
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998 2435

Data Compression and Harmonic Analysis
David L. Donoho, Martin Vetterli,Fellow, IEEE, R. A. DeVore, and Ingrid Daubechies,Senior Member, IEEE

(Invited Paper)

Abstract—In this paper we review some recent interactions
between harmonic analysis and data compression. The story
goes back of course to Shannon’sR(D) theory in the case of
Gaussian stationary processes, which says that transforming into
a Fourier basis followed by block coding gives an optimal lossy
compression technique; practical developments like transform-
based image compression have been inspired by this result. In
this paper we also discuss connections perhaps less familiar to
the Information Theory community, growing out of the field
of harmonic analysis. Recent harmonic analysis constructions,
such as wavelet transforms and Gabor transforms, are essentially
optimal transforms for transform coding in certain settings.
Some of these transforms are under consideration for future
compression standards.

We discuss some of the lessons of harmonic analysis in this
century. Typically, the problems and achievements of this field
have involved goals that were not obviously related to practical
data compression, and have used a language not immediately
accessible to outsiders. Nevertheless, through an extensive gen-
eralization of what Shannon called the “sampling theorem,”
harmonic analysis has succeeded in developing new forms of
functional representation which turn out to have significant
data compression interpretations. We explain why harmonic
analysis has interacted with data compression, and we describe
some interesting recent ideas in the field that may affect data
compression in the future.

Index Terms—Besov spaces, block coding, cosine packets,�-
entropy, Fourier transform, Gabor transform, Gaussian proc-
ess, Karhunen–Loève transform, Littlewood–Paley theory, non-
Gaussian process,n-widths, rate-distortion, sampling theorem,
scalar quantization, second-order statistics, Sobolev spaces, sub-
band coding, transform coding, wavelet packets, wavelet trans-
form, Wilson bases.

“Like the vague sighings of a wind at even
That wakes the wavelets of the slumbering sea.”

Shelley, 1813
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announcing A. S. B.’s election to fellowship at Trinity

“ the 20 bits per second which, the psychologists assure us,
the human eye is capable of taking in, ”

D. Gabor, Guest Editorial,IRE Trans. Inform Theory,
Sept. 1959.

I. INTRODUCTION

DATA compression is an ancient activity; abbreviation and
other devices for shortening the length of transmitted

messages have no doubt been used in every human society.
Language itself is organized to minimize message length, short
words being more frequently used than long ones, according
to Zipf’s empirical distribution.

Before Shannon, however, the activity of data compression
was informal andad hoc; Shannon created a formal intellectual
discipline for both lossless and lossy compression, whose 50th
anniversary we now celebrate.

A remarkable outcome of Shannon’s formalization of prob-
lems of data compression has been the intrusion of so-
phisticated theoretical ideas into widespread use. The JPEG
standard, set in the 1980’s and now in use for transmitting
and storing images worldwide, makes use of quantization, run-
length coding, entropy coding, and fast cosine transformation.
In the meantime, software and hardware capabilities have
developed rapidly, so that standards currently in process of
development are even more ambitious. The proposed standard
for still image compression—JPEG-2000—contains the pos-
sibility for conforming codecs to use trellis-coded quantizers,
arithmetic coders, and fast wavelet transforms.

For the authors of this paper, one of the very striking
features of recent developments in data compression has been
the applicability of ideas taken from the field of harmonic
analysis to both the theory and practice of data compres-
sion. Examples of this applicability include the appearance
of the fast cosine transform in the JPEG standard and the
consideration of the fast wavelet transform for the JPEG-2000
standard. These fast transforms were originally developed in
applied mathematics for reasons completely unrelated to the
demands of data compression; only later were applications in
compression proposed.

John Tukey became interested in the possibility of acceler-
ating Fourier transforms in the early 1960’s in order to enable
spectral analysis of long time series; in spite of the fact that
Tukey coined the word “bit,” there was no idea in his mind
at the time of applications to data compression. Similarly,
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the construction of smooth wavelets of compact support was
prompted by questions posed implicitly or explicitly by the
multiresolution analysis concept of Mallat and Meyer, and not,
at that time, by direct applications to compression.

In asking about this phenomenon—the applicability of com-
putational harmonic analysis to data compression—there are,
broadly speaking, two extreme positions to take.

The first, maximalist position holds that there is a deep
reason for the interaction of these disciplines, which can be
explained by appeal to information theory itself. This point
of view holds that sinusoids and wavelets will necessarily
be of interest in data compression because they have a spe-
cial “optimal” role in the representation of certain stochastic
processes.

The second,minimalist position holds that, in fact, com-
putational harmonic analysis has exerted an influence on data
compression merely by happenstance. This point of view holds
that there is no fundamental connection between, say, wavelets
and sinusoids, and the structure of digitally acquired data to
be compressed. Instead, such schemes of representation are
privileged to have fast transforms, and to be well known, to
have been well studied and widely implemented at the moment
that standards were being framed.

When one considers possible directions that data compres-
sion might take over the next fifty years, the two points of
view lead to very different predictions. The maximalist posi-
tion would predict that there will be continuing interactions
between ideas in harmonic analysis and data compression;
that as new representations are developed in computational
harmonic analysis, these will typically have applications to
data compression practice. The minimalist position would
predict that there will probably be little interaction between
the two areas in the future, or that what interaction does take
place will be sporadic and opportunistic.

In this paper, we would like to give the reader the back-
ground to appreciate the issues involved in evaluating the
two positions, and to enable the reader to form his/her own
evaluation. We will review some of the connections that
have existed classically between methods of harmonic analysis
and data compression, we will describe the disciplines of
theoretical and computational harmonic analysis, and we will
describe some of the questions that drive those fields.

We think there is a “Grand Challenge” facing the disciplines
of both theoretical and practical data compression in the future:
the challenge of dealing with the particularity of naturally
occurring phenomena. This challenge has three facets:

GC1 Obtaining accurate models of naturally occurring
sources of data.

GC2 Obtaining “optimal representations” of such models.

GC3 Rapidly computing such “optimal representations.”

We argue below that current compression methods might be
far away from the ultimate limits imposed by the underlying
structure of specific data sources, such as images or acoustic
phenomena, and that efforts to do better than what is done
today—particularly in specific applications areas—are likely
to pay off.

Moreover, parsimonious representation of data is a fun-
damental problem with implications reaching well beyond
compression. Understanding the compression problem for a
given data type means an intimate knowledge of the modeling
and approximation of that data type. This in turn can be
useful for many other important tasks, including classification,
denoising, interpolation, and segmentation.

The discipline of harmonic analysis can provide interesting
insights in connection with the Grand Challenge.

The history of theoretical harmonic analysis in this cen-
tury repeatedly provides evidence that in attacking certain
challenging and important problems involving characterization
of infinite-dimensional classes of functions, one can make
progress by developing new functional representations based
on certain geometric analogies, and by validating that those
analogies hold in a quantitative sense, through a norm equiv-
alence result. Also, the history of computational harmonic
analysis has repeatedly been that geometrically motivated
analogies constructed in theoretical harmonic analysis have
often led to fast concrete computational algorithms.

The successes of theoretical harmonic analysis are interest-
ing from a data compression perspective. What the harmonic
analysts have been doing—showing that certain orthobases
afford certain norm equivalences—is analogous to the classical
activity of showing that a certain orthobasis diagonalizes a
quadratic form. Of course, the diagonalization of quadratic
forms is of lasting significance for data compression in con-
nection with transform coding of Gaussian processes. So one
could expect the new concept to be interestinga priori. In fact,
the new concept of “diagonalization” obtained by harmonic
analysts really does correspond to transform coders—for ex-
ample, wavelet coders and Gabor coders.

The question of whether the next 50 years will display
interactions between data compression and harmonic analysis
more like a maximalist or a minimalist profile is, of course,
anyone’s guess. This paper provides encouragement to those
taking the maximalist position.

The paper is organized as follows. At first, classical results
from rate-distortion theory of Gaussian processes are reviewed
and interpreted (Sections II and III). In Section IV, we
develop the functional point of view, which is the setting for
harmonic analysis results relevant to compression, but which
is somewhat at variance with the digital signal processing
viewpoint. In Section V, the important concept of Kolmogorov
-entropy of function classes is reviewed, as an alternate

approach to a theory of compression. In Section VI, practical
transform coding as used in image compression standards is
described. We are now in a position to show commonalities
between the approaches seen so far (Section VII), and then
to discuss limitations of classical models (Section VIII) and
propose some variants by way of simple examples. This leads
to pose the “Grand Challenges” to data compression as seen
from our perspective (Section IX), and to overview how
Harmonic Analysis might participate in their solutions. This
leads to a survey of Harmonic Analysis results, in particu-
lar on norm equivalences (Sections XI–XIII) and nonlinear
approximation (Section XIV). In effect, one can show that
harmonic analysis, which is effective at establishing norm
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equivalences, leads to coders which achieve the-entropy of
functional classes (Section XV). This has a transform coding
interpretation (Section XVI), showing a broad analogy be-
tween the deterministic concept of unconditional basis and the
stochastic concept of Karhunen–Lo`eve expansion. In Section
XVII, we discuss the role of tree-based ideas in harmonic
analysis, and the relevance for data compression. Section
XVIII briefly surveys some harmonic analysis results on
time–frequency-based methods of data compression. The fact
that many recent results from theoretical harmonic analysis
have computationally effective counterparts is described in
Section XIX. Practical coding schemes using or having led to
some of the ideas described thus far are described in Section
XX, including current advanced image compression algorithms
based on fast wavelet transforms. As a conclusion, a few key
contributors in harmonic analysis are used to iconify certain
key themes of this paper.

II. FOR GAUSSIAN PROCESSES

Fifty years ago, Claude Shannon launched the subject
of lossy data compression of continuous-valued stochastic
processes [83]. He proposed a general idea, the rate-distortion
function, which in concrete cases (Gaussian processes) leads
to a beautifully intuitive method to determine the number of
bits required to approximately represent sample paths of a
stochastic process.

Here is a simple outgrowth of the Shannon theory, impor-
tant for comparison with what follows. Suppose is a
Gaussian zero-mean stochastic process on an intervaland
let denote the minimal number of codewords needed
in a codebook so that

(2.1)

Then Shannon proposed that in an asymptotic sense

(2.2)

where is the rate-distortion function for

(2.3)

with the usual mutual information, given formally by

(2.4)

Here can be obtained in parametric form from a
formula which involves functionals of the covariance kernel

; more specifically of the eigen-
values In the form first published by Kolmogorov (1956),
but probably known earlier to Shannon, for we have

(2.5)

where

(2.6)

The random process achieving the minimum of the mutual
information problem can be described as follows. It has a

covariance with the same eigenfunctions as that of, but
the eigenvalues are reduced in size:

To obtain a codebook achieving the value predicted by
, Shannon’s suggestion would be to sample realiza-

tions from the reproducing process realizing the minimum
of the least mutual information problem.

Formally, then, the structure of the optimal data compres-
sion problem is understood by passing to the Karhunen–Loève
expansion

In this expansion, the coefficients are independent zero-mean
Gaussian random variables. We have a similar expansion for
the reproducing distribution

The process has only finitely many nonzero coefficients,
namely, those coefficients at indices where ; let

denote the indicated subset of coefficients. Random
codebook compression is effected by comparing the vector
of coefficients with a sequence of
codewords for looking
for a closest match in Euclidean distance. The approach
just outlined is often called “reverse waterfilling,” since only
coefficients above a certain water level are described in the
coding process.

As an example, let and let be the Brownian
Bridge, i.e., the continuous Gaussian process with covariance

This Gaussian process has
and can be obtained by taking a Brownian motion

and “pinning” it down at
The covariance kernel has sinusoids for eigenvectors:

, and has eigenvalues The subset
amounts to a frequency band of the first

frequencies as (Here and below, we use
to mean that the two expressions are equivalent

to within multiplicative constants, at least as the underlying
argument tends to its limit.) Hence the compression scheme
amounts to “going into the frequency domain,” “extracting the
low frequency coefficients,” and “comparing with codebook
entries.” The number of low frequency coefficients to keep is
directly related to the desired distortion level. The achieved

in this case scales as
Another important family of examples is given by stationary

processes. In this case, the eigenfunctions of the covariance
are essentially sinusoids, and the Karhunen–Loève expansion
has a more concrete interpretation. To make things simple and
analytically exact, suppose we are dealing with the circle

, and considering stationarity with respect to circular
shifts. The stationarity condition is where

denotes circular (clock) arithmetic. The eigenfunctions
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of are the sinusoids

and the eigenvalues are the Fourier coefficients of

We can now identify the index with frequency, and
the Karhunen–Lo`eve representation effectively says that
the Fourier coefficients of are independently zero-mean
Gaussian, with variances and that the reproducing process

has Fourier coefficients which are independent Gaussian
coefficients with variances For instance, consider the
case as ; then the stationary process
has nearly -derivatives in a mean-square sense.
For this example, the band amounts to the first

frequencies. Hence once again the
compression scheme amounts to “going into the frequency
domain,” “extracting the low frequency coefficients,” and
“comparing with codebook entries,” and the number of
low frequency coefficients retained is given by the desired
distortion level. The achieved in this case scales as

III. I NTERPRETATIONS OF

The compression scheme described by the solution of
in the Gaussian case has several distinguishing features.

• Transform Coding Interpretation:Undoubtedly the most
important thing to read off from the solution is that
data compression can be factored into two components: a
transform step followed by a coding step. The transform
step takes continuous data and yields discrete sequence
data; the coding step takes an initial segment of this
sequence and compares it with a codebook, storing the
binary representation of the best matching codeword.

• Independence of the Transformed Data:The transform
step yields uncorrelated Gaussian data, hencestochas-
tically independentdata, which are, after normalization
by factors , identically distributed. Hence, the
apparently abstract problem of coding a process
becomes closely related to the concrete problem of coding
a Gaussian memoryless source, under weighted distortion
measure.

• Manageable Structure of the Transform:The transform
itself is mathematically well-structured. It amounts to
expanding the object in the orthogonal eigenbasis
associated with a self-adjoint operator, which at the
abstract level is a well-understood notion. In certain
important concrete cases, such as the examples we have
given above, the basis even reduces to a well-known
Fourier basis, and so optimal coding involves explicitly
harmonic analysisof the data to be encoded.

There are two universality aspects we also find remarkable:

• Universality Across Distortion Level:The structure of
the ideal compression system does not depend on the
distortion level; the same transform and coder structure
are employed, but details of the “useful components”

change.

• Universality Across Stationary Processes:Large classes
of Gaussian processes will share approximately the same
coder structure, since there are large classes of covariance
kernels with the same eigenstructure. For example, all
stationary covariances on the circle have the same eigen-
functions, and so, there is a single “universal” transform
that is appropriate for transform coding of all such
processes—the Fourier transform.

At a higher level of abstraction, we remark on two further
aspects of the solution.

• Dependence on Statistical Characterization:To the ex-
tent that the orthogonal transform is not universal, it
nevertheless depends on the statistical characterization
of the process in an easily understandable way—via the
eigenstructure of the covariance kernel of the process.

• Optimality of the Basis:Since the orthobasis underlying
the transform step is the Karhunen–Loève expansion, it
has an optimality interpretation independently from its
coding interpretation; in an appropriate ordering of the
basis elements, partial reconstruction from the first
components gives the best mean-squared approximation
to the process available from any orthobasis.

These features of the solution are so striking and
so memorable, that it is unavoidable to incorporate these
interpretations as deep “lessons” imparted by the calcu-
lation. These “lessons,” reinforced by examples such as those
we describe later, can harden into a “world view,” creating
expectations affecting data compression work in practical
coding.

• Factorization:One expects to approach coding problems
by compartmentalization: attempting to design a two-step
system, with the first step a transform, and the second
step a well-understood coder.

• Optimal Representation:One expects that the transform
associated with an optimal coder will be an expansion in
a kind of “optimal basis.”

• Empiricism: One expects that this basis is associated
with the statistical properties of the process and so, in
a concrete application, one could approach coding prob-
lems empirically. The idea would be to obtain empirical
instances of process data, and to accurately model the co-
variance kernel (dependence structure) of those instances;
then one would obtain the corresponding eigenfunctions
and eigenvalues, and design an empirically derived near-
ideal coding system.

These expectations are inspiring and motivating. Unfortu-
nately, there is really nothing in the Shannon theory which
supports the idea that such “naive” expectations will apply
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outside the narrow setting in which the expectations were
formed. If the process data to be compressed are not Gaussian,
the derivation mentioned above does not apply, and one
has no right to expect these interpretations to apply.

In fact, depending on one’s attraction to pessimism, it would
also be possible to entertain completely opposite expectations
when venturing outside the Gaussian domain. If we consider
the problem of data compression of arbitrary stochastic pro-
cesses, the following expectations are essentially all that one
can apply.

• Lack of Factorization:One does not expect to find an
ideal coding system for an arbitrary non-Gaussian process
that involves transform coding, i.e., a two-part factoriza-
tion into a transform step followed by a step of coding
an independent sequence.

• Lack of Useful Structure:In fact, one does not ex-
pect to find any intelligible structure whatsoever, in
an ideal coding system for an arbitrary non-Gaussian
process—beyond the minimal structure on the random
codebook imposed by the problem.

For purely human reasons, it is doubtful, however, that this
set of “pessimistic” expectations is very useful as a working
hypothesis. The more “naive” picture, taking the story
for Gaussian processes as paradigmatic, leads to the following
possibility:as we consider data compression in a variety of set-
tings outside the strict confines of the original Gaussian
setting, we will discover that many of the expectations formed
in that setting still apply and are useful, though perhaps in a
form modified to take account of the broader setting. Thus for
example, we might find that factorization of data compression
into two steps, one of them an orthogonal transform into a kind
of optimal basis, is a property of near-ideal coders that we see
outside the Gaussian case; although we might also find that
the notion of optimality of the basis and the specific details
of the types of bases found would have to change. We might
even find that we have to replace “expansion in an optimal
basis” by “expansion in an optimal decomposition,” moving
to a system more general than a basis.

We will see several instances below where the lessons of
Gaussian agree with ideal coders under this type of
extended interpretation.

IV. FUNCTIONAL VIEWPOINT

In this paper we have adopted a point of view we call
the functional viewpoint. Rather than thinking of data to be
compressed as numerical arrays with integer index , we
think of the objects of interest as functions—functions
of time or functions of space To use terminology
that Shannon would have found natural, we are considering
compression of analog signals. This point of view is clearly
the one in Shannon’s 1948 introduction of the optimization
problem underlying theory, but it is less frequently
seen today, since many practical compression systems start
with sampled data. Practiced IT researchers will find one
aspect of our discussion unnatural: we study the case where
the index set stays fixed. This seems at variance even

with Shannon, who often let the domain of observation grow
without bound. The fixed-domain functional viewpoint is
essential for developing the themes and theoretical connections
we seek to expose in this paper—it is only through this
viewpoint that the connections with modern Harmonic analysis
become clear. Hence, we pause to explain how this viewpoint
can be related to standard information theory and to practical
data compression.

A practical motivation for this viewpoint can easily be
proposed. In effect, when we are compressing acoustic or
image phenomena, there is truly an underlying analog rep-
resentation of the object, and a digitally sampled object is an
approximation to it. Consider the question of an appropriate
model for data compression of still-photo images. Over time,
consumer camera technology will develop so that standard
cameras will routinely be able to take photos with several
megapixels per image. By and large, consumers using such
cameras will not be changing their photographic compositions
in response to the increasing quality of their equipment; they
will not be expanding their field of view in picture taking, but
rather, they will instead keep the field of view constant, and
so as cameras improve they will get finer and finer resolution
on the same photos they would have taken anyway. So what
is increasing asymptotically in this setting is the resolution
of the object rather than the field of view. In such a setting,
the functional point of view is sensible. There is a continuum
image, and our digital data will sooner or later represent a
very good approximation to such a continuum observation.
Ultimately, cameras will reach a point where the question of
how to compress such digital data will best be answered by
knowing about the properties of an ideal system derived for
continuum data.

The real reason for growing-domain assumptions in infor-
mation theory is a technical one: it allows in many cases
for the proof of source coding theorems, establishing the
asymptotic equivalence between the “formal bit rate”
and the “rigorous bit rate” In our setting, this
connection is obtained by considering asymptotics of both
quantities as In fact, it is the setting that
we focus on here, and it is under this assumption that we can
show the usefulness of harmonic analysis techniques to data
compression.1 This may seem at first again at variance with
Shannon, who considered the distortion fixed (on a per-unit
basis) and let the domain of observation grow without bound.

We have two nontechnical responses.

• The Future:With the consumer camera example in mind,
high-quality compression of very large data sets may soon
be of interest. So the functional viewpoint, and low-
distortion coding of the data, may be very interesting
settings in the near future.

• Scaling: In important situations there is a near equiva-
lence between the “growing domain” viewpoint and the
“functional viewpoint.” We are thinking here of phenom-
ena like natural images which have scaling properties: if
we dilate an image, “stretching it out” to live on a growing

1TheD! 0 case is usually called the fine quantization or high-resolution
limit in quantization theory; see [48].
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domain, then after appropriate rescaling, we get statistical
properties that are the same as the original image [37],
[81]. The relevance to coding is evident, for example,
in the stationary Gaussian case for the process
defined in Section II, which has eigenvalues obeying an
asymptotic power law, and hence which asymptotically
obeys scale invariance at fine scales. Associated to a given
distortion level is a characteristic “cutoff frequency”

; dually this defines a scale of approximation;
to achieve that distortion level it is necessary only to
know the Fourier coefficients out to frequency ,
or to know the samples of a bandlimited version of the
object out to scale This characteristic scale
defines a kind of effective pixel size. As the distortion
level decreases, this scale decreases, and one has many
more “effective pixels.” Equivalently, one could rescale
the object as a function of so that the characteris-
tic scale stays fixed, and then the effective domain of
observation would grow.

In addition to these relatively general responses, we have a
precise response: allows Source Coding Theorems.
To see this, return to the setting of Section II, and
the stochastic process with asymptotic power law eigenvalues
given there. We propose grouping frequencies into subbands

The subband boundaries
should be chosen in such a way that they get increasingly

long with increasing but that in a relative sense, measured
with respect to distance from the origin, they get increasingly
narrow

(4.1)

The Gaussian problem of Section II has the structure
suggesting that one needs to code the first coefficients
in order to get a near-ideal system. Suppose we do this by
dividing the first Fourier coefficients of into subband
blocks and then code the subband blocks using the appropriate
coder for a block from a Gaussian independent and identically
distributed (i.i.d.) source.

This makes sense. For the process we are studying, the
eigenvalues decay smoothly according to a power law.
The subbands are chosen so that the variancesare roughly
constant in subbands

(4.2)

Within subband blocks, we may then reasonably regard the
coefficients as independent Gaussian random variables with
a common variance. It is this property that would suggest to
encode the coefficients in a subband using a coder for an i.i.d.
Gaussian source. The problem of coding Gaussian i.i.d. data is
among the most well-studied problems in information theory,
and so this subband partitioning reduces the abstract problem
of coding the process to a very familiar one.

As the distortion tends to zero, the frequency cutoff
in the underlying problem tends to infinity,

and so the subband blocks we must code include longer and
longer blocks farther and farther out in the frequency domain.
These blocks behave more and more nearly like long blocks
of Gaussian i.i.d. samples, and can be coded more and more
precisely at the rate for a Gaussian source, for example using
a random codebook. An increasing fraction of all the bits
allocated comes from the long blocks, where the coding is
increasingly close to the rate. Hence we get the asymptotic
equality of “formal bits” and “rigorous bits” as

(Of course in a practical setting, as we will discuss farther
below, block coding of i.i.d. Gaussian data, is impractical to
“instrument;” there is no known computationally efficient way
to code a block of i.i.d. Gaussians approaching the limit.
But in a practical case one can use known suboptimal coders
for the i.i.d. problem to code the subband blocks. Note also
that such suboptimal coders can perform rather well, especially
in the high-rate case, since an entropy-coded uniform scalar
quantizer performs within 0.255 bit/sample of the optimum.)

With the above discussion, we hope to have convinced the
reader that our functional point of view, although unconven-
tional, will shed some interesting light on at least the high-rate,
low-distortion case.

V. THE -ENTROPY SETTING

In the mid-1950’s, A. N. Kolmogorov, who had been
recently exposed to Shannon’s work, introduced the notion
of the -entropy of a functional class, defined as follows. Let

be a domain, and let be a class of functions
on that domain; suppose is compact for the norm , so
that there exists an-net, i.e., a system such that

(5.1)

Let denote the minimal cardinality of all such
-nets. The Kolmogorov-entropy for is then

(5.2)

It is the least number of bits required to specify any arbitrary
member of to within accuracy In essence, Kolmogorov
proposed a notion of data compression forclasses of functions
while Shannon’s theory concerned compression forstochastic
processes.

There are some formal similarities between the problems
addressed by Shannon’s and Kolmogorov’s To
make these clear, notice that in each case, we consider
a “library of instances”—either a function class or a
stochastic process , each case yielding as typical elements
functions defined on a common domain—and we measure
approximation error by the same norm

In both the Shannon and Kolmogorov theories we encode by
first constructing finite lists of representative elements—in one
case, the list is called a codebook; in the other case, a net. We
represent an object of interest by its closest representative in
the list, and we may record simply the index into our list. The
length in bits of such a recording is called in the Shannon case
the rate of the codebook; in the Kolmogorov case, the entropy
of the net. Our goal is to minimize the number of bits while
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Shannon Theory Kolmogorov Theory

Library Stochastic
Representers Codebook Net
Fidelity
Complexity

achieving sufficient fidelity of reproduction. In the Shannon
theory this is measured by mean discrepancy across random
realizations; in the Kolmogorov theory this is measured by the
maximum discrepancy across arbitrary members ofThese
comparisons may be summarized in the table at the top of
this page.

In short, the two theories are parallel—except that one of the
theories postulates a library of samples arrived at by sampling
a stochastic process, while the other selects arbitrary elements
of a functional class.

While there are intriguing parallels between the and
concepts, the two approaches have developed separately,

in very different contexts. Work on has mostly stayed
in the original context of communication/storage of random
process data, while work with has mostly stayed in the
context of questions in mathematical analysis: the Kolmogorov
entropy numbers control the boundedness of Gaussian pro-
cesses [35] and the properties of certain operators [10], [36],
of convex sets [78], and of statistical estimators [6], [67].

At the general level which Kolmogorov proposed, almost
nothing useful can be said about the structure of an optimal
-net, nor is there any principle like mutual information which

could be used to derive a formal expression for the cardinality
of the -net.

However, there is a particularly interesting case in which
we can say more. Consider the following typical setting for
-entropy. Let be the circle and let

denote the collection of all functions
such that Such functions are
called “differentiable in quadratic mean” or “differentiable in
the sense of H. Weyl.” For approximating functions of this
class in -norm, we have the precise asymptotics of the
Kolmogorov -entropy [34]

(5.3)

A transform-domain coder can achieve this asymptotic.
One divides the frequency domain into subbands, defined
exactly as in (4.1) and (4.2). Then one takes the Fourier
coefficients of the object , obtaining blocks of coefficients

Treating these coefficients now as if they were arbitrary
members of spheres of radius , one encodes
the coefficients using an -net for the sphere of radius
One represents the objectby concatenating a prefix code
together with the code for the individual subbands. The prefix
code records digital approximations to the pairs for
subbands, and requires asymptotically a small number of bits.
The body code simply concatenates the codes for each of the
individual subbands. With the right fidelity allocation—i.e.,

choice of —the resulting code has a length described by the
right side of (5.3).

VI. THE JPEG SETTING

We now discuss the emergence of transform coding ideas in
practical coders. The discrete-time setting of practical coders
makes it expedient to abandon the functional point of view
throughout this section, in favor of a viewpoint based on
sampled data.

A. History

Transform coding plays an important role for images and
audio compression where several successful standards incor-
porate linear transforms. The success and wide acceptance of
transform coding in practice is due to a combination of factors.
The Karhunen–Lòeve transform and its optimality under some
(restrictive) conditions form a theoretical basis for transform
coding. The wide use of particular transforms like the discrete
cosine transform (DCT) led to a large body of experience,
including design of quantizers with human perceptual criteria.
But most importantly, transform coding using a unitary matrix
having a fast algorithm represents an excellent compromise in
terms of computational complexity versus coding performance.
That is, for a given cost (number of operations, run time,
silicon area), transform coding outperforms more sophisticated
schemes by a margin.

The idea of compressing stochastic processes using a linear
transformation dates back to the 1950’s [63], when signals
originating from a vocoder were shown to be compressible
by a transformation made up of the eigenvectors of the
correlation matrix. This is probably the earliest use of the
Karhunen–Lòeve transform (KLT) in data compression. Then,
in 1963, Huang and Schultheiss [55] did a detailed analysis
of block quantization of random variables, including bit allo-
cation. This forms the foundation of transform coding as used
in signal compression practice. The approximation of the KLT
by trigonometric transforms, especially structured transforms
allowing a fast algorithm, was done by a number of authors,
leading to the proposal of the discrete cosine transform in
1974 [1]. The combination of discrete cosine transform, scalar
quantization, and entropy coding was studied in detail for
image compression, and then standardized in the late 1980’s
by the joint picture experts group (JPEG), leading to the JPEG
image compression standard that is now widely used. In the
meantime, another generation of image coders, mostly based
on wavelet decompositions and elaborate quantization and
entropy coding, are being considered for the next standard,
called JPEG-2000.
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B. The Standard Model and the Karhunen–Lo`eve Transform

The structural facts described in Section II, concerning
for Gaussian random processes, become very simple

in the case of Gaussian random vectors. Compression of a
vector of correlated Gaussian random variables factors into a
linear transform followed by independent compression of the
transform coefficients.

Consider a size vector of
zero mean random variables and the
vector of random variables after transformation by, or

Define and
as autocovariance matrices of and , respectively. Since

is symmetric and positive-semidefinite, there is a full
set of orthogonal eigenvectors with nonnegative eigenvalues.
The Karhunen–Lo`eve transform matrix is defined as the
matrix of unit-norm eigenvectors of ordered in terms of
decreasing eigenvalues, that is,

where (for simplicity, we will assume that
). Clearly, transforming with will diagonalize

The KLT satisfies a best linear approximation property in the
mean-squared error sense which follows from the eigenvector
choices in the transform. That is, if only a fixed subset of the
transform coefficients are kept, then the best transform is the
KLT.

The importance of the KLT for compression comes from
the following standard result from source coding [46]. A size-

Gaussian vector source with correlation matrix and
mean zero is to be coded with a linear transform. Bits are
allocated optimally to the transform coefficients (using reverse
waterfilling). Then the transform that minimizes the MSE in
the limit of fine quantization of the transform coefficients is
the Karhunen–Lòeve transform The coding gain due to
optimal transform coding over straight PCM coding is

(6.1)

where we used Recalling that the variances
are the eigenvalues of , it follows that the coding gain is the
ratio of the arithmetic and geometric means of the eigenvalues
of the autocorrelation matrix.

Using reverse waterfilling, the above construction can be
used to derive the function of i.i.d. Gaussian vectors
[19]. However, an important point is that in a practical
setting and for complexity reasons, only scalar quantization
is used on the transform coefficients (see Fig. 1). The high
rate scalar distortion rate function (with entropy coding) for
i.i.d. Gaussian samples of variance is given by

while the Shannon distortion rate function

Fig. 1. Transform coding system, whereT is a unitary transform,Qi are
scalar quantizers, andEi are entropy coders.

is (using block coding). This means that a
penalty of about a quarter bit per sample is paid, a small price
at high rates or small distortions.

C. The Discrete Cosine Transform

To make the KLT approach to block coding operational
requires additional steps. Two problems need to be addressed:
the signal dependence of the KLT (finding eigenvectors of
the correlation matrix), and the complexity of computing the
KLT ( operations). Thus fast fixed transforms (with about

operations) leading to approximate diagonalization
of correlation matrices are used. The most popular among
these transforms is the discrete cosine transform, which has
the property that it diagonalizes approximately the correla-
tion matrix of a first-order Gauss–Markov process with high
correlation , and also the correlation matrix of an
arbitrary Gauss–Markov process (with correlation of sufficient
decay, ) and block sizes The
DCT is closely related to the discrete Fourier transform, and
thus can be computed with a fast Fourier transform like
algorithm in operations. This is a key issue: the
DCT achieves a good compromise between coding gain or
compression, and computational complexity. Therefore, for a
given computational budget, it can actually outperform the
KLT [49].

VII. T HE COMMON GAUSSIAN MODEL

At this point we have looked at three different settings in
which we can interpret the phrase “data compression.” In each
casewe have available a library of instances which we would
like to represent with few bits.

• a) In Section II (on theory) we are considering the
instances to be realizations of Gaussian processes. The
library is the collection of all such realizations.

• b) In Section V (on -entropy) we are considering the
instances to be smooth functions. The libraryis the
collection of such smooth functions obeying the constraint
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• c) In Section VI (on JPEG), we are considering the in-
stances to be existing or future digital images. The library
is implicitly the collection of all images of potential
interest to the JPEG user population.

We can see a clear similarity in the coding strategy used
in each setting.

• Transform into the frequency domain.

• Break the transform into homogeneous subbands.

• Apply simple coding schemes to the subbands.

Why the common strategy of transform coding?
The theoretically tightest motivation for transform coding

comes from Shannon’s theory, which tells us that in
order to best encode a Gaussian process, one should transform
the process realization to the Karhunen–Loève domain, where
the resulting coordinates are independent random variables.
This sequence of independent Gaussian variables can be coded
by traditional schemes for coding discrete memoryless sources.

So when we use transform coding in another setting—
-entropy or JPEG—it appears that we arebehaving as if that

setting could be modeled by a Gaussian process.
In fact, it is sometimes said that the JPEG scheme is

appropriate for real image data because if image data were
first-order Gauss–Markov, then the DCT would be approxi-
mately the Karhunen–Lòeve transform, and so JPEG would
be approximately following the script of the story.
Implicitly, the next statement is “and real image data behave
something like first-order Gauss–Markov.”

What about -entropy? In that setting there is no obvious
“randomness,” so it would seem unclear how a connection
with Gaussian processes could arise. In fact, a proof of
(5.3) can be developed by exhibiting just such a connection
[34]; one can show that there are Gaussian random functions
whose sample realizations obey, with high probability, the
constraint and for which
the theory of Shannon accurately matches the number
of bits required, in the Kolmogorov theory, to represent
within a distortion level (i.e., the right side of (5.3)). The
Gaussian process with this property is a process naturally
associated with the class obeying the indicated smoothness
constraint—the least favorable process for Shannon data-
compression; a successful Kolmogorov-net for the process
will be effectively a successful Shannon codebook for the
least favorable process. So even in the Kolmogorov case,
transform coding can be motivated by recourse to theory
for Gaussian processes, and to the idea that the situation
can be modeled as a Gaussian one. (That a method derived
from Gaussian assumptions helps us in other cases may seem
curious. This is linked to the fact that the Gaussian appears
as a worst case scenario. Handling the worst case well will
often lead to adequate if not optimal performance for more
favorable cases.)

VIII. G ETTING THE MODEL RIGHT

We have so far considered only a few settings in which
data compression could be of interest. In the context of

theory, we could be interested in complex non-Gaussian
processes; in theory we could be interested in functional
classes defined by norms other than those based on; in
image coding we could be interested in particular image
compression tasks, say specialized to medical imagery, or to
satellite imagery.

Certainly, the simple idea of Fourier transform followed by
block i.i.d. Gaussian coding cannot be universally appropriate.
As the assumptions about the collection of instances to be
represented change, presumably the correspondingoptimal
representation will change. Hence it is important to explore
a range of modeling assumptions and to attempt to get the
assumptions right! Although Shannon’s ideas have been very
important in supporting diffusion of frequency-domain coding
in practical lossy compression, we feel that he himself would
have been the first to suggest a careful examination of the
underlying assumptions, and to urge the formulation of better
assumptions. (See, for instance, his adhortations in [85].)

In this section we consider a wider range of models for the
libraries of instances to be compressed, and see how alternative
representations emerge as useful.

A. Some Non-Gaussian Models

Over the last decade, studies of the statistics of natural
images have repeatedly shown the non-Gaussian character of
image data. While images make up only one application area
for data compression, the evidence is quite interesting.

Empirical studies of wavelet transforms of images, consid-
ering histograms of coefficients falling in a common subband,
have uncovered markedly non-Gaussian structure. As noted
by many people, subband histograms are consistent with
probability densities having the form , where
the exponent “” would be “ ” if the Gaussian case applied,
but where one finds radically different values of “” in
practice; e.g., Simoncelli [87] reports evidence for In
fact, such generalized Gaussian models have been long used
to model subband coefficients in the compression literature
(e.g., [101]). Field [37] investigated the fourth-order cumulant
structure of images and showed that it was significantly
nonzero. This is far out of line with the Gaussian model, in
which all cumulants of order three and higher vanish.

In later work, Field [38] proposed that wavelet transforms of
images offered probability distributions which were “sparse.”
A simple probability density with such a sparse character is
the Gaussian scale mixture , where

and are both small positive numbers; this corresponds to
data being of one of two “types:” “small,” the vast majority,
and “large,” the remaining few. It is not hard to understand
where the two types come from: a wavelet coefficient can be
localized to a small region which contains an edge, or which
does not contain an edge. If there is no edge in the region, it
will be “small;” if there is an edge, it will be “large.”

Stationary Gaussian models are very limited and are unable
to duplicate these empirical phenomena. Images are best
thought of as spatially stationary stochastic processes, since
logically the position of an object in an image is rather
arbitrary, and a shift of that object to another position would
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produce another equally valid image. But if we impose sta-
tionarity on a Gaussian process we cannot really exhibit both
edges and smooth areas. A stationary Gaussian process must
exhibit a great deal of spatial homogeneity. From results in the
mean-square calculus we know that if such a process is mean-
square-continuous at a point, it is mean-square-continuous
at every point. Clearly, most images will not fit this model
adequately.

Conditionally Gaussian models offer an attractive way to
maintain ties with the Gaussian case while exhibiting globally
non-Gaussian behavior. In such models, image formation takes
place in two stages. An initial random experiment lays down
regions separated by edges, and then in a subsequent stage
each region is assigned a Gaussian random field.

Consider a simple model of random piecewise-smooth func-
tions in dimension one, where the piece boundaries are thrown
down at random, say by a Poisson process, the pieces are real-
izations of (different) Gaussian processes (possibly stationary),
and discontinuities are allowed across the boundaries of the
pieces [12]. This simple one-dimensional model can replicate
some of the known empirical structure of images, particularly
the sparse histogram structure of wavelet subbands and the
nonzero fourth-order cumulant structure.

B. Adaptation, Resource Allocation, and Nonlinearity

Unfortunately, when we leave the domain of Gaussian
models, we lose the ability to compute in such great
generality. Instead, we begin to operate heuristically. Suppose,
for example, we employ a conditionally Gaussian model.
There is no general solution for for such a class; but it
seems reasonable that the two-stage structure of the model
gives clues about optimal coding; accordingly, one might
suppose that an effective coder should factor into a part that
adapts to the apparent segmentation structure of the image
and a part that acts in a traditional way conditional on that
structure. In the simple model of piecewise-smooth functions
in dimension one, it is clear that coding in long blocks is
useful for the pieces, and that the coding must be adapted
to the characteristics of the pieces. However, discontinuities
must be well-represented also. So it seems natural that one
attempts to identify an empirically accurate segmentation and
then adaptively code the pieces. If transform coding ideas are
useful in this setting, it might seem that they would play a
role subordinate to the partitioning—i.e., appearing only in
the coding of individual pieces. It might seem that applying
a single global orthogonal transform to the data is simply not
compatible with the assumed two-stage structure.

Actually, transform codingis able to offer a degree of adap-
tation to the presence of a segmentation. The wavelet transform
of an object with discontinuities will exhibit large coefficients
in the neighborhood of discontinuities, and, at finer scales,
will exhibit small coefficients away from discontinuities. If
one designs a coder which does well in representing such
“sparse” coefficient sequences, it will attempt to represent
all the coefficients at coarser scales, while allocating bits
to represent only those few big coefficients at finer scales.
Implicitly, coefficients at coarser scales represent the structure
of pieces, and coefficients at finer scales represent discontinu-

ities between the pieces. The resource allocation is therefore
achieving some of the same effect as an explicit two-stage
approach.

Hence, adaptivity to the segmentation can come from ap-
plying a fixed orthogonal transform together with adaptive
resource allocation of the coder. Practical coding experience
supports this. Traditional transform coding of i.i.d. Gaussian
random vectors at high rate assumes a fixed rate alloca-
tion per symbol, but practical coders, because they work at
low rate and use entropy coding, typically adapt the coding
rate to the characteristics of each block. Specific adaptation
mechanisms, using context modeling and implicit or explicit
side-information are also possible.

Adaptive resource allocation with a fixed orthogonal trans-
form is closely connected with a mathematical procedure
which we will explore at length in Sections XIV and XV: non-
linear approximation using a fixed orthogonal basis. Suppose
that we have an orthogonal basis and we wish to approximate
an object using only basis functions. In traditional linear
approximation, we would consider using the first-basis
functions to form such an approximation. In nonlinear approx-
imation, we would consider using the best-basis functions,
i.e., to adaptively select the terms which offer the best
approximation to the particular object being considered. This
adaptation is a form of resource allocation, where the resources
are the terms to be used. Because of this connection, we will
begin to refer to “the nonlinear nature of the approximation
process” offered by practical coders.

C. Variations on Stochastic Process Models

To bring home the remarks of the last two subsections, we
consider some specific variations on the stochastic process
models of Section II. In these variations, we will consider
processes that are non-Gaussian; and we will compare useful
coding strategies for those processes with the coding strategies
for the Gaussian processes having the same second-order
statistics.

• Spike Process. For this example, we briefly leave the
functional viewpoint.

Consider the following simple discrete-time random
process, generating a single “spike.” Let

where is uniformly
distributed between and and is That
is, after picking a random location, one puts a Gaussian
random variable at that location. The autocorrelation
is equal to , thus the KLT is the identity
transformation. Allocating bits to each coefficient
leads to a distortion of order for the single
nonzero coefficient. Hence the distortion-rate function
describing the operational performance of the Gaussian
codebook coder in the KLT domain has

Here the constantdepends on the quantization and coding
of the transform coefficients.

An obvious alternate scheme at high rates is to spend
bits to address the nonzero coefficient, and use
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Fig. 2. (a) Realization ofRamp. (b) Wavelet and (c) DCT coefficients. (d) Rearranged coefficients. (e) Nonlinear approximation errors (14.2). (f) Operating
performance curves of scalar quantization coding.

the remaining bits to represent the Gaussian
variable. Thisposition-indexingmethod leads to

This coder relies heavily on the non-Gaussian character of
the joint distribution of the entries in , and for

this non-Gaussian coding clearly outperforms
the former, Gaussian approximation method. While this
is clearly a very artificial example, it makes the point that
if location (or phase) is critical, then time-invariant, linear
methods like the KLT followed by independent coding of
the transform coefficients are suboptimal.

Images are very phase critical: edges are among the
most visually significant features of images, and thus
efficient position coding is of essence. So it comes as no
surprise that some nonlinear approximation ideas made it
into standards, namely, ideas where addressing of large
coefficients is efficiently solved.

• Ramp Process. Yves Meyer [75] proposed the following
model. We have a process defined on through
a single random variable uniformly distributed on
by

This is a very simple process, and very easy to code
accurately. A reasonable coding scheme would be to
extract by locating the jump of the process and then
quantizing it to the required fidelity.

On the other hand,Ramp is covariance equivalent to
the Brownian Bridge process which we mentioned
already in Section II, the Gaussian zero-mean process on

with covariance

An asymptotically -optimal approach to coding
Brownian Bridge can be based on the Karhunen–Loève
transform; as we have seen, in this case the sine transform.
One takes the sine transform of the realization, breaks the
sequence of coefficients into subbands obeying (4.1) and
(4.2) and then treats the coefficients, in subbands, exactly
as in discrete memoryless source compression.

Suppose we ignored the non-Gaussian character of the
Ramp process and simply applied the same coder we
would use for Brownian Bridge. After all, the two are
covariance-equivalent. This would result in orders of mag-
nitude more bits than necessary. The coefficients in the
sine transform ofRamp are random; their typical size
is measured in mean square by the eigenvalues of the
covariance—namely, In order to accu-
rately represent the Ramp process with distortion, we
must code the first coefficients, at rates
exceeding 1 bit per coefficient. How many coefficients
does it take to represent a typical realization ofRampwith
a relative error of 1%? About

On the other hand, as Meyer pointed out, the wavelet
coefficients ofRampdecay very rapidly, essentially ex-
ponentially. As a result, very simple scalar quantization
schemes based on wavelet coefficients can capture real-
izations of Rampwith 1% accuracy using a few dozens
rather than tens of thousands of coefficients, and with
a corresponding advantage at the level of bits; this is
illustrated in Fig. 2.

The point here is that if we pay attention to second-
order statistics only, and adopt an approach that would
be good under a Gaussian model, we may pay orders
of magnitude more bits than would be necessary for
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coding the process under a more appropriate model. By
abandoning the Karhunen–Loève transform in this non-
Gaussian case, we get a transform in which very simple
scalar quantization works very well.

Note that we could in principle build a near-optimal
scheme by transform coding with a coder based on Fourier
coefficients, but we would have to apply a much more
complex quantizer; it would have to be a vector quantizer.
(Owing to Littlewood–Paley theory described later, it is
possible to say what the quantizer would look like; it
would involve quantizing coefficients near wavenumber

in blocks of size roughly This is computationally
impractical.)

D. Variations on Function Class Models

In Section V, we saw that subband coding of Fourier coef-
ficients offered an essentially optimal method, under the Kol-
mogorov -entropy model, of coding objectsknowna priori
to obey smoothness constraints

While this may not be apparent to outsiders, there are
major differences in the implications of various smoothness
constraints. Suppose we maintain the distortion measure,
but make the seemingly minor change from the form of
constraint to an form, with

This can cause major changes in what constitutes an
underlying optimal strategy. Rather than transform coding in
the frequency domain, we can find that transform coding in
the wavelet domain is appropriate.

Bounded Variation Model:As a simple example, consider
the model that the object under consideration is a function

of a single variable that is of bounded variation. Such
functions can be interpreted as having derivatives which are
signed measures, and then we measure the norm by

The important point is such can have jump discontinuities,
as long as the sum of the jumps is finite. Hence, the class of
functions of bounded variation can be viewed as a model for
functions which have discontinuities; for example, a scan line
in a digital image can be modeled as a typical BV function.

An interesting fact about BV functions is that they can be
essentially characterized by their Haar coefficients. The BV
functions with norm obey an inequality

where are the Haar wavelet expansion coefficients. It is
almost the case that every function that obeys this constraint
is a BV function. This says that geometrically, the class of
BV functions with norm is a convex set inscribed in a
family of balls.

An easy coder for functions of Bounded Variation can be
based on scalar quantization of Haar coefficients. However,

scalar quantization of the Fourier coefficients would not work
nearly as well; as the desired distortion , the number
of bits for Fourier/scalar quantization coding can be orders of
magnitude worse than the number of bits for wavelet/scalar
quantization coding. This follows from results in Sections XV
and XVI below.

E. Variations on Transform Coding and JPEG

When we consider transform coding as applied to empirical
data, we typically find that a number of simple variations can
lead to significant improvements over what the strict Gaussian

theory would predict. In particular, we see that when
going from theory to practice, KLT as implemented in JPEG
becomes nonlinear approximation!

The image is first subdivided into blocks of size by
( is typically equal to or ) and these blocks are treated
independently. Note that blocking the image into independent
pieces allows to adapt the compression to each block individ-
ually. An orthonormal basis for the two-dimensional blocks
is derived as a product basis from the one-dimensional DCT.
While not necessarily best, this is an efficient way to generate
a two-dimensional basis.

Now, quantization and entropy coding is done in a manner
that is quite at variance with the classical setup. First, based
on perceptual criteria, the transform coefficient is
quantized with a uniform quantizer of stepsize Typically,

is small for low frequencies, and large for high ones,
and these stepsizes are stored in a quantization matrix
Technically, one could pick different quantization matrices for
different blocks in order to adapt, but usually, only a single
scale factor is used to multiply , and this scale factor
can be adapted depending on the statistics in the block. Thus
the approximate representation of the th coefficient is

where
The quantized variable is discrete with a finite number
of possible values ( is bounded) and is entropy-coded.

Since there is no natural ordering of the two-dimensional
DCT plane, yet known efficient entropy coding techniques
work on one-dimensional sequences of coefficients, a pre-
scribed 2D to 1D scanning is used. This so-called “zig-zag”
scan traverses the DCT frequency plane diagonally from low
to high frequencies. For this resulting one-dimensional length-

sequence, nonzero coefficients are entropy-coded, and
stretches of zero coefficients are encoded using entropy coding
of run lengths. Anend-of-block (EOB) symbol terminates
a sequence of DCT coefficients when only zeros are left
(which is likely to arrive early in the sequence when coarse
quantization is used).

Let us consider two extreme modes of operation: In the first
case, assume very fine quantization. Then, many coefficients
will be nonzero, and the behavior of the rate–distortion tradeoff
is dominated by the quantization and entropy coding of the
individual coefficients, that is, This mode is
also typical for high variance regions, like textures.

In the second case, assume very coarse quantization. Then,
many coefficients will be zero, and the run-length coding is
an efficient indexing of the few nonzero coefficients. We are
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Fig. 3. Performance of real transform coding systems. The logarithm of the MSE is shown for JPEG (top) and SPIHT (bottom). Above about 0.5 bit/pixel,
there is the typical�6 dB per bit slope, while at very low bit rate, a much steeper slope is achieved.

in a nonlinear approximation case, since the image block is
approximated with a few basis vectors corresponding to large
inner products. Then, the behavior is very different,
dominated by the faster decay of ordered transform coeffi-
cients, which in turn is related to the smoothness class of the
images. Such a behavior is also typical for structured regions,
like smooth surfaces cut by edges, since the DCT coefficients
will be sparse.

These two different behaviors can be seen in Fig. 3, where
the logarithm of the distortion versus the bit rate per pixel
is shown. The slope above about 0.5 bit/pixel is clear,
as is the steeper slope below. An analysis of the low-rate
behavior of transform codes has been done recently by Mallat
and Falzon [70]; see also related work in Cohen, Daubechies,
Guleryuz, and Orchard [14].

IX. GOOD MODELS FOR NATURAL DATA?

We have now seen, by considering a range of different
intellectual models for the class of objects of interest to us,
that depending on the model we adopt, we can arrive at very
different conclusions about the “best” way to represent or
compress those objects. We have also seen that what seems
like a good method in one model can be a relatively poor
method according to another model. We have also seen that
existing models used in data compression are relatively poor
descriptions of the phenomena we see in natural data. We
think that we may still be far away from achieving an optimal
representation of such data.

A. How Many Bits for Mona Lisa?

A classic question, somewhat tongue in cheek, is: how many
bits do we need to describe Mona Lisa? JPEG uses 187 Kbytes
in one version. From many points of view, this is far more than
the number intrinsically required.

Humans will recognize a version based on a few hundred
bits. An early experiment by L. Harmon of Bell Laboratories
shows a recognizable Abraham Lincoln at 756 bits, a trick also
used by S. Dali in his painting “Slave Market with Invisible
Bust of Voltaire.”

Another way to estimate the number of bits in a representa-
tion is to consider an index of every photograph ever taken in
the history of mankind. With a generous estimate of 100 billion
pictures a year, the 100 years of photography need an index of
about 44 bits. Another possibility yet is to index all pictures
that can possibly be viewed by all humans. Given the world
population, and the fact that at most 25 pictures a second are
recognizable, a hundred years of viewing is indexed in about
69 bits.

Given that the Mona Lisa is a very famous painting, it is
clear that probably a few bits will be enough (with the obvious
variable length code: [is it Lena?, is it Mona Lisa?, etc.]).
Another approach is the interactive search of the image, for
example, on the Web. A search engine prompted with a few
key words will quickly come back with the answer at the top of
the following page, and just a few bytes have been exchanged.

These numbers are all very suggestive when we consider
estimates of the information rate of the human visual system.
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Barlow [4] summarizes evidence that the many layers of
processing in the human visual system reduce the information
flow from several megabits per second at the retina to about
40 bits per second deep in the visual pathway.

From all points of view, images ought to be far more
compressible than current compression standards allow.

B. The Grand Challenge

An effort to do far better compression leads to the Grand
Challenge, items GC1–GC3 of Section I. However, to address
this challenge by orthodox application of the Shannon theory
seems to us hopeless. To understand why, we make three
observations.

• Intrinsic Complexity of Natural Data Sources:An accu-
rate model for empirical phenomena would be of po-
tentially overwhelming complexity. In effect, images,
or sounds, even in a restricted area of application like
medical imagery, are naturally infinite-dimensional phe-
nomena. They take place in a continuum, and in principle
the recording of a sound or image cannot be constrained
in advance by a finite number of parameters. The true
underlying mechanism is in many cases markedly non-
Gaussian, and highly nonstationary.

• Difficulty of Characterization:There exists at the mo-
ment no reasonable “mechanical” way to characterize
the structure of such complex phenomena. In the zero-
mean Gaussian case, all behavior can be deduced from
properties of the countable sequence of eigenvalues of
the covariance kernel. Outside of the Gaussian case, very
little is known about characterizing infinite-dimensional
probability distributions which would be immediately
helpful in modeling real-world phenomena such as images
and sounds. Instead, we must live by our wits.

• Complexity of Optimization Problem:If we take Shannon
literally, and apply the abstract principle, deter-
mining the best way to code a naturally occurring source
of data would require to solve a mutual information
problem involving probability distributions defined on an
infinite-dimensional space. Unfortunately, it is not clear
that one can obtain a clear intellectual description of
such probability distributions in a form which would be
manageable for actually stating the problem coherently,
much less solving it.

In effect, uncovering the optimal codebook structure of
naturally occurring data involves more challenging empirical
questions than any that have ever been solved in empirical
work in the mathematical sciences. Typical empirical questions
that have been adequately solved in scientific work to date
involve finding structure of very simple low-dimensional, well-
constrained probability distributions.

The problem of determining the solution of the -
problem, given a limited number of realizations of, could be
considered a branch of what is becoming known in statistics
as “functional data analysis”—the analysis of data when the
observations are images, sounds, or other functions, and so
naturally viewed as infinite-dimensional. Work in that field
aims to determine structural properties of the probability distri-
bution of functional data—for example, the covariance and/or
its eigenfunctions, or the discriminant function for testing
between two populations. Functional data analysis has shown
that many challenging issues impede the extension of simple
multivariate statistical methods to the functional case [79].
Certain simple multivariate procedures have been extended to
the functional case: principal components, discriminant anal-
ysis, canonical correlations being carefully studied examples.
The problem that must be faced in such work is that one has
always a finite number of realizations from which one is to in-
fer aspects of the infinite-dimensional probabilistic generating
mechanism. This is a kind of rank deficiency of the data set
which means that, for example, one cannot hope to get quanti-
tatively accurate estimates of eigenfunctions of the covariance.

The mutual information optimization problem in Shannon’s
in the general non-Gaussian case requires far more

than just knowledge of a covariance or its eigenfunctions; it
involves in principle all the joint distributional structure of the
process. It is totally unclear how to deal with the issues that
would crop up in such a generalization.

X. A ROLE FOR HARMONIC ANALYSIS

In this section, we comment on some interesting insights
that harmonic analysis has to offer against the background of
this “Grand Challenge.”

A. Terminology

The phrase “harmonic analysis” means many things to
many different people. To some, it is associated with an
abstract procedure in group theory—unitary group representa-
tions [54]; to others it is associated with classical mathematical
physics—expansions in special functions related to certain
differential operators; to others it is associated with “hard”
analysis in its modern form [90].

The usual senses of the phrase all have roots in the bold
assertions of Fourier that a) “any” function can be expanded
in a series of sines and cosines and that, b) one could
understand the complex operator of heat propagation by un-
derstanding merely its action on certain “elementary” initial
distributions—namely, initial temperature distributions follow-
ing sinusoidal profiles. As is now well known, making sense
in one way or another of Fourier’s assertions has spawned
an amazing array of concepts over the last two centuries; the
theories of the Lebesgue integral, of Hilbert spaces, of
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spaces, of generalized functions, of differential equations, are
all bound up in some way in the development, justification,
and refinement of Fourier’s initial ideas. So no single writer
can possibly mean “all of harmonic analysis” when using the
term “harmonic analysis.”

For the purposes of this paper, harmonic analysis refers
instead to a series of ideas that have evolved throughout this
century, a set of ideas involving two streams of thought.

On the one hand, to develop ways to analyze functions using
decompositions built through a geometrically motivated “cut-
ting and pasting” of time, frequency, and related domains into
“cells” and the construction of systems of “atoms” “associated
naturally” to those “cells.”

On the other hand, to use these decompositions to find char-
acterizations, to within notions of equivalence, of interesting
function classes.

It is perhaps surprising that one can combine these two
ideas.A priori difficult to understand classes of functions in
a functional space turn out to have a characterization as a
superposition of “atoms” of a more or less concrete form. Of
course, the functional spaces where this can be true are quite
special; the miracle is that it can be done at all.

This is a body of work that has grown up slowly over the
last ninety years, by patient accumulation of a set of tools
and cultural attitudes little known to outsiders. As we stand
at the end of the century, we can say that this body of work
shows that there are many interesting questions about infinite-
dimensional function classes where experience has shown that
it is often difficult or impossible to obtain exact results, but
where fruitful analogies do suggest similar problems which are
“good enough” to enable approximate, or asymptotic solutions.

In a brief survey paper, we can only superficially mention a
few of the decomposition ideas that have been proposed and
a few of the achievements and cultural attitudes that have
resulted; we will do so in Sections XII, XVII, and XVIII
below. The reader will find that [58] provides a wealth of
helpful background material complementing the present paper.

B. Relevance to the Grand Challenge

Much of harmonic analysis in this century can be charac-
terized as carrying out a three-part program

HA1 Identify an interesting class of mathematically defined
objects (functions, operators, etc.).

HA2 Develop tools to characterize the class of objects in
terms of functionals derivable from an analysis of the objects
themselves.

HA3 Improve the characterization tools themselves, refin-
ing and streamlining them.

This program, while perhaps obscure to outsiders, has
borne interesting fruit. As we will describe below, wavelet
transforms arose from a long series of investigations into the
structure of classes of functions defined by constraints,

The original question was to characterize function
classes by analytic means, such as by the
properties of the coefficients of the considered functions
in an orthogonal expansion. It was found that the obvious

first choice—Fourier coefficients—could not offer such a
characterization when , and eventually, after a long series
of alternate characterizations were discovered, it was proved
that wavelet expansions offered such characterizations—i.e.,
that by looking at the wavelet coefficients of a function, one
could learn the -norm to within constants of equivalence,

It was also learned that for no
norm characterization was possible, but after replacing
by the closely related space and by the closely
related space (the space of functions of Bounded
Mean Oscillation), the wavelet coefficients again contained the
required information for knowing the norm to within constants
of equivalence.

The three parts HA1–HA3 of the harmonic analysis program
are entirely analogous to the three steps GC1–GC3 in the
Grand Challenge for data compression—except that for data
compression, the challenge is to deal withnaturally occurring
data sourceswhile for harmonic analysis the challenge is to
deal withmathematically interesting classes of objects.

It is very striking to us that the natural development of har-
monic analysis in this century, while in intention completely
unrelated to problems of data compression, has borne fruit
which seems very relevant to the needs of the data compression
community. Typical byproducts of this effort so far include
the fast wavelet transform, and lossy wavelet domain coders
which exploit the “tree” organization of the wavelet transform.
Furthermore, we are aware of many other developments in
harmonic analysis which have not yet borne fruit of direct
impact on data compression, but seem likely to have an impact
in the future.

There are other insights available from developments in
harmonic analysis. In the comparison between the three-part
challenge facing data compression and the three-part program
of harmonic analysis, the messiness of understanding a natural
data source—which requires dealing with specific phenomena
in all their particularity—is replaced by the precision of
understanding a class with a formal mathematical definition.
Thus harmonic analysis operates in a more ideal setting for
making intellectual progress; but sometimes progress is not as
complete as one would like. It is accepted by now that many
characterization problems of function classes cannot be exactly
solved. Harmonic analysis has shown that often one can
make substantial progress by replacing hard characterization
problems with less demanding problems where answers can
be obtained explicitly. It has also shown that such cruder
approximations are still quite useful and important.

A typical example is the study of operators. The eigen-
functions of an operator are fragile, and can change radically
if the operator is only slightly perturbed in certain ways.
It is in general difficult to get explicit representations of
the eigenfunctions, and to compute them. Harmonic analysis,
however, shows that for certain problems, we can work with
“almost eigenfunctions” that “almost diagonalize” operators.
For example, wavelets work well on a broad range of op-
erators, and moreover, they lend themselves to concrete fast
computational algorithms. That is, the exact problem, which is
potentially intractable, is replaced by an approximate problem
for which computational solutions exist.
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C. Survey of the Field

In the remainder of this paper we will discuss a set of
developments in the harmonic analysis community and how
they can be connected to results about data compression.
We think it will become clear to the reader that in fact the
lessons that have been learned from the activity of harmonic
analysis are very relevant to facing the Grand Challenge for
data compression.

XI. NORM EQUIVALENCE PROBLEMS

The problem of characterizing a class of functions
, where is a norm of interest, has

occupied a great deal of attention of harmonic analysts in this
century. The basic idea is to relate the norm, defined in say
continuum form by an integral, to an equivalent norm defined
in discrete form

(11.1)

Here denotes a collection of coefficients arising in
a decomposition of ; for example, these coefficients would
be obtained by

if the made up an orthonormal basis. The norm
is a norm defined on the continuum objectand the norm

is a norm defined on the corresponding discrete object
The equivalence symbol in (11.1) means that there

are constants and , not depending on , so that

(11.2)

The significance is that the coefficientscontain within them
the information needed to approximately infer the size ofin
the norm One would of course usually prefer to have

, in which case the coefficients characterize the size
of precisely, but often this kind oftight characterization is
beyond reach.

The most well-known and also tightest form of such a rela-
tionship is the Parseval formula, valid for the continuum norm
of If the constitute a
complete orthonormal system for , then we have

(11.3)

Another frequently encountered relationship of this kind is
valid for functions on the circle , with the
Fourier basis of Section II. Then we have a norm equivalence
for a norm defined on the th derivative

(11.4)

These two equivalences are, of course, widely used in the
mathematical sciences. They are beautiful, but also potentially
misleading. A naive reading of these results might promote the
expectation that one can frequently have tightness

in characterization results, or that the Fourier basis works in
other settings as well.

We mention now five kinds of norms for which we might
like to solve norm-equivalence, and for which the answers
to all these norm-equivalence problems are by now well-
understood.

• -norms:Let The -norm is, as usual, just

We can extend this scale of norms to by taking

• Sobolev-norms:Let The -Sobolev norm is

• Hölder classes:Let The Hölder class
is the collection of continuous functionson the domain

with and
for some the smallest such is the norm. Let

, for integer ; the Hölder class
is the collection of continuous functionson the

domain with

for

• Bump Algebra:Suppose that is a continuous function
on the line Let be a
Gaussian normalized to height one rather than area one.
Suppose that can be represented as
for a countable sequence of triples with

and Then is said to belong
to the Bump Algebra, and its Bump norm is the
smallest value of for which such a decomposition
exists. Evidently, a function in the Bump Algebra is
a superposition of Gaussians, with various polarities,
locations, and scales.

• Bounded Variation:Suppose that is a function on the
interval that is integrable and such that the
increment obeys

for The BV seminorm of is the smallest
for which this is true.

In each case, the norm equivalence problem is:Find an
orthobasis and a discrete norm so that the
norm is equivalent to the discrete norm In-
depth discussions of these spaces and their norm-equivalence
problems can be found in [103], [89], [90], [96], [43], and
[74]. In some cases, as we explain in Section XII below,
the norm equivalence has been solved; in other cases, it has
been proven that there can never be a norm equivalence, but
a closely related space has been discovered for which a norm
equivalence is available.

In these five problems, Fourier analysis does not work;
that is, one cannot find a “simple” and “natural” norm on
the Fourier coefficients which provides an equivalent norm
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to the considered continuous norm. It is also true that tight
equivalence results, with , seem out of reach in
these cases.

The key point in seeking a norm equivalence is that the
discrete norm must be “simple” and “natural.” By this we
really mean that the discrete normshould depend only on
the size of the coefficientsand not on the signs or phases
of the coefficients. We will say that the discrete norm is
unconditionalif it obeys the relationship

whenever with any sequence of weights
The idea is that “shrinking the coefficients in size” should

“shrink” the norm.
A norm equivalence result therefore requires discovering

both a representing system and a special norm on a
sequence space, one which is equivalent to the considered con-
tinuum norm and also has the unconditionality property. For
future reference, we call a basis yielding a norm equivalence
between a norm on function space and such an unconditional
norm on sequence space anunconditional basis. It has the
property that for any object in a function class, and any set
of coefficients obeying

the newly constructed object

belongs to as well.
There is a famous result dramatizing the fact that the Fourier

basis is not an unconditional basis for classes of continuous
functions, due to DeLeeuw, Kahane, and Katznelson [25].
Their results allows us to construct pairs of functions: one,,
say, which is uniformly continuous on the circle; and the other,

, say, very wild, having square integrable singularities on a
dense subset of the circle. The respective Fourier coefficients
obey

In short, the ugly and bizarre objecthas thesmallerFourier
coefficients. Another way of putting this is that an extremely
delicate pattern in the phases of the coefficients, rather than
the size of the coefficients, control the regularity of the
function. The fact that special “conditions” on the coefficients,
unrelated to their size, are needed to impose regularity may
help to explain the term “unconditional” and the preference
for unconditional structure.

XII. H ARMONIC ANALYSIS AND NORM EQUIVALENCE

We now describe a variety of tools that were developed
in harmonic analysis over the years in order to understand
norm equivalence problems, and some of the norm equivalence
problems that were solved.

A. Warmup: The Sampling Theorem

A standard procedure by which interesting orthobases have
been constructed by harmonic analysts is to first develop a
kind of “overcomplete” continuous representation, and later
develop a discretized variant based on a geometric model.

An elementary example of this procedure will be familiar
to readers in the information theory community, as Shannon’s
Sampling Theorem [84] in signal analysis. Let be an
function supported in a finite frequency interval ;
and let be the time-
domain representation. This representation is an-isometry,
so that

The size of the function on the frequency side and on the time
side are the same, up to normalization. By our assumptions,
the time-domain representation is a bandlimited function,
which is very smooth, and so the representation ofin the
time domain is very redundant. A nonredundant representation
is obtained by sampling, and retaining only the The
mathematical expression of the perfect nonredundancy of this
representation is the fact that we have the norm equivalence

(12.1)

and that there is an orthobasis of sampling functions
so that and

This time-domain representation has the following geometric
interpretation: there is a sequence of disjoint “cells” of length

, indexed by ; the samples summarize the behavior in
those cells; and the sampling functions provide the details
of that behavior. While this circle of ideas was known to
Shannon and was very influential for signal analysis, we
should point out that harmonic analysts developed ideas such
as this somewhat earlier, under more general conditions, and
based on an exploration of a geometric model explaining the
phenomenon. For example, work of Paley and Wiener in the
early 1930’s and of Plancherel and Polya in the mid 1930’s
concerned norm equivalence in the more general case when the
points of sampling were not equispaced, and obtained methods
giving equivalence for all norms,

(12.2)

provided the points are approximately equispaced at density

The results that the harmonic analysts obtained can be
interpreted as saying that the geometric model of the sampling
theorem has a very wide range of validity. For this geometric
model, we define a collection of “cells” , namely, intervals
of length centered at the sampling points, and construct
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the piecewise-constant object The norm
equivalence (12.2) says, in fact, that

(12.3)

for a wide range of
This pattern—continuous representation, discretization, geo-

metric model—has been of tremendous significance in har-
monic analysis.

B. Continuous Time-Scale Representations

At the beginning of this century, a number of interesting
relationships between Fourier series and harmonic function
theory were discovered, which showed that valuable informa-
tion about a function defined on the circle or the line
can be garnered from its harmonic extension into the interior
of the circle, respectively the upper half plane; in other words,
by viewing as the boundary values of a harmonic function

This theory also benefits from an interplay with complex
analysis, since a harmonic function is the real part of an
analytic function The imaginary part is
called the conjugate function of The harmonic function

and the associated analytic functiongive much important
information about We want to point out how capturing this
information on through the functions ultimately leads
to favorable decompositions of into fundamental building
blocks called “atoms.” These decompositions can be viewed as
a precursor to wavelet decompositions. For expository reasons
we streamline the story and follow [89, Chs. III, IV], [43, Ch.
1], and [45]. Let be any “reasonable” function on the line.
It has a harmonic extension into the upper half plane given
by the Poisson integral

(12.4)

where is the Poisson kernel. This
associates to a function of one variable the harmonic
function of two variables, where the argumentagain ranges
over the line and ranges over the positive reals. The physical
interpretation of this integral is that is the boundary value of

and is what can be sensed at some “depth”Each
of the functions is infinitely differentiable. Whenever

the equal-depth sections
converge to as and, therefore, the norms converge as
well: We shall see next another way
to capture through the function Hardy in 1914
developed an identity in the closely related setting where one
has a function defined on the unit circle, and one uses the
harmonic extension into the interior of the unit disk [53]; he
noticed a way to recover the norm of the boundary values from
the norm of the values on the interior of the disk. By conformal
mapping and some simple identities based on Green’s theorem,
this is recognized today as equivalent to the statement that in
the setting (12.4) the norm of the “boundary values”
can be recovered from the behavior of the whole function

(12.5)

Defining , this formula says

(12.6)

Now the object is itself an integral transform

where the kernel results
from differentiating the Poisson kernel. This gives a method
of assigning, to a function of a single real variable, a function
of two variables, in an norm-preserving way. In addition,
this association is invertible since, formally,

when is a “nice” function. In the 1930’s, Littlewood and
Paley, working again in the closely related setting of functions
defined on the circle, found a way to obtain information on
the norms of a function defined on the circle, from an
appropriate analysis of its values inside the circle. This is now
understood as implying that contains not just information
about the norm as in (12.6), but also on norms,
Defining , Littlewood–Paley
theory in its modern formulation says that

(12.7)

for The equivalence (12.7) breaks down when
(We shall not discuss the other problem point

here since these -spaces are not separable and therefore do
not have the series representations we seek.) To understand
the reason for this breakdown one needs to examine the
conjugate function of mentioned above. It enjoys the
same properties of provided It has boundary
values and the function (called the conjugate function
of ) is also in But the story takes a turn for the
worse when : for a function , its conjugate
function need not be in The theory of the real Hardy
spaces is a way to repair the situation and better understand
the norm equivalences (12.7). A functionis said to be in
real if and only if both and its conjugate
function are in ; the norm of in is the sum of the

norms of and Replacing by on the left
side of (12.7), we obtain equivalences with absolute constants
that hold even for In summary, the spaces are
a natural replacement for when discussing representations
and norm equivalences.

In modern parlance, the object would be called an
instance ofcontinuous wavelet transform. This terminology
was used for the first time in the 1980’s by Grossmann and
Morlet [52], who proposed the study of the integral transform

(12.8)
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where

and is a so-called “wavelet,” which must be chosen to obey
an admissibility condition; for convenience, we shall require
here a special form of this condition

(12.9)

Here is a location parameter and is a scale parameter,
and the transform maps into a time-scale domain. (Under a
different terminology, a transform and admissibility condition
of the same type can also be found in [2].) The wavelet
transform with respect to an admissible wavelet is invertible

(12.10)

and also an isometry

(12.11)

One sees by simple comparison of terms that the choice
yields under the calibration

and We thus gain a new interpretation of: the
function has “scale” and so we can interpret
as providing an association of the objectwith a certain
“time-scale” portrait.

The continuous wavelet transform is highly redundant, as
the particular instance shows: it is harmonic in the upper
half-plane. Insights into the redundancy of the continuous
wavelet transform are provided (for example) in [23]. Suppose
we associate to the point the rectangle

then the information “near ” in the wavelet transform is
weakly related to information near if the corresponding
rectangles are well-separated.

C. Atomic Decomposition

As pointed out earlier, it is natural to replace the study
of the spaces with that of the spaces ; in particular,
we avoid certain unsatisfactory aspects of, which does
not have any unconditional basis, and which behaves quite
unlike its logically neighboring spaces for The norm
equivalence (12.7), which does not work at , is then
replaced by

valid for all
In the late 1960’s and early 1970’s, one of the most

successful areas of research in harmonic analysis concerned
and associated spaces. At that time, the concept of “atomic

decomposition” arose, the key point was the discovery by
Fefferman that one can characterize membership in the space

precisely by the properties of its atomic decomposition

into atoms obeying various size, oscillation, and support
constraints. Since then “atomic decomposition” has come
to mean a decomposition of a function into a discrete
superposition of nonrigidly specified pieces, where the pieces
obey various analytic constraints (size, support, smoothness,
moments) determined by a space of interest, with the size
properties of those pieces providing the characterization of
the norm of the function [16], [29], [42], [43].

The continuous wavelet transform gives a natural tool to
build atomic decompositions for various spaces. Actually,
the tool predates the wavelet transform, since already in the
1960’s Caldeŕon [9] established a general decomposition, a
“resolution of identity operator” which in wavelet terms can
be written

The goal is not just to write the identity operator in a more
complicated form; by decomposing the integration domain
using a partition into disjoint sets, one obtains a family
of nontrivial operators, corresponding to different time-scale
regions, which sum to the identity operator.

Let now denote adyadic interval, i.e., an interval of the
form with and integers, and
let denote a time-scale -rectangle sitting “above”

The collection of all dyadic intervals is obtained as the
scale index runs through the integers (both positive and
negative) and the position indexruns through the integers as
well. The corresponding collection of all rectangles
forms a disjoint cover of the whole plane; compare
Fig. 4. If we now take the Calder´on reproducing formula and
partition the range of integration using this family of rectangles
we have formally that , where

Here is an operator formally associating tothat “piece”
coming from time-scale region In fact, it makes sense
to call a time-scale atom [43]. The region of
the wavelet transform, owing to the redundancy properties,
constitutes in some sense a minimal coherent piece of the
wavelet transform. The corresponding atom summarizes the
contributions of this coherent region to the reconstruction, and
has properties one would consider natural for such a summary.
If is supported in , then will be supported in ,
the interval with same center asbut three times its width.
Also, if is smooth and admissible then will be smooth,
oscillating only as much as required to be supported in
For example, if is -times differentiable, and the wavelet

is chosen appropriately,

(12.12)

and we cannot expect a better dependence of the properties
of an atom on in general. So the formula
decomposes into a countable sequence of time-scale atoms.
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Fig. 4. A tiling of the time-scale plane by rectangles.

This analysis into atoms is informative about the properties
of ; for example, suppose that “is built from many large
atoms at fine scales” then from (12.12) cannot be very
smooth. As shown in [43], one can express a variety of
function space norms in terms of the size properties of the
atoms; or, more properly, of the continuous wavelet transform
associated to the “cells” For example, if our measure of
the “size” of the atom is the “energy” of the “associated
time-scale cell”

then

D. Unconditional Basis

By the end of the 1970’s, atomic decomposition methods
gave a satisfactory understanding of spaces; but in the
early 1980’s, the direction of research turned toward estab-
lishing a basis for these spaces. B. Maurey had shown by
abstract analysis that an unconditional basis ofmust exist,
and Carleson had shown a way to construct such a basis by.
in a sense. repairing the lack of smoothness of the Haar basis.

Let denote the Haar function;
associate a scaled and translated version ofto each dyadic
interval according to
This collection of functions makes a complete orthonormal
system for In particular, This is
similar in some ways to the atomic decomposition idea of the
last section—it is indexed by dyadic intervals and associates a
decomposition to a family of dyadic intervals. However, it is
better in other ways, since the are fixed functions rather

than atoms. Unfortunately, while it gives an unconditional
basis for , it does not give an unconditional basis for
most of the spaces where Littlewood–Paley theory applies;
the discontinuities in the are problematic.

Carleson’s attempt at ‘repairing the Haar basis’ stimulated
Stromberg (1982), who succeeded in constructing an orthog-
onal unconditional basis for spaces with
In effect, he showed how, for any , to construct a
function so that the functions
were orthogonal and constituted an unconditional basis for
Today we would call such a a wavelet; in fact, Stromberg’s

is a spline wavelet—a piecewise polynomial—and
constituted the first orthonormal wavelet basis with smooth
elements. In [92], Stromberg testifies that at the time that he
developed this basis he was not aware of, or interested in,
applications outside of harmonic analysis. Stromberg’s work
was published in a conference proceedings volume and was
not widely noticed at the time.

In the mid-1980’s, Yves Meyer and collaborators became
very interested in the continuous wavelet transform as de-
veloped by Grossmann and Morlet. They first built frame
expansions, which are more discrete than the continuous
wavelet transform and more rigid than the atomic decompo-
sition. Then, Meyer developed a bandlimited function—the
Meyer wavelet—which generated an orthonormal basis for

having elements which were infinitely differentiable
and decayed rapidly at Lemaríe and Meyer [64] then
showed that this offered an unconditional basis for a very wide
range of spaces: all the -Sobolev, , of all orders

; all the Hölder , and more generally, all
Besov spaces. Frazier and Jawerth have shown that the Meyer
basis offers unconditional bases for all the spaces in the Triebel
scale; see [43].
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E. Equivalent Norms

The solution of these norm-equivalence problems required
the introduction of two new families of norms on sequence
space; the general picture is due to Frazier and Jawerth [42],
[43].

The first family is the (homogeneous)Besov sequence
norms. With a shorthand for the coefficient arising
from the dyadic interval ,

with an obvious modification if either or These
norms first summarize the sizes of the coefficients at all
positions with a single scale using an norm and then
summarize across scales, with an exponential weighting.

The second family involves the (homogeneous)Triebel
sequence norms. With the indicator of ,

with an obvious modification if and a special modifi-
cation if (which we do not describe here; this has to do
with the space BMO). These norms first summarize the sizes
of the coefficients across scales, and then summarize across
positions.

The reader should note that the sequence space norm expres-
sions have the unconditionality property: they only involve the
sizes of the coefficients. If one shrinks the coefficients in such
a way that they become term-wise smaller in absolute values,
then these norms must decrease.

We give some brief examples of norm equivalences using
these families. Recall the list of norm equivalence problems
listed in Section XI. Our first two examples use the Besov
sequence norms.

• (Homogeneous) H¨older Space : For , the
norm is the smallest constant so that

To get an equivalent norm, use an orthobasis built from
(say) Meyer wavelets, and measure the norm of the
wavelet coefficients by the Besov norm with

This reduces to a very simple expression, namely,

(12.13)

In short, membership in requires that the wavelet
coefficientsall decay like an appropriate power of the
associated scale:

• Bump Algebra:Use an orthobasis built from the Meyer
wavelets, and measure the norm of the wavelet coeffi-
cients by the Besov norm with This
reduces to a very simple expression, namely,

(12.14)

Membership in the Bump Algebra thus requires that the
sum of the wavelet coefficients decay like an appropriate
power of scale. Note, however, that some coefficients
could be large, at the expense of others being corre-
spondingly small in order to preserve the size of the
sum.

We can also give examples using the Triebel sequence norms.

• : For , use an orthobasis built from, e.g., the
Meyer wavelets, and measure the norm of the wavelet
coefficients by the Triebel sequence norm with

and precisely the same as thein

• -Sobolev spaces : For , use an orthobasis
built from, e.g., the Meyer wavelets, and measure the
norm of the wavelet coefficients by a superposition of
two Triebel sequence norms, one with
and precisely the same as thein ; the other with

and precisely the same as thein

F. Norm Equivalence as a Sampling Theorem

The Besov and Triebel sequence norms have an initially
opaque appearance. A solid understanding of their structure
comes from a view of norm equivalence as establishing a
sampling theorem for the upper half-plane, in a manner remi-
niscent of the Shannon sampling theorem and its elaborations
(12.1) and (12.2).

Recall the Littlewood–Paley theory of the upper half plane
of Section XII-A and the use of dyadic rectangles built
“above” dyadic intervals from Section XII-B. Partition the
upper half-plane according to the family of rectangles.
Given a collection of wavelet coefficients , assign
to rectangle the value One obtains in this way a
pseudo- -function

This is a kind of caricature of the Poisson integralUsing
this function as if it were a true Poisson integral suggests to
calculate, for ,

As it turns out, the Triebel sequence norm ispreciselya simple
continuum norm of the object

In short, the Triebel sequence norm expresses the geometric
analogy that the piecewise-constant objectmay be treated
as if it were a Poisson integral. Why is this reasonable?

Observe that the wavelet coefficient is preciselya sample
of the continuous wavelet transform with respect to the wavelet

generating the orthobasis

The sampling point is where
these are the coordinates of the lower left corner of the
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rectangle In the case, we have

That is, is a pseudo-continuous wavelet transform, gotten
by replacing the true continuous wavelet transform on each
cell by a cell-wise constant function with the same value in
the lower left corner of each cell.

The equivalence of the true norm with the Triebel
sequence norm of the wavelet coefficients expresses the fact
that the piecewise-constant function, built from time-scale
samples of has a norm—defined on the whole time-scale
plane—which is equivalent to Indeed, define a norm on
the time-scale plane by

summarizing first across scales and then across positions. We
have the identity The equivalence of norms

can be broken into the following stages:

which follows from Littlewood–Paley theory,

which says that the “Poisson wavelet” , and some other
nice wavelet obtain equivalent information, and finally

This is a sampling theorem for the upper half-plane, showing
that an object and its piecewise-constant approximation

have equivalent norms. It is exactly analogous to the
equivalence (12.3) that we discussed in the context of the
Shannon sampling theorem. Similar interpretations can be
given for the Besov sequence norm asprecisely a simple
continuum norm of the object In the case

The difference is that the Besov norm involves first a summa-
rization in position and then a summarization in scale; this
is the opposite order from the Triebel case.

XIII. N ORM EQUIVALENCE AND AXES OF ORTHOSYMMETRY

There is a striking geometric significance to the uncondi-
tional basis property.

Consider a classical example using the exact norm equiv-
alence properties (11.3) and (11.4) from Fourier analysis.
Suppose we consider the class consisting of all
functions obeying

with

This is a body in infinite-dimensional space; defined as it is
by quadratic constraints, we call it an ellipsoid. Owing to the
exact norm equivalence properties (11.3), (11.4), the axes of
symmetry of the ellipsoid are precisely the sinusoids

Something similar occurs in the nonclassical cases. Con-
sider, for example, the Ḧolder norm equivalence (12.13). This
says that, up to an equivalent re-norming, the Hölder class is
a kind of hyperrectangle in infinite-dimensional space. This
hyperrectangle has axes of symmetry; the directions of these
axes are given by the members of the wavelet basis.

Consider now the Bump Algebra norm equivalence (12.14).
This says that, up to an equivalent re-norming, the Bump
Algebra is a kind of octahedron in infinite-dimensional space.
This octahedron has axes of symmetry, and these are again
given by the members of the wavelet basis.

So the unconditional basis propertymeans that thebasis
functions serve as axes of symmetryfor the corresponding
function ball. This is analogous to the existence of axes of
symmetry for an ellipsoid, but is more general: it applies in
the case of function balls which are not ellipsoidal, i.e., not
defined by quadratic constraints.

There is another way to put this that might also be useful.
The axes of orthosymmetry of an ellipsoid can be derived as
eigenfunctions of the quadratic form defining the ellipsoid.
The axes of orthosymmetry solve the problem of “rotating
the space” into a frame where the quadratic form becomes
diagonal. In the more general setting, where the norm balls
are not ellipsoidal, we can say that an unconditional basis
solves the problem of “rotating the space” into a frame where
the norm, although not involving a quadratic functional, is
“diagonalized.”

XIV. B EST ORTHOBASIS FORNONLINEAR APPROXIMATION

The unconditional basis property has important implications
for schemes of nonlinear approximation which use the best

-terms in an orthonormal basis. In effect, the unconditional
basis of a class will be, in a certain asymptotic sense, the
best orthonormal basis for-term approximation of members
of the associated function ball We highlight these results
and refer the reader to [26] and [30] for more details on
nonlinear approximation.

A. -Term Approximations: Linear and Nonlinear

Suppose one is equipped with an orthobasis , and
that one wishes to approximate a functionusing -term
expansions

If the are fixed—for example as the first-basis ele-
ments in the assumed ordering—this is a problem of linear
approximation, which can be solved (owing to the assumed
orthogonality of the ) by taking Supposing
that the is an enumeration of the integers, the
approximation error in such an orthogonal system is ,
which means that the error is small if the important coefficients
occur in the leading -terms rather than in tail of the sequence.
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Fig. 5. Two objects, and performance of best-n and first-n approximations in both Fourier and wavelet bases, and linear and nonlinear approxima-
tion numbers (14.2).

Such linear schemes of approximation seem very natural
when the orthobasis is either the classical Fourier basis or else
a classical orthogonal polynomial basis, and we think in terms
of the “first -terms” as the “ lowest frequencies.” Indeed,
several results on harmonic analysis of smooth functions
promote the expectation that the coefficients decay
with increasing frequency index It therefore seems natural
in such a setting to adopt once and for all the standard ordering

, to expect that the decay with , or in other words,
that the important terms in the expansion occur at the early
indices in the sequence. There are many examples in both
practical and theoretical approximation theory showing the
essential validity of this type of linear approximation.

In general, orthobases besides the classical Fourier/orthog-
onal polynomial sets (and close relatives) cannot be expected
to display such a fixed one-dimensional ordering of coefficient
amplitudes. For example, the wavelet basis has two indices,
one for scale and one for position, and it can easily happen that
the “important terms” in an expansion cluster at coefficients
corresponding to the same position but at many different
scales. This happens, for example, when we consider the
coefficients of a function with punctuated smoothness, i.e., a
function which is piecewise-smooth away from discontinuities.
Since, in general, the position of such singularities varies from
one function to the next, in such settings, one cannot expect the
“ -most important coefficients” to occur in indices chosen in
a fixed nonadaptive fashion. It makes more sense to consider
approximation schemes using-term approximations where
the -included terms are thebiggest- -terms rather then the

first- -termsin a fixed ordering; compare Fig. 5. Equivalently,
we consider the ordering defined by coefficient
amplitudes

(14.1)

and define

where again This operator at first glance
seems linear, because the functionals derive from inner
products of with basis functions ; however, in fact it is
nonlinear, because the functionals depend on

This nonlinear approximation operator conforms in the
best possible fashion with the idea that the-most-important
coefficients should appear in the approximation, while the less
important coefficients should not. It is also quantitatively better
than any fixed linear approximation operator built from the
basis

because the square of the left-hand side is ,
which by the rearrangement relation (14.1) is not larger than
any sum
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B. Best Orthobasis for -Term Approximation

In general, it is not possible to say much interesting about
the error in -term approximation for a fixed function We
therefore consider the approximation for a function class
which is a ball of a normed (or quasinormed)
linear space of functions. Given such a class and an
orthogonal basis , the error of best -term approximation is
defined by

(14.2)

We call the sequence the Stechkin numbers of ,
honoring the work of Russian mathematician S. B. Stechkin,
who worked with a similar quantity in the Fourier basis.
The Stechkin numbers give a measure of the quality of
representation of from the basis If is small,
this means that every element ofis well-approximated by -
terms chosen from the basis, with the possibility that different
sets of -terms are needed for different

Different orthonormal bases can have very different approx-
imation characteristics for a given function class. Suppose we
consider the class BV of all functions on ,
with bounded variation as in [31]. For the Fourier sys-
tem, BV FOURIER) owing to the fact that
BV contains objects with discontinuities, and sinusoids have
difficulty representing such discontinuities, while for the Haar-
wavelet system BV HAAR) intuitively because
the operator in the Haar expansion can easily adapt to the
presence of discontinuities by including terms in the expansion
at fine scales in the vicinity of such singularities and using only
terms at coarse scales far away from singularities.

Consider now the problem of finding a best orthonormal
basis—i.e., of solving

We call the nonlinear orthowidth of ; this is not
one of the usual definitions of nonlinear widths (see [77])
but is well suited for our purposes. This width seeks a
basis, in some sense, ideally adapted to, getting the best
guarantee of performance in approximation of members of
by the use of adaptively chosen terms. As it turns out, it
seems out of reach to solve this problem exactly in many
interesting cases; and any solution might be very complex, for
example, depending delicately on the choice ofHowever,
it is possible, for balls arising from classes which have
an unconditional orthobasis and sufficient additional structure,

to obtain asymptotic results. Thus for function balls
defined by quadratic constraints on the function and itsth
derivative, we have

FOURIER

PERIODIC WAVELETS

saying that either the standard Fourier basis, or else a smooth
periodic wavelet basis, is a kind of best orthobasis for such a
class. For the function balls BV consisting of functions on
the interval with bounded variation

BV HAAR BV

so that the Haar basis is a kind of best orthobasis for such a
class. For comparison, a smooth wavelet basis is also a kind
of best basis, WAVELETS, BV while a Fourier
basis is not: FOURIER, BV A
summary is given in the table at the bottom of this page.

Results on rates of nonlinear approximation by wavelet
series for an interesting range Besov classes were obtained
in [29].

C. Geometry of Best Orthobasis

There is a nice geometric picture which underlies these
results about best orthobases; essentially,an orthobasis un-
conditional for a function class is asymptotically a best
orthobasis for that class. Thus the extensive work of harmonic
analysts to build unconditional bases—a demanding enterprise
whose significance was largely closed to outsiders for many
years—can be seen as an effort which, when successful, has as
a byproduct the construction of best orthobases for nonlinear
approximation.

To see this essential point requires one extra element. Let
, and note especially that we include the possibility

that Let denote the th element in the de-
creasing rearrangement of magnitudes of entries in, so that

The weak- -norm is

This is really only a quasinorm; it does not in general obey
the triangle inequality. This norm is of interest because of the
way it expresses the rate of approximation of operatorsin
a given basis. Indeed, if then

Name Best Basis

-Sobolev Fourier or Wavelet
-Sobolev Wavelet

Holder Wavelet
Bump Algebra Wavelet
Bounded Variation BV Haar
Segal Algebra Wilson
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The result has a converse

A given function can be approximated by with error
for all if ; it can only be

approximated with error if A
given function ball has functions all of which can be
approximated by at error for all

and for some fixed independently of if and only if for
some

Suppose we have a ball arising from a class with an
unconditional basis and we consider using a possibly
different orthobasis to do the nonlinear approximation:

The coefficient sequence obeys
where is an orthogonal transformation of Define

then The rate of convergence of
nonlinear approximation with respect to the new system is
constrained by the relation

By the unconditional basis property, there is an orthosym-
metric set and constants and such that

Hence, up to homothetic multiples, is
orthosymmetric.

Now the fact that is orthosymmetric means that it is in
some sense “optimally positioned” about its axes; hence it is
intuitive that rotating by cannot improve its position. Thus
[31]

We conclude that if is an orthogonal unconditional
basis for and if , then it is im-
possible that for any In-
deed, if it were so, then we would have some basis
achieving , which would imply
that also the unconditional basis achieves

, contradicting the assumption that merely
In a sense, up to a constant factor

improvement, the axes of symmetry make a best orthogonal
basis.

XV. -ENTROPY OF FUNCTIONAL CLASSES

We now show that nonlinear approximation in an orthogonal
unconditional basis of a class can be used, quite generally,
to obtain asymptotically, as , the optimal degree of data
compression for a corresponding ball This completes the
development of the last few sections.

A. State of the Art

Consider the problem of determining the Kolmogorov-
entropy for a function ball ; this gives the minimal number
of bits needed to describe an arbitrary member ofto within
accuracy

This is a hard problem, with very few sharp results. Un-
derscoring the difficulty of obtaining results in this area is the
commentary of V. M. Tikhomirov in Kolmogorov’sSelected
Works [94]

The question of finding the exact value of the-entropy
is a very difficult one Besides [one specific

example] the author of this commentary knows no
meaningful examples of infinite-dimensional compact
sets for which the problem of-entropy is solved
exactly.

This summarizes the state of work in 1992, more than 35
years after the initial concept was coined by Kolmogorov. In
fact, outside of the case alluded to by Tikhomirov, of-entropy
of Lipschitz functions measured in metric, and the case
which has emerged since then, of smooth functions innorm
as mentioned above, there are no asymptotically exact results.
The typical state of the art for research in this area is that
within usual scales of function classes having finitely many
derivatives, one gets order bounds: finite positive constants

and , and an exponent depending on but not on
, such that

(15.1)

Such order bounds display some paradigmatic features of
the state of the art of-entropy research. First, such a result
doestie down the precise rate involved in the growth of the
net (i.e., as ). Second, itdoes not
tie down the precise constants involved in the decay (i.e.,

Third, the result (and its proof) does not directly
exhibit information about the properties of an optimal-net.
For a review of the theory see [66].

In this section we consider only the rough asymptotics of
the -entropy via the critical exponent

If then ; but it is also true that if
then We should think

of as capturing only crude aspects of the asymptotics of
-entropy, since it ignores “log terms” and related phenomena.

We will show how to code in a way which achieves the rough
asymptotic behavior.

B. Achieving the Exponent of-Entropy

Suppose we have a function ball of a class with
unconditional basis , and that, in addition, has a
certain tail compactness for the norm. In particular, suppose
that in some fixed arrangement of coordinates

(15.2)

for some
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We use nonlinear approximation in the basis to con-
struct a binary coder giving an-description for all members

of The idea: for an appropriate squared-distortion
level , there is an so that the best-term approx-
imation achieves an approximation error
We then approximately representby digitally encoding the
approximant. A reasonable way to do this is to concatenate
a lossless binary code for the positions of the
important coefficients with a lossy binary code for quantized
values of the coefficients , taking care that the coefficients
are encoded with an accuracy enabling accurate reconstruction
of the approximant

(15.3)

Such a two-part code will produce a decodable binary repre-
sentation having distortion for every element of

Here is a very crude procedure for choosing the quantization
of the coefficients: there are coefficients to be encoded; the
coefficients can all be encoded with accuracyusing a total
of bits. If we choose so that , then
we achieve (15.3).

To encode the positional information giving the locations
of the coefficients used in the approximant, use

(15.2). This implies that there are and so that, with
, for a given , we can ignore coefficients outside

the range Hence, the positions can be encoded
using at most bits.

This gives a total codelength of bits.
Now if then Hence, assuming
only that and that is minimally tail compact,
we conclude that

(15.4)

and that a nonlinear approximation-based coder achieves this
upper bound.

C. Lower Bound via

The upper bound realized through nonlinear approximation
is sharp, as shown by the following argument [32]. Assume
that is a ball in a function class that admits
as an unconditional basis. The unconditional basis property
means, roughly speaking, that contains many very-high-
dimensional hypercubes of appreciable sidelength. As we
will see, theory tells us precisely how many bits are
required to -faithfully represent objects in such hypercubes
chosen on average. Obviously, one cannot faithfully represent
every objectin such hypercubes with fewer than the indicated
number of bits.

Suppose now that (15.2) holds. We shall assume also that
is the best possible exponent; more precisely, we assume

that, for some

(15.5)

For fixed , take such that it attains the nonlinear-
width

Let By the unconditionality of the norm
, for every sequence of signs the object

belongs to Hence we have constructed an
orthogonal hypercube of dimension and sidelength with

Consider now a random vertex of the hypercube
Representing this vertex with error is, owing to
the orthogonality of the hypercube, the same as representing
the sequence of signs with error Fix ; now
use rate-distortion theory to obtain the rate-distortion curve for
a binary discrete memoryless source with mean-squared error
for single-letter difference distortion measure. No-faithful
code for this source can use essentially fewer than
bits, where Hence setting , we have

(15.6)

Since, for sufficiently large ,
we find that

which implies that , or
In other words,

We then conclude from (15.6) that

D. Order Asymptotics of-Entropy

The notion of achieving the exponent of the-entropy, while
leading to very general results, is less precise than we would
like. We now know that for a wide variety of classes of smooth
functions, not only can the exponent be achieved, but also the
correct order asymptotics (15.1) can be obtained by coders
based on scalar quantization of the coefficients in a wavelet
basis, followed by appropriate positional coding [14], [7], [15].

An important ingredient of nonlinear approximation results
is the ability of the selected -terms to occur at variable
positions in the expansion. However, provision for the selected
terms to occur incompletely arbitraryarrangements of time-
scale positions is actually not necessary, and we can obtain
bit savings by exploiting the more limited range of possible
positional combinations. A second factor is that most of the
coefficients occurring in the quantized approximant involve
small integer multiples of the quantum, and it can be known
in advance that this is typically so at finer scales; provision for
the “big coefficients” to occur in completely arbitrary orders
among the significant ones is also not necessary. Consequently,
there are further bit savings available there as well. By
exploiting these two facts, one can develop coders which are
within constant factors of the-entropy. We will explain this
further in Section XVII below.

XVI. COMPARISON TO TRADITIONAL TRANSFORM CODING

The results of the last few section offer an interesting
comparison with traditional ideas of transform coding theory,
for example the theory of Section II.
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(a) (b)

Fig. 6. A comparison of “diagonalization” problems. (a) Karhunen–Lo`eve finds axes of symmetry of concentration ellipsoid. (b) Unconditional basis
finds axes of symmetry of function class.

A. Nonlinear Approximation as Transform Coding

Effectively, the above results on nonlinear approximation
can be interpreted as describing a very simple transform coding
scheme. Accordingly, the results show thattransform coding
in an unconditional basis for a class provides a near-optimal
coding scheme for corresponding function balls

Consider the following very simple transform coding idea.
It has the following steps.

• We assume that we are given a certainquantization step
and a certainbandlimit

• Given an to be compressed, we obtain the first
coefficients of according to the system

.
• We then apply simple scalar quantization to those coef-

ficients, with stepsize

• Anticipating that the vast majority of these quantized
coefficients will turn out to be zero, we apply run-length
coding to the quantized coefficients to efficiently code
long runs of zeros.

This is a very simple coding procedure, perhaps even naive.
But it turns out that

• if we apply this procedure to functions in the ball ;
• if this ball arises from a function class for which

is an unconditional basis;
• if this ball obeys the minimal tail compactness condition

(15.2), and the Stechkin numbers obey (15.5);
• if the coding parameters are appropriately calibrated;

the coder can achieve-descriptions of every
achieving the rough asymptotics for the-entropy as described
by

Essentially, the idea is that the behavior of the “nonlinear
approximation” coder of Section XV can be realized by the
“scalar quantization” coder, when calibrated with the right
parameters. Indeed, it is obvious that the parameterof
the scalar quantizer and the parameter of the nonlinear
approximation coder play the same role; to calibrate the two
coders they should simply be made equal. It then seems natural

to calibrate with via

After this calibration the two coders are roughly equivalent:
they select approximants with precisely the same nonzero co-
efficients. The nonzero coefficients might be quantized slightly
differently , but using a few simple estimates deriving
from the assumption , one can see that they
give comparable performance both in bits used and distortion
achieved.

B. Comparison of Diagonalization Problems

Now we are in a position to compare the theory of Sections
XI–XV with the Shannon story of Section II. The
story of Section II says: to optimally compress a Gaussian sto-
chastic process, transform the data into the Karhunen–Loève
domain, and then quantize. The-entropy story of Sections
XI–XV says: to (roughly) optimally compress a function ball

, transform into the unconditional basis, and quantize.
In short, an orthogonal unconditional basis of a normed

space plays the same role for function classes as the eigenbasis
of the covariance plays for stochastic processes.

We have pointed out that an unconditional basis furnishes
a generalization to nonquadratic forms of the concept of
diagonalization of quadratic form. The Hölder class has, after
an equivalent renorming, the shape of a hyperrectangle. The
Bump Algebra has, after an equivalent renorming, the shape
of an octahedron. A wavelet basis serves as axes of symmetry
of these balls, just as an eigenbasis of a quadratic form serves
as axes of symmetry of the corresponding ellipsoid.

For Gaussian random vectors, there is the concept of “el-
lipsoid of concentration;” this is an ellipsoidal solid which
contains the bulk of the realizations of the Gaussian distribu-
tion. In effect, the Gaussian- coding procedure identifies
the problem of coding with one of transforming into the basis
serving as axes of symmetry of the concentration ellipsoid. In
comparison, our interpretation of the Kolmogorov- theory
is that one should transform into the basis serving as axes of
symmetry of the function ball, as illustrated by Fig. 6.
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Class Process Basis

Ellipsoid Gaussian Eigenbasis
non- Body non-Gaussian Unconditional Orthobasis

In effect, the function balls that we can describe by wavelet
bases through norm equivalence, are often nonellipsoidal and
in such cases do not correspond to the concentration ellipsoids
of Gaussian phenomena. There is in some sense an analogy
here to finding anappropriate orthogonal transform for non-
Gaussian data. In the table at the top of this page, we record
some aspects of this analogy without taking space to fully
explain it. See also [34].

The article [27] explored using functional balls as models
for real image data. The “Gaussian model” of data is an
ellipsoid; but empirical work shows that, within the Besov
and related scales, the nonellipsoidal cases provide a better fit
to real image data. So the “better” diagonalization theory may
well be the nontraditional one.

XVII. B EYOND ORTHOGONAL BASES: TREES

The effort of the harmonic analysis community to develop
unconditional orthogonal bases can now be seen to have
relevance to data compression and transform coding.

Unconditional bases exist only in very special settings, and
the harmonic analysis community has developed many other
interesting structures over the years—structures which go far
beyond the concept of orthogonal basis.

We expect these broader notions of representation also to
have significant data compression implications. In this section,
we discuss representations based on the notion of dyadic tree
and some data compression interpretations.

A. Recursive Dyadic Partitioning

A recursive dyadic partition(RDP) of a dyadic interval
is any partition reachable by applying two rules.

• Starting Rule: itself is an RDP.

• Dyadic Refinement:If is an RDP, and
is a partition of the dyadic inter-

val into its left and right dyadic subintervals, then
is a new RDP.

RDP’s are also naturally associated to binary trees; if we
label the root node of a binary tree by and let the two
children of the node correspond to the two dyadic subintervals
of , we associate with each RDP a tree whose terminal
nodes are subintervals comprising members of the partition.
This correspondence allows us to speak of methods exploiting
RDP’s as “tree-structured methods.”

Recursive dyadic partitioning has played an important role
throughout the subject of harmonic analysis, as one can see
from many examples in [89] and [45]. It is associated with
ideas like the Whitney decomposition of the 1930’s, and the
Caldeŕon–Zygmund Lemma in the 1950’s.

A powerful strategy in harmonic analysis is to construct
RDP’s according to “stopping time rules” which describe when
to stop refining. This gives rise to data structures that are highly
adapted to the underlying objects driving the construction.
One then obtains analytic information about the objects of
interest by combining information about the structure of the
constructed partition and the rule which generated it. In short,
recursive dyadic partitioning is a flexible general strategy for
certain kinds of delicate nonlinear analysis.

The RDP concept allows a useful decoration of the time-
scale plane, based on the family of time-scale rectangles

which we introduced in Section XII-B. If we think of
all the intervals visited in the sequential construction of an
RDP starting from the root as intervals where something
“important is happening” and the ones not visited, i.e., those
occurring at finer scales than intervals in the partition, as ones
where “not much is happening,” we thereby obtain an adaptive
labeling of the time-scale plane by “importance.”

Here is a simple example, useful below. Suppose we con-
struct an RDP using the rule “stop when no subinterval
of the current interval has a wavelet coefficient ;”
the corresponding labeling of the time-scale plane shows a
“stopping time region” outside of which all intervals are
unimportant, i.e., are associated to wavelet coefficients
For later use, we call this stopping-time region thehereditary
cover of the set of wavelet coefficients larger than; it includes
not only the cells associated to “big” wavelet coefficients,
but also the ancestors of those cells. The typical appearance
of such a region, in analyzing an object with discontinuities,
is that of a region with very fine “tendrils” reaching down
to fine scales in the vicinity of the discontinuities; the visual
appearance can be quite striking; see Fig. 7.

Often, as in the Whitney and Calderón–Zygmund con-
structions, one runs the “stopping time” construction only
once, but there are occasions where running it repeatedly is
important. Doing so will produce a sequence of nested sets;
in the hereditary cover example, one can see that running the
stopping time argument for will give a sequence of
regions; outside of the th one, no coefficient can be larger
than

In the 1950’s and early 1960’s, Carleson studied problems
of interpolation in the upper half-plane. In this problem, we
suppose we are given prescribed valuesat an irregular set
of points in the upper half-plane

and we ask whether there is a bounded functionon the
line whose Poisson integral obeys the stated conditions.
Owing to the connection with wavelet transforms, this is much
like asking whether, from a given scattered collection of data
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Fig. 7. An object, and the stopping-time region for theq-big coefficients.

about the wavelet transform we can reconstruct the
underlying function. Carleson developed complete answers
to this problem, through a method now called the “Corona
Construction,” based on running stopping time estimates re-
peatedly. Recently P. Jones [57] discussed a few far-reaching
applications of this idea in various branches of analysis,
reaching the conclusion that it “ is one of the most malleable
tools available.”

B. Trees and Data Compression

In the 1960’s, Birman and Solomjak [8] showed how to
use recursive dyadic partitions to develop coders achieving
the correct order of Kolmogorov-entropy for -Sobolev
function classes.

The Birman–Solomjak procedure starts from a function
of interest, and constructs a partition based on a parameter
Beginning with the whole domain of interest, the stopping
rule refines the dyadic interval only if approximating the
function on by a polynomial of degree gives an error
exceeding Call the resulting RDP a-partition. The coding
method is to construct a-partition, where the parameter

is chosen to give a certain desired global accuracy of
approximation, and to represent the underlying function by
digitizing the approximating polynomials associated with the
-partition. By analyzing the number of pieces of an-

partition, and the total approximation error of a-partition,
and by studying the required number of bits to code for the
approximating polynomials on each individual, they showed
that their method gave optimal order bounds on the number
of bits required to -approximate a function in a ball.

This type of result works in a broader scale of settings
than just the -Sobolev balls. A modern understanding of
the underlying nonlinear approximation properties of this
approach is developed in [28].

This approximation scheme is highly adaptive, with the
partition adapting spatially to the structure of the underlying
object. The ability of the scheme to refine more aggressively in
certain parts of the domain than in others is actually necessary
to obtaining optimal order bounds for certain choices of the
index defining the Sobolev norm; if we use norm
for measuring approximation error, the adaptive refinement
is necessary whenever Such spatially inhomogeneous
refinement allows to use fewer bits to code in areas of
unremarkable behavior and more bits in areas of rapid change.

RDP ideas can also be used to develop wavelet-domain
transform coders that achieve the optimal order-entropy
bounds over -Sobolev balls , with
Recall that the argument of Section XV showed that any
coding of such a space must require bits, while
a very crude transform coding was offered that required order

bits. We are claiming that RDP ideas can be
used to eliminate the log term in this estimate [14]. In effect,
we are saying that by exploiting trees, we can make the cost
of coding the position of the big wavelet coefficients at worst
comparable to the-entropy.

The key point about a function in -Sobolev space is that,
on average, the coefficients decay with decreasing scale

Indeed, from the -function representation described in
Section XII-D, we can see that the wavelet coefficients of
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such a function obey, at level

(17.1)

In the range , this inequality controls rather
powerfully the number and position of nonzero coefficients in
a scalar quantization of the wavelet coefficients. Using it in
conjunction with RDP ideas allows to code the position of the
nonzero wavelet coefficients with far fewer bits than we have
employed in the run-length coding ideas of Section XV.

After running a scalar quantizer on the wavelet coeffi-
cients, we are left with a scattered collection of nonzero
quantizer outputs; these correspond to coefficients exceeding
the quantizer interval Now form the hereditary cover of
the set of all coefficients exceeding, using the stopping time
argument described in Section XVII-A. The coder will consist
of two pieces: a lossless code describing this stopping time
region (also the positions within the region containing nonzero
quantizer outputs), and a linear array giving the quantizer
outputs associated with nonzero cells in the region.

This coder allows the exact same reconstruction that was
employed using the much cruder coder of Section XV. We
now turn to estimates of the number of bits required.

A stopping-time region can be easily coded by recording the
bits of the individual refine/don’t refine decisions; we should
record also the presence/absence of a “big” coefficient at each
nonterminal cell in the region, which involves a second array
of bits.

The number of bits required to code for a stopping-time
region is, of course, proportional to the number of cells in the
region itself. We will use in a moment the inequality (17.1)
to argue that in a certain maximal sense the number of cells
in a hereditary cover is not essentially larger than the original
number of entries generating the cover. It will follow from this
that the number of bits required to code the positions of the
nonzero quantizer outputs is in a maximal sense proportional
to the number of nonzero quantizer outputs. This, in turn, is
the desired estimate; the cruder approach of Section XV gave
only the estimate , where is the number of quantizer
outputs. For a careful spelling-out of the kind of argument we
are about to give, see [33, Lemma 10.3].

We now estimate the maximal number of cells in the
stopping-time region, making some remarks about the kind of
control exerted by (17.1) on the arrangement and sizes of the
wavelet coefficients; compare Fig. 7. The wavelet coefficients
of functions in an -Sobolev ball associated to have a
“Last Full Level” : this is the finest level for which one
can find some in the ball such that for all of length

, the associated wavelet coefficient exceedsin absolute
value. By (17.1), any such obeys , where is the
real solution of

The wavelet coefficients also have a “First Empty Level”
, i.e., a coarsest level beyond which all wavelet coefficients

are bounded above in absolute value byBy (17.1), any

nonzero quantizer output occurs at , where

At scales intermediate between the two special values,
, there are possibly “sparse levels” which can con-

tain wavelet coefficients exceeding, in a subset of the
positions. However, the maximum possible numberof such
nonzero quantizer outputs at levelthins out rapidly, in fact
exponentially, with increasing Indeed, we must have

and from we get

with
In short, there are about possible “big” coefficients

at the level nearest , but the maximal number of nonzero
coefficients decays exponentially fast at scales away from
In an obvious probabilistic interpretation of these facts the
“expected distance” of a nonzero coefficient belowis

Now obviously, in forming the hereditary cover of the
positions of nonzero quantizer outputs, we will not obtain a
set larger than the set we would get by including all positions
through level , and also including all “tendrils” reaching
down to positions of the nonzeros at finer scales than this.
The expected number of cells in a tendril is and the
number of tendrils is Therefore, the maximal number
of cells in the -big region is not more than The
maximal number of nonzeros is of size

These bounds imply the required estimates on the number
of bits to code for positional information.

One needs to spend a little care also on the encoding of
the coefficients themselves. A naive procedure would spend

on each of coefficients, leading to a
crude estimate requiring bits, now to encode
the coefficient information. By making use of the nested sets
in the hereditary cover described earlier, one can structure the
coefficients to be retained into layers, in which the label of
the layer indicates how many (or few) bits need to be spent
on coefficients in that layer. One can estimate, similarly to
what was done above, that the layers with large coefficients,
for which more bits are required, contain few elements; layers
corresponding to much smaller coefficients have many more
elements, but because their label already restricted their size,
we spend fewer bits on them to specify them with the same
precision. Accounting for the cost in bits of this procedure, one
finds that encoding the coefficients also requires
bits only.

This encoding strategy can be modified so as to be pro-
gressive and universal. By adding one bit for each existing
coefficient and new bits to specify the new coefficients and
their position, it becomes progressive. Each additional stream
of bits serves to add new detail to the existing approximation
in a nonredundant way. The encoding is also universal in the
sense that the encoder does not need to know the character-
istics of the class : the encoder is defined once and for all
and enjoys the property that each classwhich has as
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an unconditional basis will be optimally encoded with respect
to Kolmogorov entropy. It is interesting to note that practical
wavelet-based encoders, such as those introduced for images
in [86] and [82], carry out a similar procedure.

XVIII. B EYOND TIME SCALE: TIME FREQUENCY

The analysis methods described so far—wavelets or trees—
were Time-Scalemethods. These methods associate, to a
simple function of time only, an object extending over both
time and scale, and they extract analytic information from that
two-variable object.

An important complement to this is the family ofTime-Fre-
quencymethods. Broadly speaking, these methods try to iden-
tify the different frequencies present in an object at time

In a sense, time-scale methods are useful for compressing
objects which display punctuated smoothness—e.g., which
are typically smooth away from singularities. Time-frequency
methods work for oscillatory objects where the frequency
content changes gradually in time.

One thinks of time-scale methods as more naturally adapted
to image data, while time-frequency methods seem more suited
for acoustic phenomena. For some viewpoints on mathematical
time-frequency analysis, see [21], [23], and [39].

In this section we very briefly cover time-frequency ideas,
to illustrate some of the potential of harmonic analysis in this
setting.

A. Modulation Spaces

Let be a Gaussian window. Let
denote theGabor function

localized near time and frequency The family of all Gabor
functions provides a range of oscillatory behavior associated
with a range of different intervals in time. These could either
be called “time-frequency atoms” or, more provocatively,
“musical notes.”

Let denote the collection of all functions which can
be decomposed as

where Let denote the smallest value
occurring in any such decomposition. This provides a normed
linear space of functions, which Feichtinger calls theSegal
algebra [40]. For a given amplitude , the norm constraint

controls the number of “musical notes” of strength
which can contain: So such a norm controls

in a way the complexity of the harmonic structure of
A special feature of the above class is that there is no

unique way to obtain a decomposition of the desired type,
and no procedure is specified for doing so. As with our earlier
analyses, it would seem natural to seek a basis for this class;
one could even ask for an unconditional basis.

This Segal algebra is an instance of Feichtinger’s general
family modulation spaces and we could more gen-
erally ask for unconditional bases for any of these spaces.
The modulation spaces offer an interesting scale of spaces in

certain respects analogous to-Sobolev and related Besov
and Triebel scales; in this brief survey, we are unable to
describe them in detail.

B. Continuous Gabor Transform

Even older than the wavelet transform is the continuous
Gabor transform (CGT). The Gabor transform can be written
in a form analogous to (12.8) and (12.10)

(18.1)

(18.2)

Here can be a Gabor function as introduced above; it can
also be a “Gabor-like” function generated from a non-Gaussian
window function

If both and its Fourier transform are “concentrated”
around (which is true for the Gaussian), then (18.1) captures
information in that is localized in time (around ) and
frequency (around ); (18.2) writes as a superposition of
all the different time-frequency pieces.

Paternity of this transform is not uniquely assignable; it may
be viewed as a special case in the theory of square-integrable
group representations, a branch of abstract harmonic analysis
[47]; it may be viewed as a special case of decomposition into
canonical coherent states, a branch of mathematical physics
[59]. In the signal analysis literature it is generally called the
CGT to honor Gabor [44], and that appellation is very fitting on
this occasion. Gabor proposed a “theory of communication”
in 1946, two years before Shannon’s work, that introduced
the concept of logons—information carrying “cells”—highly
relevant to the present occasion, and to Shannon’s sampling
theory.

The information in is highly redundant. For instance,
captures what happens innot only at time ,

but also near and similarly in frequency. The degree to
which this “spreading” occurs is determined by the choice of
the window function : if is very narrowly concentrated
around , then the sensitivity of to the behavior
of is concentrated to the vicinity of The Heisenberg
Uncertainty Principle links the concentration ofwith that of
the Fourier transform If we define

and

then , so that as becomes more concen-
trated, becomes less so, implying that the frequency sen-
sitivity of becomes more diffuse when we improve
the time localization of Formalizing this, let denote
the rectangle of dimensions centered at .
The choice of influences the shape of the region (more
narrow in time, but elongated in frequency if we choose
very concentrated around); the area of the cell is bounded
below by the Uncertainty Principle. We think of each point

as measuring properties of a “cell” in the time-
frequency domain, indicating the region that is “captured” in
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For example, if and are disjoint,
we think of the corresponding values as measuring disjoint
properties of

C. Atomic Decomposition

Together, (18.1) and (18.2) can be written as

(18.3)

another resolution of the identity operator.
For parameters to be chosen, define equispaced time

points and frequency points Consider
now a family of time-frequency rectangles

Evidently, these rectangles are disjoint and tile the time-
frequency plane.

Proceeding purely formally, we can partition the integral
in the resolution of the identity to get a decomposition

with individual operators

This provides formally an atomic decomposition

(18.4)

In order to justify this approach, we would have to justify
treating a rectangle as a single coherent region of the
time-frequency plane. Heuristically, this coherence will apply
if is smaller than the spread and if is smaller
than the spread of In short, if the rectangle has
the geometry of a Heisenberg cell, or smaller, then the above
approach makes logical sense.

One application for atomic decomposition would be to
characterize membership in the Segal AlgebraFeichtinger
has proved that, with a sufficiently nice window, like the
Gaussian, if we pick and sufficiently small, atomic
decomposition allows to measure the norm ofLet

measure the size of the atom ; then a
function is in if and only if . Moreover,

so the series
represents a decomposition ofinto elements of and

So we have an equivalent norm for the-norm. This in some
sense justifies the Gabor “logon” picture, as it shows that an
object can really be represented in terms of elementary pieces,
those pieces being associated with rectangular time-frequency
cells, and each piece uniformly in

D. Orthobasis

Naturally, one expects to obtain not just an atomic decom-
position, but actually an orthobasis. In fact, Gabor believed
that one could do so. One approach is to search for a window

, not necessarily the Gaussian, and a precise choice of
and so that the samples at equispaced points

provide an exact norm equivalence

While this is indeed possible, a famous result due to Balian
and Low shows that it is not possible to achieve orthogonality
using a which is nicely concentrated in both time and
frequency; to get an orthogonal basis from Gabor functions
requires to have Hence the geometric
picture of localized contributions from rectangular regions is
not compatible with an orthogonal decomposition. A related
effect is that the resulting Gabor orthogonal basis would not
provide an unconditional bases for a wide range of modulation
spaces. In fact, for certain modulation spaces, nonlinear ap-
proximation in such a basis would not behave optimally; e.g.,
we have examples of function balls in modulation spaces
where GABOR ORTHOBASIS .

A way out was discovered with the construction of so-called
Wilson orthobases for [22]. These are Gabor-like bases,
built using a special smooth window of rapid decay, and
consist of basis elements , where is a position index
and is a frequency index. runs through the integers, and
runs through the nonnegative integers; the two parameters vary
independently, except that is allowed in conjunction
only with even In detail

Owing to the presence of the cosine and sine terms, as
opposed to complex exponentials, the are not truly
Gabor functions; but they can be viewed as superpositions
of certain pairs of Gabor functions. The Gabor functions
used in those pairs do not fill out the vertices of a single
rectangular lattice, but instead they use a subset of the vertices
of two distinct lattices. Hence the information in the Wilson
coefficients derives indeed from sampling of the CGT with
special generating window , only the samples must be
taken on two interleaved Cartesian grids; and the samples must
be combined in pairs in order to create the Wilson coefficients,
as shown in Fig. 8.

The resulting orthobasis has good analytic properties.
Grochenig and Walnut [51] have proved that it offers an
unconditional basis for all the modulation spaces; in particular,
it is an unconditional basis for As a result, Wilson bases
are best orthobases for nonlinear approximation; for function
balls arising from a wide range of modulation spaces
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Fig. 8. The sampling set associated with the Wilson basis. Sampling points linked by solid lines are combined by addition. Sampling points linked by
dashed lines are combined by subtraction.

WILSON ORTHOBASIS . See also [50]. There
are related data compression implications, although to state
them requires some technicalities, for example, imposing on
the objects to be compressed some additional decay conditions
in both the time and frequency domains.

E. Adaptive Time-Frequency Decompositions

In a sense, CGT analysis/Gabor Atomic Decomposition/
Wilson bases merely scratch the surface of what one hopes to
achieve in the time-frequency domain. The essential limitation
of these tools is that they aremonoresolution. They derive from
a uniform rectangular sampling of time and frequency which
is suitable for some phenomena; but it is easy to come up with
models requiring highly nonuniform approaches.

Define the multiscale Gabor dictionary, consisting of Gabor
functions with an additional scale parameter

For , consider the class of objects having a
multiscale decomposition

(18.5)

with In a sense, this class is obtained by com-
bining features of the Bump Algebra—multiscale decomposi-
tion—and the Segal Algebra—time-frequency decomposition.
This innocent-looking combination of features responds to
a simple urge for common-sense generalization, but it gets
us immediately into mathematical hot water. Indeed, one
cannot use a simple monoscale atomic decomposition based
on the CGT to effectively decompose such aninto its

pieces at different scales; one cannot from the monoscale
analysis infer the size of the minimal appearing in such
a decomposition. Moreover, we are unaware of any effective
means of decomposing members of this class in a way which
achieves a near-optimal representation, i.e., a representation
(18.5) with near-minimal

One might imagine performing a kind of “multiscale Gabor
transform”—with parameters time, scale, and frequency, and
developing an atomic decomposition or even a basis based
on a three-dimensional rectangular partitioning of this time-
scale-frequency domain, but this cannot work without extra
precautions [95]. The kind of sampling theorem and norm
equivalence result one might hope for has been proven im-
possible in that setting.

An important organizational tool in getting an understanding
of the situation is to consider dyadic Heisenberg cells only,
and to understand the decompositions of time and frequency
which can be based upon them. These dyadic Heisenberg cells

are of side and volume , with lower
left corner at in the time-frequency plane. The
difficulty of the time-frequency-scale decomposition problem
is expressed by the fact that each Heisenberg cell overlaps
with infinitely many others, corresponding to different aspect
ratios at the same location. This means that even in a natural
discretization of the underlying parameter space, there are a
wide range of multiscale Gabor functions interacting with each
other at each point of the time-frequency domain.

This kind of dyadic structuring has been basic to the
architecture of some key results in classical analysis, namely,
Carleson’s proof of the a.e. convergence of Fourier series,
and also Fefferman’s alternate proof of the Carleson theorem.
Both of those proofs were based on dyadic decomposition
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of time and frequency, and the driving idea in those proofs
is to find ingenious ways to effectively combine estimates
from all different Heisenberg cells despite the rather massive
degree of overlap present in the family of all these cells.
For example, Fefferman introduced a tree-ordering of dyadic
Heisenberg cells, and was able to get effective estimates by
constructing many partitions of the time-frequency domain
according to the properties of the Fourier partial sums he was
studying, obtaining a decomposition of the sums into operators
associated with special time-frequency regions called trees,
and combining estimates across trees into forests.

Inspired by their success, one might imagine that there
is some way to untangle all the overlap in the dyadic
Heisenberg cells and develop an effective multiscale
time-frequency analysis. The goal would be to somehow
organize the information coming from dyadic Heisenberg
cells to iteratively extract from this time-scale-frequency
space various “layers” of information. As we have put it
this program is, of course, rather vague.

More concrete is the idea ofnonuniform tiling of the time-
frequency plane. Instead of decomposing the plane by a
sequence of disjoint congruent rectangles, one uses rectangles
of various shapes and sizes, where the cells have been chosen
specially to adapt to the underlying features of the object being
considered.

The idea of adaptive tiling is quite natural in connection
with the problem of multiscale time-frequency decomposition,
though it originally arose in other areas of analysis. Feffer-
man’s survey [41] gives examples of this idea in action in the
study of partial differential equations, where an adaptive time-
frequency tiling is used to decompose operator kernels for the
purpose of estimating eigenvalues.

Here is how one might expect adaptive tiling to work in a
multiscale time-frequency setting. Suppose that an object had
a representation (18.5) where the fine-scale atoms occurred
at particular time locations well separated from the coarse-
scale atoms. Then one could imagine constructing a time-
frequency tiling that had homologous structure: rectangles
with finer time scales where the underlying atoms in the
optimal decomposition needed to be fine-scale; rectangles
with coarser time-scale elsewhere. The idea requires more
thought than it might at first seem, since the rectangles cannot
be chosen freely; they must obey the Heisenberg constraint.
The dyadic Heisenberg system provides a constrained set of
building blocks which often can be fit together quite easily
to create rather inhomogeneous tilings. Also, the rectangles
must correspond rigorously to an analyzing tool: there must
be an underlying time-frequency analysis with a width that is
changing with spatial location. It would be especially nice if
one could do this in a way providing true orthogonality.

In any event, it is clear that an appropriate multiscale time-
frequency analysis in the setting of or related classes
cannot be constructed within a single orthobasis. At the very
least, one would expect to consider large families of or-
thobases, and select from such a family an individual basis best
adapted for each individual object of interest. However, even
there it is quite unlikely that one could obtain true characteri-
zation of a space like ; i.e., it is unlikely that even within

the broader situation of adaptively chosen orthobases, the de-
compositions one could obtain would rival an optimal decom-
position of the form (18.5), i.e., a decomposition with minimal

A corollary to this is that we really know of no effective
method for data compression for this class:there is no effective
transform coding for multiscale time-frequency classes.

XIX. COMPUTATIONAL HARMONIC ANALYSIS

The theoretical constructions of harmonic analysts corre-
spond with practical signal-processing tools to a remarkable
degree. The ideas which are so useful in the functional view-
point, where one is analyzing functions of a continuous
argument, correspond to completely analogous tools for the
analysis of discrete-time signals Moreover, the tools can
be realized as fast algorithms, so that on signals of length
they take order or operations to complete. Thus
corresponding to the theoretical developments traced above,
we have today fast wavelet transforms, fast Gabor transforms,
fast tree approximation algorithms, and even fast algorithms
for adapted multiscale time-frequency analysis.

The correspondence between theoretical harmonic analysis
and effective signal processing algorithms has its roots in two
specific facts which imply a rather exact connection between
the functional viewpoint of this paper and the digital viewpoint
common in signal processing.

• Fast Fourier Transform:The finite Fourier transform pro-
vides an orthogonal transform for discrete-time sequences
which, in a certain sense, matches perfectly with the
classical Fourier series for functions on the circle. For
example, on appropriate trigonometric polynomials, the
first Fourier series coefficients are (after normaliza-
tion) precisely the finite Fourier coefficients of the
digital signal obtained by sampling the trigonometric
polynomial. This fact provides a powerful tool to connect
concepts from the functional setting with the discrete-time
signal setting. The availability of fast algorithms has made
this correspondence a computationally effective matter. It
is an eerie coincidence that the most popular form of the
FFT algorithm prefers to operate on signals of dyadic
length; for connecting theoretical harmonic analysis with
the digital signal processing domain, the dyadic length is
also the most natural.

• Sampling Theorem:The classical Shannon sampling the-
orem for bandlimited functions on the line has a perfect
analog for digital signals obeying discrete-time bandlim-
iting relations. This is usually interpreted as saying that
one can simply subsample a data series and extract the
minimal nonredundant subset. A different way to put it
is that there is an orthonormal basis for the bandlimited
signals and that sampling provides a fast algorithm for
obtaining the coefficients of a signal in that basis.

There are, in addition, two particular tools for partitioning
signal domains which allow effective digital implementation
of breaking a signal into time-scale or time-frequency pieces.

• Smooth Orthonormal Localization:Suppose one takes a
discrete-time signal of length and breaks it into two
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subsignals of length , corresponding to the first half and
the second half. Now subject those two halves to further
processing, expanding each half into an orthonormal basis
for digital signals of length In effect, one is expand-
ing the original length signal into an orthonormal
basis for length The implicit basis functions may
not be well-behaved near the midpoint. For example, if
the length basis is the finite Fourier basis, then the
length basis functions will be discontinuous at the
segmentation point. This discontinuity can be avoided by
changing the original “splitting into two pieces” into a
more sophisticated partitioning operator based on a kind
of smooth orthonormal windowing. This involves treating
the data near the segmentation point specially, taking pairs
of values located equal distances from the segmentation
point and on opposite sides and, instead of simply putting
one value in one segment and the other value in the other
segment, one puts special pairs of linear combinations of
the two values in the two halves; see for example [71],
[72], and [3].

• Subband Partitioning:Suppose we take a discrete-time
signal, transform it into the frequency domain, and break
the Fourier transform into two pieces, the high and low
frequencies. Now transform the pieces back into the time
domain. As the pieces are now bandlimited/bandpass,
they can be subsampled, creating two new vectors con-
sisting of the ‘high frequency’ and ‘low frequency’ op-
erations. The two new vectors are related to the original
signal by orthogonal transformation, so the process is in
some sense exact. Unfortunately, the brutal separation
into high and low frequencies has many undesirable
effects. One solution to this problem would have been to
apply smooth orthonormal localization in the frequency
domain. A different approach, with many advantages, is
based on the time domain method ofconjugate quadra-
ture filters.

In this approach, one applies a special pair of digital
filters, high- and lowpass, to a digital signal of length

, and then subsamples each of the two results by a
factor two [88], [76], [97], [99]. The result is two signals
of length , so that the original cardinality of is
preserved, andif the filters are very specially chosen, the
transform can be made orthogonal. The key point is that
the filters can be short. The most elementary example is
to use a highpass filter with coefficients
and a lowpass filter with coefficients The
shortness of this filter means that the operator does not
have the time-localization problems of the frequency-
domain algorithm, but unfortunately this filter pair will
not have very good frequency-domain selectivity. More
sophisticated filter pairs, with lengths , have been de-
veloped; these are designed to maintain the orthogonality
and to impose additional conditions which ensure both
time- and frequency-domain localization.

This set of tools can lead to fast algorithms for digital
implementation of the central ideas in theoretical harmonic
analysis.

A key point is that one can cascade the above operations.
For example, if one can split a signal domain into two
pieces, then one can split it into four pieces, by applying
the same type of operation again to each piece. In this
way, the dyadic structuring ideas that were so useful in
harmonic analysis—dyadic partitioning of time-scale and time-
frequency—correspond directly to dyadic structuring in the
digital setting.

We give a few examples of this, stressing the role of
combining elementary dyadic operations.

• Fast Meyer Wavelet Transform:The Meyer wavelet basis
for was originally defined by its frequency-domain
properties, and so it is most natural to construct a digital
variant using the Fourier domain. The forward transform
algorithm goes as follows. Transform into the frequency
domain. Apply smooth orthonormal windowing, break-
ing up the frequency domain into subbands of pairs of
intervals of width samples, located symmetrically
about zero frequency. Apply to each subband a Fourier
analysis (actually either a sine or cosine transform) of
length adapted to the length of the subband. The cost of
applying this algorithm is dominated by the initial passage
to the Frequency domain, which is order
The inverse transform systematically reverses these op-
erations.

The point of the fast algorithm is, of course, that one
does not literally construct the basis functions, and one
does not literally take the inner product of the digital
signal with the basis function. This is all done implicitly.
However, it is easy enough to use the algorithm to display
the basis functions. When one does so, one sees that they
are trigonometric polynomials which are periodic and
effectively localized near the dyadic interval they should
be associated with.

• Mallat Algorithm: Improving in several respects on the
frequency-domain digital Meyer wavelet basis is a family
of orthonormal wavelet bases based on time-domain filter-
ing [69]. The central idea here is by now very well known:
it involves taking the signal, applying subband partition-
ing with specially chosen digital highpass and lowpass
filters, subsampling the two pieces by dyadic decimation,
and then recursively applying the same procedure on the
lowpass piece only. When the filters are appropriately
specified, the result is an orthonormal transform on-
space.

The resulting transform on digital signals takes only
order arithmetic operations, so it has a speed advantage
over the fast Meyer wavelet transform, which requires
order operations. Although we do not describe
it here, there is an important modification of the filtering
operators at the ends of the sequence which allows the
wavelet basis functions to adapt to the boundary of the
signal, i.e., we avoid the periodization of the fast Meyer
transform [13]. Finally, the wavelet basis functions are
compactly supported, with basis element vanishing
in the time domain outside an interval homothetic to
This means that they have the correct structure to be
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called a wavelet transform. The support property also
means that a small number of wavelet coefficients at
a given scale are affected by singularities, or to put it
another way, the effect of a singularity is compressed
into a small number of coefficients.

• Fast Wilson Basis Transformis a digital version of the
Wilson basis; the fast transform works as follows. First,
one applies a smooth orthonormal partitioning to break up
the time domain into equal-length segments. (It is most
convenient if the segments have dyadic lengths.) Then
one applies Fourier analysis, in the form of a sine or
cosine transform, to each segment. The whole algorithm
is order , where is the length of a segment.
The implicitly defined basis functions look like windowed
sinusoids with the same arrangement of sine and cosine
terms as in the continuum Wilson basis.

We should now stress that for the correspondence between
a theoretical harmonic analysis concept and a computational
harmonic analysis tool, dyadic structuring operators should not
be performed in a cavalier fashion. For example, if one is
going to cascade subband partitioning operations many times,
as in the Mallat algorithm, it is important that the underlying
filters be rather specially chosen to be compatible with this
repetitive cascade.

When this is done appropriately, one can arrive at digital
implementations that are not vague analogies of the corre-
sponding theoretical concepts, but can actually be viewed
as “correct” digital realizations. As the reader expects by
now, the mathematical expression that one has a “correct”
realization is achieved by establishing a norm equivalence
result. For example, if in the Mallat algorithm one cascades the
subband partitioning operator using appropriate finite-length
digital filters, one can construct a discrete wavelet transform
for digital signals. This discrete transform is “correctly re-
lated” to a corresponding theoretical wavelet transform on
the continuum because of a norm equivalence: if is
a function on the interval , and if is a set of
digital wavelet coefficients for the digitally sampled object

, then the appropriate Triebel and Besov norms of
the digital wavelet coefficients behave quite precisely like
the same norms of the corresponding initial segments of the
theoretical wavelet coefficients of the continuum This
is again a form of sampling theorem, showing that an
equality of norms (which follows simply from orthogonality)
is accompanied by an equivalence in many other norms (which
follows from much more delicate facts about the construction).
A consequence, and of particular relevance for this paper, is
that under simple assumptions, one can use the digital wavelet
transform coefficients for nonlinear approximation and expect
the same bounds on approximation measures to apply;hence
digital wavelet-based transform coding of function classes
obeys the same types of estimates as theoretical wavelet-based
transform coding.

The “appropriate finite-length filters” referred to in the
last paragraph are in fact arrived at by a delicate process
of design. In [20], a collection of finite-length filters was
constructed that gave orthonormal digital wavelet transforms.

For the constructed transforms, if one views thedigital
samples as occurring at points for , and
takes individual digital basis elements corresponding to the
“same” location and scale at different dyadic, appropriately
normalized and interpolated to create functions of a continuous
variable, one obtains a sequence of functions which tends to
a limit. Moreover, the limit must be a translate and dilate of a
single smooth function of compact support. In short, the digital
wavelet transform is truly a digital realization of the theoretical
wavelet transform. The norm equivalence statement of the
previous paragraph is a way of mathematically completing this
fundamental insight. In the last ten years, a large number of
interesting constructions of “appropriate finite-length filters”
have appeared, which we cannot summarize here. For more
complete information on the properties of wavelet transforms
and the associated filters, see for example, [100] and [23].

The success in developing ways to translate theoretical
wavelet transforms and Gabor transforms into computationally
effective methods naturally breeds the ambition to do the
same in other cases. Consider the dyadic Heisenberg cells
of Section XVIII-E, and the resulting concept of nonuniform
tiling of the time-frequency plane. It turns out that for a
large collection of nonuniform tilings, one can realize—in
a computationally effective manner—a corresponding
orthonormal basis [18]; see Fig. 9.

Here are two examples:

• Cosine Packets:Take a recursive dyadic partition of
the time interval into dyadic segments. Apply smooth
orthonormal partitioning to separate out the original sig-
nal into a collection of corresponding segments. Take
appropriate finite Fourier transforms of each segment.
The result is an orthogonal transform which is associated
with a specific tiling of the time-frequency domain. That
tiling has, for its projection on the time axis, simply the
original partition of the time domain; over the whole time-
frequency domain, it consists of columns whose widths
are defined by intervals of the time-partition; within
a column, the tiling simply involves congruent dyadic
Heisenberg cells with specified width.

• Wavelet Packets:Take a recursive dyadic partition of the
frequency interval into dyadic segments. Apply subband
partitioning to separate out the original signal into a
collection of corresponding frequency bands. The result
is an orthogonal transform which costs at most
operations. It is associated with a specific tiling of the
time-frequency domain. That tiling has, for its projection
on the frequency axis, simply the original partition of
the frequency domain; over the whole time-frequency
domain, it consists of rows whose widths are defined
by intervals of the frequency-partition; within a row, the
tiling simply involves congruent dyadic Heisenberg cells
with specified height.

Do these bases correspond to “correct” digital implementa-
tion of the theoretical partitioning? While they are orthogonal,
we are not aware of results showing that they obey a wide
range of other norm equivalences. It would be interesting to
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Fig. 9. Some time-frequency tilings corresponding to orthonormal bases.

know if they obeysufficiently strong equivalences to imply
that transform coding in an adaptively constructed basis can
provide near-optimal codingfor an interesting class of objects.
At the very least, results of this kind would require detailed
assumptions, allowing the partitioning to be inhomogeneous
in interesting ways and yet not very wild, and also supposing
that the details of window lengths in the smooth orthonormal
windowing or the filter choice in the subband partitioning are
chosen appropriately.

The time-frequency tiling ideas raise interesting possibili-
ties. In effect, the wavelet packet and cosine packet libraries
create large libraries of orthogonal bases, all of which have
fast algorithms. The Fourier and Wavelet bases are just two
examples in this library; Gabor/Wilson-like bases provide
other examples. These two collections have been studied
by Coifman and Wickerhauser [17], who have shown that
for certain “additive” objective functions the search through
the library of all cosine packet or wavelet packet bases can
be performed in operations. This search is
dependent on the function to be analyzed, so it is an instance of
nonlinear approximation. In the case when this search is done
for compression purposes, an operational rate-distortion-based
version was presented in [80].

XX. PRACTICAL CODING

How do the ideas from harmonic analysis work onreal
data?

Actually, many of these ideas have been in use for some
time in the practical data compression community, though
discovered independently and studied under other names.

This is an example of a curious phenomenon commented
on by Yves Meyer [73]: some of the really important ideas
of harmonic analysis have been discovered, in some cognate
or approximate form, in a wide range of practical settings,
ranging from signal processing to mathematical physics, to
computer-aided design. Often the basic tools are the same, but
harmonic analysis imposes a different set of requirements on
those tools.

To emphasize the relationship of the theory of this paper to
practical coders, we briefly comment on some developments.

DCT coding of the type used in JPEG is based on a
partitioning of the image domain into blocks, followed by
DCT transform coding. The partitioning is done brutally, with
the obvious drawback of DCT coding, which is the blocking
effect at high compression ratios. Subband coding of images
was proposed in the early 1980’s [98], [102]. Instead of
using rectangular windows as the DCT does, the subband
approach effectively uses longer, smooth windows, and thus
achieves a smooth reconstruction even at low bit rates. Note
that early subband coding schemes were trying to approximate
decorrelating transforms like the KLT, while avoiding some of
the pitfalls of the DCT. Coding gains of filter banks were used
as a performance measure. Underlying such investigations was
a Gaussian model for signals, or a Markov random field (MRF)
model for images.

Among possible subband coding schemes for images, a
specific structure enjoyed particular popularity, namely, the
scheme where the decomposition of the lower frequency band
is iterated. This was due to several factors:

1) Its relationship with pyramid coding.
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2) The fact that most of the energy remains concentrated
in the lowpass version.

3) Its computational efficiency and simplicity.

Of course, this computational structure is equivalent to the
discrete wavelet transform, and, as we have described, with
appropriately designed digital filters, it can be related to the
continuous wavelet series expansion.

Because of the concentrated efforts on subband coding
schemes related to discrete wavelet transforms, interesting ad-
vances were achieved leading to improved image compression.
The key insight derived from thinking in scale-location terms,
and realizing that edges caused an interesting clustering effect
across scales: the positions of “big” coefficients would remain
localized in the various frequency bands, and could therefore
be efficiently indexed using a linking across frequencies [68].
This idea was perfected by J. Shapiro into a data structure
called an embedded zero tree [86]. Together with a successive
approximation quantization, this coder achieves high-quality,
successive approximation compression over a large range
of bit rates, outperforming JPEG at any given bit rate by
several decibels in signal-to-noise ratio. Many generalizations
of Shapiro’s algorithm have been proposed, and we will briefly
outline the basic scheme to indicate its relation to nonlinear
approximation in wavelet decompositions.

A key idea is that the significant wavelet coefficients are
well-localized around points of discontinuity at small scales
(or high frequency), see Fig. 10(a). This is unlike local cosine
or DCT bases. Therefore, an edge of a given orientation
will appear roughly as an edge in the respective orientation
subband, and this at all scales. Conversely, smooth areas will
be nulled out in passbands, since the wavelet has typically
several zero moments. Therefore, a conditional entropy coder
can take advantage of this “dependence across scales.” In
particular, the zero tree structure gathers regions of low energy
across scales, by simply predicting that if a passband is zero
at a given scale, its four children at the next finer scale (and
similar orientation) are most likely to be zero as well (see Fig.
10(b)). This scheme can be iterated across scales. In some
sense, it is a generalization of the end of block symbol used in
DCT coding. (Note that such a prediction across scales would
be fruitless in a Gaussian setting, because of independence
of different bands.) Also, note that the actual values of the
coefficients arenot predicted, but only the “insignificance” or
absence of energy; i.e., the idea is one of positional coding.
Usually, the method is combined with successive approxima-
tion quantization, leading to an embedded bit stream, where
successive approximation decoding is possible. An improved
version, where larger blocks of samples are used together in a
technique called set partitioning, lead to the SPIHT algorithm
[82] with improved performance and lower computational
complexity. Other variations include context modeling in the
various bands [65]. Comparing these ideas with the present
paper, we see a great commonality of approach to the use of
trees for positional coding of the “big” wavelet coefficients as
we have discussed in Section XVII-B.

At a more abstract level, such an approach to wavelet image
coding consists in picking a subset of the largest coefficients
of the wavelet transform, and making sure that the cost of

(a)

(b)

Fig. 10. Localization of the wavelet transform. (a) One-dimensional signal
with discontinuity. (b) Two-dimensional signal and linking of scale-space
points used in wavelet image coding (EZW and SPIHT).

addressing these largest coefficients is kept down by a smart
conditional entropy code. That is, the localization property of
the wavelet transform is used to perform efficient addressing
of singularities, while the polynomial reproduction property of
scaling functions allows a compact representation of smooth
surfaces.

How about the performance of this coder and its related
cousins? In Fig. 3, we see that a substantial improvement is
achieved over JPEG (the actual coder is from [82]). However,
the basic behavior is the same, that is, at fine quantization,
we find again the typical slope predicted by
classical high rate-distortion theory. Instead, we would hope
for a decay related to the smoothness class. At low bit rate, a
recent analysis by Mallat and Falzon [70] shows
by modeling the nonlinear approximation features of such a
wavelet coder.

The next generation image coding standard, JPEG-2000, is
considering schemes similar to what was outlined above. That
is, it has been proposed to exploit properties of the wavelet
transform and of the structure of wavelet coefficients across
scales, together with state-of-the-art quantization (using, for
example, trellis-coded quantizers) and adaptive entropy coders.
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In short, there are a variety of interesting parallels between
practical coding work and the work in harmonic analysis.
We are aware of other areas where interesting comparisons
can be made, for example, in speech coding, but omit a full
comparison of literatures for reasons of space.

XXI. SUMMARY AND PROGNOSIS

In composing this survey, we have been inspired by an at-
tractive mixture of ideas. To help the reader, we find it helpful
to summarize these ideas, and to make them memorable by
associating them with prominent figures of this century.

A. Pure Mathematics Disdaining Usefulness

G. H. Hardy is a good example for this position. InA
Mathematician’s Apology, he gave a famous evaluation of his
life’s work:

“I have never done anything ‘useful.’ No discovery
of mine has made, or is likely to make, directly or
indirectly, for good or for ill, the least difference to the
world.”

In the same essay, he argued strenuously against the propo-
sition that pure mathematics could ever have “utility.”

The irony is, of course, that, as discussed above, the purely
mathematical impulse to understand Hardy spaces gave
rise to the first orthonormal basis of smooth wavelets.

In this century, harmonic analysis has followed its own
agenda of research, involving among other things the under-
standing of equivalent norms in functional spaces. It has devel-
oped its own structures and techniques for addressing problems
of its own devising; and if one studies the literature of
harmonic analysis one is struck by the way the problems—e.g.,
finding equivalent norms for spaces—seem unrelated to
any practical needs in science or engineering—e.g.,spaces
do not consist of “objects” which could be understood as mod-
eling a collection of “naturally occurring objects” of “practical
interest.” Nor should this be surprising; David Hilbert once
said that “the essence of mathematics is its freedom” and
we suspect he means “freedom from any demands of the
outside world to be other than what its own internal logic
demands.”

Despite the freedom and in some sense “unreality” of
its orientation, the structures and techniques that harmonic
analysis has developed in pursuing its agenda have turned
out to be significant for practical purposes—in particular,
as mentioned above, discrete wavelet transforms are being
considered for inclusion in future standards like JPEG-2000.

In this paper we have attempted to “explain” how an
abstractly oriented endeavor could end up interacting with
practical developments in this way. In a sense, harmonic
analysts, by carrying out their discipline’s internal agenda,
discovered a way to “diagonalize” the structure of certain
functional classes outside of the cases where this concept
arose. This “diagonalization” carries a data compression in-
terpretation, and leads to algorithmic ideas for dealing with
other kinds of data than traditional Gaussian data compression
theory allows.

B. Stochastic versus Deterministic Viewpoints

Even if one accepts that pure mathematics can have unex-
pected outcomes of relevance to practical problems, it may
seem unusual that analysisper se—which concerns determin-
istic objects—could be connected with the compression of real
data, which concerns random objects. To symbolize this pos-
sibility, we make recourse to one of the great mathematicians
of this century, A. N. Kolmogorov. V. M. Tikhomirov, in an
appreciation of Kolmogorov, said [93]

“our vast mathematical world” is itself divided
into two parts, as into two kingdoms. Deterministic
phenomena are investigated in one part, and random
phenomena in the other.

To Kolmogorov fell the lot of being a trailblazer in
both kingdoms, a discoverer in their many unexplored
regions he put forth a grandiose programme for a
simultaneous and parallel study of the complexity of
deterministic phenomena and the uncertainty of random
phenomena, and the experience of practically all his
creative biography was concentrated in this programme.

From the beginning of this programme, the illusory
nature of setting limits between the world of order and
the world of chance revealed itself.

The scholarly record makes the same point. In his paper
at the 1956 IRE Conference on Information Theory, held at
MIT, Kolmogorov [60] published the “reverse water-filling
formula” giving for Gaussian processes (2.5), (2.6),
which as we have seen is the formal basis for transform
coding. He also described work with Gel’fand and Yaglom
rigorously extending the sense of the mutual information
formula (2.4) from finite-dimensional vectors and to
functional data. These indicate that the functional viewpoint
was very much on his mind in connection with the Shannon
theory. In that same paper he also chose to mention the-
entropy concept which he had recently defined [61], and he
chose a notation which allowed him to make the point that
-entropy is formally similar to Shannon’s One gets

the sense that Kolmogorov thought the two theories might
be closely related at some level, even though one concerns
deterministic objects and the other concerns random objects;
see also his return to this theme in more depth in the appendix
in the monograph [62].

C. Analysts Return to Concrete Arguments

Shannon’s key discoveries in lossy data compression are
summarized in (2.2)–(2.4). These are highly abstract and
in fact can be proved in an abstract setting; compare the
abstract alphabet source coding theorem and converse in
Berger (1971). In this sense, Shannon was a man of his time.
During the 1930’s–1950’s, abstraction in mathematical science
was in full bloom; it was the era that produced the formalist
mathematical school of Bourbaki and fields like “abstract
harmonic analysis.”

Kolmogorov’s work in lossy data compression also was
a product of this era; the concept of-entropy is, to many
newcomers’ tastes, abstraction itself.
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Eventually the pendulum swung back, in a return to more
concrete arguments and constructions, as illustrated by the
work of the Swedish mathematician Lennart Carleson. In a
very distinguished research career spanning the entire period
from 1950 to the present, Carleson obtained definitive results
of lasting value in harmonic analysis, the best known of which
is the almost everywhere convergence of Fourier series, an
issue essentially open since the 19th century, and requiring
a proof which has been described by P. Jones as “one of
the most complicated to be found in modern analysis” [57].
Throughout his career, Carleson created new concepts and
techniques as part of resolving very hard problems; including
a variety of dyadic decomposition ideas and the concept of
Carleson measures. It is interesting to read Carleson’s own
words [11].

There was a period, in the 1940’s and 1950’s, when
classical analysis was considered dead and the hope
for the future of analysis was considered to be in
the abstract branches, specializing in generalization. As
is now apparent, the death of classical analysis was
greatly exaggerated and during the 1960’s and 1970’s
the field has been one of the most successful in all of
mathematics. the reasons for this [include] the
realization that in many problems complications cannot
be avoided, and that intricate combinatorial arguments
rather than polished theories are in the center.

Carleson “grew up” as a young mathematician in the early
1950’s, and so it is natural that he would react against
the prevailing belief system at the time of his intellectual
formation. That system placed great weight on abstraction
and generality; Carleson’s work, in contrast, placed heavy
emphasis on creating useful tools for certain problems which
by the standards of abstract analysts of the day, were decidedly
concrete.

Carleson can be taken as symbolic of the position that a
concrete problem, though limited in scope, can be very fertile.

D. The Future?

So far, we have used important personalities to symbolize
progress to date. What about the future?

One of the themes of this paper is that harmonic analysts,
while knowingly working on hard problems in analysis, and
discovering tools to prove fundamental results, have actually
been developing tools with a broad range of applications,
including data compression. Among harmonic analysts, this
position is championed by R. R. Coifman. His early work
included the development of atomic decompositions for
spaces, Today, his focus is in another direction entirely,
as he develops ways to accelerate fundamental mathematical
algorithms and to implement new types of image compression.
This leads him to reinterpret standard harmonic analysis results
in a different light.

For example, consider his attitude toward a milestone
of classical analysis: L. Carleson’s proof of the almost-
everywhere convergence of Fourier series, which is generally
thought of as a beautiful and extremely complex pure analysis
argument. But apparently Coifman sees here a serious effort

to understand the underlying “combinatorics” of time and
frequency bases, a “combinatorics” potentially also useful
(say) for “time-frequency-based signal compression.”

In another direction, consider the work of P. Jones [56]
who established a beautiful result showing that one can ap-
proximately measure the length of the traveling salesman
tour of a set of points in the plane by a kind of nonlinear
Littlewood–Paley analysis. (This has far-reaching extensions
by David and Semmes [24].) Others may see here the begin-
nings of a theory of quantitative geometric measure theory.
Coifman apparently sees a serious effort to understand the
underlying combinatorics of curves in the plane (and in
David–Semmes, hypersurfaces in higher dimensional spaces),
a “combinatorics” which is potentially also useful (say) for
compressing two- and higher dimensional data containing
curvilinear structure.

The position underlying these interpretations is exactly the
opposite of Hardy: Hardy believed that his research would not
be “useful” because he did notintend it to be; yet, it turns
out that research in harmonic analysis has been and may well
continue to be “useful” even when researchers, like Hardy,
have no conscious desire to be useful.

How far can the connection of Harmonic Analysis and Data
Compression go? We are sure it will be fun to find out.
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[7] L. Birgé and P. Massart, “An adaptive compression algorithm in Besov
spaces,”Constr. Approx., to be published.

[8] M. S. Birman and M. Z. Solomjak, “Piecewise-polynomial approxi-
mations of functions of the classesW�

p
;” Mat. Sbornik, vol. 73, pp.

295–317, 1967.
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[51] K. Gröchenig and D. Walnut, “Wilson bases are unconditional bases for
modulation spaces,” unpublished manuscript, 1998.

[52] A. Grossmann and J. Morlet, “Decomposition of Hardy functions into
square-integrable wavelets of constant shape,”SIAM J. Appl. Math., vol.
15, pp. 723–736, 1984.

[53] G. H. Hardy, A Mathematician’s Apology. Cambridge, U.K.: Cam-
bridge Univ. Press, 1940.

[54] R. Howe, “On the role of the Heisenberg group in hramonic analysis.”
Bull Amer. Math. Soc., vol. 3, pp. 821–843, 1980.

[55] J. J. Y. Huang and P. M. Schultheiss, “Block quantization of correlated
Gaussian random variables,”IEEE Trans. Commun., vol. CUM-11, pp.
289–296, Sept. 1963.

[56] P. Jones, “Rectifiable sets and the travelling salesman problem,”Inven-
tiones Mathematicae, vol. 102, pp. 1–15, 1990.

[57] , “Lennart Carleson’s work in analysis,” inFestschrift in Honor
of Lennart Carleson and Yngve Domar, (Acta Universitatis Upsaliensis,
vol. 58). Stockholm, Sweden: Almquist and Wiksell Int., 1994.
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