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Matching Pursuit and Atomic Signal
Models Based on Recursive Filter Banks

Michael M. Goodwin,Member, IEEEand Martin Vetterli,Fellow, |IEEE

Abstract—The matching pursuit algorithm can be used to entropy or rate distortion [8]—[10]. Signhal decomposition using
derive signal decompositions in ter_ms of the elements of a dictio- mgre general overcomplete sets has also been considered;
nary of time—frequency atoms. Using a structured overcomplete approaches include the method of frames [11], basis pursuit [5]

dictionary yields a signal model that is both parametric and . . . .
signal adaptive. In this paper, we apply matching pursuit to the FOCUSS [12], and matching pursuit and its variations [3], [4],

derivation of signal expansions based on damped sinusoids. It is [6], [13]. The matching pursuit algorithm of [3] is the focus
shown that expansions in terms of complex damped sinusoids of this paper since it is particularly amenable to the issue of
can be efficiently derived using simple recursive filter banks. jnterest here: modeling of arbitrary signals using parameterized

We discuss a subspace extension of the pursuit algorithm that .. . . .
provides a framework for deriving real-valued expansions of real time-frequency atoms in a successive refinement framework.

signals based on such complex atoms. Furthermore, we consider [N the literature, the time—frequency atoms used in matching
symmetric and asymmetric two-sided atoms constructed from pursuit are typically symmetric Gabor atoms [3], [14]. While
underlying one-sided damped sinusoids. The primary concern is these are useful for many applications, such symmetric func-
the application of this approach to the modeling of signals with jo g are not well suited for modeling asymmetric events. For
transient behavior such as music; it is shown that time—frequency . . . . : . .
atoms based on damped sinusoids are more suitable for represent-NStance, applying matching pursuit to a musical signal with
ing transients than symmetric Gabor atoms. The resulting atomic @ sharp onset introduces an objectionable artifact known as
models_are useful for signal coding and analysis modification pre-echog this refers to energy in the reconstruction before
synthesis. the original onset and is a common problem in audio coding
Index Terms—Damped sinusoids, matching pursuit, over- [6]. High-resolution matching pursuit addresses this issue but

complete expansions, pre-echo, recursive filters, signal models,fundamentally still relies on symmetric atoms for representing

time—frequency atoms, wavelets. asymmetric features [13], [14]. In this paper, the problem
is addressed by using asymmetric atoms, namely, damped
|. INTRODUCTION sinusoids and related functions.

been of ongoing interest since their introduction by Gabd e—frequency  atoms hgvmg_ exponential - behavior. In
[1], [2]. Basis expansions, especially orthogonal cases such; g]’ frames of damped smusmds are used to construpt a
Fourier and wavelet bases, are the most common examplegrgp—f'requency represe.nta'gon that is useful for transient
such atomic models, but these exhibit serious drawbacks fisfiection and characterization. In [16], IIR filter banks that
modeling arbitrary signals; for instance, the Fourier methdff"'vé orthogonal wavelet expansions are considered. This
provides a poor representation of time-localized signals. FgPer focuses on the more general case of overcomplete

overcome such difficulties, signals can be modeled usiﬁépansions based on recursive filter banks. Signal analysis
overcomplete sets of atoms that exhibit a wide range Based on similar recursive computation has been considered;
time—frequency behaviors [3]-[6]. short-time Fourier transforms using exponential windows are

Overcomplete expansions allow for compact representatiigcussed in [17], and more arbitrary short-time transforms
of arbitrary signals for the sake of compression or analysi€ examined in [18]. _ .
[6], [7]. Examples include best basis methods and adaptiveNiS paper is organized as follows. In Section I, signal
wavelet packets. In these approaches, the overcomplete d@gompositions are discussed; it is demonstrated that over-
is a collection of bases; a basis for the signal expansionG@Mmplete expansions provide advantages over basis expansions
chosen from the set of bases according to a metric sucha@$l that computation of overcomplete models calls for a
signal-adaptive approach. In Section Ill, the matching pursuit
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sinusoids. Computational costs are examined in Section VII,uu T v ¥ * v T T T
and conclusions are given in Section VIII. Some of the resultsg '
herein have been presented in preliminary form in [6], [19], Z ¢s| 1 3
and [20] 0 m?nTT :e" ) Tm - T
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Il. SIGNAL DECOMPOSITIONS
. . L L. Fig. 1. Overcomplete expansions and compaction. An exact sparse expan-
In signal processing applications it is often useful to d&ion of a signal in an overcomplete set (*) and the dispersed expansion given

compose a signal into elementary building blocks. In sudily the SVD pseudo-inverse (o).
a decomposition, a signat[n] is represented as a linear

combination of expansion function,[n] B. Overcomplete Expansions

zln] = i i [n] (1) When the functionsl,,[n] constitute an overcomplete or
mem redundant setM > N), the matrixD is of rank N, and the
linear system in (2) is underdetermined. The null spac® of
then has nonzero dimension, and there are an infinite number
r=Da wWithD=[d dy --- d, --- dy] (2) ofexpansions ofthe form of (1). One solution is given by the
pseudo-inverséDt, which can be derived using the singular
value decomposition (SVD); the coefficient vector= DTz
X § § has the minimum two-norm of all possible solutions. The
matrix whose columns are the expansion functidpgn].  caveat is that this minimization of the two-norm tends to
The set of expansion coefficients and functions in (659 energy throughout all of the vector's elements, which
provide a representation or model of the signal. If the modg/,jermines the goal of compaction; the SVD-based approach
is compact or sparse, the decomposition indicates basic sig(rjngés not yield compact signal models.

features and is useful for signal analysis, compression, a”qAn example of the dispersion of the SVD approach is given
enhancement [6]. It should be noted that compact models teIHdFig. 1. The signal in question is constructed as the sum

to involve expansion functions that are highly correlated witgf two functions from an overcomplete set; there is thus an

the signal. expansion in that overcomplete set with only two nonzero
_ ) coefficients. This sparse expansion is shown in the plot by the
A. Basis Expansions asterisks; the dispersed expansion computed using the SVD
When the functionsl,,,[n] constitute a basis, the matri®® pseudo-inverse is indicated by the circles. The representations
in (2) is squarelN = M) and invertible, and the expansioncan be immediately compared with respect to two applica-
coefficientsa for a signalz are uniquely given by = D~1z. tions: First, the sparse model is clearly more appropriate for
In general biorthogonal cases such as wavelets, there is a duahpression; second, it provides a more useful analysis of the
basisD such thatD—! = D# anda = DH %, which indicates signal in that it identifies fundamental signal structures.
that the coefficients in a basis expansion can be derivedGiven the desire to derive compact representations for
independently using the formula,,, = ng = (Jm,x>. In signal analysis, coding, denoising, and modeling in general,
orthogonal cases such as Fourier bases= D, and the the SVD is not a particularly useful tool. The SVD-based
expansion coefficients are given simply by the correlatiorxpansion is by nature not sparse, and thresholding small
(dm, x). expansion coefficients to improve the sparsity is not a useful
Basis expansions have a serious drawback in that a givepproach [6], [19], [21]. A more appropriate paradigm for
basis is not well-suited for modeling a wide variety of signalsleriving an overcomplete expansion is to apply an algorithm
For example, the Fourier basis does not provide a compagecifically designed to arrive at sparse solutions. Because
model of a time-localized signal; similar difficulties can bef the complexity of the search, however, it is not com-
readily found for any basis. This shortcoming of basis expaputationally feasible to derive an optimal sparse expansion
sions results from the attempt to represent arbitrary signatat perfectly models a signal. It is likewise not feasible to
using a limited set of functions. Better models can be derivedmpute approximate sparse expansions that minimize the
by using expansion functions that are signal adaptive; thésror for a given sparsity; this is an NP-hard problem [22].
can be achieved by using a parametric approach suchFas this reason, it is necessary to narrow the considerations
the sinusoidal model [6], [20] or by choosing the expansiail® methods that either derive sparse approximate solutions
functions in a signal-dependent fashion from an overcompletecording to suboptimal criteria or derive exact solutions that
set of time—frequency atoms as in adaptive wavelet packetsape not optimally sparse. Methods of the latter type tend to
matching pursuit [3], [6], [10]. The termvercompletaefers be computationally costly and to lack an effective successive
to a set of vectors that spans the signal space but includes mafenement framework [5], [12]; therefore, the former category
functions than is necessary to do so, i.e. a linearly dependentof more interest here. Specifically, the matching pursuit
set; the terncompleterefers simply to any set that spans thalgorithm introduced in [3] is the method of choice here
space. Using a highly overcomplete set of time—frequensince it provides a framework for deriving sparse approximate
atoms enables compact representation of a wide rangenuddels with successive refinements and since it can be carried
time—frequency behaviors. out at low cost as will be seen.

m=1

which can be expressed in matrix notation as

where the signat is a column vectof N x 1), «v is a column
vector of expansion coefficien{d/ x 1), andD is anN x M
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IIl. M ATCHING PURSUIT 7—.;_+1
Matching pursuit is a greedy iterative algorithm for deriving dictionary Ti
signal decompositions in terms of expansion functions chosen -a:
g p p vectors best 0;0;

from a dictionary [3], [4]. To achieve compact representa-

tion of arbitrary signals, it is necessary that the dictionary
elements oratoms exhibit a wide range of time—frequency

behaviors and that the appropriate atoms from the dictionany. 2. Matching pursuit and the orthogonality principle. The two-norm or
be chosen to decompose a particular signal. When a wdiclidean length of; 41 is minimized by choosing; to maximize|(g;, ;)|

. . . ; . and «; such that(r;11,¢9;) = 0.

designed overcomplete dictionary is used in matching pursulit,
the nonlinear nature of the algorithm leads to compact signal-

adaptive models [6], [7]. magnitude correlatiofiy;|; therefore, (5) can be rewritten as
A dictionary can be likened to the matrik in (2) by gi Iarg;nggKgN’iH- 9)

considering the atoms to be the matrix columns; then, matching

pursuit can be interpreted as an approach for computiﬁ‘é‘ example of this optimization is iIIustratgd in Fig. 2. Note
sparse approximate solutions to inverse problems [6], [1§Eat (8) shows that the norm of the residual decreases as

[21]. Related approximation methods have indeed been u§ g algorithm progresses, provided that an exact model has

in linear algebra for some time [21]. Furthermore, matchinnOt been reached and that the dictionary is complete; for

D o %n undercomplete dictionary, the residual may belong to a
pursuit is similar to some forms of vector quantization an . - .
Subspace that is orthogonal to all of the dictionary vectors, in

i_s related tq the projection pursuit_ mt_—zthod investigated in tIWnich case, the model cannot be further improved by pursuit.
field of statistics for the task of finding compact models of | deriving a signal decomposition, the matching pursuit is

data sets [23]. iterated until the residual energy is below some threshold or
until some other halting criterion is met. Aftériterations, the

pursuit provides the sparse approximate model
The greedy iteration in matching pursuit is carried out as

I I
follows. Using the two-norm as the approximation metric
. . . ~ giln] = iy ).
because of its mathematical convenience, the atom that best z[n] ;azgz[n] ;az m(i) 7]

approximates the signal is chosen; the contribution of this atom

is subtracted from the signal, and the process is iterated on ff0rding to (8), the mean-squared error of such a model
residual. Denoting the dictionary by, the task at theith approaches zero as the number of iterations increases [3]. This

stage of the algorithm is to find the atoth,;[2] € D that —(;otnvergentc:jel.ln:ﬁlles thdeﬁlnehratlons W'_" Y'EId a reallsontablet_
minimizes the two-norm of the residual “term modet, this mode], NOWEVET, 1S In general not optl-

mal in the mean-squared sense because of the term-by-term
riy1[n] = ri[n] — cidy,iy[n] (3) greediness of the algorithm.
whereq; is the expansion coefficient for the atom, ang) To enable representation of a wide range of signal features,
is its dictionary index; note that the iteration begins wit large dictionary of time—frequency atoms is used in the
r1[n] = z[n]. To simplify the notation, the atom chosen a{_natchlng pursuit algorithm. The computation of the correla-

the ith stage is hereafter referred to @$n], where tions (g, r;) for all ¢ € D is, thus, costly. As derived in [3],
’ this computation can be substantially reduced using an update

giln] = dme;[n] (4)  formula based on (3); the correlations at stage are given by
from (3). The subscripi refers to the iteration wheg [n] was ] o
chosen, whereas(i) is the actual dictionary index of;[n]. 9:7i41) = (9:73) = ilg, 1) (1)
Treating the signals as column vectors, the optimal atomghere the only new computation required for the correlation
choose at theth stage is update is the dictionary cross-correlation te¢mg;), which
2. (5) can be precomputed and stored if enough memory is available.

A. One-Dimensional Pursuit

(10)

. 9 .
; = arg min ||7; — are min ||7; — o, 0;

i gg;EDH Z+1|| gg;EDH % 194

The orthogonality principle gives the value af as B. Subspace Pursuit

(rit1,9i) = {ri — 2igi,3:) = (ri — c;g:)g; =0 (6)  Although searching for the optimal high-dimension sub-
~Agimi)  Agimi) ] 7 space is not computationally reasonable, it is worthwhile to
I PR S TP PR (g.7:) (7) " consider the related task of finding an optimal low-dimension
where the last step follows from restricting the atoms to p&IPSpace at each pursuit iteration if the subspaces under
unit-norm. The norm of;_1[n] can then be expressed as consideration have a simplifying structure. In subspace pursuit,
e ith iteration consists of searching for & x R matrix G,
g )P theith iterat ts of hing for & x R matrix G
GiyTi
17 = S

= ||7:ll? = |ew]? (8) whose R columns are dictionary atoms, that minimizes the
llg:1[? two-norm of the residuat; ; = r; — G, where« is now an
which is minimized by maximizinde;;|> = [(g;,7:)|*. This R x 1 vector of weights. ThisR-dimensional formulation is
is simply equivalent to choosing the atom with the largesimilar to the one-dimensional (1-D) case; the orthogonality

Irieall = [ I
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constraint(r;, — Ga, G} = 0 yields a solution for the weights /\

The energy of the residual is then given by
(rivi,rigr) = (riyra) —rf GGTG) Gy (13) /\/ W 4\,\/\/\/\/\/\/\/\/\/\/\#

which is minimized by choosings to maximize the second Fig. 3. Time—frequency dictionary elements: Gabor atoms derived from a
term. This approach is clearly expensive unléssonsists of symmetric window.
orthogonal vectors or has some other special structure.

IV. TIME—FREQUENCY DICTIONARIES

C. Conjugate Subspaces ] )
n a compact model, the atoms in the expansion correspond

. . . : I
One useful subspace to cons@er is the two—cpmensmragl basic signal features. This is especially useful for analysis
subspace spanned by an atom and its comple>§ conjugate. HEFet coding if the atoms can be described by meaningful param-
trle two colqmns OG. are simply an atony and its conjugate eters such as time location, frequency modulation, and scale;
g*. If the signalr; is real and ifg has nonzero rea}l{ and e the basic signal features can be identified and parameter-
imaginary parts so thaty has full column rank_and_?_ G ized. Matching pursuit using a large dictionary of such atoms
is invertible, the results given above can be simplified. Tkﬂarovides a compact, adaptive, parametric time—frequency rep-

metric_ tolr;aximizE thr0ugh the choice of i.e. the second resentation of a signal [3], [4], [6]. Several types of dictionaries
term in (13), can be rewritten as are discussed below.

B 2lg, )~ {9, 9" (g, 7)) (g, 9") (g, 7:)%)

1—Kg.9%) 14 A. Gabor Atoms
and the optimal weights are Localized time—frequengy atoms were.introduced by Gabo.r
from a theoretical standpoint and according to psychoacoustic
_ [@(1)} _ 1 {9,7i) ={9,9")(g,7)" | motivations [1], [2]. The literature on matching pursuit has
a(2) ] 1—Ug. g9 {g,7:)" —(9,9")"(9,7:) focused on using dictionaries of Gabor atoms since these are

(15) generally appropriate components for time—frequency signal
Note that the above metric can also be written as models [3]‘_ [4]. Such atom_s are denve_d from a single gmt-
. . ) norm function ¢(¢) by scaling, modulation, and translation
(9.73) (1) + (g, r)or(1)* = 2Re{(g,7) (1)} (16) g

and thate(1) = «(2)*, meaning that the algorithm simply L (t=7\ o
searches for the atomy that minimizes the two-norm of the I(sw,ry(t) = $9< s )‘3 : (19)
residual . This definition can be extended to discrete time by a sampling
riva[n] = riln] — ai(Dgi[n] — ci(1)" g7 [n] argument as in [3]; fundamentally, the extension simply in-
= r;[n] — 2Re{e; (1) g:[n]} (17) dicates that Gabor atoms can be represented in discrete time
which is real valued; the orthogonal projection of a real sign@f
onto the subspace spanned by a conjugate pair is again real. 9oy n] = foln — T]Cjw(n—f) (20)
Using such conjugate subspaces yields decompositions of the o
form where
I fs[n] unit-norm function supported on a scale
z~2) Re{ai(l)gnl}. (18) &  atom’s modulation frequency;
i=1 T discrete-time translation.

This approach thus provides real decompositions of real sig-NOte that Gabor atoms are scaled to have unit norm and that

nals using an underlying complex dictionary. A similar notiogach is indexed in the dictionary by a parameter{sev, 7 }.

based on a different computational framework is discussedThis parametric structure allows for a simple description of a

[3]. specific dictionary, which is useful for compression. When the
For dictionaries consisting of both complex and purely re@tomic parameters are not tightly restricted, Gabor dictionaries

(or purely imaginary) atoms, the real atoms must be conside®@ highly overcomplete and can include both Fourier and

independently of the various conjugate subspaces since Wavelet bases; examples of Gabor atoms are depicted in Fig. 3.

above formulation breaks down whenand g* are linearly One issue to note is that the modulation of an atom can be

dependent; in that casé{g,¢*)| = 1 and the matrixG is defined independently of the time shift, dereferenced

singular. It is thus necessary to compare metrics of the form jon jor

givgn in (14) and (16) for corz/jugate sEbspaces with metrics of (5«7 [n] = foln = 7] = g0 0] (21)

the form|{g,r;)|* for real atoms. These metrics quantify th& his simple phase relationship will have a significant impact

amount of energy removed from the residual in either case aim,later considerations.

thus, provide for a fair choice between conjugate subspacesn applications of Gabor functiong[n] is typically an even-

and real atoms in the pursuit decomposition. symmetric window. The associated dictionaries thus consist
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0 20 20 50 20 100 120 140 160 180 200 Fig. 5. Damped sinusoids: Gabor atoms derived from a one-sided exponen
T : .

1 tial window.
(c) RESIDUAL ' ' '

A damped sinusoidal atom corresponds to the impulse
o 20 40 60 80 100 120 140 10 10 =200 response of afilter with a single complex pole; this is a suitable
TIME (SAMPLES) property given the intent of representing transient signals,
Fig. 4. Pre-echo artifact. (a) Damped sinusoidal signal. (b) First atom chosespecially if the signal’s source can be well modeled by simple
from a symmetric Gabor dictionary by matching pursuit. (c) Residual; nojfhear systems. For the sake of realizability, however, it is
the artifact at the onset time. . . . !
necessary to deviate somewhat from this relationship between

o . ) , the atoms and IIR filters. Specifically, a damped sinusoidal
of atoms that exhibit symmetric time-domain behavior. Thig;yn is truncated to a finite duration when its amplitude

is problematic for modeling asymmetric features such agejope falls below a threshdld the corresponding length is
tran§|ent§, which occur frquently in _natural S|g_nals such as_ Mog 7'/ log a], and the appropriate scaling factor is then
music. Fig. 4(a) shows a typical transient from linear system _ /@ = a2)/(1 — a?L). Note that this truncation results

nsible localization properties; heavily damped atoms are

-1

theory, the damped sinusoid; the first stage of a matchinﬁse
pursuit based on symmetric Gabor functions chooses the atQI%rt-lived, and lightly damped atoms persist in time.
shown in Fig. 4(b). This atom matches the frequency behavior

of the signal, but its time-domain symmetry results in a pr

echo as indicated. The atomic model has energy before ) ) _
onset of the original signal; as a result, the residual hasThe simple example of Fig. 4 shows that symmetric atoms

both a pre-echo and a discontinuity at the onset time @& inappropriate for modeling some signals. While that exam-
shown in Fig. 4(c). In later stages, then, the matching purst? is motlvated_ by physical c'onS|defat|ons, i.e. simple linear
must incorporate small-scale atoms into the decompositiB}Pdels of physical systems, it certainly does not encompass
to remove the pre-echo and to model the discontinuity. OHee wide range of complicated behaviors observed in natural
approach to this problem is the high-resolution matchirﬁjg_”a|5- It is, of. course, trivial to construct ex.amples. for
pursuit algorithm proposed in [13] and [14], where symmetr?ﬁ’h'Ch gsymmetrlc atoms wou_ld prove S|m|I§1rIy |ne.ffect|ve.
atoms are still used but the selection metric is modified dd1US, given the task of modeling arbitrary signals, it can be
that atoms that introduce drastic artifacts are not chosen fjgued that a wide range of both symmetric and asymmetric
the decomposition. Another approach is to use a dictionary §0°ms should be present in the dictionary. Swedmposite

asymmetric atoms, e.g., damped sinusoids. dictionaries are considered here. _
A simple way to build a composite dictionary is to merge

a dictionary of symmetric atoms with a dictionary of damped

sinusoids. The pursuit described in Section Il can indeed be

.The common occurrence of dampepl osc.illations' in r“'J‘turé’zkrried out using such a dictionary, but the atomic index
S|gnaI51ust|f|e_s c0n3|_d_er|ng damped s_lnuso_lds as signal mo g{ requires an additional parameter to specify which type
components; in addition, damped sinusoids are physicaly i, the set refers to. In addition, the nonuniformity of

better suited than symmetric Gabor atoms for representigg, ictionary would cause difficulties in the computation and

transients. Like the atoms in a general Gabor d'Ct'onargtorage of the dictionary cross-correlations needed for the

damped sinusoidal atoms can be indexed by characteristic Pérelation update of (11). Such issues will be discussed in
rameters, namely, the damping factormodulation frequency Section VII

w, and start timer

?ﬁ.eComposite Dictionaries

B. Damped Sinusoids

It is shown in Section V that correlations with damped
Ilawry ] = Saal" eI =Ty ln — 7] (22) sinusoidal atoms can be computed with low cost without
using the update formula of (11). The approach applies both
to causal and anticausal damped sinusoids, which motivates
Flaw ] = Saa el un — 7] (23) considering two-sided atoms constructed by coupling causal
and anticausal components. This construction can be used to

. - enerate symmetric and asymmetric atoms; furthermore, these
ples are depicted in Fig. 5. It should be noted that these ato Sms can be smoothed by simple convolution operations.
can be interpreted as Gabor functions derived from a ON€ch atoms take the form

sided exponential window; their asymmetry distinguishes them '

from typical Gabor atoms, however. In addition, their atomic Giabdwrin) = flapnyn—7le/==) (24)

structure is more readily indicated by a damping factor than . L
) L : or, if the modulation is dereferenced

a scale parameter; therefore, the dictionary indeX eeb, 7} '

is used instead of the general Gabor §gtw, 7}. Glab.dw.r[P] = frapnn— 7" (25)

or, if the modulation is dereferenced

where the factolS, is included for unit-norm scaling. Exam-
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Fig. 6. Composite atoms. Symmetric and asymmetric atoms can be cgr

tructed b i | and anti | d d si d d “ig. 7. Symmetric composite atoms. An example of a smoothed composite
structed by coupling causal and anticausal damped Sinusolds and ugy (solid) that roughly matches a Hanning window (dashed) and a Gaussian
low-order smoothing.

window (dotted).

where the lamplitude envelope is_ a unit-norm funption COQghere gzrwr} [n] is a causal atom, a”@{_bwr}[”] is an
structed using a causal and an anticausal exponential accordjfgcausai atom defined as
to the formula
—— _ —(n—7) jwn, [ (o _
B . Iipwry 0] =500 e ul—(n — 7)) (32)
Jtap,03 7] = Sqap,0y (@ uln] + 67" u[—n] — 6[n]) * hs[n] (b7}
(26) Note that atoms with dereferenced modulation are used in (31)
so that the modulations add coherently in the sum over the time
where §[n] is subtracted because the causal and anticaukégsA; otherwise, the constituent atoms would require phase
components, as written, overlapsat= 0. The functionh;[n] shifts ¢/“A to achieve coherent modulation of the composite
is a smoothing window of lengtlf; later considerations will atom. As will be seen, this construction leads to a simple
be limited to the case of a rectangular window. A variety delationship between the correlations of the signal with the
composite atoms are depicted in Fig. 6. composite atom and with the underlying damped sinusoids,
The unit-norm scaling factor for a composite atom is  especially in the dereferenced case.
The special case of symmetric atofas= b), one example
o (27) of which is shown in Fig. 6, suggests using this approach to
Y(a,b,.J) construct atoms similar to symmetric Gabor atoms based on
~common windows. Given a unit-norm window{n], the issue
whereT(a, b, J) denotes the squared-norm of the atom priqg g find a damping factos and a smoothing ordef such
to scaling that the resultantf, . 73[n] accurately mimicsw[n]. Using
the two-norm as a metric, this amounts to choosingnd
T(a,b,J) = Z |(a™u[n] + b~ "u[—n] — &[n]) = hJ[n]|2 9

S{a,b,J} =

J to minimize || f(4,q,03 7] — w[n]||?, which is equivalent to

maximizing the correlation of, . s}[n] andw|n]. Note that

this process itself corresponds to a matching pursuit. In an

implementation, this would not be an on-line operation but

rather a precomputation indicating valuesaofnd J for the
oLl ik pli—kl all=klp _ gplt—Fl parameter set of the composite dictionary; these values deter-

T(a,b,J) = Z Z 12 + = + b mine the scales of symmetric behavior in the dictionary. Fig. 7
=0 k0~ " B @ shows a composite atom that roughly matches a Hanning

(29) window and a Gaussian window.

) ) ) It has been shown that a composite dictionary containing
which does not take truncation of the atoms into accour§. wide range of symmetric and asymmetric atoms can be

This approximation does n_ot introduce signif?cant error if Bonstructed by coupling causal and anticausal damped sinu-
small truncation threshold is used; however, if some error &i4s. Atoms resembling common symmetric Gabor atoms can
introduced, the analysis-by-synthesis iterations in the pursyit, jiiy he generated; therefore, standard symmetric atoms can
work to remove the error at later stages. This scale faciQg included as a dictionary subset; there is no generality lost by
affects the complexity of the algorithm, but primarily witheongtrycting atoms in this way. Furthermore, the construction

(28)

which can be simplified to

respect to precomputation. _is useful in that the pursuit computations can be carried
The composite atoms described above can be written |f}; efficiently; the computational framework is developed in
terms of unit-norm constituent atoms Sections V and VI.
— J—
Jiawn M | Tpwnl
G{asb,Jw,r} ] = S{a,,b,J}< L 3 LA [b’slb} — 6[n] D. Signal Modeling
< haln] (30) In atomic modeling by matching pursuit, the characteristics
7 P of the signal estimate fundamentally depend on the structure
—g Z {aw,r+AY [n] of the time—frequency dictionary used in the pursuit. Consider
= PlabJ} et S, the successively refined model in Fig. 8, which is derived by
_ - matching pursuit with a dictionary of symmetric Gabor atoms.
+ g{b,w,r+A}[”] — 8[n + A (31) In the early stages of the pursuit, the algorithm arrives at

Sy smooth estimates of the global signal behavior because the
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Fig. 8. Signal modeling with symmetric Gabor atoms. The original signal in (a), which is the onset of a gong strike, is modeled by matching pursuit

with a dictionary of symmetric Gabor atoms derived from a Hanning prototype. Approximate reconstructions at various pursuit stages are given. (b)
Five atoms. (c) Ten atoms. (d) 20 atoms. (e) 40 atoms.
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Fig. 9. Signal modeling with damped sinusoidal atoms. The signal in (a) is modeled by matching pursuit with a dictionary of damped sinusoidsa#gpproxim
reconstructions at various pursuit stages are given. (b) Five atoms. (c) Ten atoms. (d) Twenty atoms. (e) Forty atoms.

large-scale dictionary elements to choose from are themselveth comparable scales and are structured so that the mean-
smooth functions. At later stages, the algorithm chooses atosagiared errors of the respective atomic models have similar
of smaller scale to refine the estimate; for instance, small-scattnvergence properties. The convergence behaviors are com-
atoms are incorporated to remove pre-echo artifacts. pared in Fig. 10(a); the plot in Fig. 10(b) shows the energy
In the example of Fig. 9, the model is derived by matchingf the pre-echo in the symmetric Gabor model and indicates
pursuit with a dictionary of damped sinusoids. Here, thiat the pursuit devotes atoms at later stages to remove the
early estimates have sharp edges since the dictionary elem@nésecho artifact. The model based on damped sinusoids does
are one-sided functions. In later stages, edges that requiot introduce a pre-echo.
smoothing are refined by inclusion of overlapping atoms in Modeling with a composite dictionary is depicted in Fig. 11.
the model; in addition, as in the symmetric atom case, atorfike dictionary contains the same causal damped sinusoids as
of small scale are chosen in late stages to counteract anythe example of Fig. 9 plus an equal number of anticausal
inaccuracies brought about by the early atoms. damped sinusoids and a few smoothing orders. As will be
In the examples of Figs. 8 and 9, the dictionaries ameen, computing the correlations with the underlying damped
designed for a fair comparison in that they consist of atomsthusoids is the main factor in the cost of the composite
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Fig. 10. Mean-squared convergence of atomic models. Plot (a) shows the mean-squared error of the atomic models depicted in Figs. 8 and 9.i&ke dictionar
of symmetric Gabor atoms (solid) and damped sinusoids (circles) are designed to have similar mean-squared convergence for the signal irog(®8stion. Pl

shows the mean-squared energy in the pre-echo of the symmetric Gabor model; the pursuit devotes atoms at later stages to reduce the pre-echo energy.
The damped sinusoidal decomposition does not introduce a pre-echo.
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Fig. 11. Signal modeling with composite atoms. The signal in (a) is modeled by matching pursuit with composite atoms. Approximate models at various

pursuit stages are given. (b) Five atoms. (c) Ten atoms. (d) 20 atoms. (e) 40 atoms. The composite dictionary contains the same causal damped sinusoids
used in the example of Fig. 9, plus an equal number of anticausal damped sinusoids and a few smoothing orders.
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Fig. 12. Mean-squared error of an atomic model using composite atoms (solid) and the mean-squared error of a model based on only the underlying causal
damped sinusoids (circles). This plot corresponds to the composite atomic models given in Fig. 11 and the damped sinusoidal decompositions of Fig. 9.

pursuit; therefore, deriving the composite atomic model ifhe correlation of a signat[n] with a truncated causal atom
Fig. 11 requires roughly twice as much computation as t)@%jw} [n] is given by

pursuit based on damped sinusoids alone. As shown in Fig. 12,
this additional computation leads to a lower mean-squared
error for the model. Noting that the parameter set for composite _ n—7) —jwin—7

atoms is larger than that for damped sinusoids or Gabor (2w, 7) = S, T; alnla" e, (33)
atoms, it is clear that a full comparison of the various models -

requires consideration of the interplay of computation, rat . . . . .
and distortion [6]. Fri the following, correlations with unnormalized atoms will

be used:

T+L—1

V. PURSUIT OF DAMPED SINUSOIDAL ATOMS 1
T =

In matching pursuit using a dictionary of complex dampedy, (a,w,7) = 3  zfn]a eI = M.
sinusoids, correlations must be computed for every combina- o Sa
tion of damping factor, modulation frequency, and time shift. (34)



1898 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 7, JULY 1999

Using unnormalized atoms will serve to simplify the notation ]
and to reduce the cost of the pursuit algorithm developed i

Section VI.

For dictionaries of complex damped sinusoids, the correla
tion computation can be simplified, irrespective of the update
formulain (11); itis shown in the following that the correlation
in (34) can be readily computed with recursive filter banks and

) . s . . . Fig. 13. Filter bank interpretation and dictionary structures. The atoms in
FFT's. These S|mpI|f|cat|ons allow for a substantial reductlog dictionary of damped sinusoids correspond to the impulse responses of

of the computation requirements with respect to the time shiftoank of one-pole filters; for decaying causal atoms, the poles are inside
and modulation parameters. Note that the correlation uses tifgunit circle. These dictionaries can be structured for various tradeoffs in

. . . . . ime—frequency resolution. The correlations in the pursuit are computed by
atoms defined in (22), for which the modulation is phas e corresponding matched filters, which are time-reversed and, thus, have

referenced tor; results for dereferenced atoms are givepoles outside the unit circle.
later.

3

) e B. Frequency-Domain Simplification
A. Time—-Domain Simplification .q N y ) P ) )
A simplification of the correlation computations across the

.The expone.ntial structgre of the atom S can be used tq Sima'quency parameter can be achieved if thglane filter bank,
pltlfy thigur_swttpomputatlonl ?vzrgheﬂ?me mde_x, correlatlongr' equivalently, the matching pursuit dictionary, is structured
at heighboring times are refated by the recursion such that the modulation frequencies are equi-spaced for each
prla,w,m—1) = ae ™ py(a,w, ) + z[r — 1] damping fa_ctor. If the filters (att_)ms) are equ_i—spaced angularly
—ale e 4 L — 1] 35 O" circles in thez-plane, the discrete Fourier transform can
’ be used for the computation over. Forw = 27k/K, the

This is just a one-pole filter with a correction to account fogorrelation is given by

truncation. If truncation effects are ignored, which is reason- L—1
able for small truncation thresholds, the formula becomes pil(a,2nk/K,7) = Z zn + 7lare 2R K
—w n=0
pr(a,w,m = 1) = ae™pi(a,w,m) Fafr — 1] (36) = DFTy{a[n + rla" }i (39)

Note that the equation is operated in reversed time to m
the recursion stable for causal damped sinusoids; the sim
forward recursion is unstable far< 1. For anticausal atoms
the correlations are given by the recursion

Wheren € [0,L — 1], and K > L. Thus, an FFT can
W used to compute correlations over the frequency index.
' This formulation applies to any dictionary of harmonically
modulated atoms.

p_(byw, 7 +1) = bej“"p_(b,w,T) + z[r +1] At a fixed scale, correlations must be computed at every
CbPetlylr — L4 1] 37) tlme—frequepcy pair in the mdex set. There are two ways to
cover this time—frequency index plane; these correspond to
or, if truncation is neglected the dual interpretations of the short-time Fourier transform
[6]. The first approach is to use a running DFT with an
p-(b,w, T +1) = b’ p_(bw,7) + xfr +1]. (38)  exponential window; windowing and the DFT requifeand

These recursions are operated in forward time for the sakelgilogK multlp lies per time point, respectively; .thgrefore, this
stability. method requires roughlW (L + K log K') multiplies for a

The equivalence of (36) and (38) to filtering operation§ignal of lengthV. The second approach is to use a DFT

suggests interpreting the correlation computation over 5‘ﬂ Initialize the ' matched fll_ters across frequency and then
possible parameters;, w;, 7+ as an application of the Signalcompute the outputs of the filters to evaluate the correlations
to a dense grid of L)né-pble filters in theplane; these across time; indeed, the signal can be zero padded such that

are thematched filtersfor the dictionary atoms. The filter the f|lt%rsRare I'lr_"t'alt'ﬁEd with Zero fva:jl’lées,thamld trt]o DF-trh'Sd
outputs are the correlations needed for the matching pursﬂﬁgu!re - Recalling the recursion o (35), this latter me no
the maximally correlated atom is indicated by the maximu quires one comp!ex muI_tlpIy and one r_eal-co_mplex multiply
magnitude output of the filter bank. Of course, pursuit based B rltflltlt_ar fo2r I?jaVCh ft'mﬁ. ;i]omt, therte]foret, It re(i[{.uwéﬁ;fN :eal d
arbitrary atoms can be interpreted in terms of matched filteF8Y |p;e_s, i 0 VI! ICI accouln Og,f“:r?cg on e'f(.ec Stfm
but in the general case, this insight is not particularly usef ,re notimperative. For farge values &, this 1S significantly
ss than the multiply count for the running DFT approach;

here, it provides a framework for reducing the computatiofy: ) . i
Note that the dictionary atoms themselves correspond to grefore, the matched filter approach is the method of choice.

impulse responses of a grid of one-pole filters; as in the
wavelet filter bank case, then, the atomic synthesis can be
interpreted as an application of the expansion coefficientsThe results given in the previous sections hold for an atom
to a synthesis filter bank. Fig. 13 depictgplane dictionary whose modulation is referenced to the time origin of the
structures that provide for various tradeoffs in time—frequenagom, as in (19), (22), and (24). This local time reference has
resolution. been adhered to since it allows for an immediate filter bank

Results for Dereferenced Modulation
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interpretation of the matching pursuit analysis; in addition, Conjugate subspace pursuit can be used to search for
synthesis based on such atoms can be directly carried out usingjugate pairs of complex damped sinusoids; the derivation
recursive filters. For the construction and pursuit of composieading to (17) verifies that this approach will arrive at a
atoms, however, the dereferenced atoms defined in (21), (2ZBcomposition in terms of real damped sinusoids if the original
and (25) are of importance. The correlation formulae for thesggnal is real. The advantage of this method is indicated by
atoms can be derived by combining the relation in (21) witfl5) and (16), which show that the expansion coefficients
the expression in (34) to arrive at and the maximization metric in the conjugate pursuit are
54 (a,w,7) = e—der (a,0,7) (40) both fu_nctions of the correlation of the. residgal \(v.ith 'the
P W, PG W, T): underlying complex atoms. The computational simplifications
Therefore, (36) and (38) can be reformulated as for a dictionary of complex damped sinusoids can thus be

prla,w, 7 —1) = apy(a,w,7) + e—jw(‘r—l)x[,,_ —1] (41) readily applied to calculation of a real expansion of the form

po(b,w,m+1) =bpy (bw, )+ alr 1] (42)

When the modulation depends on the atomic time origin,
the pursuit can be interpreted in terms of a modulated filter
bank; for dereferenced modulation, however, the filter bamkhere A;c’*" = a,(1), and the modulation is dereferenced.
has a heterodyne structure. As will be seen in Section VI, thhs in the complex case, the phases of the atoms in this real
dereferencing simplifies the relationship between the sigrd#composition are provided directly by the computation of the
correlations with composite atoms and the correlations wigxpansion coefficients; the phase is not required as a dictionary
underlying damped sinusoids. index, i.e., an explicit search over a phase index is not required
in the pursuit. By considering signal expansions in terms of
conjugate pairs, the advantages of the complex dictionary are
fully maintained; furthermore, note that the dictionary for the
If dictionaries of complex atoms are used in matchingonjugate search is effectively half the size of the full complex
pursuit, the correlations and, hence, the expansion coefficiedistionary since atoms are considered in conjugate pairs.
for signal decompositions will generally be complex; a given It is important to note that (45) neglects the inclusion
coefficient thus provides both a magnitude and a phase for tffeunmodulated exponentials in the signal expansion. Such
atom in the expansion. For real signals, decomposition in tera®ms are indeed present in the complex dictionary, and all
of complex atoms can be misleading. For instance, for a sigrdl the recursion speedups apply trivially; furthermore, the
that consists of one real damped sinusoid, the pursuit does ootrelation of an unmodulated atom with a real signal is always
simply find the constituent conjugate pair of atoms as mighd¢al; therefore, there are no phase issues to be concerned
be expected; this occurs because an atom and its conjugeité. An important caveat, however, is that the conjugate
are not orthogonal. For real signals, then, it is preferable parsuit algorithm breaks down if the atom is purely real; the
consider expansions in terms of real atoms as in pursuit requires that the atom and its conjugate be linearly
independent, meaning that the atom must have nonzero real
and imaginary parts. Thus, a fix is required if real unmodulated
(43) exponentials are to be admitted into the signal model. ifthe
or, in the case of dereferenced modulation stage of the fixed algorithm is as follows: First, the correlations
. e (n—r) (g,_ri) for the ent_ire c_zlictionary (_)f complex atoms are _C(_)m_put_ed
Ilaw,re) = Plawme}0 cos[wn + ¢luln — 7] (44) using the simplifications described. Then, energy minimization
where the two cases differ by a phase offset, which affects tmetrics for both types of atoms are computed and stored; for
scaling as well as the modulation. real atoms, the metric is simplyg,;)|?, and for complex
In the case of a complex dictionary, the atoms are index@fPms, the metric igg, ;) a(1) + (g,r;)a(1)* as given in
by the three parametetis:, w, 7}, and the phase of an atom(16), wherea(1) is as defined in (15), and
in the expansion is given by its correlation. In contrast, a 1 _ q2Le920L
real dictionary requires the phase parameter as an additional  (9{a.w.7}: Gfa.r}) =S4 <1_2—_m> (46)
index because of the explicit presence of the phase in the ae
argument of the cosine in the atom definition. The phase These metrics quantify the amount of energy removed from
not supplied by the correlation computation, as in the compléxe residual in the two cases; maximization over these metrics
case; like the other parameters, it must be discretized andicates which real component should be added to the signal
incorporated as a dictionary parameter in the pursuit, whielxpansion at théth stage to minimize the energy of the new
results in a larger dictionary and, thus, a more complicateesidual ;1 [n].
search. Furthermore, the correlation computations are morel'he description of a signal in terms of conjugate pairs does
difficult than in the complex case because the recursioot require more data than a model using complex atoms.
formulae derived earlier do not apply for these real atomBither case simply requires the indicds,w,7} and the
These problems can be circumvented by using a compleaxmplex numbekx(1) for each atom in the model. There is,
dictionary and considering conjugate subspaces accordinghtiwever, additional computation in the conjugate-pair analysis
the formulation of Section IIl. and synthesis, but this computation improves the model's

1
z[n] &2 Z S, Aiagnfﬂ) cos[win + ¢;] (45)

=1

D. Real Decompositions of Real Signals

g"{';yqub} = Slaw.é} a7 cos [wn —7) + Pluln — 7]
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ability to represent real signals. In a sense, the improvement K modulations;
arises because the added computation enables the model dataN time shifts.

to encompass twice as many atoms in the conjugate pair cas@ dictionary thus hasy = ABHKN atoms; usingsS

as in the complex case. to denote the number of scales, name$y,= ABH, the

dictionary size is given by = SKN. The average scale

or atom length will be denoted by; the correlation{g, =)
Using matching pursuit to derive a signal model basabflus requiresL real-complex multiplies on average. The

on composite atoms requires computation of the correlatiofatlowing comparison focuses on pursuit of complex atoms

of the signal with these atoms. Recalling the form of thsince the evaluation of a real model based on a complex pursuit

composite atoms given in (30) and (31), these correlatiohas equal cost in both matching pursuit implementations;

have, by construction, a simple relationship to the correlatioirs addition, deriving the correlation magnitudes requires the

VI. PURSUIT OF COMPOSITE ATOMS

with the underlying one-sided atoms as in same amount of computation in both approaches. The relevant
J-1p_ computation to compare is that required to calculgter;)
p(a,b,J,w,7) = Stas.r} Z {M for all of the complex atomg € D at some stagé of the
A0 a algorithm.
N—(b,w, T + A) The update approach computes the correlations needed for
+ s alr + A]} (47)  the pursuit using (11), which relates the correlations at stage
J_1 i + 1 to those computed at stage This method relies on
= S{ass} Z [ps(a,w, 7+ A) precomputation and storage of the dictionary cross-correlations
AT {g,9:) to reduce the cost of the pursuit. If this storage is

+ p_(b,w, T+ A) —z[r + A]l. (48) done without taking the sparsity or redundancy of the data
] ) ] into account, A2 cross-correlations must be stored. A simple
The correlation with any composite atom can thus be computggh mpje shows that such a brute force approach is prohibitive.

based on the correlations derived by the recursive filter bankgsider analysis of a 10-ms frame of high-quality audio
discussed earlier; this computation is most straightforwardd'{)nsisting of N = 400 samples. In a rather small dictionary
dereferenced modulation is used in the constituent atoms §(¢¢h K — 32. 4 = 10. B = 1. and H = 1. there are

if these underlying atoms are unnormalized. Essentially, afyughly M = 10° atoms. Storage of the complex-valued cross-
atom constructed according to (31), which includes simpl&, relations then requirésM? = 2 x 10'° memory locations.
damped sinusoids, can be added to the modeling dictiongfyis s altogether unreasonable; therefore, it is necessary to
at the cost of one multiply per atom for scaling. Note thahyestigate the possibility of memory-computation tradeoffs.
for composite atoms, real decompositions of real signals takerpe memory requirement can be reduced by considering the

the form sparsity and redundancy of the cross-correlation data. First,
I many of the atom pairs have no time overlap and, thus, zero

2[n] %2 Aifla, b0 — Tilcoslwin+ ¢l (49)  correlation; these cases can be handled with conditionals. For

i=1 atoms that do overlap, the correlation storage can be reduced

where frq, 1,,5,) is as defined in (26), and,; ¢’ = a;(1) using the following formulation. Introducing the notation
from (15).

9(s0,wo,T0) = g{ag,bO,Jg,wO,m}[n] = f{so}[” — Tole?“0™
VII. COMPUTATION CONSIDERATIONS

(50)
_ This seqtlo_n compares _the .computgtlonal cost of two mat_ch—g(sl’ W1 T1) = Glar bty oy 1] = Fragn — e
ing pursuit implementations: pursuit based on correlation (51)

updates [3] and pursuit based on recursive filter banks. The

cost is measured in terms of memory requirements and multi-ere ands. serve as shorthand for the effective scales of
plicative operations. Simple search operations, table looku s!ﬂ' 5o 51

and conditionals are neglected in the cost measure. Precom _atoms andf[x] is a _umt—norm envelop_e construc_:ted_ as in
tation is allowed without a penalty, but storage of precomput ). the cross-correlation of two composite atoms is given by
data is included in the memory cost. Startup cost for the first

pursuit iteration is considered separately; in cases where og@(so’wo’TO)’g(Sl’wl’ﬁ»

a few atoms are to be derived, the startup arithmetic in the = Zf{so}[n — 10]f(oy3 [0 — i]ed (1) (52)
update algorithm may constitute an appreciable percentage of =
the overall computation. {lettingm =n — 1o}
The following treatment ir_lvolv_es_ modeling a real signal = Zf[SO}[m]f[sl}[m— (11 — 7)) 1wl (mAm0) (53)
of length V using a composite dictionary based on damped m
sinusoids. The dictionary parameters consist of = @10 (g(50.0,0), g(s1, w1 — wo, 71 — 70)).  (54)
« A different causal damping factors;
e B anticausal damping factors; Thus, with the exception of a phase shift, the cross-correlation

e H smoothing orders; depends only on the relative time locations and modulation
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frequencies of the atoms. Furthermore, it only depends on the e
. . . MEMORY COMPUTATION
absolute frequency difference since negative values ef wg (real numbers) (real multiplics)

can be accounted for by conjugation as Firet Lator
Method Precomp. Algorithm iteration iterations
<g(30707 0)79(317‘*}1 — Wo, 7L — TO)> S2KL oM IML 6M
Update = A®B2I°KL —2ABHKN —24BHKNL | ==6ABHKN

= <g(30a Oa 0),9(31,&)0 —W1,71 — TO)>*' (55) .

Filter bank | S = ABH N +2(A+ B)KN 5L+ 2ABH +6(A+ B)KN

Conjugation can also be used to handle redundancy in the ) i . )
. . Fig. 14. Tabulation of computation considerations. Memory and computa-
cross-correlations for scale pairs

tion requirements for matching pursuit using the update algorithm and the
recursive filter bank methodV is the length of the signal; the dictionary

{g(s1,w1,71),9(s0,wo0,70)) index set containst causal damping factors3 anticausal damping factors,
. H smoothing orders$ = ABH scales,)k’ modulations, andV time shifts,
= (g(s0, w0, 70), g(s1,w1,71)) (56) meaning that the dictionary contaild = SKN = ABHKN distinct

— ej(wo —w1)7o <g(30’ 0, 0)’ 9(81, w1 — W, TL — To)>*- (57) atoms.L is the average time support of a dictionary atom.

This scale property serves to reduce the memory requirementg, matching pursuit based on recursive filter banks, the

by roughly a factor of two. _ scaling factorsSy,, s; are precomputed and available via
The formulations given above drastically reduce the amoyglykup. In addition to the scaling factors, the residual signal

of memory required to store the dictionary cross-correlations, st pe stored, which require¥ memory locations. The
For the modulation frequencies, there dtedistinct possi- fina| memory requirement is the storage of the correlations
bilities for |wi — wol. For the time shifts, thes different it the constituent unnormalized damped sinusoids, which
scales can be considered in pairs usingo approximate the re needed to compute the correlations with the composite
number of lags that lead to overlap and nonzero correlatioftoms. For some smoothing ord&rcorrelations with/ causal
there are roughlys® L different configurations. In total, then, ang 7 anticausal damped sinusoids are required. Storing these
252K I, memory locations are required to store the distingnde”ying correlations in a local manner requizéd+B) K .J
cross-correlation values; the scale-pair redundancy reduces f§isitions, where the factor of two arises because the correla-
count toS?K L. For the simple example discussed above, thigns are complex; global storage of these correlations requires
amounts to aboué x 10* locations forZ = 20. Noting the 2(A + B)KN locations; therefore, the worst-case memory
phase shift in (54), this reduction in the memory requirememéquirement in the filter bank case§s+ N +2(A + B)KN.
is achieved at the cost of a complex multiply, or three real The filter bank algorithm use§d + B)K recursive filters
multiplies, for each correlation update. to derive the correlations. In the dereferenced case of (41)
In the filter bank approach, the pursuit computation ignd (42), each recursion requires four real-real multiplies for
based on correlations with unnormalized atoms as formalizgdlch of theV time points if atom truncation is neglected or
in (48), which holds for any dictionary of composite atomsix if truncation is included. As given by (48), correlations
or simple damped sinusoids (whef¢ = 1 and B = 1). wijth composite atoms are computed by adding the correlations
This correlation computation requires scaling BY,; s3; with constituent unnormalized damped sinusoids and then
therefore, these scaling factors are precomputed and stoghling with the appropriate factor; this process introduces
When the causal and anticausal damping factors do not haye— ABH real-complex multiplies o2S real multiplies.
any particular symmetry, storing the scaling factors requirgus, 6(A + B)KN + 2ABH real multiplies are needed to
S = ABH memory locations. compute the pursuit correlations. Once an atom is chosen
In the first stage of the update algorithm, all of the sign@ased on these correlations, the residual must be updated;
correlations with the dictionary atoms must be computethis requires roughlysZ. multiplies to generate the unit-norm
which requiresM L = SK L real-complex multiplies o2M L atomic envelope, modulation to the proper frequency, and
real multiplies; storing the results requir@d/ locations so weighting with its expansion coefficient prior to subtraction
that the total memory needed in the update algorithm figm the signal. The total computational cost per iteration for
S?K L+ 2M. Note that the computation could be carried outhe filter bank algorithm is thusL + 6(A + B)K N + 25.
with recursive filter banks at a lower cost, but such a mergedThe results of this section are summarized in Fig. 14. To
approach will not be treated here. quantify the comparison, consider modeling a signal of length
Once the dictionary cross-correlations have been precom-= 400 with a dictionary havingd = 20, B = 10, H = 10,
puted and the correlations for the first stage of the pursuit= 30, and K = 32. The update method requires storage
have been calculated and stored, the cost of the updefes.8 x 10° precomputed values aridl x 107 values for a
algorithm depends only on the update formula. Each stagegien iteration, whereas the filter bank method requireg0?
the algorithm involvesi/ complex-complex multiplies34  precomputation locations a7 x 10° locations for a given
real) to multiply theM cross-correlations by;, plus another iteration; the filter bank approach requires less memory. The
M complex-complex multiplies to carry out the phase shifipdate method carries out5 x 10° multiplies for the first
given in (54), for a total o6M real multiplies per iteration. iteration andl.5 x 10 multiplies for each iteration thereafter.
Note that in the update algorithm, it is not necessary to ke@pe filter bank framework requirez.3 x 10° multiplies for
the signal in memory after the first iteration or to ever actuallyach iteration; therefore, it provides a considerable reduction
compute the residual signal. in the cost of the pursuit computation.
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VIII. CONCLUSION [16] C. Herley and M. Vetterli, “Wavelets and recursive filter bankEEE

Trans. Signal Processingol. 41, pp. 2536—-2556, Aug. 1993.

This paper has focused on signal modeling using matching] s. Tomaic, “On short-time Fourier transform with single-sided expo-

pursuit with a dictionary of damped sinusoids. It was shown
that the required computation can be carried out efﬁuent[}/
using first-order recursive filter banks. Composite atoms con-

nential window,” Signal Process.vol. 31, no. 2, pp. 141-148, Dec.
1996.

M. Unser, “Recursion in short-time signal analysi§ignal Process.
vol. 18, no. 3, pp. 229-240, May 1983.

structed from damped sinusoids were also considered; th€k® M. Goodwin, “Matching pursuit with damped sinusoids,"Rnoc. IEEE

proved useful since they can represent a wide range of

Int. Conf. Acoust.,
2037-2040.

Speech, Signal Processpr. 1997, vol.

3, pp.

time—frequency behaviors. It was also demonstrated that el M. Goodwin and M. Vetterli, “Atomic decompositions of audio signals,”

filter bank pursuit method is more efficient with respect to both

in Proc. IEEE ASSP Workshop Appl. Signal Process. Audio Ac@Dct.
1997.

memory and computation than pursuit based on the upd@i§ B. Natarajan, “Sparse approximate solutions to linear systeSiZM

framework of [3].
Estimation of the parameters of damped sinusoids in a SIgILIan]

J. Comput. vol. 24, no. 2, pp. 227-234, Apr. 1995.
G. Davis, “Adaptive nonlinear approximations,” Ph.D. dissertation, New
York Univ., New York, NY, Sept. 1994.

has been widely considered for the applications of system idgps] P. Huber, “Projection pursuit,Ann. Stat. vol. 13, no. 2, pp. 435-475,

tification and spectral estimation. These applications, however
usually involve an underlying source-filter model of the sign
and, thus, differ from the task of generalized signal modeling.

1985.

5?4] P. Prandoni and M. Vetterli, “An FIR cascade structure for adaptive lin-
ear prediction,"EEE Trans. Signal Processingol. 46, pp. 2566-2571,
Sept. 1998.

Of course, the estimation of damped sinusoidal parameters
by matching pursuit could be tailored for spectral estimation
and system identification, but this would require constrain-

ing

the pursuit in various ways. The relationship between Michael M. Goodwin (M'97) was born in Florida

overcomplete expansions based on parametric dictionaries .
parameter estimation methods such as ESPRIT has yet ta
fully considered. Early work suggests that greedy algorithn
can be effective for spectral estimation of nonstationary sign:
[24]; greedy parameter estimation seems to be well-suited
scenarios where little or na priori information about the
signal is available.
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