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High-Order Balanced Multiwavelets: Theory,
Factorization, and Design

Jérome LebrupAssociate Member, IEEBNd Martin Vetterlj Fellow, IEEE

Abstract—This paper deals with multiwavelets and the different polynomial signals by the associated filterbank (subband coding
properties of approximation and smoothness associated withthem. and compression issue) are tightly connected since they have
In particular, we focus on the important issue of the preservation of been proved to be equivalent to the same condition: the number

discrete-time polynomial signals by multifilterbanks. We introduce . . .
and detail the property of balancingfor higher degree discrete-time of zeros atr in the factorization of the lowpass synthesis filter

polynomial signals and link it to a very natural factorization of ~0(¢?*) of the filterbank. In the orthogonal case, we then say
the refinement mask of the lowpass synthesis multifilter. This fac- that the lowpass filternq(e?*) hasregularity p iff any of the
torization turns out to be the counterpart for multiwavelets of the  following equivalent conditions [5] hold.

well-known zeros atr condition in the usual (scalar) wavelet frame- . Thel filt iy h forderatw —
work. The property of balancing also proves to be central to the e lowpass filterno(c’*) has a zero of ordgratw = 7.

different issues of the preservation of smooth signals by muiltifil- * The corresponding highpass filter; (¢/“’) has a zero of
terbanks, the approximation power of finitely generated multires- orderp atw = 0 (discrete-time polynomial signals of
olution analyses, and the smoothness of the multiscaling functions degreen < p are thus canceled by the highpass branch).

and multiwavelets. Using these new results, we describe the con-
struction of a family of orthogonal multiwavelets with symmetries
and compact support that is indexed by increasing order of bal-

Discrete-time polynomial signals of degree < p are
preserved by the lowpass branch of the filterbank.

ancing. In addition, we also detail, for any given balancing order, * The associated wavelg{(t) hasp vanishing moments.
the orthogonal multiwavelets with minimum-length multifilters. » The multiresolution analysis has approximation povger (
Index Terms—Balancing, Grébner basis, multicoiflets, multifil- continuous-time polynomials of degree < p are per-
terbank, multiwavelets, time-varying filterbank. fectly reproduced from integer shifts of the scaling func-
tion ¢(¢)).

Furthermore, the smoothness of the scaling funcfion (and
. ] . _ thus of the wavele (¢) if the filters are FIR) is closely related
WAVELET constructions from iterated filterbanks, as piof7] to the regularity of the lowpass filter. Similar relations are
~neered by Daubechies [5], have become a standard vgsily obtained for the biorthogonal scalar case. Without much
to.derllve orthogonal and blor'FhogonaI wavelet basgs.The undgks of generality, we will, in this paper, look at the orthog-
lying filterbanks are well studied, and thus, the design procedga) case for multiwavelets (the interest of biorthogonality in
is well understood. By the structure of the problem, certain ighe multiwavelet framework being not as obvious since there is
sues are ruled out: the impossibility of constructing orthogonglg negative result [6] preventing us from constructing orthog-
FIR, linear phase filterbanks implies that there is no orthogor@l,aL FIR, linear-phase multfilters).
wavelet with compact support and symmetry. Nevertheless, byrhe regularity issue is indeed different for multiwavelets. In-
relaxing the requirement of time invariance and allowing pefgrested in the subband coding issue in general and the problem
odically time-varying filterbanks, it is easily seen that new sqs processing one-dimensional (1-D) signals with multiwavelets
lutions are possible. As mentl_oned in [35], such _fllterbank_s aji€ particular, we showed in [20] that the approximation power
closely related to some matrix two-scale equations leading§goperty did not assure the preservation of discrete-time poly-
multiwavelets. “nomial signals by the lowpass branch of the filterbank. Conse-
Inthe usual framework of wavelets (scalar case), the two ifjuently, we introduced the conceptlmdlancedmultiwavelets,
portant issues of the reproduction of continuous-time polyn@mich is now also further investigated by several other authors
mials b_y the associated muIt|res_qut|on analy_S|s (apprOX|mat!P117], [27], [28]. One of the goals of this concept is to avoid the
theory issue) and the preservation/cancellation of discrete-tifAgicate steps of pre/post filtering [11], [37] that are required
with systems based on multiwavelets that do not satisfy the in-
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ported multiwavelets with symmetries that are naturally indexéd the sequel, we will assume that the sequerdddsk]}; and

by increasing order of balancing. We will also clarify the re{IN[k]}; are finite and, thus, thak(t) and(t) have compact
lations between scalar wavelets, balanced multiwavelets, aupport [22]. Many people worked on the convergence condi-
nonbalanced multiwavelets with a surprising theorem givirtgpns. For more details about these results, see [4], [16], [25],
the shortest length orthogonal multiwavelets for any given balnd [35]. Here, we will assume thixi( z) satisfies the following
ancing order. two basic conditiongfollowing Strang’s notations [32]).

The outline of the paper is as follows. In Section Il, the fun- Condition E (Existence and Uniquenesd)he transition op-
damentals of multiwavelet theory are reviewed with a speciatator [4] associated withM(z) has all its eigenvalugs| < 1
highlight on the connection to time-varying filterbanks. Se@xcept for a simple eigenvalue= 1.
tion 11l reviews balancing and describes equivalence results be-Condition A1 (Approximation of Order 1)There exists,
tween balancing order and a special case of Plonka’s factorizgiich is a left eigenvector dvI(1) for the eigenvalue 1 such
tion of the refinement mask. These results are the key in ttratry M(—1) = 0.
construction of balanced multiwavelets families. Section IV re- These two conditions, witkb(0) being a right eigenvector
lates balancing order, approximation power, and smoothnesEM(1) for the eigenvalue 1, assure convergence in the weak
This leads, in Section V, to the construction of a balanced asdnse of the infinite matrix product (4) to a compactly supported
smooth family of orthonormal multiwavelets with symmetrieddistributional solution of (1). Now, iM(z) also verifies the ma-

In that section, we also detail the result on minimal-length otrix Smith—Barnwell orthogonality condition (also call€bn-

thogonal balanced multiwavelets. dition O)
Notations: In this text, regular symbols will refer to scalar
values, whereas bold symbols will imply vector/matrix values. MM ) +M(—2)M' (-2 1) =1 (5)
II. M ULTIWAVELETS for all z on the unit circle, then the convergence is also infthe

G lizina th | I ireSEnse to a bona-fide? solution.
luti enera||2||jg the Wavef etQC[;S(E’ %ne can a O\(’jvt? ml]i,t',reso'Now, assuming all of these conditions, the scaling functions
ution analysis{V, }ncz of L*(R) to be generated by a finite and their integer translates form an orthonormal basig,off

number of scaling functiongho(t). ¢1(t). ..., ¢r—1(t) aNd g 554 impose orthogonality conditions Bi{2), i.e.,
their integer translates (the multiresolution analysis is then

said to be ofmultiplicity ). Then, the multiscaling function

T/ -1 _ Ty -1y _
o(t) == [po(t), ..., ¢r_1(t)]" satisfies a two-scale equation hl/j((j))l\l\IIT((j1)):1\1715—2§TE—E1; ;E )
#(t) = zk: M{E]¢(2t — k) (1) then we get a fully orthonormal multiresolution analysis. For

s(t) € Vo, we have
where{M|[k]} is a sequence of x » matrices of real coeffi-

cients. By the multiresolution analysis structure,= Vo & Wo, s(t) =Y s n]g(t —n). 7)
wherel, is the orthogonal complement &§ in V1, and we can n
construct an orthonormal basis Bf, generated by the multi-

Then, fromVy, = V_; & W_,, we get

s(t) = znj s, [l <% - n) +dT [l <§ - n) @)

and we have the well-known relations between the coefficients

where{N[k]} is a sequence of x  matrices of real coeffi- at the analysis step
cients obtained bgompletiorof {M ]} (a detailed exposition

waveletsyy (), ¥1(¢), ..., ¥,.—1(¢) and their integer translates
by introducings(t) := [to(t), ..., ¥._1(t)]" by

$(t) =y N[K$(2t - k) 2)
k

of the completion scheme is given in [18]). Introducing in the s_aln] = Mk — 2nlso[k] 9)
z-domain the refinement maskd(z) := 1/2 >~ Min|z~" k
andN(z) := 1/2 " Nln]z™", (1) and (2) translate in the d_i[n] = > N[k — 2n]so[k] (10)
Fourier domain into k

B(2w) = M(¢?*)d(w) and U(2w) = N(&*)d(w). (3) and for the synthesis, we get

We can then derive the behavior of the multiscaling function bysolr] = Y M '[n — 2k]s 1 [k] + N [n — 2k]d_4[k]. (11)
iterating the first product above. If this iterated matrix product k

converges, we get, in the limit These relations enable us to construct a multi-input multi-output

oo filterbank (multifilterbank), as seen in Fig. 1. In case of a 1-D
B (w) = Moo (w)®(0) = H M (ij/f') ®(0). (4) Signal, itrequires vectorization of the input signal to produce an
1 input signal that ig--dimensional. The natural way to do that is

=
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@s. [n]@ M@)
sJn] >< >< sdn]
: :@:d_, [n]:62>: N'@)

Fig. 1. Orthogonal multifilterbank.

to split a 1-D signal into its polyphase components. Introducing Analysis
mo(2), m1(z), ..., my—1(z), the associated scalar polyphase
filters given by

uln]

x[n]

=oM(z") | . (12)
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my_1(z)

andno(z), n1(z), ..., n.—1(z) in the same way fronN(z), Synthesis
the system can be rewritten a&achannel time-varying filter- N

|
|
bank (see Fig. 2 for the case= 2). i W2 }
|
|
[ll. HIGH-ORDER BALANCING - @ i @
In [20], we showed that if the associated scalar polyphase @ : T4
filters have different spectral behavior, e.g., lowpass behavior vin ;
for one and highpass for another, it then leads to unbalanced - @ i @

channels that mix the coarse resolution and detail coefficients
and creates strong oscillations (see Fig. 3) if the signal is recon- Fig. 2. Multifilterbank seen as a time-varying filterbank.
structed from the lowpass subband coefficients only (compres-
sion issue). The idea is thus to impose some class of smooth sig-
nals to be preserved by the lowpass branch and canceled by the , )
highpass branch. The natural choice is to take the class of poly- / V VAIVAIVY
nomial signals since in a wavelet-based filterbank, the polyno-
mial signals are preserved by the lowpass branch up to the order
of regularity.

&)

A. Balancing (@)

Let L: ¢2(Z) — ¢*(Z) be the block Toeplitz operator
corresponding to the lowpass analysis. We can wliitas an
infinite-size matrix, shown at the bottom of the next page,
and in the same way, |efl be the block Toeplitz operator
corresponding to the highpass analysis. We want constant
signals to be preserved by the lowpass branch. Introducing
uy:=1[..,1,1,1,1,...]7, we get B

Definition 1: An orthonormal multiwavelet system is said to (b)

be balanced (of order 1) iff the lowpass synthesis opefafor Fig. 3. Reproduction of two input signals [(a) Constant signal. (b) Piecewise
preserves the constant signals, iIeT,uo = ug. polynomial] by the lowpass branch of a DGHM multiwavelet based filterbank;

it shows the poor robustness of a system based on the DGHM multiwavelet

By the orthonormality relations without prefiltering.

L
H} [LT H']=T is a special case of the factorizations (the so-called two-scale

similarity transforms) introduced by Plonka and Strela in [23]
wegetlTL+H H=I LL" =I, LH' =0andHH' = and [24]).

[LT HT][II{‘}:I and [

I. ThereforeL Tug = ug impliesL " Lug = ug andHug = 0, Theorem 2: Balancing of order 1 is equivalent (in the case of
i.e.,uo is preserved by the lowpass branch and canceled by @iéhogonal multivavelet systems) to any of the following con-
highpass branch. ditions.

Now, we can state the following result giving equivalent BO) LTug = uo.
conditions for balancing and especially linking balancing to B1) [1---1]M(1) =[1---1]and[l---1]M(-1)=0".
a simple factorization of the refinement mabf(z) (which B2) &0)=[1---1]T.
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B3) u(z) = Y.'Z; mi(z) has zerosatz = ¢/**/" for (DDA ID. .
k=1 ...,2r —landu(l) = 2r. l
B4) Onecan factorizM(z) =1/2 A(z*>)Mo(2)A~L(2) L — L
with
u,(k]=k" u,[k]=k"
1 -1 0 0 N
H ........ H
0 1 -1 T
Az) = ' 0 0.0.0.0.0.
0 i i I -1 Fig. 4. Fundamental condition of high-order balancing.
271 0 0 1
- - division scheme (on which the classical results from the scalar
andMo(1)[1---1]" =[1---1] . wavelet theory apply).

Proof: This rather easy proof is given in the Appendk. | emma 4: Let ué (), ui",)( ) (701 (2) be the

formal series associated with thehases of the monomials
B. High-Order Balancing

(n) n, —k
A natural generalization of the concept of balancing is then ui p(2) = Z (kr +1)"27"
to impose higher degree discrete-time polynomial signals ez
[..., 2(=2), z(=1), 2(0), x(1), (2), ...]" (where z(t) is Then fore = 1, ..., r — 1, there exists a unique polynomial

any polynomial of degree smaller th@mto also be preserved ocz . ( ) of degreen such thatu(")( ) = agf)(;«)ué ,)( ) and
by the lowpass branch. Introducing,, the vector space of (">( 1) = 1.
polynomial sequences generated by polynomials of degree up Proof; Using Padé apprOX|mants [1], we can construct

to p (included), we define the following. the Homer scheme of interpolatiar;”(z) of the sequence
Definition 3: An orthonormal multiwavelet system is said to (n)[k_] (kr + )" from the sequenca(") [£] := (kr)" by

be balanced of ordey iff the lowpass synthesis operathr”

preserves discrete-time polynomial signals of degree less than (n) i .
p, i.e.,Cp_1 is invariant byL . a; p(2) = 1"‘;(1 —27) { 1+
This condition does notimply th&t" exactly preserves poly- I
nomial signals. It just says that any polynomial input is trans- 147 (121 [ 14
formed into another polynomial signal of a lesser or equal de- 2r
gree (Fig. 4). However, sinag,_; has finite dimension, by the 2
orthonormality conditiolLL" = I, we have thaL."C,—; = i+27’(1 — [1 n
Cp—1. ThereforeC,_, is globally preserved. From the other or- 3r
thonormality conditionsHC,,_; = HLTCZ,,_]L = {0}. This 3
gives thatL ' Lx = x for everyx € C,_1, i.e., the polyno- ) [ 1+
mial structure (up to degrege— 1) of the input signal is exactly
preserved by the lowpass branch and canceled by the highpass n?
branch. i+ (n—2) (1-271Y { 1+
To deal easily with high order balancing, an important issue (n = 1) L

is the interpolation of all the polyphase components of a dis- p )
crete-time polynomial signal from one of the phases. On this w(l -z h } } } .
subject, the following lemma will prove to be the cornerstone

of the further developments. With this lemma, we will get that

on discrete-time polynomial signals of degree smaller than th8us, we have

order of balancing, the lowpass synthesis operator (with its intri- i
cate time-varying structure) is, in fact, equivalent to a scalar sub- r <’f + —)
1+Z (1-z"H%  (@3)
1Condition B3) and its generalization to higher order balancing were first =1 F(k + 1)F t
given by [28]. r
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Furthermore, it is easily seen thaﬁ") cannot be formally =~ Remark 9: Using the equivalence between conditidsis,,)
canceled by multiplication with a polynomlal, hence, thand B3,,), condition B1,,) (balanced vanishing moments of

unigueness. m orderp) can be weakened in the following more elegant form.
Remark 5: For the usual case = 2, we glvea1 %( ) for B1;) M(z) verifies Bl1) and forn = 0,...,p — 1
n=0123 (d"Jdw™) ] 1 (72 )M(e)] e = O
0
045 )2(7) =1 IV. BALANCING ORDER, APPROXIMATION POWER, AND
o (2) =13 - 27h SMOOTHNESS
a§2)2(7) — %(1 — 10271 43272 Here, we will clerify how the re_sults obtain_ed ebove relate
3) . L o . 3 to the classical notions @égularity, i.e., approximation power
oy 5 (%) = 15(35 = 35271 + 21277 = 5277). and smoothness.

By natural extension, we wrnze(")( ) := 1. We also introduce A. Approximation Power and Balancing Order

the vectors First, let us recall that a multiscaling functigf{t) has ap-

proximation powern if one can exactly decompose polyno-
mials1, ¢, t2, ..., t™~tusing onlypo(t), ¢1(t), ..., ¢r_1(t)
and their integer translates, i.e., foe= 0, ..., p — 1, there ex-
ists a sequenc#n] such that

T n n n
a,(2) = [af (=), o"Mz), ..., ol ()]

1—11

Now, generalizing the wavelet case, we get the following.
Definition 6: We say that the refinement maBdi(z) asso-

ciated with an orthonormal multiwavelet system has balanced " T
vanishing moments of orderiff there existrg, 71, ..., 7,1, = Z 0,, [Klg(t — (16)
with »¢ = 1, such that if we define fon = 0, ..., p — 1,
vl = [pn(0/7), pn(1/r), ..., pa(r—1/r)], where N i i
n n v Pn ) v Pn ' ow, assuming thag(t) is balanced of ordep, we get that
" M(») factorizes as in (15) so that applyipgtimes Theorem
= Z < ) it 2.6. from [24], we get 'Fha¢(t) has at least an approximation
o power ofp. Therefore, if an orthonormal multiwavelet system
o is balanced of order, then the associated multiscaling function
we have the vanishing moments ¢(t) has an approximation power of at leastWe can notice

n N that the converse is false: the DGHM [6] multiscaling function

N S Trgik—n dr- M(e/® —9-nyT has an approximation power of 2 but is not even balanced [20].
Z ]C Yk ( ) d nfk[ (C )]Iu.:O - Y'n, .
Pt w However, we have the following theorem.

n gk ' Theorem 10:Balancing of ordep is equivalent (in the case
> <Z> ykT(2‘7‘)"‘—"W[1\/1(6]‘“')]“0.:7T =0". (14) of orthogonal multiwavelet systems) to any of the following
k=0 conditions:

Remark 7:The sequence of polynomials defined by B2p) ‘.l’(t) has an apprommahon power qﬁ and f_or
' i = 0,...,r — 1, the shifted scaling functions
pn(t) = Yo (B)rn—kt® with o = 1 is called an . > :
¢:(t + (¢/r)) have identical p first moments,
Appell sequence [2]. It verifiegd/dt)p,(t) = npn—1(t)
i /e o e, [t + (¢/r)trdt = [ ¢o(t)t"dt for
and deg,(t) = n. It also satisfies the Appell identity i=0 ... r—1andn =0, -1
— n n k i ati = - = ., p—1.
pn(t + h) = 30— (D) pn—w(t)R* (a generalization of the B5,) vo defined by Gow) =  (1/v/r)el_y(c5)

binomial formula).p,,(t) = t" defines an Appell sequence.

Theorem 8: Balancing of ordep is equivalent (in the case of
orthogonal multiwavelet systems) to any of the following con-
ditions.

B0,) There exists an Appell sequenge, (+)}2_% such that
the discrete-time polynomial signats, [{] := p,,(I/7)
verifyLTv, =2""v, forn=0,...,p— 1.

B1,) M(z) has balanced vanishing moments of orgler

®(w) verifies the Strang—Fix conditions of order
p: ¢o(0) = 1 and (d"/dw™)go(k27) = 0, for
n=20,...,p—landk #0.
Remark 11: By B2,)), balanced multiwavelets of ordgibe-
have as bona-fide wavelets up to the ordesf interpolation
and approximationgo(t) is the superfunctior{26] associated
with ¢o (). {¢o(t — k) }rez generates a closed linear subspace
V(wo) C Vo having the same approximation powerggs).

B3p) pp 1(2) == i s an”, V(22" ymy, (%) has zeros of Proof:
_ jk/r _ S !
order;la aiz2) ¢ fork =1,...,2r—1and * [B1,) & B2,)]: The(=") partis derived from Lemma 2.1
pp-1(1) = 2r. [23] and orthonormality gives us, = | ¢o(t)t" dt. The

B4p) Forn =1, ..., p, M() can be factored as conversg <) is obtained by using Theorem 3.2 [23] and

1 verifying that they, can be written in the proper form if
M(z) = o A" (2 )My _1(2)A7"(2) (15) we taker, = [ ¢o(t)t" dt.
* [B1,) & B5,)]: The (=) part is derived from The-
with M,,_(D)[1---1]" = [1---1]" and A(z) as orem 2.2 [23] for the special case of balanced vanishing

above. moments forM(z). The (<) part is an adaptation of
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the proof of Corollary 2.3 [15] to this special form ofconvergence (4), we form the truncated prodM%’i)l(w) =

superfunction. BT, M(e=(/2)). Evaluating these on the invariant cycle
Remark 12:1f the scaling functionpo(t) has, furthermore, {wy, ..., wi_1} of w — 2w(mod 27), we get
p — 1 vanishing moments (i.er,, = 6, forn =0, ..., p—1),

we get a multiwavelet generalization of Coiflets [5]. We have

(kn) kn —j27 2R N
then the following properties: M, 1 (2%wo) HM( ! )

s pu(t) = t" and yJ, = o/r)y*, (1/r)™, ey e\

..(,) r— 1yl o/ = (M(e ) M(eT)) "L (19)

o [ @iyt dt = (ifr)*forn=0,...,p—1.

* wo(t) Is now the canonical [26] superfunction,
i.e., it verifies the extended Strang—Fix conditions

Then, we study the asymptotic behavior of this product by
looking at the eigenvalues of

(d"/dw")gﬁo(/ﬂ%r) = 6n6k f0r n = 0, e P 1. M(e—j‘v‘k—l) ... M(e—ng) — UkAkUz— (20)
Multicoiflets are then constructed as balanced multiwavelets
with more stringent conditions on the momentspgf). where A, = diag A, AP AW f pAn) =
” ' ' max{|A\{], AP, . |Af,’:>1|} > 2% then the scaling
o [or)_1 (% )M(e?*)] om0 =5"Yon functions cannot have a Sobolev exponent of more thamd
0% ' ' cannot be more thaji — 1 /2| times continuously differentiable
o [a;)r_l(eﬂ“’)l\/[(e]“’)] o = 0. [7], [14]. Thus, we get an upper bound on the smoothness.

Proposition 13: If an orthonormal multiwavelet system has
A family of orthonormal symmetric multicoiflets with compactbalancing ordep and the spectral radius &I,_,(z) in the

support is detailed in [21]. factorization (15) verifiep(M,,_1(1)) < 2, then defining
. 1 . .
B. Smoothness and Balancing Order ™= logy p(Mp_1 (™% 1) ... M,_;(¢77*°)) (21)
We introduce the classical Sobolev smoothness
with {wo, ..., wr—1} invariant cycles ofv — 2w(mod2x),
s(¢) := sup {3| / d()|P(1 + |w]?)* dw < oo} ) and~ := infy vz, we get thatp(t) is at most|p — v — 1/2]
Hélder continuous (and has at most Sobolev exporent —

Characterizations of the Sobolev smoothness can be done E)
analyzing the decay ob(w) as|w| — oo. For example, we
get Sobolev smoothnesdy proving that fore > 0 arbitrarily
small, we have

Xs proved in some simple cases [2], [14], the supremum

sup

wE}—Tr, 771

M,_1(i=/D). .. Mpfl(e“‘“‘/?k))H

|P(w)| < C(1 + |w])~Fe. is usually attained on invariant cycles. Furthermore, it is often
achieved on the smallest length invariant cycle. One can then
Now, in the special case the multifilterbanks has balancing ordakes = p—~ for the smallest invariant cycle as a good estimate

p, we have the factorizationfor =1, ..., p of the Sobolev exponents ¢{t), and thereforey(t).
1 For example, in the case of the Haar multiwavelet (multi-
M(z) = o AM(ZM,_1(2)AT"(2) plexed scalar Haar filter [35]), witlyg = 27/3, Ag = 0, Ay =
1/4, itis then proven that the scaling functions cannot be contin-
with My,_y (D)1, ..., 1]7 = [1, ..., 1]". Assuming further- uous..ln.the case ofthe DGHM muItiwayePeJt: 1/100, \ =
more thatp(M,,_1(1 )) < 2 and introducing 1/42, it is proven that the scaling functions can be at n{@5st
DGHM scaling functions and wavelets are in fact Lipschitz.
1 loo M jw/2)) In [4], another method was developed using the transition
Th= g 08 we?‘_lfj #] ! (6 ) operator. This method gives the exact Sobolev smoothness of

o ¢(t) andw(t). An approach giving a good lower bound of the
M, (e](“"/Q )) H (17) Sobolev smoothness for each scaling functigft) is detailed

in [26].
we get by Theorem 4.1 [4] that there exists a constant 0,
suchthatvw € R V. CONSTRUCTION OFHIGH-ORDER BALANCED
N MULTIWAVELETS
< —PTVk . .
@)l < ¢+l (18) A. Bat Family

However, the computation of this supremum is highly imprac- Using the results above, we are now able to investigate
tical. Here, we introduce the heuristic of the invariant cyclebe construction of orthonormal multiwavelets of arbitrary

that have been proved to be optimal in many cases [2]. Intoalancing order in a similar way to what Daubechies did for
itively, to characterize the smoothness, we are interested in ther well-known wavelet family. The scheme of construction is

decay as — oo of ®(2¥"wy) for wy €] — =, «]. From the the following.
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Bat O1 - Scaling functions

Bat O1 - Wavelets
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Fig. 8.

Bat O4 - Scaling functions

Order 4 balanced orthogonal multiwavelet. The scaling functions are

Fig. 5. First-order balanced orthogonal multiwavelet. Scaling functions afiPPed around 5, the wavelets are symmetric/antisymmetric, the length is 11

flipped around 1, the wavelets are symmetric/antisymmetric, the length is th
taps, and an estimate of the smoothness using Proposition 13 gives the Sobo

exponents = 0.64.

Bat 02 - Scaling hunctions

aps ¢ x 2), and an estimate of the smoothness using Proposition 13 gives the
flplev exponent = 2.07.

TABLE |
COEFFICIENTS OFBAT O1: FHRST ORDER BALANCED ORTHOGONAL
MULTIWAVELET
mi o[ 3+4v7| 3 | % |5-1v7 o0
mlk] JO|5-3V7| % | L1+Iv7 0
nolk] | 0 5 3 3 3 0
mlk] |0 : -V VT 3 0
TABLE 1

COEFFICIENTS OFBAT O2: ORDER2 BALANCED ORTHOGONAL MULTIWAVELET

Fig. 6. Order 2 balanced orthogonal multiwavelet. Scaling functions a
flipped around 2, the wavelets are symmetric/antisymmetric, the length is fi
taps @ x 2), and an estimate of the smoothness using Proposition 13 gives -
Sobolev exponent = 1.15.

Bat 03 - Scaling functions

TAVEAVAV

Bat 03 - Wavelels

molk] | 0| &k +55v81 | #3545V | B+ EVE | - 5v3l
malk] | 0| —3% + 55 V3L | —ghs + a0 V31 | 3k — s V3l | &5 + e v3l
nolk] J 0| &5 - V3T | 166~ 103! |~ + 1o V3L | g + 180Vl
mlk] ] 0| - V3L | gt a3l | —35 + a3l | 5 a3l
g5+ gmv3l | s~ dsV31 | ~gis +sisV3l | —ado + 500Vl | O
S5 - dhVAl | B+ VAl | - ainvBl | ~db+ a3l |0
foo + 155V31 | —fo + V8L | #6 - V3l | 5 - oVl | O
-5~ 3%V3L | B5-555v31 | —ai5 — 55 V3T | —af + V3L | O

1)

2)

3)

Fig. 7. Order-3 balanced orthogonal multiwavelet. Scaling functions are
flipped around 3, the wavelets are symmetric/antisymmetric, the length is
seven taps2 x 2), and an estimate of the smoothness using Proposition 13
gives the Sobolev exponest= 1.71.

Impose the order of balancing to péy writing forn =
1,....p
M(z) = — A™(22)M,_1(2)A~"(2)

2n
with M,,_1(1)[1---1]" = [L---1]". This way, we re-
duce the number of degrees of freedom in the design.
Impose the conditio® (orthonormality) (5) onM(z),
which gives quadratic equations on the free variables of
M,,_:(z) (theidea s to introduce the Laurent polynomial
matrixV,_1(z) := 27P(1—2""?M,,_1(2)A~P(z) and

to translate the orthonormality condition on this matrix;
for more details, see the proof of Lemma 15 given in the

Appendix).
Impose a flipping property onmo(z), mi(z) [i.e.,
mi(z) = z72*me(271)]. The flipping property

enables an easy lossless symmetrization (as seen in [36])
of finite length input signals both for the lowpass filters
and the highpass.



LEBRUN AND VETTERLI: HIGH-ORDER BALANCED MULTIWAVELETS 1925

TABLE Il
COEFFICIENTS OFBAT O3: ORDER 3 BALANCED ORTHOGONAL MULTIWAVELET

2989 97 / 537 69 / 75969 105/
’HLQ[k] 2232320 + 2232320 15199 2232320 + 2232320 15199 T 3232320 __ 446464 15199

0

my[k] | O s ﬁ V15199 ”422%4 + 442264 V15199 2;33330 - 223423320 15199
0
0

146464
Mo [k]

7 33 /175100 1177 1 /5100 12001 1
"2?3010 + 375010 15199 — 775040 T 779040 15199 279040 __ 55808 15199
n1[k]

12021 63 /15199 7697 _ 101 _ /7F700 | _.25921 _ _ 331 /1F100
Tii6160 — tiieteo Y 19199 | Tive1e0 — irieren 19199 Tiis160 — iiierea ¥ 19199

14785 551 / 601461 _ _ 441 / 450639 819 /
446464 + 2232320 15199 1116160 1116160 15199 1116160 + 1116160 15199

22083 111 96093 45 / 30005 _ _ 667
2232320 _ 2232320 15199 T 1116160 + 223232 15199 223232 1116160 15199

1555 71 75083 19 /A7£100 63171 27 /15100
55808 __ 279040 15199 130520 T 139520 15199 — 136530 + 139520 15199

44869 __ _ 241 150307 743 ./ __ 348777 333 ./
T 1116160 1116160 15199 558080 + 558080 15199 558080 + 558080 15199

30005 667 /7F100 | .. 96093 45 /F700 | 22083 _ _111 _/AAET00
323233~ it1ete0 ¥ 19199 Titeie0 T 733233 V 19199 | 535555 — 533330 V 15199

450639 819 / 601461 _ _ 441 / 14785 551 /
1116160 + 1116160 15199 1116160 1116160 15199 446464 + 2232320 15199

63171 27 /5100 75083 19 . /TF100 1555 71 . /TF100

—139530 T 139520 15199 130520 + 139530 15199 55808 279040 15199

348777 333 /15100 150307 743 . /TF160 44869 241 _/TE700

£58080 — Ssoso v 19199 — 558080 — 538080 ¥ 19199 | 1ii61e0 + Tiistes v 19199
13769 43 /AET00 4701 39 /15100 2481 21 . /75100
15199 —Ta6a6 T 136461 15199 146464 __ 146464 15199

2232320 2232320

75969 105 . /75190 537 69 /1100 | _ 2989 97___. /75100
— 2039330 — aaeaed V19199 7252320 T 332330 v 15199 7232330 T asasmo v 15199

12001 11 . /AF100 1177 1 AFT00 2871 33 /TF700
279040 55808 15199 ~ 779040 T T7o040 15199 — 375040 T F79040 15199

25921 331 / 7697 i01 / 12021 63 /
1116160 + 1116160 15199 1116160 + 1116160 15199 1116160 + 1116160 15199

o|lo|o <

4) Solve the system of equations using a Grobner bases apremma 15:Let M(z) be the refinement mask associated
proach (here, we used the programs Singular [10] and tiwéh an orthonormal multiwavelet system of multiplicity =
web version of FGb [8]). 2 and balancing ordep. If M(z) is of minimal length, then

5) The highpass filters are easily derived from the lowpass; (z) = »2mo(2).
by imposingne(z) to be symmetric anch,(z) to be Proof: This rather lengthy and technical proof is given in
antisymmetric. The orthonormality conditions (6) givehe Appendix. [ |
unigue solutions up to a change of sign. Proof of Theorem 14:Using Lemma 15 and the balancing

Using this approach, we have been able to construct all thesler conditionB3), we get that

shortest length (as defined below) orthonormal multiwavelets

with flipped scaling functions and symmetric/antisymmetric m(z) + ag’gl)(z‘*)ml(z) =(1+ z*2a§{’;1)(z4))mo(z)
wavelets for balancing order up to 4. Figs. 5-8 show the

smoothest high-order balanced multiwavelets with theseust have zeros of orderatj, —1, —5, and forz = —1
properties. In Tables |-, we detail closed-form expressions

of the coefficients. For order 4 of _balancing_, because of the ;4 2_2045{“;1)(;:4) -1+ (_1)—2a§17;1>((_1)4)
degree of the leading polynomial in the Grébner basis, only (r—1)

numerical solutions have been obtained (the coefficients can be =l+oay, (1)=2

downloaded from http: \lcavwww.epfl.ch\~lebrun). S )
which implies thatn(z) must havep zeros atz = —1. Since

B. Minimal-Length BMW

In this section, we will prove for = 2 the following sur- M(z) =
prising result.

Theorem 14:The multiwavelets of multiplicity- = 2 and
balancing ordep with the shortest length refinement mask ar
the Daubechies wavelets of length.

First, let us define the length of a matrix Laurent polynomi
M(z) =S M[k]z—" with M[— ;] # 0 andM[N] #

moo(z) mm(z)
27 tmoo(z) 27 tmoi(2)

g/heremoo(z) andmo;(z) are the polyphase components of
mo(z), then the orthonormality condition (5) gives thap(z)

aif a real conjugate mirror filter. Then, from the well-known the-
orem of Daubechies [5], this implies thaf(2) has at leaszp
k== nonzero coefficients and that the minimal length filters are the

0to be/(M(z)) = Na — N1 + 1 = deg(2V2M(z)) + 1. One S . :
verifies easily that(M(z)N(z)) < £(M(2)) + {(N(z)) — 1. Daubechies filters (i.e., the classidab, and Symlets of orc:er

Now, to prove the theorem, we will first prove that the minim
length condition with balancing and orthogonality implies that
the refinement mask has a multiplexed filter structure.

This also implies the following.

Corollary 16: An orthonormal multiwavelet system of mul-
tiplicity » = 2 and balancing ordep has a refinement mask
2The coefficients of BAT O1 already appeared in [3] and [34]. M(z) with at leastp + 1 nonzero £ x 2) taps.
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Multiwavelets

Balanced Multiwavelets

Fig. 9. Relations between the different multiwavelets.

This result can be generalized to any multiplicity and to mul-
ticoiflets [21]. Fig. 9 gives an overview of the relations between
the different multiwavelets.

VI. CONCLUSION .

By introducing the concept of high-order balancing, we have

clarified an important issue in the design of multiwavelets.
We have proved that this concept is the natural counterpart of
the zeros atr condition in the standard wavelet theory. With
these results, we made it possible to design general families of
high-order balanced multiwavelets with the required properties

for practical signal processing (preservation/cancellation of — %[1...

discrete-time polynomial signals in the lowpass/highpass
subbands, FIR, linear phase, and orthogonality). The proposed
scheme of construction is making use of computationally heavy
methods (Grdbner basis decomposition), and it is not clear at
this point that closed-form designs will be feasible for multi-
wavelets of balancing order> 4. Matrix spectral factorization
could be a way to overcome this limitation. Another subject
of interest would also be to use the invariant cycles scheme
developed for estimating the smoothness to link the smoothness
of the scaling functions to a particular factorization of the
refinement mask (the counterpart of theros at pre-periodic
pointscondition [14] in the standard wavelet theory).

APPENDIX

Proof of Theorem 2:

* [B0) = B1)]: AssumingB0), we have by transposi-
tion uj L = ug. Writing the equations explicitly, we
get[1---1]>, M2k + 1] = [1---1]>;, M[2k] =
[1---1]. Therefore[1---1]>", M[k] = 2[1---1], and
sinceM(1) = (1/2) %", M[k], we have conditiod31).

+ [B1) = B2)]: ConditionsE and A1 imply thatr]
[1---1], and from conditiorD, we get[1---1]M " (1) =
[1---1]. From (3), we derive thaf®(0) is also a right
eigenvector associated with the eigenvalue Mifl ), and
using again conditioii, we get the result. .

* [B2) = B3)]: From (3) and conditionO, we have

v = ®0) = 01T u(x) = Yo milz)

r—1 .
1/1—2"%
> me)=3 (T

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 9, SEPTEMBER 2001

(1,1, ..., 1]2M(z")[1, 2=, ..., 2= =D]T. Therefore,
p(1) = 1,1, ..., 2MD)[1, 1, ..., 1|7 = 2. Now,
if 2 = ek /" with k = 21 + 1 andl = T

0,...
thenz” = —1, and thereforey(z) = 0. If z = /*7/”
with k = 2/ andl = 1,...,r — 1, thenz” = 1 and
nz) = 25500 24 = 2((1 - 2)/(1 - z71) = 0.

Therefore, p(z) has roots atzx R /T for

k=1,...,2r— 1.

[B3) = B0)]: Takingu[n] := 1 from the time-varying fil-
terbank representation (see Fig. 2), we get thaRthmos-
sible outputs arg[2rn +1] = 3, S"— m;[2rk+1] for

1=0,...,2r — 1. Denotingyu " (z) as thelth polyphase
component of:(z), we get that

y2rn+1 =p91) = % kz:o ML
= (1) =1

Hence,u, is an eigenvector of the operatbr' .

[B1) = B4)]: This is a direct consequence of Theorem
4.1in [23].

[B4) = B3)]: AssumingB4)

1 1

S omi(z)=1[1, ..., 1]M(z") :
i=0 Z—(r—1)
1 -1 0 0
0 1 -1
1] : 0
0 1 -1
% 0 0 1
1 1 1 1
A 1 1
R 1
Mo (z") 1— zT” 1
: 1 1
AL A
1
Z—l
V—2
Z_(T_l)
so that

[N

and this is conditioB3).

Proof of Theorem 10:

[Balancing=- B3,)]: From Lemma 4, fok =1, ..., r,
we have thami{’:l)(z) interpolates thekth polyphase
component of any polynomial sequence of degree
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smaller thanp from the zeroth polyphase compo-
nent. That means that off,_;, the lowpass synthesis
operatorL " is equivalent to the scalar subdivision op-
eratorS,  z[n] = >, pp_1[n — 2rk|z[rk], where
pp-1(2) = Yl o TV (27 yma(2), ie., onC,_y, the
operatorL T is equivalent to the multirate system

(L) = (1 2r) - Za“’ Y (z)

Now, using the discrete-time version of the Strang—Fix

theorem (cf. [2], [13]),C,—1 being invariant byL.T and
then byS,,,_, (since(] r) preserves the polynomial sig-
nals), we get thati, 1(z) = > r_¢ oz,f’7 D (22 Yymy(2)
must have zeros of ordep at z eIk7/T for
E=1,...,2r—1.

[B3,) = BO,)]: From [2], this condition implies that the
existence of an Appell sequence of polynomijalét) :=
Srco (D)rn—rt® with o = 1 such thaw,[I] := p,(1/7)
are eigenvectors of the subdivision opera®y,_, for
the eigenvalueg™", i.e.,S, _ v, = 27"v,. From the
equivalence oL " andS,,_, onC,_1, we get the result.
[BO,) = B1,)]: M(z) satisfies the conditions of The-
orem 2.1 in [24] with

Bl Q) ) ()

forn =0, ..., p — 1. The balanced vanishing moments
of orderp are just a rewriting of these conditions.

[B1,) = B4,)]: Applying Corollary 4.3. from [23], we
get the factorization

1 _ _
M(2) = 2;Co(z?)---Cp1 (M1 ()G 1y (2)-+-C A (2)
with
C,.(2)
C(Iln _C(Iln 0 0 )
0 cl_ﬁl cl_ﬁl
- 0
0 C:flln 01_712,71
_—z_lc:_lljn 0 0 c:_lljn J
and the polynomial matrid,_; (=) verifying
M, 1(1)ep1 =¢p1
where
c;— =[co,n, -y C—1,n]=2""[1, ..., 1]

obtained recursively fromo[0], . ..
forn =0,...,p— 1, we getC,(z) =
Mn—l(l)[17 (KRR 1]T = [17 ) 1]T'

, ¥p—1[0]. Therefore,
2"A(z) and

a, () A (z) =

1927

* [B4,,) = B3,,)]: First, we give a digest of the proof in the
caser = 2 forp = 2, 3 (casep = 1 is a consequence of
Theorem 2).

Forp = 2, we have

o(2) + a{y(zHyma(2))
)+ (3 — 2~ Hyma(2)

M) | L

= % <1:Z4> 2, —1]M,(z2) [zll} .
orp =

2(m

= 2m0(

=2,

8(mo >+a< >< Yy (2))
= 8mo(z) + (15 N 10274 + 327 %)my(2)
_374
= é <1 —z—1> 843274,  —9M,(2?) |:le:| .

For the general case, writing(z) [, 274 ...,

2

2z~ (=D]T, we will first prove thatvn > 0, and we can
factorize
a, (DA (2) = (1= 2 )"y, (2) (22)

wherewy, (z) € Q"[z7!], i.e., vector polynomial in~*
Namely, by induction om, n = 0

ag (A} (2) =
1 -1 0 0
0 1 -1
(L, o] : ' 0
0 1 -1
—z 1 0 0 1
=1-2z"H[E, o, ..., 0.

Now, assume fok = 0, ..., n — 1 that

(1— 2"l ()
with «y,,(z) polynomial. Then, introducing fat > 1
r <k + 1) r < = 1)
0, UV !
1 r—1
rE+0r <—> r+1)r < )
T T

andIy :=[1, ..., 1]7, we getax(2) = ap_1(2) + (1 —
Zz~LY*I'y.; therefore

ap (AN (z) =

r; =

(0 1(2) + (1= 27" T A ()
(1= 27" (1no1(2) + T A™(2))A(2).

Now, it is easily computed thag! (1) + '} A"(1)
2771, ..., 1]7. Therefore, there existg, (z) € Q [z 1]
such that

(Ya-1(2) + T A" (2)A(2) =

(1=2"Hr,(2).  (23)
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Thusa] () A" (2) = (1 — 25"y (z) with ,,(z)  with U,_i[-k] = UJ_ [k]. Thus, forW(z) = 3=
polynomial; hence, we have the result. Now, by the hyw[k]>—* to verify
pothesis
W(z) + W(-2) = Up_i(2) (24)
pp-1(2) = ey (P7)2M( ) (2) ; ; -
one needs$Vy, N> > 2[p/2]. Introducingu(z) :=[_-,], then
= LAl (ENAPGEYM, L (7)A P (2 (%) 1 V2 2 2(p/2] gu(z) = .=
2=t ! r 1 T
W,_1(2) =1+ 27?1 + 2)Pulx)u’ (2
C L e T M)t (e r—1(2) :=( (L +2)"u(z)u’ (2)
op—1 p—1 P (1— 21y 1 1 =z
1 [1— »-2r\P ) =+ )p(1+z)p{fl 1}
-z T 2r s :
=771 ) Y1 (FIMp1(Z)w(2).
2t < 1—z71 ) P ! is an obvious minimal length solution of (24). Therefore, one

Now, we get the result sineg?_l(zQ")Mp (2)m(z) is has to_prove now that there is no other minimal Iengtr_\ solu-
tion. Since all even degrees ¥ () are uniquely determined

olynomial.
. l[3]33y) — Balancing]: As mentioned in [28], condition by (24), all the other minimal- Iength solutions will be of the
& ' ’ form W(z) = W,_ ( ) + z~*R(2?) and should factorize as

B3.)) says that the multirate system
v) S2y Y W(z) = V(z)VT (2-1). We have

r—1
-1 2y _ T,-1
(=2 — | Y el P mz) |- 2R =V()V (27 1
=0 asstyrarar| Lo @
has zeros of order at the roots of the unity/**/" with - . o
k=1,...,2r — 1. Therefore, from the rank/ wavelet Sinceu' ( Ju(-z71) = u'(=z"Hu(z) = 0, multiplying
theory [13 Th. 2.1], we get that this system preserves d&z ) byuT (-2~ ) on the left and byu(—z) on the right, we
crete polynomial sequences of degree- 0, ..., p— 1, "ave
and since th|_s multirate system is _equwalent to the low- _1uT(—z_1)R(22)u(—z)
pass synthesis branch for polynomial sequences of degree Yo T
up top — 1 (cf. [Balancing= B3,,)]), this translates in =u (=2 )V(x)V (" )u(-—=»).
time domain into the definition of balancing.
Pr0(_)f of Lemma 15:AssumingM( z) i; thg refinemgnt mask T (2 HR(Z)u(=2) = [VT (" Hu(=2)%.
associated with an orthonormal multiscaling function of bal-
ancing ordep, we then have by the orthonormality condition Changingz — —=z, we also get
MM (™) + M(=2)MT(-=z7") =L T EHREDuz) = VT (=2 Du(z)2. (26)
Besides, balancing of ordergives us Now again, multiplying (25) by T (z 1) on the left and by(z)
1 on the right, we get
M(z) = o AP()M, 1 (2)A 2(2) e d
with 2 hu T HRGEDu(z) =u' HV()VT (z Hu(z)
1 1
—1yp P
1 1 1 —1 -1+ +2)?[1 z][ 1}[1 z][ 1}
M1 =[] e a-[ L z z
, ie., for|z| =1
Introducing
_ _ B V71 T V71 R V2 >
Via(2) = 270~ M, 4 (5)ATH() M e
=V Eu@)|” —41+27) (1 +2)". (27)
one gets

— . = Therefore, adding equations (26) and (27), one gets
Vp1(2)Vy 1 (27 ) + Vi (=2)V,_1(=277)
_[ 2 1+z2r VTGP + VT (=2 Du)f =41+ 271 (1+2)

—2
1+2 2 then

Furthermore, one can write

i VTG ua)] =0(+ 7))
U= |, 5 1] V(= u()] =0+ 7))
k=[p/2] and then

Up_1[/€]z_2k
o VT u(=2)] = 01 = =7,
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Besides, multiplying (25) by " (2~1) on the left and bya(—=)
on the right, we get

7l (TR u(—2) = u (TH V() VT (27 Hu(—2)
and then
2 (DR u(-2) = O((1 - 22)P)
i.e., there exits a unique Laurent polynomjé&t) such that
k(z) = 27T (TR u(—2) = (1 - 2)Pq(2).  (28)

Furthermore, from (25)2RT(272) = 2z7!'R(z?), then
k(—»"1) = —k(2), and thereforeg(—~~1) = —¢(»). Hence,

q(z) is at least of length 3. Thus; *R(2?) is at least of length

(7]
(8]

(9]
(20]

(11]

(12]
(13]

[14]

2p, and because it is of odd length by structure, it is at leasfis)

of length2p + 1. Hence, we have thalV,_;(z) is the unique

minimal length solution.
Furthermore, sincdV,_,(z) = V,_1(z)V,_,(z71) for
V,_1(2) =27P(1 — 2 2)PM,,_1(2)AP(2), then

M(z)MT(z7")
_ 2721)(1 _ 272)*1)(1 _ 22)*pAp(22)Wp_1(z)ApT(ZfQ).

Now, sinceA(z*)u(z) = (1 — z~Hu(z), we have
T,-n_1| 1 =z
MM (z77) =5 [2_1 } .
On the other side, since d&f,,_;(z) = 0, one can write
MG) = [y | Bronte) ()]

so that

M(2)M T (z71) = (moo(z)moo(z ")

— 1 Azt
oo™ [ Ay
Hence\(z) = z~1, and thereforem, (2) = z ?mo(2). W
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