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Orthogonal Time-Varying Filter
Banks and Wavelet Packets

Cormac Herley, Member IEEE, and Martin Vetterli, Senior Member, IEEE

Abstract— We consider the construction of orthogonal time-
varying filter banks. By examining the time domain description
of the two-channel orthogonal filter bank we find it possible
to construct a set of orthogonal boundary filters, which allows
us to apply the filter bank to one-sided or finite-length signals,
without redundancy or distortion. The method is constructive
and complete. There is a whole space of orthogonal boundary
solutions, and there is considerable freedom for optimization.
This may be used to generate subband tree structures where the
tree varies over time, and to change between different filter sets.
We also show that the iteration of discrete-time time-varying filter
banks gives continuous-time bases, just as in the stationary case.
This gives rise to wavelet, or wavelet packet, bases for half-line
and interval regions.

L. INTRODUCTION

HE subject of two-channel perfect reconstruction filter

banks in the case where the filters have finite impulse
responses has been extensively studied, and such structures
are widely used in subband coding applications. Their design
is by now well understood in the case where we treat infinite
signals and do not wish to vary the analysis over time. The
case where we process finite length signals, or wish to vary
the analysis, requires special treatment. Particular solutions of
the finite length problem have appeared, but analysis of the
time-varying case has only begun recently. The purpose of this
paper is to address these problems in the case where orthogonal
filter banks are involved. In particular, we show that, while
stationary filter bank designs are based on polynomial algebra
methods, these do not easily extend to the time-varying
case. However, using simple matrix algebra operations on the
time domain operator description of the filter bank, solutions
are very easily found, and, further, we show that they are
constructive and complete.

Consider then the system depicted in Fig. 1, the basic
two-channel filter bank, which is called perfectly reconstruct-
ing if £ is identically equal to the input. We will assume
that the reader has some familiarity with two-channel fil-
ter banks. Suitable references are [1]-[4]. There are many
ways of looking at the design problem and expressing the
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Fig. 1. Maximally decimated two-channel multirate filter bank.

solution. A very popular solution, first given in [1] and [5],
is that where Hi(z) = z~N"DHy(-271), and Go(z) =
Hy(271),G1(2) = Hy(271), where N is the filter length. This
is known as the orthogonal solution, since it can be easily
verified that

(hl(n), h()(n - 2k)) =0 (1)
(ho(n), ho(n — 2k)) = 6 = (h1(n), h1(n — 2k)) (2)

i.e., the filter impulse responses are orthogonal with respect
to even shifts.

The action of the filter bank on an infinite signal column
vector z can be represented using the operators in (3) (at
the top of the next page) and H;, which is defined in a
similar fashion to Hp, using the filter hy(n) in place of
ho(n). In this notation, instead of writing filters in terms of
their transfer functions or z-transforms, we write their shifted
impulse responses as rows of a matrix. These row vectors are
actually the basis functions for a linear expansion of the signal.
While z-transforms are the natural tool for handling linear
time-invariant systems, we will find the matrix representation
more useful for analysis of time-varying systems.

Clearly, premultiplication by Hy has the effect of filtering
the signal by Hy(z) and subsampling by 2 (represented by
the shift by 2 in the matrix (3)). The analysis filter outputs are
hence represented by yo = Ho-x and y; = H;-x, as indicated
in Fig. 1. Because of the time reversal, the synthesis filters
are represented by HY and HJ, where x denotes Hermitian
transpose. In all cases we shall be interested only in filters
with real coefficients so that HY = HZ'. That the system gives
perfect reconstruction is shown by the fact that the sum of the
two paths is an identity

HIH,+HH, =1 )

The orthogonality properties above in the time domain imply
orthogonality properties of the matrices. From (1) it follows
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H, = 3
0 0  ho(0) ho(2) ho(N —2) ho(N —1)
that The fact that we have an orthogonal filter bank necessarily
HHT = implies that T is unitary, and this is equivalent to the fact
oH; =0 () that the rows of T form an orthonormal basis for 1%(Z),
and from (2) that the space of square summable sequences. However, the filter
bank necessarily operates over infinite signals (the matrix is
HOH?; =I= Hle. (6) infinite along both dimensions) and the filters do not change

An equivalent representation can be found by interleaving
the rows of Hg and H; (see the bottom of this page). Note
that we have used the relation Hy(z) = 2~ N~V Ho(-z71)
in writing the coefficients of the filter H:(z) in the matrix.
Equations (4)—(6) can then be written in the single requirement
that T be unitary

T TT=TTT =1

Observe that the ordering of the rows of T is essentially arbi-
trary, since we can always multiply by a unitary permutation
matrix, and P - T is still unitary. For the ordering chosen
here, T is a doubly infinite block of Toeplitz matrix [6], [7]
with blocks of size 2 X 2; since the filters in the two-channel
case are always of even length [4], there are K = N/2 such
2 x 2 blocks. Hence T, with this ordering of the rows, can
be written in partitioned form [6], shown in (7) at the top of
the next page where

]. 8)

A = ho(21)
¢ —ho(2K —2i - 1)
Thus the subband transform, as we may call it, takes N
points of the input data to produce two output points. Its
operation is illustrated by

ho(2i + 1)
ho(2K — 2i — 2)

y=T~x=P’1»{gﬂ-x=P_l-Bﬂ ©9)
where x = (...,z(-1),2(0),z(1),2(2),...) and y =
(-590(=1),  91(=1),90(0),91(0), yo(1),31(1),...).  We

define P as the orthogonal permutation matrix that reorders
the elements of y

Py =[..9000),90(1),0(2), - - 41(0), y1(1), 1(2),-- ].

with time (T is block Toeplitz, so the blocks are the same
along diagonals). If we wish to apply the filter bank to a finite
length signal we must find a finite unitary matrix Ty which
has the same block structure as T, and if we wish to change
the filters we must find a unitary matrix T., where at some
point we change from the blocks of one filter set to another.
We will show that both of these problems can be solved by
an appropriate treatment of the boundary conditions. For the
sake of simplicity, in this paper we consider only the two-
channel case, but extension to the M-channel case is also
possible [8].

The outline of the paper is as follows. In Section II, we show
how to construct boundary filters to allow implementation
of time-varying filter banks. The important case of how to
apply a filter bank to finite length signals is treated in Section
M. In Section IV, we show how boundary filters can be
used to change the topology of a subband analysis tree, or
to form smooth transitions between different filter sets. In
Section V, we explore the relation between discrete-time time-
varying filter banks and continuous-time bases of time-varying
wavelets.

A preliminary version of the results of this paper was
reported in [9], and some treatment, with applications, was
given in [10] and [11]. Work on wavelet bases for interval
regions, starting from the continuous-time domain, can also be
found in [12] and [13]. This paper starts from the discrete-time
point of view (filter banks) and then derives continuous-time
bases. For a purely discrete-time discussion, time-varying filter
banks are also constructed in [14], but the emphasis there is on
numerical nonorthogonal designs, and the method is entirely
different. Solutions which give inversion at the boundary are
given in [15]. The M-channel solution, without continuous-
time results, is given in [8].

ho(0) ho(1)
T= —ho(N —1) ho(N - 2) :
0 0 ho(0)
0 0 —ho(N = 1)
I : z :

(V-1 0 0
ho(0) 0 0
ho(N —3) ho(N—2) ho(N —1)
—ho(1) —ho(0)
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II. ConsTRUCTION OF ORTHOGONAL BOUNDARY FILTERS

In this section, our concern will be to construct a half-
infinite matrix which has the same block structure as T in (7),
but has some special form at the boundary. This represents
the operation of the two-channel filter bank over an infinite
length right-sided signal, starting at some time ng. This may
seem like a contrived example, but treatment of this right-
sided sequence allows us to examine the construction of one
boundary in isolation from any other boundary effects. This
will form the basis for the more complicated solutions that
follow in later sections.

To apply the filter bank to this right-sided sequence, we
might first try using the operator with time-domain description

Q=
Ay A; --- Ag_q 0 0
0 Ay A, - e Ag_ 0
0 0 Ay A

(10)

Clearly, Q is derived from T in that it is again block
Toeplitz, with A; lying along the ith block superdiagonal.
However, Q is half infinite: it extends infinitely down and
to the right, but not up or to the left. Because of the fact
that we are using an orthogonal filter bank, all of the rows
of Q are mutually orthogonal, so Q- QY = I,, where
I, is the half-infinite right-sided identity matrix. However,
QTQ # I, so the matrix is not unitary. Hence, while the
rows of Q form an orthogonal set, they do not form a basis
for the space of right-sided sequences. In other words, more
vectors are necessary to complete the basis. It is an easy
matter to complete the basis, by using the Gram—-Schmidt
orthogonalization procedure. However, since we are using FIR
filter banks, we would prefer that the additional vectors would
have a small number of nonzero coefficients also. We now
show that this is always the case. Hence, we can apply the
Gram-Schmidt procedure and obtain the additional boundary
vectors needed to complete the basis, and these will have
nonzero values only in the immediate vicinity of the boundary.
An elementary result from linear algebra [16], [17] will play
an important role in our development.

Proposition 2.1: ' If Q- QT = I, then the matrix Q7 - Q
is the orthogonal projection onto the span of the rows of Q,
and (I- Q" - Q) is the orthogonal projection onto the space
orthogonal to the span of the rows of Q.

Proof: An operator © in a linear space is an orthogonal
projection if and only if ®2 = © and © is self-adjoint

[16]-[18]. Note that
QT-Q*=Q"-(Q-Q")-Q=Q"-1-Q=Q"-Q.
Also
Q" Q"=Q"-Q

so that QT - Q is self-adjoint, and, hence, an orthogonal
projection. The range is obviously the column space of QT,
that is the transpose of the row space of Q. Clearly, then,
(I - QT - Q) is the projection onto the space orthogonal to
the row space of Q. O

We can use this to derive the basic result, which is that
when Q is as given in (10), the boundary vectors also have
finite support.

Proposition 2.2: If Q is the right-sided half-infinite matrix
given in (10), corresponding to the application of an orthogonal
two-channel filter bank, with filters of length N = 2K, then any
vector orthogonal to all the rows of Q has nonzero values in at
most the first 2K — 2 positions.

The proof is somewhat technical, and so is given in Ap-
pendix B. However, the main idea is easily communicated.
If we compare the truncated matrix in (10) with the infinite
orthogonal matrix in (7), we see that Q resembles T except
that it is missing the rows that extend up and to the left. Since
the rows of T form a basis, the nullspace of Q lies in the
span of the missing rows. Essentially, the projection matrix
QTQ has the form

where D is of dimension (N — 2) x (N — 2). Hence,
(I — QT Q) contains only zeros, except in the top left corner,
where there is a block of size (N —2) x (N —2). Now any row
vector suitable to be added to the basis, and hence orthogonal
to all the rows of Q, has the form [(I — QTQ) - x|T =
xT(I - QT Q) for some x. Thus, it will have nonzero values
in at most the first NV — 2 positions. It is shown in Appendix B
that, in the two-channel case, the dimension of the nullspace
is (N — 2)/2.

This essentially determines the structure of the boundary,
i.e., we see that we need (N — 2)/2 boundary filters, and that
each of them will have at most N —2 nonzero values. However,
other boundary structures are possible, as we next show. These
are easily explored using the material already developed.

What we have seen so far shows that the vectors needed to
complete the basis necessarily have a certain form; we then
just use the Gram-Schmidt procedure to compute them.
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Algorithm 2.1:

1. Set S¢ = Q, choose p = (N — 2)/2 vectors
lp,11,...1,1 linearly independent of the rows of Sg.
Set i = 0.

2. Set I, = 17(I — STS;) Normalize so that I} = 1{/||L}||.

3. Form a new matrix S;1 by adding 17 as a row to S;.

4. Set i =i+ 1.If ¢ = p then stop, else GOTO Step 2.

5. Set T = §,.

Clearly, then, T is a half-infinite matrix, whose rows form
an orthonormal basis for the space of right-sided sequences.
An example of a unitary boundary in the case where N = 4 is

T —
b(2) B 0 0 0 0
ho(0)  ho(1)  ho(2) ho(3) O 0
~ho(3) ho(2) —ho(1) ho(0) 0 0
0 0 ho(0) ho(l) ho(2) ho(3)

0 0 —ho(3) ho(2) —ho(1) ho(0)

an
We refer to the added rows 1/ as the left boundary vectors,
and the nonzero elements of these vectors as the left boundary
filters. Of course, it should be understood that these are
not linear shift-invariant filters. Clearly, both the number of
boundary filters and their support are determined by the filter
length N, i.e., this fixes the structure of the boundary. However,
even then the set of boundary filters is not unique. A different
set of linearly independent vectors input to the procedure
would produce a different set of output boundary filters. Also
note that the number of boundary filters for a two-channel
filter bank is not necessarily a multiple of two. We can easily
take care of this. To see this write the matrix containing
the p = (N — 2)/2 boundary filters in partitioned form
[Ly Ly,...Lg-1], where Ly is px 2 for i = 1,2,... K = 1.
That is

L=[LLy...Lg1}=

lo(2) lo(N=2)  I(N-1)
11(2) (N -2) (N -1)
lp-1(2) L1i(N=2) l—i(N-1)
Thus, T (the final output of the Gram—Schmidt procedure)
can be written
L 0]
T = [ . 12
F o .
If this matrix is unitary, then so is
1, 0
T=1|0 L 0] (13)
0 Q

for an arbitrary-sized identity matrix I;. Thus, if L is a
boundary solution, so also is

i)

(14)
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TABLE 1
COEFFICIENT OF THE BOUNDARY FILTERS FOR THE LENGTH-4
DAUBECHIES FILTERS, WITH d = 3. THERE ARE(4 —2)/2+3 =4
BoUNDARY FILTERS EACH OF LENGTH (4 — 2) +3 = 5.

I3(n)

n | lo(n) li(n) I2(n)

0 | 0.00000380 | 0.00002095 | 0.94638827 | -0.32303134
1 | 0.48294873 | -0.12939716 | 0.27975733 | 0.81960524
2 | 0.83651995 | -0.22416796 | -0.16150877 | -0.47317863
3 | 0.22415658 | 0.83651290 | -0.00002252 | -0.00000909
4 | -0.12941686 | -0.48296095 | 0.00001300 | 0.00000525

Thus, in the example shown in (11), the original boundary
solution is L = [lp(2) o(3)], but then so, also is

LI:[(l) lo(()2) 10?3)]'

In this case, by choosing d = 1 we have made the number
of boundary filters even. Of course, the boundary filters, ie.,
the rows of this matrix, won’t have good frequency selectivity
or other desired properties. Note that the first d filters in (13)
are just “polyphase filters” (they have only a single nonzero
coefficient each). The way around this is to observe that

I, 0O

U, [ - L]

is also a boundary solution for arbitrary unitary matrix U. The

rows of (16) have, in general, a full (N — 2)/2 + d nonzero

coefficients each. The next proposition shows that all possible
orthogonal boundary solutions are of this form.

Proposition 2.3: If T and ¥ are matrices corresponding to

the time domain description of the same two-channel orthogonal

filter bank applied to a right-sided half-infinite signal, with the
same number of boundary filters, then they are related by

z:[U O].T

(15)

(16)

0 I

where U is a square unitary matrix of size (N —2)/2 + d.
Proof: If we chose d = 0, we would have (N — 2)/2
boundary filters in each case, and both T and X would be
unitary and of the form given in (12). If d > 0, then we write
A = [AgA;1 -+ - Ak _1], where Ag is of size p X d and A; is of
size px 2forp=(N—-2)/2+d, and T = [ToT1 -+ Tx—_1]
where Ty is of size p x d and T; is of size p x 2 for

= (N-2)/2+4d
T
5,
N e P
0 Q TT QT
K-1
OT
U o
0 I
where
T
U=[A0A1...AK_1]. ”1-
Tk
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TABLE II
COEFFICIENTS OF THE BOUNDARY FILTERS FOR THE LENGTH-6 DAUBECHIES FILTERS, WITH d = 4. THis GIVES Six FILTERS OF LENGTH 8.

n | lg(n) li(n) I3(n) I3(n) lg(n) I5(n)

0 | 0.94069836 | 0.05706230 | 0.33257739 | -0.03496808 | -0.00000411 | -0.00010806
1 {-0.31868533 | 0.48658383 | 0.80900408 | -0.08478349 | -0.00001091 | 0.00005722
2 | -0.10756660 | -0.80639908 | 0.45660965 | 0.13327872 | -0.33265203 | -0.03517089
3 | 0.04422263 | 0.33120387 | -0.13350597 | 0.46073113 | -0.80682677 | -0.08533406
4 [ 0.00019492 | 0.00197942 | -0.08568592 | -0.80683744 | -0.45999046 | 0.13477945
5 [ -0.00001788 | -0.00082222 | 0.03530424 | 0.33251450 | 0.13505012 | 0.45997216
6 [ -0.00009779 | 0.00000960 | 0.00003587 | 0.00020936 | 0.08545297 [ -0.80689024
7 | 0.00004032 | -0.00000396 | -0.00001479 | -0.00008632 | -0.03523111 | 0.33267003

TABLE III
COEFFICIENTS OF THE BOUNDARY FILTERS FOR LENGTH-8 DAUBECHIES “LEAST ASYMMETRIC” FILTERS, WITH d = 3. THERE ARE SIX FILTERS OF LENGTH 9.

7 | lo(n) h(n) I(n) I3(n) ly(n) Is(n)

0 | 0.01017834 | 0.04074208 | -0.06967680 | -0.46614930 | -0.88094611 | -0.00451760
1 | -0.02196937 | -0.07282237 | 0.39583907 | 0.79348003 | -0.45495344 | 0.03053683
2 | -0.06216030 | -0.35587650 | 0.84053651 | -0.38525430 | 0.12013946 | 0.01149018
3 | 0.46793191 | 0.80092361 | 0.34333419 | -0.05519467 | 0.04500677 | -0.09915590
4 [ 0.81957346 | -0.46769638 | -0.11360772 | 0.03630090 | -0.02081259 | -0.30637343
& [ 0.30425950 | -0.02564484 | -0.00794118 | -0.01647026 | 0.00756330 | 0.80132973
6 | -0.10526283 | 0.07424628 | 0.03326185 | 0.00585934 | -0.00096755 | -0.49650099
7 | -0.01280043 | -0.00016525 | -0.00024664 | 0.00068985 | -0.00034958 | -0.02953959
8 [ 0.03272538 [ 0.00042248 | 0.00063055 | -0.00176366 | 0.00089372 | 0.07552044

The dimensions of U are as advertised, and the fact that it is
unitary follows directly from the orthogonality of the boundary
filters. |

Thus, together Propositions 2.2 and 2.3 tell us how all
orthogonal completions of the boundary may be constructed.
The Gram—Schmidt procedure produces one solution, and then
we can use Proposition 2.3 to explore the space. The set of real
unitary M x M matrices can be parameterized by a lattice of
M (M —1)/2 rotation elements [3]. Thus, if we search the set
of such matrices we examine all possible orthogonal boundary
terminations for a given value of d. This allows optimization
to preserve desirable features at the boundary.

Clearly, all of the analysis applied here to right-sided
sequences can be repeated for left-sided sequences, with
suitable alteration of the details. This gives rise to right
boundary filters associated with a particular filter set, such that
(17) (at the bottom of this page) is unitary. Recall that because
we consider orthogonal two-channel filter banks, there are no
symmetric solutions, and this gives that the right boundary
filters are necessarily different from the left boundary filters.

However, observe from Appendix A that the right boundary
filters are easily generated from the left boundary filters, so
separate calculation is not necessary. Note that Matlab routines
to calculate the boundary filters are available electronically
by anonymous ftp to ftp.ctr.columbia.edu in directory CTR-
Research/advent/public/software/matlab.

A. Optimization of the Boundary Filters

Some optimization of the boundary filters seems well worth-
while in practice. While the boundary filters are obviously
more constrained than the stationary filters, we can nonethe-
less improve the solution produced by the Gram-Schmidt
procedure quite easily.

If we choose d = 0, the boundary filters are as constrained
as possible. For example, in the case of length-4 filters there
is only a single boundary filter, and the solution is unique;
for length-6 filters there are two boundary filters but only
2(2—-1)/2 = 1 degree of freedom in the optimization of (16).
Choosing d = 2 or 4 can improve things a lot by giving extra
degrees of freedom. In Table I are tabulated the coefficients
of the boundary filters for the Daubechies length-4 filter with
d = 3, and in Table II those for the length-6 with d = 4.
Choosing d larger than zero has allowed improved frequency
selectivity in both cases.

We also note that if the stationary filters are minimum or
maximum phase the optimization is generally more difficult
than if mixed-phase filters are used. For this reason, in the
examples where the “least-asymmetric” Daubechies filters [19]
are different from the original filters [20] (this occurs for filter
length N > 8), we have computed the boundary filters for
the “least-asymmetric designs.” In Table III are those for the
length-8 case with d = 3, and in Table IV those for the
length-10 with d = 0.

0 0 A
0 0 0

Ag_1

. ) a7n
Ay - Ag_
Ry R, Ri_2
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TABLE IV
COEFFICIENTS OF THE BOUNDARY FILTERS FOR LENGTH-10 DAUBECHIES “LEAST
ASYMMETRIC” FILTERS, WITH d = 0. THERE ARE FOUR FILTERS OF LENGTH 8.

n | lo(n) h(n) {y(n) I3(n)

0 | -0.07618269 | -0.19420544 | 0.75241044 | -0.62388309
1| 0.18902576 | -0.03570002 | 0.63085303 | 0.75080127
2 | 0.71119528 | 0.64299764 | 0.07437575 | -0.20450737
3 | 0.64855872 | -0.71030563 | -0.17327283 | -0.05884156
4 10.01442059 | 0.20030225 | -0.01358764 | -0.02895042
5 | -0.17599791 | 0.03631470 | 0.01277259 | 0.03071044
6 | -0.02145668 | 0.02925804 | 0.00002524 | 0.00051507
7 1 0.01986744 | -0.02709098 | -0.00002337 | -0.00047692

III. AppLiCATION TO FINITE LENGTH SIGNALS

A very important consideration in the construction of any
subband coding scheme is that of how the borders should be
treated when a finite-length signal is processed. The standard
filter bank design assumes processing of infinite-length sig-
nals, and application to finite lengths will generally involve
either distortion at the boundary or the introduction of some
redundancy. A typical way around this difficulty has been to
treat the finite signal as a segment of an infinite one formed
by replicating boundary values or periodizing, or padding with
zeros. A study of a number of such methods was given in [21],
although some distortion remained at the boundary. A very
popular remedy, given in [22], is to take a symmetric periodic
extension of the signal and process with linear phase filters.
There is no distortion or redundancy in this case, but the filters
that can be used are restricted to be symmetric. A more recent
approach allows the use of general filters, but orthogonality is
not easily preserved [15].

In fact, it is immediately apparent that if, for a given filter
set, we embed using left and right boundary filters, we can get
a square unitary matrix for any size L = N+2(k—1)+d;+d,,
provided k > (N —2)/2. For example, see (18) (at the bottom
of this page). So we can use the already computed boundary
filters. We should note that generally L > N — 2, that is, the
boundary filters affect only a small portion of the signal, since
generally the stationary filters (of length N) will be chosen to
have support much less than that of the signal.

We could equivalently write this solution as the output of
a Gram-Schmidt procedure. As before, we can note that this
does not produce a unique result, but all of the solutions which
have the form given in (18) can be found by premultiplying
any solution by
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where U, and U,. are square unitary matrices of sizes (N —
2)/2 + d; and (N — 2)/2 + d,, respectively.

There are, however, solutions which do not have the form
in (18), for example, the circulant solution. This actually
corresponds to an output of the Gram-Schmidt procedure
where the input vectors have nonzero portions at both ends.
Other variations of this kind are found by premultiplying the
circulant solution by (19) as before. The circulant solution
to the finite length filter bank problem has been known for
some time, however it has not proved popular, since N — 2 of
the filters operate over noncontiguous data segments, and this
can result in spurious high frequency components due to the
inherent periodization of the signal.

Treatment of the boundaries for other filter banks can be
found in {27] and [28].

IV. CHaNGING FiLTER BANK TREES

A. Changing Topology

We have made extensive use of the operator, or matrix,
notation to illustrate the action of the two-channel filter bank.
The vector Hy - x represents the subsampled lowpass output
and H; - x the subsampled highpass output. Thus the single
two-channel division is written

yoi _|Ho| L _p.T.
L’l]i[Hl] x=P-T-x

and P is the orthogonal permutation matrix defined in Section
L

We can also write the action of trees based on two-channel
filter banks in this fashion. For example, the outputs of a
“discrete wavelet transform” are obtained by iterating along
the output of the subsampled lowpass filter, and leaving the
other branches alone. This can be written (in the case where
there are three stages)

Teomp - X = Diag{P - T,1, 1,1} - Diag{P - T,1} - P - T - x.

Clearly Tcomp is also unitary, and is again doubly infinite.
Any tree based on two-channel filter banks can be similarly
written as a cascade of such matrices. So this includes arbitrary
binary trees as well as discrete wavelet-packet operators [23].

The operators used need not be the doubly infinite ones
associated with stationary filter banks, however. We can use
any of the half-infinite or finite unitary matrices designed in

U 0 0 Sections II and III, provided we ensure that in the cascade
0 I 0 (19) we apply matrices only to compatible vectors. This gives an
0 0 U important gain in flexibility: we can add and prune stages
Lo L; --- Lg-_1 0 0 0 0 0 0 0 ]
0 A, A, . Ag., 0 0 0 0 0 0
0 0 Ay A e Ag_; O 0 0 0 0
T= |- . (18)
0 0 0 Ag A1 ce AK -1 0
Lo o 0 0 Ry R o Rg—1l
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(b)

Fig. 2. Splitting of the input signal x using orthogonal two-channel filter-
banks: (a) Single division; (b) iterated division.

from a filter bank tree if we use the left boundary filters
when we wish to add a stage, and the right boundary filters
when we wish to prune. In other words, using time-varying
filter banks, we can change the topology of the structure over
time. Consider the example of changing from the structure
of Fig. 2(a) to that of Fig. 2(b) or the reverse. This would
make it possible to improve the frequency resolution (going
from (a) to (b)) or the time resolution (from (b) to (a)) in a
time-varying fashion. An application is in the construction of
arbitrary tilings of the time-frequency plane [11], where we
trade time and frequency resolutions in an adaptive fashion in
different parts of the plane.

To achieve the transition from Fig. 2(a) to Fig. 2(b) we
would leave the output y;(n) alone, and process yo(n) with
a further two-channel division, beginning at ng. In operator
notation the operation on yq could be written

I 0
T1'Y0=[Ol T]'YU
™

where I; is a half-infinite identity matrix extending infinitely
to the left and T, is a half-infinite matrix containing a set

ho(0)  ho(1)  ho(2) ho(3) O 0 0 0 0 0 0
—ho(3) ho(2) —ho(1) ho(0) 0 0 0 0 0 0 0
0 0 10(0) ro(1) ro(2) 0 0 0 0 0 0
0 0 r1(0)  71(1) 71(2) 0 0 0 0 0 0 20)
0 0 0 0 0 (2 3 1) 5 0 0
0 0 0 0 0 L(2) WLB) LB) hL®G) o 0
0 0 0 0 0 90(0) go(1) 90(2) 90(3) go(4) 9o(5)
0 0 0 0 0 —g0(5) g9o(4) —90(3) 90(2) —g0(1) 90(0)
v, of boundary filters on the left, and then the filter impulse
H(2) *-@- responses extending infinitely to the right. Then the overall

operation can be expressed

_ (T O] (yo| _|T1 0| 5
=[5 4) o] =10 3] e
[T, o
_[O I:|»P-T-x.

Thus, using cascades that include half infinite or finite unitary
filter bank matrices, we can implement subband trees where
the tree structure can be changed at will over time [11].

B. Overlapping Transitions

We have already used the fact that we can change the filters
used in a subband analysis by using the appropriate boundary
filters for each of the sets of filters involved. In the case of
switching between two filter banks with filters of length Ny
and Ny, the duration of the transition is Ng—2+do+ N1 —2+
d,. Note that the boundary filters of the first filter set do not
overlap with those of the second. The situation is illustrated in
the following example matrix for the case of transition between
a length Ny = 4 and length N; = 6 filter bank. We chose
do = 1 and d; = 0, so that there are two boundary filters of
length 3, and two of length 4. See (20) (at the top of the page).

If, however, we premultiply by a matrix of the form

I 0 o0
0 Uy O 21)
0 0 I

while the result is still unitary, the structure of the boundary
is changed, so we end up with (22) (at the bottom of the next
page).

Since the rows in the center overlap with both filter sets,
we refer to the ¢;(n) as transition filters. These hold out the
possibility of a smoother transition between the two filter sets
than if the boundary filter approach is used.

A possible use is where we wish to change between filter
sets with different characteristics, for example between one
set that has good frequency selectivity and another that has
good step response. This idea was explored in [24], where it is
suggested that, for subband coding of images, filters with good
frequency selectivity should be used much of the time, but that,
whenever sharp edges appear, it is advantageous to switch to a
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set with good step response to avoid ringing distortion. Time-
varying IIR filters were used in [24], and the design approach
is completely different from that used here.

V. ReLaTioN BETWEEN DiSCRETE-TIME
AND CoNTINUOUS-TIME BASES

The discussion thus far has been concerned with the con-
struction of novel discrete-time bases which were based on
time-varying filter banks. In the non-time-varying case, how-
ever, it is well-known that there is a strong connection between
discrete-time and continuous-time bases, at least in the two-
channel case [20], [19], [25], [26], [4]. In fact, under certain
constraints, we can use the former to generate the latter. In
this section, we explore this relation for the time-varying bases
presented above. We will construct continuous-time bases by
taking the infinite iteration of discrete-time ones, much as was
done for the stationary case in [20].

We shall again rely heavily on the time-domain represen-
tation of the discrete-time bases. However, while in Sections
II and III we worked mostly with the matrix T, we will now
find it more convenient to explicitly refer to the lowpass and
highpass operators Hy and H; independently.

A. Boundary Functions

Just as in Section II, we will first consider the case where
only a single boundary is involved, since this simplifies the
analysis, and the other cases follow from it. Consider the
unitary half infinite matrix T which was constructed in (12), so
that its rows would form an orthonormal basis for the space
of right-sided sequences. In Section I we had no difficulty
defining Hyp and H; from T, since Hy contained the rows
with the lowpass filter impulse response, and H; contained
the rows with the highpass filter impulse response. Using the
operator T defined for right-sided sequences in (12), we again
assign to Hy the lowpass rows, and to H; the highpass ones,
but what of the boundary vector rows? We could assign all of
them to Hy, or all to Hj, or distribute them in our definition of
the two matrices. This is obviously just a question of definition;
any assignment of the boundary filters between the matrices
will still give Hy and H; that satisfy (4)-(6). From now on,
T and O are to be understood to represent half-infinite identity
and zero matrices.
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In Section II we showed that by choosing d appropriately
we could always have an even number of boundary filters, and
could choose U in (16) such that we optimized, for example,
the frequency selectivity. For this section, however, we will
assign all boundary vectors to Hy, even if they have been
optimized to give good lowpass/highpass responses. We will
take d =

Nonetheless, Hy represents the operation of the lowpass
filter, followed by a subsampler, and H that of the highpass,
but now H contains boundary filters and operates over right-
sided sequences. Thus, for example, in the N = 4 case with
d = 0, we have

(1) (2 0 0 0 0
ho(0) ho(1) ho(2) ho(3) O 0
0=1 0 0 ho(0) ho(1) ho(2) ho(3)
and
H, =
—ho(3) ho(2) —ho(1) ho(0) 0 0
0 0

—ho(3) ho(2) —ho(1) ho(0)

We will investigate the relation between discrete-time and
continuous-time bases by considering iterations of the lowpass
filter, just as in the non-time-varying case [20]. In operator no-
tation this amounts to studying the products H} for increasing
k.

Since the first few rows of Hy contain the boundary filters,
some of the first rows of HE will be affected by the boundary
filters also. However, as k — oo, only a small number of the
rows of HE are affected by the boundary filters. We show
this inductively. Note that if the ith row of H, has its first
nonzero element in column j where 7 > 4, then the ith row
of H depends only on the rows 4,4+ 1,i+ 2 -of H’C !
and not on the rows < . Hence, 1f the ith row of Ho
independent of the boundary filters, so is the ith row of H’c
The maximum number of rows of HE which are affected by
the boundary filters is thus easily calculated to be the least
i = i4g, such that its first nonzero element is in the jo = io
column position (and ig > N — 3). For the example of H,
in the N = 4 case above, clearly 79 = 2, since the second

_ T
ho(0)  ho(1) ho(2) ho(3) O 0 0 0 0 0
“ho(3) ho(2) —ho(1) ho(0) O 0 0 0 0 0
0 0 t0(0)  to(1) to(2) to(3) to(4) to(5)  to(6) 0 0
0 0 12(0)  ta(1) t2(2)  t2(3)  t2(4)  ta2(5)  t2(6) 0 0
0 0 ta0) ts(1) ta(2) 13(3) ts(4) ts(5) ta(6) O 0 .-
0 0 0 0 0 90(0)  g0(1) 90(2) 9(3) go(4) 9o(5) -%-
0 0 0 0 0 —go(5) go(4) —90(3) 90(2) —go(1) go(O)
L : ]
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row (we index the rows and columns from zero) has its first
nonzero coefficient in the second column. This maximum is
always achieved.

Since there are (N —2)/2 boundary filters, the (i + N —3)th
row of Hy has its first nonzero element in the 2ith column,
for « > N — 3. So the value of i is determined by

2ip— (N =3) >4
=>1i9>N-3.
Hence, when we consider the products HE, there will be
only N — 2 rows of HY affected by the boundary filters for
arbitrarily large k. Similarly, the sth row of H; has its first

nonzero element in column 2:. So the number of rows ¢; of
H; - Hf affected by the boundary filters is given by

211 >N -2
=iy > (N —2)/2.

Denote by L;,(z) the z-transform of the coefficients of the
ith row of (Hog)*

e o]
E HE(i,n)2~

Since the product HE corresponds to k-stages of filtering and
subsampling, it can now be shown that

k-1
Li(z) = L= 1=2*(i—io+1)gk/2 H HO(ZQP) i > .
p=0

(23)

The function L;, x(2) can easily be recognized as the z-
transform of the “graphical iteration” [20] to find the scaling
function ¢p(z), corresponding to the filters Hy(z) (see [4]).
That is, if we define from L;x(2) a continuous-time function

fP@) =HEGL,j) /2P <z <(G+1)/2¢ @4
it can be shown that for i > i, fi(k)(z) converges to the
scaling function @n(x + 39 — i) as k — oo (under some
constraints on hg(n) [20]).

Thus the rows ¢ > ¢, give a scheme that converge to the
functions ¢ (z + 49 — ¢). But what of the earlier rows? This
question is answered by the next proposition.

Proposition 5.1: Given ¢ > 0 when 0 < i < i,
we find that lim f*)(z) is a finite linear combination of
&n(2°2), ¢, (2P ), ... ¢n(2z) for = > €. As a consequence,
the sequences f;"’(z) for 0 < i < 4, have the same convergence
and continuity properties as those for ffk)(:ﬁ)i > ig.

Proof: Examine the rows 0 < 4 < i of HE

> Ho(i, myHS ™V (m, j)

m=0

HE(i,4) =
g—1

= ZHO (6, m)H§"™ (m, )

+ Z Ho (i, m)HS ™ (m. 5).

m=ig
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Now, using (24), and taking the limit as £ — oo, we find

0—1

F9(z) Z Ho(i,m) lim FE=1)(27)

lim
k—oc
. : (k—1)
+ E Ho(i,m) lim f3F="(22)
m=ig
i/2F <z < (j+1)/2*
ig—1

= Ho(i,m) lim f~")(2z)

+ Y Ho(i,m)¢n(2x + io — m)

m=ig

§/2* <z < (G+1)/2% i <do. (25)

Now suppose when m < ¢ that the fT(,f )(:c) with the largest
support is zero for x > zy. We know that xyp < N — 1 since
the f (:c) are zero outside of [0, N — 1] for ¢ > 4. Equation
(25) writes limg_,00 fz( (z) in terms of limg_ oo Flk= l)(2av)
and ¢,(2z + 19 — m). Note that for z > o we have it in
terms of ¢,(2z + 79 — m) only since all of the f(lC 1)(2913)
are zero for ¢ > zg. If we now write hmk_.,oofm )(21)
in terms of limg_o0 S~ 2)(4av) and ¢p(4z + i — m), we
get that the left hand side of (25) can be written in terms of
én(2z+i9g—m) and ¢y (4z+i9—m) for z > z¢/2. Continuing
in this manner, we can write limg_, o f,(,f )(a:) as a finite linear
combination of ¢p(2Pz +ig — m), ... ¢n(2x + ig — m),Va >
xo/2P. For p large enough we have /2P < ¢, thus, for
T > €, the limk.qoofi(k)(z),o < % < 1tg, is a finite linear
combination of ¢h(2"a: +i9—m),...¢n(2z + ig — m). Thus,
the limg oo fl (a:) 0 < i < i, have the same convergence
and continuity properties as the limy_, f; k) ( ), 4 > 4g. Thus,
they are continuous for any =z > ¢ > 0, since we assume that
the stationary function ¢ (x) is continuous. a

This is important, since it gives that away from the boundary
the boundary functions are just as smooth as the usual scaling
function ¢p(z). We define

¢:(z) = k]im fl(k)(z)

For 0 < 7 < 4y we call these functions the left boundary
scaling functions. Of course, for ¢ > i ¢;() = dr(x+ig—1).

Next, let us examine the properties of these functions.
Observe that by construction all rows of Hy are orthogonal.
Since HoHY = I gives that HE(HE)T = I, we also have
orthogonality of the rows of HE,Vk. Hence

(@), £ (@) = bnp
and in the limit
(¢n(f)»¢p(z)> = 571?

Again, following the analogy with the non-time-varying
case, to complement the scaling functions we define

s®) () = (H, - HE) (i, )

n,p € {0,1,2,}

n,p € {0,1,2,...}.

J/2F <z < (G+1)/2% (26)
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Fig. 3. The boundary scaling functions and wavelets for the Daubechies length-4 filter set. Recall that ig = 1,47 = 0, so there are two boundary

scaling functions and one boundary wavelet at each edge. (a) First left boundary scaling function ¢o(x); (b) second left boundary scaling function

#1(x); (c) first left boundary wavelet i (z); (d) first right boundary scaling function ¢8’ght(z); (e) second right boundary scaling function d)rl'ght(r);

() first right boundary wavelet 55" (x).

Using exactly the same analysis as above, we find that the boundary. The relation
sg )(ac) converge t0 Py (z + 11 — %) for i > 4g. For 0 <4 < g, (n(2), Yp(2)) = 6np n,p€{0,1,2,...}
the st® functi _
e s, (z) converge to functions ¥o(x), ¥1(x),- .- ¥:;,-1(%)s  follows from HoHI =L
which we call the left boundary wavelets. It is a direct Because of the fact that Proposition 2.2 guaranteed orthog-
consequence of Proposition 5.1 that these sequences converge, ~onality of all rows of T we have

and have the same smoothness as ¥n(z) away from the H,-H? =o0.



This guarantees
(£ (), 50 (x)) = Bnp
and in the limit

(fn(z), 1/’17(1")) = bnp

The two left boundary scaling functions and left boundary
wavelet are shown in Fig. 3(a)-(c). The two right bound-
ary scaling functions and left boundary wavelet are shown
in Fig. 3(d)—~(f). So the left boundary scaling functions and
wavelets are orthogonal, as expected. To show orthogonality
of the wavelets across scale, note that the wavelet at a scale k
is found from the rows of H; - HE. So to show orthogonality
of the wavelets at scales k£ and k — 1 we observe

H, -Hg - (H7)*"' - H] =H; -Hy-H
=0.

n,pe{0,1,2,..}

n,p € {0,1,2,...}.

27N
(28)
Thus
(sslk)(x),s;kfl)(z)) =0 n,pe{0,1,2,...}
and in the limit
(¥n(z),9¥p(22)) =0 n,pe {0,1,2,...}.

We have derived a set of boundary scaling functions and
wavelets orthogonal to the stationary, or interior, wavelets
on the half-line [0,00). To show that we actually have a
basis requires that the functions also form a complete set. To
show this we compare our constructon with that of Meyer
in [12]. In that construction Meyer essentially forms a basis
for [0,00) by starting with a compactly supported basis for
(=00, 00), retaining those functions that lie completely inside
[0,00), and applying Gram~Schmidt to those that lie on the
boundary. Our interior functions can thus be placed in one-
to-one correspondence with those of the Meyer construction,
since for ¢ > ip our ¢;(z) are unaffected by the boundary.
Interestingly, Meyer found that, if the basis functions are
of length N — 1, that while there are N — 2 wavelets and
N —2 scaling functions that straddle the boundary at any scale,
only (N — 2)/2 of the wavelets survive the Gram-Schmidt
procedure (the others become zero when projected on the
nullspace). Thus, we need N — 2 boundary scaling functions,
and (N — 2)/2 boundary wavelets at any scale. These are
exactly the numbers iy and ¢; that we found above. Hence,
our functions can be put into one-to-one correspondence with
those of the Meyer basis at any scale, and are complete. Note
that our functions are quite distinct from those of Meyer, in
that he essentially applied Gram—Schmidt to the continuous-
time basis, whereas we first derived a discrete-time basis and
then used an iterative scheme to converge to the continuous-
time basis. For example, our scheme does not suffer from the
numerical ill-conditioning observed in that of Meyer.

In the stationary case we get a wavelet basis for
(—o0,00) by using the multiresolution analysis scheme
where {$(27 ¥z — m),m € Z} is a basis for the space W
and the whole space (—o0,00) is made up as

U w

k=—00
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The basis is made up of the prototype wavelet )(z) taken at all
scales k, and at all shifts m. Because of the nesting property
of the multiresolution scheme we get that Vi, = Vi1 @ Wi 1.
From this, we see that we do not have to use all scales of the
wavelet, but can halt the analysis at some scale 7, and use the
scaling functions at scale j, and the wavelets at scales greater
than j to form the basis

V]U U Wi.
k=j+1

To get the basis for the half-line then note that we can write

o
left left
vity ) wit
k=j+1
Unlike the conventional mutiresolution analysis scheme, here
the functions in V}*" and W;*™ have support only on the half
line [0,00). Our basis for V™ is

(279/2¢,(2793),0 < i < i} U {2772 (2792 — m),
me {0,1,2---}} (29)

and for Wjef

{(27%/2;(27%2),0 < i < iy} U {27 %/ 2 (27 %2 — m),
me{0,1,2--}}. (30)

Together, (29) and (30), using k = j+ 1,5+ 2---, form the
basis for [0, 00).

Obviously, we construct right boundary scaling functions
and wavelets in the same manner, by iterating infinitely the
half-infinite matrix containing the right boundary filters. This
gives a basis for the half line Vj’rlght

(27972780 (2792, 0 < i < o} U {279/ 2n (2772 — m),
me{0,1,2--}} 3

ight
and for W;‘gh

{27 K/2yriEh 9=k 0 < i < i1} U {2772 (27F 2 — m),
m e {0,1,2---}}. (32)

Again

=S
‘/}rightu U W}:ight
k=j+1

gives the basis for the half-line [—oo, 1].

We would like to know if this can be used to generate a
basis for [0, 1]. It can readily be seen that, since we have
derived basis functions for the boundaries, if we use the left
boundary scaling functions and wavelets at the left boundary,
and the right boundary functions at the boundary, overall
orthogonality and completeness is maintained, provided that
there is no overlap between the boundary functions from the
two separate boundaries. Once overlap occurs orthogonality
will be lost, since the boundary functions at both edges were
designed to be orthogonal to the interior functions, but not
to the boundary functions from the other edge. Thus, until we
reach some very coarse scale J, there is no interaction between
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the boundaries. Thus, we can use the wavelets to take care of
all scales j < J and then use the scaling functions to take
care of the rest. Formally, define Vj‘“t to contain the interior
functions common to V}*® and V;igm along with the boundary
scaling functions

V-jint =‘/j]eft A ijigmu
{2792¢f (277 2),0 < i <o}V
{279/24r8h (979 ) 0 < i < g}

And similarly define
W]gnc zw}eft A W;ightU
{2792kt (2797),0 < i < i — 1}U
{279/ 2P (279 ), 0 < i < ix}

In this case our basis for the interval is, for sufficiently coarse
J

o0
right right
vigtty () wee
k=J+1

Since the ¢(z) and ¢(z) have support over an interval of at
most N — 1, it emerges that choosing J such that 27 > N
suffices to ensure that the left and right boundary functions
never overlap.

B. Properties of the Boundary Functions

Note that while we attempted to optimize the boundary
filters in the discrete-time case we did not make any cor-
responding effort in the continuous-time case. Our goal was
merely to demonstrate that discrete-time bases could be used to
generate continuous time ones, much as in the stationary case.

Recall that we chose d = 0, and assigned all boundary
filters to Hg. This led to a system which has much in common
with the continuous time bases derived for the half-line and
interval by Meyer [12]. A peculiarity of this scheme is clearly
that we have more boundary scaling functions than boundary
wavelets at each edge. This is, of course, a consequence of
the assignment of all boundary filters to Hy. Different choices
of d and different assignments of the boundary filters lead to
different schemes, and equality of the numbers of boundary
scaling functions and wavelets can be achieved. See, for
example, the cases generated in [13]. That work also explored
how the boundary filters could be designed to preserve the
polynomial-approximating properties of the stationary basis
functions. While the method used in this paper gives excellent
control over the discrete-time boundary filters, it is less clear
how to preserve desirable properties of the continuous-time
boundary functions.

C. Transition Functions

In Section IV-B we saw that transition filters, which over-
lapped with the filter impulse responses on both sides of
the transition, could be constructed from the boundary filters.
When changing between filter sets, one finds transition func-
tions as the iterates of transition filters. These can be derived
by defining Hy and H, to contain the even and odd-indexed
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Fig. 4. Transition functions for the transition between ¢o(t) and o3(t).
There are three orthogonal transition functions shown, which span the
null space, at one scale, between {d2(t + 1),02(t + 2),...} and
{oa(t — 2).03(t = 3),...}.

rows of the doubly infinite matrix in (22) and considering the
iterates of HE as before.

In a similar way, we can consider iterates of the matrix
containing the transition filters. For example, if Hy is the
doubly infinite matrix containing the even-indexed rows of
T from (22), then the rows of Hf give the iterates of the
graphical recursion that converges to ¢a(z—n) forrowsn < 0,
to ¢p3(x—n) forrowsn > 3, and to transition functions for n =
0,1,2. The transition functions are as smooth as the wavelets
away from the transition; however, at the single transition
point there is a possible discontinuity. This is illustrated in
Fig. 4, which shows the appropriate functions for the transition
between the ¢o(z) and @3(z) scaling functions.

VI. CONCLUSION

We have demonstrated how to change between orthogonal
filter banks in such a manner as to preserve orthogonality of the
system. The method presented is complete and constructive.
It allows us to construct time-varying orthogonal filter bank
decompositions, to use filter banks over finite length signals,
and to grow and prune an orthogonal tree on the fly. When
iterated these filter banks lead to time-varying wavelet bases,
and wavelet bases for interval regions.

APPENDIX A
Proor oF ProposiTiON A.1

Proposition A.1: The nullspace of the matrix Q in (10) is of
dimension (N — 2)/2.

Proof: Consider the finite matrix obtained by taking a
truncation at both boundaries (see (33) at the top of the next
page). If the matrix has 7 block rows then the dimension is
clearly 2r x 2(r + K — 1), so the nullspace is of dimension
9K —2 = N —2. Note that the top left corner of H, is identical
to that of Q. We will show that precisely half of the vectors
that span the nullspace of H; have support only on the right,
while the other half have support on the left.
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Ay Ay - Ap
0 Ay A

H = | . .
0 0
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0 0 0 0 0
A1 0 0O 0 0
(33)
0 Ay A A

Define J,, to be the antidiagonal exchange matrix, which
has alternating +1 and —1 on the principal antidiagonal. For
example

Because of the structure of the coefficients of H; (i.e.,
Hy(2) = 2= V=D Hy(—z"1), it is readily shown that

Jor - Ht - Jorr-1) = He. (34)

Suppose now that we have calculated one of the left boundary
vectors of Q. It is clear that if 1y = (Io(2),16(3),...lo(N —
1,0,-0), then

Ht'l():O.

That is, since the left boundary of H, and Q are the same,
we can use the same boundary filters. Observe now, however,
that because of (34)

H: Jopryr-1)-lo=0

$0 Jo(r4k—1) - lo is also a boundary filter, but it has support
only on the right. Similarly, any boundary vector of Q can
be used to generate two boundary vectors for H;, one with
support on the left and one with support on the right. There
must be precisely (N — 2)/2 boundary vectors for Q, since
this is half the nullspace of H;. O

APPENDIX B
ProOOF OF ProposiTION 2.2

Label the block rows and block columns of T and Q such
that T(0,0) = A and Q(0,0) = Ag. Then it is clear that
the blocks are given by

T(,))=A;; 0<j—-i<K-1 (35)
Q(Jj)=A;; 0<j—i<K-14j>0 (36
but are zero elsewhere.
Since we know that T is unitary
oo
TT . T(Zsj) = Z TT(7'7m)T(m7J) = ZA?—mAJ—m
= §_,L 37)

Note that we have the restrictions 0 < 7 —m < K — 1 and
0 < j—m < K — 1. Thus, the range of summation is

max(—i,—j) < —m < min(K —4,K —j)—1.  (38)

Now, since Q is defined by taking a truncation of T we can
use (37) to calculate the blocks of QT Q with the additional
restriction that m > 0 in the summation. This gives the
following: if min(K —¢:—1, K —j—1) > 0 then m > 0, thus
the additional inequality is satisfied provided

1> K -1

orj>K-—1. (3%

Thus, the blocks of Q7' Q are equal to the identity, except for
i< K—1and j < K —1. QTQ is thus equal to a half-
infinite identity matrix, except in the top corner. Clearly, then,
(I - QTQ), which is the orthogonal projection onto the span
of the rows of Q, is zero except in the top left corner. ]
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