814 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 8, AUGUST 1996

Compact Representations of Videos Through
Dominant and Multiple Motion Estimation

Harpreet S. Sawhney and Serge Ayer

Abstract—An explosion of on-line image and video data in digital form is already well underway. With the exponential rise in
interactive information exploration and dissemination through the World-Wide Web (WWW), the major inhibitors of rapid access to
on-line video data are costs and management of capture and storage, lack of real-time delivery, and nonavailability of content-based
intelligent search and indexing techniques. The solutions for capture, storage, and delivery may be on the horizon or a little beyond.
However, even with rapid delivery, the lack of efficient authoring and querying tools for visual content-based indexing may still inhibit
as widespread a use of video information as that of text and traditional tabular data is currently.

In order to be able to nonlinearly browse and index into videos through visuai content, it is necessary to develop authoring tools
that can automatically separate moving objects and significant components of the scene, and represent these in a compact form.
Given that video data comes in torrents—almost a megabyte every 30th of a second—it will be highly inefficient to search for objects
and scenes in every frame of a video. In this paper, we present techniques to automatically derive compact representations of

scenes and objects from the motion information.

Image motion is a significant cue in videos for the separation of scenes into their significant components and for the separation of
moving objects. Motion analysis is useful in capturing the visual content of videos for indexing and browsing in two different ways.
First, separation of the static scene from moving objects can be accomplished by employing dominant 2D/3D motion estimation
methods. Alternatively, if the goal is to be able to represent the fixed scene too as a composition of significant structures and
objects, then simultaneous multiple motion methods might be more appropriate. In either case, view-based summarized
representations of the scene can be created by video compositing/mosaicing based on the estimated motions. We present robust
algorithms for both kinds of representations: 1) dominant motion estimation based techniques which exploit a fairly common
occurrence in videos that a mostly fixed background (scene) is imaged with or without independently moving objects, and 2)
simultaneous multiple motion estimation and representation of motion video using /ayered representations. Ample examples of the
representations achieved by each method are included in the paper.

Index Terms—Compact video representations, video motion analysis, video mosaics, video indexing, layered motion
representations, motion segmentation, robust estimation, mixture models, expectation-maximization (EM) algorithm.

1 INTRODUCTION

N explosion of on-line image and video data in digital
form is already well underway. With the exponential
rise in interactive information exploration and dissemina-
tion through the World-Wide Web (WWW), the major in-
hibitors of rapid access to on-line video data are costs and
management of capture and storage, lack of real-time deliv-
ery, and non-availability of content-based intelligent search
and indexing techniques. The solutions for capture, storage
and delivery maybe on the horizon or a little beyond. How-
ever, even with rapid delivery, the lack of efficient author-
ing and querying tools for visual content-based indexing
may still inhibit as widespread a use of video information
as that of text and traditional tabular data is currently.
There are two important problem domains in video in-
dexing and retrieval where automated video analysis tech-
niques play a role. One domain deals with the creation of
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compact visual representations of numerous frames in vid-
eos through segmentation of scenes, significant structures
in scenes and moving objects. By exploiting the redundancy
in contiguous frames in videos, and describing the change
between frames using a relatively small number of
parametric models, visual representations of scenes and
objects can be created. The second important domain of
problems is in search, recognition and indexing of objects
and scenes through queries with visual attributes. The re-
quirement here is to create compact (not necessarily visual)
representations in terms of collections of multidimensional
features so that objects and scenes can be searched for and
recognized efficiently through indexing. The output of vis-
ual representations from the first problem domain can help
considerably the process of creation of indexable represen-
tations by transforming the raw frames of pixels data into a
more manageable form. This paper focuses on techniques
for compact visual video representations but does not deal
with the search and recognition issues directly.

One important step towards automatic annotation and
visual content-based index generation for video data is its
representation in a compact form so that browsing and
search may be made efficient. Videos may be queried and
browsed based on their static and dynamic pictorial con-
tent. The pictorial content of videos can be succinctly cap-
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tured by creating static and dynamic representations of the
fixed scene (the background), the moving objects and the
camera operations/motion. In a future system, these repre-
sentations should be able to answer queries like “give me
shots' of a panning camera that capture views of the
Golden Gate bridge and the San Francisco skyline, in which
a ship was crossing under the bridge!” Using ideas from
static image querying systems like QBIC (Query-By-Image-
Content) [29] and Photobook [32], it is conceivable that this
query may be transformed into a purely syntactic specifica-
tion in terms of a painted example of the scene showing the
approximate colors [3], sketches [17], and motions [15].
However, in spite of this simplification, matching the
“cartoon” version of the query with the actual video data
may still be a daunting task if the query needs to be
matched to almost every frame. Therefore, representations
of appearance, location, and motion of significant scene
structures and objects need to be created at the time of da-
tabase creation, and stored in indexable structures so that
complex visual queries may be answered. Furthermore, a
visually compact and indexed representation of videos will
take video browsing beyond the confines of VCR-like linear
control functions and frame-at-a-time narrow field of view
displays.

The simplest way to represent videos for browsing and
querying is through key frames where a key frame is a rep-
resentative frame in a shot, typically the first, middle, last
frame, or a combination of these. In a preliminary demon-
stration of video querying by visual content in the spirit of
the QBIC system, we have used key frames as static image
representations of the video on which QBIC-like queries
can be performed [11]. However, for video representation,
this is just the beginning. The dynamic information con-
tained in videos due to camera and object motion can be
exploited to separate the fixed scene from moving objects,
and to delineate significant structures in the scene that may
be semantically important. In this paper, we present tech-
niques for automatic decomposition of a video sequence
into multiple motion models and their layers of supports,
which together constitute a compact description of signifi-
cant scene structures. This includes separation of the domi-
nant background scene from moving objects (the fore-
ground), and representation of the scene and moving ob-
jects into multiple layers of motion and spatial support.
Furthermore, it is demonstrated how motion-based decom-
position of videos can be used to create compact views of
numerous frames in a shot by video mosaicing [19], [23],
[36], [40], [41], [42]. Once a single image or a few images,
that represent all of the significant scene that has been seen
in the shot, are authentically created, and the various sig-
nificant scene components and objects have been separated,
these representations can be used for ‘querying based on
static image features like color, texture and shape of ob-
jects/surfaces and scenes [29], [32], as well as for camera
operation based querying. Furthermore, the created repre-
sentations are an effective tool for video browsing since the
visual content of complete shots is compactly represented.

1. A shot is a contiguous set of frames in a video clip depicting a possibly
smoothly changing scene captured using a single kind of camera operation
or motion.

In order to compactly represent the visual content of
videos, it is necessary to describe the image motion of all
the frames in terms of motions of a relatively small number
of patches, each of which can be described by low dimen-
sional parametric motion models. In many real scenarios, it
is adequate to describe the static scene, whose image mo-
tion is only due to camera motion, using a single global
2D /3D motion model called the dominant motion. Domi-
nant 2D models suffice when camera centers do not move
appreciably or when the image motion can be well ap-
proximated by that of a single plane, and 3D models are
necessary when there is significant residual motion parallax
beyond a global 2D model. Any departures from the single
2D/3D model, for instance moving objects, are discovered
as outliers. We formulate the problem of dominant motion
computation as that of model-based robust maximum like-
lihood estimation (M-estimation) with direct, multi-
resolution methods. Two-dimensional (2D) affine and pro-
jective parametric models in a robust framework have been
used in the past [6], [8], [31] for this problem. We extend
this approach along three significant directions. First, our
algorithm employs an automatic computation of a scale pa-
rameter that is crucial in rejecting the non-dominant compo-
nents as outliers, in contrast with ad-hoc thresholds [20] or
predefined schedules for scales [8], [31] used by researchers
earlier. Second, in addition to 2D affine and plane projec-
tive models for describing image motion using direct meth-
ods, we also employ a true 3D model of motion and scene
structure imaged with uncalibrated cameras. This model
parameterizes the image motion as that due to a planar
component and a parallax component [22], [35], [38]. Fi-
nally, the effectiveness of image warping over a video se-
quence using the computed transformation parameters is
demonstrated through image registration and mosaicing
for both the 2D and 3D models.

Multiple motion models and their support layers can be
sequentially fleshed out by applying dominant motion es-
timation repeatedly. However, the sequential method may
not be adequate when no single dominant 2D model is pre-
sent, for instance in the scene in Fig. 9, and when a 3D
model does not afford a compact representation due to ex-
plicit representation of depth. Therefore, we present a
method for the simultaneous estimation of multiple 2D
parametric models and their layers of support, called a lay-
ered representation.” The three major issues in layered mo-
tion representation are:

1) how many motion models adequately describe image
motion,

2) what are the motion model parameters, and

3) what is the spatial support layer for each motion
model.

We formulate the multiple model estimation problem as
robust maximume-likelihood estimation (MLE) of mixture
model parameters and of the layers of support represented
as ownership probabilities. The estimation uses a modified

2. In [1], a layered representation is used to make the ordinal relations
amongst surfaces and objects explicit. Our use of the term implies regions
of support and is similar to the one used in [10]. If motion is to be used to
derive the ordinal layers, then an algorithm like ours provides a key com-
ponent from which the ordinal relations can be derived.
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Expectation-Maximization (EM) algorithm with the domi-
nant motion estimation as one of its components. The ade-
quate number of models is automatically decided using the
minimum description length (MDL) principle that mini-
mizes the encoding length of the model parameters and of
the MLE residuals. Furthermore, outliers, that are a prob-
lem in a mixture model formulation also are detected
within the EM-MDL framework.

In summary, we comprehensively address the problem
of visual scene representations in videos using motion
analysis. In situations where global 2D /3D models are ade-
quate in capturing the image motion over time, the domi-
nant motion approach provides an automatic method for
computing the model parameters and creating expanded-
view visual scene representations. In order to represent the
scene as seen in a video as a collection of “objects” with
their appearances, it is necessary to derive their layers of
support automatically. Our solution combines the advan-
tages of direct motion estimation methods, robust estima-
tion, MDL coding, and mixture of models. We demonstrate
that a formulation and an algorithm that integrates all these
aspects leads to an automatic layered representation for a
variety of videos without any ad-hoc parameters.

2 BACKGROUND

There are two major approaches to the problem of separat-
ing image sequences into multiple significant scene struc-
tures and objects based on motion. One set solves the
problem by letting multiple models simultaneously compete
for the description of the individual motion measurements,
and in the second set, multiple models are fleshed out se-
quentially by solving for a dominant model at each stage.
Model based motion analysis may involve 2D and/or 3D
models. Once the image motion models and their layers of
support have been computed, video mosaics may be cre-
ated to compactly represent numerous frames in a shot us-
ing one or only few frames. We now review related work
for the problems of simultaneous multiple motion and
dominant motion estimation, 3D models in motion analysis,
and video mosaicing.

2.1 Simultaneous Multiple Motion Estimation

Wang and Adelson [43] addressed the problem as the com-
putation of 2D affine motion models and their binary sup-
port layers. The ordering in depth is also computed over
multiple frames. The essential idea in their work is that of
iteratively clustering motion models computed using pre-
computed dense optical flow. The main drawbacks of the
above approach are its use of optical flow as an input rep-
resentation and clustering in the parameter space. In com-
puting optical flow, algorithms generally make smoothness
assumptions that can distort the structure of image motion.
Second, clustering in the parameter space is generally sen-
sitive to the number of clusters specified. Decisions made
for clustering parameter vectors based on distances in the
parameter space can lead to clustered parameters that do
not describe some valid data well.

Darrell and Pentland too have addressed the problem of
multiple motions and support layers estimation within a

robust M-estimation and MDL framework [10]. However,
their focus has been on correctly estimating the number of
models for a sequence rather than on the accuracy and ap-
propriateness of a particular model. Therefore, they have
not touched upon the important problems of precision in
layer ownerships, accuracy of the motion models, and
automatically labeling as outliers those pixels that are not
described well by any of the models. They use a truncated
quadratic optimization function, that reduces the weight of
residuals beyond a threshold to zero. However, the impor-
tant problem of automatically estimating the threshold (or
the scale parameter of the influence function [25]) for the
truncated quadratic is not addressed. Furthermore, it is
important to detect outliers that are atypical of the complete
mixture of models, otherwise the multiple model formula-
tion too may suffer severely from the presence of outliers
that may skew the motion and layer estimates.

Hsu et al. [18] in their work on optical flow computation
using motion layers have laid out only a qualitative frame-
work. Their algorithms are similar to the ones described
above. Our work formally addresses all the issues dis-
cussed by them. MacLean et al. [26] addressed the problem
of multiple 3D motion segmentation and estimation using
the EM algorithm. However, they did not address the
problem of automatic determination of the appropriate
number of models. Their results were shown using 2D af-
fine flow computed in hand-selected regions. Jepson and
Black [21] applied the EM algorithm using the mixture
model formulation to compute optical flow without esti-
mating the number of models.

2.2 Dominant Motion Estimation

Sequential application of dominant motion estimation
methods have been proposed for extracting multiple mo-
tions and layers. However, with only few exceptions, al-
most all the methods have not demonstrated convincingly a
complete multiple motion representation of a video using
the dominant motion methods. Of course, as pointed earlier
these methods are useful in their own right when the sepa-
ration of the dominant component itself is useful.

Irani et al. [20] addressed the problem of detecting and
tracking multiple moving objects over image sequences
through least-squares dominant motion estimation. They
do not have any mechanism for automatically estimating
the scale parameter of residual errors. Instead, to decide if
the point belongs to the model, they apply an absolute
threshold to a motion measure defined using normal flow
computed at each point.

Ayer et al. [6] too adopted a sequential approach to
fleshing out multiple models of motion over an image se-
quence. In contrast with Irani et al., they applied robust
estimators for motion estimation, formulated the problem
in terms of time-varying parameters over multiple frames,
and combined intensity based segmentation with the mo-
tion information. However, they noticed that, even with the
use of robust estimators, the sequential dominant motion
approach may be confronted with the absence of dominant
motion. In this case, no single layer is dominant in its sup-
port, in which case the sequential algorithms may need a
technique for clustering the sequential support into differ-
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ent support layers. This problem is in itself a difficult task.
Another problem is that sequential methods may fail to
delineate similar motions into different layers because of
the lack of competition amongst the motion models.

Black and Anandan [8] and Odobez and Bouthemy [31]
incorporated robust M-estimators in their solution to domi-
nant motion estimation. However, they choose an ad-hoc,
pre-defined value of the initial scale and also a schedule for
its reduction by a fixed factor through the iterative optimi-
zation process. Bober and Kittler [9] combined a Hough
technique with robust methods to extract multiple motions
through successive separation of dominant motions. Odo-
bez and Bouthemy [30] use dominant motion compensation
embedded in a contextual MRF framework to detect multi-
ple motions.

2.3 3D Models for Motion Analysis

The use of 3D motion and structure models in model based
direct estimation framework was introduced by Hanna [13].
However, this was limited to parameterization of motion and
structure for calibrated cameras. In the context of video data-
bases, calibration information may not be available, and may
be unnecessary because a full Euclidean reconstruction of
motion and structure is not required for video representation.
An interesting parameterization for 3D projective structure
and view transformation with respect to a reference view and
an arbitrary reference plane (plane plus parallax) has recently
been introduced in [14], [22], [35], [38]. Shashua and Navab
[38] and Hartley [14] use point correspondences to solve for
the 3D parameters. Kumar et al. [23] and Sawhney et al. [36]
used direct methods to compute the planar transformation
and the parallax vectors (see also [39]). We extend the robust
M-estimation method to the 3D model [36], thus allowing for
separation of outliers, for instance, independently moving
objects in an otherwise rigid 3D environment with significant
depth variations.

2.4 Video and Image Mosaicing

Image mosaicing as a means to obtain a single view repre-
sentation of a video shot has been proposed by a few re-
searchers [27], [39], [41], [42]. We demonstrate that both the
2D and 3D motion estimates when applied for image
warping with temporal filtering can be used to create a mo-
saiced representation [36]. A similar application with dif-
ferent techniques has recently been presented independ-
ently in [19], [23].

3 PLAN OF THE PAPER

We first present our work on model-based robust dominant
motion estimation using M-estimators. A Gauss-Newton
formulation leading to an iterated reweighted least squares
algorithm is described in Section 4. Section 5 presents the
application of the technique with 2D parametric models to
dominant motion separation and video mosaicing. The 2D
models do not imply that the scene or motion is 2D, but
that the image motion is well approximated by 2D
parametric transforms. This approximation turns out to be
valid in a large class of real videos and movies where cam-
era pans, tilts, zooms and similar operations are the cause
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of dominant motions, and when at frame rate the change
between consecutive frames is small. Section 6 first presents
our formulation and model for 3D parameter estimation,
and subsequently shows the results of applying this to 3D
scenes and also demonstrates video mosaicing with the
automatic computation of the 3D representation.

The remaining sections of the paper are devoted to a de-
scription of simultaneous multiple motion and layer estima-
tion. Robust 2D M-estimation is also a key component of our
layered representation algorithm. In our formulation, the
computed layered representation of motion is the result of
optimizing an objective function: the total encoding length of
the motion mode] parameters, of the layers of support, and of
the residuals at each pixel resulting from the difference be-
tween the reference intensity map and the intensity map that
is warped in accordance with the motion parameters. The
optimization is divided into two major steps that are alter-
nated: ML estimation of the motion parameters and layers of
support given the number of models, and a greedy incre-
mental strategy for choosing an adequate number of models
using the total encoding length given the ML estimates.

The description of the simultaneous multiple motion al-
gorithm starts in Section 8 with a formulation for multiple
motion models in terms of mixture models. Given that the
image motion can be modeled as caused by a mixture of a
fixed number of models, the motion model parameters and
the ownership probabilities (layers) for each pixel can be
computed using an iterative Expectation-Maximization
(EM) algorithm; E-step to solve for layers given the motion
parameters, the variances, and the model proportions, and
the M-step for solving for the latter given the layers. The
dominant motion estimation algorithm is used to compute
the motion parameters in the EM algorithm. The motion de-
scriptors used are 2D parametric models: translational, affine,
and projective. Section 9 presents our solution to the problem
of determining an adequate number of models using MDL
encoding. The subsequent section is devoted to the details of
the complete algorithm. Section 11 presents experimental
results for the layered motion estimation algorithm.

4 RoBusT ESTIMATION OF A MOTION MODEL USING
Direct METHODS

Our robust formulation combines standard M-estimation
[25], with automatic scale computation [34], and direct
model-based image motion estimation [7]. Given two im-
ages, their motion transformation is modeled as

I(p,t) = I(p - u(p;8),t - 1) M

where p is the 2D vector of image coordinates, and u(p; 6)
is the displacement vector at p described using a parameter
vector €. In the case of 2D global parametric models, a sin-
gle low-dimensional @ describes the motion. For the 3D
model @ consists of both a low-dimensional global paramet-
ric part, and a projective depth part, one depth parameter
per pixel. In order to compute motions of varying magni-
tudes, the images are represented at multiple scales using
Gaussian or Laplacian pyramids. In the following, it is as-
sumed that I refers to any of these filtered representations
of an original image.
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Fig. 1. Top: Quadratic p(r) and the corresponding weight function =~ P( ! Bottom: Geman-Mclure p(r) and the corresponding +——+ p( )

In the M-estimation formulation (that includes sum of
squares as a special case), the unknown parameters are es-
timated by minimizing an objective function of the residual
error. In particular, the following minimization problem is
solved:

min } p(r;0),

where p(r; 0) is the objective function defined over the re-
siduals, r, with a given scale factor, g, and where i is the in-
dex of the ith image pixel. We use two different p functions,
the sum of squares function and the Geman-McLure function:

h = I(Pirt) - I(Pi - u(Pi;Q)’t7 ]>’ @

¥

142 v
Pss(r;0) = 2527 Pem(rio) = —2 pa

The pg,, function gives nonzero descending weights that
are controlled by the scale parameters. This is more desir-
able than the behavior of Andrew’s sine wave and Tukey’s
Biweight [12] functions which reduce the weights to zero
beyond a threshold.

4.1 Gauss-Newton Formulation for M-Estimation
Instead of solving the nonlinear system of equations that
corresponds to the necessary conditions for a minimum in
(2), we apply the Gauss-Newton (GN) method directly to
the minimization problem. In the GN method, a descent
direction is computed using the gradient and a first order
approximation to the Hessian for the given objective func-
tion. Writing the g and H in terms of p and 7, we get,

ap o Ip o on
8k = 2 W]TOk Hy :21,3?‘79‘9_1{3—91, 3)

as the kth and the klth elements of gand H.

With the nonquadratic ps, can be negative, therefore

7

one may not get a descent direction. If p(r) is approximated
pr)
r

by its secant approximation [37, p. 652], , which is posi-

tive everywhere, then the GN equations become,

__Aln) 9
)) Tazrw‘s" o0,

fork,I=1..K,andi=1... N. By comparison with the S5
normal equations, it is apparent that the corresponding
equations for the robust estimators are simply weighted

normal equations with the weight for each measurement i
p(r)

)

being —*

The plots of the p functions for o= 1.0, and those of the
weights (as in (5)), @
pes(r) 1 Pom(r) 20"

T r :(62+x2)2 ©)

, are shown in Fig. 1.

It is apparent from the plots that whereas pg; weights re-
siduals of all magnitudes uniformly, pgy, governed by o,
decreases the influence of large residuals on the solution
rapidly.

4.2 Automatic Scale Estimation and the Hierarchical
Algorithm

With the use of M-estimators for dominant motion estima-
tion, a possibility is to use the assumption that the corre-
sponding pdfs model the underlying distribution of residu-
als, and compute the scale, o, corresponding to the chosen
distribution. However, this will lead to complexity in the
estimation of o. Alternatively, it is reasonable to model the
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residuals using a contaminated Gaussian distribution,
where the residuals for the non-dominant components are
the contaminants or outliers. Now a robust method for
computing the o of the Gaussian is to be found so that the
outliers do not significantly influence the estimate of o
There are two possibilities for computing o

1) as the root mean square sample standard deviation
estimate of the weighted residuals, with the weights
being p(r;)/1, as in the GN estimation of the parame-

ters, and
2) as an estimate derived from the median value of the
absolute residuals.

The latter option is a more robust estimate and is adopted in
our experiments. Given contaminated random samples from
a zero-mean Gaussian distribution with a given ¢, a robust
estimate of ois related to the samples through [34, p. 202]

o= 1.4826 median; ;1.

This follows from the fact that the median value of the
absolute values of a large enough sample of unit-variance
normal distributed one-dimensional values is 0.6745 =
1/1.4826. The median based estimate has excellent resis-
tance to outliers; it can tolerate almost 50% of them, and can
be efficiently computed with a linear time median-finding
algorithm.

Given the GN formulation and the step for o estimation,
we embed these in a hierarchical coarse-to-fine direct
method [7]. Starting at the coarsest level, given an initial
estimate of the parameters 6", typically chosen to repre-
sent zero motion at the very start, image I(?' t—-1) is
warped so that I["(p, t - 1; &) = Ip — ulp; ™), t — 1). At
this step, the residual » at p is defined as

r=1I(p+du(p;0),¢) - I(p,t - 1,6, ©)

where du is a small unknown increment in u. The robust o
estimate is computed using the residuals rs defined over all
ps. A GN step is then performed with the chosen p function
to compute a new GN direction 56™ using (4) with r as in
(6). A line minimization along this direction is performed to
get the local minimum solution for the current iteration.
These iterations at any level are repeated until the change in
parameters is below a threshold or a specified number of
iterations is reached. The estimated parameters are pro-
jected to the next finer level and used as initial estimates to
warp the corresponding image I(p, t — 1), and the process
repeated until convergence at the finest level. In order to
generate a binary mask of regions of dominant motion and of
the outliers, the residuals for the converged parameters are
thresholded using a factor, typically 2.5, of the computed o.
Note that the binarization is only a post-processing step for
display purposes whereas the motion computation itself uses
the continuous weights derived from the p function.

The formulation for the 3D plane and parallax model is a
bit more involved and will be presented in a later section.
Presently, the use of 2D models and their results are described.

5 2D MobDELS FOR DOMINANT MOTION ESTIMATION

We illustrate the use of the formulation in the previous sec-
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tion with an 8-parameter plane projective transformation.
The 2D affine and translational models are specializations
of the 8-parameter model. For the case of a video sequence
with relatively closely spaced frames, a velocity approxi-
mation to the displacement field can be used. This ap-
proximation is valid when the rotations are small, and the
change in depth of points due to motion in consecutive
frames is small compared to the depth [2].
The flow field is given by

_lxyOOOxzxyezMo.

u(p(xv):0) = 0001 xy xy v

Note that p(x, y) refers to the actual pixel coordinates; any
calibration parameters relating the pinhole-model (x, y)
coordinates to the pixel coordinates have been absorbed in
the unknown @. In the iterative direct method, this leads to
a linear relationship between du and 08 du(p; 6) = MJE.
Therefore, in each iteration the derivative of each residual
of (6) w.r.t. the unknown #is
or déu or
96 ~ 98 Jdéu
This when combined with (4) and (5) leads to a new GN

direction 66 in each iteration, and subsequently a new &
after line minimization.

=M'VI(p,t).

5.1 Dominant Motion Separation and Mosaicing with
2D Models

In showing the results of the algorithm, we wish to empha-
size that the results shown in print are nowhere near as
dramatic as when shown as moving images. For all the ex-
periments with 2D models, an initial guess corresponding
to zero motion was provided to the algorithm.

We first show the results of dominant motion separation
on a sequence of table tennis play (tf sequence) that was
obtained from a public domain archive. Two 352 x 288
frames of the tf sequence are shown in Fig. 2. The camera
zooms towards the scene and the hand of the player moves
up tossing the ball. The zoom is strong enough to move
pixels by almost 8-10 pixels at the periphery. A 6-parameter
2D affine transformation based dominant motion algorithm
was applied to this sequence. The computed motion pa-
rameters:’ [[1.039 -0.001 0.000 1.039], [-6.397 —5.816]], show
a pure zoom factor. The background compensation, seen in
a dynamic display, is almost perfect. The outlier mask and
the difference image after affine warping are shown in Fig. 2.
The dark areas (excepting the thin border that was automati-
cally left out of the computation) are the outliers, and the
white ones correspond to the regions of dominant motion.

The second set of results is on a sequence (bike) of a stunt
bike rider being tracked by a camera; the sequence was ob-
tained from a public domain archive. One 352 x 240 frame
(No. 54) of the 88-frame sequence is shown in Fig. 3. The
camera tracks the moving bike leftwards and downwards.
The computed parameters [[0.999 0.000 0.000 1.000], [9.528 —
5.514]] show a background motion of almost 10 pixels to
the right and five pixels towards the top. The original im-

3. The first four parameters are for the 2 X 2 matrix in row major form
and the other two represent the 2D translation. The origin is at the top left
corner of the image.
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age difference, the difference after affine warping and the
outlier mask are also shown in Fig. 3.

k-
e,

e

Fig. 2. Top: Two frames, and bottom: outlier mask and difference after
dominant affine warping for # (low differences are shown in white and
high differences in black).

() (d)

Fig. 3. (a) One frame, (b) original difference, and (c) difference after
dominant affine warping, and (d) outlier mask for bike (low differences
are shown in white and high differences in black).

5.2 Video Mosaicing with Dominant 2D Motion
Estimation

In many real video sequences where the camera is panning
and tracking an object, a panoramic view of the background
can be created by mosaicing together numerous frames
with warping transforms that are the result of automatic
dominant motion computation. The 2D motion estimation
algorithm is applied between consecutive pairs of frames.
Then a reference frame is chosen, and all the frames are
warped into the coordinate system of the reference frame.
This process creates a mosaiced frame whose size, in gen-
eral, is bigger than the original images; parts of the scene
not “seen” in the reference view occupy the extra space.
The mosaiced image is created by temporal filtering of the
various warped images in the mosaic frame’s coordinate
system.

We illustrate the 2D dominant motion based mosaicing
on the 88 frame bike video. Frames 52 and 82 are shown in
Fig. 4. The dominant motion transformations are used to
create a single composite frame for the whole sequence. In
the dynamic version of this mosaic, we can show the stabi-
lized (completely static) background expanding as the time
proceeds, with only the bike moving. Two frames of this
dynamic mosaic, again corresponding to the time instants
52 and 82 are shown in Fig. 4. Furthermore, temporal me-
dian filtering of these mosaiced frames leads to almost the
deletion of the outliers (moving object in this case) if their
locations are not highly correlated over time, a reasonable
real scenario. Such a single frame, dominant-component-
only mosaic of the bike sequence is shown in Fig. 4.

We wish to emphasize that our design of the 2D motion
based video mosaic system can handle fairly long video
sequences. In order to accomplish this, the problem of
storing and manipulating long videos was addressed. In
particular, from a commercial standpoint, storing videos as
MPEG files was chosen since MPEG is fast becoming a de
facto industry standard. The dynamic and static mosaics
are created by decompressing MPEG streams on-the-fly
and storing the resulting motion and visual information.
The bike mosaic was created with this system. In order to
give a sense of the capability of the system to handle rela-
tively long shots, Fig. 5 shows a static mosaic created auto-
matically from a 35 second video shot (1,000 frames) taken
from the Yosemite Valley floor using a Hi8 hand held cam-
corder. Incidentally, to drive home the point that traditional
video browsing on WWW is slow and cumbersome, we wish
to point that when these results were put on a Web page
(http:/fwww.almaden.ibm.com/csfvideofvideo_anno_ext.html),  a
comment was that the original video (25M) is extremely
slow to load but the mosaic, available as a single image, is
quite fast to view.

6 3D MODEL FOR DOMINANT MOTION

When there are significant variations in depths of objects and
surfaces in the scene, and no clear dominant 2D transforma-
tion is a good descriptor of the background motion, it is ap-
propriate to employ models of motion and structure that ac-
count for 3D motion transformation of the view point, and for
the depth of objects. We now present a model that parameter-
izes the transformation between two views of a scene in terms
of a 12-parameter global projective view transformation, and a
one-parameter-per-point “projective depth.”

Kumar et al. [22], Sawhney [35], and Shashua and Navab
[38] recently showed that given a reference view of a scene,
points in any other view whose coordinate system is an
arbitrary 3D affine transformation with respect to the refer-
ence view, are related to those in the reference view
through:

1) a plane projective transformation for an arbitrary
plane,
2) the epipole, and
3) the “projective depth”.
That is,
p = A p+xt’, (7)
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Fig. 4. Top left: two frames (52 and 82) of the bike sequence. Top right: single-frame mosaic after temporal filtering. Bottom left and right: Dy-

namic mosaics at frames 52 and 82.

Fig. 5. Single-frame mosaic of a panoramic view of Yosemite Valley.

where p =[x, y, 11", p’ are the image coordinates in the ref-
erence view and another view, Azis a 3 x 3 plane projective
transformation corresponding to an arbitrary reference
plane, t' is the epipole in the second image, and x is the
projective depth in the reference view. Thus, with [p’ d" as
the homogeneous coordinates of the corresponding 3D
point, P, in the reference view, any arbitrary view of P, p’, is
written as a view transformation, [Az t'], that has a planar
component and an epiggolar component. That is, p* =~ [Ax
tllp’ «d". Therefore, [p" d'is a representation of P that is
fixed with respect to the reference view. For the sake of
completeness here, if the 3D coordinates are related by P’ =
AP + T, and the plane is given by N'P = d, then Az~ [A’ +
TN'/d], and &= (dy/P)/(-T, /T.) , where dy and T, are
the distances of P and T from the plane, respectively [22],
[35], [38]. Note that the image coordinates are measured

with an arbitrary coordinate system, and all the calibration
parameters have been absorbed in the view transformation.

When the rotations between frames are small, and
change in depth due to motion is small compared to the
depth, the image motion between two views, p = [x, yI” and
p’, for a pin-hole camera model, is written as,

—xy 1+x* -y 1[1 0 —x}T

Pr=pt —(1+y2) xy Qrzlo 1 -y

X V4
for a 3D rotation vector Q, and 3D translation T. Again, by
choosing an arbitrary plane in the environment, the motion
can be decomposed into a planar component, and a paral-
lax component independent of rotation. Furthermore, the
pin-hole model coordinates can be generalized to real pixel
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coordinates through scale factors (s, s,), and the principal

point, (c,, cy), potentially different for each view. Under the
generally satisfied assumption in video imagery that
S, /sy =5, /s;, and by an overloading of notation, the mo-

tion transformation is,
p'=p-MpO+ Kp)BPIt=p-ulp,O7T, «p), (8)

where M(p)® is the small displacement approximation of a
planar transformation for unknown calibration, © is an 8-
parameter vector and I' is a 3-parameter vector represent-
ing the planar and epipole view transformation compo-
nents, respectively, with the calibration parameters folded
in; p, p’ now refer to the 2D real pixel coordinates in the
two views.

6.1 Least Squares Formulation

In the LS formulation using the 3D model, the sum of
squares function defined over the error term of (1) is used.
However, since the planar transformation could correspond
to any arbitrary plane parameters, there is an infinite family
of solutions. Without increasing the complexity of the non-
linear minimijzation problem at hand, we add a quadratic
term that measures the sum of squares of the out-of-plane
depths x The idea is to solve for the planar transformation
that minimizes this sum. Thus, the following problem is to
be solved,
2
min >[1(p,#) - I(p - u(p),t = 1)] + 7Y« (p),
o,T,«(p)
P P

where yis a constant. In order to solve it, we use Hanna's
technique [13], which exploits the fact that u(p) is a linear and
bilinear function of the unknown parameters and specializes
the GN method to it. At the mth iteration in the algorithm,
given estimates 0™, T, and &"(p)s, each residual is ex-
pressed as in (6), and the following error is minimized,

Yy & (p) +

T ) plm  ome W
2 [5](13) +VI' (p, t)&l(p; 0,T,«(p); 0™, ", « (p))} ,
P

where 8l(p) = I(p, t) — I(p — ulp; 0" ™ &™) ¢ _1). Each
term in the second sum is the square of a first order ap-
proximation to r in (6). Writing du = u - u™, we get,

2
[61(e)+ 97" (p) Mip)f© - ) < x(p)B(E)T - <" (p)B(EIT ")

+ 7’2 ”(p). 9
P

min
o.rx(p) S

In applying the GN method, first the analytical solution
of xin terms of ® and T is substituted in the above. This
assumes that each x(p) within a small Wx W (typically 3
x 3) window W is constant. This gives,

x(p) =
(3 [ emteir{ o)+ 91 g - o) - < pyscer )
(2. @] + ) |

This expression is substituted in (9) and the GN method
applied to solve for 8 and dI'. Given the new estimates of
these view parameters, the new xs are solved for numeri-
cally now using the above equation. Again, the proper step
sizes for ©® and I" are chosen using line search. The itera-
tions are repeated over multiple resolutions. The initial pa-
rameters chosen for the 3D estimation are: [01 00010 0]
for ©, i.e., zero motion for the planar part, all zeros for the
xs,and [10 0] for the T..

6.2 Image Registration and Mosaicing Using 3D
Parameters

First, two images are registered while solving for the view
and depth parameters with respect to one as a reference
view. Subsequently, to verify the goodness of depth com-
putation, only the view parameters, © and T, are solved for
between a third view and the reference view with the xs
kept fixed (see (7)) from the first computation.

Four frames (1, 3, 4, and 6) of a 6-frame castle sequence
are shown in Fig. 6. The range of depth is between 40 to 300
mm. Frames 14 were obtained by a sideways motion of the
camera, and frames 5-6 by an upwards motion. There is
about 15-30 pixels motion between consecutive frames.

Fig. 6. Top: Two frames (1 and 6) of castle. Bottom: Single-frame mo-
saic after temporal filtering.

First, with frame 1 as reference, the planar and parallax
transformation (8) are solved for between frames 1 and 2. Fig.
7 shows the difference image for the original frames 1 and 2,
and that for the difference between frame 1 and frame 2
warped using the computed 3D view transformation and
depth. In order to further test the effectiveness of the com-
puted depth representation with respect to the reference
frame, only the view parameters are solved for between
frame 1 and a new frame 3, with the depths kept constant as
computed previously. The result of this process is shown in
Fig. 7; the first image is the original difference and the second
is the difference after warping the third image towards the
reference using the newly computed view parameters, and
the reference view centered depths computed earlier.



SAWHNEY AND AYER: COMPACT REPRESENTATIONS OF VIDEOS THROUGH DOMINANT AND MULTIPLE MOTION ESTIMATION 823

Fig. 7. Top: Original difference (left) and difference (right) between
warped (with plane + parallax) frame 2 and frame 1 for castle. Bottom:
Original difference (left) and difference (right) between warped (with
place + parallax) frame 3 and frame 1 (low differences are shown in
white and high differences in black).

For registration, the warped image, I“(p) is created in the
coordinate system of the reference image, by transforming
the second image, say I, using I"{p) = I(p - u(p; ©, T, x(p))),
where u is as in (8), and p is in the reference image’s coor-
dinate system. Both the view transformation and depth
computations are reasonable since all three frames are reg-
istered reasonably well.

Now the result of mosaicing frames 1-6 in the coordinate
system of frame 3 is shown. First, view parameters and
depth between frames 1-2, 4-3, and 6-5 are solved with
frames 1, 4, and 6 as the reference. Subsequently, with the
depth parameters from the previous step, only the view
parameters were solved between frames 1-3 and 6-3, again
with 1 and 6 as reference. Finally, frames 1, 4, and 6 were
forward warped using these view parameters and the
depths, and mosaiced with frame 3 in 3’s coordinate system.
The outcome is shown in Fig. 6. Note that the steeple castle
on the right, and the house next to it, that are almost not seen
in view 3, are fully there in the mosaiced frame. Also, the
house on the left is completely visible. The size of the original
frames is 411 x 295 and that of the mosaic is 501 x 326.

We have compared the results of mosaic creation with
only a 2D affine transformation in this case. Due to lack of
space, the reader is referred to [4], [36]. The parallaxes that
the affine transform is unable to account for are evident
through non-zero differences and the blurry mosaic. The
uncompensated parallax is dramatically evident when a
motion display of warped and the reference images is
shown.

We have extended the 3D estimation algorithm to the
case of multiple moving objects using a robust formulation
akin to the 2D case. This algorithm can estimate the 3D pa-
rameters of the fixed scene and separate moving objects as
outliers. However, due to lack of space we cannot present
the work here and refer the reader to [4], [36] for details.

7 MuLTiPLE MOTION ESTIMATION

It is clear from the experimental demonstrations using
dominant motion estimation that for many realistic scenar-

ios, where a single 2D model captures the motion of the
dominant background reasonably well, compact represen-
tations of videos can be created with dominant 2D models.
Furthermore, successive application of dominant motion
estimation on a video may be used to capture scene and
object motions with 2D models. When 2D models do not
suffice, 3D models may be employed albeit at the expense
of keeping dense depth representations around. The visual
representation of a complete video shot as a panoramic mo-
saic image enables browsing and indexing into arbitrarily
selected portions of the shot by using the mosaic as a win-
dow into the contents of the shot. Dynamic objects and
events can be represented separately using their own visual
appearance and motion representations. The dominant
motion representation tends to group together large parts
of the static scene into single regions with a single motion
model. However, for indexing videos based on objects and
significant structures in static scenes as well as on moving
objects, a finer motion analysis that leads to segmentation
of multiple layers of motion and structure may be required.
A formulation of this problem and an algorithm is the sub-
ject of the next sections.

8 SIMULTANEOUS ESTIMATION OF MULTIPLE
MOTIONS

8.1 Mixture Models for Maximum-Likelihood
Estimation

We formulate the problem of multiple motions and layer
estimation as the optimization of an objective function,
whose minimum is expected to lead to the best description
of an image and of its change over time as described by the
parameters of the motion models, the proportions of these
models in the data, and the ownership weights (the layers)
for each model.

Given a pair of images captured at time instants ¢ — 1
and f in a sequence, the image at ¢, the reference image, is
modeled as being generated by that at £ — 1 through a finite
mixture of warped images, each being warped using its
own motion model. The intensity I(p, t) at pixel p and time
t is modeled as arising from a superpopulation of intensity
maps, 1. T is a set of ¢ maps {Tl, s Tg}, where Ti repre-
sents the predicted image at time ¢ as a function of the im-
age at time t — 1 and of the ith motion model parameters &,
that is,

T(p.0,1)= I(p - u(p.0).t 1) a0

The probability density function (pdf) of the reference
intensity map, I(p, t), as predicted from I can be repre-
sented in the finite mixture form [28] as

f(1(p. 1) I(p,t - 1), @) = iﬂmi(l(p/f) I(p,0,t)0,). (1)

In the following, it will be assumed that I(p, ¢ — 1) is given
and thus not included explicitly in the notations. Also, un-

less necessary, I(p, t) and T.(p,8,,t) are written as I(p) and
Ti(p), respectively. Note that this formulation does not ac-
count for the presence of observations that are not modeled
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by the constancy of brighitness under modeled motions,
that is for outliers of the complete mixture of models. How-
ever, instead of introducing an additional component in the
mixture meant to model these outliers as in [21], [26], we
solve this problem through a combination of a rejection
procedure and of robust estimation of the mixture parame-
ters. This will be explained in Section 8.4. Also note that the
formulation in this section is for an arbitrary but fixed g. The
problem of estimating an optimal g is the subject of Section 9.

In the finite mixture formulation, the vector @ represents
the vector of all unknown parameters @ = [IT', ', @'T",
withIl =[5, ..., 7], =0, .., o], and © =18, ..., §1". In
this notation, @ denotes the parameter vector, o; the vari-

ance, and 7; the proportion of the ith model in the mixture
such that

(12)

s
=1 =n>0 i=1,..g.
=1

We assume that each pi(I(p)l I.(p),c,) belongs to the
same parametric family, p. In particular, p(I (p)‘ T(p), o)) is
assumed to be a normal distribution, N (E(p),o?), with

spatially varying mean I.(p) and variance 01.2. Under the
assumption that the N observations I(p), one at each pixel,
are realized values of N independent and identically dis-
tributed random variables with common distribution func-
tion p(I(p) | @), the negative log-likelihood function L(®) of
the parameters @, given the observations, can be written as

(o {ip)]) - - st o]
:—éleg(gnip(l(pj) Ti(p]),di)}, (13)

where {I(p} denotes the N observations I(py), ..., I(py).
Given estimates of @, the estimates of the posterior
probabilities of population membership can be formed for

each observation, I(p]-), to generate weights for each layer.
The estimate of the ownership weight at the jth pixel loca-

tion for the ith population, T, is given by

blp, e I.| ®)pll{p,)| p, e T,; @
oy = probp; < | 1fp ) = (p, =T @plile )| p, < )

T {p.), o 0

It can be shown ([16], [28]) that the maximum likelihood
estimates of @, @, satisfy

(15)

(16)

g N A Ao )
WIS 26 =0,

i i %ii ’ log(p(I(P;Q Ti(PJ‘)/ 0'1))

i=1 j=1 i

=0. a7

8.2 Specialization to Binary Ownerships

In accordance with the formulation in {28, p. 14], the nega-
tive log-likelihood function given in (13) is now presented
for the case when each measurement is mutually exclu-
sively associated with a single model. For this purpose, for
each measurement j, a g-dimensional vector of indicator
variables z; = [zlj, ey zgj]T is introduced, where

5 = 1 I(pf)ezi’ (18)
Tolo 1(py) e,

and z,, ... zy are independent and identically distributed
according to a multinomial distribution consisting of one
draw on g categories with probabilities 7, ... 7. Therefore,
the pdf f(p) | @, z), is given by

filp;)| @,2) = fl[nip(l(p,)! Tf(p,),oi)}z" .19

Again under the assumption of measurements being in-
dependent, the complete negative log-likelihood function
for all the measurements, conditioned on the indicator vari-
ables, is given by

re(o {ilp,)} 2, -2 )=
g{z/j{log(m) + log(P(I(pj)l Tl(p]) Gi)]} (20

j

3

i=1

In the process of estimation, the indicator variables are
assigned as z; = 1 if the ownership probability

5>, t=1,..,8 t#1,
and 0 otherwise.

8.3 Iterative Solution for ML Estimation of Mixture
Parameters

Equations (15)-(17) and (14) suggest an iterative solution
for the maximum likelihood estimates of I1, ¥, and ©, and
for the posterior ownership probabilities, 7s. One such so-
lution method is called the Expectation-Maximization (EM)
algorithm, that proceeds iteratively in two steps, E and M.
The M-step solves for the ML estimates of the mixture
model parameters, and the E-step for the ownership prob-
abilities. For the particular case of a mixture of normal dis-
tributions, the M- and E-step of the classical EM algorithm
may be expressed in a closed-form solution. However, in
our case, the ML estimates of the motion parameters ® have
no closed-form solution. Instead, our algorithm implements
the ML estimation of the motion parameters using the
dominant motion algorithm. First, ©® is solved for given
values of IT and X and then the optimal estimates for IT and
¥ are computed using the estimated motion parameters. A
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Newton iterative scheme including all parameters into a
single estimation process would be an alternative to solve
the problem.

8.4 Estimation of the Mixture Parameters

8.4.1 Likelihood Estimation for a Mixture of Normal
Distributions

With the component densities of the mixture assumed to be

normal, the likelihood equations given in (15) and (16) can

be used for an iterative computation of the solution by the

EM algorithm [28, p. 38]. Given estimates of the parameters

0, Z, and [T, in the E-step, the posterior probability that the

jth pixel belongs to the ith model, i.e., 7;, is computed as

v, = problp; e T| I(p,); @) = mplilp))| Elp,) o)

Z”tp( P; |I P])'Ot

”i
Gi
= 2 , 21
i 7y i p]
Zot

= O

where rl.(pj) =Kp;,t)- 'I:-(pj,ei,t).

The M-step consists of solving the likelihood equations
(15), (16), and (17) with each f',.j replaced by its value com-
puted in the E-step. Equation (15) already presents the so-
lution for #;. The step for the ML estimate of the motion
parameters, O, will be detailed in Section 8.5. For the case of
Gaussian distributions, the solution for the os is given by:

A 2
N 7.7 (P)
~ 1
o2 =3 P

T4 N g,

j=t !
The E- and M-steps are repeated alternately, where in
their subsequent executions, the initial fit (IT, £)™ of the

parameters is replaced by the current fit (IT, ),

8.4.2 Robust Scale Estimation

An alternative to the weighted squared residual estimation
of oabove is to use a robust estimate. It is to be emphasized
that a good estimation of o is critical to the estimation of
both the motion parameters and layers of ownership
weights. In the M-step, a robust estimate of o for each of the
binary layers is computed using the median value of the
residuals for the layer in accordance with the scale estima-
tion for the dominant motion explained in Section 4.2. In
other words, each set of z;s for a given model i provide a set
of pixels j over which the robust scale is estimated.

8.4.3 Detection of Atypical Observations

Outliers, within the context of the mixture model, can arise
essentially due to the violation of the brightness constancy
constraint employed in the direct method for motion estima-
tion (see Sections 4 and 8.5). This constraint is violated when

1) brightness patterns do not move according to the co-
ordinate transform specified by the motion parame-

ters, for instance, motion of highlights and light
sources, and

2) when due to occlusion/deocclusion intensity patterns
visible in one image are missing in the other.

Atypical observations must be detected and removed
from the data, so that they do not influence the estimation
of the mixture parameters any more. One way of evaluating
whether an observation is from a mixture of intensity maps

Tl, ey Tg is to assess how typical this observation is of each

Tl- taken in turn. An observation which is atypical of each T,
may well be considered as a contaminant which does not
belong to the mixture. In [28, p. 62], it is shown that, for
sufficiently large N, the typicality of an observation can be
approximated by the area to the right of the Mahalanobis
distance of the measurement with greatest posterior prob-
ability, i'ij, under the ;(,2] distribution, where p is the dimen-
sionality of the Gaussian distributions. Thus, in our one-
dimensional case, the typicality of an observation I(p) can
be approximated by the area to the right of

under the )(f distribution, and where 2. is as in (18). In

ij
turn, this test coincides with a simple test of the form
2
ip;
min—l—ﬁ—zj—)— >

i O-i

In our experiments, we choose c = 2.5.

8.5 Estimation of the Motion Parameters

In the iterative solution of the mixture model parameters
introduced in Section 8, one of the M-steps consists of com-
puting the new estimates of the motion parameters O, given
the current estimates of the variances X, mixture propor-
tions IT, ownership weights s (zs), and motion parameters.
This corresponds to a solution of the necessary condition
for the ML estimate of ® given in (17), which unfortunately
cannot be expressed in a closed form. Maximizing the like-
lihood function is equivalent to minimizing the negative of
its logarithm (the log-likelihood), which in turn is equiva-
lent to minimizing

N N

Y He) =3 pln(p;) o)

j=1 j=1
where the function p is related to the likelihood function for
an appropriate choice of the error distribution.

As explained in the preceding section, the probability
distributions of the residuals given the parameters are
modeled as a mixture of contaminated Gaussians. Thus, in
order to allow for outlying data, instead of least squares
estimation of the parameters, we use robust M-estimators,
andcompute the motion parameters by using the dominant
motion method of Section 4.
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9 MuLTIPLE MOTION FORMULATION USING MDL
ENCODING

9.1 MDL Formulation for Determining Model
Complexity

The problem with the maximum likelihood formulation of
(15)—(17) is that there is no bound on the complexity of the
mixture model, i.e., on the number of populations g. Gener-
ally, the more the number of models, the better the obtained
fit will be. We address this problem by applying the Mini-
mum Description Length (MDL) principle. The first reason
for choosing MDL is its information-theoretic grounding:
the model that can be encoded the cheapest while explain-
ing the observations is the best. For this purpose, the num-
ber of bits required to encode the model and the residuals is
used. The goal is then to find the model parameters @ that
minimize the total encoding length. A second important
reason is that the MDL principle leads to an objective func-
tion with no arbitrary thresholds. For the sake of clarity, we
present the MDL formulation only for the binary case and
leave a detailed comparison of the binary and nonbinary
formulations to a subsequent paper.

The encoding has two parts, one part for the model and
the other for the data using the model. The overall code
length to be minimized is

L({I(pj)}, qaj - L, (®)+ £D({I(pj)}| cpj, @2)

where £, £, and L, denote the appropriate encoding
length in terms of bits for the corresponding entities to be
encoded.
The model parameters consist of three different compo-
nents. Thus,
Ly(®@) = Ly

(D + L, (Z)+ £, (©).

For computing the coding cost of these real-valued parame-
ters, the expression derived by Rissanen [33] in his optimal
precision analysis is used. For encoding K independent real-
valued parameters characterizing a distribution used to de-
scribe/encode N data points, the codelength is (K/2) log(N).
Rissanen derives this expression for the encoding cost of real-
valued parameters by optimizing the precision to which they
are encoded. Thus, £,,(®) = £ log(N) where K is the total
number of parameters and N is the number of pixels in the
image.

Furthermore, we need to encode the data given the model
LD({I(pj)}) | @). Since we know the probability, PU(p) | @),
from the mixture model, the optimal number of bits required
to encode this is just the negative logarithm of the probability
[33]. Therefore, this term is directly derived from the nega-
tive log-likelihood of the data given the model, presented in
(20), by replacing the pdf, p(l(pj)] Ti(pj), o;) by the corre-
sponding probability, P(I(p ].)| E(p ]-),O'i). Under the as-
sumption of normal distribution of the residuals, and if the

residuals are quantized to the nearest ¢, their real precision,
then [24]

- ~1(p;
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i

when e < o,.

Therefore, by substituting this in (20), the total encoding

length is given by
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By eliminating the terms independent of g, these can be

simplified to
s )} (23)
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9.2 MDL Formulation with Statistical Dependencies
We now give an MDL formulation that takes into account
the statistical dependencies between the layer ownerships
of neighboring pixels for each motion model. Equation (23)
can be rewritten as
(Pf) RS
Py

g N N
D)+ 22211 log(o ZZI-]. log(ﬂ
1

=1 j=1 i i=1 j=

-

where the last term represents the encoding length associ-
ated with the representation of the layers of support of each
model, i.e., z; using a zero-order statistical model.

The information contained in the zs is characterized by a
high level of statistical dependencies, or correlation, which
are not taken into account in the above formulation, thus
leading to an exaggerated measure of its real information
content. This high level of correlation is due to the fact that
pixels belonging to the same motion generally form com-
pact regions. We capture the statistical dependencies of z;
by performing a first-order linear prediction on the values
of z; and by encoding only the innovation process, i.e., the
prediction errors. Based on this, (23) can be transformed to

8 N .
LPB({I(p]-)}, cp) - L@+, Zzg{log 2(;21)} + £(z), (24)

i=1 j=1 i
where £(Z) represents the encoding length associated with
the z; following a first-order linear prediction scheme.

The need for such a formulation can be explained as
follows. It is well known that the use of a zero-order statis-
tical model like in (23) will always yield a decrease of the
encoding length when the alphabet size is decreased, i.e.,
when a model is suppressed. This decrease will in general
coincide with an increase of the residual encoding length.
However, the presence of noise in the data can lead to the
erroneous suppression of a model if the information con-
tained in the zs is overestimated. In this case, the increase of
the residual encoding length is partly masked by the noise
contribution, and thus may not balance the decrease in the
label encoding length.
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10 MiINIMIZATION PROCEDURE FOR ESTIMATING G
AND THE MIXTURE PARAMETERS

Equations (23) and (24) are expressions for the complete
encoding lengths of the models and the data given the
models. Ideally, optimization of these encoding lengths
with respect to all the unknowns should be performed.
However, this will obviously be prohibitively expensive
given the enormous parameter space. In order to circum-
vent this practically impossible task, we divide the problem
into alternating steps of ML estimation of the mixture pa-
rameters, detection of outliers given these mixture pa-
rameters, and pruning of the number of models using the
encoding criterion. We use a descending procedure which,
given a set of motion and mixture parameters, computes
the encoding length by removing a single model from the
population. If the encoding length decreases for at least one
of those, in comparison with the encoding length computed
for the full set of models, then the model with the largest
decrease in the codelength is removed from the population.
Fig. 8 shows a flow chart of the algorithm. The algorithm
may be decomposed into three different parts: the initiali-
zation step, the EM step, and the MDL step.

INITIALIZATION-STEP EM-STEP

E-step:
computation of

ownership
probabilities

M-step:
ion of

motion parameters

and scale estimatesd

Scale and
motion
initial estimates

MDL-gtep:
incremental
selection of the
optimal number
of models

............................................

MDL-STEP

Fig. 8. Flow chart of the algorithm.

In the initialization step, initial estimates of the motion
parameters and the os are generated. Rectangular tiled bi-
nary layers that cover the entire image are defined. The
number of these tiles is a user defined parameter. Typically,
16 tiles are used by dividing the x and y dimensions into
four equal parts each. Thus, 16 nonoverlapping binary
masks are used to compute 16 initial motion parameters. In
each of the subregions, motion parameters and os are com-
puted independently only at the coarsest level of the pyra-
mid using the robust estimation technique described in
Section 4. After the initialization step, the initial motion
parameters and scale estimates become the current esti-
mates used in the EM-step. For all the experiments, 2D 6-
parameter affine models have been used as the motion de-
scriptor for each layer.

The next part of the algorithm is the EM-step, which
again may be decomposed into two parts: the E-step and
the M-step. Given the current estimates of the motion pa-
rameters, of the os, of the 75, and of the number of models
8, the ownership weights (75 and zs) are computed for the
support layers over the complete image. This is the E-step.
The M-step consists of the computation of the new s, of

the new model proportions s, and of the new motion pa-
rameters using the new support layers. Note that each M-
step employs the dominant motion algorithm (Section 4.2)
for each of the ¢ motion models. After an EM-step, outliers
are detected and removed for the next MDL and EM steps.

The next part of the algorithm is the MDL-step. Follow-
ing the EM-step, the total encoding length and the encoding
lengths that would result by removing in turn a single layer
are computed. The layer and the motion model which leads
to the largest decrease, if any, is eliminated. A new EM-step
is then performed with the new number of models, again
followed by a MDL-step. The whole process is repeated at a
given level until both the motion parameters and the number
of models have converged. The motion parameter, scale and
layer estimates obtained at this level are finally projected
down and the same process is repeated at the next finer level.

A Maximum A-Posteriori (MAP) estimation may be op-
tionally applied to the layer ownerships obtained once the
EM-MDL steps have converged to a solution. This leads to
further grouping of small, isolated layers into bigger and
homogeneous layers. However, for the purposes of com-
puting features for appearance-based indexing, this step
may be unnecessary. We have implemented this step too
but are unable to present further details due to lack of space
(see [4] for details).

11 RESULTS OF SIMULTANEOUS MULTIPLE MOTION
ESTIMATION

We show the results of layered motion estimation using
binary weights. It is to be demonstrated that the proposed
scheme is robust in the presence of moving objects and is
also general enough to deal with scenes with moving or
static cameras. For the different sequences, one frame from
the original sequence is shown. Also shown are the labeled
layers and the outliers along with the residual errors be-
tween the reference image and the mosaiced image created
by warping the reference image using each of the motion
models for each layer. Pixel locations which correspond to
outliers have been assigned a zero value in the mosaiced
frame, and the value corresponding to the non-
compensated image difference at this pixel location in the
mosaiced difference. The binary layers are shown both after
the EM-MDL estimation, as individual regions in white,
and also as a composite labeled image after EM-MDL-MAP
estimation with each layer in a different shade of grey and
the outlier layer in black.

It is important to note that, for some sequences (like the
box or flower garden sequence), there is no clear dominant
motion except maybe for the background motion. In these
cases, sequential estimation of dominant motion ends up

- finding some average motion parameters for some layers.

However, our simultaneous competitive method leads to
meaningful layer descriptions because measurements are
allowed to choose the best model among a few.

The first image sequence captures a situation, where the
scene is static but the camera motion induces parallax mo-
tion onto the image plane due to the different depths in the
scene. The sequence is the well known flower garden se-
quence. Fig. 9 shows one original image, the result for the
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binary layers, the outlier mask, and the residual error be-
tween the original images and that between the reference
and warped mosaiced image. Note that the occlusion re-
gion at the right edge of the tree is well captured as outliers.
Fig. 10 shows each of the layers.

The next results are shown on a sequence of a box rotat-
ing around its vertical axis. In this scene, the camera is
static, and hence so is the background in the images. Fig. 11
shows one original image, the layers and outliers, and the
residual error between the original images and that be-
tween the reference and warped mosaiced image. Fig. 12

Fig. 11. Middle: Original frame (top) and synthesized frame (bottom)
using warped layers with their motion estimates for the box sequence.
Left: Outliers (top, in black) and four labeled layers (bottom) after EM-
MDL-MAP estimation shown in different shades of gray, outlier layer in
black. Right: Original difference (top) between frames and difference
between the reference frame and the synthesized image (bottom).

Fig. 12. Four layers, after EM-MDL estimation, shown individually in
white for the box sequence.

To illustrate the situation where both the camera and the
objects are moving, results on the table tennis sequence are
shown. The result of our algorithm is two layers representing
the background and the hand, with good compensation for
each of them. Results for this sequence are given in Figs. 13
and 14. The information about the motion of the ball is
contained only at its boundary which has very small sup-
port. Therefore, the ball has been detected in the outlier
layer. Also, there is a jitter/noise at the edges of the table in
the original video. These unmodeled measurements have
also been grouped into the outlier layer.
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Fig. 9. Middle: original frame (top) and synthesized frame (bottom)
using warped layers with their motion estimates for the fg sequence.
Left: Outliers (top, in black) and four labeled layers (bottom) after EM-
MDL-MAP estimation shown in different shades of gray, outlier layer in
black. Right: Original difference between frames (top) and difference
between the reference frame and the synthesized image (bottom).

Fig. 10. Four layers, after EM-MDL estimation, shown individually in
white for the fg sequence.

Fig. 13. Middle: Original frame (top) and synthesized frame (bottom)
using warped layers with their motion estimates for the tt sequence.
Left: Outliers (top, in black) and two labeled layers (bottom) after EM-
MDL-MAP estimation shown in different shades of gray, outlier layer in
black. Right: Original difference (top) between frames and difference
between the reference frame and the synthesized image (bottom).

Fig. 14. Two layers, after EM-MDL estimation, shown individually in
white for the if sequence.

12 CONCLUSIONS

Compact but visually authentic video representation is in-
creasingly becoming an important issue in the context of
video indexing and annotation, and low bit rate video en-
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coding. We have focused on the use of motion analysis to
create visual representations of videos that may be useful for
efficient browsing and indexing in contrast with traditional
frame oriented representations. Two major approaches for
motion based representations have been presented. The first
approach demonstrated that dominant 2D and 3D motion
techniques are useful in their own right for computing video
mosaics through the computation of dominant scene motion
and/or structure. However, this may not be adequate if ob-
ject level indexing and manipulation is to be accomplished
efficiently. The second approach that we presented addresses
this issue through simultaneous estimation of an adequate
number of simple 2D motion models. A unified view of the
two approaches naturally follows from the multiple model
approach: the dominant motion method becomes a particular
case of the multiple motion method if the number of models
is fixed to be one and only the robust EM algorithm without
the MDL stage is employed.

There are trade-offs between the two major approaches
to computing motion based descriptions of videos. The
simplicity of formulation and the associated algorithm for a
sequential dominant motion approach has been exploited
by a number of researchers. However, the fact that image
measurements are not able to compete for the ownership of
different models leads to the use of externally specified
thresholds in deciding the model to pixel association for a
layer. Simultaneous estimation of the motion parameters
and their layers of support adds to the complexity of the
formulation and the algorithm. In general, the number of
layers, their motion parameters and the support weights
are to be found simultaneously. We have found that the
formalism of mixture models and MDL encoding is one
systematic way of capturing all the unknowns in a single
optimization problem. None of the sequential dominant
motion approaches in the literature have shown promising
results for accurate multiple motions and layer estimation
as our algorithm does.

A number of issues have been dealt with only summa-
rily or have been left out. These issues can be broadly di-
vided into two sets. The first set deals with issues related to
the specific techniques presented in this paper and the re-
lated work. The second set involves issues of representation
of scenes and moving objects for indexing and querying. In
the context of the techniques presented in this paper, first,
inclusion of 3D models in the representation with layers has
not been experimented with. Second, extension of the lay-
ered motion algorithm to multiple frames is currently being
explored. A simple extension is to use the layers computed
from two frames as initial guesses for subsequent frames.
However, questions like when to instantiate a new layer
and when to abandon an old one need to be dealt with.
Video mosaics can be easily extended for the case of multiple
layers. A composite mosaic can be created by combining the
mosaics of each layer using the respective parametric motion
models. However, from the viewpoint of representations,
how to represent moving objects, especially articulated and
non-rigid objects, compactly is still an open research issue.
Combining 2D and 3D layered representations of the static
scene and moving objects for video sequences addresses the
problems of model-based compression, and of compact vis-

ual representations that will aid the process of visual appear-
ance based indexing and annotation. Creating stable repre-
sentations of appearances for search and recognition of ob-
jects and scenes through indexing is an important area that
has not been the focus of this paper.

We are actively investigating the usefulness of motion
based video representations in the context of video index-
ing and annotation. With the constant increase in the proc-
essing power of workstations and desktops, and the com-
mon availability and use of images and videos on these,
computer vision algorithms for intermediate representa-
tions may indeed become viable and useful to intelligently
manage the enormous amounts of data at hand.
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