
Signal Processing 11 (1986) 119-132 119
North-Holland

MOVAL: A FRAMEWORK FOR TURNING DIGITAL SIGNAL PROCESSING
ALGORITHMS INTO CUSTOM CHIPS

A. LIGTENBERG (Member EURASIP) and J. H. O'NEILL
A T& T Bell Laboratories, Holmdel, NJ07733, U.S.A.

M. VETTERLI (Member EURASIP)
Laboratoire d'lnformatique Technique, Ecole Polytechnique Fdddrale de Lausanne,,16 Chemin de Bellerive, CH-1007 Lausanne,
Switzerland

Received 10 July 1985
Revised 4 February 1986

Abstract. A framework supported by a set of tools for turning digital signal processing algorithms into custom chips is
proposed. The framework, called MOVAL, integrates analysis, layout synthesis and validation and is based on a structured
top-down design methodology covering seven succinct abstraction levels: the behavioral, data representation, space/time,
hardware, symbolic and geometric (mask) descriptions, and the chip. The top four levels efficiently cope with the implementa-
tion trade-offs and are all written in the same high level language, currently "C". As a result, the design can be modeled
using a mixture of components defined at different abstraction levels. This allows an efficient mixed-mode multi-level validation.
The hardware description is unambiguous and is the key to (semi-) automatic synthesis of the layout. Furthermore, it generates
test vectors for the symbolic layout, the mask and, finally, the chip. The validation is done automatically, based on back
substitution. As an example of the proposed design methodology, the crucial steps of the implementation of a fast Fourier
cosine transform algorithm are described.

Zusammenfassung. Ein Entwicklungskonzept mit Werkzeugen wird'vorgeschlagen um Signaiverarbeitungsalgorithmen in
spezialisierte Chips umzuwandeln. Das Konzept, MOVAL genannt, integriert die Analyse, die Synthese und die Verifikation,
und ist eine strukturierte ' top-down' Methodologie mit sieben Abstraktionsniveaus: Algorithmus, Datenprfizision, Raum/Zeit,
Hardware, symbolisches Layout, Masken, und Chip. Die vier oberen Niveaus erlauben es, die verschiedenen Kompromisse
einer Implementation zu erforschen, und sie sind in der gleichen hohen Sprache, "C", geschrieben. Deshalb kann der Design
mit Komponenten modelisiert werden die auf verschiedenen Niveaus geschrieben sind. Dies erlaubt eine effiziente, 'mixed-
mode, multi-level' Verifikation. Die hardware Beschreibung ist eindeutig und erlaubt eine (semi-) automatische Layout-
Synthese. Damit kSnnen auch Testvektoren generiert werden, und dies sowohl fiir das symbolische Layout wie fiir die Masken
und das Chip. Die Verifikation ist automatisch und basiert auf die Riickwfirts-Substitution. Als Beispiel fiir diese Design
Methologie werden die wichtigsten Etappen des Designs eines 'fast cosine transform' Chips gezeigt.

R6sum6. Dans cette contribution, on propose un contexte de d6veloppement et certains outils afin de transformer des
algorithmes de traitement du signal en circuits int6gr6s sp6cialis6s. Ce contexte de d6veloppement, appel6 MOVAL, int6gre
ranalyse, la synth~se du sch6ma ainsi que la validation. II est has6 sur un¢ m6thodologie ' top-down' structur6e et faisant
appel ~ sept niveaux d'abstraction: le niveau algorithmique, de pr6cision finie, d'espace/temps, de mat6riel, de sch6ma
symbolique, de masque, et finalement le niveau physique (circuit). Les quatre niveaux sup6rieurs permettent d'explorer
efficacement les compromis possibles lors de l'implantation et sont tous quatre 6crits dans un langage commun de haut
niveau, le "C". Ainsi, on peut simuler un circuit en utilisant des 616ments d6crits ~ des niveaux d'abstraction diff6rents. Ceci
permet une validation en modes et niveaux m61ang6s. La description mat6rielle est non ambigu~ et permet une g6n6ration
(semi-) automatique du sch6ma symbolique. De surcro$t, elle permet la g6n6ration de vecteurs de test, tant pour le sch6ma
symbolique que pour le plan de masques ou le circuit physique. La validation est faite automatiquement par voie de
substitution. Comme exemple, on montre les 6tapes principales du d6veloppement d'un circuit r6alisant une transformation
en cosinus rapide.

Keywords. Digital signal processing hardware, design methodologies, algorithm transformation, VLSI.

0165-1684/86/$3.50 O 1986, Elsevier Science Publishers B.V. (North-Holland)

120

Preface

A. Ligtenberg et aL / MOVAL: A framework for turning algorithms into chips

MOVAL, which is neither a magic work station
concept nor an expert system, is still under con-
struction. It is a framework or discipline supported
by tools to translate digital signal processing (DSP)
algorithms into specific purpose chips. The pro-
posed method is based on the data-flow concept.
Operation and memory elements are built in the
hardware where they are required: This is in sharp
contrast to the often-employed approach wherein
a general digital signal processor architecture is
programmed for the algorithm.

MOVAL allows the human designer to interact
at all levels, in order to analyze the design trade-
olis or to improve the synthesis of the layout. More
precisely~ MOVAL starts by helping to define, to
refine, and to verify the initial concept. Then, for
each following step in the abstraction hierarchy,
the correctness of that description can be verified
automatically. The layout is synthesized with the
help of generators from MOVAL's hardware level
description of the algorithm. The use of MOVAL
ends only when it helps to check if the fabricated
chip is working correctly. Thus, MOVAL can be
regarded as a backbone, covering in a top-down
way, the stages needed to translate DSP algorithms
into working custom chips.

1. Introduction

Increased control over the fabrication process
and the availability of powerful software tools
make special purpose chip design feasible and
economical. However, even with the help of recent
advances in software tools, the translation of a
concept into a chip is not simple: it remains a
time-consuming, tedious, and error-prone process,
which involves the mastery of all kinds of skills.

A review of existing software tools reveals that
the principal components of a design system con-
sist of a powerful layout editor combined with
verification/simulation programs. MULGA [14] is
an example of a symbolic layout tool, which plays

Signal Processing

an important role in the proposed framework. It
eliminates the need for the designer to know the
process design rules thereby increasing his produc-
tivity. In brief, cell design is reduced to placing
symbols (transistors, wires, and pins). Once a cell
has been finished, its function can be simulated
and verified by applying proper test signals (data,
control and clocks). Finally, cells are put together
in a hierarchy to obtain the complete symbolic
description of the chip. A mask is generated from
the symbolic description and sent to one of the
foundries. One crucial question is "Will the chip

work?". The answer depends on how good the chip
is and whether or not it can be tested. Faults and
design changes may require repeating the whole
design process to obtain a 'working' chip. This
iterative manual design process is schematized in
Fig. 1.

This manual design process has been proven to
be successful for low-to-medium complexity chips,

j hardwarocooceptp
-7- block diagram r

Decomposition of the blocks into cells
Layout of primitive cells

Composition of cells

Chip mask

Fig. 1. Chip design process.

A. Ligtenberg et al. / MOVAL: A framework for turning algorithms into chips

but problems occur as designs approach the MIT 1
level. There are two major bottlenecks in current
custom chip design: the verification of the design
steps (the hardware architecture, the layout and
the chip) and the manual layout process (a poten-
tial for a large number of human errors). An even
more important factor for a succesful chip design
is the analysis and adoption of the algorithm for
the specific-purpose custom chip implementation.
Until now, algorithm analysis, within the context
of custom chip implementation, has not had much
attention. One reason for this is that, on the one
hand, a 'hardware specialist', without detailed
knowledge of signal processing techniques, is
doing the design given a specific algorithm. On the
other hand, signal processing oriented engineers
have not had the knowledge necessary for chip
design. In the future, it will be beneficial if both
hardware and digital signal processing oriented
knowledge are merged. This will allow a single
person to understand the complete job, from
analyzing the algorithm to designing a chip.

Some of these bottlenecks are addressed in [13],
where custom chips containing up to MITs need
to be produced and fabricated within one month
using a team of specialists. These challenges are
well recognized, and reflected in the steadily grow-
ing literature on silicon compilers [9, 10], CAD
tools [7], and VLSI expert systems [1].

One approach to implementing digital signal
processing algorithms is to make use of a fixed
architecture found, e.g., in a general purpose
digital signal processor chip. The performance (in
terms of computational power) of this kind of
implementation can be improved by generating a
specific purpose processor or processors [2, 8]. In
both cases, the algorithm is implemented in soft-
ware. Depending on the algorithm, specialized
hardware modules and/or a reduced instruction
set can be used. All these implementations suffer
from the Von Neumann bottleneck. This bottle-

t Instead of the term VLSI, a more precise definition involving
the number of integrated transistors is used in this paper. KIT
and M IT stand for chips containing Kilo Integrated Transistors
and Mega Integrated Transistors, respectively.

121

neck is not present in a data-flow architecture,
where the memory and the control are distributed
in the architecture. A special type of data-flow is
a systolic architecture [4]. These architectures are
characterized by synchrone execution of identical
and simple processing elements. This regularity
has the advantage that it simplifies the design task.
Broadening of the class of systolic architectures
can be obtained by allowing all kinds of processing
elements in one design. However, the implementa-
tion of an algorithm using the most effective pro-
cessing element considerably increases the com-
plexity of the design task, and forces the use of
high level design tools.

This article presents a design methodology for
efficiently mapping digital signal processing
algorithms into custom chips. In Section 2, the
proposed concept, called MOVAL, is described.
Section 3 deals in more detail with the abstraction
levels and the trade-offs introduced by the concept.
Some aspects of analysis, verification, and syn-
thesis are described in Sections 4 and 5. In Section
6, the design methodology is demonstrated with a
case study based on the design of a fast Fourier
cosine transform (FFCT) chip [11], which has been
designed following the lines proposed in this
paper.

2. The MOVAL concept

The MOVAL framework is based on six major
concepts. First, the human designer must have the
possibility to interact with the system at every level,
because his insight is essential to obtain high per-
formance chips. Second, the system integrates
analysis, layout synthesis and verification. This
integration simplifies but also unifies the mapping
of algorithms into chips, and is necessary to reduce
design time. Third, use is made of the generator
(parameterizable super-cell) concept which pro-
vides a layout correct by construction. Human
layout, which is one of the time-consuming and
error-prone design steps, is replaced where pos-
sible by automatic generation. Fourth, hierarchical

Vol, 11, No. 2, September 1986

122

abstraction levels are used to separate trade-offs
and to simplify the implementation task. Fifth, the
same high level language, currently "C", is used
for the first four abstraction levels. The advantage
is that the correctness of the implementation can
be verified using a mixture of abstractions levels.
Sixth, the correctness of successive levels is pro-
vided by automatic cross-checking. The advantage
is that errors are detected in the earlier stages of
the implementation.

Based on these concepts, a structured design
methodology is provided. It consists of seven
abstraction levels, each of which adds more
detailed information:

(1) the behavioral (functional description writ-
ten in the programming language "C"),

(2) the data representation (adding precision
and accuracy information implemented by C-
modules),

(3) the space/time (adding bit serial/parallel
and concurrent/sequential information),

(4) the hardware (adding timing and control
information),

(5) the symbolic layout (adding geometric
information, using MULGA layout system),

(6) the mask (adding technology information),
(7) the chip.

These levels provide a hierarchy, which is thought
to be necessary to handle the design of complex
custom chips. Furthermore, it allows efficient
separation of the design trade-offs. MOVAL, which
is the proposed framework, supports these abstrac-
tions levels and is written in a single language: It
merges analysis, layout-synthesis and verification.
Analysis is an interactive process, the results of
which are reflected in the structure of the descrip-
tions at every level. The layout is (semi-) automati-
cally synthesized from the MOVAL hardware
description. Verification is applied to each of the
levels and is performed automatically. The func-
tion of the different domains is described next.

3. Levels of abstraction and analysis

From design specification to chip implementa-
tion is a difficult problem, throughout which
Signal Processing

A. Ligtenberg et at / MOVAL: A framework for turning algorithms into chips

different kinds of trade-offs must be made and
where one has to manage voluminous amounts of
complex data. To realize the transition of idea to
chip, a partition of the problems can be useful.
The proposed division of the problem and sub-
sequently the hierarchy of abstraction levels differs
from what is generally applied (from block
diagram to logic to switch level). MOVAL is an
attempt to realize this by introduction of hierar-
chical implementation levels. Successive levels
contain all the information of the previous levels
adding further specifications, obtained by the
analysis of a single aspect. The concept is that at
every level the designer will refine the idea and
analyze a single trade-off. This approach is admit-
tedly suboptimal, because it tries to find an almost
optimal solution for one aspect instead of for all
the aspects at the same time. However, most of the
aspects can be considered as orthogonal and can
be optimized independently. Furthermore, none
of the existing methods uses a structured way to
handle custom chip trade-offs. For a structured
approach, it is important to break the design pro-
cess into the basic elements (abstraction levels)
and to analyze the role of each element (trade-offs).

3.1. The behavioral domain

In the behavioral domain, the initial description
of the algorithm is found, as well as the refinements
to adapt the algorithm for custom chip integration.
The major characteristics of the behavioral domain
are the following:

(1) The algorithm is written at a high level of
abstraction, thus allowing a simple and compact
form.

(2) The precision of the data can be regarded
as infinite, thus making rounding and truncation
errors negligible.

On this level, different ways to express the idea
need to be studied with respect to its signal process-
ing characteristics and implementation suitability.
Mostly the designer concentrates on the reformula-
tion of the algorithm to tailor it to custom chip
implementation. Depending on the application,
insight must be gained in the signal processing

A. Ligtenberg et al. / MOVAL: A framework for turning algorithms into chips

features of an algorithm, for example, bandwidth,
computational aspects, noise immunities and so
on. Once an algorithm has been chosen, it is impor-
tant to reduce the number of operations and the
communication costs. A data flow diagram is
appropriate for reflecting both aspects.

3.2. The data representation domain

At the second abstraction level, one specifies:
(1) the data representations (fixed point un-

signed, two's complement, floating point, etc.), and
(2) the number of bits of each data path.

This means that the resolution and accuracy of the
implementation will be fixed. The effects of the
choices can easily be computed by comparing the
results of the data representation description with
those obtained with the behavioral description.
Results can be shown in error histograms or, when
human senses (image, sound) are at the end of the
chain, directly presented to a human being.

The data representation description is obtained
by replacing the arithmetic operations of the
behavioral domain by procedures describing these
operations. Floating point variables are replaced
by variables with a data structure. The data struc-
ture contains the data representation, the number
of bits and the actual bit values. Fig. 2 illustrates
this for the simple example of a multiplication
performed with two's complement coding. The
multiplier structure is derived by modifying the
Baugh-Wooley algorithm as shown in Appendix
A.

A mask function is used to truncate or to round
the output variables. This can be required to avoid
data length explosion, for example, multiplying an
N-bit word with an M-bit word results in an
(N + M)-bit answer.

3.3. Space/ t ime domain

The space/time trade-off is an always reoccur-
ring and important phase of the design. It applies
to every operation one wants to implement. One
chooses to process the data concurrently or
sequentially. Concurrent processing is limited by
chip area (for example, if a single chip can hold

123

four 16 x 16 multipliers, this gives an upper limit
on the number of parallel operations). Sequential
data processing implies that operators are shared
in time. Furthermore operations can be performed
bit serial or bit parallel. The choice is partly deter-
mined by the throughput specifications. If the
specifications allow latency, then pipelining can
be appropriate to increase throughput.

Unfortunately, there exists no generally accep-
ted criterion to express chip performance and to
optimize the space/time trade-off. Therefore, a new
chip performance measure named FAMMS (full
adder operation per squared mm second) is pro-
posed. It is a similar type of measure as the ones
used to express computer performance (number
of FLOPs, floating point operations per second).
FAMMS relates the number of operations per time
unit to the silicon area needed for it and expresses
the computational power of the silicon area. It
reflects the trade-off between bit serial and parallel
arithmetic as well as concurrent and sequential
processing. For digital signal processing it turns
out to be a very useful measure, because digital
signal processing can be thought of as performed
with two basic elements only: operations (full
adders) and memory (registers).

3.4. The hardware domain

It is at this level that clocks and control signals
must be analyzed and specified. The resulting
description establishes a one-to-one logical rela-
tion with the chip. It allows a (semi-) automatic
synthesis of the layout. Furthermore, the hardware
description allows the possibility of accessing
every node in the circuit. It is used for the gener-
ation of vectors to verify the correctness of the
symbolic layout, the mask and the chip and couples
analysis, layout-synthesis and verification.

4. Layout-synthesis

Efficient fully automatic layout of digital pro-
cessing algorithms has yet to be achieved. Our
layout strategy [5] relies on human assistance to

Vol. 11, No. 2, September 1986

124 A. Ligtenberg et aL / MOVAL: A framework for turning algorithms into chips

mult,2c(x, y, OUt')

* Input':
* Out,put,:

x - multJpller
out '- result'

.y- multJpIIcsnd

DATA
begin

*x, *y~ *out';

BIT b, *sum, *carry, xcarry, xsum;
In¢ row, col, xmax, ymsx;

xmax = x->n;
.ymsx = .y-> n;

* number of x bits
* number of y bits

end

* Inltlallzat,ion row = O;
for (col=O; co l<xmax- t ; ++co l)

and (4bsum[col]., y-~>b 1; [Irow], x- > blf,[col]);
na nd(~sum[col], y- ~> bit,[row], x- ~> bit,[col]);
out,- > bit,[row] = sum[O];

row = 1; * mult,lplicat,lon steps
rot (co l=o; co l<xmzx-z; ++col.) {

If (xmax ! = ymax ,~,l,_ {col = = xmax-2 IJ col = = ymzx-2))
, ndh i t (x - > bit'[col], y-;> bit,[row], sum[col+t] ,

/t, sum[col], ~csrry[col]);
else

andhaO (x - > b i t [col,] y->bi t , [row], sum [col+t] ,
a~.su m[col], at.ca rry[col]);

}
nand ~sum col , y-.>blt ' row, (. [] ,~] x->b,t,[co,]),
out,-> bit,[row] = sum[Ol;
for (row=2; row<ymax- t ; ++row) {

for (co l=0; co l<xmax- t ; ++col) {
([1 [1 andfa x->bi t , col , y->bit, row, sum[col+t] , carr.y[col],

~sum[col], a,.carry[col]);
}
na nd(~sum[col], .y- > bit[row], x- > bit,[col]);
out , '> bit,[row] ~- slim[O];

}
COl--0; col<xmax-1; ++co l) {

ror (%snd fa x-~> bit, col , y-~> bit, row , ([] [] sum[col+t] , carr.y[col],
&sum[coil, &carr.y[col]);

}
and(~,sum[col,I] .y->bit,[row,] x- > bit,[col]);
out,-> bit,[row] = sum[0];

If (x - > n = = y - > n) * final tipple carry adder
halfaddt(carr.y[O], sum[l] , /t.xczrr.,v, /t.xsum);

else
halfadd0(carr.y[0], sum[t], ~xcarr.y, ~xsum);

ouC-~>blt,[.ymax] = xsum;
for (co l= t ; col<~'xmax-1; ++co l) {

fa (carry [col] j sum [col-I- t], xca rr.y, ~xca rr.y, ~,xs um);
out,- > blt,[col-l-ymax] = xsum;

}

out,->n = xmax +),max;
out,- > rep resent, ~ x- > represent,;

Signal Processing

Fig. 2. Software description for a two's complement parallel multiplication.

A. Ligtenberg et al./ MOVAL: A framework.for turning algorithms into chips

improve the performance of automatically gener-

ated layout. The assistance of powerful design
tools plays an important role in obtaining a satis-
factory floorplan, in laying out specific cells or in
improving the routing. The approach used for
automatic layout is illustrated in Fig. 3.

The fundamental tools are generators and
routers. Parameters for generators are defined
depending on their function. Specifications for
arithmetic operations or mathematical functions
include the functional parameters (data rep-
resentation), the speed requirements (space/time),
and the geometry of the silicon area (fioorplan).
Routers must be capable of routing at the symbolic

as well as at the mask level. They obtain a connec-
tion list from the hardware description.

5. Verification

The ultimate design goal is to produce a working
chip in a timely manner. Therefore, it is important
to detect errors as early as possible. To do so, the
descriptions at the successive abstraction levels are
verified for their functional correctness as soon as
they are accomplished by comparing the results of
the current abstraction level with a higher level.

125

This comparison is done automatically by using

the same input data and checking the results.
There are different methods of generating input

test data. Interactive generation by the human,
where an interface is used, allows the input of
decimal number representation. Other possibilities
are the use of waveform generators or real world
data. To verify the correctness of the layout, one
can use a switch level simulator for the functional-
ity and more accurate simulators for timing. The
input of all of these is the same as the input to the
first four MOVAL domains. The hardware domain
gives us the possibility of finding the correct results
for every node. Thus, in theory, all nodes can be
checked for correctness. Once the chip is back, the
same procedure is valid, as above. The verification
approach is illustrated in Fig. 4. Unmatched
verification results indicate errors at the abstraction

level under test and need to be corrected before
proceeding with the implementation.

Another important point is that MOVAL also
allows a multi-level mode simulation. An algorithm
can be described at different levels. For example,
a portion exists only in the behavioral description,
another has been laid out, and another part already
exists as a chip. The MOVAL concept allows the
integral verification of all these parts at the same
time by mixing the different levels.

algorithmic description application requirements
mnguage

Fig. 3. Schematic of automatic layout tools.
Vo|. 11, No. 2, September 1986

126

?

A. Ligtenberg et aL / MOVAL: A framework for turning algorithms into chips

/I ° ° M " "

JT SPACE/SPEED DOMAIN
; YES 283 [.~ , . ~ I

YES
I " ~ SYMBOU~LAYOUT ~ --

!

MAsK

i
!

'WORKING CHIP'
Fig. 4. Verification methodology of MOVAL's abstraction

levels.

6. An example

As an example of the presented methodology
(MOVAL), the crucial steps in the implementation
of an eight-point discrete cosine transform
algorithm for image data compression are
described.

6.1. Behavioral level

The discrete cosine transform of length N for a
real vector x(0), x (1) , . . . , x (N - 1) is defined as
[3]

N-] (2"rr(2n+l)k)
DCT(N, x):= x(n) cos\ ,

k = l , 2 , . . . , N - 1 . (1)

For k = 0 there is an additional scaling constant
of ½~/2.

Direct implementation of equation (1) requires
O(N 2) operations. Therefore, fast algorithms
requiring O(N log N) operations are better suited
for implementation. In the VLSI context, for fixed
point arithmetic, the area needed for an adder is
negligible in comparison to the area occupied by
a multiplier. Thus, an algorithm requiring a
Signal Processing

minimum number of operations was developed
[12]. Its software image is written and checked
with the DCT definition. To prove the correctness
of the implementation, it is sufficient (due to the
linearity property) to compare the results for the
basis vectors.

Further refinements of the algorithm are made
by inspecting the data flow diagram. A rough area
estimate shows that some of the operators must be
shared. A full concurrent implementation would
require twelve multipliers and thirty adders. To
share operators, regularity needs to be improved
by adapting the data flow, as shown in Fig. 5.

6.2. Data representation trade-off

The next step is to select a proper data rep-
resentation and fix the data width. In our case, a
two's complement representation is chosen for all
the variables. This is because the input data is only
eight bits (image), which eliminates the need for
floating point arithmetic. Furthermore, two's com-
plement coding provides an efficient implementa-
tion of arithmetic operations. These choices are
translated into a new software image, adapting the
behavioral abstraction level into the data rep-
resentation abstraction level, where explicitly two's
complement code and a fixed number of bits are
used. This is illustrated in Fig. 6 for a rotation
(major part of the algorithm).

The correctness of this new description is com-
pared with the behavioral model. Having the
behavioral and data representation description of
the algorithm, an analysis can be made of the
effects of rounding and truncation.

6.3. Space/time level

Once data representation and width have been
fixed, one has to analyze the space/time trade-off.
This includes two major choices: first, the number
of concurrent processing elements must be deter-
mined and, second, one has to decide between bit
parallel or bit serial arithmetic. Throughput
specifications aiming at least 100 Mbit per second
lead to a choice in favor of bit parallel processing

A. Ligtenberg et aL / MOVAL: A framework for turning algorithms into chips 127

(a)

Xo (~ Y4
x , \ l \ I X ¥o

X3 Y6 x4~Y~
X 5 Y7
x6 Y3
X7 Y5

(b)

Xo Y4

X2 Y2
X 3 X Y6

X4 Y'I

IA\
x , / / / \ ® N

X Yo=Xo+XI ~ Y : X/./'2 " ~ Yo=Xosina +Xtc°sa
Yt = XO - XI YI : XoCOSa - Xlsina

Fig. 5. Data flow diagrams before (a) and after (b) the transformation.

and heavy pipelining. It is obvious by inspection
of the data flow diagram that pipelining can be
achieved by separating the algorithm into six
different stages. Each stage consists of registers, a
permutation network and arithmetic operations,
as illustrated by Fig. 7.

Given the maximum chip size (36 mm 2) and the
size of a bit parallel multiplier (10x 12 bits 1.2x
0.8 mm2), it was decided to operate on two samples
in parallel. This allows a rotator (the most complex

ro~alx)r
In: In1~ In2~ radlins;
OUt,: out l j out2;
bsgl n

DATA ~sum~ ml, rn2, m3;
B I T el;
DATA c0j cl , C2;

end

cl = 0;
lookup(ridlins~ ,It, cO, 8t, C1~ ,1~C2);
Idd(Inl, In2, el, ~taum);
mask(~ktsum~ ~t, sum, 1, NBITS);
mul~2c(Inl, &c0, ~ml);
mlsk(~ml~ ~kmlj NBI'I'S, 2*NBITS-1);
mult2c(&taurn, &¢1, &m2);
m|sk(Jkm2, ~m2j NBI'I'S-I~ 2*NBITS-2);
mull~2c(In2, &¢2, b-m3);
m|sk(&m3~ &m3 t NBI'I'S t 2*NBITS-1);
=dd(&m2, =mS, ¢i, oust);
=dd[~ml, ~m2, ¢lj out2};
m-,sk(out,1, out, l , O~ NBITS-Z);
m|sk[out2j out2, 0j NBITS-1);

Fig. 6. Description of a rotator at the data-representation level.

operator implemented with three multiplications
and two additions) to fit in the width of the chip.
Next, the software image is arranged so that the
bit parallel operations are shared (Fig. 8). The
correctness is checked against the data-representa-
tion description.

6.4. Hardware level

At this stage, the software image is completed
with memory elements, buffers, clock and control
logic as well as clock and control signals. A
graphical representation, and the code for the first
stage of the algorithm are shown in Fig. 9.

The created software image specifies every node
and is unique. A two phase clocking scheme is
used. The maximal clock rate is determined by the
path delay in the multiplier, simulated as 150 ns.
From the hardware description, the semi (-auto-
matic) layout can be produced. Software pro-
cedure-based generators are used for layout syn-
thesis of operators, such as multipliers and adders.
A connection list, derived from the hardware
description, forms the input for routers. A set of
test vectors is generated, specifying each bit at
every observable node in the circuit (Fig. 10).

6.5. Layout

The MULGA design system is used to manipu-
late the symbolic layout as well as the mask. The

Vol. 11, No. 2, September 1986

128 A. Ligtenberg et aL / MOVAL: A framework for turning algorithms into chips

• . . :

I :

I - \

i .

stage_l stage2 : I stage_3

i.

i .

: stage 4
.-7'
: stage_5

]

: stage_6

permutations

additions

subtractions

permutations

additions

subtractions

permutations permutations

multiplications additions

subtractions

permutations permutations

rotations

Fig. 7. Block diagram of the FFCT chip.

X 0

Xt

~ MULTIPLIER ~--~I'~ ~ YO

S ? I rlq i ~ 6 - ~ MULTIPL fER F ~ I

?
I-c°s(a} -sin(a)l R: REGISTER

}
(a) end

rot`ltor
In: In1, In2;
out,: radlans, out,l, out,2;
be~n

DATA t, sum, ml, m2, m3;
BIT ¢1;
DATA cO, cl, c2;
DATA d0, dl, d2;
Int, I;

Cl ~---- 0;
for (1~0; I<~NCYCLES; ++1) {

rom_d(rldllns, /t, c0, ~,¢1, /t,¢2, phil[I], phl2[I]);
|rid(In1, In2, cl, /gtsum);
mnk(A'tsumi &t~um, 1, NBITS),
reiL2phsse(st,ltel , Inl, Inl, phil[I], phl2llD;
retL2phlse(st, lt`e2 , J,t`lum, J, tlum, phlX[I], phl2[ID,
relL2phsse(st` l teS , Ing, In2, phil[I], phl2[ID;
mulW.c(Inl, ,t.c0, a[.ml);
mask("m1, J'mlj NB1TS, 2*NBITS-1);
mult,2c(&tlum, arc1, J, m2);
rnask(Jkm2, B.m2~ NBITS-1, 2*NBITS-2);
mult,2c(In2, ,IP,¢2, &~m3);
mlsk(m'mS, &n'13, NBITS, 2*NBITS-1);
rsc.2phsss(s.~4, "ml, "rex, pha[q, phl2[I]);
rsc.2phsN(mt~S, ",m2, ~,m2, phlZ[i], ph02[iD;
rslL2phlsl{st`ste6 , ~m3, &m3, phll[I], phl2{I]};
add['em2, &t, m3~ cl~ out,l);
|dd(&ml, ~m2, el, out,2);
mask(out, I, out`l, 0, NBITS-1);
mllsk(out`21 out,2, 0, NBITS-1);

(b)

Fig. 8. Block diagram (a) and corresponding software image for the rotator (b).

advantage is that in writing generators one does
not need to worry about design rules. Thus, our
generators are technology-independent• The syn-
thesis o f the layout is based on module generators.
According to a specific floor plan, cells from a cell
library are tiled to obtain the layout• Cells can be
defined in symbolics or in mask. If use is made of
Signal Processing

a symbolic layout, the M U L G A system takes care
o f converting them to mask• The input parameters
o f the generators are: area, aspect ratio, maximal
delay time, and the data representation require-
ments (code and number o f bits). Fig. 11 illustrates
the automatically generated layout of a 10 x 12 bit
parallel multiplier•

A. Ligtenberg et al. / MOVAL: A framework for turning algorithms into chips 129

Oa Oa

e e
i e
, !

" - - e .~-r -

~ . .~-r -
~ - - - ~ -

Le e - r -
ue , ~ - r - -
~ , . - - -

t

o
g

o
o

I

I

_ ' k . _
!

I

O

--,'I"--
|

--,'l.--
o

q..
!
!

o o

- - I V ~
~ ! , ~ , / ,

_ I A V

_ i',~" "o__'"

,__/ __,

I I
I !
, !

J - S ,
!

I ~ ,
I

tegi$~ copy t e O ~
~erial/l~u~el I~rldlel/~ill

t~- ' :
,0

KIditioa s ~ t r ~ i o a lavetdaa

BIT phl [RT] = { 1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0 };
BIT ph2[RTI ---- { 0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0 };
BIT cp[RT] = { 1,0 };
BIT phZl[RT] ~-. (1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 };
BIT ph22[RT] = ~ 0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0 2;
BIT pZcPtRTJ = ~. 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 j~;

In¢ clk;

stage1
In: In
OUt: out1, out2

begin
DATA
DATA
DATA

regp[NSAMP]; / * output conversion from serial in parallel * /
perl [NSAMP/2], per2[NSAMP/2];
s l , s2;

end

for(c lk=0; clk<~RT; --P-I-clk)
{

reg_2phase shift(state1, regp, ~,-In, phl[clk], ph2[clk], NSAMP);

permutsz(regp, per1, per2, cp[clk]);

reg_2phase_ps(sl;at, e2, ,e,-sl, per1, ph22[clk], plcp[clk], cp[clk]);
reg_2phase_ps(state3, &s2, per2, ph22[clk], plcp[clk], cp[clk]);

=adl (~ l , ~s=, o, ~outl);
subl(a~sZ a St, s2, 1, ,St, out2);
mask(-e~out,1, ,~.outl, 0, NBI-I-S-1);
mask(Ja,.out,2, ~'-out,2~ 0j NBITS-1);

Fig. 9. Graphical representation as well as the software code for stage 1.

Vol. l l . No. 2, September 1986

130 A. Ligtenberg et al./ MOVAL: A framework for turning algorithms into chips

Example of human generated input vectors (samplel, sample2, degrees)

100 100 0
100 100 0.5
100 100 45
100 100 90
100 100 180

Automatic generated test vectors for a functional simulator

rotator
5
5 phil 1 0 phi2 1 0 inl 10 2 in2 10 2 alpha 10 2
2 outl 10 2 out2 10 2
0 1 0010011000 0100110000 0000000000 0000000000 0000000000
0 0 0010011000 0100110000 0000000000 0000000000 0000000000
1 0 0010011000 0100110000 0000000000 0000000000 0000000000
0 0 0010011000 0100110000 0000000000 0000000000 0000000000
0 1 0010011000 0100110000 0000000000 0001100000 0011000000
0 1 0010011000 0010011000 0000000100 1001100000 1001100000
0 0 0010011000 0010011000 O000000100 1001100000 1001100000
1 0 0010011000 0010011000 0000000100 1001100000 1001100000
0 0 0010011000 O010011000 0000000100 1001100000 1001100000
0 1 0010011000 0010011000 0000000100 1111111111 1100010000
0 1 0010011000 0010011000 0000000001 1111111111 1100010000
0 0 0010011000 0010011000 0000000001 1111111111 1100010000
1 0 0010011000 0010011000 0000000001 1111111111 1100010000
0 0 0010011000 0010011000 0000000001 1111111111 llO00IO000

Fig. 10. Set of automatically generated test vectors for the rotator.

Fig. 11. Example of an automatically generated multiplier
module.

Once the complete layout has been created, one

verifies it automatical ly using the test vectors gen-
erated with the hardware description. Multi-level

verification is achieved by substituting a software
module with a model obtained from the layout.
However , errors are quite unlikely, if the layout is

automatical ly created with generators.

Signal Processing

7. Conclusions

A discipline, MOVAL, for dedicated digital sig-

nal processing custom chip design is proposed.

M O V A L integrates analysis, (semi-) automat ic

layout synthesis and automat ic verification for

digital signal processing designs. This is achieved

by the definition o f seven abstraction levels: the

behavioral , the data representation, the
space/ t ime, the hardware, symbolic layout, the

mask and the chip description. The unambiguous

hardware domain description allows a (semi-)
automat ic layout, based on generators. Beside

design time reduction, the advantage is that auto-
matic layout is correct by construction. The

verification is done fully automatical ly in a sequen-
tial fashion, starting at the behavioral level and
going all the way down to the chip. All the levels
are written in the same language (C), which has

the advantage that it allows multi-level mixed

A. Ligtenberg et al./ MOVAL: A framework for turning algorithms into chips

mode testing. Different from other methods,
MOVAL emphasises on analysis during the design
phase to produce high-performance chips.

In the present authors' opinion, the only way to"
handle 'complex' (KIT or MIT) custom chips is
by a structured method such as MOVAL. It pro-
vides the designer with a top-down design disci-
pline and allows him or her to handle efficiently
the trade-otis required for high performance cus-
tom chips.

131

Only a small part of MOVAL is constructed yet.
Much work remains to be done to bring MOVAL
to maturity.

Acknowledgment

We thank Bill Ninke for his continuous support
and Path Hayes whose comments on an earlier
draft have improved this paper.

Appendix A

For the CMOS implementation of a two's complement multiplier, the derivation of a regular structure,
which minimizes communication is important. Such a structure can be achieved by reordering and merging
different terms. Let X and Y be the values of the multiplicand and the multiplier respectively; then the
value of the product is

i=n--2 j = m - - 2 (i=~--2 j = n - 2 ,~ m - l + j ~ m+n-2 ,~i+j ~ n - - l + i - -
X Y = x , - l Y m - 1 2 + • E x, y j z - x,_]y,z ± E y,,llXjZ j . (A.1)

i~O j=O \ i=0 j=O

Xn Xn_ 1 Xn. 2 ,Xm. 1 Xm. 2 X 1

Y m--~~l 1 - I " I l l ? F--:7::

Fig. A.1. Block diagram of the multiplier structure.

VoL II, No. 2, September 1986

132 A. Ligtenberg et al. / MOVAL: A framework for turning algorithms into chips

Replacement of the second term by its negat ion yields

i=n-2 j=m-2
X Y = x , - l y , , , -12"+"-2 + ~ Y.

i=o j=o

(i = ~ - 2 j=n-2
+ X,-lyi2"-~+i + Y~ (A.2)

\ i =o j=o

The product is ob ta ined with summat ions only. Fur thermore , one ' s have to be added to the 2 "-2 , 2 "-1 ,

and 2 ("-1)" posit ions. Implementa t ion is achieved with and, nand , full adder (fa) and hal fadder (ha)

gates. Two types of ha l fadder gates can be dis t inguished, with a carry set to one (ha l) and with the carry

set to zero (ha0). The use of these half-adders permits the incorpora t ion of the addi t ion of one ' s into the

structure. The structure of the resulted mul t ip l ier is i l lustrated in Fig. A.1.

xiYj2 i+j

+ 2 "-2 + 2 "-~ + 2("-~)"'~. Ym_lXj2 m-l+j
/

R e f e r e n c e s

[1] B. Ackland et al., "CADRE--a system of cooperating
VLSI design experts", submitted to IEEE ICCD, 1985.

12] M.R. Buric, P. Christensen and T.G. Matheson, "Plex:
Automatically generated microprocessor layouts", IEEE
Design and Test, Vol. 1, August 1984, pp. 52-65.

[3] W.H. Chen et al., "A fast computational algorithm for
the discrete cosine transform", IEEE Trans. Commun.,
Vol. COM-25, September 1977, pp. 1004-!009.

[4] H.T. Kung, "Why systolic architectures?",'IEEE Comput.,
Vol. 15, No. 1, January 1982, pp. 37-46.

[5] A. Ligtenberg and J.H. O'Neill, "Towards an automatic
layout for digital signal processing algorithms", to be
published.

[6] B. Liu, "Effect of finite word length on the accuracy of
digital filters--a review", IEEE Trans. Circuit Theory, Vol.
CT-18, November 1971, pp. 670-677.

[7] J.K. Ousterhout et al., "The magic VLSI layout system",
IEEE Design and Test, Vol. 2, February 1985, pp. 19-29.

[8] J.M. Rabaey, S.P. Pope and R.W. Brodersen, "An
integrated automated layout generation system for digital
signal processing circuits", Proc. Custom Integrated Cir-
cuits Conf., May 1985.

[9] "Silicon compilers", VLSI Design, September 1984, pp.
44-69.

[10] J.M. Siskind, J.R. Southard and K.W. Crouch, "Generat-
ing custom high performance VLSI designs from succinct
algorithmic descriptions", MIT Conf. on Advanced
Research in VLSI, Cambridge, MA, January 1982.

[11] M. Vetterli and A. Ligtenberg, "A discrete Fourier-cosine
transform chip", IEEE J. Selected Areas in Commun., Vol.
SAC-4, No. 1, January 1986, pp. 49-61.

[12] M. Vetterli and H.J. Nussbaumer, "Simple FFT and DCT
algorithms with reduced number of operations", Signal
Processing, Vol. 6, No. 4, August 1984, pp. 267-278.

[13] P. Wallich, "The one-month chip: Design", IEEE Spec-
trum, Vol. 21, September 1984, pp. 30-34.

[14] N. Weste and B. Ackland, "A pragmatic approach to
topological symbolic IC design", Proc. 1st lnternat. Conf.
on VLSI, Edinburgh, August 1981, pp. 117-129.

Signal Processing

