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Abstract. Subband decomposition of HDTV signals is important both for representation purposes (to create compatible 
subchannels) and for coding (several proposed compression schemes include some subband division). We first review perfect 
reconstruction filter banks in multiple dimensions in the context of arbitrary sampling patterns. Then we concentrate on the 
special case of quincunx subsampling and derive filter banks to go from progressive to interlaced scanning (with a highpass 
which contains deinterlacing information) as well as from interlaced to progressive. We apply this decomposition to a sequence 
and indicate bitrates. 
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I. Introduction 

Mult i ra te  t echniques  and filter banks have emer-  

ged as useful  concepts  in image and v ideo  process-  

ing. They can be used to create signal h ierarchies  

where  subchanne ls  are compa t ib le  with exist ing 

s tandards  [12]. They are central  to subband  coding  

techn iques  which  have been  successfully used in 

H D T V  compress ion  13,11]. So far, subband  

d e c o m p o s i t i o n  has been  app l ied  most ly in a separ- 

able fashion both in two [24] and three d imens ions  

[9]. Non- sepa rab l e  schemes  that  have been  used 

inc lude  qu incunx  in t ra f rame subsampl ing  [1 ,3]  

and hexagona l  subsampl ing  [1, 13]. Obviously ,  in 

* This is an extended version of a paper presented at the 
Third International Workshop on HDTV in Torino, September 
1989. 

f Work supported in part by the National Science Founda- 
tion under grants CDR-84-21402 and MIP-88-08277. 

three dimensions, there are many possible sub- 
sampling schemes [5] and associated filter banks. 
One of immediate interest for television is quin- 
cunx subsampling over the [time, vertical]-plane, 
since it allows to go from progressive to interlaced 
scanning, as well as from interlaced to progressive 
[20]. 

In the first case, a progressive sequence is filtered 
with a diamond shaped lowpass filter and then 
quincunx subsampled to yield an interlaced 
sequence. A complementary highpass version, also 
quincunx subsampled, is the deinterlacing channel 
(also called a 'helper' signal [15]), since when 
combined with the lowpass version and using 
appropriate filtering, it allows perfect recovery of 
the original progressive sequence. Figure 1 depicts 
this process schematically. Earlier proposals in this 
direction have been made in [7, 15] but do not 
achieve perfect reconstruction. Note that this is 
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Fig. 1. Progressive to interlaced conversion: (a) rectangular 
and quincunx lattices, (b) filter bank decomposit ion of  one 

progressive into two interlaced sequences. 
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Fig. 2. Interlaced to progressive conversion: (a) quincunx and 
rectangular lattices, (b) filter bank decomposit ion o f  one inter- 

laced into two progressive sequences. 

recovery of  the progressive sequence. Note also 
that the above approaches are nonlinear [23]. 

In the second case, an interlaced sequence is 
separated into lowpass and highpass versions, 
again with diamond shaped filters, and then quin- 
cunx subsampled. This produces two progressive 
sequences, from which the original interlaced 
sequence can be perfectly recovered. A schematic 
representation is given in Fig. 2. Such a scheme 
would be useful for coding purposes, since the 
highpass version, due to its low energy content, 
will be relatively easy to code, and the lowpass 
version is well suited for motion based processing 
because of its progressive nature. 

A possible combination of  the two steps above 
is shown in Fig. 3. The initial progressive sequence 
is split into a deinterlacing part as well as a lowpass 
interlaced sequence. This latter sequence is then 
further split into two progressive sequences. 

The design of  filters for perfect reconstruction 
banks has been studied extensively, and results on 
filter structures are available in the one- 
dimensional case [16, 17,21]. In two or more 
dimensions, results on aliasing cancellation and 
perfect reconstruction have been derived, and 
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quite different from standard deinterlacing pro- 
cedures, which do not require an auxiliary 'deinter- 
lacing' channel but cannot guarantee a perfect 
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Fig. 3. Two step quincunx subsampling of a progressive 
sequence resulting into one interlaced sequence and two pro- 
gressive sequences: (a) the sampling lattices involved, (b) filter 

bank decomposition. 
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some initial designs are available [1,8,22].  

However, more effort is required to design practical 
filters for specific applications and, on the theoreti- 

cal side, issues like completeness of filter structures 
are quite delicate. In this paper  we will concentrate 
on structures for the particular case of quincunx 
subsampling, since this is of  most practical interest. 
A solution using I IR  filters was derived in [2] but 
leads to non-causal synthesis. We will concentrate 
on FIR solutions, because our filters are used over 
time and causality is thus necessary. A para-unitary 
F IR  solution appears  in [22], and we derive below 

a linear phase solution as well as structures for 
both para-unitary and linear phase filters allowing 
perfect reconstruction in the quincunx subsamp- 

ling case. The structures lead to very low com- 
plexity filter banks. 

The outline of the paper  is as follows. Section 
2 reviews perfect reconstruction filter banks with 

aribtrary sampling patterns and indicates results 
on alias-free and perfect reconstruction. Section 3 
specializes these results to the quincunx subsamp- 

ling case which is of  particular interest for video 
processing. Section 4 derives cascade structures 
for perfect reconstruction filter banks. Section 5 

shows the application to video signals, with pro- 

gressive to interlaced as well as interlaced to pro- 

351 

gressive channels. Then, Section 6 shows the results 

obtained on a sequence, and indicates bit-rates of  
the highpass channel after run-length encoding. 
Finally, Section 7 discusses the results and indi- 
cates further work, while Appendices A-C discuss 

some structural properties of the filters for the 
quincunx sampling case. Let us also point out that 
in what follows 'reversal '  will entail reversing the 
directions of  the axes in question (for example 

reversing the direction of the vertical and time axes 
in our specific application). 

2. Perfect reconstruction filter banks with arbitrary 
sampling patterns 

We will keep our discussion to the two- 
dimensional case, but most results hold for an 
arbitrary number  of  dimensions. 

Consider an analysis/synthesis filter bank as 
shown in Fig. 4. As can be seen from the figure, 
the two basic operations performed are filtering 
and sampling. The sampling process in multiple 
dimensions can be represented by a lattice, which 

is defined as the set of  all linear combinations of 

two basis vectors al and a2 with integer coefficients 
[4,5]. Thus a point on the input lattice (nl ,  n2) is 

X(Zl,Z2) 

ANALYSIS SYNTHESIS 

D D 

~Y(zl,z2) 

N = det (D) 

Fig. 4. An analysis/synthesis two-dimensional filter bank. The sampling pattern used is characterized by the sampling matrix D. 
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related to the one on the output lattice (ul,  u2) by 

[,,,] r oo lr,,,1_-o... 
n2 = [.dlo dlt.l l_U23 

where D is the matrix characterizing the sampling 
process. Note that D is not unique for a given 
sampling pattern and that two matrices represent- 
ing the same sampling process are related by a 
linear transformation represented by an integer 
matrix with determinant equal to one [4]. Note 

also that one can always choose dr0 =0,  doo> 0 
and 0 ~  < dot < doo. The number of input lattice 
samples contained in the fundamental 
parallelepiped (i.e., the parallelepiped formed by 
the two basis vectors) represents the reciprocal of  
the sampling density and is given by N = det[D] = 
doodt t -dotdto .  Shifting the origin of the output 
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Fig.  5. Q u i n c u n x  s a m p l i n g  la t t ice .  (a)  C o n v e r s i o n  f r o m  the  

i n p u t  la t t ice  to the  o u p u t  ( q u i n c u n x )  la t t ice  wi th  ma t r i x  D~. 

The  p o i n t  (1, 1) on  the  q u i n c u n x  lat t ice  c o r r e s p o n d s  to the  

p o i n t  (3, 1) o n  the  i n p u t  lat t ice.  (b) C o n v e r s i o n  us ing  the  ma t r i x  

D 2 . 

nl d 

lattice to any of the points of  the input lattice yields 
a so-called coset. Clearly there are exactly N dis- 
tinct cosets obtained by shifting the origin of the 
output lattice to the points of  the fundamental 
parallelepiped. The union of all cosets for a given 
lattice yields the input lattice. Figure 5 depicts the 
sampling process schematically in the quincunx 
case with two possible sampling matrices: 

The above matrices represent obviously the same 
sampling process and thus they are related by a 
matrix with determinant equal to one: 

i]=[i i][i 
= D2  1 " (3 )  

Consider for example sampling with matrix Dt 
(Fig. 5(a)). Then the point (ul ,  u2) = (1, 1) on the 
output lattice corresponds to 

on the input lattice. Figure 6 shows the lattice 
together with its cosets in the hexagonal case. The 
subsampling operation is periodically shift variant, 
since samples of the input at locations D. u are 
kept while all others are dropped. It is this shift 
variance that leads to aliased versions of  the input 
signal in the output. In a subband coding system, 

112 

Fig.  6. The  f o u r  cose t s  c o r r e s p o n d i n g  to the  h e x a g o n a l  s a m p l i n g  

s t ruc tu re .  The i r  u n i o n  y ie lds  the  o r ig ina l  lat t ice.  

• coset 1 

nl 0 coset 2 

0 coset 3 

0 eoset 4 
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dropped samples will be replaced by zeroes (corre- 
sponding to an upsampling by N)  before entering 
the synthesis bank, and thus, the down-and- 
upsampling process is equivalent to a modulation 
by a function f ( n , ,  n2) which equals 1 at locations 
D. n and zero elsewhere: 

1 d°°-I d l l - I  |~[dllnlk+doon21_doln2k 
f (ni ,n2)=~ E E ,,N 

k=O 1=0 

(5) 

where W~ is the Nth  root of unity and the upper 
triangular form of the sampling matrix was used 
(the one where d~o=0). By the mbdulation 
theorem, this clearly produces N - 1  aliased ver- 
sions for k or I ~ 0. A convenient way to take care 
of the shift variance of such a multidimensional 
multirate system is to decompose both signals and 
filters into so-called polyphase components, each 
one corresponding to one of the cosets of the 
output lattice. For example, the filter coefficients 
at the points of  one of  the cosets represent actually 
the response of the filter to the impulse at the 
location which is a space reversed image of the 
point in the fundamental parallelepiped corre- 
sponding to that coset. In this polyphase domain, 
the system becomes shift invariant. Thus, signals 
at the output of  the analysis bank can be represen- 
ted in terms of the input signal, forward polyphase 
transform and the analysis polyphase matrix 

Ho(zl,  z2) (that is, the matrix containing polyphase 
components of the analysis filters), while the out- 
put signal can be represented in terms of  the input 
channel signals, the synthesis polyphase matrix 
Gp(Zl, z2) (that is, the matrix containing polyphase 
components of  the synthesis filters) and the inverse 
polyphase transform. For more details on polyph- 
ase matrices see [19]. 

Conditions for aliasing cancellation are given in 
[8] and are expressed in terms of the transfer 
function matrix To(z,, z j  obtained as the product 
of the polyphase matrices of the synthesis and 
analysis bank: 

Tp( z, , z2) = Go(z,, z j  " Ho( zl , z j .  (6) 

Perfect reconstruction (i.e., the output signal is a 

delayed and possibly scaled version of the input 
signal) is achieved typically when Tp(z~, z j  = ! or 
a shifted version thereof. Thus, the filter design 
problem we are faced with is to find a useful set 
of  filters so that Tp(z,, z j  corresponds to perfect 
reconstruction. Several approaches are possible 
depending on what constraints have to be met. For 
example, one can require the filter bank to be 
para-unitary [16], that is, 

H~(z? 1, z~') • n d z , ,  z2) : I, (7) 

or one can impose a linear phase on all filters. 

3. Perfect reconstruction filter banks for 
quincunx sampling 

Let us look specifically at the quincunx sub- 
sampling case. The output of an analysis/synthesis 
system with quincunx subsampling, as depicted in 
Fig. 1, is given by [18] 

~ ' (z , ,  z2) 1 = ~ [ G o ( 2 1 ,  z2) G i ( z , ,  z J ]  

I 
/ 

L H,(zl, z2) H r - z , ,  - z J  J 
i 

L X ( - z , ,  -z2)_l" (8) 

To cancel the aliased version of  the input signal 
X ( - z ~ ,  -z2) in the output we can choose the syn- 
thesis filters as follows: 

Go(z1, z2) : H i ( - z , ,  -z2),  

Gl(zl ,  z j  = - n o ( - Z l ,  -z2). (9) 

Substituting (9) into (8) we obtain 

~(Zl,  z9 : ~(H,(-z, ,  - z jH0(z , ,  z2) 

- Ho(-Zl,  -z2)HI(z l ,  z2)) 

• X(z, ,z2),  (lO) 

which depends only on the input signal and not 
on its aliased version X ( - z l ,  -z2). However, if we 
want to solve the problem of  achieving perfect 
reconstruction, a more convenient approach has 
to be used. Applying the polyphase decomposition, 
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the analysis filters can be split into the following 
two polyphase components: 

H,( z, , z~) = n,o( z~, z~z~) 

+ zllHil(Z21, zlz2) , 

M. Vetterli et aL / Perfect reconstruction filter banks for HDTV 

[1, 22]. A potential problem with this method is 
that one has no control over the filter coefficients 
and quantization of the coefficients will result in 
imperfect reconstruction. It is therefore desirable 
to find structures that guarantee the perfect recon- 
struction property regardless of the coefficient 

i = 0 , 1 ,  (11) 
quantization. 

and the polyphase filter matrix associated with 
analysis filter bank is given by 

[ Hoo(Z,, z~) 
Hp( z, , z2) = k H, o( Z, , Zz) 

The two cases of interest are 

(1) 

Ho,(Z,,  z:)] 
H, l ( z , ,  z~)_l" 

(12) 

Hp(z~, z2) is para-unitary, that is, perfect 
reconstruction is guaranteed with identical 
analysis and synthesis filters (within 
reversal). 

(2) Hp(zm, z2) corresponds to linear phase filters 
and has a determinant equal to a delay, that 
is, perfect reconstruction is possible with 
linear phase FIR filters. 

It turns out that, as in the two channel one- 
dimensional case, (1) and (2) are mutually exclus- 
ive (except for trivial two-tap filters) [21]. 

An interesting IIR solution for the para-unitary 
case was suggested by Ansari in [2] and uses the 
following choice of filters: 

Hi(z1,  z2)  - -  ½( Ao( z,, zz)ao( z,z~ l) 

+ (-1)~z~l(a,(z, z2)a,(z,z2')), i = 0 ,  1, 

(13) 

where Ai(z) are one-dimensional allpass functions. 
One can verify that due to the allpass property of  
Ai(z) (7) is satisfied. 

Since in our case one of the dimensions is time 
we cannot use IIR filters (the reconstruction 
becomes anti-causal). One approach to design a 
para-unitary FIR filter bank is to solve (7) numeri- 
cally under constraints on the filter quality. This 
leads to a constrained non-linear optimization 
problem and design examples can be found in 
Signal Processing: Image Communication 

4. Cascade structures for perfect reconstruction FIR 
filter banks 

4.1. The para-unitary case 

The FIR para-unitary case has some structural 
properties imposed by (7) (see Appendix B) 
- -  The filter Hl(Z~, z2) is completely specified by 

the filter Ho(z~,z2) by modulation with 
( -1 )  ",+'2 and reversal. 

- -  The two polyphase components of Ho(Zl, z2) 
have to be of the same size. 

- -  Finally, the polyphase components of 
Ho(z~, z2) have to meet 

Hoo(Z,, z2) Hoo( Z ?', z~')  

+ Horn(z1, z2)Ho,(Z? l, zz -t) = 1. (14) 

Equation (14) can now be met through optimizing 
the coefficients of the first filter and thus specifying 
all the other ones in the system. Rather then using 
a numerical approach, we derive cascade structures 
which produce structurally para-unitary filter 
banks and thus maintain the perfect reconstruction 
property regardless of coefficient quantization: 

o 

Hp(Z , ,  Z2) : UK _ 1 [I O i ( z I ,  z2)Ui, ( 1 5 )  
i - k - 2  

where D(zl,  z2) is a diagonal matrix of delays and 
Ui are unitary matrices. It is easy to verify that 
Hp(zl, z2) in (15) is para-unitary since all the 
blocks are para-unitary, but completeness of  the 
structure is not guaranteed, unlike in the one- 
dimensional case [10]. A particular choice of 
interest for generating (approximately) diamond 
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shaped filters is 

[ 1 a2K-l]  
H p ( 2 1 '  Z2) ~" --a2K-I 1 

o[, ][, 
I1 z ,  l z j  I - a 2 , + ,  i=K--I 

. [ 1  z~z2][_la2~ 12i]. (16) 

The impulse responses of  the smallest filter pair 
obtained with K --- 1 in (16) are hence 

-ala2 -aoala2 ] 
ho(nl, n2)= 1 ao -aoa2 a2 , (17) 

-aoa~ a~ 

[ a 1 h~(n~, n2) = -a2 -aoa2 - a0  1 . (18) 

aoa~a2 -ala2 

The reconstruction filters are the same (within 
reversal), except for a scaling factor of 1/I]  (1 + 
a,~). 

4.2. The linear phase case 

Obviously, the filters in (17), (18) are never linear 
phase. Actually, para-unitariness excludes linear 
phase in the two channel case except for the trivial 
two-tap filters. For linear phase behavior, we 
require centro-symmetry, that is, 

Z'~K'Z2K2Hi(z71 , ZS') = ±Hi(z,, z2). (19) 

Again, certain constraints have to be met by the 
filters so as to meet (19) and the perfect reconstruc- 
tion property. Requiring that the determinant of  
Hp(z~, z2) be a pure delay we guarantee that there 
is a perfect reconstruction FIR solution. Then, if 

the filters Ho(zl, z2) and Hi(z1, z2) must be of the 
same size, they must also have polyphase com- 
ponents of  the same size (this follows from the 
symmetry of the two-dimensional polynomials 
involved). Thus, for example, for a diamond 
shaped filter 

Ho(zl, 2"2) ~--- 1 + Z l l Z 2 1  ~- az[ 1 + Z1Z2-'~- ZI 2, 

one cannot have a same size filter H~(zl, z2) that 
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achieves perfect reconstruction. However, a 

different size filter Hl(z~, z2) can be found that 
satisfies the perfect reconstruction property as will 
be shown shortly. Also, see Appendix A for a more 
thorough discussion. 

First, let us describe a cascade structure that 
leads to same size (though not of the desired per- 
fect diamond shape) linear phase filters: 

[2+, 

The blocks in the cascade meet the linear phase 
condition given in [8] and thus the resulting bank 
is linear phase. The impulse responses of  the smal- 
lest possible filter pair are given by 

ao aoal ] 
ho(n~, n2)= 1 a~ a~ 1 , (21) 

aoa~ ao 

-ao -aoal 1 hl(nl,n2)= 1 al - a i  -1  . (22) 

aoa~ ao 

Like para-unitary filters, they only approximate 
the diamond shape. Note that they have centro- 
symmetry, but not left-right or top-bot tom sym- 
metry. If one desires the perfect diamond shaped 
filters, as well as top-bottom, left-right symmetry, 
one has to resort to different size low- and highpass 
filters. The pair of filters Ho(Zl, z2) and Hl(Z~, z2) 
with impulse responses, 

['1 b a b ,  (23) 

1 

bc/ a 

1 

b+c/a  a b+c /a  
c d c 

b+c /a  a b+c /a  
1 

bc/a , (24) 
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leads to perfect reconstruction [10, 20]. Cascades 
of  the polyphase matrices corresponding to the 
filters in (23) and (24) will generate larger filters 
retaining the same symmetry properties, and still 
allowing perfect FIR reconstruction [10]. By 
choosing b = 1 and c = a one obtains additional 
circular symmetry (the property is also retained 
when cascading the polyphase matrices). A useful 
example is obtained with a = - 4  and d = - 2 8  
where the impulse responses become (with the 
reversed sign for the second filter) 

I ' l  1 - 4  1 ,  (25) 
1 

- 2  4 - 2  

-1  4 28 4 -1  (26) 

- 2  4 - 2  

-1  

The magnitude of  the frequency response of (26) 
is given in Fig. 7(a). 

So far, we have given constructions of  perfect 
reconstruction filter banks. One nice property is 
the easy control one has over the filter coefficients, 
which is useful in order to derive low complexity 
filters. Though we know that the cascade structure 
given is not complete, the first pair of useful filters 
given by (21), (22) covers the whole space of linear 
phase 4 × 3 filters (except for some permutations). 
The proof  is given in Appendix C. 

5. Applications 

5.1. A two channel system: interlaced and 
deinterlacing channel 

Interlaced signals are in wide use because they 
represent (arguably) a better trade-oil between 
spatio-temporal resolution and bandwidth than 
non-interlaced signals. A progressive HDTV signal 
can have a luminance bandwidth as high as 
150 MHz and at present this poses technological 

difficulties for both camera and monitor. In the 
long range, it appears desirable to evolve toward 
non-interlaced video signals, in particular for pro- 
fessional applications of  HDTV; the perfect recon- 
struction techniques derived in Section 4 are a 
good tool to provide a representation of  an HDTV 
signal with both an interlaced channel and a 'dein- 
terlacing' channel. 

The two channels (interlaced plus the deinter- 
lacing one) can allow evolution from interlaced to 
progressive video. In such a system an interlaced 
receiver would use only the basic interlaced signal, 
while an advanced receiver would reconstruct a 
non-interlaced signal with higher spatio-temporal 
resolution. When using low complexity spatio- 
temporal filter banks, the amount of  processing 
and the number of field/frame stores is comparable 
to a more conventional motion adaptive 
spatial/temporal deinterlacing technique [14], but 

with potentially better results since the full resol- 
ution of  the non-interlaced signal could always be 
recovered. In the perspective of a digital system, 
the deinterlacing signal could be compressed 
because of  its relatively low entropy and the mask- 
ing properties of the human visual system. 

5.2. Interlaced video with progressive subchannel 

It is generally admitted that given the same num- 
ber of samples non-interlaced video signals are 
easier to code than interlaced signals, the primary 

reason being that the vertical correlation in a field 
(from interlaced) is smaller than the vertical corre- 
lation in a non-interlaced frame. Indeed, a field 
extracted from an interlaced video signal contains 
a significant amount of vertical aliasing. Also when 
using interframe prediction with interlaced video, 
the predictor should be able to switch between 
previous frame prediction and previous field pre- 
diction. For both of  these reasons, it appears useful 
to split the interlaced video into a progressive 
reduced frame rate subchannel and a signal that 
contains only high vertical and high temporal 
frequency information. If  the energy contained in 
the high vertical and high temporal frequency band 

Signal Processing: Image Communication 
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q 
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Fig. 7. Frequency responses of (a) linear phase 5 x 5 filter given by (26), (b) reference 7 x 7 linear phase filter given by (29), 
(c) para-unitary filter given by (17). 

is low, coding those two channels independently 

can be very efficient. 

6. Implementation and results 

The implementat ion of the proposed scheme is 
shown in Fig. 3. The progressive sequence used 
(256 × 256, 40 frames) was generated by diagonally 
panning the 'Kiel Harbor '  image in 1-pixel wide 
steps. 

Using the structures given in Section 4, three 
sets of  filters were designed corresponding to both 

the para-unitary and the linear phase case. These 

filters were used with the quincunx sampling 

matrix in the two steps of  the subband scheme in 
Fig. 3. The para-unitary set is obtained by substitut- 
ing ao=2 ,  al  =0.5 and a2 = 1 in (17), (18) and the 
first linear phase set substituting the same 
coefficients into (21), (22). Due to the fact that 
both filter pairs are generated with cascade struc- 
tures producing polyphase components of  the 
same size, they only approximate  the desired per- 
fect d iamond shape. The third set designed solves 
this problem since it consists of  the lowpass filter 
of the form (26) and the highpass filter of  the form 

Vol. 2, No. 3, October 1990 
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(25). Note that the filters obtained are just initial 
designs and that more work has to be done in 
optimizing the coefficients so as to achieve the 
desired frequency response. Note that these filters 

have very low complexity. As a reference a very 
good 7 × 7  diamond shaped lowpass filter was 
designed from a one-dimensional filter with the 

following z-transform: 

H ( z )  = - 1 + 9z -2 + 16z -3 + 9Z -4 -- Z-6 

= H o ( z 2 ) + z - l H , ( z 2 ) .  (27) 

The two-dimensional filter is then obtained as [2] 

O(Zl,  22)= Ho(ZlZ2)Ho(zlz2 I) 

q-zI1HI(ZIZ2)HI(ZIZ21), (28) 

producing the following impulse response: 

- 9  

d ( m ,  n2)= 1 0 

- 9  

1 

- 9  0 - 9  

0 81 0 - 9  

81 256 81 0 

0 81 0 - 9  

- 9  0 - 9  

1 
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(29) 

Its frequency response is given in Fig. 7(b). 
As the indication of  possible compression the 

bit-rates of  PCM and run-length encoded high 

bands were computed in both the para-unitary and 
the linear phase case. The quality and bit rate of  

the reconstructed sequence are thus controlled by 
adjusting the step of the uniform quantizer and its 
"dead zone'  [6]. Some results are shown in Table 
1, where the 'dead zone'  used was twice the width 
of the quantization step. Comparing the frequency 
responses of  the lowpass filters from the linear 
phase diamond shape set, the para-unitary set and 
the reference one, it can be seen that the reference 
one achieves very good out-of-band rejection, but 
it has rather sharp response, and the para-unitary 
one has very poor  out-of-band rejection. A good 
compromise between the two is the diamond 
shaped one which has smooth frequency response 
and decent out-of-band rejection. Thus the recon- 

Signal Processing: Image Communication 

Table 1 
Bit-rates of the high band in Fig. 1 and mean square error. 
MSE is computed for the case where just the high channel is 
coded 

Number of 
quantization levels bit rate [bits/pel] MSE 

31 Linear phase 1.315574 3.61488 
para-unitary 1.576009 2.859315 

15 linear phase 1.041300 6.726135 
para-unitary 1.135823 5.75076 

structed sequences are visually more pleasing when 

using either set of  linear phase filters ((21), (22) 

with coefficients as above or (26, 25)) compared  
to the para-unitary one for the same bit rates. 

Using the diamond shaped linear phase set (26), 
(25) also produced a visually better interlaced 
sequence as opposed to the one when the reference 

filter given by (29) was used. 
The result after the two steps o fsubband  splitting 

(as in Fig. 3) with representative frames from the 
sequence for the (26), (25) set is shown in Fig. 
8(a). Figure 8(b, c, d) show a representative frame 
from interlaced sequences obtained by using the 
reference linear phase filter and the lowpass filters 
(21), (26). 

Note that all the results were observed on a 

digital real-time video display. 

7. Conclusion and further work 

This paper  has demonstrated how to go from 
progressive to interlaced scanning in a way that 

allows perfect reconstruction of the original pro- 
gressive sequence. It can also be used to go from 
interlaced to progressive scanning and back. Per- 
fect reconstruction filter banks were derived, cas- 
cade structures that achieve very low complexity 
as well as linear phase were shown. The initial 
results on sequences show that this could be an 
attractive way to derive compatible channels as 
well as to produce a decomposit ion useful for 
coding. 
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Fig. 8. Results from a pan of Kiel Harbor, (a) after two step splitting as described in Fig. 3, (b) frame from the interlaced sequence 
obtained with filter (26), (c) frame from the interlaced sequence obtained with filter (29), (d) frame from the interlaced sequence 

obtained with filter (17). 
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Appendix A. Linear phase solution ho (hi' n2) 

Let us first introduce some notation. A two- 
dimensional 'persymmetr ic '  polynomial p(x, y) is 

the one for which p(x,y)=x"y~p(x-X,y-~). A 
two-dimensional 'antipersymmetric '  polynomial  
p(x,y) is the one for which p(x,y)= 
-x"y~p(x-~,y-~). The product of  two persym- 

metric polynomials is again persymmetric,  while 
the sum of  two persymmetric polynomials of  the 
same size is again persymmetric.  Also, in this sec- 

tion we will use the following form of the quincunx 

sampling matrix: 

D =  _ 1 " 

A.1. Case 1 

Let us consider first the case where both filters 

are made causal in one dimension in such a way 
that the polyphase components  of  the filters are 

of  the following form (see Fig. 9): 

k k 
J (31) noo(Z,, z~)= Y Z a~z,z2, 

i:Oj=O 

k-1 k-I 
i j Ho,(Z,, z2)= Z Z boz,z2, (32) 

i=o j = o  

I I 
H,o(Z,, z:) = E E coz',~, (33) 

i = o j = o  

I--1 I-1 
i j 

H t t ( z l , z 2 ) =  ~ ~ doztz2. (34) 
i=0j=0 

Since the filters are supposed to be linear phase 
and diamond shaped at the same time, all four 
polyphase components  are persymmetric. The 

determinant of  the corresponding polyphase 

matrix Hp(z~, z2) is then 

D(zl, z2) = Hoo(Z1 , z2)H,I(z,, z2) 

- Ho,(z,, z2)Hlo(z~, z2) 

= p(z,, z~)- q(z~, z~). (35) 

Since all four involved polynomials are persym- 
metricp(z~, z2), q(z~, z2) are persymmetric as well. 

Signal Processing: Image Comrnunication 

h 1 (n I , n 2) 

nl ~ ~ 2 ] + ]  nl 

Fig. 9. Perfectly d iamond shaped  filter pair. D iamond  shaped 
filter becomes  rectangular  on the quincunx lattice when  matrix 

D2 is used. 

A.I.I. Same size filters 
Now Deg(Hoo) --- Deg(H~0) = (k, k), while 

Deg(Ho0 = Deg(Hm0 = ( k -  1, k -  1). This in turn 

means that Deg(p)  = Deg(q) = ( 2 k -  1, 2 k -  1). 
The determinant is then a persymmetric poly- 
nomial of  even length in both directions, which 
means that it is impossible to force one coefficient 
to be different from zero, while the other ones are 
zero, and thus perfect reconstruction cannot be 

achieved. 

A. 1.2. Different size filters 
In this case Deg(Hoo)=(k,k), Deg(Ho~) = 

( k -  1, k -  1), Deg(H~o) = (1, 1) and deg(H~0 = 
( l -  1, l -  1), which yields Deg(p)  = Deg(q) = 
(k + l - 1, k + l - 1). The determinant thus becomes 

persymmetric. To obtain a monomial  and achieve 
perfect reconstruction, a necessary condition is 
that D(z~, z2) be of  odd size in both directions, 

i.e., that k is even and l odd or vice versa. An 
example of  the solution belonging to this class is 

given in (23), (24). 

A.2. Case 2 
Next we consider what happens if we keep the 

first filter as it was and displace the second one by 
z~, which reverses the order of  the entries in the 
second row of the polyphase matrix and thus 
covers all possibilities of  linear phase, d iamond 
shaped filters. The polyphase components of the 
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second filter thus become 

I--1 I--1 

g l o ( Z l ,  Z2) ZlZ2 E E i j = CijZ 1Z2, (36) 
i =o j =o 

I ! 

H l , ( Z l ,  z2)  E ~ i j = di jZ lZ  2 . (37) 
i=o .j ~o 

Obviously p and q are again persymmetric. As 

before let us consider two cases. 

A.2.1. Same size filters 
Now Deg(p)  = (2k, 2k) and Deg(q) = 

( 2 k - 1 , 2 k - 1 ) .  Though p and q are not of  the 
same size the determinant is still going to be per- 
symmetric since q is actually of size ( 2 k - 2 ) ×  
( 2 k - 2 )  but displaced by one along the diagonal. 

The size of  the determinant is now odd in both 
directions which leads us to assume that the sol- 
ution might be possible. However  the corner 

coefficients, like for example aoodoo, have to be 
zero which ruins the perfect d iamond shape of the 
filters. 

A.2.2. Different size filters 
Using the same reasoning as before we can con- 

clude that in case of  k even and I odd or vice versa 
a solution might be possible at the cost of  ruining 
the perfect shape of the filters. 

To summarize it is possible to obtain perfect 
reconstruction diamond shaped filter pair when 

both filters are made causal in one dimension and 

when their sizes are ( 2 k + l ) × ( 2 k + l )  and (2•+ 

1 ) × ( 2 l + 1 ) ,  where k and l are not both odd or 
both even at the same time. 

Appendix B. Para-unitary solution 

Let us denote Ho+=Ho(z~,z2) and 
Hij(ZI 1, Z21). We then obtain 

H~(z~', zj'). Hp(z,, z2) 

Hoo+Hoo +Hm+H~o_ Hoo Hol++Hlo Hll+] 
= [ HoL Hoo~ + H,~ H,o+ Ho~ Hm++ H~, H,~+ " 

(38) 

H i j  = 

I f  we want Hp to be para-unitary, the above must 
be equal t o / ,  from where we can obtain the follow- 
ing equalities: 

Hoo+Hoo_ + H~o+Hlo = 1. (39) 

Hoo Hol+ + Hlo Hi l+ = 0, (40) 

Hol Hoo++ Htl Hlo+ =0,  (41) 

Hol_ Hol++ HII H11+ = 1. (42) 

Using the same approach as in [17] we can con- 

clude from (39) that H0o and Hm do not have 
common polynomial  factors since the right-hand 
side is a non-zero constant. Similarly, from (42) it 

follows that Ho~ and H~t do not have common 
factors. Bearing this in mind (40) yields that all 
the polynomial  factors of  H~  are contained in/4o0 
and all the polynomial  factors of H~o are contained 

in H0~, that is, 

Ho,+ = ClZlkz21HIo , Hi1+ = e2zlmzz"Hoo • 

(43) 

Substituting this into (40) we conclude that c~ = 

-c2 and that k = m, l = n. Also from (42) we can 
see that Icd= 1. Finally, the complete specification 
of the para-unitary system is given in the following 
f o r m -  

Hol+ = z Tkz 21HIo_, (44) 

Hl~+ = --zTkzz~ Hoo_, (45) 

Hoo+Hoo_ + Hlo+Hlo_ = 1, (46) 

from where we can see that the two polyphase 

components  have to be of  the same size, which 
automatically excludes the possibility of having 
filters of  the desired perfect diamond shape. At 
the same time the previous set of equalities shows 
that the filter H~(z~, z2) is completely specified by 
modulating and reversing filter Ho(z), z2). 

Appendix C. Completeness of the 4 × 3 linear 
phase solution 

In this appendix we show that the linear phase 
filters given by (21), (22) cover all possible sol- 
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utions for  the filters with linear phase and of  that 

size. Let the impulse responses o f  two general 4 × 3 

linear phase filters be 

[ ao 0 l ho (n t , n2 )  = Co do do Co , 

bo ao 

hi(hi ,  n2)=  Cl dl dl Cl . 

bt al 

(47) 

(48) 

Comput ing  the determinant  o f  the cor responding  

polyphase  matrix and equat ing all the coefficients 

but one to zero, the fol lowing set o f  condit ions (in 

matrix form) is obtained:  [b: ao0o][1] Ill Co - d o  ao - b o  bl = (49) 

-co bo - ao  c, 

0 do -Co dl 

which shows that we are solving for  the coefficients 

o f  the second filter given the coefficients o f  the first 

one. Equat ion (49) has a nontrivial so l u t i on / f f t he  

determinant  of  the above matrix equals zero. This 

in turn leads to the fol lowing (with Co = 1 which is 

just scaling): 

2 2 
- aobo + aodo + bodo - aobod 8 = 0. (50) 

- a o  -aodo  1 
h , ( n ~ , n 2 ) =  1 do - d o  - 1  , (54) 

-aodo  - a o  

which is exactly how (21), (22) look like. The only 

thing that is left to check is whether  the coeffÉcients 

that are forb idden in the cascade structure, that  is, 
the ones which would p roduce  singular blocks, are 

al lowed in the general solution. Let us look at the 

only non-zero  coefficient in the determinant  o f  the 

po lyphase  matrix: 

aoal - bob1 + CoCz - d o d l  ~ O. (55) 

Substituting the solutions for the coefficients 

obtained earlier into (55) yields 

2 -  2 ~ 2  2 
- a o ± a o a o + l - d o  ( 1 - a 2 ) ( 1 -  d0) ~ 0, 

(56) 

resulting in ]ao[ # 1 and Idol ~ 1 which are exactly 
the values not al lowed in the cascade structure. 

The solution corresponding  to bol is obtained by 

interchanging the order  o f  diagonal  matrices in 

(20) which concludes the proof.  Let us note that 

for the larger sizes the above approach  becomes  

quite cumbersome and thus the question o f  how 

complete  the larger cases are has yet to be answeed. 

Solving for b0 we obtain 

a 0  
bol = - - ,  bo2 = aodo. (51) 

do 

Taking the second solution for example,  the 

coefficients o f  the second filter become 

ao 1 
a l =  - - -  hi = - a o ,  Cl do' =doo' d l = l .  

(52) 

Multiplying (52) by do (scaling), we obtain the 
following impulse responses for the general linear 
phase perfect reconstruct ion pair: 

[ j ho(n~, n2)= 1 do do 1 , (53) 

aodo ao 

References 

[l] E. Adelson and E. Simoncelli, "Orthogonal pyramid trans- 
forms for image coding", in: Proc, SPIE Conf. on Visual 
Communications and Image Processing, 1987, pp. 50-58. 

[2] R. Ansari, "Two dimensional I1R filters for exact recon- 
struction in tree-structured subband decomposition", 
Electron. Letters, Vol. 23, June 1987, pp. 633-634. 

[3] R. Ansari, H. Gaggioni and D. LeGall, "HDTV coding 
using a non-rectangular subband decomposition", in: 
Proc. SPIE Conf. on Visual Communications and Image 
Processing, Cambridge, MA, November 1988, pp. 821-824. 

[4] J. Cassels, An Introduction to the Geometry of Numbers, 
Springer, Berlin, 1971. 

[5] E. Dubois, "The sampling and reconstruction of time- 
varying imagery with application in video systems", Proc. 
IEEE, Vol. 73, April 1985, pp. 502-522. 

[6] H. Gharavi and A. Tabatabai, "Sub-band coding of mono- 
chrome and color images", IEEE Trans. Circuits and 
Systems, Vol. 35, February 1988, pp. 207-214. 

Signal Processing: Image Communication 



M. Vetterli et al. / Perfect reconstruction filter banks for HDTV 363 

[7] M. Isnardi, J. Fuhrer, T. Smith, J. Koslov, B. Roeder and 
W, Wedam, "Encoding for compatibility and recoverabil- 
ity in the ACTV system", 1EEE Trans. Broadcasting, Vol. 
33, December 1987, pp. 116-123. 

[8] G, Karlsson and M. Vetterli, "Theory of two-dimensional 
multirate filter banks", IEEE Trans. Acoust. Speech Signal 
Process, Vol. 38, June 1990, pp. 925-937. 

[9] G. Karlsson and M. Vetterli, "Three dimensional sub- 
band coding of video", in: Proc. lEE[z" lnternat. Conf. 
Acoust. Speech Signal Process., April 1988, 1100-1103. 

[10] J. Kova~zevi6, M. Vetterli and G. Karlsson, "Design of 
multidimensional filter banks for non-separable samp- 
ling", in: Proc. 1EEE Internat. Syrup. Circuits and Systems, 
New Orleans, LA, May 1990, pp. 2004-2008. 

[I1] D.J. LeGall, H. Gaggioni and C.T. Chen, "Transmission 
of HDTV signals under 140 Mbit/s using a sub-band 
decomposition and discrete cosine transform coding", in: 
L. Chiariglione, ed., Signal Processing of HDTV, North- 
Holland, Amsterdam, 1988, pp. 287-293. 

[12] W. F. Schreiber et al., "Channel compatible 6-MHz HDTV 
distribution systems", Tech, Rep. 79, MIT, January 
1988. 

[13] E. Simoncelli and E. Adelson, "Non-separable extensions 
of quadrature mirror filters to multiple dimensions", in 
Proc. IEEE, April 1990. 

[14] G. Tonge, "Signal processing for higher definition 
television", IBA Tech. Rev., Vol. 21, November 1983, pp. 
13-26. 

[15] M. Tsinberg, "ENTSC two-channel compatible HDTV 
system", IEEE Trans. Cons. Electronics, Vol. 33, August 
1987, pp. 146-153. 

[16] P.P. Vaidyanathan, "Quadrature mirror filter banks, M- 
band extensions and perfect reconstruction technique", 
IEEE Acoust. Speech Signal Process. Mag., Vol. 4, July 
1987, pp. 4-20. 

[17] P.P. Vaidyanathan and Z. Do(ganata, "The role of lossless 
systems in modern digital signal processing: A tutorial", 
IEEE Trans. Education, Vol. 32, August 1989, pp. 181-197. 

[18] M. Vetterli, "Multi-dimensional sub-band coding: some 
theory and algorithms", Signal Processing, Vol. 6, No. 2, 
February 1984, pp. 97-112. 

[19] M. Vetterli, "Multirate filter banks for subband coding", 
in: J. W. Woods, ed., Subband Coding of Images, Kluwer 
Academic Publishers, Dordrecht, 1990, to appear. 

[20] M. Vetterli, J. Kova~evi6 and D. LeGall, "Perfect recon- 
struction filter banks for HDTV representation and cod- 
ing", in: Proc. of the Third lnternat. Workshop on HDTV, 
Torino, Italy, September 1989. 

[21] M. Vetterli and D. LeGall, "Perfect reconstruction FIR 
filter banks: some properties and factorizations", IEEE 
Trans. Acoust. Speech Signal Process., Vol. 37, July 1989, 
pp. 1057-1071. 

[22] E. Viscito and J. Allebach, "The analysis and design of 
multidimensional FIR perfect reconstruction filter banks 
for arbitrary sampling lattices", submitted. 

[23] F. M. Wang, D. Anastassiou and A.M. Netravali, "Motion 
compensated deinterlacing of video sequences", in: Proc. 
of the Third Internat. Workshop on HDTV, Torino, Italy, 
September 1989. 

[24] J.W. Woods and S.D. O'Neil, "Sub-band coding of 
images", IEEE Trans Aeoust. Speech Signal Process., Vol. 
34, October 1986, pp, 1278-1288. 

Vol. 2, No. 3, October 1990 


