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Adaptive Scalar Quantization
Without Side Information

Antonio Ortega,Member, IEEE,and Martin Vetterli,Fellow, IEEE

Abstract—In this paper, we introduce a novel technique for
adaptive scalar quantization. Adaptivity is useful in applica-
tions, including image compression, where the statistics of the
source are either not known a priori or will change over time.
Our algorithm uses previously quantized samples to estimate
the distribution of the source, and does not require that side
information be sent in order to adapt to changing source statistics.
Our quantization scheme is thus backward adaptive. We propose
that an adaptive quantizer can be separated into two building
blocks, namely, model estimation and quantizer design. The
model estimation produces an estimate of the changing source
probability density function, which is then used to redesign
the quantizer using standard techniques. We introduce non-
parametric estimation techniques that only assume smoothness
of the input distribution. We discuss the various sources of
error in our estimation and argue that, for a wide class of
sources with a smooth probability density function (pdf), we
provide a good approximation to a “universal” quantizer, with
the approximation becoming better as the rate increases. We
study the performance of our scheme and show how the loss due
to adaptivity is minimal in typical scenarios. In particular, we
provide examples and show how our technique can achieve signal-
to-noise ratios (SNR’s) within 0.05 dB of the optimal Lloyd–Max
quantizer (LMQ) for a memoryless source, while achieving over
1.5 dB gain over a fixed quantizer for a bimodal source.

I. INTRODUCTION AND RELATED WORK

A DAPTIVITY is a key feature in the most popular meth-
ods for lossless data compression, such as arithmetic

coding (AC) [2]–[4], Lempel–Ziv coding [5], or dynamic
Huffman coding [6]–[8] (see [9] for an extensive review of
lossless compression).

The classical works on entropy coding (e.g., Huffman cod-
ing) and optimal quantizer design (e.g., Lloyd–Max quantiza-
tion—LMQ), propose methods to achieve optimal performance
for sources that can be fitted to a certain model. In adaptive
AC implementations, adaptation is achieved by estimating

Manuscript received August 7, 1995; revised September 5, 1996. The work
of A. Ortega was supported in part by the Fulbright Commission and the
Ministry of Education of Spain and by the National Science Foundation under
Grant MIP-9502227 (CAREER). Part of this work was performed while at
the Department of Electrical Engineering and Center for Telecommunications
Research, Columbia University. The work of M. Vetterli was supported in part
by the National Science Foundation under Grant MIP-93-21302. The associate
editor coordinating the review of this work and approving it for publication
was Prof. Michael W. Marcellin.

A. Ortega is with the Department of Electrical Engineering–Systems,
Integrated Media Systems Center, University of Southern California, Los
Angeles, CA 90089 USA (e-mail: ortega@sipi.usc.edu).

M. Vetterli is with the Departement d’Electricité, Ecole Polytechnique
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this model “on the fly,” with no prior assumptions. In this
work, we propose that estimating the source model from past
inputs should be an essential building block in adaptive scalar
quantization as well. While the same could be argued for
vector quantization, we concentrate here in the scalar case
since going to higher dimensions complicates the modeling
process. Note also that an adaptive quantizer can be used as
part of a differential pulse code modulation (DPCM) loop
and we are thus not restricting ourselves to memoryless
sources. We can define our problem as that of adapting some
or all of the parameters of a scalar quantizer/entropy coder
system (including bin sizes, reconstruction levels, codeword
lengths, and dynamic range) to the changing statistics of an
input source. We make few assumptions on the statistical
characteristics of the source and, in particular, we allow it
to have long-term dependencies and to show varying “local”
behavior. We will assess the performance of the adaptive
schemes by comparing their rate-distortion characteristics with
those achievable by means of nonadaptive schemes. We study
systems where the adaptation occurs basedonly on the causal
past so that both encoder and decoder can adapt in the same
manner, and no extra information needs to be sent.

While adaptive source models have been used to varying
extents in many adaptive quantization schemes, here we pro-
pose to explicitly separate the adaptation algorithm into two
parts [see Fig. 1(a)], as follows:

1) Source modeling: Based on the previous quantized
samples, we model the source, for instance, by estimat-
ing its probability density function (pdf).

2) Quantizer design: For the given estimated statistics, new
quantizer parameters are computed.

Separating the algorithm into these two building blocks,
an approach similar to that used in adaptive AC, allows us
to use well-known quantizer design techniques (such as the
Lloyd–Max algorithm in the case of constant rate quantizers)
and concentrate on the task of estimating the model. If we
correctly estimate the distribution, then we are guaranteed
optimality. The main contributions of this work are:

1) to make an explicit separation of modeling and quantizer
design;

2) to study methods to model a source based on quantized
samples;

3) to consider nonparametric, piecewise linear models for
the pdf’s.

Nonparametric models are selected (see Section II-A) so as
to minimize the number of assumptions needed. We also study
the amount of memory that should be used in estimating the
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(a)

(b)

Fig. 1. Adaptive quantization algorithm. (a) The adaptation algorithm can be
decomposed into two parts: i) the estimation of the input distribution based
on past samples, and ii) the design of the new quantizergiven the estimated
distribution. (b) In the simplest case, the adaptive algorithm uses a fixed finite
window to estimate the distribution. In a more general case, it would be
necessary to change the speed of adaptation as well, so that the window size
would also change over time.

distribution (i.e., ). Clearly, if the input source were indepen-
dent identically distributed (i.i.d.), it would be reasonable to
accumulate statistics over a long time window. Conversely, if
the source input distribution were changing over time, shorter
windows would have to be used. If the window size is kept
constant, choosing an appropriate size for a given type of
source will result in suboptimal performance for other sources.
We are thus interested in systems, such as that depicted in
Fig. 1(b), where the window size or, equivalently, the speed
of adaptation, can be changed over time.

Note that in our choices we are seeking to avoid making
assumptions on the nature of the source to be quantized.
However, there are two underlying assumptions that we expect
to be met in order for our method to work. First, we assume
that the source pdf will be smooth, e.g., that the pdf is
continuous (higher regularity would be even better). Similarly,
when it comes to the time variance of the sources, we assume
either i.i.d. or independent samples with slow variation. We
believe these two assumptions to be valid for most practical
cases of interest.

We now briefly review some of the relevant prior work.

A. Adaptive Quantization

While some recent work has demonstrated adaptive vector
quantization schemes that do require side information to
specify modifications on existing codebooks [10]–[12], or
to choose among a predetermined set of codebooks [13],
here we focus on backward adaptive schemes, which do not
require overhead information. Examples of backward adaptive
quantization can be found in [14]–[16], where the objective is
to adjust the support region of a uniform scalar quantizer so
that this quantizer can be used in conjunction with a predictor
in a DPCM system. Adaptation is based on one [14], [17], [18]
or more [15] of the previously quantized samples. In [16], both
the support region and the bin sizes can be adjusted, although
the bin sizes are restricted to a finite set of values.

A somewhat different problem is tackled in [19] where an
initial tree-structured vector quantizer (TSVQ) is designed off
line with a rate higher than the rate available for transmission.
At any given time a subtree of the original tree is used, namely,
the one that minimizes the expected distortion (under the
assumption that future samples will have the same distribution
as, recent, past ones). Encoder and decoder keep counts of the
number of samples that corresponded to each of the nodes and
use this information to generate the distortion estimates.

Note that these systems use (implicitly or explicitly) simple
models of the source to determine the changes in quantization.
For instance, [14] assumes that the source distributions are
relatively smooth (and a uniform quantizer is thus suitable) but
have varying dynamic range so that the role of the adaptation
is to estimate the changes in the variance of the source.
Similarly, the assumption in [19] is that the initially designed
tree-structured codebook is sufficiently representative of the
expected input signals, so that the adaptive algorithm can find
a “good” subtree at any given time. In our work, the aim is
to explicitly determine a model for the source from the data
known to encoder and decoder, and then adapt the quantization
scheme to get the best performance for the given model.

B. Adaptive Lossless Compression

The two main approaches to adaptive lossless compression
[9] are model-based (e.g., arithmetic coding (AC) or adap-
tive Huffman coding) and dictionary-based (e.g., Lempel–Ziv
(LZ) coding), where the adaptivity comes from dynamically
updating, respectively, the model and the dictionary.

We will concentrate on the AC algorithm [2]–[4] as it is
closer in spirit to our approach. In an AC scheme, the encoder
keeps track of the probabilities of the input symbols. If the
source is i.i.d. and the model is correct, then AC can achieve
a rate very close to the source entropy. However, in real-life
environments, the performance of the algorithm is determined
by how well it adapts to the changing statistics of the source.
In that sense, model tracking plays an essential part in the AC
algorithm performance. The general idea [20] is to determine
for every newly arrived symbol, whether the occurrence is
“normal,” i.e., consistent with the current model, or “not-
normal,” i.e., unexpected within the current model. Because
of the need to adapt to changing statistics, this scheme will
perform worse than a static algorithm for an i.i.d. source [20].



ORTEGA AND VETTERLI: ADAPTIVE SCALAR QUANTIZATION 667

As another example of adaptation in the context of lossless
coding, it has been shown that the Huffman coding tree can
be modified “on the fly” so that the code adapts to changing
statistics, or learn them starting with no prior knowledge
[6]–[8]. A first approach to generate these statistics would
be to choose the number of samplesover which symbol
occurrences are counted. However, a fully adaptive scheme
would also require a procedure to change, if necessary,
during the coding process in order to improve the performance
[we would thus have a parameter as in Fig. 1(b)]. Recent
work [21] presents a solution to this last question and proposes
that the window size be updated by choosing, among
several possible sizes, the one producing a code with better
compression for the last received symbols.

Finally, it is worth noting the connection between data mod-
eling and data compression. Indeed, the minimum description
length (MDL) principle introduced by Rissanen [22], [23]
provides the link between these two problems by establishing
the asymptotic optimality of describing a distribution with a
set of parameters that requires the least total number of bits
to be encoded when countingboth the bits needed to describe
the model, and the bits needed to encode the occurrences of
the different symbols within the model.

C. Outline of the Paper

The paper is organized as follows. In Section II, we describe
the various components of the adaptive quantization scheme as
depicted in Fig. 1(b). For each of the building blocks we define
the objective and examine some solutions. In Section III,
we analyze the convergence properties of the algorithm. We
consider the asymptotic behavior as well as the various sources
of error in the algorithm. Finally, in Section IV, we provide
some experimental results to demonstrate the advantages and
disadvantages of adaptive quantization over static approaches.

II. A DAPTIVE SCALAR QUANTIZATION ALGORITHM

In this section, we will describe the three building blocks
of the adaptive quantizer, namely, source pdf estimation,
quantizer adaptation, and adjustment of adaptation speed [see
Fig. 1(b)].

A. Estimation of Input Distribution

1) General Case:Given a discrete time input
we are seeking to find a model that best “explains”

the data. To do so, we assume that the lastsamples have
been generated by an i.i.d. source, and we estimate the pdf
of that source, , based on information available at both
encoder and decoder, i.e., the previously quantized samples.
We only assume that the underlying source has a smooth (e.g.,
continuous) pdf and that the source changes slowly, so that
modeling the past samples as if they had been generated by
an i.i.d. source is reasonable. Our objective here is as follows.

Objective 1: Given the most recent quantized sample
occurrences , , where
might be a constant or can be changed by the speed adaptation
algorithm, find an estimate of the probability density
function of the source, .

We consider a quantizer with reconstruction levels
and decision levels denoted .

Additionally, denote , for , the number
of samples, out of the most recently transmitted, which
were quantized to theth bin. and are the number of
samples that fell in the “outer” bins and, obviously,

. Our goal is, given the knowledge of and
, to find a good approximation .1 From the

observed data we can deduce that

for

and (1)

Although strictly speaking, the equality holds only in the limit
as goes to infinity, we use to approximate .

The problem we have formulated is in fact very general
and is encountered, for instance, in statistics when fitting a
model to some data. There are, however, two major differences
between our work and standard model estimation problems: i)
we estimate a modelbased on quantized data, and ii) we insist
on using a nonparametric approach.

By restricting ourselves to the quantized data, we will
operate with reduced information and thus our model esti-
mation technique will perform worse than those described
for standard model estimation problems. In particular, we
may have to separate our model estimation problem into
two parts: i) estimating in the two outer bins, where
we can rely on knowing only one of the boundaries (this is
equivalent to estimating the dynamic range of the source), and
ii) estimating within the inner bins, where we know both
bin boundaries.

A parametric approach would restrict the set of candidate
models to a family of pdf’s determined by a vector parameter
. For example, one could try to find an estimate with

such that is a Gaussian pdf with parameters
and . In our work we choose to use estimatesthat are

piecewise linear approximations to the underlying pdf. We are
obviously estimating a finite set of parameters that uniquely
describe but still deem this approach nonparametric in that
we do not expect the input pdf to also be piecewise linear.
Rather, we choose a model (piecewise linear) that is expected
to provide a reasonably good fit for a wide class of input pdf’s
(but which will not give a “perfect” approximation) instead of
choosing a specific parametric source model (e.g., Gaussian).

2) A Nonparametric Piecewise Linear Approximation:In
general, we can choose a set of points, ,

, and make it our objective to find .
can then be linearly interpolated at other points. The

can be chosen arbitrarily within the estimated dynamic range
of the source, say . The task of approximating the
dynamic range will be dealt with in more detail in Section
II-A5.

1To simplify the notation, in the remainder of the paper we do not use the
subscriptn in f̂n(x), but it should be clear that different̂f(x)’s are obtained
every time the estimated input pdf is updated.
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Assume, thus, given and choose points. Our
goal is then, under the pdf smoothness assumption, to find
such that

for (2)

where . Since is a piecewise linear approxi-
mation, we can write the equations in (2) as a function of
the unknowns . This can be seen as
a typical inverse problem, which in the case of is
underdetermined. Several techniques can be used to regularize
such problems (see [24] for an excellent description of these
techniques). We outline a linear regularization method that has
the advantage of resorting to the pdf smoothness assumption.

Clearly, if , there are many possible solutions that
meet the constraints of (2). For a large enoughlinearizing is
a good approximation, and we can thus write the constraints as

(3)

where if and
, otherwise. Assuming, for simplicity, equally spacedand

normalizing so that , we can write in matrix
form

(4)

where is the vector of the unknown “knots” in the
piecewise linear approximation, is the vector of the
observed probability masses,, and
is the matrix, which determines which should be
considered in each of the constraints.

The basic idea of the linear regularization methods is to
first relax the constraint of choosing to exactly match
the observed frequencies of occurrence as in (4). We thus
introduce a cost , which measures how much a solution
deviates from a perfect fit

(5)

Additionally, we introduce a second cost, which measures
the “smoothness” of the resulting . For instance, if we
expecta priori not to deviate too much from a linear
function, we can introduce a cost based on an approximation
to the second derivative so that

(6)

This can be also expressed in matrix form as

(7)

where , with for , for
, for , and zero elsewhere, for

and .
Now, combining the two costs and and choosing a

real positive number , we can find to minimize

(8)

This is a least squares problem that can be solved using
standard techniques (see [24] for the details.) Thus, we can
find for each value of a set of points that yield an
approximation to the pdf. There are two main advantages to
using this technique, as follows:

1) It does not require an accurate estimation of the “outer
boundaries.” A good guess for the outer boundaries
suffices, as the matching and smoothness criterion will
guarantee smoothly decaying tails for the approximated
distribution.

2) It provides an easy way of including in the estimation
any available prior knowledge about the smoothness of
the pdf to be estimated.

However, there are also drawbacks in this approach, such
as the relatively large number of points that are required,

, and, most importantly, the relevance of a good choice
for the parameter which determines the relative weights to
the smoothness and matching criteria. Potentially, an iterative
procedure, where several’s are tried until an appropriate
solution is found, may be required. For these reasons we
now propose a simpler approach that requires only
points and involves no iterations. Note that, for the appropriate
choice of the smoothness parameter and sufficiently large,
this approach would in fact converge to the true distribution,
while the technique we present next would still generate an
approximation error. However this may not be a decisive con-
sideration since, in general, the “right” smoothness parameter
will not be known.

3) A Simple Noniterative Approach:Assume that the
boundaries and are chosen so that ,
as our estimate of the dynamic range (refer to Fig. 2).
Furthermore, assume that we estimate that our choice of

is expected to “leave out” fractions of the tails of the
distribution such that
(the details will be explained in Section II-A5). Then,
denoting and with

for , we can choose
points , at which we need to calculate the function values

such that will meet the constraint of (2)
for . To restrict the number of degrees of freedom, we
arbitrarily choose the to be the center of each of the
inner bins.2

2Note that we choose for simplicity thexi = (bi+ bi+1)=2 as the “fixed”
points in our piecewise linear approximation. Alternatively, we could have
defined the estimation problem as one where bothfi andxi have to be chosen
to match the observed input and possibly some smoothness constraints, in a
manner similar to the method in Section II-A2.
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Fig. 2. Notation used in the model estimation algorithm. Thebi ’s denote
the decision levels, withb0 and bL denoting the outer boundaries of the
finite support approximation. Thexi ’s are the knots of the piecewise linear
approximation. In this figure, there are as many knots as bins but in general
one can use more knots than bins. Note that we depicted anf(x), which is
nonzero outside the range determined byb0; bL, to emphasize the fact that
these two boundaries have to be estimated and that the operation introduces
some error.

Now we can write the integrals over each bin of the
piecewise linear approximation as

(9)

where can be found by linear interpolation

(10)

and we have and . Note that, since
we have only one “knot” per bin, each of the equations (9)
involves at most three unknowns so
that the system we have to solve is

(11)

where is a tridiagonal matrix and denotes the vector
of observed probabilities (with the corrected tails). Efficient
Gaussian substitution methods can be used to solve this system
[24].

4) The Zero Frequency Problem:So far we have seen how
to estimate the distribution from the available sample counts,
but a further question remains as to whether the counts can be
used as is or some additional assumptions have to be made. In
particular, the zero frequency problem [9], [25] arises: If for
a certain (not one of the outer bins) we have , should
we assume that the source has probability 0 of producing
samples in that range? Or, conversely, should we assume that
the set of samples is not of significant enough size? We adopt
the solution advocated, for instance, in probability estimation
for arithmetic coders, and we add one count to all counters
to avoid the problem [2], [4]. Using some such technique is

particularly important when is small and we have a rapidly
varying source.

5) Estimation of the Dynamic Range:The remaining task
is to determine the points at which we estimate the
pdf to be zero. Note that this problem is especially relevant
in the simple method of Section II-A3. Indeed, while in the
general case a sufficiently large number of interpolation points

enables us to produce a model with smoothly decaying
tails, in the scheme of Section II-A3 we are restricted to a
with linearly decaying tails. More precisely, in the general case
as , the tail in the outer bins can have several linear
segments, thus achieving a smoothly decaying tail, while in
Section II-A3 we are restricted to just one such segment. If we
chose points that overestimate the true dynamic range
of the input source, we may have cases where the result of
solving (11) would yield negative values for .
We are thus interested in having good estimates of the dynamic
range of the source. More formally, our objective here is as
follows.

Objective 2: Find and , defined as the points such
that we estimate the source pdf to be “almost zero.” For these
points we will have by definition and .

The difficulty here stems from the fact that we have limited
information: We know that , resp. , samples fell below

, resp. above , but we need to resort to some of
our assumptions to estimate and . Obviously, the main
assumption is that the outer bins should contain the tails of
the distribution. Based on the available information, i.e., the
counts , the current decision levels, , and
and the dynamic range estimates obtained in the previous
iteration, we will consider three cases as follows (we outline
the algorithm for adjusting , but the same ideas apply for

):

1) If , i.e., the outer bin is empty, we readjust the
boundaries so that (unless the adjacent bin
is also empty), and we then “split” one of the inner
bins (e.g., the one where we observed the most samples,

), say , and we assign samples to
each of the newly formed bins. Thus we choose the new

such that, at least based in our latest observation, we
have .

2) If , then clearly our
current estimate is incorrect, since we assume smoothly
decaying tails for the distribution, and we are observing
greater “sample density” in the outer bin. We have to
expand the quantizer range and thus choose the new
boundaries so that the two adjacent bins have the same
sample density; thus, we pick .

3) The two previous cases occur when there is a large
enough disparity between the current estimate and the
“true” short-term source distribution. When the estimate
is sufficiently good that neither 1) nor 2) apply, we
assume that the tail of the density function is Gaussian
and we determine so that , refer
to [26] for the details.

Note that Cases 1) and 2) have to be dealt with separately,
since they represent situations where our previous estimates
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are incorrect. However, it is clear that, since we carry a running
memory, Cases 1) and 2) would not occur if we updated
the quantizer sufficiently often. For instance, we note how
in [14], [17], where the dynamic range is estimated after
each quantized sample is received, no such situations arise.
However, it may not be practical to recompute the model
as frequently and thus 1) and 2) are needed to enable a
less complex operation of the algorithm. It should also be
pointed out that the estimation of the dynamic range is not as
important when the more general approach is used. Finally,
in some cases, for instance, in image processing applications,
the boundary estimation is not as critical, since the source has
inherently finite and known range.

B. Quantizer Design for the Estimated Distribution

The ideas of the previous section have provided a way of
computing an estimate of the source distribution. The objective
of the next building block [see Fig. 1(b)], is as follows.

Objective 3: Redesign the quantizer for the given density
function . This can be done by using an optimal quantizer
design algorithm that assumesas the input pdf.

As an example, we can design a constant rate quantizer
simply using the Lloyd–Max algorithm for the given piecewise
linear approximation. The task is to choose a new set of bin
boundaries , as well as the corresponding reconstruction
levels , such that the expected distortion for the distribution

is minimized. Note that, as is the case with Huffman
coding, for example, one can guarantee optimality provided
the model matches the source distribution. The algorithm fixes
the outer boundaries and and then uses the standard
Lloyd–Max design procedure [27] iteratively to find the new
boundaries and reconstruction levels. The only difference is
that is used to compute the optimal reconstruction levels,
i.e., the centroids of the source distribution. Thus,

where

is the centroid of theth bin, where is the iteration number.
Note that obviously and are not changed in the

optimization since these are not decision levels and are only
used for the purpose of defining the model . Because
linear approximations to the distribution are used, determining
the centroids can be done in closed form, at a low cost in
complexity.

The same framework can be used with a variable-rate
entropy constrained design [28], where again the only mod-
ification to the standard algorithm is that we operate with
our estimated pdf . For example, the entropy estimates
required by this algorithm can be found as

where is the entropy estimate for theth bin at the th
iteration.

It is important to note that once we have estimated a model
[i.e., chosen the ], the model is not modified by the
quantizer design algorithm. Furthermore, since our system
keeps a running memory of the counts for each bin (the
counters are not reset to zero after the quantizer has been
redesigned), we also change the counters to adjust for the
new bin sizes. Therefore, after the quantizer design stage, and
calling and , respectively, the new bin boundaries and the
updated estimated bin counts, we have that

ROUND (12)

where is rounded to the nearest integer, and we ensure that
. In this manner, the bin counts are reset every

time the model is recomputed. This allows us to maintain a
running memory longer than the model update period, without
taking into account the fact that the samples were quantized
with various quantizers (typically, a different quantizer during
each update period).

C. Determining the Speed of Adaptation

The remaining block to be defined in the encoder of
Fig. 1(b) is that in charge of determining the speed of adapta-
tion. Our aim here is to choose the “memory” of the algorithm,
as in the following objective.

Objective 4: Dynamically determine every time the
quantizer is updated the number of past samplesthat
should be used in estimating the pdf.

The errors produced by the choice of memory can be
separated into the following two classes.

a) Nonsignificant data: If not enough memory is used (
small), we may be dealing with a nonsignificant (in a
statistical sense) set of data and our estimation could be
erroneous.

b) Sources with memory: If the source statistics (as deter-
mined by time averages over finite windows) change
over time, then an excess of memory (large) will
not permit sufficient adaptivity and will result in loss of
performance.

Note that if we were quantizing an i.i.d. source with
unknown statistics, we could use a training mode operation
[29] where the quantizer learns the statistics of the source
during a certain period of time and afterwards the adaptivity
is switched off. Similarly, one could operate the quantizer
alternatively in training and stationary modes according to
whether the current measured statistics agree with previously
measured ones.

In our experiments, we keep two sets of counters, one
accumulating the long-term statistics, the other accumulating
the latest pattern of sample distribution. We choose to use the
short-term data to estimate the model only if the difference
between short- and long-term data exceeds a threshold. In this
way, we try to detect the changes in statistics, while avoiding
always using a short-term estimate, and thus risking having
to deal with nonsignificant data. Other ways of weighting the
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past are possible (and can be combined with the approach
just described). For example, in our experiments we use
exponential weights for the past counts in long term statistics
by multiplying the current bin counts by a “forget factor” 0

1 before updating the counts.

III. CONVERGENCE OF THEADAPTIVE QUANTIZER

While in Section II we proposed using “optimal” quantizer
design algorithms, it should be clear that these are guaranteed
to be optimal only for the set of samples on which they were
trained. Given that our approach entails training the quantizer
on the fly based on pastquantizedsamples, there is no reason
to expect optimal behavior. In this section we study the sources
of error intrinsic to our scheme and analyze its asymptotic
behavior. As will be demonstrated by the examples of Section
IV with real sequences of samples, the suboptimality incurred
is very limited, although pdfs that would make the algorithm
fail are also possible. We will concentrate on the case of
a stationary memoryless input source. While the dynamic
behavior (characterizing how the algorithm performs when the
local statistics of the source change) is also of interest, it is
more difficult to analyze. Such an analysis is left for future
work.

Also, we will not compare the errors introduced by the
different approaches that were presented for approximating

with a piecewise linear function. Although we have set
up a general framework for determining the approximation, we
find the simpler approach of Section II-A3 to be sufficiently
good for our purposes. All the results presented in this section
and Section IV were obtained using the approach of Section
II-A3.

A. Sources of Error

Our adaptive scalar quantization scheme introduces two
sorts of errors which, in general, preclude that the optimal
quantizer for the given source be achieved. These are:

1) Modelizationor approximation error, which results from
designing the new quantizer based on a certain model;
thus optimal performance would not be achieved in
general unless the input pdf exactly matches the model;

2) Estimation error, which results from building the model
on the fly based on a finite memory of previous samples,
rather than based on the complete set of samples as
required to achieve optimality.

Ideally, if the approximation error is zero and the estimation
error goes to zero as the sample size grows to infinity, we
would have auniversal quantizer. Otherwise, the quantizer
will have a certainredundancy.

In general, the approximation error is not going to be
zero. First, we might not have enough information to get an
exact fit to the probability density function . Second, for
computational reasons, we might choose an approximation to
the true probability density function (e.g., a piecewise linear
fit as in our algorithm). This inherent mismatch to the true
probability density function will lead to a suboptimal quantizer
design during the Lloyd–Max procedure.

The estimation error of the pdf’s integral over the bins will
go down to zero, since the variance of the estimated probability
of each bin goes to zero inversely proportionally to the number
of sample points (see Section III-B).

Let us consider the approximation problem in more detail.
First, assume that the probability density function is parametric
with parameters. Assuming that the bins cover the region
of support of the random variable, then we need 1
bins to specify the distribution, and usually this is sufficient,
as pointed out in [30]. For example, a Gaussian random
variable is specified by the probability measure on three
intervals covering the real line. For more complex parametric
distributions, the intervals might have to be chosen with some
care, and finding the parameters from the probability measures
could be involved. In these parametric cases, we are thus able
to identify the pdf exactly from the quantized data, and can
obtain a universal quantizer for the parametric family.

However, there are several reasons a nonparametric approx-
imation such as that proposed here could be preferable. First,
the intervals over which the probability is measured in our
application correspond to the quantization bins. Therefore, we
may have situations where the parametric model estimation
problem is ill conditioned for the given quantization levels.
Second, the goodness of our approximation to a certain ar-
bitrary input source will hinge on how well such a source
can be described by our particular parametric model. Also,
complexity considerations may come into play, and we might
settle for an approximation which can perform reasonably well
(without achieving a perfect fit) for a large class of sources.
The quality of this approximation will depend on the number
of bins and the interpolation function used to approximate the
probability density function.

Instead of a parametric family, we may only assume smooth-
ness properties on the probability density function, which
can then be used in fitting the data.3Note that to measure
the “goodness of fit” we do not consider the quality of the
approximation to the pdf, but rather the obtention a good LMQ.
Indeed, work reported in [30] and [33] has shown that in many
instances a good approximation to the LMQ can be found
using our method, even when a relatively high error is made in
matching the true pdf with a piecewise linear approximation.
Quantifying the additional mean square error (MSE) due to
an LMQ design based on an approximated pdf is beyond the
scope of this work, but is an interesting question in its own
right. Numerical evidence shown in Section IV indicates that a
reasonable fit gives negligible errors in the cases investigated.

B. Asymptotic Performance Under Fine
Quantization Assumption

Let us consider now the high rate case, that is, when the
number of bins grows to infinity. Again assume that the pdf is
smooth (e.g., continuous and differentiable). Then, it is clear

3Actually, if the probability density function belongs to a certain smooth-
ness class, e.g., Lipschitz-1, there exist estimation procedures that allow an
exact fit. However, these use a number of bins that increases with the number
of samples, e.g., asn1=3, and they would have to be modified so as to satisfy
our constant rate requirement [31], [32].
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that the approximation error will go to zero, and again, we will
obtain a universal scheme (but only in the limit of infinite rate).

As for the estimation error, we note that our algorithm is
asymptotically optimal for an i.i.d. source, under the fine quan-
tization assumption. In the asymptotic case, we are interested
in the behavior of the algorithm as i) we gather statistics over
an arbitrarily long time, i.e., large, and ii) the number of
quantization levels becomes large.

The statistics gathered from the decoded data become ar-
bitrarily close to the true statistics of the input source as the
number of observed samples increases. By the law of large
numbers, for a stationary input source, ifis the total number
of observed samples and is the number of samples that
fell in bin , we have that

where is the source pdf and the’s are the bin bound-
aries. Therefore, the variance of the estimated statistics can be
made arbitrarily small for large enough.

Also, when increases, the error we make in approximating
a smooth input pdf with a piecewise linear function decreases.
This is analogous to the arguments used in high-resolution
quantization analyses [27]. Thus, for a sufficiently large num-
ber of quantizer levels, the performance can be made arbitrarily
close to that of the optimal quantizer for the given input pdf,
and thus, quite obviously, the error due to generating the model
based on the quantized levels can be made arbitrarily small.

Therefore, as and increase, our approximation gets ar-
bitrarily close to the true pdf and, thus, the resulting quantizer
is arbitrarily close to optimal.

C. Approximation Error for Memoryless Sources

We now look at the behavior when the source input is again
i.i.d., but we make no assumptions on. This case is of interest
as it provides for practical cases (i.e., with small number of
bins) a measure of how close the adaptive quantizer is to the
optimal performance. Since we noted that under stationarity
the measured bin counts approach those dictated by the true
distribution, we assume here that we know and we thus
eliminate the effect of the estimation error and concentrate
on the approximation error due to using a piecewise linear
approximation instead of the true pdf . Moreover,
we also assume that the input pdf has known finite support
so as to ignore the errors derived from the estimation of the
dynamic range for a nonfinite support distribution.

Note that the Lloyd iteration converges to a solution that
meets the two optimality conditions, namely, the centroid
condition (CC) and the nearest neighbor condition (NNC) [27];
however, it is not guaranteed to converge to a globally optimal
solution. Section IV will present examples of this behavior in
actual sources. The following toy example seeks to isolate the
effect of the quantized data from the error in determining the
dynamic range and the error due to estimating thefrom a
finite set of past data.

1) Example—Solution Using Lloyd–Max with Known pdf:
Let us consider the iterative solution that can be obtained using

Fig. 3. SNR obtained after running the Lloyd–Max iteration on thef̂(x)
obtained with different starting conditions for the quadratic pdf. The horizontal
axis represents the different choices for the initial quantizer with 1 being the
uniform quantizer and 10 the LMQ obtained onf(x). The top line of each
graph indicates the performance of the LMQ design for the true pdf. The top
graph represents the three-bin case, the bottom one the eight-bin case. Note
how the degradation due to the approximation error is smaller, as expected,
in the eight-bin case.

the adaptive algorithm on a known pdf (i.e., no estimation
error). In our example (Figs. 3–5) we use a quadratic pdf
(convolution of three uniform distributions). We first note that
the initial conditions affect the result of the iteration (refer
to Fig. 3). In the experiment we initially use a quantizer that
is a linear combination of the LMQ for the true pdf and a
uniform quantizer. Note how the initial choice of quantizer is
not too critical and, as should be expected, even less so in the
case where a larger number of bins is used. Fig. 3 represents
the result after using a single Lloyd–Max iteration on the
approximated function. If we then use the new quantizer as
the initial condition we again observe convergence.

Fig. 4 represents an example of the successive application
of the algorithm (with a four-level quantizer). Note that the
first iteration (when the algorithm is started with a uniform
quantizer as the initial condition) is already very close to the
convergence value.

We can also measure the performance when using the
iterative solution for different number of quantizer levels. Our
results are shown in Fig. 5. We observe that the iterative
application of our algorithm converges to a unique solution.
Furthermore we see that the loss due to the approximation
error is minimal, and diminishes as the number of levels
increases. This figure shows the lower bound of the error due
to adaptivity.

2) Discussion: Our previous example shows that the
Lloyd–Max algorithm converges for the considered piecewise
linear approximation. More generally, in order for the iteration
to produce a global minimum, a sufficient condition [34],
[35] is to have a log-concave . For instance a concave
piecewise linear approximation can be shown to be log-
concave and, thus, will yield a global minimum. Generally
speaking, we should expect that if a solution exists for the
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Fig. 4. SNR obtained after running successive Lloyd–Max iterations where,
at each stage, the true pdf is used to generate the counts that will produce
f̂(x). A 2-b quantizer is used. The resulting quantizer is used as the starting
condition of the following iteration. Note that convergence is fast and that even
after only one iteration (with a uniform quantizer as the initial condition) the
SNR is very close to that attained at convergence.

Fig. 5. Loss in performance due to the approximation error for several
numbers of quantizer levels. The curve depicts the difference in SNR between
the optimal LMQ and the quantizer obtained after iterating our algorithm. Note
that the loss diminishes as the number of level increases. Also note that the
decrease is not strictly monotonic. The error incurred betweenf(x) andf̂(x)
in the approximation is clearly strictly monotonic in the number of quantizer
levels, but this may not be the case as far as the loss in performance of the
LMQ is concerned.

underlying pdf then a good approximation will
also be well behaved.

Convergence was also observed in the experiments per-
formed on real sources. In the above example, we only
suffered from the approximation error since the were
computed directly from the known pdf . However, in the
case of actual sources, the errors in estimating bothand
the bin boundaries would prevent a perfect convergence. In
other words, even for an i.i.d. source, the quantizer obtained
in the process of successively estimating and running

the Lloyd–Max algorithm will probably change slightly at
each iteration, because the samples observed over the latest
interval may give slightly different estimates for due to the
estimation error.

IV. EXPERIMENTAL RESULTS

In this section, we present several examples to illustrate the
performance of our adaptive quantization. We are concerned
with the advantages of adaptivity in situations where the input
pdf, as measured by the local gathered statistics, changes
over time. We will also show examples for i.i.d. sources,
where we should be experiencing some performance loss due
to the adaptivity of the algorithm and to various sources
of error described in the previous section. Most examples
are provided for fixed rate quantizers at a rate of 2 b per
sample. The examples with variable rate quantization indicate
the achieved SNR versus entropy trade-off. Note that we
use the normalized SNR, , where and
are, respectively, the variance of the signal and that of the
error. When we are dealing with time-varying signals, we
use averages over windows as our estimates for the variance.
We use two types of sources in our experiments, memoryless
Gaussian sources and “bimodal” sources, which are generated
using a Markov chain (each of the two states of the Markov
chain generates a memoryless Gaussian output).

A. Advantages of Adaptivity

An adaptive algorithm can be useful even in the case of
i.i.d. sources. In particular, adaptive schemes can learn the
distribution on the fly (for instance, they could operate in
“training mode” part of the time, typically at the beginning of
the transmission). Furthermore, because they are not designed
for a specific distribution, they do not suffer the shortcoming
of loss of performance in the face of mismatch between the
actual source distribution and the one that was assumed in the
design. Examples can be seen in Fig. 6(a) and (b), where the
behavior of the adaptive algorithm and an LMQ are compared
when the mean and variance of the source, respectively, do
not match those assumed in the design.

A second advantage of using an adaptive algorithm is that
it can outperform systems that are designed considering only
long term statistics, by attempting to find short-term trends
in the data. As an example, Fig. 7(a) shows the performances
of the Lloyd–Max algorithm (trained on the sequence) and
the adaptive algorithm for a bimodal source, which randomly
switches between two states, each producing different mean
and variance. When an i.i.d. source is considered though, the
adaptive approach will be less effective although, as shown
in Fig. 7(b) for a Gaussian distribution, only marginally so.
Note that the results we present were obtained using the
adaptive algorithm with thesameparameters for both types
of sources (i.e., both the time between quantizer updates,
and all the thresholds were fixed at the same level in both
cases). Fig. 8 shows that the advantage of adaptivity can
also be obtained within an entropy-constrained variable-rate
quantization framework [28].
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(a)

(b)

Fig. 6. Comparison between adaptive and Lloyd–Max algorithms. (a) Mean
mismatch. The LMQ is designed for a zero mean Gaussian source. The
adaptive algorithm maintains its performance constant. The variance of the
source was 1. (b) Variance mismatch. The LMQ is designed for a variance 1
Gaussian source. As the mismatch becomes significant, the adaptive algorithm
clearly outperforms the LMQ.

B. Loss Due to Adaptivity

In this section, we briefly discuss the performance of our
adaptive algorithm for i.i.d. sources, and show how the loss
due to operating with estimates of the distribution—rather
than the samples themselves as is the case in the Lloyd–Max
design—is minimal. In our experiment, we use the adaptive
algorithm but initialize it with the optimal LMQ trained on
the source, rather than a uniform quantizer as is usually the
case. In this way, since our first “guess” was optimal, the loss
in performance is due exclusively to the adaptivity. Table I
summarizes our results.

In Table I, the recurrence time is the period between
consecutive quantizer updates. The memory (measured in units
of the recurrence times) represents the number of samples that
are considered to generate the new quantizer. For instance,
a memory of 1.25 implies that the previous 50 samples are
used when the recurrence time is 40, and a memory of

(a)

(b)

Fig. 7. Comparison of performance of Lloyd–Max and the adaptive algo-
rithm. The SNR is the average measured over blocks of 2000 samples. (a)
When a bimodal source is considered, the performance is much better than
a Lloyd–Max design based on the complete sequence. The source switches
between two states each producing different mean but same variance (�

2
=

1). (b) When a stationary Gaussian source (�
2
= 1) is considered, the loss

due to the adaptation is minimal.

means that all previous samples are considered at every update.
We note that, as the number of samples becomes small, the
main factor is the “nonsignificance” error, i.e., not enough
information is used in updating the quantizers. This error can
be overcome by appropriate choice of the speed of adaptation.
Conversely, for long update intervals the main factor is the
error introduced by the algorithm itself due to its manipulating
quantized data, rather than the original samples as in the
Lloyd–Max algorithm. This error can be seen to be very small.

V. CONCLUSIONS AND FUTURE WORK

We have described an adaptive quantization algorithm,
which learns the source distribution from the quantized data
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(a)

(b)

Fig. 8. Comparison of performance of Lloyd–Max and the adaptive algo-
rithm in the entropy-constrained case. The average entropy of the quantizer
is used. (a) When a bimodal source is considered, the performance is much
better than a Lloyd–Max design based on the complete sequence. (b) When
a stationary Gaussian source (�

2
= 1) is considered, the loss due to the

adaptation is minimal.

and adapts the quantizer parameters using well-known design
methods. As an example, we have demonstrated adaptive
fixed-rate and entropy-constrained scalar quantizers that use
a piecewise linear approximation of the estimated source
distribution and rely on the well-known Lloyd–Max and
entropy-constrained quantization design algorithms to update
the quantizer parameters. Our backward adaptive algorithm
can also be used for quantization schemes, such as trellis coded
quantization (TCQ) [36] and scalar vector quantization (SVQ)
[37], which rely on an underlying scalar quantizer [38]. Recent
work has also extended the algorithm by allowing overhead
information to be sent [33] and by considering piecewise
polynomial approximations [39].

Future research will concentrate on extending these ideas
to more general environments (e.g., VQ), and exploring its
suitability for DPCM applications. Applications to image

TABLE I
PERFORMANCE AT DIFFERENT SPEEDS OFADAPTATION FOR A STATIONARY

SOURCE. NOTE THAT THE ADAPTIVE ALGORITHM WAS INITIALIZED

WITH THE OPTIMAL QUANTIZER AS DESIGNED BY THE LLOYD–MAX

ALGORITHM ON THE ACTUAL DATA. LMQ PERFORMANCE IS9.271 dB

compression, e.g., in quantization of subbands, are being
investigated [40]. Further work is needed on the problem
of estimating the boundaries and determining the speed of
adaptation.
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