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High-Order Balanced Multiwavelets: Theory,
Factorization, and Design
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Abstract—This paper deals with multiwavelets and the different
properties of approximation and smoothness associated with them.
In particular, we focus on the important issue of the preservation of
discrete-time polynomial signals by multifilterbanks. We introduce
and detail the property of balancingfor higher degree discrete-time
polynomial signals and link it to a very natural factorization of
the refinement mask of the lowpass synthesis multifilter. This fac-
torization turns out to be the counterpart for multiwavelets of the
well-known zeros at condition in the usual (scalar) wavelet frame-
work. The property of balancing also proves to be central to the
different issues of the preservation of smooth signals by multifil-
terbanks, the approximation power of finitely generated multires-
olution analyses, and the smoothness of the multiscaling functions
and multiwavelets. Using these new results, we describe the con-
struction of a family of orthogonal multiwavelets with symmetries
and compact support that is indexed by increasing order of bal-
ancing. In addition, we also detail, for any given balancing order,
the orthogonal multiwavelets with minimum-length multifilters.

Index Terms—Balancing, Gröbner basis, multicoiflets, multifil-
terbank, multiwavelets, time-varying filterbank.

I. INTRODUCTION

WAVELET constructions from iterated filterbanks, as pio-
neered by Daubechies [5], have become a standard way

to derive orthogonal and biorthogonal wavelet bases. The under-
lying filterbanks are well studied, and thus, the design procedure
is well understood. By the structure of the problem, certain is-
sues are ruled out: the impossibility of constructing orthogonal,
FIR, linear phase filterbanks implies that there is no orthogonal
wavelet with compact support and symmetry. Nevertheless, by
relaxing the requirement of time invariance and allowing peri-
odically time-varying filterbanks, it is easily seen that new so-
lutions are possible. As mentioned in [35], such filterbanks are
closely related to some matrix two-scale equations leading to
multiwavelets.

In the usual framework of wavelets (scalar case), the two im-
portant issues of the reproduction of continuous-time polyno-
mials by the associated multiresolution analysis (approximation
theory issue) and the preservation/cancellation of discrete-time
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polynomial signals by the associated filterbank (subband coding
and compression issue) are tightly connected since they have
been proved to be equivalent to the same condition: the number
of zeros at in the factorization of the lowpass synthesis filter

of the filterbank. In the orthogonal case, we then say
that the lowpass filter hasregularity iff any of the
following equivalent conditions [5] hold.

• The lowpass filter has a zero of orderat .
• The corresponding highpass filter has a zero of

order at (discrete-time polynomial signals of
degree are thus canceled by the highpass branch).

• Discrete-time polynomial signals of degree are
preserved by the lowpass branch of the filterbank.

• The associated wavelet has vanishing moments.
• The multiresolution analysis has approximation power (;

continuous-time polynomials of degree are per-
fectly reproduced from integer shifts of the scaling func-
tion ).

Furthermore, the smoothness of the scaling function (and
thus of the wavelet if the filters are FIR) is closely related
[7] to the regularity of the lowpass filter. Similar relations are
easily obtained for the biorthogonal scalar case. Without much
loss of generality, we will, in this paper, look at the orthog-
onal case for multiwavelets (the interest of biorthogonality in
the multiwavelet framework being not as obvious since there is
no negative result [6] preventing us from constructing orthog-
onal, FIR, linear-phase multifilters).

The regularity issue is indeed different for multiwavelets. In-
terested in the subband coding issue in general and the problem
of processing one-dimensional (1-D) signals with multiwavelets
in particular, we showed in [20] that the approximation power
property did not assure the preservation of discrete-time poly-
nomial signals by the lowpass branch of the filterbank. Conse-
quently, we introduced the concept ofbalancedmultiwavelets,
which is now also further investigated by several other authors
[17], [27], [28]. One of the goals of this concept is to avoid the
intricate steps of pre/post filtering [11], [37] that are required
with systems based on multiwavelets that do not satisfy the in-
terpolation/approximation properties of balancing. Inspired by
some of the results from [4], [23], and [24], we will clarify the
relations between balancing order (discrete-time property) and
approximation power (continuous-time property) and prove that
the notion of balancing order is truly central to the whole issue
of regularityfor multiwavelets. Balanced multiwavelets of order

behave as bona-fide wavelets up to the orderof interpolation
and approximation.

Furthermore, the introduction of the balancing property will
enable us to construct a family of orthogonal compactly sup-
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ported multiwavelets with symmetries that are naturally indexed
by increasing order of balancing. We will also clarify the re-
lations between scalar wavelets, balanced multiwavelets, and
nonbalanced multiwavelets with a surprising theorem giving
the shortest length orthogonal multiwavelets for any given bal-
ancing order.

The outline of the paper is as follows. In Section II, the fun-
damentals of multiwavelet theory are reviewed with a special
highlight on the connection to time-varying filterbanks. Sec-
tion III reviews balancing and describes equivalence results be-
tween balancing order and a special case of Plonka’s factoriza-
tion of the refinement mask. These results are the key in the
construction of balanced multiwavelets families. Section IV re-
lates balancing order, approximation power, and smoothness.
This leads, in Section V, to the construction of a balanced and
smooth family of orthonormal multiwavelets with symmetries.
In that section, we also detail the result on minimal-length or-
thogonal balanced multiwavelets.

Notations: In this text, regular symbols will refer to scalar
values, whereas bold symbols will imply vector/matrix values.

II. M ULTIWAVELETS

Generalizing the wavelet case, one can allow a multireso-
lution analysis of to be generated by a finite
number of scaling functions and
their integer translates (the multiresolution analysis is then
said to be ofmultiplicity ). Then, the multiscaling function

satisfies a two-scale equation

(1)

where is a sequence of matrices of real coeffi-
cients. By the multiresolution analysis structure, ,
where is the orthogonal complement of in , and we can
construct an orthonormal basis of generated by the multi-
wavelets and their integer translates
by introducing by

(2)

where is a sequence of matrices of real coeffi-
cients obtained bycompletionof (a detailed exposition
of the completion scheme is given in [18]). Introducing in the
-domain the refinement masks

and , (1) and (2) translate in the
Fourier domain into

and (3)

We can then derive the behavior of the multiscaling function by
iterating the first product above. If this iterated matrix product
converges, we get, in the limit

(4)

In the sequel, we will assume that the sequences and
are finite and, thus, that and have compact

support [22]. Many people worked on the convergence condi-
tions. For more details about these results, see [4], [16], [25],
and [35]. Here, we will assume that satisfies the following
two basic conditions(following Strang’s notations [32]).

Condition E (Existence and Uniqueness):The transition op-
erator [4] associated with has all its eigenvalues
except for a simple eigenvalue .

Condition A1 (Approximation of Order 1):There exists ,
which is a left eigenvector of for the eigenvalue 1 such
that .

These two conditions, with being a right eigenvector
of for the eigenvalue 1, assure convergence in the weak
sense of the infinite matrix product (4) to a compactly supported
distributional solution of (1). Now, if also verifies the ma-
trix Smith–Barnwell orthogonality condition (also calledCon-
dition O)

(5)

for all on the unit circle, then the convergence is also in the
sense to a bona-fide solution.

Now, assuming all of these conditions, the scaling functions
and their integer translates form an orthonormal basis of. If
we also impose orthogonality conditions on , i.e.,

(6)

then we get a fully orthonormal multiresolution analysis. For
, we have

(7)

Then, from , we get

(8)

and we have the well-known relations between the coefficients
at the analysis step

(9)

(10)

and for the synthesis, we get

(11)

These relations enable us to construct a multi-input multi-output
filterbank (multifilterbank), as seen in Fig. 1. In case of a 1-D
signal, it requires vectorization of the input signal to produce an
input signal that is -dimensional. The natural way to do that is
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Fig. 1. Orthogonal multifilterbank.

to split a 1-D signal into its polyphase components. Introducing
, the associated scalar polyphase

filters given by

...
...

(12)

and in the same way from ,
the system can be rewritten as achannel time-varying filter-
bank (see Fig. 2 for the case ).

III. H IGH-ORDER BALANCING

In [20], we showed that if the associated scalar polyphase
filters have different spectral behavior, e.g., lowpass behavior
for one and highpass for another, it then leads to unbalanced
channels that mix the coarse resolution and detail coefficients
and creates strong oscillations (see Fig. 3) if the signal is recon-
structed from the lowpass subband coefficients only (compres-
sion issue). The idea is thus to impose some class of smooth sig-
nals to be preserved by the lowpass branch and canceled by the
highpass branch. The natural choice is to take the class of poly-
nomial signals since in a wavelet-based filterbank, the polyno-
mial signals are preserved by the lowpass branch up to the order
of regularity.

A. Balancing

Let be the block Toeplitz operator
corresponding to the lowpass analysis. We can writeas an
infinite-size matrix, shown at the bottom of the next page,
and in the same way, let be the block Toeplitz operator
corresponding to the highpass analysis. We want constant
signals to be preserved by the lowpass branch. Introducing

, we get
Definition 1: An orthonormal multiwavelet system is said to

be balanced (of order 1) iff the lowpass synthesis operator
preserves the constant signals, i.e., .

By the orthonormality relations

and

we get and
. Therefore, implies and ,

i.e., is preserved by the lowpass branch and canceled by the
highpass branch.

Now, we can state the following result giving equivalent
conditions for balancing and especially linking balancing to
a simple factorization of the refinement mask (which

Fig. 2. Multifilterbank seen as a time-varying filterbank.

(a)

(b)

Fig. 3. Reproduction of two input signals [(a) Constant signal. (b) Piecewise
polynomial] by the lowpass branch of a DGHM multiwavelet based filterbank;
it shows the poor robustness of a system based on the DGHM multiwavelet
without prefiltering.

is a special case of the factorizations (the so-called two-scale
similarity transforms) introduced by Plonka and Strela in [23]
and [24]).

Theorem 2: Balancing of order 1 is equivalent (in the case of
orthogonal multiwavelet systems) to any of the following con-
ditions.

.
and .

.



LEBRUN AND VETTERLI: HIGH-ORDER BALANCED MULTIWAVELETS 1921

has zeros1 at for
and .

One can factorize
with

...
...

...
. . .

. . .
. . .

. . .
. . .

and .

Proof: This rather easy proof is given in the Appendix.

B. High-Order Balancing

A natural generalization of the concept of balancing is then
to impose higher degree discrete-time polynomial signals

(where is
any polynomial of degree smaller than) to also be preserved
by the lowpass branch. Introducing , the vector space of
polynomial sequences generated by polynomials of degree up
to (included), we define the following.

Definition 3: An orthonormal multiwavelet system is said to
be balanced of order iff the lowpass synthesis operator
preserves discrete-time polynomial signals of degree less than
, i.e., is invariant by .
This condition does not imply that exactly preserves poly-

nomial signals. It just says that any polynomial input is trans-
formed into another polynomial signal of a lesser or equal de-
gree (Fig. 4). However, since has finite dimension, by the
orthonormality condition , we have that

. Therefore, is globally preserved. From the other or-
thonormality conditions, . This
gives that for every , i.e., the polyno-
mial structure (up to degree ) of the input signal is exactly
preserved by the lowpass branch and canceled by the highpass
branch.

To deal easily with high order balancing, an important issue
is the interpolation of all the polyphase components of a dis-
crete-time polynomial signal from one of the phases. On this
subject, the following lemma will prove to be the cornerstone
of the further developments. With this lemma, we will get that
on discrete-time polynomial signals of degree smaller than the
order of balancing, the lowpass synthesis operator (with its intri-
cate time-varying structure) is, in fact, equivalent to a scalar sub-

1Condition B3) and its generalization to higher order balancing were first
given by [28].

Fig. 4. Fundamental condition of high-order balancing.

division scheme (on which the classical results from the scalar
wavelet theory apply).

Lemma 4: Let be the
formal series associated with thephases of the monomials

Then, for , there exists a unique polynomial
of degree such that and

.
Proof: Using Padé approximants [1], we can construct

the Hörner scheme of interpolation of the sequence

from the sequence by

Thus, we have

(13)
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Furthermore, it is easily seen that cannot be formally
canceled by multiplication with a polynomial, hence, the
uniqueness.

Remark 5: For the usual case , we give for
.

By natural extension, we write . We also introduce
the vectors

Now, generalizing the wavelet case, we get the following.
Definition 6: We say that the refinement mask asso-

ciated with an orthonormal multiwavelet system has balanced
vanishing moments of orderiff there exist ,
with , such that if we define for ,

, where

we have the vanishing moments

(14)

Remark 7: The sequence of polynomials defined by
with is called an

Appell sequence [2]. It verifies
and deg . It also satisfies the Appell identity

(a generalization of the
binomial formula). defines an Appell sequence.

Theorem 8: Balancing of order is equivalent (in the case of
orthogonal multiwavelet systems) to any of the following con-
ditions.

) There exists an Appell sequence such that
the discrete-time polynomial signals
verify for .

has balanced vanishing moments of order.
has zeros of

order at for and
.

For can be factored as

(15)

with and as
above.

Remark 9: Using the equivalence between conditions )
and ), condition ) (balanced vanishing moments of
order ) can be weakened in the following more elegant form.

verifies B1) and for
.

IV. BALANCING ORDER, APPROXIMATION POWER, AND

SMOOTHNESS

Here, we will clarify how the results obtained above relate
to the classical notions ofregularity, i.e., approximation power
and smoothness.

A. Approximation Power and Balancing Order

First, let us recall that a multiscaling function has ap-
proximation power if one can exactly decompose polyno-
mials using only
and their integer translates, i.e., for , there ex-
ists a sequence such that

(16)

Now, assuming that is balanced of order , we get that
factorizes as in (15) so that applyingtimes Theorem

2.6. from [24], we get that has at least an approximation
power of . Therefore, if an orthonormal multiwavelet system
is balanced of order, then the associated multiscaling function

has an approximation power of at least. We can notice
that the converse is false: the DGHM [6] multiscaling function
has an approximation power of 2 but is not even balanced [20].
However, we have the following theorem.

Theorem 10:Balancing of order is equivalent (in the case
of orthogonal multiwavelet systems) to any of the following
conditions:

has an approximation power of and for
, the shifted scaling functions

have identical first moments,
i.e., for

and .
defined by

verifies the Strang–Fix conditions of order
: and , for

and .
Remark 11: By ), balanced multiwavelets of orderbe-

have as bona-fide wavelets up to the orderof interpolation
and approximation. is thesuperfunction[26] associated
with . generates a closed linear subspace

having the same approximation power as .
Proof:

• : The part is derived from Lemma 2.1
[23] and orthonormality gives us . The
converse is obtained by using Theorem 3.2 [23] and
verifying that the can be written in the proper form if
we take .

• : The part is derived from The-
orem 2.2 [23] for the special case of balanced vanishing
moments for . The part is an adaptation of
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the proof of Corollary 2.3 [15] to this special form of
superfunction.

Remark 12: If the scaling function has, furthermore,
vanishing moments (i.e., for ),

we get a multiwavelet generalization of Coiflets [5]. We have
then the following properties:

• and
.

• for .
• is now the canonical [26] superfunction,

i.e., it verifies the extended Strang–Fix conditions
for .

Multicoiflets are then constructed as balanced multiwavelets
with more stringent conditions on the moments of .

A family of orthonormal symmetric multicoiflets with compact
support is detailed in [21].

B. Smoothness and Balancing Order

We introduce the classical Sobolev smoothness

Characterizations of the Sobolev smoothness can be done by
analyzing the decay of as . For example, we
get Sobolev smoothnessby proving that for arbitrarily
small, we have

Now, in the special case the multifilterbanks has balancing order
, we have the factorization for

with . Assuming further-
more that and introducing

(17)

we get by Theorem 4.1 [4] that there exists a constant ,
such that

(18)

However, the computation of this supremum is highly imprac-
tical. Here, we introduce the heuristic of the invariant cycles
that have been proved to be optimal in many cases [2]. Intu-
itively, to characterize the smoothness, we are interested in the
decay as of for . From the

convergence (4), we form the truncated products

. Evaluating these on the invariant cycle
of , we get

(19)

Then, we study the asymptotic behavior of this product by
looking at the eigenvalues of

(20)

where . If
, then the scaling

functions cannot have a Sobolev exponent of more thanand
cannot be more than times continuously differentiable
[7], [14]. Thus, we get an upper bound on the smoothness.

Proposition 13: If an orthonormal multiwavelet system has
balancing order and the spectral radius of in the
factorization (15) verifies , then defining

(21)

with invariant cycles of mod ,
and , we get that is at most
Hölder continuous (and has at most Sobolev exponent

).
As proved in some simple cases [2], [14], the supremum

is usually attained on invariant cycles. Furthermore, it is often
achieved on the smallest length invariant cycle. One can then
take for the smallest invariant cycle as a good estimate
of the Sobolev exponents of , and therefore, .

For example, in the case of the Haar multiwavelet (multi-
plexed scalar Haar filter [35]), with ,

, it is then proven that the scaling functions cannot be contin-
uous. In the case of the DGHM multiwavelet

, it is proven that the scaling functions can be at most.
DGHM scaling functions and wavelets are in fact Lipschitz.

In [4], another method was developed using the transition
operator. This method gives the exact Sobolev smoothness of

and . An approach giving a good lower bound of the
Sobolev smoothness for each scaling function is detailed
in [26].

V. CONSTRUCTION OFHIGH-ORDER BALANCED

MULTIWAVELETS

A. Bat Family

Using the results above, we are now able to investigate
the construction of orthonormal multiwavelets of arbitrary
balancing order in a similar way to what Daubechies did for
her well-known wavelet family. The scheme of construction is
the following.
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Fig. 5. First-order balanced orthogonal multiwavelet. Scaling functions are
flipped around 1, the wavelets are symmetric/antisymmetric, the length is three
taps, and an estimate of the smoothness using Proposition 13 gives the Sobolev
exponents = 0:64.

Fig. 6. Order 2 balanced orthogonal multiwavelet. Scaling functions are
flipped around 2, the wavelets are symmetric/antisymmetric, the length is five
taps (2� 2), and an estimate of the smoothness using Proposition 13 gives the
Sobolev exponents = 1:15.

Fig. 7. Order–3 balanced orthogonal multiwavelet. Scaling functions are
flipped around 3, the wavelets are symmetric/antisymmetric, the length is
seven taps (2 � 2), and an estimate of the smoothness using Proposition 13
gives the Sobolev exponents = 1:71.

Fig. 8. Order 4 balanced orthogonal multiwavelet. The scaling functions are
flipped around 5, the wavelets are symmetric/antisymmetric, the length is 11
taps (2� 2), and an estimate of the smoothness using Proposition 13 gives the
Sobolev exponents = 2:07.

TABLE I
COEFFICIENTS OFBAT O1: FIRST ORDER BALANCED ORTHOGONAL

MULTIWAVELET

TABLE II
COEFFICIENTS OFBAT O2: ORDER2 BALANCED ORTHOGONAL MULTIWAVELET

1) Impose the order of balancing to beby writing for

with . This way, we re-
duce the number of degrees of freedom in the design.

2) Impose the condition (orthonormality) (5) on ,
which gives quadratic equations on the free variables of

(the idea is to introduce the Laurent polynomial
matrix and
to translate the orthonormality condition on this matrix;
for more details, see the proof of Lemma 15 given in the
Appendix).

3) Impose a flipping property on [i.e.,
]. The flipping property

enables an easy lossless symmetrization (as seen in [36])
of finite length input signals both for the lowpass filters
and the highpass.
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TABLE III
COEFFICIENTS OFBAT O3: ORDER 3 BALANCED ORTHOGONAL MULTIWAVELET

4) Solve the system of equations using a Gröbner bases ap-
proach (here, we used the programs Singular [10] and the
web version of FGb [8]).

5) The highpass filters are easily derived from the lowpass
by imposing to be symmetric and to be
antisymmetric. The orthonormality conditions (6) give
unique solutions up to a change of sign.

Using this approach, we have been able to construct all the
shortest length (as defined below) orthonormal multiwavelets
with flipped scaling functions and symmetric/antisymmetric
wavelets for balancing order up to 4. Figs. 5–8 show the
smoothest high-order balanced multiwavelets with these
properties. In Tables I–III,2 we detail closed-form expressions
of the coefficients. For order 4 of balancing, because of the
degree of the leading polynomial in the Gröbner basis, only
numerical solutions have been obtained (the coefficients can be
downloaded from http: \\lcavwww.epfl.ch\~lebrun).

B. Minimal-Length BMW

In this section, we will prove for the following sur-
prising result.

Theorem 14:The multiwavelets of multiplicity and
balancing order with the shortest length refinement mask are
the Daubechies wavelets of length.

First, let us define the length of a matrix Laurent polynomial
with and

to be . One
verifies easily that .
Now, to prove the theorem, we will first prove that the minimal
length condition with balancing and orthogonality implies that
the refinement mask has a multiplexed filter structure.

2The coefficients of BAT O1 already appeared in [3] and [34].

Lemma 15: Let be the refinement mask associated
with an orthonormal multiwavelet system of multiplicity

and balancing order. If is of minimal length, then
.

Proof: This rather lengthy and technical proof is given in
the Appendix.

Proof of Theorem 14:Using Lemma 15 and the balancing
order condition ), we get that

must have zeros of orderat , and for

which implies that must have zeros at . Since

where and are the polyphase components of
, then the orthonormality condition (5) gives that

is a real conjugate mirror filter. Then, from the well-known the-
orem of Daubechies [5], this implies that has at least
nonzero coefficients and that the minimal length filters are the
Daubechies filters (i.e., the classical and Symlets of order
).
This also implies the following.
Corollary 16: An orthonormal multiwavelet system of mul-

tiplicity and balancing order has a refinement mask
with at least nonzero ( ) taps.
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Fig. 9. Relations between the different multiwavelets.

This result can be generalized to any multiplicity and to mul-
ticoiflets [21]. Fig. 9 gives an overview of the relations between
the different multiwavelets.

VI. CONCLUSION

By introducing the concept of high-order balancing, we have
clarified an important issue in the design of multiwavelets.
We have proved that this concept is the natural counterpart of
the zeros at condition in the standard wavelet theory. With
these results, we made it possible to design general families of
high-order balanced multiwavelets with the required properties
for practical signal processing (preservation/cancellation of
discrete-time polynomial signals in the lowpass/highpass
subbands, FIR, linear phase, and orthogonality). The proposed
scheme of construction is making use of computationally heavy
methods (Gröbner basis decomposition), and it is not clear at
this point that closed-form designs will be feasible for multi-
wavelets of balancing order . Matrix spectral factorization
could be a way to overcome this limitation. Another subject
of interest would also be to use the invariant cycles scheme
developed for estimating the smoothness to link the smoothness
of the scaling functions to a particular factorization of the
refinement mask (the counterpart of thezeros at pre-periodic
pointscondition [14] in the standard wavelet theory).

APPENDIX

Proof of Theorem 2:

• : Assuming ), we have by transposi-
tion . Writing the equations explicitly, we
get

. Therefore, , and
since , we have condition ).

• : Conditions and imply that
, and from condition , we get
. From (3), we derive that is also a right

eigenvector associated with the eigenvalue 1 of , and
using again condition , we get the result.

• : From (3) and condition , we have
.

. Therefore,
. Now,

if with and ,
then , and therefore, . If
with and , then and

.
Therefore, has roots at for

.
• : Taking from the time-varying fil-

terbank representation (see Fig. 2), we get that thepos-
sible outputs are for

. Denoting as the th polyphase
component of , we get that

Hence, is an eigenvector of the operator .
• : This is a direct consequence of Theorem

4.1 in [23].
• : Assuming )

...

...
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
...

...
. . .

...

so that

...

and this is condition ).

Proof of Theorem 10:

• Balancing : From Lemma 4, for ,
we have that interpolates the th polyphase
component of any polynomial sequence of degree
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smaller than from the zeroth polyphase compo-
nent. That means that on , the lowpass synthesis
operator is equivalent to the scalar subdivision op-
erator , where

, i.e., on , the
operator is equivalent to the multirate system

Now, using the discrete-time version of the Strang–Fix
theorem (cf. [2], [13]), being invariant by and
then by (since preserves the polynomial sig-
nals), we get that
must have zeros of order at for

.
• : From [2], this condition implies that the

existence of an Appell sequence of polynomials
with such that

are eigenvectors of the subdivision operator for
the eigenvalues , i.e., . From the
equivalence of and on , we get the result.

• : satisfies the conditions of The-
orem 2.1 in [24] with

for . The balanced vanishing moments
of order are just a rewriting of these conditions.

• : Applying Corollary 4.3. from [23], we
get the factorization

with

...
...

...
. . .

. . .
. . .

. . .
. . .

and the polynomial matrix verifying

where

obtained recursively from . Therefore,
for , we get and

.

• : First, we give a digest of the proof in the
case for (case is a consequence of
Theorem 2).

For , we have

For

For the general case, writing
, we will first prove that , and we can

factorize

(22)

where , i.e., vector polynomial in .
Namely, by induction on ,

...
...

...
. . .

. . .
. . .

. . .
. . .

Now, assume for that

with polynomial. Then, introducing for

and , we get
; therefore

Now, it is easily computed that
. Therefore, there exists

such that

(23)
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Thus with
polynomial; hence, we have the result. Now, by the hy-
pothesis

Now, we get the result since is
polynomial.

• Balancing : As mentioned in [28], condition
) says that the multirate system

has zeros of order at the roots of the unity with
. Therefore, from the rank wavelet

theory [13, Th. 2.1], we get that this system preserves dis-
crete polynomial sequences of degree ,
and since this multirate system is equivalent to the low-
pass synthesis branch for polynomial sequences of degree
up to (cf. Balancing ), this translates in
time domain into the definition of balancing.

Proof of Lemma 15:Assuming is the refinement mask
associated with an orthonormal multiscaling function of bal-
ancing order , we then have by the orthonormality condition

Besides, balancing of ordergives us

with

and

Introducing

one gets

Furthermore, one can write

with . Thus, for
to verify

(24)

one needs . Introducing , then

is an obvious minimal length solution of (24). Therefore, one
has to prove now that there is no other minimal length solu-
tion. Since all even degrees of are uniquely determined
by (24), all the other minimal-length solutions will be of the
form and should factorize as

. We have

(25)

Since , multiplying
(25) by on the left and by on the right, we
have

For , we obtain

Changing , we also get

(26)

Now again, multiplying (25) by on the left and by
on the right, we get

i.e., for

(27)

Therefore, adding equations (26) and (27), one gets

then

and then
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Besides, multiplying (25) by on the left and by
on the right, we get

and then

i.e., there exits a unique Laurent polynomial such that

(28)

Furthermore, from (25), , then
, and therefore, . Hence,

is at least of length 3. Thus, is at least of length
, and because it is of odd length by structure, it is at least

of length . Hence, we have that is the unique
minimal length solution.

Furthermore, since for
, then

Now, since , we have

On the other side, since det , one can write

so that

Hence, , and therefore, .
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