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Running FIR and IIR Filtering Using Multirate Filter
Banks

MARTIN VETTERLI,

Abstract—The computational complexity of running FIR and IIR fil-
tering using multirate filter banks is considéred. No restrictions are
put on signal, filter, or block lengths. It is shown how to map long
running convolutions into smaller ones by using filter banks based on
aperiodic convolution algorithms and short-time Fourier transforms.
With the proposed approach, good tradeoffs among computational
complexity, system architecture, and input-output delay can be
achieved. v

I. INTRODUCTION

OMPUTATION of FIR and IIR filters is a central and

computationally intensive task in digital signal pro-
cessing. As it is well known, if the output of a filter is
computed for a block of samples at once, savings in the
number of operations are possible. The price to be paid,
however, is an additional input-output delay on the order
of the block size. In real-time applications, such a delay
might not be tolerable or has to meet certain bounds. Most
proposed schemes for speeding up convolutions assume a
block length that is larger than the filter size. Besides a
large delay, this also leads to complex architectures that
might be more difficult to realize in hardware than straight
convolution would be.

Our point of view will thus be to explore the speeding
up of convolution in the space of the following three pa-
rameters:

e computational complexity

¢ architectural complexity

¢ system delay.

While the computational complexity will be minimum
for large block sizes, both the architectural complexity
and the system delay are increasing functions of the block
size, thus showing that depending on the application, the
optimal block size might not be the one that leads to the
minimum number of operations. As an example, note that
small convolutions can be efficiently computed in hard-
ware (using lookup tables or distributed arithmetic). Thus,
rather than computing a long convolution by means of a
Fourier transform of greater size (resulting in a huge de-
lay), one might choose to reduce the problem to several
smaller convolutions that can then be computed in parallel
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with special-purpose hardware. Thus, both the delay and
the structural complexity are reduced.

When processing data blocks that step N samples for-
ward after each computation, one gets a periodically time-
varying system with period N. A good model of such a
system is a multirate filter bank analysis/synthesis system
with a sample rate change of N [18], [19]. The resulting
system, when working properly, should be time invariant
when seen from the outside. However, any nonidealities
(such as roundoff errors, for example) will cause time
variance to reappear, resulting in aliased versions of the
input signal appearing in the output. Therefore, a com-
plete multirate model is useful when studying such sys-
tems.

Our emphasis will be on simple algorithms since we
consider the structural complexity as one of the parame-
ters to be minimized. Most of the presented algorithms do
not reduce the number of arithmetic operations when
compared to optimal schemes. However, they seem much
more suited for hardware or VLSI implementation.

Historically, the usefulness of block processing for
computing convolutions was recognized soon after the in-
troduction of the fast Fourier transform [17]. The scheme
known as overlap add or save (since overlapping portions
of the input or output signal are involved) has been widely
described [13], [4]. A multirate filter bank interpretation
of that scheme was given by Portnoff [16}, [6]. The ap-
plication of blockwise convolution to recursive filtering
was first suggested by Gold and Jordan [9] and Burrus
gave a general approach [5]. A number of publications
has extended these basic ideas [11], [2], [12], [1], show-
ing reductions in computational complexity and reduced
sensitivity to roundoff noise.

Our presentation will go as follows. Section II intro-
duces briefly the concept of a multirate system that will
be used in later sections. Section III shows how aperiodic
convolution algorithms can be used to derive multirate fil-
ter banks that will compute running convolutions more
efficiently. Section IV presents multirate filter banks based
on the short-time Fourier transform. This leads to overlap
add/save schemes with no restrictions on block lengths.
Section V considers recursive filtering and presents a sim-
ple algorithm that is efficient for most recursive filters of
interest. Finally, Section VII points to aliasing effects that
can appear in block processing algorithms.

Note that in the following, linear and running convo-
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lution are used synonymously to indicate (noncircular)
convolution of an infinite signal with a finite or infinite
impulse response filter.

II. MULTIRATE SYSTEMS

A digital signal processing system that works on blocks
of data points, but advances by N samples between each
successive processing step, performs essentially a sub-
sampling of N on its internal variables. When the system
is correctly designed, this subsampling has no effect on
the output of the system (a typical example is the overlap
method of fast convolution). However, in case of non-
idealities, the system will show a periodically time-vary-
ing behavior (with period N ), and aliased versions of the
input signal will appear at the output [15], [18], [19].

A general multirate analysis/synthesis filter bank with
M filters, subsampling by N, and channel modification is
shown in Fig. 1. This is quite a general, yet simple, model
for block processing algorithms. Below, we will derive
systems of this type that will efficiently implement fast
convolution algorithms for infinite input signals.

Recall that when a signal x(n) with z transform X(z)
is subsampled by N to yield a signal y (n) with z transform
Y(z), then [6]

N-1
1 .

Y(z) = 50 2 X(W'N), Wy =N (1)
Conversely, if y(n) is obtained by upsampling x(n) by
N, then

Y(z) = X(2"). (2)

Using relations (1) and (2), one can verify that the out-
put of the block processing system depicted in Fig. 1 can
be written as (see [18], [19] for details and note that bold-
face is used to denote vectors and matrices)

M) =5 (6] CE" - () - 5l2) (3)

where
£(2) = [G(2) Gi(2) -+ Gu1(2)]"  (3a)
is the vector of output filters,
C(z") = diag [Co(z") C1(2") - -+ Cur(z¥)] (3b)

is a diagonal matrix containing the channel filters [note
that these filters have Nth powers of z in (3)],

H,(z) = [h(z) R(Wyz) - - - (W)™ '2)]  (3c)

is the modulated filter matrix containing the input filters
and their modulated versions [following (1)],

h(z) = [Ho(z) Hi(2) + -+ Hy_,(2)]"
is the vector of input filters, and
xn(z) = [X(2) X(Wyz) - - X(Wh ")) (3e)

is the vector of modulated input signals [following (1)].
While (3) might seem complex at first sight, it represents

(3d)

@)

Fig. 1. M channel analysis/synthesis filter bank with subsampling by N
and filtering of the channel signals. The subsampling by N is equivalent
to moving the input by N samples between successive computations of
the output.

a complete characterization of the block processing sys-
tem of Fig. 1. Systems of this type have been analyzed in
[18], [19] from where we state the following result with-
out proof.

Minimum Delay Property: An analysis/synthesis sys-
tem with down/upsampling by N produces a delay of at
least N — 1 samples if all filters involved are causal.

This property gives a lower bound on the input-output
delay that will be achieved when using block processing
algorithms. Note that the processing time is not taken into
account, and would thus be added to this minimum delay.

III. FILTER BANKS BASED ON APERIODIC
CONVOLUTION ALGORITHMS

Efficient aperiodic convolution algorithms are based on
good ways to evaluate polynomial products [13], [4]. It
will be shown here that the polynomials can be z trans-
forms of infinite signals, thus yielding good running con-
volution algorithms. Let us start with a simple yet useful
example. Assume a three-channel filter bank with sub-
sampling by 2 and with the following filters:

h(z)=[z 1+, 1] (4a)
C(2%) = diag [Hy(2%), Ho(z?) + H,(z%), H,(z%)]
(4b)

2 (4¢c)

glz)=[1-z"%2"2
From (3), one can verify that Y(z) equals
Y(z) = [z7' - Ho(2%) + 272 - Hi(Y)] - X(z). (5)

Note that the aliased version of the input [the term with
z transform X( —z)] has disappeared in (5). Now, given
a desired filter with z transform H(z), one chooses Hy(z2)
and H, (z?) in the following way:

Hy(z%) =1 - [H(z) + H(-2)] (6a)

H\(2%) =4z [H(z) - H(-2)].

When H(z) is a length-2K FIR filter, then the two fil-
ters in (6a), (6b) are FIR filters of length K. Using (6) in

(6b)

N
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(5) leads to
Y(z) = z7' - H(z) - X(2).

1

(7)

Thus, at the cost of one delay of z7°, the filtering by
H(z) has been replaced by three filterings of half length
and at half speed, that is, a gain of 25 percent in the num-
ber of multiplies per output sample. The algorithm is
schematically shown in Fig. 2. Note that the input filter
bank uses one addition per two input samples (because of
the subsequent subsampling by two), while the output fil-
ter bank takes three additions per two output samples (be-
cause of the previous upsampling by two). Obviously, one
can apply the algorithm again to the three subfilters, as-
suming that the delay is still tolerable. Table I shows the
number of operations for computing the convolution of an
infinite signal with a 32-tap FIR filter and using various
breakups into smaller filters. The additional input and out-
put additions might lead to the need for more bits of pre-
cision, and thus the gains would be diminished accord-
ingly.

Note that when the original filter is symmetric or anti-
symmetric (an important case in practice), then the simple
technique of pairing input samples corresponding to equal
filter coefficients will reduce the multiplicative complex-
ity by 50 percent. In this case, the reduced computation
is not a convolution any more, making additional savings
impossible. The technique proposed in (4) does not take
full advantage of the filter symmetry (only one out of the
three reduced filters is symmetric). Nevertheless, as
shown in Table I, it will eventually outperform the pairing
technique when iterated sufficiently. Note also that spe-
cific techniques can be developed for symmetric/antisym-
metric filters where the reduced filters are still symmetric/
antisymmetric (see [4, Sect. 9.4]).

The tree structure that appears when applying the al-
gorithm recursively can lead to a complex architecture.
One can instead expand the tree into parallel filters [8].
The filters appearing in the middle are the same as in the
corresponding tree. The filters of the analysis and synthe-
sis banks are obtained by passing filters on the other side
of sampling rate changes (see [6] for details). Take, for
example, a two-step radix-2 tree. An equivalent parallel
bank will have nine filters, a subsampling by four, and
channel filters of length one-fourth of the original filter.
The filters of the analysis bank are obtained by

h'(z) = h(z) ® h(z?) (8)

where ® denotes the Kronecker product [4] and h(z) is
as in (4a). A similar relation holds for the vector g(z) in
the synthesis bank.

Note that a radix-4 tree could be built directly from an
optimal four-point aperiodic convolution algorithm. This
would lead to only seven filters of length one-fourth (in-
stead of nine as discussed above), but the number of ad-
ditions is tripled. Actually, an optimal aperiodic convo-
lution algorithm for two sequences of length M and N
requires M + N — 1 general multiplications [13]. This
means that even with small lengths filters, one can lower

o FeH wa e e
1or H@){ e Heo =

Fig. 2. Fast running convolution based on the two-point aperiodic con-
volution algorithm. The length-2K running convolution has been re-
placed by three length-K running convolutions at half speed.

TABLE 1
COMPUTATION OF THE RUNNING CONVOLUTION WHEN THE FILTER IS A 32-
PoINT FIR FILTER. COMPARISON OF THE VARIOUS BREAKUPS INTO SMALLER

FILTERS

Mult./ Add./
Method Subsampling Delay Point Point

1 32-pt. FIR filter 1 0 32 31
3 16-pt. FIR filters 2 1 24 24.5
9 8-pt. FIR filters 4 3 18 17.5
27 4-pt. FIR filters 8 7 13.5 19.6
81 2-pt. FIR filters 16 15 10.125 21.3
243 1-pt. multiplic. 32 31 7.59 26.4

the computational complexity by evaluating more outputs
at a time (for example, if three outputs of a length-2 filter
are computed simultaneously, only four multiplies are
used instead of three for two outputs). However, these
algorithms become cumbersome in terms of the number
of additions and their architecture is more involved.

Below, we show how to construct in general a multirate
running filtering algorithm from an aperiodic convolution
algorithm. The following property holds.

Running Filtering Property of Multirate Filter Banks
Based on Aperiodic Convolution Algorithms: Given is an
aperiodic convolution algorithm for length-N sequences
that requires M multiplications (M = 2N — 1). In order
to process an infinite signal with a FIR filter of length KN,
one can use a filter bank of size M, subsampled by N, and
having length-K channel filters. That is, the length-KN
convolution is replaced by M length-K convolutions and
at rate 1/N.

Proof: We decompose all signals into their poly-
phase components of order N [6], [18], [19], that is,
N-1

X(z) = 227" - X,(2") (9a)
N—-1

H(z) = X 27" - H(2") (9b)
N—-1

Y(z) = EO 27" Y(2Y). (9c)

Then, we evaluate the product X(z) - H(z) by using
the fast aperiodic convolution algorithm, that is, we ob-
tain the following product terms:

]
P, (V) = 210 X, (zVy - H_,(z") 1=0---2N-2

(10)
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where X, (z") and H,(z") are zero when n does not be-

longto 0 - - - N — 1. Now, the final output is obtained
from
YI(ZN):P[(ZN)+P1+N(ZN)’ l:O...N_]
(11)

where P, (z) is zero when [ is greater than 2N — 2. Be-
cause of (11), N — 1 additions are needed for each set of
N new outputs. Now, the evaluation of the terms of P(z)
involves only products of terms in z" (besides the phase
factors). Thus, these products can be subsampled by N.
Then, because of the fast algorithm, there are only M such
products to be evaluated, and thus the proof is completed.
Fig. 3 shows schematically how the running convolution
is computed at N times lower rate and using M reduced
filters only.

The approach just described works when using an n X
n aperiodic convolution algorithm. If one starts with an
algorithm suited for sequences of length m X n (m dif-
ferent from n), one cannot use the filter bank approach
because the subsampling of the signal and of the filter are
not equal. One can still use matrix factorizations [4], but
the intuitive interpretation of mapping a long running con-
volution into several smaller and subsampled convolu-
tions is lost.

IV. FIiLTER BANKS BASED ON SHORT-TIME FOURIER
TRANSFORMS

The short-time Fourier transform (STFT) is well known
for its convolution property when used in an overlap save
or add scheme [16], [6]. It is usually tacitly assumed that
the length of the transform (denoted by M and equal to
the number of channels of the multirate filter bank) is
greater or equal to L + N — 1 where L is the length of
the FIR filter and N is the subsampling factor of the mul-
tirate system. It is shown below that this condition is not
necessary. In fact, a short-time Fourier transform can be
used to map a filter of arbitrary length into several smaller
and subsampled filters.

Consider an overlap add scheme based on a size M Fou-
rier transform. In terms of a multirate filter bank imple-
mentation, the scheme uses the following filters:

Hiz) =z"""+z"2+ -« +z+1 (12a)
Hi(z) = 27" - H(Wiyz) (12b)
G(z)=1+z"+ -+ 4 7M1 (12¢)
G (z) = G(Wy2). (12d)

The outputs of H; (z) are subsampled by N, and since
these are length-N filters, this means that a complete set
of N new samples is used in the analysis filter bank. The
inputs to G; (z) are upsampled by N, which means that
because these are length-M filters, a new set of outputs
from the channels will overlap with M — N current out-
puts of the synthesis filter bank. The multiplicative chan-
nel modification is given by

HO(Z)..H

U

M Convolutions

y-1¢2)

Py (2) 1o (2)

X >< 1(2)

(z)

Xo(z)

X(2) >§

Xy

of size 1 at

rate 1/N

Tn-1

(z)

Pan-t

Fig. 3. General implementation of running convolution using shorter con-
volutions at slower speed. The number of small convolutions depends
on the aperiodic convolution algorithm that is used, and the computation
rate is reduced by a factor N.

1 L-1

C=—- 2 Wy- 13

i M =0 M ! ( )
where f; is a filter impulse response. An overlap save
scheme is simply obtained by interchanging H; (z) with
G; (z) in (12). In order to verify that the multirate filter
bank defined by (12) and (13) indeed performs a running
convolution when M = L + N — 1, we consider an input
at time —j (j = 0 - - + N — 1). This produces the fol-
lowing output in the ith channel after subsampling by N:

xo= Wt (14)

In the channel, this is multiplied by C; (13). At time k&,
the output of the ith synthesis filter G; (z) is equal to

L-1

2 WINTIIr=R L e (15)

yi(k) =Wy* - G- x =
=0

At time k, the total output is obtained by summing (15)
over all channels:
L-1M-1

1 AN= 1=l
y(k)y =— 2 2 wiN-ioirizh. g

Mi=0 i=o0 (16)

When the exponent of W), is not equal to zero, the sec-
ond sum in (16) is zero because of the orthogonality of
the roots of unity. Thus, the only term that does not dis-
appear corresponds to

I=k+j—N+ 1. (17)

This means that an impulse at time —j reproduces the
filter impulse response delayed by N — 1 samples. Now,
if the condition M = L + N — 1 is not respected, for
example, if L=M — N+ 1 + d, thenforj = —d + 1
-+ - 0, there will be a wraparound. That is, inputs at dif-
ferent times will have different impulse responses, result-
ing in a periodically time-varying system [15]. A similar
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analysis can be made for the overlap save method as well.
After this rapid analysis of the conventional overlap
schemes, we can state the following property of multirate
filter banks.

Running Filtering Property of Multirate Filter Banks
Based on the Short-Time Fourier Transform: Assume a
multirate filter bank of size M and subsampled by N with
analysis and synthesis filters implementing the overlap add
or save method of convolution [see (12)]. Given are M
FIR filters of length K with z transforms

Ci(z) = Coi+ Craz™' + =+ + Cgoy iz 0

(18)

Now, if the C ; are of the form
L-1

'ZWX«I'CH

1
Coi = —
kET M <o

(19)
and L < M — N + 1, then the output of the multirate
filter bank will be a time-invariant running convolution of
the input with a filter having the following z transform:

’>. (20)

That is, the impulse response has a basic delay of N —
1 samples, and is then made of the superposition of K
impulse responses of length L, each shifted by kN samples
(k=0"---K—1). Fig. 4 gives a pictorial interpretation
of (20).
The proof of (20) is relatively straightforward by using
the superposition principle. Each of the sets C¢; (i = 0
- M — 1) will produce a running filtering when applied
as a multiplicative modification in the multirate filter bank
(see (12)-(17) above). The corresponding z transform
from input to output is

k-1 L-1
H(z) =z7V*'. <Z TN 2 ey
k=0 =0

1

L-
Tk(Z) = Z_N+1 ¢ l§;0 Cu * Zil.

(21)

Now, the set C; ; is delayed by k samples in the channel
[see (18)], that is, by Nk samples from input to output.
Thus, the total transmission from input to output is ob-
tained by superposing delayed versions of T;(2):

k-1

T(z) = z7V*!- /Eo

<2 T(2) (22)
which is equal to (20). Note that only linearity was used,
and thus the result holds as well if the system is time vary-
ing. Note that the condition M = L + N — 1 is also
necessary because, otherwise, the system will become
time varying.

Assume now that one wants to filter an infinite signal
with a filter given by its z transform H(z). We want to
use a size M filter bank with subsampling by N. We re-
quire further that L in (19) is greater or equal to N or,
equivalently, that N < M/2 (M even) or N < (M +
1)/2 (M odd) since the condition M = L + N — 1 has
to be met. Typically, M is even and both N and L equal
M/2.

h(n)

n

N~-1 N N

Fig. 4. Total impulse response as the superposition of X shifted impulse
responses. In the overlap regions, the impulse responses add up.

,—@—‘Tﬂ 427

1+wiriz¥wz

Fig. 5. Running convolution using a four-point short-time Fourier trans-
form analysis/synthesis filter bank. The filters C; (z) are derived from
the desired filter H(z) following (24) and W stands for the fourth root
of unity.

In order to use the short-time Fourier transform-based
filter bank, one can decompose H(z) as follows:

K-1
H(z) = 5 (hve™ + bz

v(k+l)N+l)

(23)

where we assumed that the filter length was a multiple of
N. Now, we use the following channel filters [see (18)-

19

+ o+ hgiyn-12

N—-1

DI %

1
_ 2
M =0 (24)

Cri = 5& *
and thus, following (20)-(22), the output of the multirate

filter bank is
Y(z) = 27V - H(z) - X(2). (25)

In short, a length-KN convolution was mapped into M
length-K convolution subsampled by N, and this by using
size-M -analysis and synthesis filter banks. Fig. 5 shows a
simple example using a size-4 short-time Fourier trans-
form (note that this example is for illustration purposes
only since it does not actually improve the computational
complexity). The process can be reiterated on the subfil-
ters as well. From an architectural point of view, this
means that a single filter bank device can be multiplexed
to map an arbitrary long running convolution into multi-
ple arbitrary short convolutions (at the limit, pointwise
multiplications). ‘

Again, there is a possible tradeoff among the number
of operations, the architectural complexity, and the over-
all delay. We will show this by an example. For simplic-
ity, all signals and filters are supposed to be complex, and
we consider only transforms with lengths that are powers
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. TABLE 11
LiINEAR CONVOLUTION OF AN INFINITE SIGNAL WITH A 32-POINT FIR FILTER (BOTH ARE COMPLEX VALUED).
EXAMPLES OF POSSIBLE ARCHITECTURES

Mult./
Method Delay Point Architecture
a) Direct 0 96 Simple
b) With a 128-point STFT 96 15 Complex (128-point
subsampled by 97 FFT’s)
¢) With a 16-point STFT 7 29 Medium complexity (16-
subsampled by 8 point FFT’s)
d) Same as c) but with a fast 31 18.5 Medium complexity,
algorithm for the four- same as c) plus a
point channel filters simple fast algorithm
for the channel filters
of 2. Assume that we want to filter a complex signal with Hiz) = N(z) N(z)D'(z) (26a)
a length-32 complex FIR filter. The minimum number of (z) = D(z) - D(z") 4
multiplies is achieved by taking a length-128 circular con- o .
volution in an overlap add or save scheme [7]. This leads Where D’(z) is an FIR filter given by
to about 15 multiplies per output point. The system delay D(z")
. . - ’ -
is 96 samples, and the architecture is complex (length-128 D'(z) = D@ (26b)

FFT’s are required). Minimum delay is achieved by direct
computation, which requires, however, 96 multiplies per
output (using the three real multiplications algorithm for
the complex product). Using the multirate filter bank ap-
proach, one can devise architectures that will achieve any
desired tradeoff between these two extreme solutions.
Take, for example, a size-16 short-time Fourier transform
subsampled by 8. This leads to 16 length-4 channel fil-
ters. For eight outputs, one has to evaluate two length-16
FFT’s (20 multiplications each) and one output of each
channel filter (16 times four times three multiplications ).
This leads to 29 multiplies per output, but with a delay of
only seven samples. Now, the length-4 channel filters can
be evaluated with the algorithm of the previous section.
Using the radix-2 scheme, this leads to 2.25 instead of
four complex multiplications. The total is then 18.5 mul-
tiplications for each new output of the complete filter
bank. The delay is increased by three samples in the chan-
nel (due to the algorithm for a four-point filter), which
results in a total delay of 31 samples from input to output.
Table II compares the various schemes that where just
described.

Of course, there are many more ways to compute the
32-point running convolution (using various sizes of
STFT, aperiodic convolution algorithms, and combina-
tions thereof). The purpose of this section was mainly to
show that the traditional way to compute overlap add or
save fast convolution (by using an FFT of about twice the
filter length) is by far not the only way to speed up the
running convolution. Actually, other schemes might be
more attractive in terms of architectural simplicity and
system delay.

V. REecursivE FILTERING

If the desired filter has both poles and zeros, it still can
be implemented with a multirate filter bank by using the
following expansion [3], [6], [18], [19]:

Since the channels are subsampled by N, the channel

filters will be of the form

Cn.i(z)
where the numerator Cy ; (z) is obtained from N(z) D'(z)
with the methods developed so far for FIR filters. From a
computational point of view, the transformation (26)-(27)
does not reduce the amount of computations (actually, it
is increased since we now have M channels at rate 1/N,
M > N). However, the parallelism that is gained might
be of interest.

Methods for reducing the number of operations in IIR
filters usually assume a block size larger than the size of
the numerator or denominator filter. We will instead look
at arbitrary block sizes. Assume an all-pole filter (the pole/
zero case can be treated as the cascade of a FIR and an
all-pole filter) whose output is given by the following re-
cursive equation [14]:

y(n) =x(n) —ayy(n — 1) — - -

(27)

— ayy(n = N).
(28)

Start with N = 2, and compute two outputs at a time.
This can be written as

<y(n + 1)> ~ (x(n + 1)>
y(n) ~ \x(n)
B <y<n> ¥(n - 1)> . <>
y(n = 1) y(n—2) a
(29)

The matrix-vector product in (29) is the usual two-point
running convolution. It can be factored so as to use only
three multiplications, but only if the recursive equation is
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still solvable. Let us consider the factorization

<y(n + 1)) _ <x(n + 1)> ) <1 1
y(n) x(n) 01
y(n) —=y(n—-1) 0
0 y(n — 1)

0 0

Now, it is clear that by evaluating (30) first for y(n)
and second for y(n + 1), then the right side is always
defined. Since a; + a, is supposed to be precomputed,
(30) takes three multiplications and six additions per two
output values [instead of four multiplications and addi-
tions for a direct evaluation of (28)]. Now, if the block
size is larger, one can consider the elements of (29) as
block vectors and block matrices. Then, we get the fol-
lowing set of equations [from (30)]:

" X, 11 0 (Yo —Y)a
< >=<>_<01—1>' fula + @)
Yo o (Y, - Ya

(31)

where
w=lym+N2-1ym] (Gl
y=[y(n+N=1)-y(n+N/2)] (31b)
o =[x(n+N/2=1) - x(n)] (31c)
x,=[x(n+N-1):--x(n+ N/2)]T (31d)
(31e)
(31f)

T
e aypl

T
a, = [aN/2+l - ay]

and ¥; are Hankel matrices [10] defined by

a, = [a

y(n + N —iN/2 — 2)

y(n + N/2 - iN/2 — 1)

Since the three matrices are Hankel as well (sum and
difference of Hankel matrices are Hankel matrices), one
can apply the algorithm recursively. It can be verified that
when solving (31), y(n + i) depends only on y(n + i —
k), k=1 --- i, and thus the y(n)’s can be found itera-
tively. Note that while this is true for the above algorithm
(which is based on aperiodic convolution), it would not
hold for FFT-based schemes (which use cyclic convolu-
tion where each output depends on all inputs). Note that
the above algorithm can also be used to break long feed-
back filters into smaller ones, thus reducing the system
delay.
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0 [
0 a; + a (30)
y(n—1) —y(n - 2) a

TABLE II1

COMPUTATION OF AN ALL-POLE FILTER USING THE FFT OR THE APERIODIC
CONVOLUTION ALGORITHM

Number of Mult. per Number of Mult. per

Filter Point Using Two Circular Point Using the Aperiodic
Length Convolutions Convolution Algorithm
2 5 1.5
4 7.16 2.25
8 9.58 3.38
16 12.13 5.06
32 14.73 7.59
64 17.15 11.39
128 19.44 17.09
256 21.71 25.62

Transform techniques have been used for implementing
IIR filters [5]. However, they become efficient for large
block sizes and for relatively high-order filters (which is
a seldom case in applications). The simple method just
described can thus be attractive for low-order recursive
filtering, and we will show this by comparing the two
schemes. Assume an L pole filter and a block size M for
the FFT. Take M greater than 2L and equal to a power of
2. The FFT scheme will thus use two cyclic convolutions
of length M in order to yield M — L correct output values
(see [5] for details). The complexity for the cyclic con-
volution of real sequences is taken from [7]. The number
of multiplications per output sample of this FFT scheme

<+« y(n+ N/2—-iN/2 - 1)
o : (31g)
e y(n —iN/2)

is compared in Table II to the number required by the
above described algorithm.

As can be seen, the direct approach remains competi-
tive up to relatively high filter orders (L = 128). This is
mainly due to the fact that the FFT scheme requires two
cyclic convolutions because the filter is all pole (in an FIR
case, only one such convolution is required).

VI. RoUNDOFF ERRORS EFFECTS

Roundoff errors in block processing algorithms will ac-
tually lead to aliasing effects because the system is time
varying. This is true for all block processing schemes (like
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traditional overlap add or save schemes) and not only for
the algorithms presented in this paper. Obviously, this
basic problem might lead to tighter precision require-
ments, that is, to an increase in the number of bits used
in all calculations. This means that part of the savings in
terms of number of arithmetic operations can be lost since
the fewer operations become more complex.

Below, we show in the simple example of the algorithm
given in (4) how aliasing appears in the output of a block
processing algorithm. Assume that the roundoff errors can
be modeled as additional noise on the channels of the sys-
tem. Then, from (4b), we have

C(z) = diag [Ho(z) + No(z),
Hy(z) + H,(z) + Ny(2),

H(z) + Ny(2)] (32)

where Hy(z) and H,(z) are chosen as in (6) and Ny(z),
N, (z), and N,(z) are z transforms of the noise compo-
nents produced by the roundoff process. Then, the output
of the filter bank equals

Y(z) =z7' - H(z) - X(z) +§ - [(z7" = 27%) « (No(2?)
- N()) + (7 + 277 N(@D)] - X(2)
+1- [z =27 - (No(2?)
~- Ni(2D)) + Ny(2)] - X(—2).

That is, an aliased component X ( —z) of the input X(z)
will appear at the output. Similar relations can be derived
for any block processing algorithm, and thus aliased com-
ponents (N — 1 of them where N is the subsampling fac-
tor) will always appear. The amplitude of these compo-
nents (assuming similar noise in the various channels) is
on the order of the noise amplitude times a factor M /N
(where M is the number of channels and N is the subsam-
pling factor).

The purpose of this section was to indicate a potential
problem linked to block processing algorithms. It is our
belief that a simulation of the finite precision effects is
necessary in order to assign a sufficient number of bits to
the variables and arithmetic units in such algorithms.

(33)

VII. CoNcLUSION

The use of multirate filter banks for realizing running
convolution has been investigated. It was shown how to
map long convolutions into smaller, subsampled ones, and
this without any restriction on filter, signal, or block
length. Because of this absence of restriction on block
length, it is possible to achieve any tradeoff among com-
putational complexity, architectural complexity, and sys-
tem delay (which is a function of the block length).

For the FIR case, filter banks based on aperiodic con-
volution algorithms as well as on short-time Fourier trans-

forms have been derived. In the IIR case, a simple scheme
(based on aperiodic convolution) was shown to be attrac-
tive for filters having up to 100 poles. Because of the in-
ternal subsampling inherent to block processing algo-
rithms, the resulting systems are periodically time varying
in general. It was thus shown how roundoff errors in the
processing can lead to aliasing in the output.

Note that the FIR running convolution scheme has been
generalized to the two-dimensional case as well [20] and
is more efficient than FFT-based schemes for filter sizes
upto 8 x 8.

As a conclusion, it was shown that there are numerous
alternative algorithms for computing running convolution
besides the classical overlap add or save schemes (that use
block sizes larger than the filter length). The mapping of
long convolutions into small, subsampled convolutions is
attractive in hardware (VLSI), software (signal proces-
sors), and multiprocessor implementations since the basic
building blocks remain convolutions which can be com-
puted efficiently once small enough.
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