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Adaptive Filtering in Subbands with Critical
Sampling: Analysis, Experiments,
and Application to Acoustic
Echo Cancellation

André Gilloire and Martin Vetterli, Senior Member, IEEE

Abstract—Adaptive filtering in subbands is a new technique
for the real-time identification of large impulse responses like
the ones encountered in acoustic echo cancellation. This tech-
nique generally allows computational savings as well as better
convergence behavior.

We give first an exact analysis of the critically subsampled
two band modelization scheme. We demonstrate that adaptive
cross-filters between the subbands are necessary for modeliza-
tion with small output errors; moreover, we show that perfect
reconstruction filter banks can yield exact modelization. We ex-
tend those results to the critically subsampled multiband
schemes, and we show that important computational savings
can be achieved by using good quality filter banks. Then we
consider the problem of adaptive identification in critically sub-
sampled subbands, and we derive an appropriate adaptation
algorithm. We give a detailed analysis of the computational
complexity of all the discussed schemes, and we verify experi-
mentally the theoretical results that we have obtained. Finally,
we discuss the adaptive behavior of the subband schemes that
we have tested. We generally observe some degradation of the
convergence performance in comparison with conventional
schemes; however, the overall performance could be acceptable
in practical use.

I. INTRODUCTION

DAPTIVE identification of linear systems modelized

by their impulse responses has been studied exten-
sively, and a number of efficient algorithms has been pro-
posed for that purpose [1]-[3]. The adaptive transversal
filtering algorithms yield an estimate of the impulse re-
sponse in a direct form, and the output of the model is
obtained as the convolution of the system input signal by
the estimated impulse response. The adaptation algo-
rithms used for real-time identification are generally of a
gradient type (LMS), and are known to achieve good per-
formances in applications to communications systems like
adaptive equalization and adaptive echo cancellation for
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data transmission. However, in some new applications
like acoustic echo cancellation, several problems arise that
limit the efficiency of those ‘‘classical’’ algorithms.

Those problems have motivated a new approach: adap-
tive filtering in subbands (e.g., [6]-[12]), with the double
purpose of reducing the computational complexity and of
improving the convergence speed of the algorithm. In
adaptive filtering in subbands, the input signal and the
system output signal are split into adjacent frequency sub-
bands by analysis filter banks; then each subband signal
is subsampled, and the adaptive filtering algorithm is ap-
plied to those signals. The identified impulse response is
the system impulse response filtered by the corresponding
subband filter. The subsampling leads to a greater com-
putational efficiency than the usual full-band scheme, and
the processing in separate subbands makes better conver-
gence speed possible in the case of the LMS algorithm,
since in each subband the adaptation step size can be
matched to the energy of the input signal in that band.

Because of the subsampling, aliased versions of the in-
put may appear in the output, especially if the filter bank
is critically sampled [8], [13]. Solutions to this problem
have been proposed, including spectral gaps between sub-
bands [14], oversampling of the filter banks [11], and
adaptive cross-terms between the subbands [9]. Spectral
gaps may impair the subjective quality (especially when
the number of subbands is large); oversampling can be
costly if the oversampling ratio is large, and the speed of
adaptation of the cross-terms can be problematic. Some
frequency domain adaptive filtering schemes [15]-[17]
which are based on transmultiplexers or short-time Fou-
rier transforms, have a close connection with the subband
adaptive filtering scheme discussed in the present paper.
Note that these schemes are often highly oversampled (by
a factor of 2 to 4), thus aliasing components are small
enough to be practically neglected. The main reason for
considering these schemes was their high computational
efficiency.

In our presentation, we will consider essentially criti-
cally subsampled systems; we will emphasize the multi-
rate nature of these systems, thus focusing on issues like
aliasing suppression. In order to do so, we will use tools
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which have been introduced in the context of multirate
filter banks [18], [19], [20]. Note also that such multirate
systems with time-invariant input/output behavior have a
close connection with block processing schemes [21],
[22]. We will also derive an adaptive identification algo-
rithm consistent with the critical subsampling framework.
In that sense, the results we present are extensions to the
adaptive case of some recent results on alias-free block-
processing schemes.

As is well known [4], the acoustic echo appears when
one or both ends in a communication use audio terminals
with acoustic feedback from the loudspeaker to the mi-
crophone, like hands-free telephone sets and teleconfer-
ence systems (Fig. 1). The speech x(¢) from the remote
terminal is diffused into the room by a loudspeaker, the
local user’s speech n(?) is picked up by a microphone and
sent to the remote user. Because of the acoustic transmis-
sion path from the loudspeaker to the microphone (in-
cluding the reflections on walls, furniture, and people in-
side the room), some remote speech y(z) is fed back to the
remote user. Basically, an echo canceller is an adaptive
filter h(z) fed by the speech x(r); h(f) modelizes the acous-
tic echo path and yields at its output a replica $(¢) of the
“‘echo’” signal y(r) which is subtracted from it.

The length of the acoustic echo path impulse responses
(often several hundred milliseconds) leads to adaptive fil-
ters with very large numbers of taps (several thousands).
Another difficulty arises from the nature of speech x(z),
which is a badly suited signal for identification because
of its nonflat spectrum. The corresponding spread of the
eigenvalues in the autocorrelation matrix of the signal
slows down the adaptation process in the LMS case [5].
Note also that since the acoustic echo path is time vary-
ing, h(f) has to be adjusted continuously in time during
the communication. The tracking capability is therefore
an important characteristic of adaptive identification al-
gorithms for acoustic echo cancellation.

The experimental results that we will present come
mainly from two subband schemes. Although the com-
putational efficiency generally increases with the number
of subbands, two subband schemes are practically useful
since they are structurally well suited for transmission of
wide-band speech as well as telephone speech. For ex-
ample, they could be directly embedded within subband
speech coding schemes [34]. Another reason to consider
two subband schemes is that practical systems should have
short transmission delays, since the overall delay is pres-
ently a critical point in network planning considerations
[35].

The main points addressed in the paper are as follows.

Section II presents a detailed analysis of the two-band
scheme with critical subsampling by two for modelization
of linear systems. It is shown how aliasing can be per-
fectly cancelled by using cross-filters.

In Section III, we generalize the analysis to the multi-
band case (critically sampled). We show that, under weak
conditions on the filters, nearest neighbor cross-filters will
suppress aliasing as well.
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Fig. 1. Origin of the acoustic echo. A basic echo canceller h(r) is shown.

We consider the problem of adaptive identification in
Section IV. As a first solution, we apply directly the con-
ventional LMS adaptive algorithm to the static structure
developed in Sections II and III. Then we derive a specific
adaptation algorithm in the purpose to avoid the overde-
termination problem inherent in the first solution, and we
compute a convergence bound for the adaptation step size
of this algorithm.

Section V is concerned with computational complexity
of the proposed adaptive identification schemes.

Then, Section VI applies the proposed schemes to the
problem of acoustic echo cancellation, both with syn-
thetic and real signals and systems. Experimental results
on convergence rates and asymptotic errors as well as on
tracking capability illustrate the different schemes. Be-
sides, some comparisons are made with an oversampled
two subband scheme. These experimental results are dis-
cussed, and some qualitative remarks are made that ex-
plain peculiarities of the adaptive processes in the pro-
posed schemes.

II. Two SUBBANDS SCHEME

A two channel subband identification scheme is de-
picted in Fig. 2. We assume in the following that z trans-
forms of all signals and filters exist on the unit circle.
Thus, from Fig. 2, we see that the signal X(z) is filtered
by the system S(z); the system output has a ‘‘noise sig-
nal’’ N(z) added to it (this noise signal can actually be the
useful signal, as in acoustic echo cancellation where it
corresponds to the near end speech), and it is then split
by an analysis filter bank (Hy(2), H,(2)) and subsampled
to yield the two ‘‘system subband signals’ ¥, (2) and
Y, (z). The identification path first splits the signal X(z) by
an identical analysis filter bank, and then models the sys-
tem in the subband domain by a matrix C,,(2) to yield the
two estimated system subband signals f’o (z) and ¥,(2). The
subband error signals are obtained as E;(z) = Yi(z) —
¥:(z), i = 0, 1. The total error E(z) is obtained after pass-
ing the subband error signals through a synthesis filter
bank (G, (z), G, (z)). The model matrix C,(z) has to be
adjusted adaptively so as to minimize the total error E(z);
in practice, it is adjusted so as to minimize the subband
error signals. This point will be discussed further in this
section.

Assume first that we have perfect half-band filters, both
in the analysis and in the synthesis filter banks. In that
case, the subsampling is perfectly valid (no aliased com-
ponent is folded back) and the two channels can be treated
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Fig. 2. Two-channel subband identification scheme. The system S(2) is
modeled by C,,(z) in the subband domain. We will refer to the upper half
as the **system path,”* while the lower left part is often called the *‘iden-
tification path.”’

completely independently for the identification process.
After the separate identification of the channels, upsam-
pling and interpolation by the perfect half-band filters
yield an output which is identical with the one that would
have been produced by a full-band identification scheme.
In that ideal case, the matrix C,,(z) is diagonal, with the
lower and higher frequency halves of the system as di-
agonal elements.

In the nonideal case, that is when the filters are only
approximations of ideal half-band filters, it will be shown
that C,,(z) cannot be diagonal, and that the cross-terms
are necessary for a correct system identification, at least
if one insists on critical sampling.

Note that this section presents a deterministic analysis
of the system, where we assume that the system is known;
that will allow us to derive exactly the structure of the
solution.

In the analysis below, we will use the modulation do-
main approach [19], because it is well suited for interpre-
tation. This presentation will be succinct, and we refer
the reader to the literature for details on multirate filter
banks [18], [19], [23].

A. Modulation Domain Analysis

Let us use the modulation expansion of the signals and
filters [19]. Defining

X, (2) = [X@ X(—2)" (1

we define similarly

Then, the output of the system path is equal to [9]
o@] | [Ho'?) Ho(—z‘“)]
[Y,@} o2 [H1<z1/2) Hy(—z'%)
[sa‘”)X(z'/z) }

S(_Zl/l)X(_zl/Z)
LH, (2 )8 D)X ). @)

The output of the identification path is
[Yo@] | [co.om co,l(z)} [Ho(z‘/z) Ho(—z‘/z)]

2

Y1) Cro@ Cii@) LH @Y Hi(=2'%)
X(Zl/z)
'L«—z”zj
=1 Cu@H, @' ) xa@' ). )

The subband error signals are zero if
C,.z)H,(2) = H,(2)$,(). 6

To interpret this result, we make the following choice for
the filters in the banks:

Hy(z) = H{2) (7a)
H,(z) = H(—2) (7b)

where H(z) is a ‘‘good’’ half-band low-pass filter (there-
fore, H(—z) is a “‘good’” half-band high-pass filter). This
choice is usual in subband coding [18], even if it does
only lead approximately to a perfect reconstruction sys-
tem. It is called the classical QMF solution. This choice
is made for clarity of explanation and because it is usually
good in practice. The inverse of H,,(2) is
—H(—-z
( )} ®

H(z)

HE)

1
H,()] ' = ———
[H,(2)] et H.() [ CH(-2)

It can be shown that for reasonably long filters [32] det
H,,(z) is approximately equal to
det H, () = oz “*! ®

where Ly is the length of the filter H(z) (which is assumed

H.(0) = {H{)(Z) Ho(—Z)jl @) evem). Thus, the inverse of H,,(z) (within a delay) can be
H\(z) H\(-2) approximated by
as well as o = 2o H, @1 = 1 [ H(2) —H(_Z)}
PP [S(z) 0 } ) a| -H(-z) HQ@)
0 S(-2 (10
A causal C,,(z?) can be obtained as (from (6)) [9]
2HC(@D) = Hp(2)50(2) G (D)
_1 [Hz(z)s(z) - H*(-2)S8(-2) H@QH(-9)[S(=2) — S@] } an
a | HOH(-2)[5@) — S(-2]1 H’@S(-2) - H(-2)8()
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Since z7¥*" as well as the right-hand side of (11) are odd
functions of z, C,,(z*) is indeed an even function of z.
From (11), it is immediate that C, (z) is diagonal only if
either of the conditions below are satisfied [9], [11]:

i) H(z) H(—z) = 0: that is, H(z) has infinite attenuation
above a quarter and below three quarters of the sampling
frequency.

il) S(z) — S(—z) = 0: the system S(z) has only even
indexed samples.

Obviously, ii) does not correspond to a general physical
system.

The condition i), together with the requirement for per-
fect transmission of the useful signal, shows that H(z) has
to be a perfect half-band filter in order to get a diagonal
C,.(2). That is, C,,(z) cannot be the correct model matrix
of a general physical system if it is diagonal, and there
have to be cross-terms between the channels in order to
identify the system correctly in the subbands.

Recall that C,,(2) in (11) is only an approximation, be-
cause G, (z) was approximated in (10). The effect of such
an approximate solution will be discussed below. Note
that the off-diagonal terms in (11) have a factorized form
which can be used in an implementation, and that if H(z)
is a “‘good’’ half-band filter, the energy present in the off-
diagonal part becomes generally small compared to the
diagonal terms (because H(z) H(—z) is small except on a
small frequency range around a quarter of the sampling
frequency).

B. Remarks on the Two Band Scheme

Still within the deterministic framework used so far, we
will discuss some effects and tradeoffs.

1) Absence of Cross-Terms: Assume that the off-diag-
onal terms in (11) are zero, and the diagonal terms are
unchanged. Then, with Gy(z) = H(z) and G,(z) =
—H(—z), it can be verified [9] that the error signal at the
output contains mainly aliased input X(z). This is exactly
what was noted experimentally in [8].

2) Perfect Aliasing Cancellation: One can verify that
using an aliasing cancellation filter bank (with Gy(z) =
H(z) and G,(z) = —H(z)) indeed cancels aliasing, i.e.,
the output error does not contain aliased input. It is easily
verifiable that with C,(z) as in (11), the output error
equals

E@) = [H*(2) — H(-2)]

T - H ) - A (-))IS@XE@.  (12)

There is no aliasing term X(—z2) in the product on the
right side. The second term of this product, which should
be very small for well-designed filters like QMF’s [32],
shows that $(z) X(z) cannot be perfectly cancelled any-
more.

3) Perfect Reconstruction Filter Banks: Instead of
using an approximate inverse of the analysis bank in (10),
one can write an exact inverse (within a delay) given that
the filter bank is a perfect reconstruction one. Various
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perfect reconstruction filter banks are possible (having
linear phase [29] or being lossless [23]).

In the lossless two channel case, the analysis filters obey
[33]: Hy(z) = H(z) and H,(z) = z Y*"'H(—z""), while
the synthesis filters are given by: Gy(z) = 27HH HETY
and G, (2) = H(—z2). H(z) is a prototype filter (of length
L;even) such that the filter bank is lossless, that is,

H@HE ") + H(-H(-z") = 1. (13)
The model matrix C,,(z) can be derived straightforwardly.
It is similar to the QMF case (11). The main difference is
that C,,(2) is a perfect model of the system, and, thus, the
error can be made theoretically exactly zero. This holds
also as far as the reconstruction of N(z) is concerned.

When the filter bank is lossless, the L, norm of the total
output error E(z) is equal to the L, norm of the error vector
[Eo(z) E,(2)]", because the filter bank can be seen as a
generalized rotation that preserves L, norms. Therefore it
will be convenient and advantageous to use the subband
errors in the adaptive algorithm, rather than the total er-
ror. Note that a QMF bank with sufficiently selective fil-
ters is not far from being lossless, and thus the same ar-
gument applies in that case also.

1II. MULTIBAND SCHEME

Assume now that we generalize the system so as to di-
vide signals into N bands, each subsampled by N. Each
filter in the analysis bank is chosen as a bandpass filter of
bandwidth f; /N (if the filters are real, they will have two
conjugate parts of bandwidth f, /2N each). Furthermore,
we assume that the filters are selective enough so that they
overlap only with adjacent filters:

H - H@ =0, [i—jl>1 (14)
Since sufficiently selective filters can always be obtained
if the complexity can be afforded, the product in (14) can
be made reasonably close to zero.

The amplitude response for such a filter bank is sche-
matically shown in Fig. 3. A convenient class of such
filters which has been studied for subband coding of
speech is the class of pseudo-QMF filters [24]-[27]. The
ith filter of such a bank is obtained by cosine modulation
of a low-pass prototype filter with cutoff frequency f;, /4N.

The matrix H,,(z) (see (2)) is now of size N X N and
contains the filters and their modulated versions (by the
Nth root of unity W = ¢ /27/Vy:

H,(2)
Hy(2) Hy(W2) HyW"V"'2)
| B Hw) H (W"™'2)
Hy_1(2) Hy_(W2) HN—I(WN_IZ)

(15)
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Fig. 3. Amplitude response of a real filter bank of size N where only ad-
jacent filters overlap.

Similarly to (3), S,,(z) is a diagonal matrix of the form

S(z)

S = SWwz - . (16)

S(WN— 1 Z)

From (6), the subband error signals are zero if
C,.@") = H,(9S8,@[H,]". (an

For the sake of discussion, assume for now that the anal-
ysis filter bank is obtained from a prototype low-pass filter
H(z) by complex modulation with the Nth root of unity.
Similarly, a synthesis bank is obtained from a prototype
G(z) and produces (approximately) a perfect reconstruc-
tion system (this can only be approximately true [20],
[28)).

G,,(2) can then be considered as an (approximate) in-
verse of H,,(z) (within a delay):

H,@ ' G, = z "L (18)

Furthermore, both H(z) and G(z) are sufficiently selective
so that (14) holds also between H;(z) and G;(z) (the dif-
ference |i — j| is taken modulo N). Then, it is easy to
verify that the product (from (17))

Cn@") = Z¥H, (@) $0(2) G, (@) (19)

is actually tridiagonal:

Fig. 4. Identified system in the critically sampled multiband real case
(N = 3).

The important point here is that the matrix C,, (z) is not
a full matrix, but has only cross-terms from adjacent
bands.

Note that C; ;(z) are functions of ZV only (one can ver-
ify that C,.,]-(sz) = C; ;(2)). Thus, the length of the cor-
responding filters is of the order of

Le = (Ly + Lg + Lg)/N. @2n

Note that because the cross-terms C; ;4 (2) and C;,_(2)
are obtained from the product of adjacent filters, they can
usually be approximated by shorter filters than the main
terms.

In the case of real filter banks, the convenience of
pseudo-QMF’s is that a good approximation of the in-
verse filter bank (therefore of the inverse H,, (2)) is known.
The approximation can even be perfect in certain cases
(see [29] for details). Going through a similar develop-
ment as in the complex filter bank case ((19)-(21) above)
one can verify that, given that only adjacent filters over-
lap, the matrix C,,(z) is again tridiagonal (C; y-(z) and
Cy - 1.0(2) are no longer present in the real filter case).

Thus, the model system C(z) is a network as depicted
in Fig. 4 where there are only nearest neighbor cross-

Co.0(2) Co,l(Z) 0 e 0 CO,N—l(Z)
Cio(@ Ci1@ Ci@ - 0 0
C, ") ~ 5| " 1@ €@ . . (20a)
Cy_1.0@ 0 0 " Cyoiv—2@ Cyinv1@
with
X N1 o . i terms. Failure to include these cross-terms will lead to the
C.@ =z i§0 SW' ) HW'2) G(W'z) (20b)  apparition of aliased versions of the input in the output.

N-1
Crivi(@ = 25 _§0 SW TIDHW )GW *'z)  (20¢)

N-1

Cu-i@ = X T SOV I HW' )G ') (20d)

and similar definitions of Cy y_;(2) and Cy_ ¢(z) (these
terms appear because the lowest and highest frequency
filters are neighbors in the complex filter case).

IV. ADAPTIVE IDENTIFICATION ALGORITHMS

In Sections II and III we have analyzed the problem of
linear system modeling with critically subsampled sub-
bands schemes. Now, the model matrix C,,(z) (11), (19)
has to be made adaptive in order to implement the iden-
tification of the unknown system S(z). In this section, we
discuss two adaptive algorithms which can be used in that

purpose.
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A. Direct Adaptation of the Filters in the Model Matrix

The most direct way to adapt the matrix C,,(2) is to use
for each of its terms an adaptive filter of proper length
(theoretically L, = L; + L, /2 — 2). One could then take
advantage of the subband splitting of the input signal x(¢),
which should lead to a better convergence of the LMS
algorithm because the eigenvalue spread is smaller in the
subbands. This assumption is valid only for the diagonal
terms of the model matrix (see experimental results in
Section VI).

The corresponding implementation of adaptive filtering
in subbands is shown schematically in Fig. 5 for the two
subband case. The main filter and the cross-filter which
contribute to each subband i, { = 0, 1 are adapted by a
classical algorithm, for example, the LMS (the adaptation
path is symbolized by the dotted lines) which uses at each
“‘block’’ of two samples the error e;(m) at the output of
the corresponding subband (m is the block number). This
algorithm can be generalized straightforwardly to the
multiband case with the limitation to adjacent cross-fil-
ters, according to the simplified scheme described in Sec-
tion IIIL.

Considering the two subband case, we note that the di-
rect adaptation of the filters in the model matrix leads to
the separate identification of four filters of length L. = L,
+ L,/2 — 2, although the length of the unknown system
response S is L;. This corresponds indeed to an overde-
termined problem, for which the optimum solution (i.e.,
C) = C) as given by (11)) may be hard to find. This
overdetermination explains probably the convergence dif-
ficulties observed in the experiments (see Section VI).

B. Adaptation of the System-Dependent Components

To overcome this problem, another adaptation scheme
is proposed which does not exhibit overdetermination and
thus yields better performances. This scheme tries to
identify directly the system impulse response, in the frame
of the subband structure.

Denoting by S the estimated system impulse response,
one tries to minimize the power of the output error e(?)
relatively to the samples of S. As noted in Section II, if
the synthesis filter matrix G,, () is paraunitary, the power
of the output error is equal to the sum of the powers of
the subband errors at its inputs; then the minimization of
the output error power is equivalent to the minimization
of this sum. We define an optimality criterion as follows.
Setting:

N—-1
IS = 2 Celm)) (22)
where (- ) denotes some averaging operation (e.g.,
mathematical expectation), we have the optimal solution
S = §* iff J(S) minimum. This corresponds indeed to

aIs)
a5, 0,

k=01, L —1.  (23)

S* is equal to the unknown system impulse response S,
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Fig. 5. Two subband adaptive identification with direct adaptation of the
filters in the model matrix (DL means L, samples delay).

since the subband errors are linear functions of the im-
pulse response samples §;, and because they are equal to
zero when the model matrix satisfies (11) or (19).

In the sequel, we will develop the computations for the
two-band case. We discuss more briefly the multiband
case in the Appendix I.

1) LMS Adaptation Algorithm: We specialize here the
computation to the LMS case. We use then a modified
criterion:

TS = ef(m) + ei(m). (24)

Taking the partial derivatives J(S) relatively to the sam-
ples of S, we get the components of the *‘instantaneous
gradient”” vector. Then, the LMS adaptation algorithm

will have the general form:
S$ilm) = §(m — 1)

9eo(m) | e, (my 22 fm)} ,
as,( Bsk

= p(m) {26’0("1)

k=0,1, -+ L~ 1 (25)

2) Components of the Gradient: Using (5)-(8) and (9)-
(11) (where we assume that exact equalities hold), we can
get expressions for the partial derivatives of the subband
errors relatively to the even and odd coefficients of the
estimated impulse response S. To obtain closed-form
expressions, we use the polyphase decomposition of the
filters responses, i.e.,

H@z) = H.G") + 27 'H,z") (26)
and we define ‘‘filtered input signals’’ as follows:
X () = 2H,H,)X,(z), i=0,1 27)
X ) =2[H @) + z '"HX@)X,(z), i=0,1 (28)
X, 4(2) = 2[H:2) - 2 'Hi@1X,z), i=0,1 (29

where X;(z) and X,(z) result from the subband splitting of
X(2). Then we get for k = 2p:

dey(2) — _

- 22777 X (2)
652[,

(30)
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9@ _ _prr-1%,.2)

1
855, @D
and fork = 2p + 1:
90@ _ i X, @ -~ Xia@) (D)
asZp+l
éflﬁ = -z [X4@ — X ,@] (33)
a52p+1

3) Expressions of the Convolutions: We have to imple-
ment the convolutions in the model matrix according to
(11). Using the polyphase decomposition of the estimated
system response, i.€.,

$() = Se@) + 2718, (34)
we get for the estimated system outputs in the subbands:
0@ = 27 {250 X0, @ + 5, Xos@ — X1.4@N}
(35)

51@ =27 {2500 + $@Xo0.4@) — X1, @1}
(36)
For each “‘block’” of two samples, we have thus to im-
plement four convolutions on L, /2 samples, and we have
to adapt L, coefficients. Since the adaptation of each coef-
ficient requires 2 multiplications and 2 additions, the total

computational load (convolution + adaptation) is equiv-
alent to the one of the full-band LMS transversal filter.

C. Convergence Condition for the Nonoverdetermined
Algorithm

In this subsection, we will limit our analysis to the two
subband case for more tractability. The convergence of
the algorithm (25) towards the optimal solution §* = §'is
controlled by the adaptation step size p. Using a well-
known technique [2, ch. 7], we study the convergence to
zero of the coefficient error vector:

Vim) = S — S(m). (37
Assuming p(m) = u for the analysis, we get from (25)

Vim) = Vim — 1)

- [2eo<m) aggg") + 2e,(m) %%} (38)

It is convenient there to split V(m) in its even and odd
components ¥, (m) and V,(m), as we did before to derive
the practical form of the adaptation algorithm. Using (30)-
(33) and (35), (36) and assuming for simplicity that the
output additive noise is zero, we get from (38):
Ve(m) = Ve(m - 1) - 4#[2X0(chVe(m - 1)

+ Xo.c(X5.s = X{.)Vo(m — D)
_4“[2X1.0X1T,CVe(m - 1)
+ Xl.c(Xg,d -

X7 )V,(m — 1] 39)

V,(m) = Vy(m — 1) = 2u[2(Xo,, — X, )X Vom = 1)
+ X, — X)) X3 = Xi.0)Vo(m = D)
—2u2(Xo.q — X1 ) X1 Velm = 1)

+ Kog — Xi.)Xoq — X1.)Ve(m — D] (40)

where X ¢, X1 Xo.50 X1.05 X005 and X, , denote the vec-
tors of size L,/2 containing the samples of the filtered
input signals defined by (27)-(29) up to the current
““block’” m, and T denotes transposition of vectors and
matrices. Note that the unit delays in (30)-(33) and (35),
(36) have been dropped out, and the delays on the system
path have been changed into z “L/2+1 accordingly.

Equations (39) and (40) can be grouped in a first-order
recurrent system as follows:

V,(m) = [I,/, — pA(M]V,(m — 1) — pBm)V,(m — 1)
(411)
V,(m) = —pB (mV.(m = 1)
+ Uy, 2 — DMV, (m — 1)
where I/, is the L, /2 X L/2 identity matrix, and

(41ii)
A(m) = 8% X5 + X X1 42)
Bm) = 41X, (X5, — XT ) + X, (X040 — X101 43)
D(m) = 2[(Xo., — X1.0) (X0
+ Xog — X1.5)X0.a

are L,/2 X L,/2 matrices which depend on the filtered
input signals up to the current block m. Let

=I:E[A(m)] E[B(m)]]
E[B"(m)] EID(m)]

- X0

- X1l (44)

45)

where E[ - ] denotes the mathematical expectation (we as-
sume that x(r), and consequently the filtered input signals,
are stationary processes). Assuming that x is ‘‘sufficiently
small,”” we can use a classical approach [2]. We write for
the system (41i-ii):

[E[V(,(mn}_u e [E[Ve(mﬁ)]} o
Ev,oml T LEV,0m — 1)

where I is the L, X L, identity matrix.

It is shown in Appendix 2 that the symmetric block-
matrix @ is positive definite.It can be shown by a classical
reasoning [2] that the behavior of the mean coefficient er-
ror vector is governed by the eigenvalues of @, which are
all strictly greater than zero. In particular, this vector con-
verges exponentially to zero provided that 0 < 1/Amaxs
where A, is the largest eigenvalue of .

As it is well known, this condition is not sufficient to
insure the convergence of the MSE to its minimum. Using
again the classical approach developed in [2], we can de-
tive a convergence condition for the MSE. Using (39),
(36), and the instantancous squared error (24), we get
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straightforwardly:
ej(m) + ei(m)
A Bm) ||V,
= 1 VIem VZ(mn{ o (m)H "(mﬂ.
B'(m) Dm)| L V,(m)
47

The rest of the analysis is then similar to the one devel-
oped in [2]. In particular, the MSE for a known coefficient
error vector [V (m) VI (m)] can be written as

V(’
Eleg(m) + ei(m)] = 3 [VIm) VIm)@ { (m)}

Vo(m)
(48)

and the mean coefficient error vector propagates accord-
ing to (46). Then we get the bound for p:

2
p < ﬁ = Mmax- 49

Let us now gain some further insight in the form of &
for a particular case. With general QMF filter banks, the
matrices A, B, and D have complicated terms which de-
pend on the polyphase components of the QMF filter H.
Using the “‘trivial”” QMF filte bank derived from H(z) =
0.51 +z7Y, we get much more tractable expressions:

A(m) = XE,ZmXeT.2m + Xo.ZmXZ.Zrn (50)
B(m) = Xe.ZmXZ.Zm + XO,Zmer,Zm—2 (51)
D(m) = Xu.ZleT).Zm + Xe.2;r1—2X52rn—2 (52)

where X, ,,, and X, ,,, denote, respectively, the even and
odd polyphase components of the vector of L, input sam-
ples of x(¢) at time ¢+ = 2m (i is the block number).

Computing the expectations of (50)-(52) to get the ma-
trix & may be a difficult task, since in general no simple
relations exist between the autocorrelations and cross cor-
relations of the polyphase components of a signal and its
autocorrelation function. In the white noise case, how-
ever, the polyphase components X, ,,, and X, », are un-
correlated, and (45) simplifies to

. [2031&/2 0

= 2021 53
0 2afILj/j b 63

where o2 is the variance of the input signal x(¢). The upper
bound g, is then equal to 1/L,o?, i.c., half the upper
bound for the adaptation step size of the standard LMS
algorithm with a filter of length L,.

V. CoMPUTATIONAL COMPLEXITY

Besides convergence behavior, reduced computational
complexity is another attractive feature of adaptive filter-
ing in subbands. We will demonstrate this point by com-
paring the computational complexity of a full band scheme
with that of N band schemes, both in the critical and over-
sampled cases.
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In this section, we are going to count multiplications
per input sample in the various schemes, and it is under-
stood that the number of additions has a very similar be-
havior as well.

The full-band filter with the LMS adaptation algorithm
uses 2L; + 1 multiplications per input sample. This num-
ber is increased typically by 2 multiplications in the case
of the normalized LMS algorithm.

The complexity of the two subband scheme described
in Section II with the overdetermined adaptation algo-
rithm is given by three filter bank evaluations and one
adaptive sytem matrix with four elements of length (L, +
L,)/2 — 2. The complexity of one filter bank evaluation
per input sample varies from (L; + 1) /4 multiplications
(in the case of linear phase perfect reconstruction filter
banks) to Lf/2 multiplications (in the classical QMF case)
[29]. This leads to a total of approximately

2L, + % L;  multiplications /sample. (54)
In (54), we took the usual QMF filter bank, and we ne-
glected any possible savings from the factorization of the
cross-filters. Assuming that L, >> L, we see that the
computational complexity is comparable with that of the
full-band adaptive filter.

The two subband scheme with the nonoverdetermined
adaptation algorithm requires three filter bank evalua-
tions, the computation of six ‘‘filtered input signals’’ and
four convolutions and adaptations with the polyphase
components of the estimated system impulse response. Per
block of two samples, we have for the filtered input sig-
nals 6L, — 2 multiplications, for the convolutions 4L /2
+ 2 = 2L, + 2 multiplications, and for the adaptation
2(L, + 1) multiplications. In the usual QMF case, this
leads to a total of approximately

2L, + gLf multiplications /sample. (55)
We see that the computational complexity is again com-
parable with that of the full-band adaptive filter. Note that
if the ‘“‘trivial’’ QMF filter bank (for which L, = 2) is
used, the contributions of the filter banks and of the com-
putation of the ‘*filtered input signals’’ to the total number
of multiplications are negligible.

In this two band case, savings can be obtained by using
an adaptive fast running convolution scheme [22], [30]
instead of the direct convolutions involving the system-
dependent components. It will lead to about 25% savings
over the time-domain implementation, but can be gener-
alized to more bands yielding higher savings.

We will now consider N band schemes, with N > 2,
and verify if these schemes can lead to substantial com-
putational savings. A N band system, with subsampling
by M, requires the evaluation of 3 filter banks (2 analysis
and 1 synthesis bank) for every set of M input samples.
Assuming that N is a power of 2, this leads to 3(N log, N
+ L) /M multiplications/sample. It is assumed that the



1870 IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 40, NO. 8, AUGUST 1992

filter banks are modulated and thus, three size N fast
transforms (like DCT’s or real DFT’s) together with poly-
phase input and output filterings are only required per M
input samples.

Further computational gains can be obtained when
computing the polyphase filters in the frequency domain
as well [31], but such schemes are quite involved and will
not be considered further.

When using the overdetermined adaptation algorithm
with critical subsampling (M = N)), the adaptive part, be-
tween the analysis and the synthesis bank, consists of N
main filters and 2N — 2 cross-filters. The main filters are
of length (2L, + L;) /N, and we will assume that, thanks
to the factorization of cross-filters, a third of this length
should be sufficient for those ones (this value comes from
simulation results). Since all those filters are adaptive and
require 2 multiplications per tap in the LMS case, the sys-
tem identification part requires approximately

10
— (L + 2L

N multiplications /sample.

(56)

The total number of multiplications for the filter banks
and the system identification is therefore of the order of

1 [10 29
N

?LS +?Lf+ 3N10g2N}

multiplications / sample (57)
which shows that the dominant term (the factor of L,) is
about 5/3N times smaller than the full-band one, that is,
the improvement in computational complexity is propor-
tional to the number of subbands. Note, however, that Ly
will increase with the number of channels, but is usually
smaller than L.

Looking at the nonoverdetermined adaptation algo-
rithm, we note that the direct use of (A1.1) for the adap-
tation of the coefficients of the estimated system impulse
response leads to N multiplications and N additions for
each coefficient. The computation of the estimated output
in each subband (A1.5) requires N convolutions with the
polyphase components of the estimated system impulse
response, which are of size L;/N. The adaptation for-
mulas can be arranged in the form of convolution matrices
of size N X N; therefore significant computational gains
(for large values of N) can be achieved by using fast con-
volution schemes. We can also save some computations
by further decomposition of the filters responses and input
signals in their polyphase components. If we use FFT’s
to compute the convolutions, the number of multiplica-
tions for the adaptive part can be reduced to approxi-
mately 3L, - log, N for each block of N samples. We have
then in total

1
N [B(L; + N) log, N + O(Ly]

multiplications /sample. (58)

Therefore, the computational gain over the full-band LMS
algorithm is only of the order of 3 log, N/N.

Let us now make some comparisons with oversampled
multiband schemes. In those schemes, the cross-filters are
no longer present; then the adaptive part requires

A—A; - 2(L; + 2Lp) multiplications /sample  (59)
and the total system uses
M| (L, + 2Ly } Ly
— 2= "L 4+ 3log, N| +3—
N { M 082 M
multiplications /sample. (60)

Assuming that N/M is close to 1 and that Ly is still rea-
sonably small compared to L;, we see an improvement by
a factor of M (that is, close to N) with respect to the full-
band system. Using (57), (58), and (60), it is possible to
find the tradeoffs possible between critically sampled sys-
tems and oversampled ones, and this by adjusting the
oversampling ratio N /M as well as the filter lengths in the
banks.

In conclusion, we have verified that adaptive filtering
in subbands can be computationally attractive, with gains
of the order of the number of bands (the gain seems to be
smaller in the case of the nonoverdetermined algorithm).
Note that this fact has been used in transmultiplexer based
adaptive systems, but with relatively large oversampling
ratios (2 < N/M < 4 typically [15]) as well as in schemes
for echo cancellation {16], [17].

VI. EXPERIMENTAL RESULTS WITH APPLICATION TO
Acoustic EcHO CANCELLATION

In this section we use acoustic echo cancellation as a
framework for the experimental study of adaptive filtering
in subbands with the overdetermined and nonoverdeter-
mined adaptation algorithms. The corresponding sub-
bands’ adaptive schemes are named in the sequel over-
determined subbands (OSB) and nonoverdetermined sub-
bands (NOSB’s), respectively. We consider also the full-
band adaptive filter in the purpose of comparisons.

We verify some important characteristics that have been
derived theoretically or indicated in Sections II-1V:

1) it is shown that aliasing cancellation can be achieved
with adaptive cross-filters;

2) it is shown that the use of perfect reconstruction fil-
ter banks leads to the perfect identification of the
system;

3) it is verified that the nonoverdetermined adaptation
algorithm generally yields better performances than
the overdetermined one.

The convergence behavior is discussed for both adap-
tation algorithms. Besides, the tracking capability of a
continuously time-varying system is examined.
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A. Experimental Setup

The arrangement depicted in Fig. 1 was simulated in
floating-point arithmetic. Three input signals were used:
white noise, noise with a speech-like spectrum (USASI
noise, ANSI standard S1.4-1961), and real speech; the
sampling frequency was 16 kHz.

For the convergence experiments, the unknown system
was generally simulated by a truncated impulse response
measured in a real room, and the system output signals
y(1) were obtained by convolving the input signals x(r)
with those impulse responses. The adaptive filters had suf-
ficient lengths to avoid system impulse response trunca-
tion effects. Thus the asymptotic behavior of the investi-
gated schemes can be observed, because it is not masked
by the residual echo which would persist with untruncated
impulse responses.

In the purpose to simulate a time-varying system for the
tracking experiments, a wood plate was moved between
a loudspeaker and a microphone in a small room. The
signals at the input (loudspeaker) and output (micro-
phone) of the system (room) were recorded synchro-
nously. The input signal was the USASI noise.

The experimental results are displayed in the form of
total error decay curves (generally normalized by the
short-time power of the output signal y(r)). In the sequel
we call ‘‘asymptotic error’’ the error which is observed
after the initial decay.

B. Schemes Using the Overdetermined Adaptation
Algorithm

We discuss OSB schemes with two and eight subbands.
In the two subband schemes QMF filter banks were used
with filters of length L, = 32 (type D [32]) as well as
perfect reconstruction filter banks with short filters (L, =
4). In the eight subband scheme, pseudo-QMF filter banks
were used with filters of length 128 obtained by interpo-
lation of a QMF prototype of length 16 (type B [32]).
When QMF or pseudo-QMF filter banks were used, the
cross-filters were factorized in a fixed part and in an adap-
tive part (system dependent) according to (11) and (20c-
d). Adjacent cross-filters only were implemented in the
eight subband scheme, according to the tridiagonal form
derived in Section III.

In all the experiments discussed below we used the nor-
malized least means squares algorithm (NLMS) [2]. The
adaptation step size u was computed according to u =
v/XTX where v is the adaptation gain constant and X is
the vector of input signal samples stored in the adaptive
filter. » was generally set to 0.5 for the main filters; this
value was always used for the full-band adaptive filter
(with » = 1 the NLMS algorithm becomes unstable). For
the cross-filters, » was generally set to 0.0625 for optimal
performances. The adaptation of the two subband scheme
was done according to Fig. 5; the same adaptation struc-
ture was extended straightforwardly to the eight subband
scheme.

1) OSB Schemes with QMF Filter Banks: The error de-
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TABLE I
ERROR DECAY RATES (DECIBELS/SECOND) FOR THE FULL-BAND SCHEME
AND FOR THE TWO SUBBAND OSB SCHEME WITH FACTORIZED CROSS-
FILTERS (GLOBAL VALUES AND VALUES IN EIGHT ADJACENT FREQUENCY
BANDS ARE GIVEN)

Freq.

kHz 0-1 1-2 2-3 34 45 56 6-7 7-8 Global
Full- —-74. -76. —76. —66. —62. —52. —48. —41. =73,
band
Subband —86. —102. —113. —48. —-30. —193. —192. —82. —83.

cay curves for the two and eight subband OSB schemes
and for the full-band adaptive filter are shown on Fig. 6
(input signal: USASI noise). The three curves exhibit
similar initial parts; however, after the error has decayed
by about 35 dB (2 subbands) and 27 dB (8 subbands), the
convergence of the OSB schemes slows down and the er-
rors go down to asymptotic values of about —50 dB (2
subbands) and —43 dB (8 subbands).

These asymptotic errors are well above the one of the
full-band adaptive filter because nonperfect QMF filter
banks were used (see Section II). Some improvement of
the transient behavior was observed in the higher part of
the spectrum (see Table I); this improvement does not ap-
pear in Fig. 6 because the energy of the error is dominant
in the lower frequencies.

In the absence of cross-filters the aliased components
in the output error were not cancelled, as expected from
the results of Section II (see experimental results in [8],
[9]). Other experiments showed that when there was no
factorization of the cross-filters the convergence speed at
all frequencies was severely degraded; this will be dis-
cussed at the end of this section.

With speech signals at the input the convergence was
significantly degraded in comparison with the full-band
adaptive filter. This degradation probably comes from in-
teractions between the main filters’ and the cross-filters’
adaptations.

2) Comparison with a Two Subband Oversampled
Scheme: A two subband adaptive filter with an oversam-
pling ratio of 5/4 was implemented. Its transient and
asymptotic behavior with USASI noise at the input was
found similar to the one of the two subband OSB scheme.

3) Two Subbands OSB Scheme with Perfect Recon-
struction Filter Banks: As demonstrated in Section II, the
use of perfect reconstruction filter banks should lead to
zero asymptotic error at the output of the identification
scheme; this property has been experimentally verified.
Short filters with length L; = 4 were used for demonstra-
tion purposes. The coefficients of H, and H, were, re-
spectively, 1, 3, 3, 1 and 1, 3, —3, —1; the coefficients
of Gy and G, were, respectively, —1, 3, 3, —1, and 1,
-3,3, —1[29].

The test was made with a white noise at the system
input. The error curve is shown on Fig. 7, with the error
curves for the full-band adaptive filter and for the two
subband scheme with QMF filters discussed above. The
asymptotic error of the scheme with perfect reconstruc-
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Fig. 6. Error decay curves for the two and eight subbands OSB schemes
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noise).
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Fig. 7. Error decay curves for the two subband OSB schemes with perfect
reconstruction and QMF filter banks compared with the error curve for the
full-band scheme (input: white noise).

tion filter banks is very close to the error of the full-band
filter; this demonstrates the perfect identification property
(the observed residual error is due to the quantization of
the system input and output signals).

Those last results show that the adaptive filtering pro-
cess in subbands based on the feedback of the subbands’
errors is able to identify perfectly a system. This was also
verified by identifying a short synthetic impulse response:
the asymptotic values of the elements in the identified
model matrix were exactly the same as when computed
from (11).

C. Two Subband Scheme Using the Nonoverdetermined
Adaptation Algorithm

Since the derivation of the nonoverdetermined algo-
rithm as well as the convergence analysis in Section IV
focused on the two subband structures, we will discuss
experimental results for the scheme with two subbands
only.

A QMEF filter bank with filters of length L, = 32 was
used (the same as for the OSB scheme), as well as a per-
fect reconstruction ‘‘trivial’’ QMF filter bank derived
from H(z) = 0.5(1 + z~'). The estimated system impulse

response was adapted according to (25) (even and odd
components were adapted separately).

1) Bound to the Adaptation Step Size: We have ob-
served experimentally that with the USASI noise as the
input signal x(z), the instability appeared when p was
slightly greater than the bound (49). With a white noise
at the input, the instability appeared when p was equal to
twice the bound. With input signals having lower corre-
lation than the USASI noise (for example, white noise
filtered by a first-order low-pass or high-pass filter), the
instability appeared for values of p between the bound
(49) and twice this bound. Note that those bounds were
essentially independent of the filter bank choice. For
practical computations, the expectations were replaced by
time averages over L, /2 samples.

These results show that the simplified analysis derived
from [2] is only approximatively adequate, although it
gives a correct order of magnitude for the upper bound of
the adaptation step size.

2) Convergence Behavior: The fastest convergence
with the USASI noise was obtained with p approximately
equal to half the bound (49); in this case, the convergence
was equivalent to the LMS one during an initial period,
after which it became slower. The same behavior was ob-
served when using both filter banks (Fig. 8). The fastest
convergence with the white noise was obtained with p
equal to the bound (49), and in this case the convergence
curve was identical to the full-band LMS one.

Note that the asymptotic error obtained when using the
QMF filter bank is significantly higher than the one ob-
tained with the *‘trivial’’ perfect reconstruction filter bank,
which is very close to the error of the full-band adaptive
filter. This corresponds indeed to the perfect modeling
condition derived in Section II.

With speech at the input, the optimum value of u was
close to the optimum value found for the USASI noise;
the convergence curve was then approximately the same
as the one of the full-band scheme (Fig. 9). Other exper-
iments have shown that with speech at the input the be-
havior of the two subband NOSB scheme was similar to
the one of the subband oversampled scheme considered
previously.

Overall, the performances of the NOSB scheme are sig-
nificantly better than those of the OSB scheme: in partic-
ular, the asymptotic error is much smaller. However, the
convergence speed is not improved in comparison with
the full-band scheme.

D. Tracking Capability

The adaptation gain constants yielding the highest con-
vergence speeds were used in the experiments. The length
of the identified part of the impulse response was 50 ms.
It is shown in Fig. 10 that the tracking capabilities of the
OSB and NOSB two subband schemes considered are nei-
ther improved nor degraded in comparison with the one
of the full-band adaptive filter. Experiments with the
oversampled two subband scheme led to the same conclu-
sion.
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Similar experiments showed that the tracking capability
of the OSB eight subband scheme was slightly degraded
in comparison with the one of the full-band scheme (this
is probably linked to the problem of choosing the adap-
tation step size of the cross-filters).
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E. Further Comments on the Experimental Results

The OSB and NOSB schemes with perfect reconstruc-
tion filter banks are asymptotically optimal, i.e., they are
able to identify the system without bias. This is an inter-
esting result from a theoretical point of view, because it
extends the general framework of the identification tech-
niques.

Note also that the nonzero asymptotic errors that can
be observed in the nonperfect QMF case (and also in the
oversampled case) are not detrimental in acoustic echo
cancellation, because in this application the identification
is systematically biased by the truncation of the impulse
response, and the resulting output error is generally larger
than the error due to the nonperfect character of the afore-
mentioned subband schemes.

The convergence performances of the OSB schemes are
strongly dependent on the cross-filters: it has been ob-
served that the adaptation of the main filters is slowed
down as soon as the cross-filters are adapting. This can
be intuitively explained by interactions between the adap-
tive processes in the main filters and in the cross-filters,
which are made less critical by the factorization of the
cross-filters; nevertheless, the adaptation step sizes of the
cross-filters had to be chosen small for satisfactory per-
formances.

The overall convergence speeds of the OSB and NOSB
schemes were not found significantly better than the one
of the full-band adaptive filter. Nevertheless, such
schemes would have the practical advantage of reduced
computational complexity in comparison with the full-
band adaptive filter, as shown in Section V.

Double-talk aspects were not investigated in details. A
theoretical study of those aspects would be certainly very
complex. Note that experiments (not discussed in this pa-
per) with the OSB schemes, where a noise was added to
the echo signal, did not show significant performance
degradations (in terms of residual echo minus noise) in
comparison with the full-band scheme.

Overall, the theoretical results from the previous sec-
tions have been verified (more or less approximately);
thus, the multirate framework that we have used seems to
be adequate for the analysis of subband adaptive filtering
schemes. Note that the theoretical analysis of the adaptive
behavior is still to be completed.

VII. CoNCLUSION

In this paper we have shown how to solve theoretically
and experimentally the adaptive identification problem
with critically sampled multirate systems. First, we have
shown that the (approximately) perfect modelization of
linear systems with critically sampled subband schemes
can be achieved only if the model matrix incorporates
nondiagonal terms, i.e., cross-filters between the sub-
bands. Then we have made these schemes adaptive; for
that purpose, we have proposed two adaptation algo-
rithms; the first one (OSB) leads to overdetermination
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problems which are avoided by the second one (NOSB).
The additional complexity corresponding to the cross-fil-
ters can be reduced if the filter banks are chosen with good
selectivity. The adaptive behavior of OSB schemes is de-
pendent on this selectivity, and the factorization of the
cross-filters is necessary for satisfactory performances.
The NOSB schemes are much less dependent on the filter
banks characteristics, but they are less computationally
efficient.

Overall, the results did not meet the expectations orig-
inally put into critically sampled subbands schemes. Al-
though generally superior to the OSB schemes, the NOSB
ones did not give better convergence performances than
the full-band adaptive filter. Since both convergence gains
and computational efficiency can be best achieved with
oversampled schemes, oversampling is still the way to go.
For better computational efficiency, one can use NOSB
fast running filter based filtering [36]; but no convergence
gain can be obtained directly over the full-band scheme.

APPENDIX 1
MULTIBAND NONOVERDETERMINED ALGORITHM

The LMS adaptation algorithm for more than two sub-
bands is obtained straightforwardly from (25):
N-1

§elm) = $eGm — 1) = p(m) 21 2e,0m) Jestm)

A b
aSk

k=0,1,+,L —1 (Al.1)

where m is the block number (the block size is now N).
Assuming that the filter banks are sufficiently selective,
we can restrict the system matrix to the tridiagonal form
(20a), and we get

ael(ZN) 0C; (2) N 3C; 1112
= — > X, S S T e S b N
35, a5, &) o5, i@
9C; -1 (2) N
2%, X1 @@"),
[1=0,1, -, N—-1 (Al1.2)

(the second indexes in the terms C; ;. and C;,_, are to
be taken modulo N in the complex filter case).

As in the two subband case, it is convenient to consider
the partial derivatives in (Al.1) relatively to the poly-
phase components of the estimated system impulse re-
sponse. We set

N-1
Sz) = pZO z2778,(zY). (A1.3)
Using (20b-d), we can obtain the expression for those
partial derivatives. We get, for example,

aC, N : S
IA,I(Z) - ZK Z H(W‘Z)G(WIZ)(WlilZ) ququ
938, 4 i=0

(A1.4)

where S',,,q is the gth coefficient of the pth polyphase com-
ponent of S. Note that we have replaced the approximate
equality in (20b) by an exact one.

Using again (20b-d) we obtain for the estimated system
outputs in the subbands

N-1 N—-1 .
fE") =* ZO S, {ZO HW'2)
p= =

G (W )X (2Y)
N—-1

+ T HWDGW W)X @)

N-1
+ 2 H(sz>G(W""z)(W"’z)‘""x,fmz”)}.

(A1.5)

Note that since (A1.4) and (A1.5) are functions of z",
they can be decimated.

As in the two subband case, the components of the gra-
dient are equal to linear combinations of ‘‘filtered sub-
bands input signals,”” and the estimated system outputs
are obtained from convolutions of the same combinations
of these signals with the polyphase components of S.

APPENDIX 2
PROOF OF THE PoOSITIVE DEFINITENESS OF ®

The matrix $ (45) is positive definite iff for any nonzero
vector V of size L, the following inequality is satisfied:

viev > 0. (A2.1)

Let VT = (V7 ¥I] be a nonzero vector; V, and V, are
vectors of size L, /2. If V, (respectively, V,) is zero, then
V, (respectively, V) is nonzero. Since E[A(m)] and
E[D(m)] are sums of covariance matrices, and therefore
are positive definite, it can be shown immediately that
(A2.1) is verified.

Let us turn now to the case when both V; and V, are
nonzero vectors. Since they are deterministic quantities,
the product V7@V can be written

VeV = E[VIA(m)V, + VIBm)V,
+ VIBTm)V, + VID(m)V,]. (A2.2)

Using the expressions (42)-(44) for the matrices A(m),
B(m), and D(m), we define the scalar quantities (which
are nonzero for general input signals):

C = 2V|TX0,C + VzT(Xo,s - Xi,4)
Xl,s)-

(A2.3)
C,=2VIX, .+ Vikoa — (A2.4)

Making use of the associativity of the product of matrices
and vectors, we get straightforwardly

C? + C = 05{(VIAm)V, + VIBm)V,

+ VIBTm)V, + VIDm)V,}. (A2.5)
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Taking the expectations on both sides of (A2.5), we ob-
tain the required result (A2.1).
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