IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 4, DECEMBER 2002 517

Rotation Invariant Texture Characterization and
Retrieval Using Steerable Wavelet-Domain
Hidden Markov Models

Minh N. Do, Member, IEEEand Martin Vetterlj Fellow, IEEE

Abstract—\We present a new statistical model for characterizing Typically, the similarity measure is chosen using heuristic argu-
texture images based on wavelet-domain hidden Markov models. ments, for example the Euclidean distance or its weighted ver-
With a small number of parameters, the new model captures both sions between the feature vectors [8].

the subband marginal distributions and the dependencies across An alt ti his t t the i tri i
scales and orientations of the wavelet descriptors. Applying to the _n ‘?1 einauve approa_c_ IS0 se_ up_ e Image retrievalin a
steerable pyramid, once it is trained for an input texture image, Statistical framework by jointly considering the two problems of
the model can be easily steered to characterize that texture at any feature extraction (FE) and similarity measurement (SM) into a
other orientation. Furthermore, after a diagonalization operation,  joint modeling and classification scheme, while taking into ac-
we obtain a rotation-invariant model of the texture image. We aiso ot the complexity constraint for such applications [9]. In this
propose a fast algorithm to approximate the Kullback—Leibler f k the EE step b ) likelihood (ML
distance between two wavelet-domain hidden Markov models. ramewor » (he Step becomes ‘?‘ maximum likelihood (ML)
We demonstrate the effectiveness of the new texture models in re- €stimator for model parameters of image data, and the SM step
trieval experiments with large image databases, where significant amounts to computing the Kullback—Leibler distances between
improvements are shown. the models of the query and of each candidate image. The frame-
Index Terms—Hidden Markov models, image retrieval, Kull- ~ work is asymptotically optimal in terms of retrieval error prob-

back-Leibler distance, rotation invariance, steerable pyramids, ability, and thus the similarity measurement has a sound theo-

texture characterization, wavelets. retical justification.
Using the statistical framework, a natural extension of the
|. INTRODUCTION wavelet subband energy method for texture retrieval is to model

. . . each texture by the marginal densities of its wavelet subband
W ITH thg exp]oswe growth ,Of multimedia databa_ses angoefficients. In [10], [9], we applied this framework to a simple
o digital libraries, there is high demand for effective ang,,ye| \yhere wavelet coefficients in each subband are indepen-
efficient too!s that allow users t_o search and browse througgmly modeled by a generalized Gaussian density (GGD). This
such collections. The focus of this paper is on the use of textyfR. i, eads to a significant improvement in the retrieval rate

information for image retrieval applications. Some of the Mg o the traditional wavelet subband energy method using both
popular texture extraction methods for retrieval are based pyramid wavelet transform and wavelet frames, while re-
filtering or wavelet-like approaches [1]-[7]. Essentially, thes&uiring comparable computational time '

methods measure energy (possibly weighted) at the output o{yhije having low complexity, the marginal distribution

filter banks as extracted features for texture discrimination. The - ignores some important texture-specific information
basic assumption of these approaches is that the energy digfp)y the dependencies of wavelet descriptors across scales
bution in the frequency domain identifies a texture. In an imagg, orjentations. Furthermore, like most other wavelet-based
.retrlevall system, once those features are extracted from e ure analysis methods, the extracted features are sensitive
image (in the Feature Extraction step), distances between i@y, rientation of the analyzed image. This is a drawback

ture sets of the query image and of each candidate image in fhg,e retrieval applications since a same texture can appear at
database are computed (in the Similarity Measurement Ste(mferent orientations in the image database

In this paper, we address these problems by using a coherent
Manuscript received April 1, 2001; revised March 26, 2002. This work wastatistical model that captures both wavelet subband marginal
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the features of wavelet subbands as a hidden Markov motgpothesisH,. The goal is to select among tfi¢ possible hy-

(HMM). These models are trained using texture samples witlotheses théV best ones (with a ranking order) that describe

different orientations that are treated as being in the sarme datar from the query image.

class. Greenspaet al. [15], Haley and Manjunath [16] used Suppose that each hypothesisis modeled by a probability

the magnitude of a discrete Fourier transform in the rotatiatensity function (PDF), denoted by X; 6;) whered; is a set

dimension of features obtained from a multiresolution filteringof model parameters. With this setting, the extracted features for

Yet another rotation invariant method proposed by Wu aride imageZ; is the estimated model parame&grwhich iscom-

Wei [17] that first converts two-dimensional (2-D) textureuted in the FE step. We denote the space of model parameters

images into a (one-dimensional) 1-D signal via spiral samplings ©.

and then applies a HMM on the subband features of the 1-DConsider that the query data= (z1, 2, ..., 1) was drew

signal. A comparative study of several rotation invariant textufeom a modelp(X; 6,) for the query image. Optimal retrieval

analysis methods was performed by Fountial.[18]. (with minimum error probability) is obtained by searching for
Most rotation invariant texture analysis methods were d&; that maximizes$og p(x; 8;). For largeL, this can be shown as

signed for the classification problem, where the classes are dguivalent to minimizing th&ullback—Leibler distancé<LD)

fined a priori. Therefore, these methods are not suitable for thoe therelative entropy20] between the two PDRs(z; 6,) and

retrieval application, where each database image forms a sepas 6;)

rate class and must be individually trained. 0

D(p(X; 0,)|lp(X; 0:)) = '/p(:v; 0) log% dr. (1)
First, this work enhances the recent technique on wavelet-doUnder the same asymptotic conditiob is large), if the FE

main hidden Markov models (WD-HMM) [11] for better step uses eonsistenestimator, which ensures the estimated pa-

dealing with images by incorporating the dependency cameterf converges to the true parametgithen the distance

wavelet coefficients across orientations. Second, by replacifig can be computed using tlestimatednodel parameter8,

the standard wavelet transform with an overcomplete repmmdé,. For such consistent estimator, we could employ the ML

sentation via steerable pyramids [19], we obtain a steeralblgtimator [21], which means that for the query image, it com-

statistical model that can facilitate rotation invariant applputes

cations. Third, for the WD-HMMs to be used effectively in A

the image retrieval application, we derive a fast algorithm to 0, = arg max logp(z; 6). (2

compute the distance between two WD-HMMs. Finally, our fco

experiments with WD-HMMs in the image retrieval application |, symmary, by combining FE and SM into a joint modeling

provide a large scale evaluation of their capacity in discriming classification framework, the following retrieval scheme is
nating among many different texture classes. asymptoticallyoptimal:

The outline of this paper is as follows. In the next section, we Feature Extraction: Given the data from each image, ex-

briefly review the statistical framework for image and texturgacting features as estimated model parameters using a consis-

one-dimensional signals and presents our extension for 2-D imjmilarity Measurement:To select the topV matches to
ages that takes into account the cross-orientation dependency @f,ery, the images in the database are ranked based on the
wavelet coefficients. By replacing the standard wavelet decoR ps between the estimated model for the query and estimated
position with the steerable pyramid [19], Section IV describgggdels for each image.
a WD-HMM that can be steered to characterize a given texturetne advantage of this scheme is that the SM step can be com-
at any orientation and thus lead to a rotation-invariant modgl,teq entirely on the estimated model parameters, which are
Section V describes a fast algorithm to approximate the Kufypically small in size, so that it can meet the timing constraint
back-Leibler distance between two WD-HMMs, which is crugf the image retrieval application. The method is generic as it
cial for the retrieval application. Experimental results on severgilows the use of any feature data and statistical models for in-
texture databases are given in Section VI. dexed images. Such image models can incorporate the knowl-
edge from perceptual studies to closely match human judgment.
Let us emphasis that, the joint consideration of the two steps
FE and SM here is only conceptually, which proves the opti-
A. General Setting mality of our scheme. Computationally, the two steps are per-
We start by briefly reviewing the statistical framework foformed separately, and thus they fit in the traditional setting of
image retrieval [9]. The problem of searching for the fopm-  the image retrieval application.
ages similar to a given query image from a database of total ) ) ) ) )
M images (V < M) can be formulated as a multiple hy-B' Texture Retrieval Using Generalized Gaussian Density
potheses problem. The query imafyds represented by its data For wavelet-based texture retrieval, instead of simply de-
setx = (z1, x2, ..., x1), Which is typically obtained after a scribing each subband by its energy measurements, one could
pre-processing stage (like wavelet transform). Each candidate an estimated marginal density. Experiments show that a
image in the databasg: i = 1, 2, ..., M is assigned with a good PDF approximation for marginal distribution of wavelet

B. Main Contributions

Il. IMAGE RETRIEVAL IN A STATISTICAL FRAMEWORK
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coefficients in a subband is the generalized Gaussian density(—w?/20?). In this model,p§.1) andp](?) have physical in-

(GGD) [22], [6], which is defined as: terpretation as the probabilities of the wavelet coefficient,
being in the states “small” and “large,” respectively. Small coef-
p(z; a, B) = _Bs e~ (zl/)? (3) ficients can be considered as outcomes of a small variance prob-
2a1'(1/P) ability density function, whereas large cofficients can be consid-

. . . ered as outcomes of a large variance density.
where  T'(.) is the Gamma  function, i.e., . .

00 Lyia1 There is an inter-scale dependency, most notably between a
I(z) = [, e "t*~tdt, = > 0. . :

0 wavelet coefficient at a coarse level (parent) to the four coeffi-

Thus, under the GGD model, each wavelet subband is relo(rtlee'nts at the next intermediate level that correspond to the same
sented by two parametessand 3: « is the width of the PDF P

peak (variance), ang is inversely proportional with the de- location (children) in the image [see Fig. 2(a)]. In order to cap-

. . ture this persistence across scales, there are state transition prob-
creasing rate of the peak. There exists a closed form eXpreSSa'%ﬂit matrices for theparent— child link between the hidden
for the KLD between two GGDs [9] Y ®

states
(1 -1 gl
D(p(.; o1, B1)|Ip(.; a2, B2)) = log (%) Aj = (p{;i pf;z> . j=2.3,...,J (6
p; p;

+<a1>'82w 1 4)

— - Herep™—™" is the probability that a child coefficient at the
2 L(A/B) & level j isjin the staten’ given its parent coefficient is in the

Assume that wavelet subbands are independent, the ovestatem. In other words, across scale, the states of the wavelet
KLD between two images is simply the sum of KLDs acrossoefficients follow a Markov chain. With this, we can relate the
subbands. Experiments in [9] show that the GGD and KLBtate probability at levegl with the state probability at the parent
method lead to significant improvements in retrieval rates oviavel j — 1 by
the energy method. Furthermore, the GGD model can be sim- (m) ') .
plified to closely resemble, and thus provide a justification, for ~ Pj = = oy =230 (7)
the weighted Euclidean distance betwdgnnorms of wavelet m/
subbands. If we denotep; = (' p\?)), then (7) can be written as

p; = p;_14;. Hence,
Ill. WAVELET-DOMAIN HIDDEN MARKOV MODELS

A. Scalar Model

for statistical signal processing based on wavelet-domdso called hidden Markov tree model) is completely defined

hidden Markov models (WD-HMMs). It provides an attractiv®y @ set of model parameters:

approach to model both the non-Gaussian statistics and the m) .
. S %:{p Ay o™, (j=1,..., J,m=1 2)} )

persistence across scale property of wavelet coefficients that a L 825 oo BJ5 G5 s UG ’ .

of;en founq n re:_il-wqud 5'9!"&'3- The congept of V.VD'HMM. 'Svhere.J is the number of wavelet tree levels. The resultis a sta-
b]['egly review ed in this section together with the IntrOdUCtIOI‘ﬁstical model that effectively captures both the marginal and the
0 |tnzr\]/(\)/t|:‘)a.t|l-c|)|?/|.|\/| to each wavelet coefficient; ; at levelj joint parent—child distrib_u'gions of Wave_let coeff_icients_. More-
1< i< J(the i,ndex is such that — 1 correj’s’onds to t’he over, _there ex_|sfcs an efficient Expectatlon-Ma_mmlzatlon (EM)
=J = P algorithm for fitting a WD-HMM to observed signal data using

coarsestvaveletscale, while the scaling coefficients are d|sret—h e ML criterion [11].

garded in the WD-HMM) there is an associated discrete hidden . . N o .
states, 1 with the probability mass functio(S; » = m) = Originally developed for 1-D signals, the WD-HMM has

(m) J ) been generalized for images in segmentation [23] and denoising
pj;m =1, ..., M. Conditioning onits staté; . = m, the 541 applications. For images, the wavelet transform leads to a
coefficientw; . follows a Gaussian density. Since the wavelgjecomposition with three orientations, often called horizontal
coefficients are obtalneq from conyolutlons with filters that ha"g(}%(vertical (V) and diagonal (D). The authors in [23], [24]
zero sum (the wavelet high-pass filters), they can be assume a simple approach by considering these three orientations
have zero-mean. Furthermore, to reduce the number of para@gsarately, thus requiring three independent WD-HMMs to
ters in the models, wavelet coefficients at the same subband gt&,cterize an image, one for each orientation. We refer to
tiedtogether to share the same statistics. If we téke- 2, the <6 models ascalarWD-HMMs.
marginal distribution wavelets coefficients, . at thejthlevel g 1 shows a typical example of the histogram of the wavelet
can be written as a mixture of two Gaussian densities coefficients from an image subband, together with the plot of

(1) 1) (2) () the subband marginal density function obtained from the trained

wi,k ~ fi(w) =p; g (w' 7 ) +pi9 (w i ) ®) wp-HMM. By construction, the estimated marginal density is
a mixture of two Gaussian densities as given in (5). For compar-

wherep§1) + p](»Z) = 1, andg(w; o) denotes the zero-meanison we also show the fitted GGD using the ML estimator [9].
Gaussian density with varianeg, i.e.,g(w; o) = (2r0?)~/2  As can be seen from the figure, the WD-HMM provides a close

p; :p1A2A3~-~A]'7 f0ra||j:2, R A (8)
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Fig. 1. Example of wavelet subband coefficient histogram fitted with the marginal distribution curves by WD-HMM and GGD model.
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Fig. 2. Tree structures on the WD-HMMs. In the scalar WD-HMM, there are three scalar models, whereas in the vector WD-HMM, there is one vector model.
(a) Scalar model. (b) Vector model.

match to the GGD in terms of modeling the marginal distribuNote thatw; ;. can be seen as the result of the inner products be-
tion from a wavelet subband. However, the WD-HMM is moréwveen the input image with the three local directional wavelet
expressive than the GGD model by including the dependencfaactionSzﬁj(.fik at scalej and locationk [26]
between parent-child coefficients across scales. i
W=(zv), d=123

w - Z, ) ; ’ ] ’ .
B. Vector Model ik Vi
The underlying assumption for the scalar WD-HMM ap- The marginal distribution function of the wavelet coefficient

proach is that wavelet coefficients at different orientationgctorsw; x at the levelj in the vector WD-HMM with tying
are independent. However, experiments in [25] show theexpressed as

importance of the cross-correlation of each subband with other
orientations at the same scale in characterizing texture images,wj K~ fi(w) = Vg (w: c,(»l)) + 9Py (w. CQ)) . (10)

To enhance the capacity of WD-HMM in capturing the / Y / T
cross-orientation depgndency of wavelet cogfﬁment, we p.ro'Here,g(w; C) denotes the zero-mean multivariate Gaussian
pose to group coefficients at the same location and scale 'gitgnsity With covariance matrig. i.e
a vector and then model these vectors by a single multidi T
mensional WD-HMM [see Fig. 2(b)]. The result is onector 1
WD-HMM for the whole input image. 9J(w; C) = —meee—ec exp(—w' C”'w) (11)

More specifically, denote the wavelet coefficients at the ori- (2m)"| det(C)|
entationd (d = 1, 2, 3 for H, V, D, respectively), scalg¢ and
locationk aSwj(fi,)c. The grouping operation will produce vector
of coefficients

wheren is the number of orientations (in this case= 3).

S The wavelet coefficient vectors are then organized into
a quad-tree structure that connects each vector to its four
children at the next intermediate level of the same location
wj g = (wfl,)c wﬂ wj(:”;c)T [see Fig. 2(b)]. Theparent — child link relationships of
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these vectors are captured in the same way as in (6) for the TABLE |

scalar WD-HMM. Thus. an image is modeled by one Vecté\PJMBER OF FREE PARAMETERS NEEDED TO SPECIFY DIFFERENTMODELS FOR
. ’ ! AN IMAGE WHEN THE WAVELET TRANSFORM ISTAKEN TO J LEVELS
WD-HMM with a set of parameters:

GGD scalar WD-HMM  vector WD-HMM
@:{pl_/A% A S G=1, L T m=1,2) ) Fidden states | - 3% (27 = 1) 571
(12) Densities 3xJx2 3xJx2 JX2x%x6
Total 6J 12J -3 14J -1

Therefore, in a vector WD-HMM, wavelet coefficients at the
same scale and location but different orientations are “tied up” to
ha.Ve asame h|dden State. Thejustiﬁcation for th|S iS that arouan_ ROTAT|ON INVAR|ANCE US|NG STEERABLE WD_HMM
the edges in an image, wavelet coefficients at all orientations
have a high probability of being significant; whereas in smootly Steerable WD-HMM
regions, all wavelet coefficients are small. In addition, in the Both the scalar and the vector WD-HMMs described above
vector WD-HMM, the across orientation dependencies are cafave drawbacks in that they are sensitive to the orientation of
tured via the nondiagonal entries in the covariance matricesthé input image. This problem has roots in the standard wavelet
the multivariate Gaussian densities (11). transform. If the image is rotated, then in the wavelet domain
Since any marginal density from a multivariate Gaussian detire wavelet coefficients change completely. In fact, the wavelet
sity is also a Gaussian density, from (10), the marginal densiyefficients of the rotated image ametjust be simply rotated,
for each wavelet subband in a vector WD-HMM is also a miXsut are also modified.
ture of two zero-mean Gaussian densities. Thus, one can expechne way to remedy this situation is to replace the standard
that the vector WD-HMM also captures the subband dependggivelet decomposition with the steerable pyramid [12], [19].
marginal probability distributions of wavelet coefficients as thghe steerable pyramid is a linear multiscale, multi-orientation
scalar WD-HMM. image decomposition where the basis functions are directional
In [27], Fan and Xia proposed a different way of groupingerivative operators. This transform satisfies shéftability in
wavelet coefficients across orientation for the 2-D WD-HMMthe orientation condition, which means that at a fixed location
in that each combination of the three hidden states for thregd scale the response at an arbitrary orientation is equals to a
wavelet coefficients at the same location and scale is represeniggar combination of coefficients corresponding to the oriented
by a single state. If the number of the hidden states for eaghisis functions at that location and scale. More specifically, De-
wavelet coefficient is two, then there will be eight states faiotew andw + as the vectors of the steerable pyramid coeffi-
each wavelet coefficient vector, and thus each transition matgients at fixed scalg and locationk for an input image and its
is8 x 8. Their method leads to a model with a large number @btated copy byp respectively, then we have
parameters;2J — 7, whereJ is the number of wavelet decom-
position levels. This increases the computational and storage
costs significantly, which might not be suitable for the image
retrieval application.

wy = Rd)w. (13)

The columns ok, are a set of interpolation functions that de-
C. Relations Between Models pend only on the rotation angleand the steerable basis func-

. . ) tions. Furthermore, orientation shiftability ensures the orienta-
In this section we draw the connections between the generﬁag—

, : _ n invariance of response power [12], i.w,||*> = ||lw||? for
ized Gaussian density (G.GD) model and the scalar and vecé%,w_ This is equivalent [29] to saying thRj is an orthogonal
WD-HMMs. As already discussed, all of these models capture iy ie r—! — RZ. As a bonus. the steerable pyramid rep-
the subband-dependent marginal probability density functiQiuentation ids) also t?z;mslation-invériant
This is a crucial point since psychological research on humanProposition 1: Suppose tha® — {Pl. Ay Ay olm)

. 9y P ) 7]

texture perception suggests that two homogeneous textures are_ 1 J; m = 1,2)} is the vector WD-HMM
often difficult to discriminate if they produce similar marginal ], . steerable pyramid of an image. Then the corre-

distributions of_ responses f_rom a bank of filters [28]. sponding model for the rotated version of that image by
In [10], by simply modeling those PDFs by GGDs, we ob- is 0, = {py, As Ay C(m)(j -1 Jim=1,2)}
- 1 y et ) J d) - PR b - ) .

tained good retrieval results, compared to the traditional sub:- . 2 :
band energy approach. The scalar WD-HMM adds on extra tex—e only change is the covariance matrices
ture-specific information by capturing the inter-scale dependen-
cies (via the state transition matrices). The vector WD-HMM C;?;) = R¢C§-m>R£, j=1,....,J;m=1,2 (14)
furthermore adds on the inter-orientation dependencies infor-
mation (via the nondiagonal entries in the covariance matrices) Proof. Using (10) and (13), we can write the marginal dis-
in characterizing textures. tribution function of the coefficient vectors, at the levelj of
Table | shows the number of free parameters needed to tfee rotated texture as
scribe each image using different models, when the wavelet
transform is decomposed with levels. Note that due to the Fio(wy) = 1
row sums property, eacky has only two free parameters. The Ti0\We) = J(wy, w)
covariance matrices are symmetric, thus they contain six free 0 1 ) @) 1 @)
parameters each. =p;’'9 (Rd) wy; C; ) +p;'9 (R¢ wy; C; )

iRy wy)
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since the Jacobiafi(w,, w) = |det(R,)| = 1. Using the fact on the assumption that the ML solution of the WD-HMM is
thatRr,, is an orthogonal matrix again, by manipulating (11) wenique and the EM training algorithm is able to find it.

have

V. KULLBACK—LEIBLER DISTANCE BETWEENWD-HMM s

—1 . _ . T
I (R¢ o C) 9 (we: R¢CR¢) ' The statistical framework in Section Il suggests that the Kull-

Thus, f; 4(wg) is also a mixture of two zero-mean multi-back—Leibler distance (KLD) should be used to compute the
variate Gaussian densities which has the same probability mélissimilarity between WD-HMMs. An additional advantage of
function p](,m) for the hidden state as iff;(w), whereas the Usingthe KLD is that since itis defined directly on the extracted
covariance matrices are transformed by (14). Combining tiiRodel’s parameters, therefore with rotation-invariant models it
across scales we obtain the desired result. ] leads to a rotation-invariant image retrieval system.

As a result, the vector WD-HMM on a steerable pyramid is a However, there is no closed form expression for the KLD be-
steerablemodel. In other words, one can train a WD-HMM fortween hidden Markov tree models. A simple solution is to re-
a single orientation of a texture and then steer this model, wiRr't to a Monte-Carlo method for computing the integral in the
a simple transformation, to describe that texture at any ott&kD [30], [31]. More specifically, from the query model we

orientation. randomly generate a data set as wavelet coefficient trees (each
tree consists of a coefficient or a vector coefficient at the coarsest
B. Rotation Invariance Using Steerable WD-HMM level and all of its descendants), and then compute its likelihood

Using the steerable WD-HMM above, we now develop a r@_gainst each candidate model. With this method, for an accurate
tation-invariant model for texture retrieval. Recall that the onlgPProximation of the KLD, the generated data set has to contain
difference between the steerable WD-HMM@sand ©,, of a a large number of trees. This can be prohibitively expensive in

given texture and its rotated version is among the covariari§ "etrieval application, where the distance has to be computed
2y for a large number of images in tleteractivemode. Further-

matnz:s)s. Thesg covariance matrices are_ related by (1 5 more, due to the “random” nature of the Monte-Carlo method,

andc; ;' are said to be orthogonally equivalent [29]. the approximations of the distance could vary in different com-
Using the Takagi's factorization [29], we factor each covarl ations. In [32], we propose a fast algorithm to approximate

ance matrix in the steerable WD-HMM into a product the KLD between two general dependent tree models. Apply

this to the WD-HMMSs, due to the tying of parameters, the algo-

rithm is significantly simplified and is described next.

Consider the KLD between two vector WD-HMM3 and

_ ) m) (m) - ) that are defined in (12). Essentially, the proposed algorithm

normalized eigenvectors @é andA; ™ is the diagonal ma- employs the “upward” procedure to compute an upper bound

trix containing the real, nonnegative eigenvaluesj(gf) in de- for the KLD between two WD-HMMs by successively using

scending order. This factorization is always possible since #lle following inequality.

covariance matrices are symmetric and positive semidefinite. Lemma 1 [32]: The KLD between two mixture densities
Let A be an eigenvalue c¢§m). That means there exists &), w; f; and}_, w; f; is upper bounded by

m m m mT .
CE)ZUE )Ag. )Ug.), ji=1...,J;m=1,2 (15)

WhereU§m) is the orthogonal matrix whose columns are th%

) ¢

vectorv such thacgf';))v = \w. Using (14), we have
D w; fi wifi | < Dwllw) +> wiD (fi || fi),
R4)C§m)R£v =Xv or C](»m)RdT)'U = )\R(,T)'v. <ZL Z ) Z ( )

~ a7
If we denotev’ = R, thencém)v’ = M. Hence\ is also  with equality if and only ifw; fi(x) = c(x)w; f;(x), for all i.
an eigenvalue afg‘). Thus, the diagonalization operation onthe Heré D(w||w) denotes the KLD between two probability
rotated modeb; leads to mass functionss = (w;); andw = (w;);

B

. Wi
A=A forall =1, ..., Jim=1,2 Diwli@) = wilog - (18)

In summary, given a steerable WD-HMM, we can factorize (m) . - .
Denoteg3; ™ to be the conditional probability density of the

the covariance matrices into the form of (15), Whereuﬁé) | fici b hat h ¢ q level
matrices are responsible for the orientation of the input imaeﬁ"@ve et coefficient subtrees that have root from a node at leve

while thea"™ matrices contain rotation-invariant texture infor?> 9'V€N th_e state Qf that node 8. The key_property of the
mation. Thus we have the following result. WD-HMM is that given the state of a node in the wavelet co-

Proposition 2: The diagonalizedsteerable WD-HMM efficient tree, the wavelet coefficients attached to that node and
P ' g its subtrees are independent. Thus, applying the chain rule of

O={pi, s, . A AV (=1, Jym=1,2)} (16) heKLD. we have
(m) || gtm) ) _ . olm) . alm)
is a rotation-invariant model. D (/3]'_1 /Bj—l) =D (g (-, Cj—l) Hg (-, Ci_1 ))
Remark 1:In practice one estimates a WD-HMM for an 9 9
o > i)

input image via the EM algorithm using the ML criterion. So Z pﬁHm'ﬂ(m’)
the rotation invariant property of the estimated model relies oyt ! ! 1
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share the same statistics.
Let a;m) be themth row vector of the transition probability e
matrix 4;, then by applying (17) to the above equation, we ob ; &&é

tain
() <o (o () o (s6m))
+4D (™ |af )+4z2: =D (B0 8 @) I
m'=1 5
Denote é‘
41D s s 0 6 )
oy = (53"
&= (a® a2
and
D;=(p{" D)’

Then, (19) can be written in a more compact form as
Djfl S dj + 4Aij. (20)

For the KLD between two zero-meandimensional Gaus-
sians, we have the following closed form expression [33]

D (g(::0)|lg (~; ¢)

|det |

= —[logl——4 —n +trace(C™'c) | . (21)
2 |det(C)] ()
Initially, at the lowest levej = J, we simply have
(m) _ (m) . alm)
Dy”"=D (g (" Cy ) Hg (" Cy )) : Fig. 3. Texture images from the VisTex collection that are used in the
. . experiments; from left to right and top to bottom: BarkO, Bark6, Bark8,
And finally, at the top levelj = 1 Bark, Brick1, Brick4, Brick5, Buildings9, Fabric0, Fabric4, Fabric7, Fabric9,

Fabricll, Fabricl4, Fabricl5, Fabricl7, Fabricl8, Flowers5, Food0, Food5,
. 2 (m) 2 ~(m) Food8, Grassl, Leaves8, Leavesl10, Leavesll, Leavesl?2, Leavesl6, MetalO,
D (G) H@) =D Z J2Meh Z JeN Metal2, Misc2, Sand0, Stonel, Stone4, Terrain10, Tilel, Tile4, Tile7, Water5,
Wood1, and Wood2.

m=1 m=1
2 ~
D(p )+ > o7 (ﬂfn) Hﬂf“)) The algorithm has low computational complexity that is
m=1 linear with the number of wavelet decomposition levels. For
=D (p, ||p,) + p,D1. instance, with the rotation invariant WD-HMMs described

in Section I1V-B, approximating a KLD requires abous./

Thus, we can use (20) recursively upward to compute @fultiplications and8.J additions. In other words, the cost
upper bound foD(0]|©). This bound is tighter, hence providesof approximating the KLD between WD-HMMs using the
a more accurate approximation of the true KLD, when the twsroposed algorithm is compatible to computing the Euclidean
models’ parameters are close. This property makes the propogiiance between feature vectors.
bound particularly fits to the retrieval application. Recall that the
task of a retrieval system is to find a small set of images that are VI. EXPERIMENTAL RESULTS
similar to the query image. For candidate images with model pa-
rameters that are significantly different with the query’s modeft: Databases
the proposed upper bound will “overestimate” the true KLD, but We use two texture databases in our experiments. In a first
this does not matter since we will discard these images anywsagries of experiments, we evaluate the retrieval effectiveness of
For candidate images with model parameters that are closéuth scalar and vector WD-HMMs against the GGD method in
the query’s model, the proposed bound will be closer to the traelarge database. For this, we used the same 40 VisTex [34]
KLD, thus leads to accurate selection and ranking of top similtextures that were tested in [9], and displayed them in Fig. 3.
images. These are real world12 x 512 images from different natural
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Fig. 4. Texture images from the rotate collection that are used in the experiments. The images afe@nQeft to right and top to bottom are Bark, Brick,
Bubbles, Grass, Leather, Pigskin, Raffia, Sand, Straw, Water, Weave, Wood, and Wool.

scenes. Only gray-scale levels of the images (computed frawsition levels. We chose three levels of decomposition for our
the luminance component) were used in the experiments. Simeg@eriments since most of the texture information of our data-
we define similar textures as subimages from a single origin@dse is concentrated in those three levels.

one, we selected texture images whose visual properties do ndtig. 5 details the retrieval performance on the database of 640
change too much over the image. textures images from the VisTex collection by using three sta-

Each of the512 x 512 original images was divided into 16 tistical models: GGD, scalar WD-HMM and vector WD-HMM,
128 x 128 nonoverlapping subimages, thus creating a test data-characterize wavelet coefficients. For comparison, we also
base of 640 texture images. Furthermore, to eliminate the effsbbw the performance of the common approach that uses the
of common range in the gray level of subimages from a samavelet subband energies, i.&; andL2 norms, from each
original image and to make the retrieval task less biased, eatlbband as extracted features and uses the variance-weighted
subimage was individually normalized to zero-mean and uriiuclidean distance between feature vectors for similarity mea-
variance before the processing. surement (for more details of this method, see [5], [9]).

The second image collection is used to test the rotation-in-We observe that all of the statistical methods outperform the
variant property of WD-HMMs. It consists of 1312 x 512 traditional energy-based method. The scalar WD-HMM method
Brodatz texture images that were rotated to various dedpees gives compatible results to the GGD method, whereas the vector
fore being digitized [35]. Fig. 4 displays the original textures atvD-HMM method significantly improves the retrieval rates in
the @ or nonrotated position. From these images, we first comany texture classes, as well on average (Table Il). Focusing
struct thenonrotatedmage set by dividing each of the originalon the WD-HMM methods, we see that the vector model out-
0° image into 16128 x 128 nonoverlapping subimages. Nextperforms the scalar model in almost all texture classes. This is
we construct theotatedimage set by taking four nonoverlap-consistent with the argument in Section IlI-B that the vector
ping 128 x 128 subimages each from the original images at @nodel is more precise in characterizing textures as it includes
30, 60, and 120 Both databases contain 208 images that contige inter-orientation dependency information.
from 13 texture classes. Thonrotatedset serves as the ideal
case, where all images in a same class have the same oriehtaEffectiveness of Rotation Invariance

tion, for therotatedset. In the second series of experiments, we test the rotation in-

In retrieval experiments, a simulated query image is any Opgriant property of the steerable WD-HMM that is described
of 128 x 128 images in a database. The relevant images fg{ Section IV-B. We use a steerable pyramid having two direc-
each query are defined as the other 15 subimages from the sg@\gs and three levels of decomposition. Fig. 6 shows the com-
original image. Following [5] we evaluated the performance ifarison of the performances in average percentages of retrieving
terms of the percentage of relevant images among the topgfevant images for theonrotatedset, therotated setwithout
retrieved images. using rotation invariant model, and thetatedsetwith rotation

) invariant model.

B. Effectiveness of WD-HMMs First, we compare the retrieval results obtained fronmibre-

For this series of experiments, we used the standard discretiatedset to thaotatedset,without using rotation invariance.
wavelet transform (DWT) with Haar filters and three deconmie see that textures which have similar results for both sets
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Fig. 5. Average retrieval rates for individual texture class using standard wavelet transform with Haar filters and three decomposition levels.
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Fig. 6. Average retrieval rates for individual texture class using order one steerable filters and three decomposition hevetstétedset, rotatedsetwithout
rotation invariance antbtatedsetwith rotation invariance.

(Bark, Bubbles, Grass, Weave) are the ones that have no str&adfia, Straw, Water, Wood, Wool) are the ones that are strongly
direction, as those textures are not affected by rotation. Modirectional.

over they all have very distinct texture patterns. Textures whichBy contrast, the retrieval results obtained for theatedset
are most seriously affected by rotation (Brick, Leather, Pigskiwjth rotation invariance are almost the same as those from the
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TABLE I
AVERAGE RETRIEVAL RATES OVER THE WHOLE DATABASE FOR
DIFFERENTMETHODS INFIG. 5

LI+12
GGD
scalar WD-HMM
vector WD-HMM

64.83
75.73
76.51
80.05

(10]

(11]

[12]

nonrotatedset. Thus, the rotation invariant model is indeed in-[13]
sensitive to the orientation of the analyzed image. The results

obtained by exploiting the rotation invariance are very conclu
sive.

The average retrieval rate for tfieatedset improves by

(14]

36.68% when the rotation invariance is effective. The improve-
ment is more striking for the strong directional textures.

VIl. CONCLUSION AND DISCUSSION

(15]

[16]

We have introduced a new statistical model for images, the
vector WD-HMM, as an extension of the WD-HMM from 1-D

to 2-D. The model captures both the subband marginal dis-

[17]

tributions and the dependencies of wavelet coefficients across
scales and orientations. By applying the vector WD-HMM to
the steerable pyramid, we obtain a steerable model that C%S]
be diagonalized to become rotation invariant. To facilitate the

use of WD-HMMs in the image retrieval application, we de- [19]
rive a fast algorithm to approximate the Kullback—Leibler dis-
tance between two WD-HMMs. Experimental results indicateo)
that the new WD-HMM improves the texture retrieval perfor-
mance compared to the independent subband model. The rotat!
tion invariant property was also tested, and results obtained wefg
consistent with the theory.

ACKNOWLEDGMENT

(23]

The authors would like to thank A. Lozano for her help with 24
the experiments.

REFERENCES

(25]

[1] A. Laine and J. Fan, “Texture classification by wavelet packet sig- [26]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

El

natures,” IEEE Trans. Pattern Anal. Machine Intellvol. 15, pp.
1186-1191, Nov. 1993.

T. Chang and C.-C. J. Kuo, “Texture analysis and classification with
tree-structure wavelet transformlEEE Trans. Image Processingol.

2, pp. 429-441, Oct. 1993.

J. R. Smith and S.-F. Chang, “Transform features for texture classifica*

tion and discrimination in large image databasesPiac. IEEE ICIR,
1994.

M. Unser, “Texture classification and segmentation using wavelet
frames,”IEEE Trans. Image Progvol. 4, pp. 1549-1560, 1995.

B. S. Manjunath and W. Y. Ma, “Texture features for browsing and re-
trieval of image data,TEEE Trans. Pattern Anal. Machine Intelkol.

18, pp. 837-842, Aug. 1996.

G. V. Wouwer, P. Scheunders, and D. V. Dyck, “Statistical texture char-
acterization from discrete wavelet representatiolSEZE Trans. Image
Processingvol. 8, pp. 592-598, Apr. 1999.

T. Randen and J. H. Husoy, “Filtering for texture classification: A com-
parative study,IEEE Trans. Pattern Anal. Machine Intelkol. 21, pp.
291-310, Apr. 1999.

A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain,
“Content-based image retrieval at the end of the early yedEEE
Trans. Pattern Anal. Machine Intellol. 22, pp. 1349-1380, Dec. 2000.
M. N. Do and M. Vetterli, “Wavelet-based texture retrieval using gen-
eralized Gaussian density and Kullback—Leibler distan&EE Trans.
Image Processingrol. 11, pp. 146-158, Feb. 2002.

(27]

[28]
(29]
(30]

(31]

(32]

(33]

(34]

(35]

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 4, DECEMBER 2002

——, “Texture similarity measurement using Kullback—Leibler distance
onwavelet subbands,” Proc. IEEE ICIP, Vancouver, BC, Canada, Sep.
2000.

M. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet-based
signal processing using hidden Markov model&EE Trans. Signal
Processing, Special Issue on Wavelets and Filterbanék 46, pp.
886-902, Apr. 1998.

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger,
“Shiftable multiscale transformsfEEE Transactions on Information
Theory, Special Issue on Wavelet Transforms and Multiresolution
Signal Analysisvol. 38, pp. 587-607, March 1992.

R. L. Kashyap and A. Khotanzed, “A model-based method for rotation
invariant texture classificationJEEE Trans. Pattern Anal. Machine In-
tell., vol. 8, pp. 472—-481, July 1986.

J.-L. Chen and A. Kundu, “Rotational and gray-scale transform invariant
texture identification using wavelet decomposition and hidden Markov
model,”IEEE Trans. Pattern Anal. Machine Intelol. 16, pp. 208—-214,
Feb. 1994.

H. Greenspan, S. Belongie, R. Goodman, and P. Perona, “Rotation in-
variant texture recognition using a steerable pyramidPrioc. Int. Conf.
Pattern Recognition1994, pp. 162—-167.

G. M. Haley and B. S. Manjunath, “Rotation-invariant texture classi-
fication using a complete space-frequency mod@EE Trans. Image
Processingvol. 8, pp. 255-269, Feb. 1999.

W.-R. Wu and S.-C. Wei, “Rotation and gray-scale transform-invariant
texture classification using spiral resampling, subband demposition,
and hidden Markov modelfEEE Trans. Image Processingol. 5, pp.
1423-1434, Oct. 1996.

S. R. Fountain, T. N. Tan, and K. D. Baker, “Comparative study of ro-
tation invariant classification and retrieval of texture images,Pioc.
British Computer Vision Conf1998.

E. P. Simoncelli and W. T. Freeman, “The steerable pyramid: A flex-
ible architecture for multi-scale derivative computation,Proc. IEEE
ICIP, Washington, DC, 1995.

T. M. Cover and J. A. Thomaglements of Information Theary New
York: Wiley, 1991.

S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory Englewood Cliffs, NJ: Prentice-Hall, 1993.

S. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation/EEE Trans. Pattern Anal. Machine Intell.
vol. 11, pp. 674-693, July 1989.

H. Choiand R. G. Baraniuk, “Image segmentation using wavelet-domain
classification,” inProc. SPIE, Math. Model., Bayesian Estim. Inv. Prpbl.
vol. 3816, 1999, pp. 306—320.

J. K. Romberg, H. Choi, and R. G. Baraniuk, “Bayesian tree-structured
image modeling using wavelet-domain hidden Markov model$tat.

of SPIE, Math. Model., Bayesian Estim. Inv. Prolbl. 3816, 1999, pp.
306-320.

E. P. Simoncelli and J. Portilla, “Texture characterization via joint sta-
tistics of wavelet coefficient magnitudes,” Rroc. IEEE ICIP, 1998.

S. Mallat, A Wavelet Tour of Signal Processingnd ed. New York:
Academic, 1999.

G. Fan and X.-G. Xia, “Maximum likelihood texture analysis and clas-
sification using wavelet-domain hidden Markov models,Piroc. 34th
Asilomar Conf. Signals, Systems, and Compu2060.

J. R. Bergen and E. H. Adelson, “Theories of visual texture perception,”
in Spatial VisionD. Regan, Ed. Boca Raton, FL: CRC Press, 1991.
R. A. Horn and C. R. JohnsoMatrix Analysis Cambridge, U.K.:
Cambridge Univ. Press, 1985.

B. H. Juang and L. R. Rabiner, “A probabilistic distance measure for
hidden Markov models AT&T Tech. J.vol. 64, pp. 391-408, Feb. 1985.
B. Hendricks, H. Choi, and R. G. Baraniuk, “Analysis of texture seg-
mentation using wavelet-domain hidden Markov trees,Pinc. 33rd
Asilomar ConferencePacific Grove, CA, Oct. 1999.

M. N. Do, “Fast approximation of Kullback—Leibler distance for depen-
dence trees and hidden Markov model&EE Signal Processing Lett.

to be published.

Y. Singer and M. K. Warmuth, “Batch and on-line parameter estimation
of Gaussian mixtures based on the joint entropyAdvances in Neural
Information Processing Systems 11 (NIPS;98)98, pp. 578-584.

MIT Vision and Modeling Group, Cambridge, MA. Vision texture. [On-
line]. Available: http://vismod.www.media.mit.edu.

Univ. Southern California, Signal and Image Processing Insti-
tute, Los Angeles, MA. Rotated textures. [Online]. Available:
http://sipi.usc.edu/services/database/Database.html.



DO AND VETTERLI: ROTATION INVARIANT TEXTURE CHARACTERIZATION

Minh N. Do (S'01-M’02) was born in Thanh Hoa,
Vietnam, in 1974. He received the B.Eng. degree i
computer engineering (with first class honors) fro
the University of Canberra, Australia, in 1997, an
the Dr.Sci. degree in communication systems fron
the Swiss Federal Institute of Technology Lausann
(EPFL), Switzerland, in 2001.

Since 2002, he has been an Assistant Profess
with the Department of Electrical and Compute
Engineering and a Research Assistant Profess(
with the Coordinated Science Laboratory and the

527

Martin Vetterli (M'86—SM'90-F'95) received the
Dipl. El.-Ing. degree from ETH Zirich (ETHZ),
Switzerland, in 1981, the M.S. degree from Stanford
University, Stanford, CA, in 1982, and the Dr. Sci.
degree from EPF Lausanne (EPFL), Switzerland, in
1986.

He was a Research Assistant at Stanford and
EPFL, and has worked for Siemens and AT&T
Bell Laboratories. In 1986, he joined Columbia
University, New York, where he was last an
Associate Professor of electrical engineering and

Beckman Institute for Advanced Science and Technology, University of lllinoo-director of the Image and Advanced Television Laboratory. In 1993, he
at Urbana-Champaign. His research interests include wavelets and harmgoiieed the University of California at Berkeley, where he was a Professor
analysis, multirate systems, image and multidimensional signal processimgthe Department of Electrical Engineering and Computer Sciences until

and visual information representation and retrieval.

1997, and holds now Adjunct Professor position. Since 1995, he is a Pro-

Dr. Do received a Silver Medal from the 32nd International Mathematicé¢ssor of communication systems at EPF Lausanne, Switzerland, where he
Olympiad in Sweden (1991), a University Medal from the University of Canchaired the Communications Systems Division (1996-1997), and heads of
berra (1997), the best doctoral thesis award from the Swiss Federal Institutéhef Audio-Visual Communications Laboratory. He held visiting positions at
Technology Lausanne (2001), and a Career award from the National ScieBdHZ (1990) and Stanford (1998). He is on the editorial boardémfals

Foundation (2003).

of Telecommunications, Applied and Computational Harmonic Analgsid

The Journal of Fourier Analysis and Applicationde and is the co-author,
with J. Kovacevic, of the bookVavelets and Subband Codiignglewood
Cliffs, NJ: Prentice-Hall, 1995). He has published about 85 journal papers on
a variety of topics in signal and image processing and holds five patents. His
research interests include wavelets, multirate signal processing, computational
complexity, signal processing for telecommunications, digital video processing
and compression and wireless video communications.

Dr. Vetterli is a member of SIAM, and was the Area Editor for Speech,
Image, Video, and Signal Processing of the IEERANSACTIONS ON
COMMUNICATIONS. He received the Best Paper Award of EURASIP in 1984
for his paper on multidimensional subband coding, the Research Prize of the
Brown Bovery Corporation (Switzerland) in 1986 for his doctoral thesis, the
IEEE Signal Processing Society’s Senior Award in 1991 and in 1996 (for
papers with D. LeGall and K. Ramchandran, respectively), and is a IEEE Signal
Processing Distinguished lecturer in 1999. He received the Swiss National
Latsis Prize in 1996 and the SPIE Presidential Award in 1999. He is a member
of the Swiss Council on Science and Technology. He was a plenary speaker
at various conferences (e.g., 1992 IEEE ICASSP).



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


