
Signal Processing 5 (1983) 473-484 473
North-Holland

TREE STRUCTURES FOR O R T H O G O N A L TRANSFORMS A N D
APPLICATION TO THE H A D A M A R D TRANSFORM

Martin V E T T E R L I
Laboratoire d' lnformatique Technique, Ecole Polytechnique F~d&ale de Lausanne, 16 Chemin de Bellerive, CH- 1007 Lausanne,
Switzerland

Received 28 May 1983
Revised 27 June 1983

Abstract. Tree structures for computing orthogonal transforms are introduced. Two cases, delay trees and decimation trees,
are investigated. A simple condition, namely the orthogonality of branches with a common root, is shown to be necessary
and sufficient for the overall transform to be orthogonal. Main advantages are structural simplicity and a number of operations
proportional to N Log 2 N.

Application of the tree structures to the Walsh-Hadamard Transform (in natural, sequency and dyadic order) is presented.
A single module can be multiplexed or used in parallel in order to perform all operations. Such a system is shown to be well
suited for hardware implementation.

Zusammenfassung. Baumstrukturen zur Berechnung orthogonaler Transformationen werden eingefiihrt. Zwei F~ille, Ver-
z6gerungsb~iume und Dezimierungsb~iume, werden untersucht. Eine einfache Bedingung, nfimlich die Orthogonalit~it von
Aesten mit gemeinsamer Wurzel, wird als notwendig und geniigend gefunden damit die resultierende Transformation
orthogonal ist. Gr6sste Vorteile sind strukturelle Einfachheit und eine Anzahl Operationen die zu N Log2 N proportional ist.

Anwendung der Baumstrukturen zur Berechnung der Walsh-Hadamard Transformation (in natiirlicher, sequentieller und
dyadischer Ordnung) wird vorgestellt. AUe Operationen k6nnen mit einem enzigen Modul, dass multiplexiert oder parallel
geschaltet wird, ausgef(ihrt werden. Es wird gezeigt dass ein solches System fiir eine 'hardware' Implementierung gut geeignet
ist.

R~sum& Des structures en arbres pour l'Evaluation de transformations orthogonales sont introduites. Deux cas, des arbres
fi dElais et des arbres fi decimation, sont analyses. Une condition simple, l'orthogonalitE de branches h racine commune, est
dEmontrEe comme nEcessaire et suffisante afin d'obtenir une transformEe totale orthogonale. Les avantages principaux sont
la simplicitE structurelle et un nombre d'opErations proportionnel fi N Log2 N.

L'application des structures en arbres au calcul de la transform6e de Walsh-Hadamard (en ordre naturel, sequentiel et
dyadique) est prEsentEe. Un module unique peut 8tre multiplexE ou utilis6 en parall61e afin d'exdcuter l'ensemble des calculs.
I1 est montrE qu'un tel syst~me s'adapte bien ~ une implantation 'hardware'.

Keywords. orthogonal transforms, tree structures, fast Walsh-Hadamard transform, hardware implementation of Walsh-
Hadamard transform.

1. Introduction

G e n e r a l i z e d o r t h o g o n a l t r a n s f o r m s h a v e b e e n

p r o p o s e d [1] w h e r e p a r t i c u l a r cases a r e t h e F o u r i e r

and t h e W a l s h - H a d a m a r d t r a n s f o r m . In t h e fo l -

l owing , a n e w class of o r t h o g o n a l t r a n s f o r m s is

de f ined . T h e t o p o l o g i c a l c h a r a c t e r i s t i c is t ha t t h e i r

f l o w - g r a p h s a r e t r e e s t r u c t u r e d .

D e f i n i t i o n and analys is of t h e t r e e s t r u c t u r e s is

d o n e in S e c t i o n 2. T w o p a r t i c u l a r cases wh ich a r e

i n t e r e s t i n g fo r app l i ca t i ons , t h e b i n a r y d e l a y t r e e

and t h e b i n a r y d e c i m a t i o n t r ee , a r e i nves t i ga t ed .

A s i m p l e c o n d i t i o n , n a m e l y t h e o r t h o g o n a l i t y of

b r a n c h e s wi th a c o m m o n r o o t , is s h o w n to be

n e c e s s a r y a n d suff ic ient fo r t h e o v e r a l l t r a n s f o r m

to be o r t h o g o n a l . I n t e r e s t i n g f e a t u r e s of t h e s e

0165-1684/83/$3.00 © 1983, Elsevier Science Publishers B.V. (North-Holland)

474

transforms are their inherent simplicity and the
fact that they can be computed with an order
N Log2 N operations (an usual lower bound for
fast transforms).

Both the Discrete Fourier Transform (DFT) and
the Walsh-Hadarmard Transform (WHT) can be
computed using the tree approach. Since the DFT
case has been analysed elsewhere [2], we focus in
Section 3 on the implementation of the WHT with
decimation and delay trees. The computation of
the WHT in various orderings (natural, sequency
and dyadic) leads to simple modular structures. In
particular, the WHT in dyadic order results in a
regular structure with identical modules. In all
cases, the number of adds and subtracts is equal
to N Log2 N as for other fast WHT's.

Finally, Section 4 discusses some hardware
aspects of the tree model. Emphasis is placed on
modularity. It is seen that arbitrary speed can be
attained with parallelism, or minimum hardware
with multiplexing; all that us inga single module
with only some interconnection or buffering details
being modified.

2. Tree structures for orthogonal transforms

The analysis is restricted to binary trees because
on the one hand, they are most useful for applica-

M. Vetterli / Tree Structures for Onhogonal Transforms

tions and on the other hand, generalization to other
radices is immediate.

Binary delay trees

Consider a filter tree as shown in Fig. 1 which
can either perform a running transform or whose
output is only computed every 2N samples in the
case of a block transform. Xo, x1 X2N_ 1 are the
input samples and Y0, Yl Y2N-1 the corres-
ponding transform values. Ba and B2 are two N-
dimensional orthogonal transforms where N is
usually a power of 2. B is a matrix with B1 and
B2 blocks on the diagonal and IN off diagonal.

In the following it will be shown by recursion
that a filter tree as in Fig. 1 performs an orthonor-
mal transform.

First we prove that if the matrix A defined by
(1) is orthogonal, then the transform of dimension
2N is orthog0nal.

A = [a l l a12]. (1)
La2] a221

The term orthogonal matrix refers usually to
orthonormal lines resulting therefore in orthonor-
mal columns as well [3]. A weaker condition is
sufficient in the case analysed here: the lines of the
matrix have to be orthogonal. This is expressed by
(2) where Aa and A b a r e arbitrary diagonal
matrices.

x 0 X2N_ l

I allZ-N+al2
i

B l

-Yo

~ " ~ Y N - 2
l - Y N - I

- YN

i'a21z_N [:YN+I
a22 B 2 :

c Y2N-2

= Y2N-I

Fig. 1. Delay tree. B1 and B 2 a r e N-dimensional orthogonal transforms.
Signal Processing

M. Vetterli I Tree Structures for Orthogonal Transforms

A A T =Aa

B B T = Ab . (2)

The first set of outputs is given by (3) where 1N
and 0n are identity and zero matrices of dimension
N × N .

yo f y.m , i O N

yNy =

y2 l L°Ni
~ I I I N a l 2 I N

a21IN a22I~

Xo

X1

* X N - - 1

XN
! •

- X2N 1 (3)

Using the Kronecker product, (3) can be rewritten
as in (4)•

y = g . (IN × A) " x = C . x . (4)

One can show that the overall transform is still
orthogonal or equivalently, that C times its trans-
pose is diagonal. Using properties of the Kronecker
product [4] and of block matrix operations, one
gets (5).

C . C = B . (I X A) (I × A) T . B w

= B • (I x A A T) • B T

ON

L ON A2IN.] I O N

= [h i " AB, ON] = A c . (5)
ON A2" AB2

The initial step of the recursive proof is trivial.
A two dimensional transform will be orthogonal
if the two branches are orthogonal. Obviously, the
orthogonality of the branches is also a necessary
condition•

475

Therefore, a binary delay tree performs an
orthogonal transform if and only if each sublock
is orthogonal.

D e c i m a t i o n t rees

A decimation tree is a structure where each root
is followed by N branches which are subsampled
by N. One immediate question is: can the original
signal be reconstructed from the N subsampled
outputs? This general question is answered before
turning to the particular case of binary orthogonal
trees.

Assume a system as depicted in Fig. 2 where
H i (z) and F i (z) are length-N FIR filters as in (6)•

H i (z) = hi, N - l z - (N - l) + " • " + hi, i z -1 + hi,o•

(6)

If we introduce the ma t r ix /4 whose lines are the
coefficients of the filters, we get the output of the
decimator in (7).

h,0 l Vy,,] rh,,N_l h,N-2 x0 l;jl i! / Xl
N ,N--1 hN--1,N 2 " " " hN-l,oA -

(7)
The output £ is computed in (8) with a matrix
whose columns are the impulse responses of the
FIR interpolation filters.

jJ/
, L fO ,N- , f i , N 1 ' ' " fN--I ,N , --,

(8)

It is clear that reconstruction is always possible if
the matrix H is nonsingular which is equivalent to
say that the N impulse responses of the input filters
have to span the N dimensional signal space. The
interpolation filters follow simply from (9) and

= x as shown in (10)

F = H -1, (9)

~ = F . y = F . H . x = x . (10)
VoL 5, No. 6, November 1983

476

Xo.- .XN_ 1

M. Vetterli / Tree Structures for Orthogonal Transforms

I o,z,

I HN_I(Z) ~ YN~I j r ~

Fo(Z)

F 1 (z)

• XN_ 1 0"" --

FN_ (z) I

Fig. 2. General decimation/interpolation tree. Hi and F~ are FIR filters of length N.

We turn now to the particular case of

binary o r thogona l trees. Consider the system

of Fig. 3 where the outputs Yo, Y l " " Y 2 N - t

are compu ted every 2 N samples. The proof

that the 2 N dimensional t ransform is

o r thogona l follows the one done for

delay trees. The overall t ransform is given

by (11).

Signal Processing

Xo-. X2N-I I

i z-] all + a12 B I

YO -_

YN_I

~21 z-I +a22 B 2

YN :

Y2N-I

Fig. 3. Decimation tree. B 1 and B 2 a r e N-dimensional orthogonal transforms.

M. Vetterli / Tree Structures for Orthogonal Transforms

[B, ! 0N]
c = LO; i 'B;J

The o r t hogona l i t y is ver i f ied in (12).

C " c T = [n l ON]

ON B2

- a l l a12 0 0

0 0 a H a12

. . °

• ° .

0 0 • " • a l l

a21 a22 0 0

0 0 a z l a z 2

"a l l a12 0 0 • • • 0

0 0 a l l a12 • • • 0

0 0 " " " a l l a12

a21 a22 0 0 • • • 0

0 0 a21 a22 • • • 0

0 • • • a21 a 2 2

° ° ,

° , °

_ 0 0 • • • a:~

0 - a l l

0 a12

0

0

a12

0

0

aEz L0

0

0

a l l

a12

a l l 0

a12 0

0 a l l

0 a le

a21

a22

0

0

0

0

a21

a22

a21

a22

0

0

477

(11)

0

0

a21

a22

l o .l l
• ~ . 6 ~ " b ~ ' J = E 6 " ' " d ~] ' L b " ' ; t ~ i ' / j ' L O N B~j =Ao (12)

T h e ini t ial s t ep is again t r ivial and the necess i ty of

o r t h o g o n a l i t y obvious.

Thus , a b ina ry dec ima t ion t ree p e r f o r m s an

o r t h o g o n a l t r ans fo rm if and on ly if each subb lock

is o r thogona l .

A b o v e resul ts can be gene ra l i zed to a r b i t r a r y

radices , thus for mixed rad ices as well. This is no t

d o n e he re since only app l i ca t ions of the b ina ry

t ree will be cons idered , bu t the s imple cond i t ion

of o r t h o g o n a l i t y for b r anches with a c o m m o n roo t

is fundamen ta l .

Cons ide r ing the c o m p u t a t i o n a l complex i ty , we

re s t a t e some well k n o w n results . F o r a r a d i x - K

t r ee w ork ing on length N da ta b locks , the n u m b e r

of ope ra t i ons is given by (13). H e r e , r a d i x - K

means tha t all nodes (excep t the t e rmina l ones)

a re fo l lowed by K branches .

No. of mul t ip l i ca t ion = K * N * L o g N,

No. of add i t ions = (K - 1) * N * L o g N.

(13)

Vol. 5, No. 6, November 1983

478

Above results where shown for the real case but
the complex case follows immediately if one
replaces all the transposes by hermitian transposes.

Finally, note that if orthogonal trees generate
orthogonal transforms, the reciprocal statement is
not true.

M. Vetterli / Tree Structures for Orthogonal Transforms

3. Walsh-Hadamard Transform computed with
tree structures

The tree structures presented above are now
used to compute the Walsh-Hadamard transform.
When computing the WHT, one is interested by
3 features: number of operations, memory require-
ment and ordering of the transform output. The
number of adds/substracts is always N Log2 N for
fast WHT's and the memory requirement varies
from N to 2N for different algorithms.

For the ordering, the definitions as in [5] are
used, but note that other definitions are common
[6] (namely: natural is called Hadamard, sequency
is called Walsh and dyadic is called Paley ordering).
For the numbering of the Walsh functions and
series, the original definition by Walsh has been
used where W~ is a Walsh function with i zero
crossings or a Walsh series with i sign changes [7].
Similarly, Yi is the i-th coefficient of the Hadamard
transform in sequency ordering, which equals the
scalar product between W~ and the data sequence.

Delay tree for Walsh-Hadamard Transform

The fundamental idea behind tree structured
filters is to group common zeros (FIR case) and
poles (IIR case) of the various transfer functions
in order to reduce the number of computations.
The case of the DFT is extensively analysed in [2]
where the different zeros of the polynomial (z N -
1) are grouped in an adequate way [8].

A polynomial definition of the W H T in recursive
form as in (14) leads to a filter structure whose
output is a running WriT. We call W(M, i) the
i-th filter for a transform of dimension 2 M.

W (M + I , i) =(z-2M +1) * W(M,i) ,

W (M + 1, 2 M + i) = (z -2M - 1) * W(M, i).
(14)

Starting with W(0, 0) = 1, we get the Hadamard
filters in natural order. The output of the filter
W(M, i) is the i-th coefficient of a Hadamard trans-
form in natural order on the 2 ~ last input samples.
Since the filters are divided into two classes having
a common factor, one can easily deduce a binary
filter tree as shown in Fig. 4.

The computational load for one set of Hadamard
coefficients is N Log2 N. Note that this is an
efficient running transformer, since it uses 2 N - 2
operations per input value.

Finally, the impulse response of the system in
Fig. 4 is the set of Walsh functions in natural order
(with reversed time axis) and thus, the system
could also be used as a generator (the same holds
for the DFT tree as well).

Decimation tree for the Walsh-Hadamard
Transform

A recursive definition of the Walsh series is
introduced. Given the set of 2 M Walsh series of
length 2 M, { W(M, i)}, one can deduce the set of
2 ~+~ Walsh series of length 2 ~+~, { W (M + 1, i)},
by expanding each series into two series of double
length as follows:

W (M + I , 2 i) =[W(M,i) , W(M,i)],

W (M + 1, 2 i + 1) = [W(M, i) , - W (M , i)].

(15)

Starting with W(0, 0) := [1], we get the Walsh
series in dyadic order. It is obvious that:

W(M, i) * W (M , j) = 2 ~ . 6q (16)

where * is the scalar product and 6ij the Kronecker
delta. This orthogonality property together with
the fact that each series starts with a 1 defines
uniquely the Walsh series.

The recursive definition introduced above leads
to a very simple structure for the computation of

Signal Processing

X
~ - 4 + l

m~ z - 4 - I

M. Vetterli / Tree Structures for Orthogonal Transforms

I

iz- l i z-l_
lY3

z -2 - 1 z -1 + 1 J

! Li z -1 - 1]

z - l + l]

1

rl I I z-l- I -

, z - 2 - 1 z -1 + 1]

L~,, lys
z -I - 1 J :

479

Fig. 4. Binary delay tree for Walsh-Hadamard transform in natural (or Hadamard) order.

the Hadamard transform. The basic building block
is a 2-point Hadamard transformer as depicted in

Fig. 5.
Starting with this block and building a binary

tree of depth M with 2 M ending branches allows
the computation of a Hadamard transform of order
2 M on the input data. Because of the subsampling,
the result appears every 2 M samples, thus the
transform is computed on successive blocks of data.
The output is in dyadic order. An 8-point example

is shown in Fig. 6.

X

II

l ~ z-1+1 H ~ I

z -1 - 1

Y0
Q

Yl

Fig. 5. Basic 2-point Walsh-Hadamard transformer.

Reconstruction is performed with a similar
structure, with a change of sign of the differentiator
and upsampling by 2. The reconstruction corres-
ponding to Fig. 6 is shown in Fig. 7.

Instead of getting the Hadamard coefficients in
dyadic order, one might rather want the sequency
ordering. This is obtained when all the blocks on
lower branches are reversed, which means that the
substractor is above the adder.

Again, one can devise a simple Walsh series
generator using upsamplers and interpolators. This
is shown in Fig. 8 for a 8-dimensional system.

It is of interest to look at computational and
memory requirements. Due to the subsampling,
the basic add and subtract operation on 2 success-
ive samples has only to be performed every second
sample. At each stage, the clock frequency is
reduced by a factor of 2 but at the same time the
number of modules is doubled. This results in N
adds and subtracts per stage and N input samples.
Since there are Log2 N stages, the number of

Vol. 5, No. 6, November 1983

480 M. Vetterli / Tree Structures for Orthogonal Transforms

Fig. 6. 8-point Walsh-Hadamard transformer in dyadic (or Paley) order.

YO

Yl

Y3

Y2

Y7

Y6

Y4

Y5

Signal Processing

YO

Yl

Y3

Y2

Y7

Y6

Y4
w-,,-,

Y5

l+z- 1

l-z- I

Fig. 7. Reconstruction from the dyadic decomposition.

8°X

M. Vetterli / Tree Structures for Orthogonal Transforms

W 0

W 7

481

W 3
l

w 4

W]

W 6

W 5

Figure 8. Synthetiser of Walsh series in natural (or Hadamard) order.

operations results in:

Number of adds and s u b t r a c t s = N L o g 2 N
(17)

Assuming that each module has a double memory
and since there are N = 1 modules, we have:

Required memory = 2 N - 2. (18)

Reorder ing the data after each stage could allow

a memory requirement of N + 1 but would sub-
stantially slow down the computation.

Note that the subsampling is a fundamental
proper ty of trees. Since the transformation is
invertible, each stage carries the same amount of
information and the sampling frequency can be

reduced as the number of branches grows.

4. On the hardware implementat ion of the
W a l s h - H a d a m a r d Transform

Some hardware architectures motivated by the
tree approach are explored, leading to parallel,

multiplexed and pipelined structures. It is assumed

that the data is running at a clock frequency fa and
that we compute the W r i T on successive blocks

at a rate f~ = f d / N .
So far, we have looked at the tree structures

from the point of view of computational com-
plexity, memory requirement and transform

ordering. Another criterion which has gained in
importance with the growing concern about hard-
ware implementat ion and integration is the struc-

tural complexity of the algorithms [9]. New ques-
tions are" is the system modular, is the cascading
proper ty satisfied and what is the interconnection
complexity.

Comparing the decimation tree of Fig. 6 with
the equivalent butterfly of Fig. 9 shows the sim-
plicity of the tree approach. Modularity is obvious,
since all elements are identical and cascading is
therefore trivial (for example, a 64-point trans-
form is obtained if 8 trees as in Fig. 6 are added
behind the first tree). Finally, there are no crossings
in the interconnection scheme.

Vol . 5, No. 6, N o v e m b e r 1983

482 M. Vetterli / Tree Structures for Orthogonal Transforms

Figure 9. Butterfly configuration for dyadic ordered Walsh-Hadamard transform.

Two properties of the Hadamard decimation
tree are now explored under the point of view of
data flow. First, it is clear that each module separ-
ates the data into two flows which have no interac-
tion further down the tree. Therefore, both flows
can be processed separately. Second, the data flow
and the processing load at each stage are constants
as seen in (19):

(sampling frequency) * (No. of branches) =
constant

computation power per stage = ops./sec. =
constant

(19)

Since the complete tree consists of N - 1
modules as shown in Fig. 6, a straightforward
implementation requires N - 1 separate modules

running at different frequencies. Alternatively, a
fast module can be multiplexed between the differ-
ent stages.

In the following, we call a processor a 2-point
Hadamard transformer (thus one adder and one
subtractor) with 2 input and 2 output memories.
The computational power is characterized by fp
(data coming in at a clock frequency fp can be
processed, and the transform appears at a
frequency fp/2). 3 cases are possible.

Multiplexing case: fp >>- fd

Assume a processor working at fp =fa. This
means that each stage of the tree can be handled
with a single processor which is simply multiplexed
between the branches. The data from the adder

H 2

2 x 4 SHIFT REGISTER

- I

x8 SHIFT REGISTER

Fig. 10. 8-point dyadic ordered Walsh-Hadamard transformer with a single multiplexed processor per stage.

Signal Processing

M. Vetterli / Tree Structures for Orthogonal Transforms

and subtractor output are stored separately and
then processed serially. This can be done with a
double shift register or a double length memory
with adequate pointers. A 8-dimensional case is
shown in Fig. 10 where the output is in Dyadic
order. The number of processors is Log2 N and
the required memory for temporary storage is
4 N - 8 which is determinant for the delay of the
output transform.

Parallel case: fp <- f,

The processing load has to be shared between

several processors. Assume fp = ft. Thus, one pro-
cessor assumes the load of one module of the last
stage, and preceding modules are implemented
with several processors. One possible configuration
is shown in Fig. 11 where all stages are identical
and the output is in natural order. The number of
processors is N / 2 L o g 2 N and no buffering
memory is required.

Hybrid case: fd >~ fp >~ ft

It was seen that the multiplexing case requires
a lot of additional memory and that the parallel
case leads to numerous additional crossings. If the
processor runs at a medium rate, it will be used in
parallel at the input and multiplexed at the output

483

of the tree. In Fig. 12, a 64-point transform is
computed using 12 4-point transformers (dyadic
ordered). The first stage works in parallel on 16-
point blocks, the second stage works synchronously

and the last stage is multiplexed between 4

branches.

A n example

Based on the multiplexing case, a simple module
is proposed which can easily be cascaded or linked
to itself (see Fig. 13). Each module consists of a
processor (2-point Hadamard transformer) and a
2N memory. Addresses for all modules are simply
generated by 2 counters since write and read
addresses are given by (20) where i is the clock:

readadr . : 2i Mod 2N, 2i + l Mod 2 N

write a d r . : N + (i M o d N) , 3 / 2 * N + (i M o d N)

if i Mod N < N / 2

iMo d N, N / 2 + (i M o d N)

else (20)

A 1024-point transform can be performed with
10 cascaded modules or by recirculating the data
10 times through a single one. The output is in
natural order. Slowest component will be the RAM
for temporary storage, but an access time of 100 ns

Xn Yn

Fig. 11. 8-point natural ordered Walsh-Hadamard transformer with processors used in parallel.
Vol. 5, No. 6, November 1983

484 M. Vetterli / Tree Structures for Orthogonal Transforms

is the orthogonality of branches with a common
r o o t .

Application to the Walsh-Hadamard transform
results in simple systems with identical modules
and which can easily be cascaded. These structures
suggest equivalent hardware taking advantage of

the tree features.
The filter tree leads to a running transform with

2 N - 2 operations.
This novel approach to the Walsh-Hadamard

transform in terms of trees and data flows produces
some interesting configurations for fast trans-
formers.

Fig. 12. 64-point Walsh-Hadamard transformer in dyadic order
computed with 4-point basic modules. The modules are used
in parallel in the first stage and multiplexed in the last stage.

2N BUFFER MEMORY

H 2

WRITE ,~
ADRESSES

SES

Fig. 13. Basic module for a N-dimensional Walsh-Hadamard
transform in natural order.

still leads to a system which can process data at
10 MHz.

5. Conclusion

Three structures defining a class of orthogonal
transforms of complexity N Log2 N were intro-
duced. It was proved that a necessary and sufficient
condition for obtaining an orthogonal transform

Acknowledgments

The author wishes to thank Prof. H.J. Nuss-
baumer for making this research possible, C. Petit-
pierre for stimulating input on hardware struc-
tures, A. Schlageter for editing assistance and W.
Schm/irz for his constant and enthusiastic support.

References

[1] N. Ahmed and K.R. Rao, Orthogonal Transforms for Digital
Signal Processing, Springer Verlag, Berlin, 1975, Ch. 7,
pp. 156-159.

[2] G. Bruun, "z-Transform DFT filters and FFT's", IEEE
Trans. Acoust. Speech Signal Process., Vol. 26, No. 1, Feb.
1978, pp. 56-63.

[3] G. Strang, Linear Algebra and Its Applications, Academic
Press, New York, 1980, Ch. 3, pp. 123-128.

[4] M. Bellanger, Traitement Num6rique du Signal, Masson,
Paris, 1981, Ch. 3, pp. 87-89.

[5] M. Kunt, "In place computation of the Hadamard trans-
form in Cal-Sal order", Signal Processing, Vol. 1, No. 3,
July 1979, pp. 227-231.

[6] N. Ahmed, H.H. Schreiber, and P.V. Lopresti, "On nota-
tion and definition of terms related to a class of complete
orthogonal functions", IEEE Trans. on Electromag. Corn-
pat., Vol. 15, May 1973, pp. 75-80.

[7] K.G. Beauchamp, Walsh Functions and Their Applications,
Academic Press, London, 1975, Ch. 2, pp. 17-20.

[8] H.J. Nussbaumer, Fast Fourier Transform and Convolution
Algorithms, Springer, Berlin, 1982, Ch. 4, pp. 104-107.

[9] Y.A. Geadah, and M.J.G. Corinthios, "Natural, dyadic,
and sequency order algorithms and processors for the
Walsh-Hadamard transform", IEEE Trans. on Computers,
Vol. C-26, No. 5, May 1977, pp. 435-442.

Signal Processing

