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ARSTMCT 

We propose a quadtree segmcnlation based denoishig algo- 
rithm. which attempts to capture the underlying geometrical 
structure hidden in real images corrupted by random noise. 
The algorithm is hased on the quadtree coding scheme pro- 
posed hi our earlier work [12, 131 aid on the key insight that 
the lossy compression of a noisy sigiial can provide the ti- 
tered/denoised signal. The key idea is to treat the denoising 
problem as the compression problem at IOW rates. The in- 
tuilioii is that, at low rates. the coding scheme captures the 
smooth features only. which basically belong to the origi- 
nal signal. We present simulation results for the proposed 
schcrne aid coinpare these results with the perfonnance of 
wavelet based schemes. Our simulations show that the pro- 
posed denoising scheme is cumpetitive with wavelet based 
schemes and achieves improved visual quality due to better 
representation for edges. 

1. INTRODUCTION 

Denoising is a classical problem in the estimation theory, 
which has received an extensive treatment in the litera- 
ture [ I ,  3,  4, 5 ,  6, 7, 9, 14, 151. In the denoisuig problem, 
the goal is to estimate the original signal z from an observed 
noisy signal y. More formally, consider that the signal z has 
been corrupted by the additive white noise z .  Thus, the oh- 
served signal is 

y = z + z .  

Our goal is to obtain an estimate, 2, of z from y such that the 
mean squared error El12 Zllz is minimized. Theoretically, 
the hest estimate is 

(1) 

which is quite difficult to solve in general. This is he- 
cause Quation (1) is nonlinear, and the conditional proh- 
ability density p,iv required for solving (1) is difficult to 

- 
z = E [zlul , 
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calculate. Therefire. one generally scrllcs for the best 1111- 
ear estimate. which is obtained by the Wiener filtering ap- 
proach 171. However. Wiener filtering method requires the 
information about the spectra of the noise aid the origi- 
nal signal and it works well nnly if the underlying signal 
is smooth. When the given signal is piecewise smooth. then 
Ihc hlock hascd Wicncr filtering c a l  he used. .But this ap- 
proach generally fails to perronn well as lixcd scgmcntation 
simply cannot capture the real singularities of the underly- 
ing picccwisc smooth signal. To overcome the weakness of 
the Wiener filtering. Donoho and Johnstone proposed the 
wavelet based denoising schcinc in 141. This wavclcl based 
deiioishig scheme basically projects the noisy signal on the 
subspace. where the original signal is supposed to live. This 
scheme works as follows: 
1. Apply the wavelet traiisfonn on the noisy signal. 
2. Estimate noise strength Q from the high frequency suh- 
hands. 
3. Compute the appropriate threshold t o ,  e.g., t o  = 3u. 
4. Threshold the wavelet coefficients via hard or soft thresh- 
olding scheme. 
5. Reconstruct the signal from the thresholded wavelet co- 
efficients. This reconstructed signal is our denoised signal. 

TIis scheme generally works well hut fails to perform 
the segmentation according to the real singularities of the 
given piecewise smooth signal. But it has been shown 
in [2, 101 that the wavelet based coders perform suhop 
timally due to their failure to precisely model singulari- 
ties. This suggests that the above wavelet based denoising 
scheme might have some limitations for the denoising appli- 
cation. That means, a good denoising scheme should he ca- 
pable of performing the segmentation according to the real 
singularities of the underlying signal. Since the quadtree al- 
gorithm proposed in [I  2, 131 accurately models both singu- 
larities and smooth pieces, we expect it to play an important 
role in denoishig applications. Now, the key question is how 
to design a tree based denoising algorithm. 

In [8], Natarajan has provided a crucial insight that the 
lossy compression of a noisy signal may lead to the filtered 
signal. The reason is as follows: At low rates, the coding 
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scheme captures the smooth features only. which basically 
belong to the original signal. However, at high rates. coding 
scheme also tracks high frequency noise-like features. That 
means, a scheme codes the noisy signal from IOW rates to 
high rates, the scheme first tracks the signal up to a certain 
rate &. But above this rate &, the scheme starts track- 
ing more noise thai the signal. Moreover, the best dcnois- 
ing perfnrmance is obtained fnr the R-D operating point. 
which has the distortion eqnal to the noise strength. Fig- 
ure 1 presents a lypical R-1) curve for a noisy signal. This 
graph clearly shows that the distortion reduces rapidly upto 
certain rate &. But beyond this rate. even a small reduction 
in distortion requires a large increase in rate as the coding 
scheme starts to track noise. This traisitinn point I111 is in- 
deed the desired npcratitig point fnr the coding scheme for 
denoising the given signal. This point is called the loiee 
point ol the R-D curve. i.e.. the point at which its second 
derivative attains a ~naxiinuni. 

4, R 

Fig. 1. R-D curve and its second derivative for a noisy sig- 
nal. (no, DO) represents the knee point of the R-D curve. 

Natarajai's insight suggests us to select a coding 
scheme. which can represent the underlying original signal 
more efficiently. Therefore. the knowledge about the class 
of the original signal can be used to achieve better denois- 
ing performance. Suppose that the problem of our interest is 
as follows: Consider a piecewise polynomial image shown 
in Figure 2, which has been corrupted by the white Gaus- 
sian noise. What is a good way to recover the underlying 
piecewise polynomial image frotn the noisy image? 

(a) Original Image. (b) Noisy image. 

Fig. 2. Original aid noisy piecewise quadratic image. For 
noisy piecewise quadratic image, SNR= 20.32 dB. 

Since a piecewise polynomial image can he precisely 

described by the segment boundaries and the polynomial 
inodels associated with segments, the key task is to cor- 
rectly compute the seginent boundaries and associated poly- 
nomial models. Since the quadtree algorithm proposed 
in [ I  2. 131 can efficiently model both the smooth houndaries 
and smooth polynomials. we employ these schemes in our 
denoising algorithm. The rest nf the paper is organized as 
follows: In  Section 2. we first briefly describe the quadtree 
coding schemes proposed in [12, 131 aid then outline the 
quadtree based dennising scheme. We then prcscnt some 
siinulation results in Section 3 .  Finally, we conclude with a 
discussion uf further research directions in Section 4. 

2. QUADTREE BASED IIENOISINC ALGORITIIM 

Our goal is tu  develop a geoinetrical denoising algorithm 
based on the quadtree coding schemes prciposed iti [12. 131. 
Before presenting nor denoising algorithm. we briclly ex- 
plaiii the prune n d  prune-join quadtree cnding schemes. 
The prunc quadtree coding algorithm can be siirninari+ed 
as follows: 
Step 1: Initialization 
1. Segmentation of the input image usiiig the quadtree dc- 
composition up to a tree depth J .  
2. Apprnxiination of each nnde by a gcometrical model, 
which is composed of twn 2-D polynoinials separated by a 
linear edge. in the least square crrnr sense. 
3 .  Generation of the R-D curve for each node by apprnx- 
irnatuig the node by thc quantized version of gcornetrical 
model, which is obtained by scalar quantizing the associ- 
ated 2-D polynomial coefficients. 
Step 2 The Lagrangian cost (L(X) = D + XR) based 
pruning 
4. For the given operating slope A, R-D optimal pruning cri- 
terion is as follows: Prune the children if the sum of the La- 
grangian costs of the children is greater than or equal to the 
Lagrangian cost of the parent. This parent-children pruning 
criterion is used recursively to do fast pruning from the full 
tree depth towards the ruot to find the optimal subtree for a 
given X [ I  I]. This scheme provides a pruned tree. 
5. Each leaf of the pruned tree for a giveii X has an optimal 
rate choice and the corresponding distortion. Summing up 
the rates of all the tree leaves along with the tree segmnenta- 
tion cost will provide the overall hit-rate R*(X). Similarly, 
summing up the associated distortions of all the tree leaves 
will give the net distortion D*(X). 
Step 3: Search for the desired R-D operating slope 
6. The value for X is determined iteratively until the hit-rate 
constraint & is met as closely as possible. We employ the 
fast bisection search algorithm given in Ill]. 

However, this independent pruning scheme fails to join 
neighboring blocks with similar information, if they have 
different parents. Thus, this coding scheme fails to exploit 
the complete dependency among neighbors. This drawback 
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can be easily seen in Figure 3(a). For correcting the subop- 
timal behavior. we have proposed the prune-joiu quadtree 
algorithm, which perfonns thejouit coding of similar neigh- 
boring leaves even if they have different parents. The prune- 
join coding scheme employs the prune quadtree scheme fol- 
lowed by the neighbor joint coding algorithm, which de- 
cides whether neighbors should be coded jointly or inde- 
pendently (see [ 131 for more details). It is evident from Fig- 
ure 3(b) that. due to the neighbor joiuing. the prune-join 
scheme successfully joins similar neighbors as well as pro- 
vides the correct segmentation. 

(3) Plll"C quadtrce. (h) I'mnr-join qondtrw 

Fig. 3. Segmeiitation pcrlormed by the quadtree algorithms 
for a piecewise quadratic image. 

Now, the quadtree based dcnoisiiig scheme can be suu-  
inarized as follows 
Algorithm 1 TIE quadtree based denoising algorirkni 
1. Compute the R-D curve using either the prune or prune- 
join quadtree coding scheme for the given noisy image. 
2. Estimate the knee point of the R-D curve by calculat- 
ing the point where second derivative of the R-D function 
achieves maximum. Note that we approximate the second 
derivative by the second order difference. 
3. Compute the coded image representation for this R-D 
point. 
4. This coded image is our filtered/denoised image. 

Since the quadtree algorithms use the linear-edge model 
explicitly in the approximation tile, they are well suited to 
capture the geometry hidden in noisy images. In the next 
section, we perform &noising related experiments using the 
above described algorithmic framework. 

3. SIMULATION RESULTS 

For demising experimentation, we consider piecewise poly- 
nomial and real images. Figure 2 shows a piecewise 
quadratic image along with its noisy version. In Figure 4, 
we present the denoised images obtained by the prune and 
prune-join quadtree algorithms. On the other hand, Figure 5 
displays the denoised images provided by the standard un- 
decimated wavelet transform based denoising method and 

the adaptive directional wavelet transform based denoising 
scheme [14]. These results clearly show that the quadtree 
based deiioisiiig schemes captures the underlying regular 
structure better than the wavelet based schemes. 

In Figure 6,  we show the caineraman image aid its 
noisy version with SNR=17.72 dB. Figure 7 presents the 
denoised images obtaiiied by the prune and prune-join 
quadtree schemes. Figure 8 shows the denoised images 
provided by the standard un-decimated wavelet transform 
and the adaptive directional wavelet transform based de- 
noising schemes. One can easily see that the tree algorithms 
preserve the sharpness of edges while the wavelet based 
schemes sufIer froin the ringing artifacts around the edges. 
These simulation results clearly demonstirarc that the pro- 
posed tree based schemes pcrlonn better than the wavelet 
based schemes if the original image exactly fits the piece- 
wise polynomial model. Even for real images, the pertor- 
inaiice of the tree based dcnoisuig schemes is competitive 
with. that ol thc state of the art wavelet based denoisiiig 
schemes 

l__" 
L..." ...... .. I 

(a) Prune quadtree based de- 
noising ( S N k  36.91 dB). 

(b) hoe-join quadtree based 
demising (SNR= 37.96 dB). 

Fig. 4. Denoised images obtained by the prune and prune- 
join quadtree schemes. 

(a) Standard un-decimated (b) Adaptive duec- 
wavelet transform tional wavelet lransfam , 
(SNR= 34.66 dB). (SNR= 36.09 dB). 

Fig. 5. Denoised images provided by the staudard 
un-decimated wavelet transform and adaptive directional 
wavelet transform based schemes. 
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(a) Original cammnian. (b) Noisy cancmiiaii. 

Fig. 6. Original and noisy cameraman image. For noisy 
cameraman image. SNR= 17.72 dB. 

I - - - - - - 1  1 7  

(a) Pnmr quadtree based de- 
noisiiiq (SNR= 2d.i4 dR). 

(h) Pnmr-join qurdtrrr based 
demising lSNR= 2 4 . i 3  dR). 

Fig. 7 .  Denoised images obtained by the prune and prune- 
join quadtrce schemes. 

4. CONCLIJSIONS 
We have presented a quadtree based demising scheme, 
which can efficiently extract geometrical structures from 
noisy images. Simulation results shown in Section 3 clearly 
demonstrate that our scheme is competitive with state of the 
aR wavelet based schemes. Moreover, it is also evident from 
Figures 4 and I that the proposed scheme captures geomet- 
rical features, like edges, of images more precisely com- 
pared to wavelet based schemes. Our on-going research ef- 
fort is to extend the present algorithm such that it can also 
distinguish the texture present in images from random noise 
for further improving the visual quality of denoised images. 
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