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Wavelet or subband coding has been quite successful in compression applications,
and this success can be attributed in part to the good approximation properties of
wavelets. In this paper, we revisit rate-distortion bounds for wavelet approxima-
tion of piecewise smooth functions, in particular the piecewise polynomial case.
We contrast these results with rate-distortion bounds achievable using an ora-
cle based method. We then present a practical dynamic programming algorithm
achieving performance similar to the oracle method, and present experimental
results.

1. Introduction

Wavelets have had an important impact on signal processing theory and prac-
tice. In particular, wavelets play a key role in compression, image compression
being a prime example. This success is linked to the ability of wavelets to capture
e�ciently both stationary and transient behaviors. In signal processing parlance,
wavelets avoid the problem of the window size (as in the short-time Fourier
transform, for example), since they work with many windows due to the scaling
property.
An important class of processes encountered in signal processing practice can

be thought of as \piecewise stationary". As an example, speech is often analyzed
using such a model, for example in local linear predictive modeling as used in
speech compression. Such processes can be generated by switching between vari-
ous stationary processes. Wavelet methods are possible models as well, being able
to �t both the stationary part and capture the breakpoints.
In the deterministic case, \piecewise smooth functions" are a class of partic-

ular interest. For an example, consider piecewise polynomial functions. Again,
wavelet are good approximants if simple non-linear approximation schemes are
used. The performance of wavelets in such a context is again linked to their abil-
ity to �t polynomials by scaling functions (up to the appropriate approximation
order) while capturing the break points e�ciently by a small number of wavelet
coe�cients.
When one is interested in compression applications, a key question is not just

the approximation behavior, but the e�ective rate-distortion characteristic of

Phil. Trans. R. Soc. Lond. A (1999) (Submitted) 1999 Royal Society Typescript

Printed in Great Britain 1 TEX Paper

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147900629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 P. Prandoni and M. Vetterli

schemes where wavelets and scaling functions are used as elementary approxima-
tion atoms.
The purpose of this article is �rst to review some recent work in wavelets and

subband coding, recalling some now classic results on approximating piecewise
smooth functions or piecewise stationary processes. Then, piecewise polynomial
functions are speci�cally analyzed, and the di�erences between a wavelet based
and an oracle based method are shown. Next, we present a practical method
based on dynamic programming that performs just like the oracle method, and
include some experimental results.

2. The Compression Problem

Compression is the trade-o� between description complexity and approxima-
tion quality. Given an object of interest, or a class of objects, one studies this
trade-o� by choosing a representation (e.g. an orthonormal basis) and then de-
ciding how to describe the object parsimoniously in the representation. Such a
parsimonious representation typically involves approximation.
For example, for a function described with respect to an orthonormal basis,

only a subset of basis vectors might be used (subspace approximation) and the
coe�cients used in the expansion are approximated (quantization of the coe�-
cients). Thus, both the subspace approximation and the coe�cient quantization
contribute to the approximation error. More formally, for a function f in L2(R)
for which f'

n
g is an orthonormal basis, we have the approximate representation.

f̂ =
X
n2I

�̂'
n

(2.1)

�̂
n
= Q[< '

n
; f >] (2.2)

where I is an index subset and Q[:] is a quantization function, like for example
the rounding to the nearest multiple of a quantization step 4:

�̂ = Q[�] = 4 �
��

�

4
�
+

1

2

�
: (2.3)

Typically, the approximation error is measured by the L2 norm, or squared
distortion

� = kf � f̂k22 (2.4)

The description complexity corresponds to describing the index set I, as well as
describing the quantized coe�cients �̂

n
. The description complexity is usually

called the rate R, corresponding to the number of binary digits (or bits) used.

Therefore the approximation f̂ of f leads to a rate-distortion pair (R; �), indi-
cating one possible trade-o� between description complexity and approximation
error. The example just given, despite its simplicity, is quite powerful and actually
used in practical compression standards. It also raises the following questions:
Q1: What are classes of objects of interest and for which the rate-distortion
trade-o� can be well understood ?
Q2: If approximations are done in bases, what are good bases to use ?
Q3: How to choose the index set and the quantization ?
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Approximation and Compression of Piecewise Smooth Functions 3

Q4: Are there objects for which approximation in bases is suboptimal ?
Historically, Q1 has been addressed by the information theory community in

the context of rate-distortion theory. Shannon posed the problem in his 1948 land-
mark paper and proved rate-distortion results in his 1959 paper. The classic book
by Berger (1971) is still a reference on the topic. Yet, rate-distortion theory has
been mostly concerned with exact results within an asymptotic framework (the
so-called large blocksize assumption together with random coding arguments).
Thus, only particular processes (e.g. jointly Gaussian processes) are amenable to
this exact analysis. But the framework has been used extensively, in particular in
its operational version (when practical schemes are involved), see for example the
review by Ortega and Ramchandran (1998). It is to be noted that rate-distortion
analysis covers all cases (e.g. small rates with large distortions) and that the case
of very �ne approximation (or very large rates) is usually easier but less useful
in practice.
The second question has a simple answer, based on rate-distortion theory, in the

stationary jointly Gaussian case. Then, the canonical basis is the Karhunen-Lo�eve
basis, and a procedure called reverse water�lling leads to the optimal behavior.
Yet, not all things in life are jointly Gaussian, and that is where wavelets come
into play. For processes which are piecewise smooth (e.g. images), the abrupt
changes are well captured by wavelets, and the smooth or stationary parts are
e�ciently represented by coarse approximations using scaling functions. Both
practical algorithms (e.g. the EZW algorithm of Shapiro (1993)) and theoretical
analyses (Cohen et al., 1997; Mallat and Falzon, 1998) have shown the power of
approximation within a wavelet basis. An alternative is to search large libraries
of orthonormal bases, based for example on binary subband coding trees. This
leads to wavelet packets (Coifman and Wickerhauser, 1992) and rate-distortion
optimal solutions (Ramchandran and Vetterli, 1993).
The third question is more complex than it looks at �rst sight. If there was

no cost associated with describing the index set, then clearly I should be the set
fng such that

j < '
n
; f >

n2I j � j < '
m
; f > j

m=2I (2.5)

But when the rate for I is accounted for, it might be more e�cient to use a �xed
set I for a class of objects. For example, in the jointly Gaussian case, the optimal
procedure chooses a �xed set of Karhunen-Lo�eve basis vectors (namely those
corresponding to the largest eigenvalues) and spends all the rate to describe the
coe�cients with respect to these vectors. Note that a �xed subset corresponds to
a linear approximation procedure (before quantization, which is itself non-linear)
while choosing a subset as in (2.5) is a non-linear approximation method.
It is easy to come up with examples of objects for which non-linear approxi-

mation is far superior to linear approximation. Consider a step function on [0; 1],
where the step location is uniformly distributed on [0; 1]. Take the Haar wavelet
basis as an orthonormal basis for [0; 1]. It can be veri�ed that the approximation
error using M terms is of the order

�
L
� 1=M (2.6)

for the linear case, while it is of the order

�
NL

� 2�M (2.7)
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4 P. Prandoni and M. Vetterli

for non-linear approximation using the M largest terms. However, this is only
the �rst part of the rate distortion story, since we still have to describe the M
chosen terms.
This rate distortion analysis takes into account that a certain number of scales

J have to be represented, and at each scale, the coe�cients require a certain

number of bits. This split leads to a number of scales J � p
R. The error is the

sum of errors of each scale, each of which is of the order 2�R=J . Together, we get:

D
NL

(R) �
p
R2�

p
R (2.8)

The quantization question is relatively simple if each coe�cient �
n
is quantized by

itself (so-called scalar quantization). Quantizing several coe�cients together (or
vector quantization) improves the performance, but increases complexity. Usually,
if a \good" basis is used and complexity is an issue, scalar quantization is the
preferred method.
The fourth question is a critical one. While approximation in orthonormal bases

are very popular, they cannot be the end of the story. Just as not every stochastic
process is Gaussian, not all objects will be well represented in an orthonormal
basis. In other words, �tting a linear subspace to arbitrary objects is not always
a good approximation. But even for objects where basis approximation does well,
some other approximation method might do much better. In our step function
example studied earlier, a simple minded coding of the step location and the step
value leads to a rate-distortion behavior

D0(R) � 2�R=2 (2.9)

In the remainder of this paper we are going to study in more detail the di�erence
between wavelet and direct approximation of piecewise polynomial signals.

3. R/D upper bounds for a piecewise polynomial function

Consider a continuous time signal s(t), t 2 [a; b], composed of M polynomial
pieces; assume that the maximum degree of any polynomial piece is less than
or equal to N and that each piece (and therefore the entire signal) is bounded
in magnitude by some constant A. The signal is uniquely determined by the
M polynomials and by M � 1 internal breakpoints; by augmenting the set of
breakpoints with the interval extremes a and b, we can write:

s(t) =
NX
n=0

p(i)
n
tn = p

i
(t) for t

i
� t < t

i+1 (3.1)

where a = t0 < t1 < : : : < t
M�1 < t

M
= b are the breakpoints and the p

(i)
n are

the i-th polynomial coe�cients (with p
(i)
n = 0 for n larger than the polynomial

degree); let T = (b� a).

(a ) Polynomial Approximation

In this section we will derive an upper bound on the rate distortion character-
istic for a quantized, piecewise polynomial approximation of s(t). For the time
being, assume that the values for M , for the degrees of the polynomial pieces,
and for the internal breakpoints are provided with arbitrary accuracy by an or-
acle. The derivation of the operational R/D bound will be carried out in three
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Approximation and Compression of Piecewise Smooth Functions 5

steps: �rst we will determine a general R/D upper bound for the single polyno-
mial pieces; secondly, we will determine an R/D upper bound for encoding the
breakpoint values; �nally, we will determine the jointly optimal bit allocation for
the whole signal.

(i) Encoding of one polynomial piece

Consider the i-th polynomial of degree N
i
, de�ned over the support I

i
=

[t
i
; t
i+1] of width S

i
. Using a local Legendre expansion (see Appendix) we can

write (the subscript i is dropped for clarity throughout this section):

p(t) =
NX
n=0

p
n
tn =

NX
n=0

2n+ 1

S
l
n
L
I
(n; t) (3.2)

where L
I
(n; t) is the n-th degree Legendre polynomial over I; due to the proper-

ties of the expansion it is

jl
n
j � AS (3.3)

for all n. The squared error after quantizing the coe�cients can be expressed as

e2 =
NX
n=0

�
2n+ 1

S

�2
(l
n
� l̂

n
)2
Z
ti+1

ti

L2
I
(n; t) dt = (3.4)

= S�1
NX
n=0

(2n+ 1)(l
n
� l̂

n
)2

where l̂
n
are the quantized values. Assume using for each coe�cient a di�erent b

n
-

bit uniform quantizer over the range speci�ed by (3.3) for a step size of 2AS2�bn ;
the total squared error can be upper bounded as:

e2 � D
p
= A2S

NX
n=0

(2n+ 1)2�2bn (3.5)

For a global bit budget of R
p
bits, the optimal allocation is found by solving the

following reverse water�lling problem8>><
>>:
@D

p

@b
n

= const.

P
b
n
= R

p

(3.6)

which yields

b
n
=

R
p

N + 1
+ log2

s
2n+ 1

�C
(3.7)

with

�C =

"
NY
n=0

(2n+ 1)

# 1
N+1

; (3.8)

since the geometric mean is always less than or equal to the arithmetic mean we
have �C � (N + 1), and we �nally obtain the following upper bound for the i-th

Phil. Trans. R. Soc. Lond. A (1999)



6 P. Prandoni and M. Vetterli
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Figure 1. Encoding of switchpoints: (a) true error (light area) and general upper bound (dark
area); (b) location of the jump at a given wavelet scale.

polynomial piece:

D
p
(R

p
) � A2S(N + 1)2 2

� 2
N+1

Rp : (3.9)

(ii) Encoding of switchpoints

Assume that theM+1 switchpoints t
i
, as provided by the oracle, are quantized

with a uniform quantizer over the entire support of the signal. In terms of the
overall mean squared error, the error relative to each quantized switchpoint can
be upper bounded by (see Figure 1-(a)):

e2
ti
� 4A2 jt

i
� t̂

i
j: (3.10)

Again, the magnitude of the error is at most one half of the quantizer's step size,
so that for a given switchpoint we have:

D
t
(R

t
) � 2A2T 2�Rt (3.11)

where R
t
is the quantizer's rate.

(iii) Composite R/D bound

The global distortion bound for s(t) is obtained additively as

D �
MX
i=1

D
pi
(R

pi
) +

M+1X
i=0

D
ti
(R

ti
) (3.12)

where D
pi
(R

pi
) and D

ti
(R

ti
) are the bounds in (3.9) and (3.11) respectively, and

where the subscript denotes the index of the polynomial pieces.
In order to obtain the optimal bit allocation for the composite polynomial

function given an overall rate, it would be necessary to �nd the constant-slope
operating points for all the summation terms in (3.12), as shown in (3.6); the
resulting formulas, however, would be entirely impractical due to their depen-
dence on all the polynomial parameters across the whole function. Instead, we
choose to derive a coarser but general upper bound by introducing the following
simpli�cations:
� all polynomial pieces are assumed of maximum degree N ; this implies that, for
polynomials of lower degree, bits are allocated to the zero coe�cients as well;
� the support of each polynomial piece S

i
is \approximated" by T , the entire

function's support; together with the previous assumption, this means that the
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Approximation and Compression of Piecewise Smooth Functions 7

water�lling algorithm will assign the same number of bits R
p
to each polynomial

piece;
� the origin of the function support (a) is either known or irrelevant; this reduces
the number of encoded switchpoints to M ;
� all switchpoints are encoded at the same rate R

t
.

With these simpli�cations the rate distortion bound becomes:

D(R) � A2TM
�
2�Rt+1 + (N + 1)2 2

� 2
N+1

Rp

�
(3.13)

where the total bit rate is R = M(R
t
+ R

p
). By the usual reverse water�lling

argument we obtain the optimal allocation:

R
p
=
N + 1

N + 3

R

M
+ log2K (3.14)

R
t
=

2

N + 3

R

M
� log2K (3.15)

with K = (2N + 2)(N+1)=(N+3) . Using the relation (for N > 0)

2K + (N + 1)2K� 2
N+1 � 2(N + 1)2 (3.16)

a simpli�ed global upper bound is �nally:

D
P
(R) � 2A2T M(N + 1)2 2

� 2
N+3

R
M : (3.17)

(b ) Wavelet-based Approximation

In this section we will obtain an upper bound for the case of a quantized
nonlinear approximation of s(t) using a wavelet basis over [a; b]. The derivation
follows the lines in the manuscript by Cohen et al. (1997) and assumes the use
of compact support wavelets with at least N + 1 vanishing moments (Cohen et
al., 1993).

(i) Distortion

If the wavelet has N +1 vanishing moments, then the only nonzero coe�cients
in the expansion correspond to wavelets straddling one or more switchpoints;
since the wavelet has a compact support as well, each switchpoint a�ects only a
�nite number of wavelets at each scale, which is equal to the length of the support
itself. For N + 1 vanishing moments, the wavelet support L is

L � 2N + 1 (3.18)

and therefore, at each scale j in the decomposition the number of nonzero coef-
�cients C

j
is bounded as

L � C
j
�ML: (3.19)

For a decomposition over a total of J levels, if we neglect the overlaps at each
scale corresponding to wavelets straddling more than a single switchpoint we can
upper bound the total number of nonzero coe�cients C as

C �MLJ: (3.20)

It can be shown (see for example Mallat, 1997) that the nonzero coe�cients
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8 P. Prandoni and M. Vetterli

decay with increasing scale as

jc
j;k
j � ATW 2�j=2 (3.21)

whereW is the maximum of the wavelet's modulus. Using the same high-resolution
b-bit uniform quantizer for all the coe�cientsy with a stepsize of 2ATW 2�b we
obtain the largest scale before all successive coe�cients are quantized to zero:

J = 2b� 2: (3.22)

With this allocation choice the total distortion bound is D = D
q
+D

t
where

D
q
=
X
k

JX
j=0

(c
j;k

� ĉ
j;k
)2 (3.23)

is the quantization error for the coded nonzero coe�cients and where

D
t
=
X
k

+1X
j=J+1

c2
j;k

(3.24)

is the error due to the wavelet series truncation after scale J (in both summations
the index k runs over the nonzero coe�cients in each scale). Upper bounding
the quantization error in the usual way and using the bound in (3.21) for each
discarded coe�cient we obtain

D � C(ATW )2 2�2b +ML (ATW )2 2�J = (3.25)

=ML (ATW )2
�
1 +

1

4
J

�
2�J :

(ii) Rate

Along with the quantized nonzero coe�cients, we must supply a signi�cance
map indicating their position; due to the structure of s(t), 2 bits per coe�cients
su�ce to indicate which of the next-scale wavelet siblings (left, right, both, or
none) are nonzero. The total rate therefore is

R = C(b+ 2) �MLJ(J=2 + 3) (3.26)

where we have used (3.20) and (3.22). In our high resolution hypothesis it is
surely going to be b � 4 and therefore we can approximate (3.26) as

R �MLJ2: (3.27)

(iii) Global upper bound

Eqn. (3.25) provides a distortion bound as a function of J ; in turn, J is a
function of the overall rate as in (3.27). Combining the results we obtain the
overall rate/distortion bound:

D
W
(R) � (ATW )2M(2N + 1)

0
@1 + 1

4

s
1

2N + 1

R

M

1
A 2

�
q

1
2N+1

R
M

(3.28)

y In their paper, Cohen and coauthors (1997) perform a more detailed analysis in which the quantizer's

stepsize is varied according to the decay in (3.21); this however a�ects only the constants in the R/D

bound and not the asymptotics.
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Figure 2. Theoretical (solid) and experimental (dashed) R/D curves.

where we have assumed a minimum support wavelet, for which L = 2N + 1.

(c ) Commentary

To recapitulate, the two upper bounds obtained in the previous sections are of
the form:

polynomial approximation D
P
(R) = C 0

p
2�CpR

wavelet approximation D
W
(R) = C 0

w
(1 + �

p
C
w
R)2�

p
CwR

Since these are upper bounds, we are especially concerned with their tightness.
Unfortunately, as we have seen, many simpli�cations have been introduced in the
derivation, some of which are de�nitely rather crude; we will therefore concen-
trate on the rate of decay of the R/D function rather than on the exact values of
the constants. In order to gauge the applicability of the theoretical bounds, we
can try to compare them to the actual performance of practical coding systems. A
word of caution is however necessary: in order to implement the coding schemes
described above, which are derived for continuous time functions, a discretiza-
tion of the test data is necessary; as a consequence, an implicit granularity of
the time axis is introduced, which limits the allowable range for both the break-
point quantization rate and for the number of decomposition levels in the wavelet
transformation. Unfortunately, computational requirements soon limit the reso-
lution of the discretization: in our experiments we have used 216 points. The
two approximation techniques have been applied to randomly generated piece-
wise polynomial functions with parameters A = 1, T = 1, N = 4 and M = 4;
Daubechies wavelets with 5 vanishing moments on the [0; 1] interval have been
used for the decomposition. The results are shown in Figure 2: the solid lines and
the dashed lines display the R/D bound and the operational R/D curve respec-
tively for the polynomial and wavelet approximation strategies averaged over 50
function realizations.
A closer inspection of the R/D curves shows that, especially for the wavelet
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10 P. Prandoni and M. Vetterli

case, there appears to be a large numerical o�set between theoretical and prac-
tical values even though the rate of decay is correct. This simply indicates that
the bounds for the constants in (3.28) are exceedingly large and the question
is whether we can arrive at tighter estimates. In the absence of a detailed sta-
tistical description for the characteristic parameters of s(t), the answer remains
rather elusive in the general case; we can however try to develop our intuition
by studying in more detail a toy problem involving minimal-complexity elements
and a simple statistical model for the approximated function. The availability of
a particular statistical model for the generating process allows us to derive an
R/D result in expectation, which is hopefully tighter. Consider the simple case
in which N = 0, M = 2, T = 1, and A = 1=2: the resulting s(t) is simply a step
function over, say, [0; 1); we will assume that the location of the step transition t0
is uniformly distributed over the support and that the values of the function left
and right of the discontinuity are uniformly distributed over [�1=2; 1=2]. Having
a piecewise constant function allows us to use a Haar wavelet decomposition over
the [0; 1] interval; recall that the Haar scaling function and wavelet have a single
vanishing moment and they admit the closed-form representation

'0(t) = 1 (3.29)

 
j;k
(t) =

8<
:

+2j=2 k2�j � t < (k + 1=2)2�j

�2j=2 (k + 1=2)2�j � t < (k + 1)2�j

0 elsewhere

(3.30)

from which it is easy to see that there is no overlap between wavelets within a
scale. Now the following facts hold:
� because of the absence of overlap, at each scale we have exactly one nonzero
coe�cienty; the relation in (3.20) becomes exact:

C = J ; (3.31)

� under the high resolution hypothesis for a b-bit quantizer, the quantization
error becomes an uniform random variable over an interval half a step wide; the
expected error for each quantized coe�cient is therefore 2�2b=12;
� the series truncation error (3.24) is, in expectation,

E[D
t
] = (1=36) 2�(J+1) ; (3.32)

(for a proof, see Appendix B);
� again, due to the non overlapping properties of the Haar wavelet, we can
rewrite (3.27) simply as R � J2.
With these values, the R/D curve, in expectation, becomes:

D
W
(R) � 1

72

�
1 +

3

4

p
R

�
2
p
R): (3.33)

Figure 3-(a) displays this curve along with the experimental results (dashed line);
we can now see that the numerical values agree to within the same order of
magnitude. For completeness, the expected R/D behavior for the polynomial

y In fact, a further consequence of the non-overlapping wavelets is that we need only one bit per

coe�cient to encode the signi�cance map; for simplicity we will however use the general rate require-

ment (3.26) both in the theoretical derivation and in the algorithmic implementation.
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Figure 3. Theoretical (solid) and experimental (dashed) R/D curves for the step function
approximation: (a) Haar wavelet approximation, (b) polynomial approximation.

approximation of the above step function (obtained with a similar, simpli�ed
analysis) turns out to be:

D
P
(R) =

1

6
p
2
2�R=2 (3.34)

and the curve, together with its experimaental counterpart, is displayed in Fig-
ure 3-(b).

4. R/D optimal approximation

We have seen that the direct polynomial approximation displays a far better
rate-distortion asymptotic behavior than the standard nonlinear wavelet approxi-
mation. However, the polynomial bound was derived under two special hypotheses
which are not generally met in practice: the availability of an \oracle" and the use
of high resolution quantizers. Since the goal of most approximation techniques is
a parsimonious representation of the data for compression purposes, the question
arises naturally: what is the best coding strategy in a practical setting where the
polynomial parameters are initially unknown and the bit rate is severely con-
strained? The problem can be cast in an operational rate-distortion framework
where the objective is to \�t" di�erent polynomial pieces to the function subject
to a constraint on the amount of resources used to describe the modelization and
where the goodness of �t is measured by a global cost functional such as the
MSE. In this constrained allocation approach, both breakpoints and local models
must be determined jointly, since the optimal segmentation is a function of the
family of approximants we allow for and of the global bitrate. In particular, for
low rates, the available resources might not allow for a faithful encoding of all
pieces and a globally optimal compromise solution must be sought for, possibly
by lumping several contiguos pieces into one or by approximating the pieces by
low-degree polynomials which have lighter description complexity.
In the following, we will illustrate a \practical' algorithm which addresses and

solves these issues, and whose performance matches and extends to the low bitrate
case the oracle-based polynomial modeling. Please note that now we are entering
an algorithmic scenario where we perforce deal with discrete-time data vectors
rather than continuous-time functions; similarly to the experimental results of
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the previous section, granularity of the involved quantities and computational
requirements are now important factors.

(a ) Joint segmentation and allocation

Consider an K-point data vector x = xK1 , which is a sampled version of a piece-
wise polynomial function s(t) over a given support interval. The goal is to �t the
data with local polynomial models as to minimize the global mean squared error
of the approximation under a given rate constraint. This de�nes an operational
rate-distortion curve which is tied to the family of approximation models we
choose to use. This initial choice is the crucial \engineering" decision of the prob-
lem and is ruled by a-priori knowledge on the input data (polynomial pieces of
maximum degree N) and by economical considerations in terms of computational
requirements. In particular, we choose a �xed, limited set of possible rates asso-
ciated to a polynomial model of given degree, with quantization of the individual
coe�cients following the line of (3.7). The validity of such design parameters can
only be assessed via the performance measure yielded by the operational R/D
curve.
In the following we will assume a family of Q polynomial models, which is

the aggregate set of polynomial prototypes from degree 0 to N with di�erent
quantization schemes for the parameters (more details later). For the data vector
x de�ne a segmentation t as a collection of n+1 time indices: t = ft0 = 1 < t1 <
t2 < : : : < t

n�1 < t
n
= K + 1g. The number of segments de�ned by t is �(t),

1 � �(t) � K, with the i-th segment being x
ti+1�1
ti

; segments are strictly disjoint.
Let T[1;K] be the set of all possible segmentations for x, which we will simply

write as T when the signal range is self-evident; it is clearly jT[1;K]j = 2K�1.
Parallel to a segmentation t, de�ne an allocation w(t) as a collection of �(t)
model indices w

i
, 1 � w

i
� Q; let W (t) be the set of all possible allocations for t,

with jW (t)j = Q�(t). Again, when the dependence on the underlying segmentation
is clear, we will simply write w instead of w(t).
For a given segmentation t and a related allocation w, de�ne R(t;w) as the

cost, in bits, associated to the sequence of �(t) polynomial models and de�ne
D(t;w) as the cumulative squared error of the approximation. Since there is no
overlap between segments and the polynomial models are applied independently,
we can write

D(t;p) =

�(t)X
i=1

d2(p̂(w
i
); t

i
; t
i+1); (4.1)

more in detail,

d2(p̂(w
i
); t

i
; t
i+1) = kp̂(w

i
)V(ti+1�ti) � x

ti+1�1
ti

k2 (4.2)

where V is a Vandermonde matrix of size N � (t
i+1 � t

i
) and where p̂(w

i
) is an

N+1-element vector containing the estimated polynomial coe�cients for the i-th
segment quantized according to model w

i
(the high order coe�cients being zero

for model orders less than N). We will assume that the polynomial coe�cients are
coded independently and that their cost in bits is a function b(�) of the model's
index only. An important remark at this point is that, by allowing for a data-
dependent segmentation, information about the segmentation and the allocation
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themselves must be provided along with the polynomial coe�cients. This takes the
form of side information, which uses up part of the global bit budget of the R/D
optimization and must therefore be included in the expression for the overall rate.
We will then write

R(t;w) =

�(t)X
k=1

(c+ b(w
k
)) =

�(t)X
k=1

r(p
k
) (4.3)

where c is the side information associated to a new segment specifying its length
and the relative polynomial order and quantization choicey.
Our goal is to arrive at a minimization of the global squared error with re-

spect to the local polynomials and to the data segmentation using the global
rate as a parameter controlling the number of segments and the distribution
of bits amongst the segments. Formally, this amounts to solving the following
constrained problem: 8><

>:
min
t2T

min
w2W (t)

fD(t;w)g

R(t;w) � R
C
:

(4.4)

While at �rst the task of minimizing (4.4) seems daunting, requiring O(QN )
explicit comparisons, we will show how it can be solved in polynomial time for
almost all rates using standard optimization techniques.

(b ) E�cient Solution

The problem of optimal resource allocation has been thoroughly studied in
the context of quantization and coding for discrete datasets (Gersho and Gray,
1992) and has been successfully applied to the context of signal compression and
analysis (Ramchandran and Vetterli, 1993; Xiong et al., 1994; Prandoni et al.,
1997). In the following we will rely extensively on the results by Shoham and
Gersho (1988), to which the reader is referred for details and proofs.
For the time being assume that a segmentation t0 is given (a �xed-window

segmentation, for instance) and that the only problem is to �nd the optimal
allocation of polynomial pieces; each allocation de�nes an operational point in
the R/D plane as in Figure 4-(a) and the inner minimization in (4.4) requires us
to �nd the allocation yielding the minimum distortion amongst all the allocations
with the same given rate. However, if we restrict our search to the convex hull of
the entire set of R/D points, the minimization can be reformulated using Lagrange
multipliers: de�ne a functional J(�) = D(t;w) + �R(t;w); if, for a given �,

w
� = arg min

w2W (t0)
fJ(�)g (4.5)

then w� (star superscripts denote optimality) de�nes a point on the convex hull

y Here, the cost of side information is assumed constant for simplicity. However, no major changes in

the subsequent derivation are needed if this cost depends on the segment's parameters.
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Figure 4. R/D convex hulls: (a) convex hull for a single segmentation; (b) composite convex
hull for two segmentations.

which solves the problem: 8><
>:

min
w2W (t0)

fD(t0;w)g

R(t;w) � R(t0;w
�):

(4.6)

If we now let the segmentation vary, we simply obtain a larger population of
operational R/D points which are indexed by segmentation-allocation pairs as in
Figure 4-(b). Again, if we choose to restrict the minimization to the convex hull
of the composite set of points, we can solve the associated Lagrangian problem
as a double minimization:

J�(�) = min
t2T

min
w2W (t)

fJ(�)g; (4.7)

it should be noted that the restriction to the convex hull is of little practical
limitation when the set of R/D points su�ciently dense; this is indeed the case
given the cardinalities of T and W .
Even in the form of (4.7) the double minimization would still require an ex-

haustive search over all R/D points, in addition to a search for the optimal �. By
taking the structure of rate and error into account, we can however rewrite (4.7)
as:

J�(�) = min
t2T

min
w2W (t)

f
�(t)X
k=1

(d2(p̂(w
k
); t

k
; t
k+1) + �r(w

k
))g (4.8)

Since all quantities are nonnegative and the segments are non overlapping, the
inner minimization over W (t) can be carried out independently term-by-term,
reducing the number of comparisons to Q�(t) per segmentation. Now the key
observation is that, whatever the segmentation, all segments are coded with the
same rate/distortion tradeo� as determined by �; therefore, for a given �, we
can determine the optimal t (in the sense of (4.4)) using dynamic programming
(Bellman, 1957). Indeed, suppose a breakpoint t belongs to t�, the optimal seg-
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mentation; then it is easy to see that

J�[1;N ](�) = J�[1;t](�) + min
t2T[t;N]

min
w2W (t)

fJ(�)g (4.9)

(where subscripts indicate the signal range for the minimization). In other words,

if t is an optimal breakpoint, the optimal cost functional for xt�11 is independent
of subsequent data. This de�nes an incremental way to jointly determine the
optimal segmentation and allocation as a recursive optimality hypothesis for all
data points: for 0 � t � N ,

J�[1;t](�) = min
1���t�1

fJ�[1;� ](�) + min
1�w�Q

fd2(p̂(w); �; t) + �r(w)gg
(4.10)

(where J�[1;0](�) = 0). At each step t, only the new J�[1;t](�) and the minimizing

� need be stored. The total number of comparisons for the double minimization
is therefore O(K2). The latter must be iterated over � until the rate constraint
in (4.4) is met; luckily, the overall rate is a monotonically non increasing function
of � (for a proof, see again the work by Shoham and Gersho (1988)) so that the
optimal value can be found with a fast bisection search (see Ramchandran and
Vetterli, 1993).

(c ) Implementation and results

In the implementation of the dynamic segmentation algorithm we have chosen
a simpli�ed set of quantization schemes. At low bitrates, Equation (3.7) states
that the optimal bit distribution for a set of polynomial coe�cients is basically
uniform. We choose four possible allocations of 4, 8, 12, and 16 bits for the single
coe�cient, with the total bitrate of a polynomial piece linearly dependent on
its degree. A Least Squares problem is solved for all orders from zero to N for
each possible segment in an incremental fashion paralleling (4.10); this involves
extending the QR factors of an order-N Vandermonde matrix by a new point at
each step, which can be performed e�ciently by means of Givens rotations. Side
information for each segment is composed of two bits to signal the quantization
scheme, dlog2Ne bits for the order of the polynomial model and dlog2Ke bits for
the length of the segment. Finally, the computation in (4.10) can be e�ciently or-
ganized on a trellis, where intermediate data are stored prior to the iteration over
�; further algorithmic details, omitted here, can be found in a related papers by
the present authors (1999). The �nal computational requirements for the global
minimization are on the order of O(K3), with storage on the order of O(K2).
We can now compare the experimental results of the optimal allocation algo-

rithm with the polynomial approximation R/D bound obtained using an oracle;
however, since here the interest lies in very low bit rates as well, we need to some-
how re�ne the bound in (3.17). In fact, under severe rate constraints, there might
not be enough bits to encode the exact structure of the function and the dynamic
algorithm will be forced to use a coarse segmentation in which several contiguous
polynomial pieces are approximated by just one model; in the limit, when the
rate goes to zero, the approximation error approaches the integral of s2(t) over
the entire support of the function. This is not re
ected by Equation (3.17), where
the expression for the error always assumes M distinct pieces. By approximating
the maximum error by 4A2T , we can de�ne a more appropriate R/D bound for
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Figure 5. Theoretical (solid) and experimental (dashed) R/D curves for the dynamic
segmentation algorithm.
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Figure 6. Approximations provided by the dynamic segmentation algorithm corresponding to
points A, B, and C on the R/D curve in Figure 5.

the polynomial case as

D0
P
(R) = minf4A2T;D

P
(R)g: (4.11)

Figure 5 shows the numerical results obtained for a set of piecewise polyno-
mial functions as in the previous experiment; the underlying sampling is however
coarser here (K = 28), due to the heavier computational load. As before, the
solid line indicates the new theoretical upper bound and the dashed line the R/D
performance of the dynamic algorithm. It is also interesting to look more in detail
at the segmentation/allocation choices performed by the algorithm for di�erent
bitrate constraints; this is displayed in Figures 6-(a),(b), and (c) with respect
to the R/D points A, B, and C marked by a circle in Figure 5. In Figure 6 the
thin line shows the original piecewise polynomial function while the thick lines
shows the algorithmic results; while not always very intuitive, these low bit rate
approximations are nonetheless optimal in a MSE sense.
As a �nal note, we can ask ourselves two further questions: how does this

framework extend to real-world signals, which are clearly not exactly piecewise
polynomial ? And more, can this framework be applied and compared to practical
coding scenarios in which wavelets are known to perform very well, such as image
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Figure 7. Piecewise polynomial approximations of a line of Lena.

compression ? Unfortunately, dynamic programming techniques do not work for
two-dimensional problems, and it is not clear how to �t polynomial surfaces in
a globally optimal way. Yet, we can gain some intuition about both questions
by looking at Figures 7-(a) and (b). The thin line represents a single line of the
\Lena" image, for a total of 256 pixels; the thick lines are the piecewise polyno-
mial approximations of the data, at increasing rates, obtained with the dynamic
segmentation algorithm introduced above. We could argue that, for increasing bi-
trates, the algorithm captures more and more �nely the local polynomial trends
underlying the image surfaces, while the �ner details can be represented as an
additive, noise-like residual. Whether this can lead to an e�cient approximation
scheme for images is however hard to say at present.

Appendix A. Local Legendre Expansion

Legendre polynomials are usually de�ned over the [�1; 1] interval by the re-
currence relation

(n+ 1)L(n+ 1; t) = (2n+ 1)t L(n; t)� nL(n� 1; t) (A 1)

where L(n; t) is the Legendre polynomial of degree n. They constitute an orthog-
onal basis for L[�1; 1]:Z 1

�1
L(n; t)L(m; t) dt =

2

2n+ 1
�(n�m) (A 2)

and in particular, for a polynomial p(t) of degree N over [�1; 1], we can write

l
n
=

Z 1

�1
L(n; t)p(t) dt; n = 0; : : : ; N (A 3)

p(t) =
NX
n=0

2n+ 1

2
l
n
L(n; t): (A 4)

Since jL(n; t)j � 1 for all n, jl
n
j � 2 sup[�1;1][p(t)].

A local Legendre expansion over the interval I = [�; �] can be obtained by
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de�ning a translated set of orthogonal polynomials

L
I
(n; t) = L(n;

2

� � �
t� �+ �

� � �
); (A 5)

the orthogonality relation becomesZ
�

�

L
I
(n; t)L

I
(m; t) dt =

� � �

2n+ 1
�(n�m) (A 6)

and the analysis/synthesis formulas can be written as:

l
n
=

Z
�

�

L
I
(n; t)p(t) dt; n = 0; : : : ; N (A 7)

p(t) =
NX
n=0

2n+ 1

� � �
l
n
L
I
(n; t): (A 8)

Appendix B. Estimate of the series truncation error

The estimate in (3.32) can be obtained as follows: assume that at scale j0 the
step discontinuity at t0 falls within the interval [h2�j0 ; (h + 1)2�j0) for some h.
Then in the Haar wavelet series for s(t) the indices of the nonzero coe�cients c

j;k

for j > j0 satisfy

h2j�j0 � k < (h+ 1)2j�j0 : (B 1)

The wavelet set f 
j;k
(t)g with j and k as above form an orthonormal basis for the

[h2�j0 ; (h+1)2�j0) interval minus the addition of a scaling function '(t) = 2j0=2

over the same interval. We can therefore write:

D
t
=

1X
j=0

(h+1)2j�j0�1X
k=h2j�j0

c2
j;k

= (B2)

=

Z (h+1)2j�j0

h2�j0
s2(t) dt�

"
2�j0=2

Z (h+1)2j�j0

h2�j0
s(t) dt

#2

where we have used Parseval's identity.
Now consider the location of the step (see Figure 1-(b)); let � = t0 � h2�j0

be the distance between the discontinuity and the origin of the interval. Due to
the properties of s(t) we can safely assume that � is uniformly distributed over
[0; 2�j0 ]. We can now write

D
t
= �x21 + (2�j0 � �)x22 � (B 3)

2j0(�2x21 + (2�j0 � �)2)x22 + 2�(2�j0 � �)x1x2)

where x1;2 are the values of s(t) left and right of the jump, respectively. Tak-
ing expectations over the independent quantities �; x1, and x2, where x1;2 2
U [�1=2; 1=2], we �nally have:

E[D
t
] =

1

36
2�j0 : (B 4)
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