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ABSTRACT

We propose a quadiree segmentation based denoising algo-
rithm, which attempts to capture the underlying geometrical
structure hidden in reat images corrupted by random noise.
The algorithm is based on the quadtree coding scheme pro-
posed in our earlicr work [12, 13] and on the key insight that
the lossy compression of a noisy signal can provide the fil-
tered/denoised signal, The key idea is to treat the denoising
" problem as the compression problem at low rates. The in-
tuition is that, at low rates, the coding scheme captures the
smooth features only, which basically belong to the origi-
nal signal. We present simulation results for the proposed
scheme and compare these resuits with the performance of
wavelet based schemes. Our simulations show that the pro-
posed deneising scheme is competitive with wavelet based
schemes and achieves improved visual quality due to better
representation for edges.

1. INTRODUCTION

Denoising is a classical problem in the estimation theory,
which has received an exlensive treatment in the litera-
ture [1, 3, 4,5, 6,7, 9, 14, 15]. In the denoising problem,
the goal is to estimate the original signal « from an observed
noisy signal y. More formally, consider that the signal « has
been corrupted by the additive white noise z. Thus, the ob-
served signal is -

y=x+ z
Our goal is to obtain an estimate, Z, of = from y such that the

mean squared error E||z 7| is minimized. Theoretically,
the best estimate is

z= Elely, M

which is quite difficult to solve in general. This is be-
cause Equation (1) is nonlinear, and the conditional prob-
ability density p.y, required for solving (1) is difficult to
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calculate. Therefore, one gencrally scttles for the best lin-
ear estimate, which is obtained by the Wiener filtering ap-
proach [ 7]. However, Wiener filtering method requires the
information about the spectra of the noise and the origi-
nal signal and it works weill only if the underlying signal
is smooth. When the given signal is piccewise smooth, then
the block based Wiencer filtering can be used. "But this ap-
proach gencrally fails (o perform well as fixed scgmentation
simply cannot capture the real singulasities of the underly-
ing piccewisc sinooth signal. To overcome the weakness of
the Wiener filtering, Donoho and Johnstone proposed the
wavelet based denoising scheme in [4]. This wavelet based
denoising scheme basically projects the noisy signal on the
subspace, where the original signal is supposed to live. This
scheme works as follows:
1. Apply the wavelet transform on the noisy signal,
2. Estimate noise strength o from the high frequency sub
bands. :
3. Compute the appropriate threshold g, €.., tq = 30.
4. Threshold the wavelet coefficients via hard or soft thresh-
olding scheme.
5. Reconstruct the signal from the thresholded wavelet co-
efficients. This reconstructed signai is our denoised signal.

This scheme generally works well but fails 10 perform
the segmentation according to the real singularities of the
given piecewise smooth signal. But it has been shown
in ‘[2, 10} that the wavelet based coders perform subop-
timally due to their failure to precisely model singulari-
ties. This suggests that the above wavelet based denoising
scheme might have some limitations for the denoising appli-
cation. That means, a good denoising scheme should be ca-
pable of performing the segmentation according to the real
singularities of the underlying signal. Since the quadtree al-
gorithm proposed in [12, 13] accurately models both singu-
larities and smooth pieces, we expect it to play an important
role in denoising applications. Now, the key question is how
to design a tree based denoising algorithm.

In {8], Natarajan has provided a crucial insight that the
lossy compression of a noisy signal may lead to the filtered
signal. The reason is as follows: At low rates, the coding
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scheme captures the smooth features only, which basically
belong to the original signal. However, at high rates, coding
scheme also tracks high frequency noise-like features. That
means, as scheme codes the noisy signal from low rates to
high rates, the scheme first tracks the signal up to a certain
rate Fy. But above this rate Ry, the scheme starts track-
ing more noise than the signal. Moreover, the best denois-
ing performance is obtained for the R-D operating point,
which has the distortion equal o the noise strength. Fig-
ure 1 presents a typical R-I3 curve for a noisy signal. This
graph clearly shows that the distortion reduces rapidly upto
certain rate Ry. But beyond this rate, even a small reduction
in distortion requires a large increase in rate as the coding
scheme starts to track noise. This transition point fy is in-
deed the desired operating point for the coding scheme for
denoising the given signal. This point is called the knee
point of the R-D curve, ie¢.. the point at which its second
derivative attains a maximum.

Fig. 1. R-D curve and its second derivative for a noisy sig-
nal. {Rg, Do) represents the knee point of the R-D curve.

Natarajan’s insight suggests us to select a coding
scheme, which can represent the underlying original signal
more efficiently, Therefore, the knowledge about the class
of the original signal can be used to achieve better denois-
ing performance. Suppose that the problem of our interest is
as follows: Consider a piccewise polynomial image shown
in Figure 2, which has been corrupted by the white Gaus-
sian noise. What is a good way to recover the underlying
piecewise polynomial iinage from the noisy image?

{a) Original image.

{b) Noisy image.

Fig. 2. Original and noisy piccewise quadratic image. For
noisy piecewise quadratic image, SNR= 20.32 dB.

Since a piecewise polynomial image can be precisely

described by the segment boundaries and the polynomial
models associated with segments, the key task is to cor-
rectly compute the segment boundaries and associated poly-
nomial models. Since the quadtree algorithms proposed
in [12, 13] can efficiently model both the smooth boundaries
and smooth polynomials, we employ these schemes in our
denoising algorithm. The rest of the paper is organized as
follows: In Section 2, we first briefly describe the quadtree
coding schemes proposed in [12, 13] and then outline the
quadiree based denoising scheme. We then present some
simulation results in Section 3. Finally, we conclude with a
discussion of further rescarch directions in Scction 4.

2. QUADTREE BASED DENOISING ALGORITHM

Our goal is to develop a geometrical denoising algorithm
bascd on the quadtree coding schemes proposed in [12. 13].
Before presenting our denoising algorithm, we bricfly ex-
plain the prune and prune-join quadtree coding schemes.
The prune quadtree coding algorithm can be summarized
as follows:

Step 1: Initialization

1. Segmentation of the input image using the quadiree de-
composition up to a tree depth .J.

2. Approximation of each node by a gcometrical model,
which is composed of two 2-D polynomials separated by a
lincar edge, in the least squarc crror sense.

3. Generation of the R-J curve for each node by approx-
imating the node by the quantized version of geometrical
model, which is obtained by scalar quantizing the associ-
ated 2-D polynomial coefficients.

Step 2: The Lagrangian cost (L()\) = D -+ AR) based
pruning

4. For the given operating slope A, R-D optimal pruning cri-
terion is as follows: Prune the children if the sum of the La-
grangian costs of the children is greater than or equal to the
Lagrangian cost of the parent. This parent-children pruning
criterion is used recursively to do fast pruning from the full
tree depth towards the Toot to find the optimal subtree for a
given A [11]. This scheme provides a pruned tree.

5. Each leaf of the pruned tree for a given A has an optimal
rate choice and the corresponding distortion. Summing up
the rates of all the tree leaves along with the tree segmenta-
tion cost will provide the overall bit-rate B*{A). Similarly,
summing up the associated distortions of alf the tree leaves
will give the net distortion D)*{A).

Step 3: Search for the desired R-D operating slope

6. The value for A is determined iteratively until the bit-rate
constraint Ky is met as closely as possible. We employ the
fast bisection search algorithm given in [11].

However, this independent pruning scheme fails to join
neighboring blocks with similar information, if they have
different parents, Thus, this coding scheme fails to exploit
the complete dependency among neighbors. This drawback
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can be casily seen in Figure 3(a). For correcting the subop-
timal behavior, we have proposed the prune-join quadirce
algorithm, which performs the joint coding of similar neigh-
boring leaves cven if they have different parents. The prune-
join coding scheme employs the prune quadtree scheme fol-
lowed by the neighbor joint coding algorithm, which de-
cides whether neighbors should be coded jointly or inde-
pendently (see [13] for more details). It is evident from Fig-
ure 3(b) that, due to the neighbor joining, the prune-join
scheme successfully joins similar neighbors as well as pro-
vides the correct segmentation.

(a) Prune quadtree,

{b) Prune-join quadiree.

Fig. 3. Segmentation performed by the quadtres algorithms
for a piecewise quadratic image.

Now, the quadtree based denoising scheme can be sum-
marized as follows

Algorithm 1 The quadiree based denoising algorithm

1. Compute the R-D curve using either the prune or prune-
join quadtree coding scheme for the given noisy image.

2. Estimate the knee point of the R-D curve by calculat-
ing the point where second derivative of the R-D function
achieves maximum. Note that we approximaie the second
derivative by the second order difference.

3. Compute the coded image representation for this R-D
point,

4. This coded image is our filtered/denoised image.

Since the quadtree algorithms use the linear-edge model
explicitly in the approximation tile, they are well suited to
capture the geometry hidden in noisy images. In the next
section, we perform denoising related experiments using the
above described algorithmic framework.

3. SIMULATION RESULTS

For denoising experimentation, we consider piecewise poly-
nomial and real images. Figure 2 shows a piecewise
quadratic image along with its noisy version. In Figure 4,
we present the denoised images obtained by the prune and
prune-join quadtree algorithms. On the other hand, Figure 5
displays the denoised images provided by the standard un-
decimated wavelet transform based denoising method and

the adaptive directional wavelet transform based denoising
scheme [14]. These results clearly show that the quadiree
based denoising schemes captures the underlying regular
structure better than the wavelet based schemes.

In Figure 6, we show thc cameraman image and its
noisy version with SNR=17.72 dB. Figure 7 presents the
denoised images obtained by the prune and prune-join
quadtrec schemes. Figure 8 shows the denoiscd images
provided by the standard un-decimated wavelet transform
and the adaptive directional wavelet transform based de-
noising schemes, One can easily see that the tree algorithms
preserve the sharpness of edges while the wavelet based
schemes suffer from the ringing artifacts around the edges.
These simulation results clearly demonstrate that the pro-
posed tree based schemes perfonm better than the wavelet
based schemes if the original image exactly fits the piece-
wise polynomial model. Even for real images, the perfor-
mance of the tree based denoising schemes is competitive
with_ that of the state of the art wavelet based denoising
schemes.

{a) Prune quadiree based de- {9 Prune-join guadiree hased
noising (SNR= 36.91 dB). denoising (SNR= 37.96 dB).
Fig. 4. Denoised images obtained by the prune and prune-

join quadtree schemes.

(a) Standard un-decimated (b} Adaptive direc-
wavelet transform tional  wavelet  iransform
(SNR= 34.6 dB). (SNR= 36.00 dB).

Fig. 5. Denoised images provided by the standard
un-decimated wavelet transform and adaptive directional
wavelet transform based schemes.

1215



{a) Original cameraman. (b} Noisy cameraman,

Fig. 6. Original and noisy cameraman image. For noisy
cameraman image, SNR= 17.72 dB.

(2} Prune quadtree based de-
noising (SNR= 24.74 dB).

{h) Prune-join quadtree based
denoising (SNR= 24.73 dB).

Fig. 7. Denoised images obtained by the prune and prune-
join quadtree schemes.

4, CONCLUSIONS

We have presented a quadiree based denoising scheme,
which can efficiently extract geometrical structures from
noisy images. Simulation results shown in Section 3 clearly
demonstrate that our scheme is competitive with state of the
art wavelet based schemes. Moreover, it is also evident from
Figures 4 and 7 that the proposed scheme captures geomet-
rical features, ltke edges, of images more precisely com-
parcd to wavelet based schemes. Our on-going research ef-
fort is to extend the present algorithm such that it can also
distinguish the texture present in images from random noise
for further improving the visual quality of denvised images.
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