
Signal Processing 5 (1983) 473-484 473 
North-Holland 

TREE STRUCTURES FOR O R T H O G O N A L  TRANSFORMS A N D  
APPLICATION TO THE H A D A M A R D  TRANSFORM 

Martin V E T T E R L I  
Laboratoire d' lnformatique Technique, Ecole Polytechnique F~d&ale de Lausanne, 16 Chemin de Bellerive, CH- 1007 Lausanne, 
Switzerland 

Received 28 May 1983 
Revised 27 June 1983 

Abstract. Tree structures for computing orthogonal transforms are introduced. Two cases, delay trees and decimation trees, 
are investigated. A simple condition, namely the orthogonality of branches with a common root, is shown to be necessary 
and sufficient for the overall transform to be orthogonal. Main advantages are structural simplicity and a number of operations 
proportional to N Log 2 N. 

Application of the tree structures to the Walsh-Hadamard Transform (in natural, sequency and dyadic order) is presented. 
A single module can be multiplexed or used in parallel in order to perform all operations. Such a system is shown to be well 
suited for hardware implementation. 

Zusammenfassung. Baumstrukturen zur Berechnung orthogonaler Transformationen werden eingefiihrt. Zwei F~ille, Ver- 
z6gerungsb~iume und Dezimierungsb~iume, werden untersucht. Eine einfache Bedingung, nfimlich die Orthogonalit~it von 
Aesten mit gemeinsamer Wurzel, wird als notwendig und geniigend gefunden damit die resultierende Transformation 
orthogonal ist. Gr6sste Vorteile sind strukturelle Einfachheit und eine Anzahl Operationen die zu N Log2 N proportional ist. 

Anwendung der Baumstrukturen zur Berechnung der Walsh-Hadamard Transformation (in natiirlicher, sequentieller und 
dyadischer Ordnung) wird vorgestellt. AUe Operationen k6nnen mit einem enzigen Modul, dass multiplexiert oder parallel 
geschaltet wird, ausgef(ihrt werden. Es wird gezeigt dass ein solches System fiir eine 'hardware' Implementierung gut geeignet 
ist. 

R~sum& Des structures en arbres pour l'Evaluation de transformations orthogonales sont introduites. Deux cas, des arbres 
fi dElais et des arbres fi decimation, sont analyses. Une condition simple, l'orthogonalitE de branches h racine commune, est 
dEmontrEe comme nEcessaire et suffisante afin d'obtenir une transformEe totale orthogonale. Les avantages principaux sont 
la simplicitE structurelle et un nombre d'opErations proportionnel fi N Log2 N. 

L'application des structures en arbres au calcul de la transform6e de Walsh-Hadamard (en ordre naturel, sequentiel et 
dyadique) est prEsentEe. Un module unique peut 8tre multiplexE ou utilis6 en parall61e afin d'exdcuter l'ensemble des calculs. 
I1 est montrE qu'un tel syst~me s'adapte bien ~ une implantation 'hardware'. 

Keywords. orthogonal transforms, tree structures, fast Walsh-Hadamard transform, hardware implementation of Walsh- 
Hadamard transform. 

1. Introduction 

G e n e r a l i z e d  o r t h o g o n a l  t r a n s f o r m s  h a v e  b e e n  

p r o p o s e d  [1 ] w h e r e  p a r t i c u l a r  cases  a r e  t h e  F o u r i e r  

and  t h e  W a l s h - H a d a m a r d  t r a n s f o r m .  In  t h e  fo l -  

l owing ,  a n e w  class of  o r t h o g o n a l  t r a n s f o r m s  is 

de f ined .  T h e  t o p o l o g i c a l  c h a r a c t e r i s t i c  is t ha t  t h e i r  

f l o w - g r a p h s  a r e  t r e e  s t r u c t u r e d .  

D e f i n i t i o n  and  analys is  of  t h e  t r e e  s t r u c t u r e s  is 

d o n e  in S e c t i o n  2. T w o  p a r t i c u l a r  cases  wh ich  a r e  

i n t e r e s t i n g  fo r  app l i ca t i ons ,  t h e  b i n a r y  d e l a y  t r e e  

and  t h e  b i n a r y  d e c i m a t i o n  t r ee ,  a r e  i nves t i ga t ed .  

A s i m p l e  c o n d i t i o n ,  n a m e l y  t h e  o r t h o g o n a l i t y  of  

b r a n c h e s  wi th  a c o m m o n  r o o t ,  is s h o w n  to  be  

n e c e s s a r y  a n d  suff ic ient  fo r  t h e  o v e r a l l  t r a n s f o r m  

to  be  o r t h o g o n a l .  I n t e r e s t i n g  f e a t u r e s  of  t h e s e  
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transforms are their inherent simplicity and the 
fact that they can be computed with an order 
N Log2 N operations (an usual lower bound for 
fast transforms). 

Both the Discrete Fourier Transform (DFT) and 
the Walsh-Hadarmard Transform (WHT) can be 
computed using the tree approach. Since the DFT 
case has been analysed elsewhere [2], we focus in 
Section 3 on the implementation of the WHT with 
decimation and delay trees. The computation of 
the WHT in various orderings (natural, sequency 
and dyadic) leads to simple modular structures. In 
particular, the WHT in dyadic order results in a 
regular structure with identical modules. In all 
cases, the number of adds and subtracts is equal 
to N Log2 N as for other fast WHT's. 

Finally, Section 4 discusses some hardware 
aspects of the tree model. Emphasis is placed on 
modularity. It is seen that arbitrary speed can be 
attained with parallelism, or minimum hardware 
with multiplexing; all that us inga  single module 
with only some interconnection or buffering details 
being modified. 

2. Tree structures for orthogonal transforms 

The analysis is restricted to binary trees because 
on the one hand, they are most useful for applica- 
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tions and on the other hand, generalization to other 
radices is immediate. 

Binary  delay trees 

Consider a filter tree as shown in Fig. 1 which 
can either perform a running transform or whose 
output is only computed every 2N samples in the 
case of a block transform. Xo, x1 . . . . .  X2N_ 1 are the 
input samples and Y0, Yl . . . . .  Y2N-1 the corres- 
ponding transform values. Ba and B2 are two N- 
dimensional orthogonal transforms where N is 
usually a power of 2. B is a matrix with B1 and 
B2 blocks on the diagonal and IN off diagonal. 

In the following it will be shown by recursion 
that a filter tree as in Fig. 1 performs an orthonor- 
mal transform. 

First we prove that if the matrix A defined by 
(1) is orthogonal, then the transform of dimension 
2N is orthog0nal. 

A = [ a l l  a12]. (1) 
La2] a221 

The term orthogonal matrix refers usually to 
orthonormal lines resulting therefore in orthonor- 
mal columns as well [3]. A weaker condition is 
sufficient in the case analysed here: the lines of the 
matrix have to be orthogonal. This is expressed by 
(2) where Aa and A b a r e  arbitrary diagonal 
matrices. 

x 0 . . . .  X2N_ l 

I allZ-N+al2 
i 

B l 

-Yo 

~ " ~ Y N - 2  
l - Y N - I  

- YN 

i'a21z_N [ :YN+I 
a22 B 2 : 

c Y2N-2 

= Y2N-I 

Fig. 1. Delay tree. B1 and B 2 a r e  N-dimensional orthogonal transforms. 
Signal  Processing 
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A A  T =Aa 

B B  T = Ab .  (2) 

The first set of outputs is given by (3) where 1N 
and 0n are identity and zero matrices of dimension 
N × N .  

yo f y.m , i O  N 

yNy  = 

y2 l L°Ni 
~ I I I N  a l 2 I N  

a21IN a22I~  

Xo 

X1 

* X N - -  1 

XN 
! • 

- X2N 1 (3) 

Using the Kronecker product, (3) can be rewritten 
as in (4)• 

y = g .  (IN × A ) "  x =  C . x .  (4) 

One can show that the overall transform is still 
orthogonal or equivalently, that C times its trans- 
pose is diagonal. Using properties of the Kronecker 
product [4] and of block matrix operations, one 
gets (5). 

C . C =  B . ( I  X A ) ( I  × A )  T . B w 

= B • ( I  x A A  T) • B T 

ON 

L ON A2IN.] I O N  

= [h i  " AB, ON ] = A c .  (5) 
ON A2" AB2 

The initial step of the recursive proof is trivial. 
A two dimensional transform will be orthogonal 
if the two branches are orthogonal. Obviously, the 
orthogonality of the branches is also a necessary 
condition• 
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Therefore, a binary delay tree performs an 
orthogonal transform if and only if each sublock 
is orthogonal. 

D e c i m a t i o n  t rees  

A decimation tree is a structure where each root 
is followed by N branches which are subsampled 
by N. One immediate question is: can the original 
signal be reconstructed from the N subsampled 
outputs? This general question is answered before 
turning to the particular case of binary orthogonal 
trees. 

Assume a system as depicted in Fig. 2 where 
H i ( z )  and F i ( z )  are length-N FIR filters as in (6)• 

H i ( z )  = hi, N - l z  - ( N - l )  + "  • " +  hi, i z  -1 + hi,o• 

(6) 

If we introduce the ma t r ix /4  whose lines are the 
coefficients of the filters, we get the output of the 
decimator in (7). 

h,0  l Vy,,] rh,,N_l h,N-2 x0 l;jl i! / Xl 
N ,N--1 hN--1,N 2 " " " hN-l,oA - 

(7) 
The output £ is computed in (8) with a matrix 
whose columns are the impulse responses of the 
FIR interpolation filters. 

jJ/ 
, L fO ,N- ,  f i , N  1 ' ' "  fN--I ,N , --, 

(8) 

It is clear that reconstruction is always possible if 
the matrix H is nonsingular which is equivalent to 
say that the N impulse responses of the input filters 
have to span the N dimensional signal space. The 
interpolation filters follow simply from (9) and 

= x as shown in (10) 

F = H  -1, (9) 

~ = F .  y = F .  H .  x = x .  (10) 
VoL 5, No. 6, November 1983 
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Xo.- .XN_ 1 
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I  o,z, 

I HN_I(Z) ~ YN~I j r ~  

Fo(Z) 

F 1 (z) 

• XN_ 1 0"" -- 

FN_ (z) I 

Fig. 2. General decimation/interpolation tree. Hi and F~ are FIR filters of length N. 

We  turn now to the particular case of 

binary o r thogona l  trees. Consider  the system 

of Fig. 3 where  the outputs  Yo, Y l " " Y 2 N - t  

are compu ted  every 2 N  samples. The  proof  

that  the 2 N  dimensional  t ransform is 

o r thogona l  follows the one done  for  

delay trees. The  overall  t ransform is given 

by (11). 

Signal Processing 

Xo-. X2N-I I 

i z- ] all + a12 B I 

YO -_ 

YN_I 

~21 z-I +a22 B 2 

YN : 

Y2N-I 

Fig. 3. Decimation tree. B 1 and B 2 a r e  N-dimensional orthogonal transforms. 
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[B, ! 0N] 
c = LO; i 'B;J 

The  o r t hogona l i t y  is ver i f ied in (12). 

C "  c T = [  n l  ON]  

ON B2 

- a l l  a12 0 0 

0 0 a H  a12 

. . ° 

• ° . 

0 0 • " • a l l  

a21 a22 0 0 

0 0 a z l  a z 2  

"a l l  a12 0 0 • • • 0 

0 0 a l l  a12 • • • 0 

0 0 " " " a l l  a12 

a21 a22 0 0 • • • 0 

0 0 a21 a22 • • • 0 

0 • • • a21 a 2 2  

° ° , 

° , ° 

_ 0 0 • • • a:~ 

0 - a l l  

0 a12 

0 

0 

a12 

0 

0 

aEz L0 

0 

0 

a l l  

a12 

a l l  0 

a12 0 

0 a l l  

0 a le  

a21 

a22 

0 

0 

0 

0 

a21 

a22 

a21 

a22 

0 

0 
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(11) 

0 

0 

a21 

a22 

l o .l l 
• ~ . 6 ~ " b ~ ' J = E 6 " ' " d ~ ] ' L b " ' ; t ~ i ' / j ' L O N  B~j =Ao (12) 

T h e  ini t ial  s t ep  is again  t r ivial  and  the  necess i ty  of 

o r t h o g o n a l i t y  obvious.  

Thus ,  a b ina ry  dec ima t ion  t ree  p e r f o r m s  an 

o r t h o g o n a l  t r ans fo rm if and  on ly  if each subb lock  

is o r thogona l .  

A b o v e  resul ts  can be  gene ra l i zed  to  a r b i t r a r y  

radices ,  thus  for  mixed  rad ices  as well. This  is no t  

d o n e  he re  since only  app l i ca t ions  of the  b ina ry  

t ree  will be  cons idered ,  bu t  the  s imple  cond i t ion  

of o r t h o g o n a l i t y  for  b r anches  with a c o m m o n  roo t  

is fundamen ta l .  

Cons ide r ing  the  c o m p u t a t i o n a l  complex i ty ,  we 

re s t a t e  some well  k n o w n  results .  F o r  a r a d i x - K  

t r ee  w ork ing  on length  N da ta  b locks ,  the  n u m b e r  

of ope ra t i ons  is given by  (13). H e r e ,  r a d i x - K  

means  tha t  all nodes  (excep t  the  t e rmina l  ones)  

a re  fo l lowed  by  K branches .  

No.  of mul t ip l i ca t ion  = K * N * L o g  N, 

No. of add i t ions  = ( K  - 1) * N * L o g  N. 

(13) 
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Above results where shown for the real case but 
the complex case follows immediately if one 
replaces all the transposes by hermitian transposes. 

Finally, note that if orthogonal trees generate 
orthogonal transforms, the reciprocal statement is 
not true. 

M. Vetterli / Tree Structures for Orthogonal Transforms 

3. Walsh-Hadamard Transform computed with 
tree structures 

The tree structures presented above are now 
used to compute the Walsh-Hadamard transform. 
When computing the WHT,  one is interested by 
3 features: number of operations, memory require- 
ment and ordering of the transform output. The 
number of adds/substracts is always N Log2 N for 
fast WHT's  and the memory requirement varies 
from N to 2N for different algorithms. 

For  the ordering, the definitions as in [5] are 
used, but note that other definitions are common 
[6] (namely: natural is called Hadamard,  sequency 
is called Walsh and dyadic is called Paley ordering). 
For the numbering of the Walsh functions and 
series, the original definition by Walsh has been 
used where W~ is a Walsh function with i zero 
crossings or a Walsh series with i sign changes [7]. 
Similarly, Yi is the i-th coefficient of the Hadamard 
transform in sequency ordering, which equals the 
scalar product between W~ and the data sequence. 

Delay tree for Walsh-Hadamard Transform 

The fundamental idea behind tree structured 
filters is to group common zeros (FIR case) and 
poles (IIR case) of the various transfer functions 
in order  to reduce the number of computations. 
The case of the DFT is extensively analysed in [2] 
where the different zeros of the polynomial (z N -  
1) are grouped in an adequate way [8]. 

A polynomial definition of the W H T  in recursive 
form as in (14) leads to a filter structure whose 
output is a running WriT.  We call W(M, i) the 
i-th filter for a transform of dimension 2 M. 

W ( M + I , i )  =(z-2M +1)  * W(M,i) ,  

W ( M +  1, 2 M + i) = (z -2M - 1) * W(M, i). 
(14) 

Starting with W(0, 0 ) =  1, we get the Hadamard 
filters in natural order. The output of the filter 
W(M, i) is the i-th coefficient of a Hadamard trans- 
form in natural order on the 2 ~ last input samples. 
Since the filters are divided into two classes having 
a common factor, one can easily deduce a binary 
filter tree as shown in Fig. 4. 

The computational load for one set of Hadamard 
coefficients is N Log2 N. Note that this is an 
efficient running transformer, since it uses 2 N - 2  
operations per input value. 

Finally, the impulse response of the system in 
Fig. 4 is the set of Walsh functions in natural order 
(with reversed time axis) and thus, the system 
could also be used as a generator (the same holds 
for the DFT tree as well). 

Decimation tree for the Walsh-Hadamard 
Transform 

A recursive definition of the Walsh series is 
introduced. Given the set of 2 M Walsh series of 
length 2 M, { W(M, i)}, one can deduce the set of 
2 ~+~ Walsh series of length 2 ~+~, { W ( M +  1, i)}, 
by expanding each series into two series of double 
length as follows: 

W ( M + I , 2 i )  =[W(M,i ) ,  W(M,i)], 

W ( M +  1, 2 i + 1 )  = [W(M, i ) , - W ( M ,  i)]. 

(15) 

Starting with W(0, 0) := [1], we get the Walsh 
series in dyadic order. It is obvious that: 

W(M, i) * W ( M , j ) = 2  ~ .  6q (16) 

where * is the scalar product and 6ij the Kronecker  
delta. This orthogonality property together with 
the fact that each series starts with a 1 defines 
uniquely the Walsh series. 

The recursive definition introduced above leads 
to a very simple structure for the computation of 

Signal Processing 
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L~,, lys 
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Fig. 4. Binary delay tree for Walsh-Hadamard transform in natural (or Hadamard) order. 

the Hadamard transform. The basic building block 
is a 2-point Hadamard transformer as depicted in 

Fig. 5. 
Starting with this block and building a binary 

tree of depth M with 2 M ending branches allows 
the computation of a Hadamard transform of order  
2 M on the input data. Because of the subsampling, 
the result appears every 2 M samples, thus the 
transform is computed on successive blocks of data. 
The output is in dyadic order. An 8-point example 

is shown in Fig. 6. 

X 

II  

l ~  z-1+1 H ~ I  

z -1 - 1 

Y0 
Q 

Yl 

Fig. 5. Basic 2-point Walsh-Hadamard transformer. 

Reconstruction is performed with a similar 
structure, with a change of sign of the differentiator 
and upsampling by 2. The reconstruction corres- 
ponding to Fig. 6 is shown in Fig. 7. 

Instead of getting the Hadamard coefficients in 
dyadic order,  one might rather want the sequency 
ordering. This is obtained when all the blocks on 
lower branches are reversed, which means that the 
substractor is above the adder. 

Again, one can devise a simple Walsh series 
generator using upsamplers and interpolators. This 
is shown in Fig. 8 for a 8-dimensional system. 

It is of interest to look at computational and 
memory requirements. Due to the subsampling, 
the basic add and subtract operation on 2 success- 
ive samples has only to be performed every second 
sample. At each stage, the clock frequency is 
reduced by a factor of 2 but at the same time the 
number of modules is doubled. This results in N 
adds and subtracts per stage and N input samples. 
Since there are Log2 N stages, the number of 

Vol. 5, No. 6, November 1983 
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Fig. 6. 8-point Walsh-Hadamard transformer in dyadic (or Paley) order. 

YO 

Yl 

Y3 

Y2 

Y7 

Y6 

Y4 

Y5 
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Yl 
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Y2 

Y7 

Y6 

Y4 
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Y5 

l+z- 1 

l-z- I 

Fig. 7. Reconstruction from the dyadic decomposition. 
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W 0 

W 7 
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W 3 
l 

w 4 

W] 

W 6 

W 5 

Figure 8. Synthetiser of Walsh series in natural (or Hadamard) order. 

operations results in: 

Number  of adds and s u b t r a c t s = N L o g 2  N 
(17) 

Assuming that each module has a double memory  
and since there are N = 1 modules, we have: 

Required memory  = 2 N -  2. (18) 

Reorder ing the data after each stage could allow 

a memory  requirement of N +  1 but would sub- 
stantially slow down the computation.  

Note  that the subsampling is a fundamental  
proper ty  of trees. Since the transformation is 
invertible, each stage carries the same amount  of 
information and the sampling frequency can be 

reduced as the number  of branches grows. 

4. On the hardware implementat ion of the 
W a l s h - H a d a m a r d  Transform 

Some hardware architectures motivated by the 
tree approach are explored, leading to parallel, 

multiplexed and pipelined structures. It is assumed 

that the data is running at a clock frequency fa and 
that we compute the W r i T  on successive blocks 

at a rate f~ = f d / N .  
So far, we have looked at the tree structures 

from the point of view of computational com- 
plexity, memory  requirement  and transform 

ordering. Another  criterion which has gained in 
importance with the growing concern about hard- 
ware implementat ion and integration is the struc- 

tural complexity of the algorithms [9]. New ques- 
tions are" is the system modular,  is the cascading 
proper ty  satisfied and what is the interconnection 
complexity. 

Comparing the decimation tree of Fig. 6 with 
the equivalent butterfly of Fig. 9 shows the sim- 
plicity of the tree approach. Modularity is obvious, 
since all elements are identical and cascading is 
therefore  trivial (for example,  a 64-point trans- 
form is obtained if 8 trees as in Fig. 6 are added 
behind the first tree). Finally, there are no crossings 
in the interconnection scheme. 

Vol .  5, No.  6,  N o v e m b e r  1983 
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Figure 9. Butterfly configuration for dyadic ordered Walsh-Hadamard transform. 

Two properties of the Hadamard decimation 
tree are now explored under the point of view of 
data flow. First, it is clear that each module separ- 
ates the data into two flows which have no interac- 
tion further down the tree. Therefore,  both flows 
can be processed separately. Second, the data flow 
and the processing load at each stage are constants 
as seen in (19): 

(sampling frequency) * (No. of branches) = 
constant 

computation power per stage = ops./sec. = 
constant 

(19) 

Since the complete tree consists of N - 1  
modules as shown in Fig. 6, a straightforward 
implementation requires N - 1  separate modules 

running at different frequencies. Alternatively, a 
fast module can be multiplexed between the differ- 
ent stages. 

In the following, we call a processor a 2-point 
Hadamard transformer (thus one adder and one 
subtractor) with 2 input and 2 output memories. 
The computational power is characterized by fp 
(data coming in at a clock frequency fp can be 
processed, and the transform appears at a 
frequency fp/2). 3 cases are possible. 

Multiplexing case: fp >>- fd 

Assume a processor working at fp =fa. This 
means that each stage of the tree can be handled 
with a single processor which is simply multiplexed 
between the branches. The data from the adder 

H 2 

2 x 4 SHIFT REGISTER 

- I 

x8 SHIFT REGISTER 

Fig. 10. 8-point dyadic ordered Walsh-Hadamard transformer with a single multiplexed processor per stage. 
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and subtractor output are stored separately and 
then processed serially. This can be done with a 
double shift register or a double length memory 
with adequate pointers. A 8-dimensional case is 
shown in Fig. 10 where the output is in Dyadic 
order. The number of processors is Log2 N and 
the required memory for temporary storage is 
4 N - 8  which is determinant for the delay of the 
output transform. 

Parallel case: fp <- f, 

The processing load has to be shared between 

several processors. Assume fp = ft. Thus, one pro- 
cessor assumes the load of one module of the last 
stage, and preceding modules are implemented 
with several processors. One possible configuration 
is shown in Fig. 11 where all stages are identical 
and the output is in natural order. The number of 
processors is N / 2 L o g 2 N  and no buffering 
memory is required. 

Hybrid case: fd >~ fp >~ ft 

It was seen that the multiplexing case requires 
a lot of additional memory and that the parallel 
case leads to numerous additional crossings. If the 
processor runs at a medium rate, it will be used in 
parallel at the input and multiplexed at the output 
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of the tree. In Fig. 12, a 64-point transform is 
computed using 12 4-point transformers (dyadic 
ordered).  The first stage works in parallel on 16- 
point blocks, the second stage works synchronously 

and the last stage is multiplexed between 4 

branches. 

A n  example 

Based on the multiplexing case, a simple module 
is proposed which can easily be cascaded or linked 
to itself (see Fig. 13). Each module consists of a 
processor (2-point Hadamard transformer) and a 
2N memory. Addresses for all modules are simply 
generated by 2 counters since write and read 
addresses are given by (20) where i is the clock: 

readadr . :  2i Mod  2N, 2i + l Mod  2 N  

write a d r . : N + ( i M o d N ) , 3 / 2 * N + ( i M o d N )  

if i Mod N < N / 2  

iMo d  N, N / 2 + ( i M o d N )  

else (20) 

A 1024-point transform can be performed with 
10 cascaded modules or by recirculating the data 
10 times through a single one. The output is in 
natural order. Slowest component will be the RAM 
for temporary storage, but an access time of 100 ns 

Xn Yn 

Fig. 11. 8-point natural ordered Walsh-Hadamard transformer with processors used in parallel. 
Vol. 5, No. 6, November 1983 
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is the orthogonality of branches with a common 
r o o t .  

Application to the Walsh-Hadamard transform 
results in simple systems with identical modules 
and which can easily be cascaded. These structures 
suggest equivalent hardware taking advantage of 

the tree features. 
The filter tree leads to a running transform with 

2 N -  2 operations. 
This novel approach to the Walsh-Hadamard 

transform in terms of trees and data flows produces 
some interesting configurations for fast trans- 
formers. 

Fig. 12. 64-point Walsh-Hadamard transformer in dyadic order 
computed with 4-point basic modules. The modules are used 
in parallel in the first stage and multiplexed in the last stage. 
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Fig. 13. Basic module for a N-dimensional Walsh-Hadamard 
transform in natural order. 

still leads to a system which can process data at 
10 MHz. 

5. Conclusion 

Three  structures defining a class of orthogonal 
transforms of complexity N Log2 N were intro- 
duced. It was proved that a necessary and sufficient 
condition for obtaining an orthogonal transform 
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