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Bit Allocation for Dependent
Quantization with Applications to
Multiresolution and MPEG Video Coders
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Abstract— We address the problem of efficient bit allocation
in a dependent coding environment. While optimal bit allocation
for independently coded signal blocks has been studied in the
literature, we extend these techniques to the more general tem-
porally and spatially dependent coding scenarios. Of particular
interest are the topical MPEG video coder and multiresolution
coders. Our approach uses an operational rate-distortion (R-
D) framework for arbitrary quantizer sets. We show how a
certain monotonicity property of the dependent R-D curves can
be exploited in formulating fast ways to obtain optimal and near-
optimal solutions. We illustrate the application of this property in
specifying intelligent pruning conditions to eliminate suboptimal
operating points for the MPEG allocation problem, for which
we also point out fast nearly-optimal heuristics. Additionally,
we formulate an efficient allocation strategy for multiresolution
coders, using the spatial pyramid coder as an example. We then
extend this analysis to a spatio-temporal 3-D pyramidal coding
scheme. We tackle the compatibility problem of optimizing full-
resolution quality while simultaneously catering to subresolution
bit rate or quality constraints. We show how to obtain fast
solutions that provide nearly optimal (typically within 0.3 dB)
full resolution quality while providing much better performance
for the subresolution layer (typically 2-3 dB better than the
full-resolution optimal solution).

I. INTRODUCTION

HE problem of bit allocation, where a given bit budget

must be distributed efficiently among a set of given
admissible quantization choices, is a classical problem in
source coding which has been treated exhaustively in the
literature [1]-[4]. A classical framework for bit allocation is
rate-distortion theory, which deals with the minimization of
source distortion for a given coding bit budget.

In the literature, two approaches have been used to deal with
the bit allocation problem: an analytical model-based (contin-
uous) framework and an operational rate-distortion based (dis-
crete) framework. The model-based approach assumes various
input distributions and quantizer characteristics from Gaussian
inputs [1] to negative-exponential distributed quantizers [2],
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Fig. 1. Operational R-D characteristics of two frames in a dependent coding
framework, where frame 2 depends on frame 1: (a) Independent frame’s R-D
curve; (b) dependent frame’s R-D curve. Note how each quantizer choice for
frame 1 leads to a different Rp—D5 curve. The Lagrangian costs shown are
J = D + AR for each frame.

[3]. With this approach, one can get closed-form solutions
based on the assumed models, using continuous optimiza-
tion theory. Alternatively, since practical coding environments
typically resort to a finite set of admissible quantizers, bit
allocation for completely arbitrary inputs and discrete quan-
tizer sets has also been addressed in [4] in an operational
rate-distortion framework, as defined by the coder and the
discrete quantizer choices (see Fig. 1(a)). These quantizers
are used by the allocation algorithm to determine the best
strategy to minimize the overall coding distortion subject to
a total bit budget constraint. This approach uses an integer
programming framework to find the optimal discrete solution.
In our work here, we resort to this operational rate-distortion
(R-D) framework.

The bit allocation problem is specific to the coding environ-
ment used. Typical problems include allocating bits optimally
among blocks in a DCT-coded still image, or among frames in
a video sequence, or among the bands of a subband or wavelet
coder, or among the layers of a pyramid coder. All the work
addressed in the literature so far has been confined to coding
environments where the input signal units (e.g., image blocks
or subbands) have been coded independently. However, many
popular schemes (e.g., DPCM) involve dependent coding
frameworks, i.e., where the set of available R-D operating
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Fig. 2. Overview of typical source coding environments.

points for some coding units (Fig. 1(b)) depends on the
particular choice of R-D point for other coding units (Fig.
1(a)). Other dependent coding examples include multiresolu-
tion (MR) coders like the Laplacian spatial pyramid [5] and the
closed-loop spatio-temporal pyramid video coder [6], as well
as the MPEG [7] coder. Note that MR coders are topical due
to the current interest in compatible coding schemes as well
as their efficiency for digital broadcast of HDTV [8]. Refer to
Fig. 2 for an overview of where dependent coding schemes fit
into typical source coding environments.

In this paper, extending the work of [9] and [10], we
generalize the bit allocation problem to include dependent
coding units (note that in this work, our signal units can
be image blocks or video frames). As in [4], we make
no assumptions about the input or quantizer characteristics,
and deal with arbitrary input signals and arbitrary discrete
quantizer sets. We tackle, under a single framework, coders
with temporal and spatial dependencies, such as MPEG and
pyramid coders, respectively. We also extend the results of
the image pyramid coder to a spatio-temporal video pyramid
coding scheme. As seen from Fig. 1 for the two-frame case, the
dependent coding problem grows exponentially in the depen-
dency tree depth, which makes the problem very difficult (e.g.,
DPCM). However, when the dependency tree is structured, as
in MPEG, with several “leaves” or “terminal nodes” (e.g., B-
frames of MPEG, as will be seen in Section III), then it is
possible to solve the difficult dependent problem elegantly,
by describing how to formulate intelligent pruning rules to
eliminate suboptimal operating points.

This paper is organized as follows: in Section II, we provide
a Lagrangian-based solution for an arbitrary set of quantizers
for each coding block. We point out the complexity of this
approach, and introduce a certain monotonicity property of

the operational R-D curves of the signal blocks to help reduce
the complexity of the search for the optimal solution. We
address the temporally dependent coding scheme in detail in
Section III, using MPEG as an example, and show how the
monotonicity property introduced earlier can be used to for-
mulate fast heuristic solutions. In Section IV, we examine the
multiresolution coding scenario, using the Laplacian pyramid
as a vehicle, and point out the tradeoffs in achieving full-
resolution and subresolution targets, a key question for MR
coders. Finally, we tackle the problem of efficient bit allocation
for the spatio-temporal video pyramid introduced in [6].

II. DEPENDENT CODING PROBLEM FORMULATION

In this section, we define a general dependent allocation
problem, show how this general formulation is applicable to
MPEG and multiresolution coders, and give a solution based
on Lagrange multipliers. Before we introduce the dependent
coding problem, let us review the optimal independent al-
location case which has been studied in the literature [2],

[41.

A. Optimal Independent Allocation—The
Constant Slope Condition

The classical rate-distortion optimal bit allocation problem
consists of minimizing the average distortion D of a collection
of signal elements or blocks subject to a total bit rate con-
straint Ry, 400 for all blocks. For the two-block case, where
{Q1, D1(Q1), R1(Q1)} and {Q2, D2(Q3), R2(Q2)} refer to
the quantizer, distortion and bit rate of each block respectively,
the independent allocation problem is

Qn;lig)lg[Dl(Ql) + D2(Q2)]
such that R; (Q1) + R2(Q2) < Rpudget-

ey
ey

The ‘‘hard’’ constrained optimization problem of (1) and
(2) can be solved by being converted to an ‘‘easy’’ equiv-
alent unconstrained problem. This is done by ‘‘merging’”’
rate and distortion through the Lagrange multiplier A > 0
[4], and finding the minimum Lagrangian cost J;(\) =
ming, [D;(Q;) + AR;(Q;)] for i = 1,2. The search for the
optimal R-D operating points for each signal block can be
done independently, for the fixed quality *‘slope’” A (which
trades off distortion for rate) because at R-D optimality, all
blocks must operate at a constant slope point \ on their R-
D curves [4], [11). The desired optimal constant slope value
A* is not known a priori and depends on the particular target
budget or quality constraint, but can be obtained via a fast
convex search [11].

B. General Formulation

In the more general case, signal blocks may not be inde-
pendently coded. Without loss of generality, we first consider
a two-layer dependency as in Fig. 1. Shown are the R-
D characteristics for a given discrete set of quantization
choices for the first independent frame (R;(Q:), D1(Q1))
and the second dependent frame (R2(Q1,Q2), D2(Q1,Qs2)).
Our constrained optimization problem is: what quantization
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choice do we use for each frame such that the total (or
average) distortion is minimized subject to a maximum total
bit budget constraint? We model the total distortion as a
weighted average of the individual distortions D; and Dj in
our general formulation. We will show how different choices
of the weights lead to different problems of interest. Our
problem can be formulated as

éniél [w1D1(Q1) + waD2(Q1,Q2)]

1,2

3

suchthatR,(Q1) + R2(Q1,Q2) < Roudget- 4

Note that although @1 and Q. here represent frame-level
quantization choices, it does not imply that all blocks within
the frame have the same quantization scale. Thus, ; could
consist of a vector choice of different quantization scales for
each block of frame 1. In addition, note that for arbitrary
choices of w; and wy, we have a weighted mean-squared-
error (MSE) criterion, which reduces to the conventional
(unweighted) MSE measure when w; = wy = 1.

C. Examples

We now provide examples of problems of interest that
follow as special cases of (3) and (4); see Fig. 2.

Example 1—Independent Coding: The independent case
seen in Section II-A is a special case of (3) and (4), where
frame 2 does not depend on frame 1, ie., R2(Q1,Q2) =
R2(Q2) and D2(Q1,Q2) = D2(Q2). The independent coding
case arises for intraframe coding as well as pyramidal coding
without quantization feedback [5] (see Section IV-B-1).

Example 2—Spatially Dependent Pyramid Coding with
Quantization Feedback: When w; = 0,ws = 1, as will be
shown in Section IV, we have the case of a two-layer closed
loop (quantization feedback) pyramid, where the bottom, or
full-resolution, layer (layer 2) depends on the quantization
choice of the top, or coarse-resolution, layer (layer 1). Note
that (4) refers to a total bit rate constraint, and we solve the
full-resolution quality optimization problem only. In addition,
for a multiresolution coding environment, it may be necessary
to throw in additional constraints on the top layer bit rate

Ri(Q) < Ry ®)

or quality
Dy(@1) < Dy ©)
Example 3—Temporally Dependent Coding: This is the

most general case where (3) and (4) apply without any
restrictions. DPCM and MPEG come under this class.

D. Solution Based on Lagrange Multipliers

The problem of (3) and (4) can be solved by introducing the
Lagrangian cost J corresponding to the Lagrange multiplier
A > 0 as in [4] as follows:

J1(Q1) = w1 D1(Q1) + AR (Q1),
J2(Q1,Q2) = w2 Da(Q1,Q2) + AR2(Q1,Q2)

)
®)
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and considering the following unconstrained minimization
problem:

min [J1(Q1) + J2(Q1, Q2)]- &)
Q1,Q2

Then, by a direct extension of Theorem 1 of Shoham and
Gersho in [4], the following result follows:

Fact I: If (Q3,Q3) solves the unconstrained problem of
(9), then it also solves the constrained problem of (3) and (4)
for the particular case of Ryuager = [R1(Q7) + R2(Q1, Q3)]-

Proof: See Appendix A.

The above result implies that if we solve the unconstrained
problem of (9) for a fixed value of A, and if the total bit rate
happens to be Rpuqget, then we have also optimally solved
the constrained optimization problem of (3) and (4). Further,
as A is swept from O to co, one traces out the convex hull of
the composite R-D curve of the dependent allocation problem.
The monotonic relationship between A and the expended bit
rate [4] makes it easy to search for the ‘‘correct’’ value of A,
say A*, for a desired Rpydget-

Note how for the independent case (J2(Q1, Q2) = J2(Q2)),
where there is a single Ry — D, curve in Fig. 1, (9) becomes
the familiar result of [4]. Here, each frame is minimized
independently, as was shown in Section II-A.

For the general dependent case, the two-frame problem be-
comes the search for Q], Q3 that solve

JU(QT) + J2(Q7,Q3) = Ql?iéll[Jl(Ql) + J2(Q1,Q2)] (10)
= %iln[JI(Ql) + J2(Q1,Q3(@1))]

1an

where J2(Q1,Q3(Q1)) = ming, [D2(Q1, Q2)+AR2(Q1, Q2))

is the minimum Lagrangian cost (for quality condition ) asso-
ciated with the dependent frame when the independent frame is
quantized with Q;; see Fig. 1. Thus, for the desired operating
quality A\, we find the optimal solution by finding, for all
choices of @ for the independent layer, the optimal (Q3(Q1)),
which “lives” at absolute slope A on the (dependent) Ry-D»
curve associated with Q.

By a simple extension of this result, it follows that
the optimal solution to our general N-frame dependency
problem consists in introducing J;(Q1,Q2,...,Q:i) =
’wi.D,;(Ql,QQ,...,Q,’) + AR,‘(Ql,QQ,...,Q,‘) for ¢ =
1,2,..., N and solving the following unconstrained problem
for the *‘correct’” value of A which meets the given Rpydget:

QI,QIIzl,i.I.I.,QN[Jl(Ql)+J2(Q1’ Q2)+...IN(Q1,Qz,- -, Qz(vl)z])

E. Complexity

The optimal solution, as shown by (12) is obviously expo-
nentially complex in the dependency-tree depth N. Moreover,
it has to be pointed out that the computational complexity
is dominated by the data generation phase, i.e., finding all
the (Rl(le QZa SRR Ql)v Di(Ql: Q27 LR} Qz)) points for the
problem is much more complex than finding the optimal
solution, given all the possible R-D operating points. In order
to ease this computational burden, we are therefore interested
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in methods which will avoid the need to grow all the R-D
data, while retaining optimality. Note that while our methods
rely on generating ‘‘real”” R-D data, a model-based approach
may be used within our framework to ease this burden. We
now examine an important property which enables us to do
this, and which will be used in Section III to formulate
pruning conditions to eliminate suboptimal choices in the
MPEG allocation problem.

F. Monotonicity

The key to obtaining a fast solution to the complex depen-
dent allocation problem of (3) and (4) is the monotonicity
property of the R-D curves of the dependent components
(frames). Consider the example of two frames, with the
operational R-D curve of the second frame depending on that
of the first, as in Fig. 1. Assume that the quantizer grades are
ordered monotonically from finest to coarsest. Let us use i and
J to denote the quantization choices for the independent and
dependent frames, respectively.

Definition 1: A dependent coding system has the mono-
tonicity property if, for any A > 0:

Ja(i,5) < Ja(, ), fori < i (13)
For example, for A = 0, this means that
Dy(i,5) < Do(i', ), for i <i'. (14)

Stated in words, the monotonicity condition simply implies
that a “‘better’” (i.e., finer quantized) predictor will lead to
more efficient coding, in the rate-distortion sense, of the
residue (whose energy decreases as the predictor quality
gets better), that is, the dependent frame’s family of R-D
curves will be monotonic in the fineness of the quantizer
choice associated with the parent frame from which they are
derived. As can be seen, the finer the quantization for frame
1 (Fig. 1(a)), the closer to the origin of the Ry — Dy graph
will be the corresponding curve for the dependent frame 2
(Fig. 1(b)). Experimental results involving MPEG verify this
monotonicity property for all the cases that we studied. Thus,
monotonicity appears to be a realistic property, which has
favorable theoretical implications as well, and it can be used
to formulate fast pruning conditions for the MPEG allocation
problem in Section IIL In the rest of this work, we will address
faster ways of attaining and approximating the optimal solution
in the temporal and spatial dependent frameworks.

III. TEMPORAL DEPENDENCY: THE MPEG CASE

We now address the general temporal dependency quantiza-
tion problem of which MPEG [7] is an example. The MPEG
coding format, a CCITT video compression standard, shown in
Fig. 3, segments the video sequence into identical groups-of-
pictures (GOP’s). Each GOP consists of three types of frames
using the intraframe (I), prediction (P), and bidirectionally
interpolated (B) modes of operation. The I frames are coded
independently, the P frames are predicted from the previous
I or P, and the B frames are interpolated from the previous
and next [ and/or P frames. For the two-layer dependency
illustrated in Fig. 1, the problem we are trying to solve

Discrete set of quantizers available for each frame

{Qx

{Q; p} Q,p}

_>P3

\/\/\/\/

B; B3 B3 By4 Bs Bg B; Bg

(b)

Fig. 3. Typical MPEG coding framework: (a) MPEG frames: The I frames
are indepedently coded, the P frames are predicted from previous I or P
frames, and the B frames are interpolated from adjacent I and/or P frame
pairs; (b) temporal dependency in the MPEG framework. Note that the B
frames are leaves in the dependency tree.

(for an MSE criterion) is the problem of (3) and (4) with
wy = wy = 1:

QIEIiCI;Z [D1{@Q1) + D2(Q1,Q3)]
.. R1(Q1) + Ra{Q1,Q2) < Roudger-

The solution to this problem was shown in Section II-B
as being exponentially complex in the dependency tree depth.
Here, we will show how to reduce this complexity for the
MPEG coding case (see Fig. 3). Before we tackle the general
MPEG problem (with I,P, and B frames), we begin with a
simpler special case of MPEG that is easier to analyze and
which provides the intuition for the more complex general
problem.

A. A Particular Case of MPEG: I-B-1

We consider a special case of MPEG having only I and
B frames (see Fig. 4), i.e., the predicted P frames of the
more general MPEG format are omitted. The dependency
tree is shown in the more compact form of a trellis. The
“‘states’’ of the trellis represent the quantization choices for
the independently coded I frames (ordered from top to bottom
in the direction of finest to coarsest), while the *‘branches’’
denote the quantizer choices associated with the two B frames.

The trellis is populated with Lagrangian costs (for a fixed )
associated with the quantizers for each frame. Let us focus on
the I — B) — By — I stage of the trellis. The state nodes are
populated with the costs of the respective I frame quantizers
J(Q) = (D(Q) + AR(Q)). Each (4,;) branch connecting
quantizer state ¢ of I, to quantizer state j of I is populated
with the sum of the minimum Lagrangian costs of the B; and
B> frames, i.e., with J(B1) + J(B3), where

J(B) = g;n[D(QB‘) +AR(Qp,)] forl=1,2  (15)
1

where the R-D curves for By, Bs, are generated from the

1, j quantizer choices for I, I5, respectively. From (12), it is

clear that the optimal path is that which has the minimum

total cost across all trellis paths. Since the independent I

frames ‘‘decouple’’ the B frame pairs from one another, it
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Fig. 4. I-B-I special case of MPEG, Finding an R-D convex hull point
corresponding to a A is equivalent to finding the smallest cost path through
the trellis. Each trellis node corresponds to a quantizer choice for the I
frames, monotonically ordered from finest to coarsest, and is populated with
the associated Lagrangian cost (J(I) = D(Q) + AR(Q)). The ‘branches
correspond to the B frame pairs and are populated with their minimum
Lagrangian costs (J(B) = min[D(q) + AR(q)}) for the particular I frame
quantizer choices given by each branch’s end nodes. For quality slope A,
the optimal total cost path is obtained with the Viterbi algorithm. The ‘‘dark
line”’ path joins the smallest-cost I frame nodes. Monotonicity implies that
all dashed line paths can be pruned out.

is obvious that the popular Viterbi algorithm (VA) [12] will
provide the minimum cost path through the trellis, i.e. we need
to keep a single path (the minimum cost one) arriving at each
node. More formally, we have the following algorithm for the
Iy — B1 — By — I, stage of the trellis.

Algorithm 1:

Step 1: Generate J(I;) and J(I;) for I-frames I; and I,

for all quantizers in Qy,, Q, respectively, i.e., populate all

the nodes of the trellis with the Lagrangian costs.

Step 2: For every pair of nodes (i,j), where i is the

quantizer choice for I; and j for I, assign branch cost

J(B1) + J(B3), where J(B;) for | = 1,2 are obtained

from (15), i.e., populate all the branches of the trellis with

the minimum Lagrangian costs.

Step 3 (VA pruning rule): At every node of I, keep only

that branch that minimizes J(I;) + J(B1) + J(Ba).

As noted in Section II-E, the computational complexity is
dominated by the data generation phase, i.e., in the trellis
population phase.

B. Pruning Conditions Implied by Monotonicity

The monotonicity condition stated earlier in Section II-F
will now be used to formulate pruning conditions to elimi-
nate suboptimal operating points in the temporal dependency
coding problem. The first lemma is associated with Fig. 5(a).
As a reminder, the quantizer states are ordered monotonically
from finest to coarsest.

Lemma 1: 1f

Ji(8) + J2(3,§) < J1(i') + Jo(é', 5) for any i < i’ (16)

then the (i, j) branch cannot be part of the optimal path and
can be pruned out.
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Fig. 5. Pruning conditions obtained from monotonicity: (a)
J1(i2) + J2(i2,7) is the minimum Lagrangian cost of all branches
terminating in node j. Therefore (see Lemma 1), the (i3, j) branch can
be pruned; (b) J2(%, 1)) is the minimum Lagrangian cost of all branches
originating from node i. Therefore (see Lemma 2), the (3, j2) and the (3, j3)
branches can be pruned; (c) diagram used for the proof of Lemma 1.

Proof: We prove the lemma by contradiction. Assume
that (i',5) for any ¢ < ¢ is part of the optimal path
(see Fig. 5(c)). Let the optimal quantizer sequence path be
(¢,4,k,...,1). However, by monotonicity, we have

J3(¢aj7k) < J3(i/7j’k) an

Jo(iygiky .. 1) < Jp( 4k, ..o 0). (18)

Summing up (16), (17), ..., (18), we get the contradiction
that the total Lagrangian cost of the path (z,j,k,...,0) is
smaller than that of the optimal path (¢/, 7, k,...,1). O

The above lemma is associated with pruning branches that
merge into a common destination state. A dual result holds
for the pruning of branches that originate from a common
source state (see Fig. 5(b)) leading to the following companion
Lemma 2, whose proof is omitted as it is similar to that of
Lemma 1.

Lemma 2: If Jo(i,5) < Jo(4,5') for any j < j',then the
(z,7") branch cannot be part of the optimal path and can be
pruned out.

Note that a consequence of the above lemma is that if
Ji(i) < Ji(d') for ¢ < 4/, then the state node ¢’ (and
all branches from it) can be pruned out. The two pruning
conditions of Lemmas 1 and 2 can be used to lower the
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JOPY  JBY+IBy JLPLP) J(B+IBY I

“trellis”
inclusion of the P frames prevents the decoupling of the B frame pairs,
and the entire tree has to be grown. Note that each stage of the trellis is
represented by “‘vector’ branches whose dimension grows exponentially with
the dependency tree depth.

Fig. 6. General MPEG diagram extension of Fig. 3. Here, the

complexity of the VA-based search. In the special case of
MPEG of Section III-A (refer to Fig. 4), Lemmas 1 and 2
eliminate the need to consider the full trellis on which to run
the VA, making it unnecessary to consider any paths lying
below the (dark line) path connecting the minimum cost state
nodes of the I frames, i.e., in Step 1 of Algorithm 1, all
I-frame nodes lying below the minimum cost node can be
eliminated. This is because any path with excursions below the
path connecting the minimum cost state nodes (corresponding
to the I frames only) can be replaced by one which lies above
this boundary, by monotonicity.

C. General MPEG Bit Allocation

Having established the intuition behind dependent allocation
and the power of monotonicity, we now evolve to the more
complex (general) MPEG format of Fig. 6. The presence of
the P frames extends the dependency tree depth, and the
decoupling between successive stages of the trellis is lost. We
can thus no longer resort to the Viterbi algorithm, but must
instead retain the entire tree, which grows exponentially with
the number of dependent levels. The good news, however, is
that the monotonicity conditions still apply, and the pruning
conditions of Lemmas 1 and 2 can aid in reducing complexity
dramatically. As an example, see Fig. 7 where we consider
an I-B-P-B-P sequence of MPEG frames (note that for
simplicity, we use only one B-frame between I-P pairs)
and a choice of three quantizer grades for each frame. More
formally, the algorithm used is the following (refer to Figs.
6 and 7).

Algorithm 2:

Step 1: Generate J(I) for all quantizers ¢ € Q;; see Fig.

7(a).

Step 2: (Monotonicity) Prune out all I-nodes lying below

minimum cost node ¢* € Q; in Step 1.

Step 3: Grow J(I, P, ) for all combinations of ¢ € Qp, and

all remaining ¢ € Q; after Step 2. See Fig. 7(b).

1 I B=1 5708 P1
0382
* 336
. 328 . *
©
I g1 P B2 P,
.61
By=
77.24
L] L]
L °*

Fig. 7. Tree pruning using the monotonicity property (Lemmas 1 and 2).
The numbers are the cumulative Lagrangian costs for a typical example for
A = 10. Branches pruned at each stage are shown with dashed lines. In
this example, the number of R-D points generated is cut down from 363
(exhaustive) to only 36 with no loss of optimality (40.76 dB at 1 bpp) using
Algorithm 2.

Step 4: (Monoronicity) Use pruning conditions of Lemmas

1 and 2 to eliminate suboptimal I — P; combinations; see

Fig. 7(b).

Step 5: For every surviving I — P; combination, find the

B1, By quantizer pair that minimizes J(B;) + J(B>), i..,

populate the branch costs of the trellis of Fig. 6. See Fig.

7(c).

Step 6: (Monotonicity) Use pruning conditions of Lem-

mas 1 and 2 to eliminate suboptimal I — B; — By, — P;

combinations; see Fig. 7(c).

Step 7: For all remaining paths, repeat Steps 3 to 6 for the

(Py — B3 — By — P) and the (P, — Bs — Bg — I) sets.

The smallest cost path after running Algorithm 2 is the op-
timal solution corresponding to the chosen A for the group-of-
pictures considered. While the exhaustive search would have
us grow as many as 363 Lagrangian costs, in our example, only
36 costs need to be grown, an order of magnitude reduction
in complexity with no loss of optimality if the monotonicity
conditions apply (in our example, application of Algorithm 2
for A = 10 provides an optimal R-D operating point — 40.76
dB at 1 bpp — as was verified through exhaustive search). The
complexity reduction due to monotonicity is dependent on the
desired quality slope A, with higher quality targets achieving
better reduction. In the limit, as A goes to 0, the minimum cost
path is always the one corresponding to the finest quantizers
and thus only a single ‘‘highest quality’’ path has to be grown.
Conversely, if A goes to oo the monotonicity property provides
no gain.

1) Suboptimal Heuristics: As pointed out, the amount to
which the monotonicity property can be exploited is A de-
pendent and may not suffice for some applications. To this
end, it is advisable to come up with fast heuristics, which,
used in combination with monotonicity, can approach the
optimal performance at a fraction of the complexity. In try-
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() (e)

Fig. 8. Tree pruning using monotonicity as well as a “greedy” heuristic for
the same conditions as those of Fig."6. The number of R-D points generated
is now 24, at a slight loss of optimality (total Lagrangian cost is 77.91 versus
optimal cost of 77.24-40.76 dB at 1 bpp) using Algorithm 2 with the heuristics
of Section I-C-1.

ing to formulate a fast MPEG heuristic, it is necessary to
consider some important points: i) the ‘‘anchor’’ I-frame is
the most important of the group of pictures and must not be
compromised, ii) most signal sequences enjoy a finite memory
property, where the influence of a parent frame diminishes
with the level of its dependency.

Thus, it may pay to choose (only) the lowest cost nodes
for all frames except the I frame, for which we retain all
nodes remaining after applying monotonicity-based pruning.
Thus, a single path is grown from each of these admissible I-
frame nodes, whereas in the general case, a whole tree evolves
from each such node. Based on this, we propose the following
heuristic: i) retain all paths that originate from each of the
I-frame quantization states remaining after the monotonicity-
based pruning, i.e. it is not prudent to be greedy for the
I-frame, as a greedy error affects all dependent frames derived
from it; ii) use a ‘‘greedy’’ pruning condition (in combination
with the monotonicity property) to keep only the lowest cost
branch thus far at all other stages in the trellis, that is, we
follow Algorithm 2, except that we add an extra pruning
condition in Steps 4 and 6, where we retain only a single
(minimum cost) path corresponding to every surviving I-frame
node. This heuristic, as shown in Fig. 8, leads to near optimal
performance at a fraction of the computational cost. For the
example of Figs. 7 and 8, the optimal solution for a particular
A gives 40.76 dB at 1 bpp, while the heuristic achieves
40.45 dB at 0.97 bpp, certainly very close to optimality.
Unlike Algorithm 2, which relies on monotonicity pruning
conditions only and which works best when X is low (high
quality), the fast heuristic retains low complexity even at high
values of A. Note how choosing the greedy solution for the
I-frame (bottom-most node) would have given a much worse
performance.

2) Discussion: We have shown a method to find the optimal
bit allocation strategy for an MPEG coding framework, assum-
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Fig. 9. Two-layer Laplacian pyramid. Open-loop mode bypasses the coarse
level quantizer (1, whereas closed-loop mode includes it.X is the source, X
the half-resolution signal, X its quantized version, X ?"*™¢ the full-resolution
quantized coarse approximation, X7 the residue signal, X its quantized
version, and X the full-resolution quantized output.

ing arbitrary quantizer sets for each MPEG frame. Although
our scheme can be computationally complex, it can serve as
an optimal benchmark to evaluate more practical allocation
strategies. In addition, model-based approaches (e.g., measur-
ing one R-D point and using a model-based extrapolation to
find other points) can be combined with our techniques to
ease computational burden. Note that since MPEG coders are
typically buffered with a buffer size of the order of a group-
of-pictures, formulating a bit allocation strategy for more than
a GOP is somewhat irrelevant, thus increasing the practicality
of our approach.

IV. MULTIRESOLUTION CODING USING A PYRAMID

We have dealt with the temporal dependency case in Section
III. We now proceed to the pyramid-based multiresolution
coding framework, where we study the spatial and spatio-
temporal pyramids. Refer to Fig. 9 for a two-layer Laplacian
pyramid coder [5] which we use, without loss of generality, as
a tool for multiresolution analysis. Note that D; and Dy now
refer to the top layer and bottom layer distortions respectively.
The top layer will be referred to as the coarse or subresolution
layer, while the bottom will be referred to as the difference
or residue layer. The coarse resolution added to the detail
resolution gives the full-resolution signal.

A. Motivation

We will now pose the MR problem description in terms
of the general formulation of Section II-B (seen briefly in
Example 2). Here, we elaborate on the need for the additional
subresolution constraints (5) or (6) in solving the general
problem of (3) and (4). As shown in Fig. 9, in this section, we
analyze both closed- and open-loop modes of operation. As
will be shown, the closed-loop system outperforms the open-
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loop system and we will therefore confine ourselves to the
former in specifying several useful problem definitions. The
following scenarios are of interest for the closed-loop system
(refer to Fig. 9):

a) minimize the full-resolution distortion Dy (Q;, Q2)
under a total bit rate constraint of (R;(Q;) +
R3(Q1,Q2)) < Ryugger bits to code both resolutions,
L.e., the special case of (3) and (4) with w, = 0, wy = 1;

b) minimize the full-resolution distortion Dy(Q1,Q2) un-
der the constraints of both total bit rate (R;(Q;) +
Ry(Q1,Q2)) £ Rpudger and a maximum tolerable
coarse resolution distortion D1(Q;) < Dj, i.e., case
(a) with the added constraint of (6);

¢€) minimize a distortion metric which is a weighted average
of the full-resolution and coarse-resolution distortions
w1D1(Q1) + w2D2(Q1,Q2) under the constraints of
total bit rate for both resolutions as well as a maximum
bit rate for the coarse resolution R;(Q1) < Rj, i.e., the
general case of (3) and (4) with the added constraint of
5).

The problem of a) disregards any compatibility require-
ments, and aims at optimizing the full-resolution quality only.
Thus, for compatible coding problems, the coarse-resolution
quality that comes for free as a *‘by-product’” of minimizing
the full-resolution distortion may not be acceptable. For most
applications, the optimal allocation of a) usually results in an
unacceptable subresolution quality, necessitating a formulation
like b) or ¢). The problems of b) and ¢) involve compatible
subchannel allocations and are duals of each other. In this
paper, we will focus on b), with results applying to ¢) by
duality.

B. Spatial Pyramid

We first analyze the spatial pyramid bit allocation to moti-
vate the spatio-temporal video pyramid bit allocation problem
to be tackled later. For the image pyramid, we consider signal
units which are blocks (e.g., 8x8 blocks of JPEG) with additive
rate and distortion functions. Note that we do a 2-D analysis
(subsampling by four per layer) and the block sizes are the
same at each layer.

N/a N/4
Di(Q1) = Zdl,j» Ry (Q1) = 27'1,3'7 (19)
j=1 i=1

N N
Dy(Q1,Q2) = Zdz,j, Ry(Q1,Q2) = ZTz,j- (20)
i=1 i=1

The bit allocation at the block level for the image pyramid
will motivate the bit allocation at the frame level of Section
IV-C, where we will use frames instead of blocks as signal
units. We will use ¢,d,r and Q, D, R respectively for block
level and frame level parameters.

1) Open-Loop Pyramid: Fig. 9 shows a two-layer pyramid.
Here, we assume open loop operation, i.e. the feedback pre-
diction loop bypasses the subsampled layer’s quantizer, as
introduced in [5].

a) Bit Allocation for Optimizing Full-Resolution Quality:
We want to determine the optimal bit allocation (for a given

total bit budget) that maximizes the full-resolution quality.
This problem for the special case of an ideal half-band low-
pass filter, and negative exponential scalar quantizers has been
studied in [13], under the assumption that the total squared-
error distortion is the sum of the individual squared-error
distortions of the layers of the pyramid (assuming normalized
filters, i.e. filters which preserve energy). Under the same
conditions, we can generalize the result to arbitrary quantizer
sets; see Fig. 9.

Assuming that each independently coded block 7 has its own
set of admissible quantizer choices {g¢;}, under the additivity
of distortion assumption, the open loop problem becomes the
minimization of D(X, X) = D(X1, X;)+D(X3, X3), i.e. the
solution to the independent allocation problem of (1) and (2)
seen in Section II-A, The solution is that at optimality each
block ¢ of the coarse (subsampled) layer should be operating
at the same slope A, on its operational R-D curve as each
block j of the residue layer i.e., A\; = Ay in Fig. 9. This is
a simple extension to generalized quantizer sets of the 1-D
signal equivalent result of [13] (for normalized filters) that at
optimality the coarse layer should have the same distortion as
the residue layer.

b) Compatible Subchannel Allocation: 1If we now add
subresolution constraints, our problem becomes:

minD1(Q1) + D2(Q2) s.t. R1(Q1) + R2(Q2) < Rypudget
(21)

and D;(Q,) < Dj. 22)

Obviously, if finding the full-resolution optimal solution of
(21) meets the subresolution constraint D (Q1) < Dj of (22),
then we are done. However, if it does not, then it can be shown
that at optimality, the coarse resolution allocation should just
meet the subresolution constraint, i.e., we have the following
Lemma.

Lemma 3: The optimal solution to (21) and (22) is to
choose RI so that Df = Dj and then allocate R} =
Ryydget — RY for the bottom layer.

Proof: See Appendix B.

This is an important result, for in the limit of fine quanti-
zation for the coarse layer (i.e., as Q1 gets finer), the open-
loop and closed-loop solutions converge. Thus, this (optimal)
allocation strategy for the open-loop case would also be an
effective one for the closed-loop case, at least in the limit of
fine quantization of the coarse layer.

2) Closed-Loop Pyramid: We now analyze the closed loop
case (sce Fig. 9), which includes the quantizer in the pre-
diction feedback loop of the pyramidal coder, as in [6]. The
closed loop allocation is different because a) the full-resolution
distortion D(X, X) is equal to the residue layer distortion
D(Xa, X3), due to the feedback “‘absorbing’’ the quantization
distortion of layer 1, and b) the unquantized residue layer
signal depends on the choice of the coarse level quantizer
Q1 ie, Xo = f(Q1).

a) Bit Allocation for Optimizing Full-Resolution Quality:
We now tackle case a) of Section IV-A. The problem, as a
reminder, is to solve
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min D2(Q1, Q2) s.t. R1(Q1)+R2(Q1,Q2) < Rouager- (23)

See Fig. 9.

This problem is a special case of the generalized problem
of (3) and (4) with w; = 0 and wy, = 1 and was solved in
Section II-A. As was seen, the solution consists of using a
Lagrangian formulation. For a fixed A, we find the minimum
total Lagrangian cost J(Q1,Q2) by finding the (Q3(Q1)),
which “‘lives’’ at absolute slope A on the (dependent) Ro-
D, curve associated with each quantization choice Q; of the
independent layer.

The analysis above solves the problem at a ‘‘layer’” or
‘“frame’’ level, so that Q; and ), are quantization choices
for the entire layer or frame, e.g., using a JPEG [14] coding
framework. If we specify the problem at the block level, i.e.,
if we solve

N/4 N

N
min E da; s.t. Zrl,i + g 72,i < Rpudget
i=1 i=1 i=1

then the number of choices for the optimal solution make it
impractical to be solved by brute force, but it can be shown
that at optimality, all blocks in the dependent (residual) layer
must operate at a constant slope, though no such condition
is necessary for the independent (coarse) layer blocks. The
difficulty with optimality at the block level comes from the
inter-block dependencies due to the filtering operation in the
interpolation process. If however we limit our dependency
to parent/children sets (with a subresolution ‘“‘parent’” block
being coupled with its directly interpolated four children
blocks—see Fig. 10), then a fast way to approach the op-
timal solution (using Lagrangian methods) is feasible. This
is accomplished (see Appendix C for details) by treating the
parent/children sets as independent entities over which to
apply bit allocation techniques, using the ‘‘constant slopes at
optimality’” principle. As the interpolation filter kernel gets
shorter with respect to the block size, this approximation gets
better, since the second-order *‘leakage’’ effect of inter-block
dependencies gets smaller. In the limit, for the trivial two-tap
averaging filter, our analysis becomes exact.

b) Compatible Subchannel Allocation: The noncompati-
ble optimization of the previous section, as borne out by
experimental evidence, may not provide a ‘‘usable’ sub-
channel quality, if there should be such a constraint. Thus,
optimizing for only the full-resolution quality as in (23) is not
only computationally complex, but also not useful! It may be
more profitable to sacrifice the full-resolution quality slightly
(typically by < 0.3 dB) to gain in the coarse-resolution quality
(typically by about 3 dB), for a given total budget. Moreover,
this can be achieved very efficiently using the following fast
algorithm which imposes the constant-slopes operating point
condition for the blocks within each layer of the pyramid. The
idea is to operate at constant slope A; for each block of the
coarse layer such that the distortion quality constraint is met
or exceeded, and to allocate the remaining bits among the
blocks in the residue layer again in a constant slope fashion.
This strategy guarantees that the coarse layer allocation is
optimal, i.e., one cannot achieve the distortion performance for
the coarse layer with fewer bits. In addition, it separates the

(24)
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Fig. 10. Parent-child dependency for the two-layer 2-D pyramid. Assuming
that the same block size (8x8) is used for both the coarse and residue layers,
the filtering effect for short kernel filters will cause the dependency scope of
each parent block (e.g. A) of the coarse layer to be essentially confined to its
four children (e.g., a1, a2, a3, aq) of the residue layer.

difficult optimization problem into separate fast minimizations
over each pyramid layer.

The idea of the algorithm is to map out, in the most general
case, all constant-slope operating points for each pyramid layer
for a given total bit budget. Note that although the algorithm
exhaustively searches for all possible points, in practice, this
is not necessary. A formal summary of the algorithm follows:

Algorithm 3:

Step 1: Find the (constant) operating slope A; for all blocks
of the coarse layer which just meets (to within a convex
hull approximation, as in [11]) using R; bits, the given
coarse layer distortion requirement: D(X;,X;) < Dj. If
Ry > Rpyudget, then stop. We have no more admissible
coarse layer (convex hull) operating points. Else, go to Step
2.
Step 2: For the A; of Step 1, generate X, and its associated
R3-D; curve. Operate each block of X, at constant slope
Az > 0, which meets the budget Ry < (Rbudge: — R1). If no
such A exists, stop. We have no more admissible residue
layer (convex hull) operating points.
Step 3: Measure D(X, X) = D(Xo, X,). If it is smaller
than the previous iteration’s, it becomes the current candi-
date for the optimal solution: update A} = A;,A3 = Asg.
Step 4: Decrease A; to the next higher-quality operating
point and repeat Steps 1 through 3, until that slope A1 min
is reached for which either the given budget Rpygge: is
exhausted in the coarse layer in Step 1, or the coarse layer
quantizer (), is at its finest permissible value (R;(Q1) is
maximum). The optimal operating slopes are A}, A3.

The complexity of Algorithm 3 obviously increases ex-
ponentially with the number of pyramid layers. However,
experimental results indicate that for typical images, filters,
and quantizer choices corresponding to “usable” quality sub-
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Closed Loop Vs. Open Loop Performance for "House" Image at Total of 0.6 Bits/Pixel
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Fig. 11. Comparison in performance of the open- and closed-loop pyramidal
coding schemes for the “House” image. The subresolution SNR’s for the
compatible subchannel are labeled from a to j. Note, for example, that at a
subresolution bit rate of about 0.1 bpp corresponding to a coarse level SNR
of 30.89 dB (point d), the closed- loop scheme outperforms the open-loop
scheme by nearly 3 dB. The gain of single resolution over the closed loop
is seen to be less than 1 dB. A JPEG-like coding environment is used with
four admissible quantization scales (0.5,4.5,8,12) and (0.25,2.25,4,6) for the
residue and coarse pyramid levels, respectively. The total bit budget is 0.6 bpp.

resolution signals, a single iteration is usually optimal, i.e., at
optimality, the subresolution signal operates at the minimum
bit allocation which just meets the desired coarse quality
requirement. This was seen to be the optimal allocation for
the open loop case in Section IV-B-1, and in the limit of
fine coarse-layer quantization, as the open-loop and closed-
loop schemes converge, this is seen to be an optimal operating
point for the closed-loop scheme as well. In our experiments
involving a five-tap Burt-Adelson filter and a JPEG coding
framework, we found that ‘‘usable’” subresolution images
require fine coarse-layer quantization. Thus, in practice, a
single iteration suffices, resulting in much-reduced complexity,
leading to a linear increase in complexity with the number of
pyramidal layers.

3) Still Image Pyramid Coding Results: We now describe
the performance of several schemes in experiments using a
modified JPEG coder for the pyramid layers, allowing each
8x8 block of each layer to have a quantizer scale choice from
the discrete sets shown in Fig. 11. The results apply for the
commonly-used ‘‘House’’ image.

a) Closed Loop versus Open Loop Pyramid: Fig. 11
shows a comparison in the performance of the open-loop
and the closed-loop cases. The closed-loop curve was
obtained using Algorithm 3. As can be seen, nearly 3 dB
of subresolution quality gain can be obtained using the closed
loop pyramid for the same full-resolution quality and the same
total bit budget. This result highlights the benefits of operating
closed-loop for most practical coding scenarios as in [6]. Note
that in the limit of fine quantization of the coarse layer, the
performances converge, as expected.

b) Closed-Loop Coding Results—Optimal versus Fast
Heuristic: Fig. 12 shows a comparison of the results of the
optimal allocation versus the constant-slope fast heuristic.
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Fig. 12. Comparison of optimal (for full-resolution signal only) versus fast
heuristic for a nine-tap interpolation filter. Note that for (a) the full resolution
image, the optimal algorithm gains about 0.3 dB over the heuristic; for (b) the
subsampled coarse resolution signal, the heuristic gains about 3 dB in SNR.

Both schemes use the same bit budget for each pyramid layer.
As can be seen, the optimal allocation beats the heuristic by
less than 0.3 dB in SNR for most bit rates of interest. Note,
however, that the heuristic outperforms the optimal in the
coarse resolution subsampled image (for which the heuristic
is optimal) by about 2-3 dB in SNR. Note that this SNR
improvement is in the subsampled image quality between
the unquantized and quantized subsampled images (i.e., X3
and X; in Fig. 9). Similar improvement was seen in the
upsampled coarse-resolution SNR’s when the unquantized
upsampled coarse signal was used as the reference.

C. Spatio-Temporal Video Pyramid

Having laid the groundwork for the spatial pyramid alloca-
tion, we now address the spatio-temporal pyramid allocation
of [6]. The MR video coder (see Fig. 13) uses a 3-D pyra-
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(@) (b)

Fig. 13. (a) Spatio-temporal pyramid. Note that one half of the frames in the
residue layer (shown as shaded) are spatially coded/interpolated; (b) one step
of coarse-to-fine scale change in the reconstruction process. Note that frame
1 is temporally interpolated from frames O and 2.

midal decomposition, based on spatio-temporal interpolation,
forming a hierarchy of video signals at increasing temporal
and spatial resolutions. The structure is formed in a bottom-
up manner, starting from the finest resolution, and obtaining
a hierarchy of lower resolution versions. Spatially, images
are subsampled after antialiasing filtering. Temporally, the
reduction is achieved by simple frame skipping. For our
analysis, we consider a two-layer pyramid. See Fig. 14(a) for
the spatio-temporal dependency.

By invoking a hierarchical approach, one could directly
extend the results of the spatial pyramid allocation described
in Section III to the video pyramid allocation problem. Signal
units change from blocks to entire frames of coarse and residue
layers. The hierarchical approach consists in letting the set of
admissible R-D operating points for each frame come from
a constant-slope allocation of the blocks within each frame.
This would lead to a set of admissible operating quality points
which are optimal at the intraframe level and which span the
entire range of bit rates of interest. The only difference in
following this hierarchical extension to frames is that we now
have to deal with temporally dependent frames in the residue
layer of the video pyramid, where the (odd) temporal residue
frames are dependent on the (even) spatial residue frames [6]
(see Fig. 14(a)).

This is the direct extension to video coding of Algorithm 3
of the spatial case, i.e., operate all coarse frames at constant
slope A7, and all residue frames, temporal and spatial, at
constant slope A3. Note that Algorithm 3 is used with a single
iteration, i.e., we operate the coarse layer frames at that slope
A1 that just meets the desired subresolution rate or distortion
constraint. Thus, Algorithm 3 separates the problem into a
coarse layer allocation which is just an independent allocation
problem, and a residue layer allocation. The latter is similar to
the I-B-I temporal allocation problem of MPEG covered in
Section III-A, where now the spatial residue frames play the
role of the I frames and the temporal frames play the role of
the B frames. Similar techniques to those described in Section
III-A obviously apply here as well. Further, in this case, as
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Fig. 14. (a) Dependency tree of the two-layer Laplacian spatio-temporal

pyramid of [1] used as the MR video coder in this work and efficient allocation
using constant slopes across the frames of each pyramid layer. Note that this
is just the extension to video coding of Algorithm 1 using a single iteration;
(b) example of allocation in the video pyramid.A1, A2, and A3 are quality
factors for the coarse, spatial, and temporal interpolated frames, respectively.

we deal with residue images, the fast heuristic of operating
at constant slopes for the spatial and temporal residue layers
(i.e., choosing the minimal Lagrangian-cost nodes at every
stage, which we depict as the “dark line” path of Fig. 4) was
found to be always optimal in our experiments. The “greedy”
constant slopes path (optimal if only spatial residue frames
are considered) works well due to the big disparity in residual
energy between the spatial and temporal frames. Fig. 15 shows
experimental results for the ‘‘mit’’ sequence which confirm
the remarkable performance of the constant slopes algorithm
of Fig. 14(a).

1) Video Pyramid Coding Results: The allocation tech-
nique of Fig. 14 (b) was applied to the “mit” sequence
with favorable results, as borne out objectively by the R-
D curve of Fig. 15 (notice how no constant-slope point
is suboptimal, i.e., all dark ‘‘squares’’ find themselves on
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Full Resolution Distortion (mse) vs. Total Rate
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Fig. 15. R-D curve for residue layer of “mit” sequence. The subresolution
quality is fixed at 28 dB. The dark dots show a constant-slope allocation
among residual frames (spatial and temporal), whereas the other dots show the
nonconstant slope points. Notice how no constant-slope point is suboptimal,
ie., all dark dots find themselves on the convex hull.

the convex hull). Various allocations and their performances
are shown in Fig. 14(b). It can be seen that i) nonconstant
slopes gives poor results, ii) the constant slope heuristic
gives good coarse and full resolution quality, and iii) the
full-resolution optimized allocation, which is computationally
complex, gives marginally better full resolution quality than
ii) but unacceptable coarse quality.

APPENDIX A
PROOF OF FACT 1

Note that in the proof, in the interest of notation brevity, we
omit the explicit dependence of D1, Ry, J; and Dy, R, Jo on
Ql and QQ, i.e‘, W€ use Jl = Jl(Ql),Dl = Dl(Ql),Rl =
RBi(Q1) and Jo = J5(Q1,Q2),D2 = Dy(Q1,Q2), Ry =
R3(Q1,Q2) and similarly for the optimal quantizers Q7 and
Q5. Then, for all Q;,Q,, we have from the unconstrained
minimization

J{+J;SJ1+J2.

(25)
ie.

D} + AR} + D3 + AR < Dy + ARy + Dy + ARs. (26)
or

[Di + D3] = [D1 + Ds] < A([Ry + Ro] - [R; + Rox)). 27)

Since (27) holds for all admissible {Q1,Q3}, it certainly
holds for the subset of {Q1,Q2} for which [R; + Ry] <
Rpudget» Where Ryydqger = [RT + R3]. Therefore, from (27),
since A > 0, we have that

[D1(Q1)+D1(Q1, @3)] - [D1(Q1)+D2(Q1,Q2)] <0, (28)

ie., overall {Q1,Q2} that meet the rate budget, (Q}, Q3)gives
the minimum distortion. O

APPENDIX B
PROOF OF LEMMA 3

Assume A™™? is the optimal slope in the solution to (21).
Now, because D{*¢ > D/, the solution generated by \in¢
is no longer feasible. This is equivalent to having the R; —
Dy characteristic truncated for values over D/, and solving
the problem of (21) with this new R-D curve. Again, due
to independence, at optimality both layers will have to be
operated at a constant slope, say )\'. Because the allocation for
the bottom layer R, has to decrease (otherwise we could not
decrease the distortion D; of the top layer for fixed Ryudget)
we must have X > A4 (as ) increases, R decreases and
D increases). In the original R, — D; curve, ) would result
in a quality level such that D1()) > D¢ (increasing A
increases the distortion) but since all points with D; > D)
have been removed we have that D;()\') = D/ (the highest
available distortion). Therefore the optimal solution is indeed
D} = D:(X) = Dj. O

APPENDIX C
BLOCK-LEVEL OPTIMAL FULL-RESOLUTION ALLOCATION FOR
FOR TWO-LAYER CLOSED-LOOP PYRAMID (SECTION IV-B-2-i)

If we approximate the dependency scope of the filtering
operation in the interpolation process of the spatial pyramid
to direct parent/child dependencies, as shown in Fig. 10, we
show how to get the optimal block-level allocation without
exhaustive search, using a fast minimization algorithm where
each parent/child *‘set’” is treated independently.

Let there be N/4 coarse layer and N residue layer blocks, all
of the same size (see Fig. 10). Let the set of quantizer choices
for the coarse layer 1, block ¢ be QF (for parent block), and
the set for the residue layer 2, block j be Q; (for child block).
Let QF) = QP X QP X ... Qfy, be the set of all layer 1 block
quantizer choices, and Q(©) = Q{X Q5X ... Q5 be the set
of all layer-2 block quantizer choices. Then, the problem to
solve is

QlGQ(}El;lwlélzeg(c) DZ(QI) Q2)S't'R1(Q1)
+ R2(Q1,Q2) < Rpudget-

As is well known, one can introduce the Lagrange mul-
tiplier A and Lagrangian costs Ji1(Q1) = ARy(Q;) and
J2(Q1,Q2) = D3(Q1,Q2) + AR2(Q1,Q2) and solve, for
the *‘correct’” value of A, A*, the equivalent unconstrained
problem

(29)

[1(Q1) + J2(Q1,Q2))] (30)

min
{Q:1€Q(P),Q.€Q(O)}
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However, (30) requires an exhaustive search over all block
quantizer choices for layers 1 and 2, unless we exploit the
dependency constraint of the parent/children blocks, i.e., (30)
implies

I?giln[‘]l Q1) + néizn J2(Q1,Q2)]
N
= Héiln[Jl(Ql) + ]gl {q2Téllg;} J2,;(Q1, ¢2,5)] (1)

where Ja ;(.) is the Lagrangian cost for layer 2, block j.

Now, imposing the parent/child dependency constraint of
each (coarse) parent block ¢ influencing only its four (residue)
children blocks 47 — 3,44 — 2,4i — 1,44, we have

J2,4i-k(Q1, G2,4i—k) = J2,4i—k(q14,92.4i_&) fork =0,...,3
(32)
Using this, (31) becomes
N/4 3
mln[Jl Q)+ Z Z min Jy 4i-£(q1,; ¢2,4i-k)]  (33)
i=1 ko 2k
N/4
= Z mln[Jl 2(41 z) + Z mln J2 4i—k (111 i 42 41—k)]
(34)
N/4
= quén [ ilans) + J34qua)l, (35)
= qus

where J3 (q14) = Zi:o min Ja 4k (q1,i, g2,4i-k) in (35).
As can be seen from (35), the optimization operation has been
reduced to independent minimizations over each of the N/4
parent/child ‘‘sets’” because of the dependency constraint.
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