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Wavelets and Recursive Filter Banks

Cormac Herley, Student Member, IEEE, and Martin Vetterli, Senior Member, IEEE

Abstract—Recent work has shown that perfect reconstruction
filter banks can be used to derive continuous-time bases of
wavelets; the case of finite impulse response filters, which lead
to compactly supported wavelets, has been examined in detail.
In this paper we show that infinite impulse response filters lead
to more general wavelets of infinite support. We give a com-
plete constructive method which yields all orthogonal two chan-
nel filter banks, where the filters have rational transfer func-
tions, and show how these can be used to generate orthonormal
wavelet bases. A family of orthonormal wavelets, which shares
with those of Daubechies the property of having a maximum
number of disappearing moments, is shown to be generated by
the halfband Butterworth filters. When there is an odd number
of zeros at 1 we show that closed forms for the filters are avail-
able without need for factorization. A still larger class of ortho-
normal wavelet bases having the same moment properties is
presented, and contains the Daubechies and Butterworth filters
as the boundary cases. We then show that it is possible to have
both linear phase and orthogonality in the infinite impulse re-
sponse case, and give a constructive method. We show how
compactly supported bases may be orthogonalized, and con-
struct bases for the spline function spaces. These are alterna-
tives to those of Battle and Lemari¢, but have the advantage of
being based on filter banks where the filters have rational
transfer functions and are thus realizable. Design examples are
presented throughout.

1. INTRODUCTION

HE subject of wavelets has been studied by applied
mathematicians for a number of years, as representing
an alternative to traditional Fourier based analysis tech-
niques. Considerable interest has been shown by the sig-
nal processing community more recently owing, in large
measure, to the influence of pivotal papers by Mallat [11-
(3] and Daubechies [4]. These demonstrate the strong link
between the subject of wavelets and of multirate filter
banks. Briefly put, multirate filter banks give the struc-
tures required to generate important cases of wavelets and
the wavelet transform.
Among the most celebrated wavelet bases are those of
Meyer [5], Battle [6], and Lemarié [7], and these can be
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realized using orthonormal multirate filter banks; how-
ever, the filters involved are not rational, and the corre-
sponding wavelets cannot be computed exactly, so they
are limited from a signal processing view. More interest-
ing are the compactly supported wavelets of Daubechies
[4]. These are based orthogonal finite impulse response
(FIR) filter banks, which have in fact been under study
for some time [8]-[10].

Our principal interest in this paper is orthogonal filter
banks and their relation to wavelet bases. We consider
infinite impulse response (IIR) filter banks, which have
been less studied, and which allow greater freedom than
their FIR counterparts. The relation between FIR filter
banks and wavelets was examined in [11].

The essential contribution of the paper consists of new
results on orthogonal IIR filter banks which allow us to
thoroughly examine the structure of possible solutions,
and present new designs. The connection with wavelets
allows us to use these designs to get novel orthogonal
wavelets, which are based on structures that are comput-
able with finite complexity. Thus we present filters that
are of interest in their own right, but which also allow us
to generate wavelet bases which are in some senses com-
parable, and in others superior to those already published.

The summary of the paper is as follows. We present a
succinct review of the relation between orthonormal
wavelet bases and filter banks having orthogonality prop-
erties in Section I1. We recall that designing a certain class
of orthonormal wavelet bases is related to the simpler
problem of designing orthogonal filter banks, provided
that the filters satisfy certain regularity conditions. Since
this material has been reviewed in a number of papers our
treatment is limited to the essential points. Readers un-
amiliar with the subject might consult [81, (121, [13] for
additional coverage of filter banks, and [14], [4], [5], [11],
[15] for treatments of the connection with wavelets.

In Section III we present a constructive method to find
all orthogonal filter banks, where the filters have rational
transfer functions. In certain cases of considerable inter-
est, we actually get closed form expressions for the filters;
so that no factorization or approximation is necessary.
This contrasts sharply with the FIR case, and seems to be
the first closed form for a nontrivial implementable
wavelet.

Section IV recalls that wavelets with moment proper-
ties are derived from filter banks where the filter fre-
quency responses are maximally flat. We construct the
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whole family of maximally flat filters for orthogonal filter
banks, and show that the Butterworth halfband filters and
the Daubechies solutions are included as special cases.

Section V illustrates that linear phase and orthogonality
are not mutually exclusive properties for IIR filter banks,
as they were in the FIR case. Filters of considerable in-
terest can be designed that lead to orthogonal wavelets
with symmetry.

We show in Section VI that if a compactly supported
basis for one of the spaces in the multiresolution analysis
structure exists, then we can always generate an orthog-
onal basis from realizable IIR filters. A special case is the
Nth order spline function space; so we construct bases
which have the advantage over those of Battle and Le-
marié that they are realizable.

Certain results have been presented in preliminary form
in[16]-[18].

Notation

The set of real numbers will be represented by R, the
set of integers by Z. The inner product over the space of
square-summable sequences [ 2(Z) is: Ca(n), b)) =
L _, a*(n)b(n), where a(n), b(n) € 1*(Z), and super-
script * denotes complex conjugation. Generally we shall
deal with sequences and functions that are real. We define
la@mll3 = ¢a(n), a(n)y. The z transform of a sequence
is defined by H(z) = L. _ h(n)z~". The discrete time
Fourier transform is H(e’") = H(z)|,- .. Similarly over
the space of square-integrable functions L?(R) we have
the inner product: { f(x), g(x)) = (2o f*x)gkx) dx,
where f(x), g(x) € L*(R). The squared norm is given by
| fwl3 = ¢(f®&), f(x)). For continuous-time functions
we will use subscripts to denote affine variable changes
where the scales are powers of 2 as follows fi (x) = 27/
fQR7x — k).

Our main interest is with filters that have z transforms
that can be written as H(z) = zX4(2) /B(z) for some A(z)
and B(z) which are polynomials in z~'. Since we deal with
both causal and anticausal filters we shall often have
positive and negative powers of z~'. A function that has
terms in both z and z~' is not a polynomial, but we refer
to it as an FIR function provided that it has a finite number
of terms. The following shorthand notation for a causal
FIR function of length N is used: LV} a,z™" = (a,, a1,
ay, * " Ay ).

In the following we shall refer to any symmetric or an-
tisymmetric filter that has a central term as having whole
sample symmetry (WSS) or whole sample antisymmetry
(WSA), and one that does not have a central term as hav-
ing half sample symmetry or half sample antisymmetry
(HSS or HSA). In the case of FIR filters, WSS and WSA
correspond to filters of odd length, and are often referred
to as Type I and Type III filters, respectively [19];
whereas HSS and HSA imply filters of even length, called
Type II and Type IV, respectively. Some of the basic
properties of symmetric sequences that we will need are
reviewed in the Appendix subsection A.
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II. WAVELETS AND FILTER BANKS
A. Multiresolution Signal Processing

The material of this section can also be found in [4],
[2], [11], [15]. Two texts give very comprehensive treat-
ments [5], [20]; a more tutorial approach is given in [21].

The axiomatic description of a multiresolution analysis
scheme, as introduced by Mallat [1], [3] and Meyer [5]
is that we should have

i) A succession of spaces:
"'VzCV]CVOCV—l"'a (1)

where the union of all the Vs is L*(R), and the
intersection of all of the spaces contains only the
origin,

i) fy eV, e fC)eV_y,

iii) 3 ¢ (x) € ¥, such that the set ¢ (x — n), n € Z con-
stitutes an orthonormal basis' for V.

It follows that the set {¢;(x) = 272 - $(27x — k),
k € Z} is an orthonormal basis for V;.

Next, let W; be the orthogonal complement of V; in
Vi_y;thatis, xe V,,ye W; & (x,y) =0and V;_, = ¥,
® W, Obviously V; C V;_, and W; C V;_,, so that the
basis functions of V; and W, (¢ (x) and ¥y (x), respec-
tively) can be written as a linear combination of the basis
functions of V;_ (¢; _ 1, (x)). This gives the relations:

o) =27 X k) - d@x-m @

b =27 X mm e -m ()

where infinitely many of the hy(n) and A, (n) may differ

from zero. Since (2) relates ¢ (x) and ¢ (2x) it is called a

two-scale difference equation. Note that ¢ (x) and y (x) are

called the scaling function and wavelet, respectively.
Because V; and W, are orthogonal we find

(), y(x — b)) =0 = Cho(n), hy(n — 2k)).  (4)

Thus the two sequences hg(n) and h, (r) must be orthog-
onal with respect to shifts by two.

Equally, by imposing the constraint that the bases for
V; and W, be orthogonal:

(), p(x — b)) =6, =YX, ¥y(&x — k) (5
we find that
Cho(n), ho(n — 2k)) = 8 = (hy(n), hy(n — 2k))>. (6)

B. Wavelets Derived from Filter Banks

We have seen above that the multiresolution analysis
scheme with orthogonal basis functions satisfying (2) and
(3) implies certain restrictions on the related sequences
ho(n) and h, (n); that is, (4) and (6) must hold. Also, since

'Actually it is sufficient to have a basis, which can then be orthogonal-
ized.
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(62x — k), d(0)) =277 - ho(), and (Y (2x — k),
d(x)) = 27V Zp, (k); it is obvious that once the basis
functions ¢ (x) and Y (x) are known the related filters are
easily found. However, it is not yet obvious how func-
tions satisfying the desired constraints may be found.

1) Limit Functions of Filter Banks: A way to construct
¢ (x) and Y (x) from the associated discrete sequences was
first shown by Daubechies in [4]. Essentially it entails
considering the limit of a sequence of functions f D (x)
which are piecewise constant on intervals of length 1/2'.
The value of the constant is equal to the coefficient of a
filter found by cascading i copies of the filter H,(2) fol-
lowed by a subsampler [11], [21].

Assuming for the moment that the limit exists, and that '

the filters ho(n), hy(n) satisfy the orthogonality con-
straints (4) and (6), we have as i = o0

[P =2 B hmfT@—m. D

Taking the Fourier transform:
F® (w) = 277 - Hy(e™?) - F®'w/2). ()
Now define My(e’*) = 27'/*Hy(e’), so that
F W) = My(e™)F*™ (w/2)

= II Mye™'™) - F© 0. ©)

Now also consider the related function:
G (w) =272 - Hi(e”?) - FPw/2).
so that

gU@ =2 L mmf©@ —m. (10

On comparing (7) and (2), (10) and (3) we now see that
£ (x), and g (x) satisfy the two scale difference equa-
tions required of the orthonormal wavelet construction. It
can be verified that the orthogonality relations of the func-
tions £ (x), and g (x) follow from the orthogonality
of the filters [4], [11].

Thus the problem of finding the basis functions for the
wavelet scheme is reduced to one of finding appropriate
pairs of sequences hg(n) and h, (n). For much of the rest
of the paper, we will concern ourselves with this.

2) Regularity: That the infinite product (9) converges
as i — oo cannot be taken for granted. Cases where con-
vergence fails altogether, or where the product converges
to a discontinuous function are easily found. We would
like some guarantees about the convergence of (9) and the
continuity of the functions ¢ (x) and ¢ (x), when they ex-
ist. Exactly such a criterion is derived in [4], and is re-
viewed below.

First factor M, (2) into its roots at z = —1 (if there is
not at least one then the infinite product cannot converge
[4], [22], [23]) and a remainder function K (z), in the fol-

lowing way:
M@ = [ +27)/21"K@).

Note that it can be shown that K(1) = 1 from the defini-
tions; i.e., (6) gives H3(1) = 2, so that Mo(1) = 1. Now
call B the supremum of |K(z)| on the unit circle: B =
SUPyeo.2x |K (7). Then the following sufficient, but not
necessary, test from [4] can be used.

Proposition 2.1 (Daubechies [4)): 1f B < 2¥-1 and

Z k@l < o,

n=-—o

forsome e > 0 (11)

then the piecewise constant function f @ (x) defined in (9)
converges pointwise to a continuous function f (x).
Since we will consider filters with a finite number of
poles and zeros, it is clear that their impulse responses
(which may be one or two sided) have exponential decay.
Thus (11) is always satisfied, and B < 2¥-1 is the only
check we need perform.
in the FIR case the wavelets generated have compact
support; the wavelets generated by IIR filter banks, how-
ever, are supported on the whole real line, but will have

exponential decay just as the filters themselves do [24].

C. Filter Banks

We now put the connection between filter banks and
wavelets to work. Our interest in this paper is orthogonal
wavelet bases, hence we restrict our attention to orthog-
onal filter banks. More general perfect reconstruction fil-
ter banks give rise to biorthogonal systems just as in the
FIR case [11]. We assume some familiarity with the basic
properties of multirate operations; these are detailed for
example in [8], [12], [13].

1) Perfect Reconstruction: The structure shown in Fig.
1 is a maximally decimated two channel multirate filter
bank. If X(z) = X(z) the filter bank has the perfect recon-
struction property, and we refer to it as a PRFB. We now
make the following choice for the synthesis filters:

[Go(), Gi@] = [Ho@™ ), Hi@™ )] (12)

and choose H,(z) = ZZk_lHo(—z"). It is easily shown
that the output X(z) of the overall analysis/synthesis sys-
tem is then given by

L Hy(z) Hy(—2) || X(@
X(z)=%[Go(Z)GI(z)][ o) o H }

H () H/ (-211LX(-2)
(13)
= {H@Ho@™") + Hy(= Ho(=27 )] - X
(14)

So for this arrangement of the filters it is clear that we get
perfect reconstruction provided:

Hy@Ho(z™) + Ho(—)Ho(—27") = 2.

The importance of this construction is established by the
next lemma.
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Fig. 1. Maximally decimated two channel multirate filter bank.

Go(2)

We first introduce additional notation that we will need.
The 2 X 2 matrix in (13) is called H,,(z), the modulation
matrix of the system or the aliasing component matrix [8].
The following polyphase notation for the filters is stan-
dard [8], [12], [13]:

Hi(z) = Ho(z) + z7'Hy (2%

that is, h; (n) contains the even-indexed coefficients of the
filter h; (n), while A;; (n) contains the odd ones. Thus

[Hoo(zz) Hy, (zz)]
HIO(ZZ) Hn(ZZ)

V[ Ho@ Ho(=2) |1 1|1 0

3 . (15)
Hi(z H(-2ll1 -1100 z

The matrix on the left-hand side is called the polyphase

matrix H, @>.
Lemma 2.2: The following are equivalent:

a) [H,zH" - H,(2) =2 -1,
b) [H,z )] - H,x) = I,
<) Ho(Z)Ho(z ! 5 Ho( Z)Ho( z7") = 2 and H,(2)
= 7%= PHy(—27")A(z?), where A(z) is all pass,
d) <(h;(n), hy(n — 2k)) = & and (hy(n), hy(n — 2k))
=0VkelZ.

A proof can be found in [25]. It is also proved that the
choice of synthesis filters (12) is unique for the orthogonal
construction.

Because of the impulse response relations in d) we shall
refer to any filter bank satisfying the conditions of Lemma
2.2 as orthogonal; in the filter bank literature the terms
orthogonal, paraunitary, and lossless are often used inter-
changeably [26]. Observe that in Lemma 2.2c¢) we use
functions of the form H, (z) H;(z~"), which are called au-
tocorrelation or positive real functions. It deserves men-
tion that the study of lossless systems and positive real
functions has a long history in both circuit theory and sig-
nal processing [26]-[29]. When we wish to impose or-
thogonality on the filter bank to be used, we shall use
whichever of the equivalent conditions of Lemma 2.2 is
most convenient.

Note that the particular solution given after (12), H, (2)
= Z%*~ lH (™", did not contain the all pass introduced
in ¢). This is the solution where FIR filters are used, since
the only FIR all-pass function is a delay.
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Note also that if we define P(z) = Hy(z) Hy(z™") then
¢) requires that in addition to being an autocorrelation,
P(2) satisfies

P@R) + P(—2) =

Since this condition plays an important role in what fol-
lows, we will refer to any function having this property
as valid. Much of the focus of the paper will be in de-
signing autocorrelation functions that are valid. We shall
be interested only in valid functions that are rational, so
that they can be factored into rational filters Hy(z) and
Hy(z™"). These filters can then be implemented using re-
cursive difference equations [19], whereas filters that do
not have rational transfer functions have no finite com-
plexity physical implementation.

(16)

III. ORTHOGONAL IIR FILTER BANKS

We have already seen that constructing an orthogonal
filter bank can be reduced to the task of finding a function
P(z) which is a valid autocorrelation; that is, a function
that satisfies (16) and can be factored as P(z) =
H()H(z™"). We first establish a preliminary result on the
form of valid rational functions.

Lemma 3.1: If a valid function P(z) has no common
factors between the numerator and denominator, then the
denominator is one of the two upsampled polyphase com-
ponents of the numerator.

Proof: We can write

P@ = 2 [p@m +p@n+ D'

so the constraint gives

P@ +P(-=2- X p@mz™

=2 = p@n) = §, an
Clearly,
P@ =1+ 2 p@Qn+ )z !
=1+ z7'F@H. (18)

If F(z%) has no common factors between its numerator
and denominator, then they must each be functions of z%,
possibly multiplied by some delay z*. That is, F(z%) =
Z*N(z»/(z*D(z?). So we have

Z*kD(ZZ) + Z—(k+ l)N(ZZ)
Z*kD(ZZ)

P(2) =

Thus the denominator is the first polyphase component if
k is even, and the second if k is odd. The numerator and
denominator of P(z) are coprime if and only if N(z) and
D(2) are.

A. Structure of the Solutions

Clearly Lemma 3.1 gives a simple method to design a
rational function P(z) which is valid. Lemma 2.2 then
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shows that this can be used to give an orthogonal filter
bank if this function is an autocorrelation, that is it can
be factored as P(z) = Hyp(2) H,(z™", since the essential
requirement of Lemma 2.2¢) is that Hy(2) Ho(z™") be
valid. The next theorem puts these parts together and
shows how to design valid autocorrelation functions, and
hence orthogonal filter banks. Its utility is that it is con-
structive and complete.

Theorem 3.2: All orthogonal rational two channel fil-
ter banks can be formed as follows:

i) Choosing an arbitrary polynomial R(z), form

2 - R@QRE™
R@RGE@ ™ + R(-2RE™Y

ii) Factoras P(z) = HQ)HGE™").

iii) Form the filter Hy(2) = Ao (2) H(2), where Ay (2) is
an arbitrary all pass.

iv) Choose H,(z) = z* 'Ho(—2z ")A,(z%), where
A, (z) is again an arbitrary all pass.

v) Choose Go(z) = Hy(z™"), and G,(2) = H;(z™").

Proof: From Lemma 2.2c) it is necessary and suffi-
cient to find a valid rational autocorrelation function P (z);
since once this is factored as P(z) = Hy(2) H,y(z™") then
H, (z) is specified by Lemma 2.2c¢), and G,(z) and G,(2)
by (12).

We show first that (19) always gives a valid, rational
autocorrelation. It is valid, since

2 - R@RGE ") + R(—R(-z7")
R@R@E ") + R(-9R(—=z7)
2.

P@R) =

19)

P(z) + P(—2) =

It is clearly rational, R(z) being a polynomial. The nu-
merator of (19) is an autocorrelation; so is the denomi-
nator, since it is the sum of two autocorrelations
R()R(z™") and R(—2)R(—z~"). Hence P(2) itself is an
autocorrelation and can be factored

PR = HQHE™) = H@Hy(z ™) * 4@ A

for some H(z) and an arbitrary rational all-pass 4o (2).
Next we show that any valid rational autocorrelation
can be written as in (19) for some polynomial R(z).
First, any common factors between the numerator and
denominator of the given function can be cancelled; the
result is clearly still a valid rational autocorrelation. So it
can be written

R@QRE ™)
B@)B@ ")
for some polynomials R(z) and B(z). Now we can use
Lemma 3.1 to get that the denominator, B(z) B ™", is

one of the unsampled polyphase components of the nu-
merator:

Dy@) = [RQRE™H + R(-R(-z7H1/2

P(z) =

or
D,z% = [R@RE") — R(-2)R(—=z7 /2.
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Note that R(z)R(z_‘) is always of odd length and is sym-
metric. It follows that one of its upsampled polyphase
components, Dy (2 2y, is whole sample symmetric (WSS),
while D, (z%) is half sample symmetric (HSS). Since half
sample symmetric polynomials always have at least one
zero at z = —1 (see Appendix subsection A), D, % is
not a suitable choice for the denominator, as we wish to
avoid poles on the unit circle. We therefore have that

2 - R@QRE™
R@QRE ") + R(=9R(-2z7)

P(@) = O (0

Remarks:

1) If Hy(z) is causal then H, (2) will be anticausal; sim-
ilarly for Gy (z) and G, (z). This implies that IR orthog-
onal filter banks can only be realized over finite length
signals; in this case the filters are implemented as the sum
or product of causal and anticausal components [30}-[32].

2) The introduction of the all-pass factors Ay(z) and
A, (z) affect only the phase of the filters to be imple-
mented, and not their magnitudes. Equally, in the fac-
torization required by step ii) there is considerable choice
for the phase of the filters; H(z) could be minimum phase
or maximum phase or mixed phase. The magnitude of
course does not change. Irrational orthogonal factoriza-
tions of a rational P (z) function are also possible. We give
an example in Section IV-D.

3) The theorem shows that if R(z) ranges over the
polynomials then (20) is complete for rational P (2) func-
tions. If R(2) is chosen to be any function, rational or not,
it is clear by inspection that (20) will still be a valid au-
tocorrelation, but not in general rational. Completeness is
less obvious in this case.

4 If R(z)R(z™") is itself valid, that is R(z)R(z") +
R(—z)R(—zfl) = 2, and A, (2) and 4, () are both chosen
to be delays, then all of the filters specified by Theorem
3.2 are FIR. The synthesis filters are always time reversed
versions of the analysis filters, just as in the orthogonal
FIR case [11]. All of the FIR orthogonal filter banks can
be implemented in a paraunitary lattice structure [10]; a
similar result is true for IIR orthogonal filter banks [33],
so an efficient and numerically robust implementation is
always available.

5) Examples of orthogonal IIR filter banks have been
noted before; the earliest examples appear to be in [30]
and [34]. They were also studied in [33].

B. Closed Form Factorization

Theorem 3.2 establishes the importance of valid ra-
tional functions which are autocorrelations. Numerical
factorization poses certain difficulties, however. This is
certainly a problem in the FIR case; for example, even
when P(z) is known exactly, the accuracy with which the
coefficients of Hy(z) can be determined is dependent on
the numerical robustness of the root extraction procedure.

We now show that in the special case where R(2) is
symmetric and of even length, a closed form factorization
is available. The requirement that R(z) be symmetric is
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very reasonable, since the numerator has to control the
stopband of the filter H(z) and typically has all of its zeros
on the unit circle; if this is so, then R(z) is symmetric
provided that it is real. For example, all of the digital
Butterworth, Chebyshev, and elliptic filters have sym-
metric numerators.

Consider a causal symmetric FIR function R (z) of even
length N + 1. Using the relationship between the poly-
phase components given in fact A.1 in the Appendix:
R, (2) = Ry(z Y2~V V/2 we can simplify

R@ = Ry@» + z27'Ri (2> = Ry(@) + 27V Ry (2.

@21
This gives
R@RE™") = [Ry(®) + 27V Ry(z )]
“[Roz™) + ZVRy(zY)
= 2Ry (z)Ro(z)) + e Ry HRy (27D

+ 2Ry (2 Ry ()]
Clearly, since N is odd:
Dy(z%) = [RQRE™") + R(—2)R(z™H]/2
= 2Ry (") Ro (2 7).
And hence

_ R@RE™
PO = R R D

It is now obvious that one possible choice for factorizing
P(2)is

(22)

Since R(z) and R, (z%) are known exactly, this is a closed
form; so H(z) is directly available. Example 4.1 below
illustrates this. The importance of this result can be seen
by noting that the coefficients of the wavelet expansion
can be obtained exactly, since they do not depend on any
numerical procedure to find the transfer functions H,(z)
and H, (z). This appears to be the first closed form for the
filters used to generate a nontrivial realizable wavelet.

Remarks:

1) Observe that H(z) can be written

Hiz) =271+ z7V4?) (23)
where A(z) = R, (z")/Ro (z) isan (N — 1) /2-th order all
pass. The other analysis and synthesis filters have similar
expressions, and thus can be implemented very effi-
ciently. It is worth pointing out that the filters in this par-
ticular case are themselves valid.

2) Note that H(z) in (22) will in general have poles
both inside and outside the unit circle. Since causal and
anticausal parts must be implemented separately if the fil-
ter is to be stable it will be necessary to know the factors
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of Ry(2). This is easily achieved if in the design procedure
it is written in terms of its roots rather than in direct form

Ryd) = II (1 = oz27").

In this case the causal and anticausal parts of Hy(z) can
be identified and implemented without factorization.

IV. WAVELETS WITH MOMENT PROPERTIES

According to Proposition 2.1 the limits of iterated or-
thogonal digital filter banks can be used to derive wavelet
bases. The sufficient condition to guarantee continuity of
the wavelets was that the iterated low-pass filter, that is
H, (2), should contain an adequate number of zeros at z =
—1. It is for this reason that in the design of compactly
supported wavelet bases [4], [35], [11] the emphasis was
placed on using filters that have a maximum number of
zeros at z = —1. In addition, a zero of order Natz = —1
in Hy(z) implies N vanishing moments for the wavelet [4]

S *ydc=0 k=0,1,---,N—1. (24

It can be shown that having a maximum number of zeros
at z = —1, implies a maximally flat characteristic for the
filters involved [4], [25], [36]. This implies that both the
wavelet and the filter spectrum have considerable smooth-
ness, which may be advantageous in certain contexts.
Our procedure to design orthogonal filters amounts then
to the following:
i) Choosing Byy(z) = (1 + z7H¥(1 + 2)" for some
N,
i) Finding least degree positive real F(z) =
Fn(z)/Fp(2) such that

P(2) = B)y(9F @

_a+2ha + 9"Fve
Fp(2)

is valid, and
iii) Factoring P(z) = Hy(2) Hy(z™").

Of course in [4] only FIR solutions were of interest; so
the solutions had F,(z) = 1. In other words, the multi-
plicative factor F(z) required to make B,y(z) F(z) valid
had only zeros. In the next subsection we examine the
opposite extreme, where F(z) is all pole, i.e., Fy(z) = 1.
These in fact give rise to the Butterworth halfband filters.

In Section IV-B we examine solutions intermediate be-
tween the Daubechies (F(z) all zero), and Butterworth
(F(z) all pole); that is, where F(z) is still of minimal de-
gree, but has some combination of poles and zeros.

A. Butterworth Wavelets

Using Theorem 3.2, constructing regular IIR filter
banks that lead to infinitely supported wavelets is very
simple. Following Daubechies and the FIR case, if we
again place a maximum number of zeros at z = —1 then
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we simply choose R(z) = (1 + z~ Y. This gives
2-(1+z27Ya+2
P =
@ G +2+V+ (- +2- Y
= Hy@Ho@™").

(25)

These filters are the IR counterparts of the FIR filters
given in [4] in that they generate wavelets with regularity
that increases linearly with the degree N of the zero at z
— —1. That these filters indeed satisfy the requirements
of Proposition 2.1 can be verified numerically (see Sec-
tion IV-C).

These are in fact the Nth order halfband digital Butter-
worth filters [19]. That these particular filters satisfy the
conditions for perfect reconstruction was also pointed out
in [32], [37], and their use for the construction of wave-
lets in [38], [39]. The Butterworth filters are known to be
the maximally flat IIR filters of a given order.

We propose these Butterworth wavelets as alternatives
to the compactly supported examples of [4]; they enjoy
exactly the same moment properties, but achieve much
better filtering action for the same complexity, and are
considerably smoother. An additional advantage is that
since R(z) is symmetric we can make use of the closed
form factorization of Section III-B if we choose N to be
odd. So in this case we can explicitly write

N\ &
<k> ¢
N-D/2 /N

Z—ZI
21

2
=0
and the other filters follow from Theorem 3.2.
Example 4.1: Take R(z) = a+ z "V as above and N
= 17, so that we can use the closed form factorization,
hence

k=0

Hy(2) = 26)

V2 -

(1, 14, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001,

TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 8, AUGUST 1993

In the notation of Proposition 2.1, B = 8 < 2% so that
for this choice of Hy(2) the left-hand side of (7) converges
to a continuous function. The wavelet, scaling function,
and their spectra are shown in Fig. 2.

Remarks:

1) As mentioned in Section III-B, if the poles of the
closed form lie both inside and outside the unit circle, one
will still need the factors for implementation. For the
halfband Butterworth filters a closed form for the pole po-
sitions themselves is easily derived [19], [40]. For ex-
ample, in the case where N is odd the poles of Hy(z) are

Qk + 1)1]"‘
2N
k=0,1, -, N —3)/2

For the N = 7 case above the poles are thus {+j4.38128,
+j1.25396, +j0.48157}. Thus Hy(z) can be imple-
mented as the product of a stable left-sided and a stable
right-sided filter Ho(2) = H; (2) Hg(z), where
(a+z7h
H =
L@ = 1 43812872 H(1 + 1.25396°27")
a+z7
Hp(z) = .
K V2 - (1 + 0.48157°z7%)
In the Butterworth case where N is even we can still get
a closed form for the 2N poles of P(z), even though the

closed form factorization (22) is not used. The poles are
at

Zk=i][mn

-, N—- 1

-1
2k + 1
(_W_)"_r] k=01,-"

zk=ij[tan

2) All of the wavelet plots in this paper were produced
using six iterations of the ** graphical recursion’” [4]. The
time axis is scaled such that the advertised orthogonality

364, 91, 14, 1) - 2/

P(z) =

_E@EG)
FQFG )

where

1425 + 3647 + 20227 + 3432 + 2002z7° + 3647 % + 1477°

A +777" + 21272+ 3520 + 3574 4+ 2127 + 720+ 27)

EQ _
F(2)

So using the description of the filters in Theorem 3.2, with the simplest case 4y(z) =

2 - + 21272 + 35270 + 7279

A = 1 and k = O we find

(A + 777" + 21272 + 3570 + 35270 + U5+ 7278 +27)

2 -+ 21272 35270 + 7279

(= 77+ 2122 - 352° + 352 — 2175 + 72° = 2)

H()(Z) =
H] (Z) =2
Go(@) = Hyz™) Gi@ = H (@

V2 - (1 + 2127 + 352" + 72

1).
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Fig. 2. Example of Butterworth orthogonal wavelet; here N = 7, and the closed form factorization has been used. (a) The
wavelet. (b) Spectrum of the wavelet. (c) Scaling function. (d) Spectrum of the scaling function.

properties with respect to integer shifts are indeed satis-
fied. The frequency axes are scaled such that the Fourier
domain version of the orthogonality condition (derived by
applying the Poisson summation to (5)) is satisfied.

B. Intermediate Solutions

At the beginning of the section we pointed out that in
the construction of wavelets with a certain number of van-
ishing moments, the essence of the design was finding a
minimal degree F(z) = Fy(z)/Fp(z), such that P(z) =
Byn(2) F(z) was valid. We now explore examples between
the extremes of the Daubechies (Fp(z) = 1) and the But-
terworth (Fy(z) = 1) cases.

First note that when P (z) is a rational autocorrelation,
both numerator and denominator will be of odd length,
and symmetric. As pointed out in the proof of Theorem
3.2 the denominator is in fact the upsampled whole sam-
ple symmetric (WSS) polyphase component of the nu-
merator. There are two cases:

* A symmetric FIR function of length 4k + 1 has an
upsampled WSS polyphase component of length 4k + 1.

¢ A symmetric FIR function of length 4k + 3 has an
upsampled WSS polyphase component of length 4k + 1.
To find a solution where P (z) has less poles than in the
Butterworth case we must find a function Fy(z)/Fp(2)
where Fp(z) is of length 4(k — p) + 1 for some 0 < p

< k and Fy(2) is of minimal degree such that

A +z27Ya + Ry
P@ = Fp@

is valid. In the Daubechies case we fixed Fp(z) = 1 and
found the minimal degree Fy(z), and in the Butterworth
we fixed Fy(z) = 1 and found the minimal degree Fj (2).
For the intermediate cases we fix the length of F(z) as
4k — p) + 1 for some 0 < p < k and then find the
minimal degree Fy(z). For a given binomial factor (1 +
z7H%( + 2)" the total number of poles and zeros of F(z)
will not necessarily be the same for the Daubechies, in-
termediate and Butterworth solutions, although, in fact, it
will never vary by more than two.

Note that Fj (z) is the WSS component of (1 + 7Y
+ 2)VFy(z), but is to be of lower degree than the WSS
component of (1 + z~")Y(1 + z)". Thus it is apparent that
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some of the terms of (1 + YA + 7)Y Fy(z) must be
zero, and the WSS component must not contain the end
terms. This last condition implies that we must have that
a+zHa + 2N Fy(2) is of length 4k + 3; since oth-
erwise, if it is of length 4k + 1, the WSS component is
also of length 4k + 1, and contains the end terms. It is
convenient to treat separately the two cases for N even
and odd.

N = 2k + 1 odd: The length of the denominator is 4(k
—p) + 1. If wetry Fy(2) of length 4p + 1 then the length
of the numerator, (1 + ZHVa + )V Fy(z), is4(k + p)
+ 3, and that of its WSS component 4(k + p) + 1. The
difference between the length of the WSS component of
(1 + 7Y (1 + 2V Fy(2), and the length of Fp(2) is hence
4 - 2p. Since the WSS component of the numerator is
symmetric, and a function of z2, setting one pair of its
end terms to zero in fact decreases its length by 4. If this

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 8, AUGUST 1993

We have used d to indicate elements of the HSS compo-
nent of the numerator, and x for elements of the WSS
component. Clearly if the indicated end terms of the WSS
component equal zero, then the denominator will be of
length 9. It is easily seen that the conditions to set the end
terms to zero arc

14+a=0
364 + 92a + 14b =0
= (a, b) = (—14, 66). Thus Fy(2) = (z2 — 14z + 66 —

147-" + z72). Here B = 8.011 < 2° and again conver-
gence to a continuous function is guaranteed. The wave-
let, scaling function, and spectra are shown in Fig. 3.

The second intermediate solution is for p = 2, so that
Fy(2) is of length 9, and we want the WSS component of
the numerator to have 2p = 4 pairs of end terms set to
Zero:

11 10 9 8 7

Z 2 Zz Z Z Z Z 4 z Z
B @ 1 14 91 364 1001 2002 3003 3432 3003
az> B, (2) 1 14 91 364 1001 2002 3003 3432
bz2B 4 (2) 1 14 91 364 1001 2002 3003
cz' B4 (2) 1 14 91 364 1001 2002
dzB 4 (2) 1 14 91 364 1001
cz7'Bs () 1 14 91 364
bz 2B14(2) 1 14 91
az *B, (@) 1 14
274B1a (@) 1
Bm(Z)FN(Z) d b d X d X d X d
t 1 1 1

can be done 2p times then the WSS component of the nu-
merator, and the denominator will be of the same length.
Note that 2p is also the number of independent elements
in Fy(2). In fact, the solution is found by solving a 2p X
2p system of linear equations.

N = 2k even: The length of the denominator again is
4(k — p) + 1. Now if we try Fy(z) of length 4(p — 1)
+ 3, the length of the numerator isdtk +p — 1D + 3,
and that of its WSS component 4(k + p — 1) + 1. The
difference between the length of the WSS component of
the numerator, and the length of Fp(2) is hence 4 - (2p —
1). Again 2p — 1 is the number of independent elements
in Fy(z). In this case the solution is found by solving a
setof 2p — 1) X (2p — 1) linear equations.

Example 4.2: N = 7. Note that N = 2k + 1 where k
— 3. There are thus two intermediate solutions for p =
1, 2. Taking the p = 1 case first, note that Fy(z) is of
length 5, and we wish to set 2p = 2 pairs of end terms of
the WSS component of the numerator to zero. The situa-
tion is illustrated below:

The conditions to set the indicated end terms to zero now
are

14+a=0

364 + 9la + 14b + ¢ =0

2002 + 1001a + 364b + 92¢ + 14d = 0
3432 + 3004a + 2016b + 1092c + 364d = 0.

The solution is (a, b, ¢, d) = (—14, 592/7, —274,
3218/7). Here B = 8.011 < 26 and convergence to a
continuous function is assured. The wavelet, scaling
function and spectra are very similar to those forp = 1.

Note: The denominator is of length 4k —p) + 1in
these intermediate solutions, with 0 < p < k. Forp = \]
we would get the Butterworth solution, and for p = k the
Daubechies’. Fork = 0, 1, thatis N = 1, 2, 3, there are
obviously no intermediate solutions.

9 8 7 6 5

z z z z 2z Z z z b4 z
2°B14(2) 1 14 91 364 1001 2002 3003 3432 3003 2002
azB4(2) 1 14 91 364 1001 2002 3003 3432 3003
bB.,:(z) 1 14 91 364 1001 2002 3003 3432
ag; B4 (2) 1 14 91 364 1001 2002 3003
2 B (2) 1 14 91 364 1001 2002
B4 (2)FM2) d x d x d x d x d x
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Fig. 3. Example of intermediate solution orthogonal wavelet; this is the N = 7, p = 1 solution. (a) The wavelet. (b) Spectrum

of the wavelet. (c) Scaling function. (d) Spectrum of the scaling function.

C. Tabulating the P (z) Functions

A point we wish to emphasize is that in all of the design
techniques discussed above it was the construction of P (2)
that was central. This was the case for the Daubechies’
designs of [4], and the Butterworth and intermediate de-
signs of Sections IV-A and B. Once P(z) is determined
the magnitude spectrum of Hy(2) is fixed irrespective of
the all-pass factors 4y(z) and A, (z) of Theorem 3.2, and
the factorization chosen.

If we desire filters that are maximally flat, or equiva-
lently, wavelets that have a maximum number of vanish-
ing moments then we design a P(z) with the maximum
number of zeros at z = — 1. Those minimum degree P (z)’s
with this property are easily listed, and this has been done
in Table I for the cases N = 1, 2, - -+ , 5. The table
exhausts the minimal degree maximally flat P (z) autocor-
relation functions for these orders. For each of the P(z)
functions, except the N = 1 case, the filters satisfy the
conditions of Proposition 2.1; hence convergence is guar-
anteed. For each of the P(z) functions we have included
an estimate of r such that the corresponding wavelet is in

C’; i.e., if r > 1.0 it is continuous, with a continuous
derivative, etc. The estimation methods used were taken
from [20], [23], [41].

For comparison purposes the graph of the N = 7 Dau-
bechies wavelet and scaling function are given in Fig. 4.

D. Irrational Factorizations

Theorem 3.2 demonstrates how to calculate all valid
rational autocorrelation functions. For implementation
reasons we have been interested only in orthogonal ra-
tional factorizations. It is nonetheless possible to take an
irrational factorization of a rational P (z) function and use
it to derive an orthonormal wavelet basis. For example,
if we take P(z) = Hy(2) Hy (z~") where Hy(z) = VP(2) we
end up with linear phase filters. That Hy(2) is necessarily
irrational, where one of the P(z) functions designed in
this section is used, is guaranteed by Lemma 5.1 below.
For example, if we use the Butterworth N = 7 case, as in
example 4.1, we get the wavelet and scaling function
shown in Fig. 5. The magnitude spectra plots are of course
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TABLE 1
THE VARIOUS P(z) SOLUTIONS FOR A GIVEN NUMBER OF ZEROS AT z = — 1. DAUBECHIES, INTERMEDIATE, AND BUTTERWORTH
SOLUTIONS FOR N = 1, * * * 5 ARE SHOWN
Solution P@) Regularity
N=1
Haar A+ +z7H-27" r=0
N=2
Daubechies 1+ +z27)Y - (=1,4, -1 27 r>0.5-—c¢
a + z)z(l + z—l)zz—z
tty rth —_— > 0.5
Butterwo! (1.0.6,0, 1) r
N=3
Daubechies (1+2°+z"- @3, —18,38, —18,3) - 2727° r > 0.9150
3 -3 . -2
Butterworth 1+2°d+z27) -z r>1.0
6, 0, 20, 0, 6)
N=4
Daubechies (I + 2% +z7H* - (-5, 40, —131, 208, —131, 40, —5) * z27 " r > 1.2750
1 +2)°* -1, -8, 1) -z
Intermediate ( 'a+z ) - d )2 r > 1.497
(160, 0, 448, 0, 160)
1+ 200 + 272
Butterworth { 2 )2 r>15
(1,0, 28,0, 70,0,28,0, )
N=35
. (1 +2°0 + 27" - (35, —350, 1520, —3650, 5018, —3650, 1520,
Daubechies 350, 35) - 42716 r > 1.5960
. a+2°0+z"Y -1, —10,34, —10, 1)
Int: diat > 1.9991
nermediate (1792, 0, 4608, 0, 1792) ’
1+2°0+z27Yz™
Butterworth ( 2« 2 )z r>20

(10, 0, 120, 0, 252, 0, 120, 0, 10)

identical to those in Fig. 2, since these are independent
of the factorization chosen. It is worth pointing out that
the wavelet is very similar to an orthonormal wavelet con-
structed by Meyer, but based on irrational filters [5].

Clearly Theorem 3.2 generates all orthogonal filter
banks where P (2) is rational, even if the filters themselves
are not so.

E. Wavelets with Fewer Moments

In [4] a complete characterization of all orthonormal
wavelets based on FIR filter banks was given. Theorem
3.2 provides such a characterization for the IIR case, since
it explicitly allows us to construct the whole family of
orthonormal wavelets with a given number of disappear-
ing moments. This was done above in the Butterworth,
intermediate, and Daubechies cases for a maximum num-
ber of disappearing moments. A characterization of the
family with N disappearing moments, whether N is max-
imal or not, is given by the filters found from Theorem
3.2 where R(z) contains a factor (1 + 2z "N The resulting
wavelets (assuming convergence) are then guaranteed to
be orthonormal and have { x*y (x)dx =0 k=0,1, -
N-1.

V. LINEAR PHASE ORTHOGONAL IIR SOLUTIONS

In [4], [35], [11] it was pointed out that it is not pos-
sible to generate a nontrivial basis of real finite length
wavelets which are orthonormal and symmetric. In fact,
the only solution is the Haar basis, which is not continu-
ous. If we were prepared to consider complex FIR filters
it would be possible [42], but filters with complex coef-
ficients are generally of less interest.

We have not thus far addressed the possibility of
achieving linear phase with orthogonal rational IIR filters.
We first consider the possibility that one of the maximally
flat P(z) functions already derived might factor P(z) =
H(z)H(z™"), where H(z) is a rational linear phase filter.
The next lemma proves that this is never possible for the
Daubechies, intermediate, or Butterworth P(z) functions
of any order. In other words, if we desire linear phase
filters the solutions presented so far will not serve.

After considering once more the structure of orthogonal
IIR solutions, however, we see how the linear phase con-
dition can be structurally imposed, and use this to gen-
erate designs. While the filters never have as many zeros
atz = —1 as those of Section IV, they give wavelets that
are very smooth. This result was presented in preliminary
form in [16], [17].
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Fig. 4. Example of Daubechies orthogonal wavelet; this is the N = 7 case. (a) The wavelet. (b) Spectrum of the wavelet. (c)
Scaling function. (d) Spectrum of the scaling function.
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Fig. 5. Orthogonal basis from irrational factorization of Butterworth case N = 7. The magnitude spectra are as in Fig. 2. (a)
The wavelet. (b) The scaling function.

f

A. Structure of Linear Phase Orthogonal Solutions

We first show that none of the particular orthogonal so-
lutions presented so far can be used if rational filters are
required.

Lemma 5.1: The Daubechies, intermediate, and But-
terworth solutions to the equation

P(x) + P(—2) =2
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can never be factored as P(z) = H@@)H (z™") where H(2)
is a rational linear phase filter.

The proof is in Appendix subsection B.

The above result is not unexpected; all of these designs
were found by merely ensuring that Lemma 2.2¢) was sat-
isfied. If we wish in addition to guarantee linear phase we
shall have to impose this structurally before we begin the
design. We find it more convenient to work with the
equivalent condition Lemma 2.2b). We first recall a pre-
liminary result on the structure of orthogonal polyphase
matrices [4], [26].

Lemma 5.2: An orthogonal polyphase matrix is nec-
essarily of the form:

H,(2) =[ HOO(Z)_, HOI(Z),, —J 27
—Hy (z7 "4, Hw(z )4,
where
Hop@ Hoo@™) + Ho@Hor@™) = 1 = 8,8,
(28)
and A,(z) = det H,(2) is an all-pass function.
Proof: Lemma 2.2b) gives immediately
[Hm(z“> H,o(z“)] 1 [ Hy(@ ~Ho <z>]
HoG™) HuyG@™"] %@ L-Ho@ Ho@

which leads to
Hy\ (@) = Ho@ DA, @ = HoG@)/8,@™)

from which follows that Ap(z‘l) = [Ap(z)]“l, that 1is,
A,(2) is an all-pass filter [26]. Also

Hyo(@) = —Ha )4, Q. O

We have seen before the linear phase filters are of two
types, those that have half sample symmetry or antisym-
metry (HSS or HSA) and those that have whole sample
symmetry of antisymmetry (WSS or WSA); again we find
it convenient to treat them separately.

B. Half Sample Symmetric Case

If linear phase filters are half sample symmetric or an-
tisymihetric then the polyphase components are related as
in Fact A.1. We can use this to force linear phase on the
polyphase filter matrix (27).

Lemma 5.3: In an orthogonal filter bank, where the fil-
ters are half sample symmetric, it is necessary and suffi-
cient that the polyphase matrix be of the form

AQ) z"A(z“)]
H =
P(Z) {_Zl—nA(z) Z-nZ(Z_l)

where A(2)A(z"") = L.

Proof: One of the filters must be HSS while the other
is HSA, since these always have at least one zero each at
z = —1 and z = 1, respectively, and, because of (28),
the filters must have no zeros in common.

Hence if Ho(z) = Hoo(z®) + 27 'Hy (%) is HSS then
Heo(2) = z'Ho (z™") for some [. Similarly, Hy(2) =

29
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—z"Hy, (z™") for some m. The HSS polyphase matrix is

H, Hy @™
o = [ 0 (@) Z_m 0@ 4? }
Hyo@@ -2 "Hp@ )

On equating (27) and (30) we get Ho (2) = 2 'Hy (2),
Hyo(2) = —Hy(2) A,(2)2', and
“Z_mHlo(Z—l) Z—m_le(Z_l)AP(Z_l)

Hypo(z )4, @)

Now the fact that A,(z) = 1/4,(z"") gives AlR) =

2~ so that A, (z) is a delay 2", and 2n = m + 1. This

is the desired result. O
For example, choosing I = n = 0, we get

Ho(@) = AZ) + 27'AE™) €3]
H @) = —A@) + 7' AC™D). (32)

In order to force some regularity we might wish to de-
sign Hy(z) to have again the maximum possible number
of zeros at z = — 1. This can be done by solving a fairly
simple set of nonlinear equations. Taking the filters in (31)
and (32) and the simple all-pass section

(30)

1 +az ' + bz

A =
@ = e +z°

with a = 6, b = 15/7 we get that Ho(2) contains five
zeros at z = — 1, has a reasonable lowpass response and
gives a wavelet that is very smooth. We find that B =
4.0506 and an estimate of the regularity gives r > 1.9819.
The wavelet and its spectrum are shown in Fig. 6.

C. Whole Sample Symmetric Case

Next suppose Hy(2) is to be whole sample symmetric
(WSS). In this case one of the polyphase components must
be half sample symmetric, the other whole sample sym-
metric, and both must be either symmetric or antisym-
metric. Since antisymmetric filters always have a zero at
z = 1 the latter case can never satisfy (28).

It is also implied by (28) that the denominators of Hog(2)
and Hy, (z) are equal, so we must solve

Noo@Nao@™") + Not @Non @) = D@DGE™

where Ngo(z) and Ny (2) are the numerators and D (2) is
the common denominator.

Since a rational IIR filter is symmetric if and only if
both numerator and denominator are, we need consider
only the symmetry of Ngo(2), Noi (2), and D (2). There are
four cases that give that Hoo (z) and Ho, (z) have the whole/
half sample symmetries described above. One can verify
that these are that D(z), Noo(2), and No (2) are all sym-
metric and have lengths that are respectively (odd, odd,
even), (odd, even, odd), (even, even, odd), and (even,
odd, even). The last two cases, where D(z) has even
length, are immediately ruled out, since a symmetric even
length FIR function implies at least one zero on the unit
circle.
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Fig. 6. Example of linear phase orthogonal wavelet. (a) The wavelet (antisymmetric). (b) Spectrum of the wavelet. (c) The
scaling function (symmetric). (d) Spectrum of the scaling function.

For example for the (odd, odd, even) case Hy(z) has
whole sample symmetry, Hy, (z) has half sample symme-
try, and the polyphase matrix is lossless and gives filters
that have whole sample symmetry.

Finding good solutions is not as easy as in the HSS
case, since the method is not constructive. However, ex-
amples can be constructed by solving a set of nonlinear
equations. Consider the small example: Ny (z) = a +
bz' +az7 2, Ny@ =c+cz',and D(z) = a + dz”"
+ az”2. The values (a, b, ¢, d) = (5 + 4«/5)/14, 1,
(12 + 442) /14, 21 + 242 + 16 - 2°/%) /49) gives a
solution such that the lowpass filter H,(z) has two zeros
at z = —1. An estimate of its regularity gives r > 0.5.

VI. ORTHOGONALIZATION OF WAVELET BASES

One of the interesting wavelet bases is that derived by
Battle and Lemarié [6], [7], which has the property of
being a basis for the spline function spaces.

The B-spline functions obviously form a basis for this
space, but are not orthogonal with respect to integer shifts;
in the language of Section II-A we have a basis for V,

but not an orthogonal one. The condition for orthogonal-
ity can also be written in the Fourier domain using the
Poisson summation formula [20], [25]:

(60, 6 —m) =8, & X [2w + 27" = 1.

(33)

Now assume that we have a non-orthogonal basis for a
multiresolution analysis, given by a function g (x) and its
integer translates. Then it is easy to see one way that the
orthogonalization of the nonorthogonal basis g(x — n)
may be performed in the Fourier domain

Gw)
J 2 |Gw + 27k
k= —o0
Clearly, ® (w) satisfies the Fourier domain orthogonality

condition (33), and the rest of the multiresolution analysis
machinery follows; this is precisely the procedure fol-

d(w) = 34)
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lowed by Battle and Lemarié [6], [7]. The sequence hgy(n)
associated with the two scale difference equation (2) for
¢ (x) is, however, not given by a rational function. Hence
the filter bank implementation is not realizable, by which
we mean that there is no finite complexity recursive im-
plementation of the filters. Often for such nonrealizable
filters a truncated version of the infinite impulse response
is taken, so that an approximate FIR implementation is
used; see for example [2].

A. Orthogonalizing Continuous-Time Bases with
Recursive Filters

There are many different orthonormal bases that span
the same space; the ones derived by Battle and Lemarié
are by no means the only ones for the spline spaces. We
next show that if there is a compactly supported wavelet
basis for V,, then it is always possible to find an ortho-
normal basis, which is infinitely supported, but for which
the filters involved are rational and thus realizable. As a
special case we shall construct realizable bases for the
spline spaces, which are alternatives to those of Battle and
Lemarié.

Theorem 6.1: If the set {g(x — k), k € Z} forms a
nonorthogonal basis for ¥, obeys a two-scale difference
equation, and g (x) is compactly supported, then it is al-
ways possible to find an orthonormal basis {¢(x — k), k
€ Z}, where

Pw) = _Hl 272 Hy(e %) (35)
and where Hy(e’") is a rational function of e,

Proof: The proof is constructive. The normalizing
function used in (34) (i.e., the denominator of the right-
hand side) is 27-periodic, and can be written as a discrete-
time Fourier transform:

k_Z |Gw + 27k)|> = Z e = C(e™). (36)
It can be shown [20] that the Fourier coefficients are ob-
tained from

Cp = S_m g gx — n)dx. 37D

Since g (x) is compactly supported, it is obvious that only
finitely many of the ¢, are nonzero. Equally, since the ¢,
are the Fourier coefficients of a positive real function, it
is clear (from the Riesz factorization lemma [20]) that we
can always factor

Ck) = EQEGE™. (3%

Note that C(z) cannot have zeros on the unit circle, be-
cause of the fact that g (x — n)’s form a Riesz basis [20].
The choice

G(w)

d(w) = Ee™

(39
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clearly satisfies (33); so that the ¢ (x — k) are orthogonal.
Since E(e’™) is 2w-periodic we get

b(x) = §f<k)g(x — k)

where F(e*) = 1/E(e’*). That is, ¢ (x) is a linear com-
bination of shifted versions of g(x); hence the span of
{6(x — k)k € Z} is also V.

So we now have that both the sets {g(x — k), k€ Z }
and {¢ (x — k), k € Z} form bases for V,. But g (x) obeys
the two scale difference equation (2); so for some I(n):

@

gy =27+ 2 1) - gx —n

= G(w) = L™ - Gw/2). (40)

However, since the two sets span the same space, we can
always write the function ¢ (x) as a linear combination of
the functions g(x — k):

g =27 X am-gx-m @D

so that by substituting in the expression for g (x) from (40)
we get that for some sequence ho(n)

$() =27 X hy(n) - $Qx = 1)

> ®(w) = Ho(e™?) - ®(w/2). (42)

Thus ¢ (x) satisfies a two scale difference equation also.
Substituting (39) into the Fourier version of (42) we get

Gw) _ Hoe™ - Gw/2)
E@E™) E@e™?

Comparing this with (40) gives the relation

L(e™) - E(e™)

Hy(e ™= E(e™) 43)

Note that L(e’*) is an FIR function, since when it is it-
erated in (40) it gives g (x), which is compactly supported.
Equally E(e’™) is FIR, since it is one of the factor of
C(e’™). Hence Hy(e /%) is a rational function of e/, and
corresponds to a filter that can be implemented
recursively.

Since ¢ (x) gives an orthogonal basis for V, we see from
Section II-A that ho(n) and h(n), (given by H; @ =
ZZk"HO(z“)), satisfy (6) and (4). In other words, the
conditions of Lemma 2.2d) hold and we have an orthog-
onal filter bank, with rational filters, that generates our
basis for V;. It follows from Theorem 3.2 that the func-
tion

_L@LEY) - EQEGRTY
EGCHEE™D

P(2)

is valid.
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(b)

Fig. 7. Orthogonal basis for the piecewise linear spline space constructed from realizable filters. (a) The wavelet. (b) The
scaling function.

Note that because of (43) successive numerators and
denominators of the product cancel:

= i s ; = E™?)
o) = I How/2) = IL Low/2 - 11 5507
- CEE™D E@™Y
=GW " Te™ T EE@r
_ Gomy - E€D (44)

E(e™)’
So the infinite product for Hy(e’") converges since that
for L(e*) does. This also means that we do not have to
separately make regularity estimates for & (w) if the reg-
ularity of G(w) is known, since ¢ (x) is a linear combi-
nation of integer shifts of the function g (x), and thus has
the same regularity.

B. Bases for the Spline Spaces Using Recursive Filter
Banks

An application of the above result is to find bases for
the spline spaces. First note that the Nth order B-spline
function, which is defined by: g(x) = s(x) * s(x) * - -
5 (x), where there are N — 1 convolutions, and s(x) is the
characteristic function of the interval [0, 1), is compactly
supported. Further, the set {g(x — k), k € Z} is a basis
for the Nth order spline function space. To get an orthog-
onal basis from this we apply Theorem 6.1.

Note that the Fourier transform of the B-spline g (x) can
be written [20]

Gw) = ‘I:Il A + e,

In other words, L(e’™) = (1 + e ™)V /2"

The coefficients of E(z) E(z™") are found from (37), that
is, by evaluating ¢ g(x), g(x — n)) [20], [43]. Those of
E(x) are then obtained by spectral factorization (38). Thus
we end up with

Hy@) = + 2 YWER/@Q" - E@?). (45)

Successive terms in the infinite product cancel, as in (44),
and we get

E@E™

dw) = GWw) * E@™)

Hence

¢ = % fgx - b

where F(e’”) = 1/E(e’") is an all-pole filter, that is,
¢ (x) is a linear combination of splines.

Finding polynomial solutions E(z) such that Hy(z) in
(45) gives an orthogonal filter bank that was also done by
Stromberg [44]. This solution was also noted by Unser
and Aldroubi [45], and also Argenti et al. [46].

That the wavelet and scaling function are indeed
splines is most easily seen for the N = 2 case where they
are piecewise linear. The wavelet and scaling function are
shown in Fig. 7.

The relation between the wavelet basis proposed here,
and those of Battle and Lemarié is readily seen if we con-
sider the associated function P(z):

P = Lt YW+ 29" - EQEGTY

2V - EG)E@™)
Observe that if we factor it as P(z) = YP(z) * VP (2) and
use Hy(z) = VP(2) in (35) the cancellation property be-
tween successive numerators and denominators still holds,
and we end up with

(46)

E* ()
E(e’™)E(e ™)

which is the same as the form in (34) when E(e’®) = 1.
In other words, the different orthonormal bases here
correspond to different factorizations of P(z). Note, how-
ever, that it is not in general true that different orthogonal
factorizations of P(z) give rise to wavelet bases that span
the same space. For example the choice Hy(z) = (1 +

®p (W) = G(w) -
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TABLE II
THE VARIOUS P(z) SOLUTIONS FOR A GIVEN NUMBER OF ZEROS AT z = — 1. SPLINE SOLUTIONS FOR N = 1,  * + 5 ARE SHOWN
Solution P(2) Regularity
N=1 A+ +z7 - 27" r=0
N=2 (I+2°0+z27) 0,4, 1)-27'273 r— 10
(1,0,4,0, 1) '
N=3 (1+2°A+z7") - (1,26,66,26 1) - 27%27° r 220
(1,0, 26,0, 66, 0, 26,0, 1) o
N=4 (I + 2 +z7H -, 120, 1191, 2416, 1191, 120, 1) - z7*277 s Z30
(1, 0, 120, 0, 1191, 0, 2416, 0, 1191, 0, 120, 0, 1) T
N=5 1+ 2°0 + 27 - (1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1) - z7*27° a0
r=4,

(1, 0, 502, 0, 14608, 0, 88234, 0, 156190, 0, 88234, 0, 14608, 0, 502, 0, 1)

2 WVE(2) /E(z™?) gives an orthogonal basis, but we do
not get the cancellations in the infinite product, and the
wavelets do not span the spline spaces. In Table II we
have listed the P(z) functions used to get the orthogonal
filters to generate the first five spline spaces. It can clearly
be seen that they have the form given in (46). Note also
that the regularity of the wavelet for the Nth order spline
space is precisely N — 1.

It is clear that the filters that generate the Battle-Le-
marié wavelets have linear phase; however, they are not
rational for any order, as is proved by the next Lemma.

Lemma 6.2: The spline solutions to the equation

P@@) +P(-9 =2

can never be factored as P(z) = H(z) H(z™') where H(z)
is a rational linear phase stable filter.

The proof is in Appendix subsection C. Note that in
this case unstable solutions are possible, i.e., where H(z)
has poles on the unit circle, whereas no solutions at all
were possible for the cases covered in Lemma 5.1.

VII. ConcLusioN

We have examined in detail the structure of orthogonal
two channel filter banks, and their relation with ortho-
normal bases of wavelets. Also we discuss the two chan-
nel case only; the N channel case is more complex. We
placed particular stress on filters that have a maximum
number of zeros at w, since these maximally flat filters
give rise to wavelets that have a large number of disap-
pearing moments and are very smooth. The Daubechies,
Butterworth, and intermediate solutions were of this form.
The filters that were used to realize bases for the spline
spaces also had a large, but not maximum, number of ze-
ros at .

It should also be pointed out that while in this paper we
have been interested exclusively with orthogonal filter
banks it is of course possible to factor any of the P(z)
functions we have presented in a nonorthogonal fashion.
This was essentially the procedure followed in [35], [11],
where linear phase factorizations of the Daubechies’ P(z)
were taken. As noted in [47], [11], however, it can be

difficult in the FIR case to get filters with flat spectra when
linear phase is desired. This is also true when IIR filters
are involved. In other words, it is quite difficult to factor
any of the recursive P(z)’s listed in Tables I and II to
obtain linear phase rational filters which still have ac-
ceptable response. Of course, it is always possible, as we
saw for the Butterworth case in Section IV-D and Battle—-
Lemarié case in Section VI-B, to factor any of these P(z)’s
in a linear phase orthogonal fashion, but where the filters
involved are irrational.

An importanf consideration that is often encountered in
the design of wavelets, or of the filter banks that generate
them, is the necessity of satisfying competing design con-
straints. This makes it necessary to clearly understand
whether desired properties are mutually exclusive. We
have attempted in this paper to give a fairly comprehen-
sive treatment of orthogonal two channel filter banks. A
natural question is to wonder how the solutions described
relate to others, and which constraints can be simulta-
neously satisfied. In Fig. 8 we have attempted to do this
with a Venn diagram illustrating various perfect recon-

" struction solutions. As we have emphasized, the proper-

ties of the filter bank depend on P(z) and the factorization
chosen. For the three properties most often desired, viz.,
FIR filters, orthogonality, and linear phase, the necessary
and sufficient conditions (in addition to that for perfect
reconstruction (16)) are:

1) Orthogonality: P(2) is an autocorrelation; Hy(z) and
Gy (2) are its spectral factors.

2) Linear phase: P(z) is linear phase, and H,(z) and
Gy (2) are its linear phase factors.

3) Finite support: P(2) is FIR, and Hy(z) and G, (z) are
its FIR factors.

Obviously in none of the cases is the factorization
unique. If P(z) is indeed an autocorrelation, for example,
various spectral factorizations exist.

Perfect reconstruction solutions, with the constraint that
P (2) be rational with real coefficients, must satisfy (16),
and the structure of such solutions was given in Lemma
3.1. Such general solutions, which do not necessarily have
additional properties, were given in [8].
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Rational P(z), Real coefficient:

Fig. 8. Two channel perfect reconstruction filter banks. The Venn diagram illustrates which competing constraints can be si-
multaneously satisfied. The sets A, B, C contain FIR, orthogonal, and linear phase solutions, respectively. Solutions in the
intersection A N B are examined in [8]-[10], [4]; those in the intersection A N C are detailed in [13], [47], [49]. [1 11, [35);
solutions in B N C are constructed in Section V. The intersection 4 N B N C contains only trivial solutions.

TABLE 111
PROPERTIES WHICH ARE SIMULTANEOUSLY ACHIEVABLE FOR TWO-CHANNEL FILTER BANKS, AND COMMENTS ON THE SOLUTIONS.
A ““1”" IN A PARTICULAR BOX INDICATES THAT THE SOLUTION NECESSARILY HAS THE CORRESPONDING PROPERTY

Orthogonal Linear Phase FIR Real Rational Solutions
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Haar basis (1910)

Biorthogonal solutions [35], [11], [13], [47], [49]
Daubechies [4], paraunitary solutions {8], [10]
Complex factorizations [42]

Linear phase IIR solutions Section V
Battle-Lemarié bases [6], [7], Meyer bases [5]
Characterized by Theorem 3.2

[ o J S

The solutions of set A, where all of the filters involved
are FIR, were studied in [8], [13]. Set B contains all or-
thogonal solutions, and has been the main focus of this
paper. A complete characterization of this set was given
in Theorem 3.2. A very different characterization, based
on lattice structures is given in [33]. Particular cases of
orthogonal solutions were also given in [32]. Set C con-
tains the solutions where all filters are linear phase, first
examined in [13].

The earliest examples of perfect reconstruction solu-
tions [48], [9] were orthogonal and FIR, i.e., they were
in A N B. A constructive parametrization of 4 N B was
given in [10]. The construction and characterization of
examples which converge to wavelets was first done in
[4]. Filter banks with FIR linear phase filters (i.e., A N
C) were first given in [13], and also studied in terms of
lattices in [47], [49]. The construction of wavelet exam-
ples is given in [35] and [11]. Filter banks which are lin-
ear phase and orthogonal were constructed in Section V,
and first presented in [16], [17].

That there exist only trivial solutions which are linear
phase, orthogonal, and FIR is indicated by the intersec-
tion A N B N C; the only solutions are two tap filters
(4], 126], [11].

Fig. 8 illustrates the filter bank solutions; if the filters
are regular then they will lead to wavelets. Of the dyadic
wavelet bases known to the authors the only ones based
on filters where P(z) is not rational are those of Meyer
[5], and the only ones where the filter coefficients are
complex are those of Lawton [42]. For the case of the
Battle-Lemari€ wavelets, while the filters themselves are
not rational, the P(z) function is, hence the filters would
belong to B N C in the figure. The alternatives presented
in Section VI-B would belong to B/(4 U C), since they
are orthogonal, but are neither linear phase nor FIR.

Table I1I attempts to clarify some of the competing con-
straints by tabulating which of the properties—orthogo-
nality, linear phase, FIR, real coefficients, and rational
transfer function—are simultaneously attainable and com-
ments on the solutions.
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APPENDIX
A. Filters with Symmetry

Fact A.1: For a symmetric discrete sequence R(2) =
R, @H + 'Ry (z%) the following relations between the
polyphase components hold:

i) R(z) WSS: Ry(z™") = Re(2), 2’Ri ") = R, (D),
ii) R(z) HSS: R (z™") = Ry (),

iii) R(z) WSA: Roz™) = —Re(@, Z’Riz™) =
-R,(2),
iv) R(z) HSA: R, (z7") = —Ro(2).
Proof:

i): WSS = R(z) = R(z™"). So: Ry@®) + 2 'R\ (2%) =
Ro(z™2) + zR, (z~2). Equating even and odd powers of ™'
we find Ry(z") = Ro(@), 2R ™" = R (2).

ii): HSS = R(z2) =z 'R@ ™). S0 Ry (2% + 27 'R (2?)
=z"Ryz™H + R, (z™?). Equating even and odd powers
of z gives R, (z™") = Ro(2).

The other properties follow by similar analysis. d

It follows immediately that an HSS filter always has a
zero at z = —1, and a HSA filter always has one at z =
1.

Fact A.2: For a rational IIR filter that has linear phase,
let N, be the length of the numerator, and N, the length
of the denominator, then if N, — N, is odd the filter is
WSS or WSA, and if N; — N, is even it is HSS or HSA.

Proof: If H(z) = N(z)/D(z2) then
N(e™)
D(e’™)
where ¢y (w) and ¢p(w) are the phases of the numerator
and denominator, respectively. Clearly H(z) will have
linear phase if and only if both numerator and denomi-
nator do.

Since N(z) and D(z) are linear phase FIR functions we
have N(2) = z'N(z™") where [ is even if N, is odd, and /
is odd if N, is even. Also D(z) = z"D(z”"), with similar
constraints for m. Hence

-1
M = V@ _ on NED

D(@) DGE™Y

Now [ — m is even if N; and N, are both even or both odd
(i.e., N, — N, is even), and is odd otherwise (i.e., Ny —
N, is odd). Using Fact A.1 [ — m even implies that H(z)
is WSS or WSA, and ! — m odd implies that it is HSS or
HSA. O
B. Proof of Lemma 5.1
Proof: If H(z) is linear phase then

_zZcweeh

DEHDE™)’

for some integer delay z*, and

. g oMW — SD(W))

H(e™) = l

I—m

H(z)

C@CE™" T
DEHDE D]’

Hence every pole and every zero must be double.

P(z) = HQHEI ") = [
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1) Butterworth Case: In the Butterworth case P (z) can
be written
a+zHa+2"
(z—l + 2 + z)N + (—z_l +2 -2
: (1 + z—l)2N
T4 - HYEYY

P(z) =

Note that the denominator, W(z), is a polyphase compo-
nent of (1 + z~")*" following Lemma 3.1. If all poles of
P(z) are to double we must have

dw(2)
w =0= ——; =0
(zo) d(z 1) .

But

aw @ —1\2N-1

PR N+ — 2N

agh SN arey

G VAR OIS

is a polyzphase component of (1 + z7)* ™' = By @ +

27 'B,(z%). So the polyphase components of two succes-
sive binomials must share a zero. Consider

A+ =(0+z2")" B@ + 2 'Bi@)
= By(@) + 272B,(@%) + 27 (Bo(@?)

+ B, (@)
—1y2N

If the polyphase component of (1 + z7 )7, which is
(By(z%) + z72B,(z?), and that of (1 + z 2"~ ! share a
zero, then clearly B, (z%) must contain this zero also. This
would imply that By (z) and B, (z) are not coprime; this is
a contradiction, however, the polyphase components of
(1 + z~"" are known to be coprime for all N [11].

2) Intermediate Cases: Here we shall make use of Fact
A.2 to show that the solutions have to be half sample sym-
metric or antisymmetric if they are to have linear phase,
and then show that they do not satisfy the form of Lemma
5.3.

a) Consider the N = 2k + 1 case: since the numerator
and denominator of P(z) have length 4(k + p) + 3 and
4(k — p) + 1 respectively, the numerator and denomi-
nator of H(z) should have lengths N, = 2(k + p) + 2 and
N, =2(k —p) + 1.Hence N, - N, =4p + 1, which is
odd, and H(z) must be HSS or HSA by Fact A.2. But by
Lemma 5.3 for H(z) to be HSS its polyphase components
must be all-pass filters. Each of the polyphase compo-
nents have numerator and denominator of lengths 2(k +
p)+ land2(k —p) + 1, respectively; hence they cannot
be all pass if p # 0.

b) Consider N = 2k: here Ny =2(k —p + 1) + 2 and
N,=2(k-p)+1,s0N, —N,=202p -1 + 1 which
is again odd. So again H (z) must be HSS or HSA, and the
polyphase components must be all passes. As before ex-
amining the lengths of the numerator and denominator of
Hyo and Hy, rules this out. The lengths are 2(k + p — 1
+ 1and 2(k — p) + 1, respectively.
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3) Daubechies Case: The filters are always of even
length, and hence either HSS of HSA if linear phase.
Hence their polyphase components must be all passes; but
since the only FIR all pass is a delay, the only solutions
are those of length two. This was already proved in [4],
using a different argument. O

C. Proof of Lemma 6.2

Proof: Again all poles and zeros of P(z) must be
double if the filters have linear phase. Recall that in this
case we require the P(z) with the form given in (46) to be
valid. Suppose indeed that every pole and zero were dou-
ble, then we could write, for some D(z):

(1 +z ")V - D@@DE )
2V . (D@Z)DE )

P@@) = @n

Since the numerator is a polyphase component of the de-
nominator

1/2[0 + 27V - D@D ) + (1 -2 YN (="
(D= D(=z"W1=2"- (D)D)
Evaluate at z = 1 to get:
2V-1D D)) =2V (D)D)

which is clearly a contradiction unless D (1) = 0. D(1) =
0, however, implies poles on the unit circle; for rational
solutions to exist they must be unstable. O
Note rational linear phase solutions which are unstable
do exist in the spline case. For example, when N = 2:

(1,4,6,4, D1, —4,6, -4, 1)
(1,0, —4,0,6,0, —4,0, 1)

B [(1, 2, 1, -2, 1)}2
1 a,0,-2,0, 1) |’

P =

The denominator in this case has double roots at z = 1
and z = —1, as does the numerator.
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