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Abstract—We introduce a novel, adaptive image representation using
spatially varying wavelet packets (WP’s). Our adaptive representation
uses the fast double-tree algorithm introduced in [1] to optimize an
operational rate-distortion (R-D) cost function, as is appropriate for the
lossy image compression framework. This involves jointly determining
which filter bank tree (WP frequency decomposition) to use, and when
to change the filter bank tree (spatial segmentation). For optimality,
the spatial and frequency segmentations must be done jointly, not se-
quentially. Due to computational complexity constraints, we consider
quadtree spatial segmentations and binary WP frequency decompositions
(corresponding to two-channel filter banks) for application to image
coding. We present results verifying the usefulness and versatility of
this adaptive representation for image coding using both a first-order
entropy rate-measure-based coder as well as a powerful space-frequency
quantization-based (SFQ-based) wavelet coder introduced in [11].

I. INTRODUCTION

Linear transforms for signal decorrelation and energy compaction
have received considerable attention, especially with applica-
tions to image coding. As is well known, the signal-dependent
Karhunen-Loéve transform (KLT) provides an optimal basis for
block decorrelation but is computationally overwhelming, as it has no
specific structure that can be exploited. The computational advantage
of the signal-independent discrete cosine transform (DCT) basis,
and its good approximation to the KLT for the important class of
highly correlated Markov-1 sources [2], have led to its popularity in
image coding standards. These transforms, however, have a block
constraint and, thus, fail to exploit interblock correlations. One
solution is to use a set of overlapped bases (overlapped blocks), such
as the lapped orthogonal transform (LOT) [3]. Recent studies on filter
banks and wavelets have developed another flexible construction of
an orthonormal basis, which is free from the block constraint [4], [5].
In this context, subband decompositions offer nonblock-constrained
linear expansion bases using computationally efficient multirate filter
bank structures.

The wavelet transform [4], [5] is a popular transform due to
its ability to offer useful time-frequency localizations' [increasing
time resolution with higher frequencies, and increasing frequency
resolution with lower frequencies—see Fig. 1(a)]. However, if the
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1 We will use “time-frequency” and “space-frequency” synonymously where
there is no chance of confusion, though the former refers to temporally
described one-dimensional (1-D) signals like speech, while the latter to
spatially described two-dimensional (2-D) signais like images.
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Fig. 1. Typical members of WP family expressed in tree forms and in the
tiling of the time-frequency plane. (a) Wavelet decomposition. (b) Example
of arbitrary WP decomposition. (c) STFT-like decomposition. (d) Example of
joint time-frequency segmentation using the double-tree algorithm.

time-frequency characteristics of a given signal do not match the time-
frequency localizations offered by the wavelet, we have a mismatch,
which results in an inefficient decomposition. Arbitrary subband
decomposition trees, introduced in [6] as wavelet packets (WP’s)
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Fig. 2. Single-tree algorithm finds the best tree-structured WP basis for a given signal. (a) The algorithm starts from the full STFT-like tree, and prunes
back from the leaf nodes to the root node until the best pruned subtree is obtained. (b) At each node, the split-merge decision is made according to

the criterion: Prune, if J(parent node) < [J(childl) + J(child2)].

[see Fig. 1(b)], conceptually represent an elegant generalization of
wavelets, including both the full-band short-time Fourier transform-
like (STFT-like) tree [see Fig. 1(c)] as well as the wavelet tree in their
rich library of transforms. WP trees have several attractive features.
They are very efficiently implementable using filter bank structures.
They further offer a very large library of orthogonal linear expansions
(for example, a depth-5 two-dimensional (2-D) WP decomposition
has a library of 5.60 x 107® bases!), while, more importantly, lending
themselves to efficient fast algorithms to search this rich library for
the basis that performs best with respect to an arbitrary input signal.
A fast algorithm based on a somewhat ad hoc entropy criterion was
formulated in [6]. A recently introduced fast algorithm [7] called the
single-tree algorithm addresses this best WP basis selection in a lossy
compression framework (of minimizing coding distortion for a target
bit rate or vice versa). The optimized WP is thus a signal-dependent
basis like KLT, while being nonblock-oriented and computationally
attractive due to efficient subband filter bank structures.

Although WP’s offer considerably more flexibility than the wavelet
transform for dealing with classes of signals with diverse or un-
known time-frequency characteristics, they still represent “static”
time-frequency decompositions or nonadaptive frequency-tree split-
tings. A number of important signal classes (for applications like
speech, images, and video signals) that typically exhibit time-varying
characteristics are handled more efficiently if the frequency decom-
positions are less rigid. For image representations, adaptivity can
be obtained, for example, by performing a spatial segmentation and
adapting the WP frequency decomposition to each spatial segment.
This leads to spatially adaptive WP’s, i.e., WP decompositions that
adapt spatially in order to best match the image’s locally varying
space-frequency characteristics.

In this work, extending our work of [8], we address the question of
spatially varying WP’s for image coding applications. We will restrict
ourselves to tree structures in this search for spatial segmentation
(using quadtree structures) and for frequency decomposition (using
separable WP trees that are binary in each dimension), which lend

themselves to computationally efficient implementation algorithms.
Although we will consider separable two-channel filter banks in
this paper, the algorithm can be easily extended to arbitrary M-
channel banks as well. We show how a fast double-tree algorithm
(introduced in [1]) can be used to do this joint segmentation [see
Fig. 1(d)]. Experimental results showing the good performance of the
double tree algorithm on 1-D signals like speech and synthetic signals
were presented in [1]. Here, we present results of the application of
the double-tree algorithm to image coding. Our experimental results
include coders that use a first-order entropy-based rate measurement
(approximated well by arithmetic coding, for example), as well as
a more powerful space-frequency quantization-based (SFQ-based)
“zerotree” coder [11], whose performance is one of the best in the
published image coding literature.

It is important to point out that we are interested in an image- and
rate-adaptive representation, with the spatially adaptive double-tree
representation introduced here being a rich superset of the “static”
single-tree WP representation of [6] and [7]. The double tree therefore
reserves the right to degenerate to a single tree representation, if that
should be the optimal choice for a given image. Indeed, it can be
used as a tool to measure the “nonstationarity” in space-frequency
characterization of a test image, and has applications beyond coding,
which is, however, the thrust of this paper. We will see from our
experiments that the best double-tree decomposition of some test
images degenerates to a single tree, while for other images this is
not true. Furthermore, even for the same image, the space-frequency
tiling is rate sensitive, as is desirable for a compression application.
The diversity of this tool is, therefore, that it includes both the wavelet
and all the single tree representations as special cases, and performs
no worse than them, at the price of increased complexity. In practice,
it offers improved performance for a variety of tested images at a
variety of coding bit rates of interest.

The paper is organized as follows. Section II summarizes the
single-tree WP algorithm of [7] and addresses the double-tree al-
gorithm for finding the joint time and frequency decomposition.
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TABLE I
COMPARISON OF CODING RESULTS FOR DIFFERENT TREE ALGORITHMS (WAVELET TREE, SINGLE TREE, AND DOUBLE TREE) AT
VARIOUS BIT RATES FOR THE STANDARD 512 X 512 LENA, BARBARA, AND HOUSE IMAGES, WHEN A SINGLE UNIFORM
QUANTIZATION STEP SIZE Is USED FOR ALL HIGHPASS BANDS. (FIRST-ORDER ENTROPY IS USED AS RATE MEASURE)

Lena | Barbara | House Lena | Barbara | House Lena Barbara | House

Rate | PSNR PSNR PSNR Rate | PSNR PSNR PSNR Rate | PSNR PSNR PSNR

(b/p) (dB) (dB) (dB) (b/p) | (dB) (dB) (dB) (b/p) | (dB) (dB) (dB)

WT 1.0 39.24 34.35 36.11 0.5 36.16 29.67 31.83 0.25 33.04 26.02 28.88

ST 1.0 39.32 36.28 36.73 0.5 36.26 31.67 32.11 0.25 33.24 28.06 28.97

DT 1.0 39.36 36.55 37.84 0.5 36.29 31.73 32.49 0.25 33.40 28.16 28.97
TABLE I

COMPARISON OF CODING RESULTS FOR DIFFERENT TREE ALGORITHMS (WAVELET-TREE, SINGLE-TREE, AND DOUBLE-TREE) AT VARIOUS BIT
RATES FOR THE STANDARD 512 X 512 LENA, BARBARA, AND HOUSE IMAGES BY USING BIORTHOGONAL WAVELETS AND SPACE-FREQUENCY
QUANTIZATION (ALSO INCLUDED AS A REFERENCE THE PSNR NUMBERS OF SHAPIRO’S CODER IN [10] FOR BARBARA AND LENA)

1199

Lena | Barbara | House Lena | Barbara | House Lena | Barbara | House
Rate | PSNR [ PSNR | PSNR || Rate | PSNR [ PSNR | PSNR || Rate | PSNR | PSNR | PSNR
(b/p) | (dB) | (dB) (dB) |l (b/p) | (dB) (dB) | (dB) i (b/p) | (dB) (dB) (dB)
EZW[IO] 1.0 39.55 35.14 0.5 36.28 30.53 0.28 33.17 26.77
WT 1.0 40.51 36.94 37.61 0.5 37.31 31.16 32.80 0.25 34.24 27.12 29.70
ST 1.0 40.55 37.13 37.83 0.5 37.40 31.53 32.88 0.25 34.27 27.32 29.70
DT 1.0 40.55 37.58 38.01 0.5 37.40 32.13 33.00 0.25 34.27 27.85 29.70
Space-frequency- quantization is briefly summarized in Section II.
Section IV presents image coding applications using the double-tree
algorithm, addressing practical design considerations in coupling SFQ
with the double-tree image representation. Coding results with novel frequency decompositio
space-frequency tilings produced by the double-tree algorithm are
also shown.
II. FAST WP-BASED TREE ALGORITHMS
A. Single-Tree Algorithm
We provide a brief description of the single-tree algorithm, refer-
ring the reader to [7] for details. The aim of the algorithm is to ABCD
search for the best WP tree-structured decomposition for the whole "\ a
unsegmented signal from a library of bases. Toward that end, we need "~,§
two things: a cost function for basis comparison and a fast algorithm :
to do the search. For the first, we use the Lagrangian cost function i,
J = D + AR; the Lagrangian multiplier A here is an equalizing
factor that balances rate and distortion, as is desired for image coding A
applications. ® —
We now explain the fast single-tree algorithm for the case of 1- spatial segmentation \f\‘. o 2
D signals as shown in Fig. 2. We first grow the the full subband :,‘ . ¢
or STFT-like tree [see Fig. 2(a)] to some fixed depth for the whole '\,‘ . -
signal, and populate each tree node with the Lagrangian cost (for a "‘. L,

fixed ) of encoding each associated subband (or the original signal
for the root node). Note that multiple quantization modes can be
incorporated in the cost generation process, and the rate can be either
estimated from the first-order entropy of the quantization indexes or
obtained from the output bit rate of a real coder.

We then make a pruning decision at each parent node based on
the comparison of the cost of the parent and the summation of
the costs of its children. If the parent cost is smaller, we prune its
children; otherwise, we keep the children [see Fig. 2(b)]. Note that
the above tree-pruning process starts recursively from the leaf nodes,
and proceeds toward the root node. In the end, a pruned subtree is
obtained for a fixed A.

Finally, the best X is searched to meet a given target bit rate through
an iterative bisectional method, in which the searching interval of A
is successively shrunk at each iteration until convergence.

The single-tree algorithm can be summarized as follows.

¢ Grow a full STFT-like tree to some fixed depth.

Fig. 3. Full double tree of depth-2 for a 1-D signal. Dotted lines represent
spatial tree, where as solid lines represent frequency tree. To find the best
time segmentation and the best WP tree for each segment jointly, we first run
the single-tree algorithm for each possible dyadic time segment (the whole
signal, its halfs, quarters, and so on) to search for the best WP tree structure,
and record the Lagrangian cost associated with each WP tree. We then write
the above-collected optimal Lagrangian costs in a binary tree, and run the
single-tree algorithm one more time to find the best dyadic time-segmentation
tree.

» For a fixed A, populate each node of the full tree with the best
Lagrangian cost D 4+ AR.
* Prune the full tree recursively, starting from the leaf nodes.
 Tterate over A bisectionally to meet the target bit rate.
The name for this algorithm is derived from the fact that a single
(frequency) tree is optimally pruned. For a signal of size NN, the
computational complexity of this algorithm is O(N log V).
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Fig. 4. Examples of spatial coefficient tree for different WP decompositions.
(a) Wavelet case. (b) Arbitrary WP case. Arrows identify the parent-children
dependencies.

It is easy to extend the single tree from one-dimensional (1-D)
signals to 2-D images. It can be shown that the number of 2-D bases
S(d) searched by a single tree of depth-d is given the recursion
S(d) = [S(d — 1)]* + 1, with S(1) = 2. For example, a depth-
5 2-D WP decomposition has a library of 5.60 x 10" bases' We
implement the single-tree algorithm for 2-D images using the self-
referential quadtree data structures, and send the best pruned subtree
as side information to assist decoding.

B. Double-Tree Algorithm

The single tree effectively finds the best stationary frequency
decomposition (from the WP tiling library) for the unsegmented signal
taken as a whole. This is obviously limiting when the signal exhibits
changing time-frequency characteristics. The double-tree algorithm
[1] attempts to correct this shortcoming by addressing the joint
search for (binary) time segmentations of the signal, along with the
best WP frequency decompositions for each segment. The double
tree thus represents a hierarchical extension of the single tree to
accommodate binary time splits, so as to better address time-varying
signal characteristics using time-varying filter banks.

The basic idea of the algorithm is simple, and it is based on the
single-tree algorithm described earlier. We explain the double-tree
structure through a 1-D example in Fig. 3, while the extension of
the double-tree structure from 1-D signals to 2-D images is trivial.
Suppose the signal consists of four quarters labeled as A, B, C, and
D, respectively, in Fig. 3. We can grow a single tree on the whole
signal (ABCD), or we can first segment the signal into two halves
(AB and CD), and then grow individual single trees for each half,
or we can further segment the halves into quarters (A, B, C, and
D) before growing single trees for the quarters, and so on. In the
end, we have a redundant double-tree structure for representing the
original signal, allowing both tree-structured time segmentations and
frequency decompositions.

To find the best time-segmentation and the best WP tree for
cach segment jointly, we first run the single-tree algorithm for each
possible dyadic time segment (the whole signal, its halfs, quarters,
and so on) to search for the best WP tree structure, and record
the Lagrangian cost associated with each WP tree. We then write
the above-collected optimal Lagrangian costs in a binary tree, and
run the single-tree algorithm one more time to find the best dyadic
time-segmentation tree.

The name here is derived from the two kinds of trees that
are pruned, frequency trees (corresponding to the solid-line trees
of Fig. 3) associated with each dyadic segment of the original
signal, and temporal tree (corresponding to the dashed-line tree of
Fig. 3) associated with the time segmentations of the signal. The
computational complexity of the double-tree algorithm can be shown
to be of O(N(log N)?) for a size N signal.
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Fig. 5. Coding results for the standard 512 x 512 Barbara and House
images. (a) Original Barbara and House images. (Fig. 5 continued on next

page.)

It can be shown that the number of 2-D bases D(d) searched
by a double tree of depth-d is given by the recursion D(d) =
[D(d — D]* + S(d) — S(d — 1) + 1, with D(1) = 2, where S(d)
is the number of bases searched by a single tree of depth-d. For
example, a depth-5 2-D double-tree decomposition has a library of
6.5 % 10°° bases. It is also obvious from Fig. 3 that the double tree is
a generalization of the single tree (our experiment shows that the best
double-tree decomposition of the Lena image indeed degenerates to
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Fig. 5.
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(Continued.) (b) Double-tree segmentation and tiling for House at 1.0 b/pixel: Dark lines represent spatial segments; light lines the frequency

boundaries of the WP tree. Note that the upper left corners are the lowpass bands in each spatial segment. The maximum double-tree depth is 5, and 341
b are sent as side information to convey the tiling information. (Fig. 5(b) continued on next page).

a single tree, highlighting that the space-frequency representation of
the Lena image is stationary and is well captured by just a WP basis).

We now address the issue of side information for informing the
decoder about the winning basis for the 2-D image case: for a double
tree of maximum depth-d, we need E::f"l 4% b, with each bit
specifying the spatial/frequency split decision at each node of the
best double tree. In our experiments of Section III, where we have
a depth-5 decomposition, for 512 x 512 images, this ‘amounts to a

total of 341 b, or 0.0013 b/pixel.

III. EXPERIMENTS

We have implemented the double-tree algorithm and applied it
to the compression of images. The development of the algorithm
assumed orthogonal sets of filters to ensure that quantization error

(MSE) is transparent to the transform. In practice, many good
linear phase biorthogonal filter sets, which are more desirable from
a perceptual standpoint, are very close to orthogonal, so that the
error introduced in the coefficient domain is very close to the final
reconstruction error. We carried out extensive experiments, using
both orthogonal and linear phase biorthogonal filters. For the results
presented here, we use the 7-9 tap Daubechies biorthogonal filter set
with symmetric extensions over the boundaries [9].

A. Double-Tree Coding Using First-Order Entropy

We compare results using the same quantization strategies for all
the expansions: the wavelet tree, the single tree, and the double
tree. We use MSE and first-order entropy for distortion and rate,
respectively, and use distortion plus A rate as our cost. The first-
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Fig. 5.

order entropy rate measure can be achieved to a good approximation
by using, for example, arithmetic coding of the quantization indexes.
Table I gives the results when a single uniform scalar quantizer
(picked optimally from a finite set of admissible quantizer choices)
was used for all bands, with the picked quantization step size
obviously depending on the target bit rate. As can be seen, the
evolution in performance from the wavelet tree to the single tree
to the double tree is strictly nondecreasing, as expected, with the
relative gains being image- and rate-dependent. For the House image
at 1 b/pixel, for example, the double tree achieves a gain of 1.7 dB
and 1.1 dB in peak signal-to-noise ratio (PSNR) over the wavelet tree
and the best single tree, respectively.

B. Double-Tree Coding Using Space-Frequency Quantization

In addition to the scalar quantization and first-order entropy-based
coder, we tested the double-tree algorithm on a “state-of-the-art”

(®
(Continued.) (b) (Fig. 5 continued on next page.)

coder that uses a more powerful quantization strategy, and has coding
performance ranking among the best in the literature. We provide a
brief summary of its operation here, while referring the reader to
[11] and [12] for details.

Brief Summary of SFQ-Based Coding: The state of the art in
wavelet-based image coding has evolved from Shapiro’s embedded
zerotree wavelet coder [10], which applies the concept of zerotree
quantization to exploit the space-frequency characterization of the
wavelet transform. A powerful wavelet-based image coder employing
space-frequency quantization (SFQ) was introduced in [11] with
performance ranking among the best in the published literature.
The SFQ coder exploits the space-frequency characterization of the
wavelet representation. Like Shapiro’s coder [10], it is built on
the zerotree spatial data structure, i.e., it treats a wavelet image
decomposition as a tree-structured representation, where a spatial
coefficient tree is defined as the set of coefficients from all subbands
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that correspond to the same spatial region of the image [see Fig. 4(a)].
Unlike Shapiro’s coder, however, zerotree quantization in the SFQ
coder is optimized in a rate-distortion sense. Two types of quantizers
are applied to quantize the wavelet coefficients in SFQ: zerotree
quantization of spatial coefficient trees and scalar quantization of
frequency bands. Zerotree quantization results in a spatial subset of
coefficients being “thrown out,” or pruned, while scalar quantization
addresses how to quantize the coefficients that survive the zerotree
quantization operation. These two modes are coupled in the SFQ
coder, which optimizes the tradeoff, in a rate-distortion framework,
between the (tree-structured) subset of coefficients to throw away
and the fidelity with which to represent the surviving coefficients.
The optimally quantized wavelet coefficients are entropy-coded using
adaptive arithmetic coding. See [11] for details.

While the SFQ coder of [11] was originally designed for a wavelet
transform, it has been extended to an arbitrary WP transform in [12].
The basic idea is again to jointly match the spatial and frequency
quantization modes of the coder to the space-frequency representation
of the (arbitrary) WP transform. This is achieved by generalizing the
definition of the spatial coefficient tree from WP to WP transforms,
as shown in Fig. 4. This leads to considerable improvement in coding
performance for the class of images whose space-frequency energy
distribution is mismatched to the space-frequency tiling of the wavelet
transform.

SFQ-Based Coder for the Double-Tree Algorithm: Since  the
double-tree algorithm produces a WP representation over separate
spatial segments, the coder of [12] can be applied individually to each
of the spatial segments found from the double-tree algorithm. This
results in spatially adaptive space-frequency tilings that are matched
to the image being coded. An ideal way to build a combined double
tree and SFQ coder is to have a joint transform and quantizer design,
where the SFQ quantizer is optimized for each possible candidate
double-tree transformation. However, given the large number of
double-tree transformations in the library (6.5 x 10°® for a depth-5
2-D decomposition), such an approach is not feasible. For this reason,
we decouple the transform and quantizer design in our real coder
and optimize double-tree transform and SFQ sequentially. We first
search the library of possible transformations using the double-tree
algorithm, using MSE and first-order entropy in the computation of
costs. After the best basis has been found, we apply the SFQ scheme
on that winning basis. If there is spatial segmentation in the best
double-tree structure, SFQ coders are designed individually for each
image segment, with the bit rate of each segment determined by the
double-tree algorithm. Coding results for the standard 512 x 512
Lena, Barbara, and House images are tabulated in Table II. Note
that the coding bit rates listed in Table II reflect the actual output
bitstream of the arithmetic coder, which is part of the SFQ codec
[11] (used as a “generic” high-performance wavelet codec to test
our algorithm). The original Barbara and House images are shown
in Fig. 5(a), the double-tree segmentation and tiling for House at 1
b/pixel in Fig. 5(b), and decoded Barbara and House images at 1
b/pixel in Fig. 5(c).

From the coding results in Table II, we see that the combined
double-tree and SFQ coder gives better results than the single-tree-
based SFQ for the Barbara image (0.4 to 0.6 dB at comparable bit
rates). For the House image, the real coding gain of using the double-
tree decomposition is about 0.2 dB over the single tree at moderate bit
rates; at 0.25 b/pixel both the best double-tree and single-tree splits
become a wavelet tree. For the Lena image, the wavelet basis turns
out to be near optimal, and the best double-tree split degenerates to
a single tree. In another words, there is no spatial segmentation in
the best double-tree split of the Lena image. An explanation for the
relatively smaller improvement from the single tree to the double tree
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Fig. 5. (Continued.) (c) Decoded Barbara and House images, bit rate =1.0
b/pixel. PSNR = 37.58 dB for Barbara; PSNR = 38.01 dB for House.

when using the SFQ coder versus using the simpler entropy-based
coder of Section III-A is that some of the spatial adaptivity of the
double-tree algorithm is already being exploited by the sophisticated
spatial quantization mode of the SFQ coder (note that the SFQ
coder achieves higher PSNR’s at comparable bit rates than does the
entropy-based coder).

IV. DiIscUSSION AND CONCLUSION

A new adaptive image representation framework using spatially
varying WP’s is introduced in this paper via a double-tree structure
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for image coding. This algorithm jointly searches for the best spa-
tial segmentation and the best frequency decomposition to use for
each segment. The main advantage of these adaptive representations
is their versatility: They can adapt to a wide variety of image
classes having varying space-frequency characteristics by searching
efficiently through a very large library of tree-structured bases.
Numerically, on a SPARC 5, calculating a 4-level wavelet transform
of a 512 x 512 image took 1.08 s, while calculating the best single-
tree basis (from among 4.9 x 10'° bases) took 5.65 s, and calculating
the best double-tree basis (from among 5.6 x 107® bases) took 21.18 s.

REFERENCES

[1] C. Herley, J. Kovacevic, K. Ramchandran, and M. Vetterli, “Tilings of
time-frequency plane: Construction of arbitrary orthogonal bases and
fast tiling algorithms,” IEEE Trans. Signal Processing, vol. 41, no. 12,
pp. 3341-3360, Dec. 1993.

[21 A. K. Jain, Fundamentals of Digital Image Processing. Englewood
Cliffs, NJ: Prentice Hall, 1989.

[3]1 H. S. Malvar, Signal Processing With Lapped Transforms.

MA: Artech, 1992.

I. Daubechies, “Orthonormal bases of compactly supported wavelets,”

Commun. Pure Appl. Math., vol. XLI, pp. 909-996, 1988.

[5] S. G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet decomposition,” IEEE Trans. Pattern Anal. Machine Intell., vol.
11, pp. 674-693, 1989.

[6] R. Coifman and V. Wickerhauser, “Entropy-based algorithms for best
basis selection,” IEEE Trans. Inform. Theory, vol. 38, pp. 713718, Mar.
1992,

[7] K. Ramchandran and M. Vetterli, “Best wavelet packet bases in a rate-
distortion sense,” IEEE Trans. Image Processing, vol. 2, no. 2, pp.
160-176, Apr. 1993.

[8] K. Asai, K. Ramchandran, and M. Vetterli, “Image representation using
time-varying wavelet packets, spatial segmentation and quantization,”
in Proc. CISS. Baltimore, MD: Johns Hopkins Univ., Mar. 1993.

[9]1 M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding

using wavelet transform,” IEEE Trans. Image Processing, vol. 1, no. 2,

pp. 205-221, Apr. 1992.

J. M. Shapiro, “Embedded image coding using zerotrees of wavelet

coefficients,” IEEE Trans. Signal Processing, vol. 41, no. 12, pp.

3445-3463, Dec. 1993.

Z. Xiong, K. Ramchandran, and M. Orchard, “Joint optimization of

scalar and tree-structured quantization of wavelet image decomposition,”

in Proc. Asilomar Conf., Pacific Grove, CA, Nov. 1993, vol. 2, pp.

891-895.

Z. Xiong, K. Ramchandran, M. T. Orchard, and K. Asai, “Wavelet

packets-based image coding using joint space-frequency quantization,”

in Proc. ICIP’94, Austin, TX, Nov. 1994, vol. III, pp. 324-328.

Norwood,

[4

[10]

[11]

[12]

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5, NO. 7, JULY 1996

Cache Write Generate for Parallel Image
Processing on Shared Memory Architectures

Craig M. Wittenbrink, Arun K. Somani, and Chung-Ho Chen

Abstract—We investigate cache write generate, our cache mode inven-
tion. We demonstrate that for parallel image processing applications, the
new mode improves main memory bandwidth, CPU efficiency, cache hits,
and cache latency. We use register level simulations validated by the UW-
Proteus system. Many memory, cache, and processor configurations are
evaluated.

1. INTRODUCTION

Cache memories play an important role in achieving higher perfor-
mance in modern uni- and multiprocessors. When a high percentage
of reads and writes are made to the cache, the effective bandwidth
of the memory is that of the cache. Many prior studies have focused
on read caching [7]. Here, we focus on write caching. Write buffers
[7], write allocate [4], and write through [1], [5] do not address the
removal of unnecessary traffic. To prevent unnecessary reads, many
systems provide software control of cache write updating [6]. Word
validate has been used by [1], (4], and [5], and write allocate has
been used by [4].

C. M. Wittenbrink, in [9], investigated the effect of directly
updating the line when it was known in advance that the line is
to be written by using trace analysis. In this paper, we further
investigate the cache write technique cache write generate. Cache
write generate directly updates the cache on write misses, without
reading from memory. We show that for a class of applications, the
overall performance improvement is significant. We performed the
analysis using hardware description language (HDL) simulations and
performance measurements of each cache write technique.

Cache write generate (CWQ) is defined as cache write validation
on a write miss. The cache line is updated with the write and the
cache line tag is modified to the address of the write. Writes that
benefit from CWG are computed or initialized by the processor.
Examples include dynamically allocated memories, stack segments,
static memory segments, and temporary buffers. In image processing
and vision applications [3], [8], these memory areas are easy to
identify through explicit declaration or by the compiler. CWG is
done only on memory areas denoted as generate, and a cache line in
a generate memory area may lose its CWG ability to insure memory
consistency. We have developed several schemes to provide self
consistency, but do not discuss them due to space constraints. See
our paper [10] for details.

II. SIMULATION MODELS AND HARDWARE SYSTEM

A. Cache Modes, Sizes, and Memory Timings

We compare the relative efficiency of the cache write generate
policy to existing write caching controls, using single and multipro-

Manuscript received February 18, 1995; revised September 27, 1995. This
work was supported by the Navy Coastal Systems Center. The associate editor
coordinating the review of this correspondence and approving it for publication
was Prof. A. M. Tekalp.

The authors are with the Department of Electrical Engineering, University
of Washington, Seattle, WA 98195 USA.

C. M. Wittenbrink is currently at the Baskin Center for Computer En-
gineering, University of California, Santa Cruz, CA 95064 USA (e-mail:
craig@cse.ucsc.edu).

Publisher Item Identifier S 1057-7149(96)03172-7.

1057-7149/96$05.00 © 1996 IEEE



