 15.2dB | 16.6dB | 19dB
Cyclespinning 16.3dB | 18.6dB | 20.3dB | 22.9dB
Cycle-spinfootprints | 17.1dB | 19.6dB | 21dB | 23.6dB

Table4.1. Denoisingof

piecavise linearsignalswith nomorethan
threediscontinuities.
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Original signal
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Noisy signal (13.8 dB)
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Hard Th. (16.4 dB)

Figure3: TheoreticalandexperimentalD/R curves. Dashed-
dotted: theoreticalwavelet performance,dashed: empirical
footprintperformanceline: idealperformance.
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Figure 2: SNR results. a) Original Signal. b) Noisy Sig-
nal (13.8dB).c) Hard Th. (16.4dB).d) SubsampledFootprints
(19.3dB).e) Cycle Spin. (18.9dB).f) Non-Subsampleéoot-
prints(20.9dB).

4.2 Compressionwith footprints

In Theoren®, we have shovn thatin caseof piecavise
polynomialsignals,a footprint basedcodercan achiese
the ideal rate-distortionperformance.Thatis, it hasthe
correctrateof decayof theR-D function. Now, we arein-
terestedn a numericalconfirmationof this theorem.We
considerpiecavise constantsignalswith no more than
five discontinuities. The signal hassize N = 2!° and
thediscontinuitylocationsareuniformly distributedover
theinterval [0, N — 1]. Thefootprint coderoperatesas
in Theorem2, that is, it scalarquantizesthe footprint
coeficientsandthe discontinuitylocations. Bits areal-
locatedwith a reversewaterfilling strateyy. In Figure3,
we comparehe rate-distortiorperformancef this foot-
print coderagainstthe ideal boundandthe ideal perfor
manceof a wavelet basedcoder We can seethat the
behaiour of the footprint coderis consistentwith the
theory sinceit hasthe samerate of decayasthe ideal
distortion function.  Finally, we considera piecavise
smoothsignal. The compressioroperatesn the follow-
ing way. With a denoising-lile algorithm, we estimate
thepiecavisepolynomialbehaiourunderlyingthesignal
andcompresst with footprints. Theresidualis assumed
regularandit is compresseth a waveletbasis. Thatis,

Figure4: Compressionf a piecavise smoothfunction.

thefirst k coeficientsof the waveletdecompositiorare
guantizedwhile theothersaresetto zero(linearapprox-
imation). Theallocationof thebits betweerthepiecavise
polynomialsignalandthe residualandthe numberk of
waveletcoeficientsthatarequantizeds choseroff-line,
usingsomea-prioriknowledgeof thesignal.In Figure4,
we shaov anexampleof the performancef the proposed
compressiorschemeand compareit with a 1-D version
of SPIHT[16]. The signalto compresss givenby the
unionof smoothpieces.In this example,our systenout-
performsSPIHTby morethan4dB. SinceSPIHTis more
suitedto compres-D signals,this comparisoris only
indicative. However, it shavsthata compressiorsystem
basedon footprints can outperformtraditional wavelet
methodsalsoin the caseof piecavise smoothsignals.

4.3 Denoising of
wavelets

In images,the standarddenoisingprocessis usually
done by thresholdingthe coeficients obtainedby the
wavelet transformalong horizontal and vertical direc-
tions. For this reasontraditional denoisingalgorithms
do not manageo catchmostof the two-dimensionaln-
terdependenciepresentin images. However, suchan
approachhasthe main adwvantageof simplicity. In our
methodwe retainthis simplicity, but we manageo better
exploit the two-dimensionatharacteristicef animage.
Ouralgorithmis in spirit similar to cycle-spinning.

We considerseveral differentdirections. For eachdi-
rection, we apply the correspondinglirectionalwavelet

images with directional



transform and hard-thresholdthe wavelet coeficients.
We theninvertthewavelettransformto obtainadenoised
versionof theimage.Finally, we averageall thisdifferent
denoisedrersiongo obtainthefinalimage.

Figure5 shavs an exampleof denoisingof theimage
'Cameraman’. The original imageis affectedby addi-
tive Gaussiamoise and both methodsare applied. We
can seethat the nev methodwhich uses,in this case,
twenty differentdirectionslargely outperformsthe stan-
dardmethod.

Figure5: Theimage'Cameraman’.(a) Original image, (b)
noisedversion(PSNR = 19dB), (c) denoisedy thestandard
method(PSNR = 20.54dB),(d) denoisedy the new method
(PSNR =25.04dB).

5 CONCLUSIONS

In this paper we have presentechew waysto repre-
sentsignalsandimages. First, we have introducedthe
notion of footprintsand have shavn that footprintspro-
vide sparsaepresentationsf piecavise smoothsignals.
This is usefulin several signalprocessingasksandnu-
merical simulationsconfirm that footprints outperform
wavelet methodsin several applications. We have then
proposedh simpleyet effective way to represen®-D sig-
nals,thatis, images.Our nev methodcalculatessepara-
ble wavelet transformalong setsof differentdirections.
Suchanapproachakesinto accountwo-dimensionain-
terdependenciesmongdiscontinuitiesin imagesbetter
thanthestandardnethod.Applicationof thenew method
is possiblan variousareaf imageprocessingndgood
resultshave beenshavn in denoising.
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