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ABSTRACT

In recentyears, waveletbasedalgorithmshavebeen
successfulin different signal processingtasks. The
wavelettransformis a powerfultool becauseit manages
to representboth transientand stationarybehaviours of
a signalwith few transformcoefficients.In thispaperwe
presentnew expansionsand algorithmswhich improve
waveletalgorithms. First we focuson onedimensional
piecewisesmoothsignalsandproposea new representa-
tion of thesesignalsin termsof elementswhich we call
footprints. Thenwe considertwo dimensionalsignals
and presenta new directionalwavelettransform,which
keepsthe simplicity of the standard separable wavelet
transformbut allows for more directionalities. Denois-
ing andcompressionalgorithmsbasedon footprintsand
directionalwaveletsshowinterestingimprovementover
traditionalwaveletmethods.

1 I NTRODUCTI ON

The designof a completeor overcompleteexpansion
thatallowsfor compactrepresentationof certainrelevant
classesof signalsis a centralproblemin signal/image
processingandits applications.Parsimoniousrepresen-
tation of datais importantfor compression[1], further-
more,achieving acompactrepresentationof asignalalso
meansintimateknowledgeof thesignalfeaturesandthis
canbe usefulfor many othertasksincluding denoising,
classificationandinterpolation.

Thesuccessof thewavelettransformis mainly dueto
its ability to characterizecertainclassesof signalswith
few transformcoefficients.In particular, waveletsastime
frequency localizedbasesareparticularlysuitedto rep-
resentpiecewise smooth functions and this is in con-
trastwith the Fourierbases,which areinadequatewhen
discontinuitiesarepresent.Althoughwaveletsrepresent
piecewise smoothsignalswell, the wavelet coefficients
generatedby discontinuitiesaredependentacrossscales.
Thus,it is possibleto characterizethemmoreefficiently.

We presenta new way to representpiecewisesmooth
signalsin termsof objectswhich we call footprintsand
which make up anovercompletedictionaryof elements.
Thefootprintsdictionaryis built from thewavelet trans-

form. Given a signal of interest,we first perform the
wavelettransformof this signalandthenthewaveletco-
efficientsareexpressedin termsof footprints. Themain
propertyof footprintsis thatthey characterizeefficiently
thesingularstructuresof thesignal,which usuallycarry
importantinformation.By constructingthefootprint ex-
pansionon the wavelet transform,we remove the de-
pendency acrossscalesof the wavelet coefficientscom-
pletely. Thus,by representingany discontinuitywith the
combinationof afew footprints,wecangetasparserrep-
resentationof thesignalunderconsideration.

In two dimensions(2-D), the situationis muchmore
open. In fact,waveletsarenot goodat modellingpiece-
wise smooth signals (where discontinuitiesare along
smoothcurves).Thetwo dimensionalwavelettransform
is a separabletransformgiven by the tensor-productof
two onedimensional(1-D) waveletsalongthe horizon-
tal and vertical direction. For this reason,this separa-
ble transformis goodat isolatinghorizontalandvertical
edges,but it is notadequateat treatingmorecomplex dis-
continuities.

Non-separableapproaches[2], in particularusingdi-
rectionalfilter banks[3, 4], havebeeninvestigated,show-
ing the potentialof truly non-separablemethods. Such
methodscomeatapricein termsof designandcomputa-
tionalcomplexity. Someseparableapproachedhavebeen
madein [5] but notondiscretespaces.

In our work, we wish to retain the simplicity of the
separablewavelet transformwhile realizingsomeof the
potentialof non-separableschemes.We do this by in-
troducinga directionalwavelet transformthatactsmuch
likeastandardseparabletransformbutallowsmoredirec-
tionalities.This is doneby introducingdigital directions
that partition the discreteplane. Along thesedirections,
it is thenpossibleto apply the wavelet transformor the
footprintexpansion.Many usefulpropertiesareagainin-
heritedfrom theone-dimensionalcase.

The paperis organizedas follows. The next section
is dedicatedto one dimensionalsignals. We introduce
the footprint expansionand develop footprint basedal-
gorithms for compressionand denoisingof piecewise
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smooth� signals. Section3 focuseson two-dimensional
signals. We definedigital directionsandthe associated
partitionsof

���
. We alsoshow how directionalelements

in an imageare treatedby separabledirectional trans-
forms. In Section4, we presentnumericalresultsfor
both onedimensionalandtwo dimensionalsignals. We
concludein Section5.

2 REPRESENTATI ON OF 1-D SI GNAL S

We startby studyingonedimensionalsignalsandthen
wemoveto thetwo-dimensionalcase.In thenext section,
we demonstratea decompositionof a piecewisesmooth
signal into a piecewise polynomialsignalanda regular
residual(Theorem1). We then introducethe notion of
footprintsandpresentfootprint basedalgorithmsfor de-
noisingandcompression.
2.1 Signalmodels

Weconsider1-D piecewisesmoothsignals,thatis, sig-
nalswhich aremadeof smoothpieces.For example,we
definea piecewisesmoothfunction �
	���
 , ����� ������� with�����

pieces,asfollows

�
	���
 � !" # $&% �
# 	'��
�(*) +',.- +',0/21.3.	���
�� (1)

where � % �4� , � !�576 �8� and � # 	���
 is uniformly Lips-
chitz 9 over � �:����� 1. Thosesignalsareinteresting,be-
causemany signalsencounteredin practicecanbe well
modeledaspiecewisesmooth.Thereis alsoanotherset
of functionswe will considerandwhich form the more
restrictedclassof piecewisepolynomialsignals.A func-
tion ;7	���
<���=� �:����� is piecewisepolynomialwith

�8�>�
piecesif ;7	���
?� !" # $&% ;

# 	'��
@(:) + , - + ,0/21 3.	���
�� (2)

where � % ��� , � !�576 �A� and ; # 	���
 , BC����� � �EDFD � are
polynomialsof maximumdegreeG .

Despite their simplicity, piecewise polynomial sig-
nalsrepresentan importanttool to characterizethenon-
stationarybehaviour of piecewise smoothfunctions. It
follows [7]
Theorem1 Givenis a piecewisesmoothsignal �
	'��
 de-
finedas in Eq. (1), that is, with piecesof Lipschitz regu-
larity 9 . Then,thereexistsa piecewisepolynomialsignal;H	'��
 with piecesof maximumdegree IJ�LK�9NM such that
the differencesignal OQPR	���
S�T�
	'��
VUW;H	'��
 is uniformly
Lipschitz 9 over � �:����� .
Theorem1 indicatesa practicalway to dealwith piece-
wisesmoothsignals.It shows thatany piecewisesmooth
signal �
	'��
 canbe expressedasthe sumof a piecewise
polynomialsignalandaresidualwhich is uniformly Lip-
schitz 9 . Thatis �
	'��
?�W;7	���
 � OQPR	���
�D
Now, sincethe residualis regular, it canbe well repre-
sentedwith wavelets(thewaveletdecompositionof O P 	'��

resultsin smallcoefficientswith fastdecayacrossscales).

1For adefinitionof Lipschitzregularity referto [6].

Therefore,theonly elementswe needto analysearedis-
continuitiesin thepiecewisepolynomialfunctionand,in
particular, the dependency acrossscalesof the wavelet
coefficientsgeneratedby thesepiecewisepolynomialdis-
continuities.2 In thenext section,wepresentanew wayto
expressdiscontinuitiesin piecewise polynomialsignals.
Together, with Theorem1, thiswill leadto efficientalgo-
rithmsto representpiecewisesmoothsignals.Although,
we could perform this analysisin continuoustime, we
concentrateon the discrete-timecase. This is because
our final target is to developefficient algorithmsthatact
ondiscrete-timesignals.
2.2 Wavelet Footprints: Theory

We move from continuous-timeto discrete-timesig-
nals and introduce the notion of footprints which are
scale-spacevectorscontainingall thewaveletcoefficients
generatedby particularpolynomialdiscontinuities.3 We
show that any piecewise polynomial discontinuity is
specifiedby the linear combinationof a few footprints,
andthatfootprintscanbeinterpretedasanovercomplete
expansionwith goodapproximationproperties.

Consider, first, a piecewise constantsignal X7� YZ� , Y[�� �:��\]U � � with only onediscontinuityatposition ^ . Con-
sidera _ level waveletdecompositionof this signalwith
a Haarwavelet:

X7� YZ�Z� `"a $ 6
b
c ��dfe 6" g $&%ih a

g'j a g � YZ� � b
c ��kle 6" g $&%nm
gpo
`
g � YZ�qD (3)

where h a
g �sr'XR� j a gqt , and m

g �ur'X7� o `
gpt

4. Now, since
the Haar wavelet hasone vanishingmomentand finite
support,thenon-zerowaveletcoefficientsof thisdecom-
positionareonly in theconeof influenceof ^ . ThusEq.
(3) becomes

X7� YZ�&�v`"a $ 6 h axw d
j axw d � YZ� � b<c �fkle 6" g $N%ym

g�o
`
g � YZ�.�

where ^ a �8K�^{z}| a MVU � . Moreover, all thesecoefficients
dependonly on the amplitudeof the discontinuityat ^ .
Thus,if onedefinesa vectorwhich containsall of them,
onecanspecifyany otherstepdiscontinuityat ^ by mul-
tiplying thisvectorby theright factor. Thisconsideration
leadsto thefollowing definition:
Definition 1 Given a piecewise constantsignal X with
onlyonediscontinuityat position̂ , wecall footprint �7~ %f�w
the norm onescale-spacevectorobtainedby gathering
togetherall the waveletcoefficientsin the coneof influ-
enceof ^ andthenimposing�E� ~ %f�w ��� �

.
Expressedin the wavelet basis, this footprint can be
written as � ~ %x�w � YZ���u� `a $ 6 I axw d

j axw d � YZ� , where I axw d �
h axw d z�� � `a $ 6 h �axw d . Now, any piecewiseconstantsignalX7� YZ� with a stepdiscontinuityat ^ canberepresentedin

2For simplicity, wecall piecewisepolynomialdiscontinuityasingu-
larity betweentwo polynomials.

3In continuoustime,onecandefinefootprintsequivalently, but they
areof infinite dimensionandsoof little computationalvalue.

4Notethatweareassuming� to bea powerof 2.



terms� of the scalingfunctions

o
`
g � YZ� and of � ~ %f�w . For

instance,thesignal XH� YZ� in Eq.(3) becomes

XH� YZ�&� b<c �fkle 6" g $N%ym
g�o
`
g � YZ� � 9
� ~ %f�w � YZ�.�

where9��[r'XR�f�7~ %f�w t � � `a $&% h axw d I axw d . Thatis, r'X7�x�7~ %f�w t
representstheinnerproductbetween� ~ %x�w andthewavelet
coefficients of X locatedat the samescale-spaceposi-
tions of the coefficientsof � ~ %f�w . The above discussion
can be repeatedfor any other stepdiscontinuityat dif-
ferent locations. For eachlocation � we have a differ-
ent footprint � ~ %f�g . Now, given the completedictionary� ���Q� ~ %x�w �f^�� � �f|��EDFD \sU � D�� of footprints, we can
expressany piecewiseconstantsignalin termsof theele-
mentsof thisdictionaryandof thescalingfunctions.

The notion of footprintscanbe easilygeneralizedto
the caseof piecewise polynomialsignals(for morede-
tails refer to [7]). In this case,it canbe shown that the
waveletcoefficientsin theconeof influenceof a polyno-
mial discontinuityat location ^ haveonly G �=�

degrees
of freedom( G is themaximumdegreeof any polynomial
in the signal). Thus,onecancharacterizethis disconti-
nuity using G ���

footprints � ~0� �w , I��>��� � ��D0DF�xG . More-
over, thesefootprintsaredesignedin a way to guarantee
thetwo following conditions

�E� ~0� �w ��� � I��=��� � �EDFD0��GS�
rq� ~
# �w �x� ~ a �w t ��� # a B
����� � �EDFD0��GS�S������� � ��D0D0��GSD

(4)
To characterizeany polynomialdiscontinuity, we needa
dictionary

� ����� ~0� �w ��I����:� � ��D0DF�xGS�x^������ � ��D0D0��\�U� D�� of 	�G ��� 
�\ footprints.With thisdictionaryof foot-
prints andwith the scalingfunctions,we can represent
any piecewisepolynomialsignal. In particular, a piece-
wisepolynomialsignal X with

�
discontinuitiesat loca-

tions ^ 6 �x^ � ��D0DF�f^ ! is givenby

X7� YZ�Z� b
c ��kle 6" g $&%nm
gpo
`
g � YZ� � !" # $&%

�"
� $ 6 9 ~0�

�# � ~0� �w , � YZ�qD (5)

Footprintsareorthogonalto thescalingfunctions.Foot-
prints relatedto the samelocationsare orthogonaltoo
(seeEq. (4)). But footprints relatedto close discon-
tinuities are biorthogonal. In particular, we have thatrq�7~0� �g �x�7~¡  �w t �¢� for £ �?U�^N£�¤T	p¥�U � 
�¦�| ` , where ¥
is the length of the wavelet filter. Thus, the orthogo-
nality of footprintsdependon the number _ of wavelet
decompositionlevel. Now, assumethat we know the
discontinuitylocationsandcall ^¨§ e 6 �x^¨§ the two clos-
estdiscontinuitiesin (5). If _ is chosensuchthat _]�K'©Fª¨« � 	p^ § US^ § e 6 
&U¬©0ªl« � 	p¥SU � 
.M , thanwearesurethat
footprintsrelatedto locations ^ 6 �f^ � ��D0DF�f^ ! areorthogo-
nal. In the next section,we presentan iterative denois-
ing algorithmwherethe number _ is chosenadaptively
accordingto thedistancebetweendiscontinuities.In this
way, therearenobiorthogonalfootprintsto representthat

signal.It is alsoof interestto notethatfootprintsmanage
to provide a sparserrepresentationof piecewisepolyno-
mial signalsthanthewavelettransform.Moreover, when_���©0ªl« � \ , footprintsform an unconditionalbasisfor
piecewise polynomialsignals. That is, any linear com-
binationof footprintsgivesa signalwhich is piecewise
polynomial[7].
2.3 Wavelet Footprints: Applications

We focuson two mainapplicationsfor whichwavelets
aresuccessful,namelydenoisingandcompression.We
presentalternative algorithmsbasedon the footprint ex-
pansionandshow thatthesemethodscanfurtherimprove
waveletbasedalgorithms.Themaincharacteristicof the
footprint methodsis that they candealmoreefficiently
with discontinuities.

2.3.1 Denoising
The term denoisingusually refers to the removal of

noisefrom acorruptedsignal.In thetypicalproblemfor-
mulation,theoriginal signal X hasbeencorruptedby ad-
ditivenoise.Oneobserves h � YZ�*�=XH� YZ� ��­ � YZ� where

­ � YZ�
are independentand identically distributed (i.i.d.) zero
meanGaussianvariableswith variance® � andtheorigi-
nal signalis deterministicandindependentof thenoise.
The goal of the denoisingalgorithmis to obtainan es-
timate ¯X of the original signal which minimizesa risk
function, usuallythe meansquareerror °��¡�±X²U³¯X�� � � .
The wavelet baseddenoisingalgorithm introducedby
DonohoandJohnstone[8] simplyshrinksthewaveletco-
efficients. That is, it setsall waveletcoefficientssmaller
thana thresholdto zeroandkeepsthecoefficientsabove
the threshold(hard thresholding)or shrinks them by a
fixed amount(soft thresholding).The thresholdis usu-
ally setto ���=®R´ |
©0µ�\ , where\ is thesizeof thesig-
nal [8]. A limit of thisapproachis thatit doesnotexploit
thedependency acrossscalesof thewaveletcoefficients.
Thus,to overcomethis limit, we applya thresholdin the
footprint domainratherthanin thewaveletdomain.Do-
ing so, we betterexploit the dependency of the wavelet
coefficientsacrossscales.As a matterof fact,denoising
in the footprint domainis equivalentto applyinga vec-
tor thresholdin the wavelet domainratherthana scalar
thresholdasin theusualmethods.

Assumethat X7� YZ� is piecewisepolynomial.We canex-
presspiecewisepolynomialsignalsin termsof footprints,
thusour denoisingsystemattemptsto estimatethis foot-
print representationfromtheobservednoisyversionh � YZ� .For simplicity let us focuson piecewiseconstantsig-
nals. We first performan estimationof the discontinu-
ity locationsandthenwe estimatethevaluesof thefoot-
prints coefficients 9 ~ %f�# . The discontinuitylocationsare
estimatedin thefollowing way:

1. Choose a dictionary
� � ��� ~ %f�w �� `a $ 6 I axw d

j axw d �x^ � ��� � �EDFD \vU � � of foot-
printswith _¶�·©Fª¨« � \ . This dictionaryrepresents
a biorthogonalbasis.

2. Computethe dual basisof
�

and call ¸� ~ %f�w ^4�� �f|���D0D0��\8U � theelementsof thisdualbasis5.
5It is of interestto emphasizethat this dualbasisturnsout to be a



3. Computethe \LU �
inner products r h � ¸� ~ %f�w

t ^]�� �x|���D0DF�x\8U � .
4. Considerasdiscontinuitylocationstheonesrelated

to theinnerproductslargerthanthethreshold� w ��¹¸� ~ %f�w ��� . That is, if £Fr h �<¸� ~ %x�w
t £?º»� w , thenassume

that thereis a discontinuityat location ^ . � is the
universalthreshold( �=��®<¼ 	q|
©0µ�\½
 ) [8]

Now, we have a setof estimateddiscontinuitylocations:¯^ 6 � ¯^ � ��D0D0� ¯^C¾! . Theproblemis that,dueto thenoise,this
estimationcanhave errors. Thus,this problemmustbe
consideredin the next stepwherethe footprintscoeffi-
cientsareevaluated.

1. Given the set of estimateddiscontinuitylocations,
take _ 6 ��K¿©0ªl« � 	 ¯^¨§²U ¯^l§ e 6 
2UÀ©Fª¨« � 	�¥�U � 
ÁM , where¯^l§ e 6 � ¯^¨§ arethetwo closestestimateddiscontinu-
ity locations.

2. For eachpossiblelocation ^��¢� ¯^¨§ e 6 � ¯^l§V� com-

putetheinnerproduct r h � ¾Â�ÃÅÄqÆÇÈ ¾Â ÃÅÄqÆÇ È t , where ¯� ~ %f�w is the

sub-footprintobtainedby consideringonly thefirst_ 6 wavelet coefficients of � ~ %f�w . That is: ¯� ~ %f�w �� ` 1a $ 6 I axw d
j axw d � YZ�

3. Choosethelocation̂ 6 suchthat £�r h � ¾Â ÃÉÄ.ÆÇ 1È ¾Â ÃÉÄ.ÆÇ 1 È
t £ is max-

imum.

4. If £�r h � ¯� ~ %x�w 1� ¯� ~ %x�w 1 �
t £ÊºË��� (6)

thencomputetheresidue:

Ì 6Í � h U �� ¯� ~ %x�w 1 � r h � ¯� ~ %f�w 1� ¯� ~ %f�w 1 �
t � ~ %x�w 1 D

5. Iteratestep3-4 on theresidueuntil condition(6) is
notverifiedanymore.

6. Oncecondition(6) is not verifiedanymore,remove
thetwo discontinuitylocationŝ̄ a e 6 , ¯^ a . If thesetof
remainingdiscontinuitylocationsis not empty, find
anew decompositionlevel _ � andgoto step2. Oth-
erwise,if all discontinuitieshave beenconsidered,
stop.

Finally, theestimatedsignal ¯X is:ÎÏÑÐÓÒ�Ô�Õ�Ö:×ÑØ�Ö:×�Ù Ú�Û0Ü�ÝßÞ{àáâ<ã�ä åæ Îç{è ä�éê�ë æ Ò�ì âí Õ
Îç è ä�éê ëæ Îç{è ä�éê�ë æ Ø ç è ä�éê ë Ù Ú�Û'Õ

(7)
where î is thetotal numberof iterationsand

Ì %Í � h .
First, noticethat, sincethe footprints � ~ %f�w ë in Eq. (7)

areobtainedtakingawavelettransformwith _S��©Fª¨« � \
decompositionlevel, thenwe aresurethat theestimated
signal ¯X is piecewiseconstantas X . This is animportant

first orderderivative.

property, becausein this way we aresurethat the esti-
matedsignaldoesnot presentartifactarounddiscontinu-
ities (pseudo-Gibbseffect). This algorithmcanbeeasily
generalizedto the caseof piecewise polynomialsignals
and,thus,wedonotdetailthisgeneralizationhere.

Now, assumethat the original signal XH� YZ� is piece-
wise smooth. In this case,we usea two stepdenois-
ing algorithm. First, we estimatethe piecewise poly-
nomial behaviour of X usingthis footprintsbasedalgo-
rithm. Then we usethe standardthresholdingmethod
basedon the wavelet transformto denoisethe residualOÊ� YZ�&� h � YZ�{U�¯XH� YZ� .

Denoisingin thewaveletdomainsuffersfrom thelack
of shift invarianceof thewaveletbasis.Oneway to over-
comethis limitation is to usea denoisingmethodcalled
cycle-spinning[9]. For a rangeof shifts,cycle spinning
shiftsthenoisysignal,denoiseseachshiftedversionand,
finally, unshift andaveragethe denoisedsignals. Since
footprintssuffer from thesamelackof shift invarianceas
wavelets,onecanusetheideaof cyclespinningto reduce
thisshift dependency. Theonly differencebetweencycle
spinningwith waveletsandcyclespinningwith footprints
is that,in thissecondcase,eachshiftedversionof thesig-
nal is denoisedwith footprintsratherthanwavelets.

In Section4, we considerboth methods(denoising
with footprintsand cycle spinningwith footprints)and
comparethem with the equivalent wavelet basedalgo-
rithms.

2.3.2 Compression
Waveletsarewidely usedin compression.Thereason

is thatwaveletshaveverygoodapproximationproperties
for representingcertainclassesof signalslike piecewise
smoothsignals.While goodapproximationpropertiesare
necessaryfor goodcompression,it mightnot beenough.
In compression,onehasto considerthecostscorrespond-
ing to indexing andcompressingtheretainedelementsin
theapproximationandindependentcodingof thesecoef-
ficientsmightbeinefficient [10].

Considera piecewisesmoothsignaldefinedasin Eq.
(1), that is, a function with piecesthat are 9 -Lipschitz
regularandwith afinite numberof discontinuities.It was
shown in [11] thatstandardwaveletbasedschemessuch
aszerotrees[12] canachievethefollowing distortion-rate
performance:G²	 Ì 
¹ï m 6 Ì e*� Pð � m � ¼ Ì�ñ | e  .òxó ôNõ � (8)

where
Ì � Ì ð �öÌ ñ and

Ì ñ
arethebitsusedto quantize

thewaveletcoefficientsgeneratedby thediscontinuities,
while

Ì ð arethebitsusedto codethewaveletcoefficients
correspondingto the smoothpartsof the signal. Now,
supposethat the signal is piecewise polynomial. Then
thewaveletcoefficientsrelatedto thesmoothpartsof the
signal are exactly zero, and so there is no needto use
any bits to codethem. Thedistortionof a waveletbased
schemebecomesG½	 Ì 
¹ï m � ´ Ì | e  .ò ó ô D (9)

However, a directapproachto compressionof piecewise
polynomialsignals,basedon an oracletelling us where



discontinuities÷ are,will lead to G²	 Ì 
½ï m�ø | e  .ù�ô [13]
and such behaviour is achievable using dynamic pro-
gramming[13]. This large gap betweenideal perfor-
mancegivenby theschemebasedon dynamicprogram-
mingandwaveletperformanceis mainlydueto theinde-
pendentcodingof thewaveletcoefficientsacrossscales.
Statisticalmodeling[14] of suchdependenciescan im-
prove the constantsin (9), but going from ´ Ì to

Ì
in

theexponentrequirestakingthedeterministicbehaviour
of wavelet coefficientsacrossscalesat singularitiesinto
account.This is well doneusingfootprints,which thus
closethegapwith theidealperformance[7]
Theorem2 Considerpiecewisepolynomialsignalswith
polynomialsof maximumdegree G and no more than�

discontinuities.A coder, which representsthesesig-
nals in the footprintsbasisand which scalar quantizes
the discontinuitylocationsand the footprint coefficients
achieves G²	 Ì 
�ï m@ú | e  Áû�ô D (10)

Thus,this theoremshowsthat,in caseof piecewisepoly-
nomial signals,footprints significantly improve perfor-
manceof wavelet coders. Footprints can be usedfor
piecewise smoothsignalstoo. Theorem1 shows that a
piecewisesmoothsignalcanbe separatedinto two con-
tributionsa piecewise polynomialpart ;H� YZ� anda resid-
ual OÊ� YZ� whichis regular( 9 -Lipschitzover ü ). Now, ;7� YZ�
canbecompressedwith footprintsandthiscoderachieves
(10). TheresidualOÊ� YZ� canbecompressedwith any other
coderwhichachieves[11]G²	 Ì 
�ï m@ý Ì e*� P D (11)

It is worthnoticingthat,becauseof theregularityof O�� YZ� ,
the performancein (11) can be achieved with a simple
coderbasedon linearapproximationof O�� YZ� in a wavelet
or Fourierbasis[11]. Combining(10)and(11)showsthat
a two stagecompressionalgorithmbasedon footprints
andon linearapproximationof theresidualachievesG²	 Ì 
¹ï m ý Ì e*� Pð � m ú | e  ÁûÁôNõ D (12)

Comparing(8) and(12),wecanseenthatthiscoderdoes
notchangetheasymptoticsof thedistortion-ratefunction
of wavelet coders( þ m@ý Ì�e*� Pð ). But, by codingthe dis-
continuitiesefficiently, this coderreachestheasymptotic
behaviour morerapidly. Finally, noticethat, for this last
performance,the underlyingassumptionis that the en-
coderknows in advancethesignalto code,in this way it
canseparatethepolynomialandthesmoothpartsof the
signal. In the experimentalresults,we will show that a
realisticencodercanobtainsimilar performancewithout
knowing thesignalcharacteristicsin advance.

3 EXTENSI ONS TO 2-D SI GNAL S

In this section,we briefly outline,possibleextensions
of the previous resultsto the caseof 2-D signals. Re-
call thatour target is to keepthesimplicity of separable
transformswhile realizingsomeof thepotentialof non-
separabletransforms.Wedefinedigital directionsandas-
sociatedpartitionsof

���
andalsoshow, with anillustra-

tive example,how directionalelementsin an imageare
treatedby aseparabledirectionaltransforms.

A line in ü � is a simpleobject, but its equivalent in�V�
is a bit more complicated,as well known in raster

graphicsfor example.We definea digital line of angle ÿ
asa one-dimensionalsetof pixelsapproximatelyalonga
line of angle ÿ . In addition,thedigital line andits shifts
alongorthogonaldirectionhave to tile

� �
. While there

aremany solutionsto thisproblem,asimpleandtractable
one is to usethe analyticaldefinition of a discreteline
[15]. Theline is determinedby its slopeandshift by the
following equation:

h � YZ�&��Kp^ÊX7� YZ�FM � K��ßM (13)

wherê±�=���2Y?	'ÿ2
 representstheslopeandbelongsto the
range� ï]^öï �

, and � representsthereal-valuedshift
parameter. Thedefinitionof adiscreteapproximationof a
line insuresthateachpixel belongsexactly to oneline for
a chosenslope. Lines with slopesout of the rangemay
beobtainedby symmetry, rotatingandflipping vertically
thespace.This givesaccessto a wealthof directionsin�V�

.
Now, thestandardseparablewavelettransformsimply

consistsof two transformsalongthehorizontalandverti-
cal directions.Thisonly permitsthecharacterizationand
compressionof phenomenaalongthosetwo directions.

In our approach,oneis freeto chooseany of thedigi-
tal directionsgivenby Eq. (13) andto applythewavelet
transform(or any otheronedimensionaltransformsuch
as footprints) along that direction. Moreover, the pro-
cesscanbeiteratedandateachiterationonecanchoosea
new direction.Thus,building multi-resolutiondecompo-
sitionsalongmultipledirectionspermitscharacterization
andcompressionof phenomenaotherthanjust horizon-
tal andverticalones,asin thestandardseparablewavelet
transform.

a) b) c)

Figure 1: A simple object and its standardand directional
transform;(a) Original image,(b) standard,horizontal-vertical
transform,1 step,(c) 3-directiontransform,1 step.

Figure1 conceptuallyshows this. Figure1(b) shows
the onelevel wavelet decompositionof the imagegiven
in Figure1(a)with thestandardseparablewavelet trans-
form. In this casewe have four channelsandonly hori-
zontalandverticaldirectionsareefficiently isolated.Fig-
ure1(c)depictsa onelevel waveletdecompositionof the
sameimage but with wavelets transformstaken along
three different directions. This secondapproachdoes
isolatethe differentdirections,aswell ascombinations
thereof,andthis in anintuitiveway.

4 SI M UL ATI ON RESULTS

4.1 Denoisingwith footprints
In this case,we consideronly piecewise polynomial

signals. In Table 4.1, we comparethe performanceof



our denoisingsystemswith a classicalhardthresholding
algorithm[8] andcycle-spinning[9]. In this experiment,
we considerpiecewise linear signalswith no morethan
three discontinuities. The performanceis analysedin
function of the size \ of the signal. The tableclearly
shows that denoisingwith footprints outperformsthe
hard thresholdingsystem, while cycle-spinning with
footprints outperform traditional cycle-spinning. In
Figure2,weshow anexampleof thedenoisingalgorithm
on a piecewise linear signal. We can seethat signals
denoisedwith footprints presentbetter visual quality
sincethey donotsuffer from pseudo-Gibbseffects.

N 64 128 256 512
Footprints 16.2dB 18.5dB 19.8dB 22.1dB
Hardthresholding 12.9dB 15.2dB 16.6dB 19dB
Cyclespinning 16.3dB 18.6dB 20.3dB 22.9dB
Cycle-spinfootprints 17.1dB 19.6dB 21dB 23.6dB

Table4.1. Denoisingof piecewise linearsignalswith nomorethan

threediscontinuities.
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Figure 2: SNR results. a) Original Signal. b) Noisy Sig-
nal (13.8dB).c) HardTh. (16.4dB).d) SubsampledFootprints
(19.3dB).e) Cycle Spin. (18.9dB).f) Non-SubsampledFoot-
prints(20.9dB).

4.2 Compressionwith footprints
In Theorem2,wehaveshown thatin caseof piecewise

polynomialsignals,a footprint basedcodercanachieve
the ideal rate-distortionperformance.That is, it hasthe
correctrateof decayof theR-D function.Now, wearein-
terestedin a numericalconfirmationof this theorem.We
considerpiecewise constantsignalswith no more than
five discontinuities. The signal hassize \ �T| 6 % and
thediscontinuitylocationsareuniformly distributedover
the interval � ���x\�U � � . The footprint coderoperatesas
in Theorem2, that is, it scalarquantizesthe footprint
coefficientsandthe discontinuitylocations. Bits areal-
locatedwith a reversewaterfilling strategy. In Figure3,
we comparetherate-distortionperformanceof this foot-
print coderagainstthe idealboundandthe idealperfor-
manceof a wavelet basedcoder. We can seethat the
behaviour of the footprint coder is consistentwith the
theory, sinceit hasthe samerateof decayas the ideal
distortion function. Finally, we considera piecewise
smoothsignal. Thecompressionoperatesin the follow-
ing way. With a denoising-like algorithm,we estimate
thepiecewisepolynomialbehaviourunderlyingthesignal
andcompressit with footprints.Theresidualis assumed
regularandit is compressedin a waveletbasis.That is,
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Figure3: TheoreticalandexperimentalD/R curves. Dashed-
dotted: theoreticalwavelet performance,dashed: empirical
footprintperformance,line: idealperformance.
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Figure4: Compressionof apiecewisesmoothfunction.

the first ^ coefficientsof the wavelet decompositionare
quantized,while theothersaresetto zero(linearapprox-
imation).Theallocationof thebitsbetweenthepiecewise
polynomialsignalandthe residualandthe number ^ of
waveletcoefficientsthatarequantizedis chosenoff-line,
usingsomea-prioriknowledgeof thesignal.In Figure4,
we show anexampleof theperformanceof theproposed
compressionschemeandcompareit with a 1-D version
of SPIHT [16]. The signal to compressis given by the
unionof smoothpieces.In thisexample,our systemout-
performsSPIHTby morethan4dB.SinceSPIHTis more
suitedto compress2-D signals,this comparisonis only
indicative. However, it shows thata compressionsystem
basedon footprints can outperformtraditional wavelet
methodsalsoin thecaseof piecewisesmoothsignals.

4.3 Denoising of images with dir ectional
wavelets

In images,the standarddenoisingprocessis usually
done by thresholdingthe coefficients obtainedby the
wavelet transformalong horizontal and vertical direc-
tions. For this reasontraditional denoisingalgorithms
do not manageto catchmostof the two-dimensionalin-
terdependenciespresentin images. However, suchan
approachhasthe main advantageof simplicity. In our
methodweretainthissimplicity, but wemanageto better
exploit the two-dimensionalcharacteristicsof an image.
Ouralgorithmis in spirit similar to cycle-spinning.

We considerseveraldifferentdirections.For eachdi-
rection,we apply the correspondingdirectionalwavelet



transform and hard-thresholdthe wavelet coefficients.
Wetheninvertthewavelettransformto obtainadenoised
versionof theimage.Finally, weaverageall thisdifferent
denoisedversionsto obtainthefinal image.

Figure5 shows anexampleof denoisingof the image
’Cameraman’. The original imageis affectedby addi-
tive Gaussiannoiseandboth methodsareapplied. We
can seethat the new methodwhich uses,in this case,
twentydifferentdirectionslargely outperformsthestan-
dardmethod.

a) b)

c) d)

Figure5: The image’Cameraman’. (a) Original image,(b)
noisedversion( ����� ìWÐ å 	�

� ), (c) denoisedby thestandard
method( ����� ì = 20.54dB),(d) denoisedby thenew method
( ����� ì = 25.04dB).

5 CONCL USI ONS

In this paper, we have presentednew ways to repre-
sentsignalsand images. First, we have introducedthe
notion of footprintsandhave shown that footprintspro-
vide sparserepresentationsof piecewisesmoothsignals.
This is usefulin several signalprocessingtasksandnu-
merical simulationsconfirm that footprints outperform
wavelet methodsin several applications. We have then
proposedasimpleyeteffectivewayto represent2-D sig-
nals,that is, images.Our new methodcalculatessepara-
ble wavelet transformalongsetsof differentdirections.
Suchanapproachtakesinto accounttwo-dimensionalin-
terdependenciesamongdiscontinuitiesin imagesbetter
thanthestandardmethod.Applicationof thenew method
is possiblein variousareasof imageprocessingandgood
resultshavebeenshown in denoising.

REFERENCES

[1] D.L. Donoho, M. Vetterli, R.A. DeVore, and
I. Daubechies, “Data compressionand harmonic
analysis,” IEEE Trans.on InformationTheory, vol.
44(6),pp.2435–2476,October1998.

[2] E. J. Candèsand D. L. Donoho, “Curvelets– a
suprisinglyeffectivenonadaptiverepresentationfor
objectswith edges,” in CurveandSurfaceFitting,
A. Cohen,C. Rabut, and L. L. Schumaker, Eds.,
Saint-Malo,1999,VanderbiltUniversityPress.

[3] R.H. Bamberger andM.J.T. Smith, “A filter bank
for the directionaldecompositionof images:The-
ory and design,” IEEE Trans.SignalProcessing,
pp.882–893,April 1992.

[4] Minh Do, DirectionalMultiresolutionImage Rep-
resentations, PhD,dissertation,SwissFederalInsti-
tuteof Technology, November2001.

[5] R.A. Zuidwijk, “Directionalandtime-scalewavelet
analysis,” SIAMJournalonMathematicalAnalysis,
vol. 31(2),pp.416–430,2000.

[6] S. Mallat, A WaveletTour of Signal Processing,
AcademicPress,1998.

[7] P.L. Dragotti,Waveletfootprintsandframesfor sig-
nal processingandcommunication, PhD,disserta-
tion, SwissFederalInstituteof Technology, April,
2002.

[8] D.L. Donohoand I.M. Johnstone, “Ideal spatial
adaptationvia waveletshrinkage„”Biometrika, vol.
81,pp.425–455,December1994.

[9] R. R. CoifmanandD.L. Donoho, “Translationin-
variantdenoising,” Technical Report475,Dept.of
Statistics,Stanford University, May 1995.

[10] M. Vetterli, “Waveletsapproximationandcompres-
sion,” IEEE SignalProcessingMagazine, vol. 18,
pp.59–73,September2001.

[11] A. Cohen,I. Daubechies,O. Guleryuz,andOrchard
M.T., “On the importanceof combiningwavelet-
basednon-linearapproximationwith codingstrate-
gies,” IEEE Trans.on InformationTheory, to ap-
pear.

[12] J.M. Shapiro, “Embeddedimagecodingusingze-
rotreesof waveletscoefficients,” IEEE Trans.on
SignalProcessing, vol. 41,pp.3445–3462,Decem-
ber1993.

[13] P. PrandoniandM. Vetterli, “Approximationand
compressionof piecewisesmoothfunctions,” Phil.
Trans.RoyalSocietyLondon, August1999.

[14] M. Crouse, R.D. Nowak, and R.G. Baraniuk,
“Wavelet-basedsignal processingusing hidden
Markov models,” IEEE Trans.SignalProcessing,
vol. 2, pp.886–902,April 1998.

[15] J.E.Bresenham,“Algorithmsfor computercontrol
of a digital plotter,” IBM SystemsJournals, vol.
4(1),pp.25–30,1965.



[16]� A. SaidandW.A. Pearlman,“A new, fast,andef-
ficient imagecodecbasedon setpartitioningin hi-
erarchicaltrees,” IEEETrans.CircuitsandSystems
for Video Technology, vol. 6, no. 3, pp. 243–249,
June1996.


