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performance for rates close to the channel capacity. However, for low
rates the sliding window approach exceeds Hashimoto’s error expo-
nent. Comparing this to the block coding case the result may be un-
expected, because in the block code case all decision feedback error
exponents are smaller or equal to Forney’s. In fact, Hashimoto’s result
is directly related to Forney’s through the so-called inverse concatena-
tion construction [15]. The improvements compared with Hashimoto’s
bound can be explained due to the different code ensembles under con-
sideration. We considered unit memory codes while Hashimoto consid-
ered ordinary (multimemory) convolutional codes. Yet, it was shown
by Thommesen and Justesen [8] that unit memory codes have better
distance properties and better error exponents with maximum-likeli-
hood decoding. Hence, Hashimoto’s composite scheme could possibly
be improved by using unit memory codes, however with the expense of
a much higher decoding complexity. The complexity of Hashimoto’s
scheme increases like the decoding complexity of Viterbi decoding
with exponential order 2Rn+� = 2Rn(m+1), where � = km = Rnm
denotes the overall constraint length. For ordinary convolutional codes
with a fixed value of Rn the complexity is determined by the term
2� . For Viterbi decoding of unit memory codes we have a complexity
order 2Rn+� = 22� . On the other hand, if we employ bounded dis-
tance decoding as in [17] (cf. [20]) the decoding complexity with Al-
gorithm 1 increases asymptotically like 2Rn(1�C(�)) = 2�(1�C(�)),
whereC(�) = 1�h2(�) is the channel capacity of the binary symmet-
rical channel with crossover probability �. The reduction in complexity
depends on the channel. In the worst case, that is for rates close to ca-
pacity, the complexity order is 2�(1�R). This complexity order is for
all rates R > 0 smaller than the complexity order of Viterbi decoding
with ordinary convolutional codes.
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Sampling and Exact Reconstruction of Bandlimited Signals
With Additive Shot Noise
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Abstract—In this correspondence, we consider sampling continuous-time
periodic bandlimited signals which contain additive shot noise. The clas-
sical sampling scheme does not perfectly recover these particular nonban-
dlimited signals but only reconstructs a lowpass filtered approximation. By
modeling the shot noise as a stream of Dirac pulses, we first show that the
sum of a bandlimited signal with a stream of Dirac pulses falls into the class
of signals that contain a finite rate of innovation, that is, a finite number of
degrees of freedom. Second, by taking into account the degrees of freedom
of the bandlimited signal in the sampling and reconstruction scheme de-
veloped previously for streams of Dirac pulses, we derive a sampling and
perfect reconstruction scheme for the bandlimited signal with additive shot
noise.

Index Terms—Annihilating filters, degrees of freedom, Dirac pulses, non-
bandlimited, rate of innovation, sampling, shot noise.

I. INTRODUCTION

Sampling of bandlimited signals has been a subject of interest for
more than half a century [1], [5]. The classical sampling theorem
states that a continuous-time signal x(t) bandlimited to [�!m; !m]
is uniquely represented by a uniform set of samples x[n] = x(nT )
taken T seconds apart with T � �=!m, that is, the sampling rate is
greater than or equal to the bandwidth of the signal. If the bandlimited
signal contains additive shot noise as illustrated in Fig. 1(a) then it is
no longer bandlimited (see Fig. 1(b)).
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Fig. 1. (a) Periodic bandlimited signal with additive shot noise, x(t) = xBL(t) + xD(t), � = 256, L = 7, K = 4; (b) Spectrum of periodic bandlimited
signal with additive shot noise, jX[m]j = jXBL[m] + XD[m]j.

The classical sampling theorem cannot be applied anymore, and the
standard practice is to filter the noisy data with a sinc function of band-
width 2!m, which yields only an approximation of the initial bandlim-
ited signal. Thus a new sampling and perfect reconstruction scheme
must be developed.

In [4], [7], [8] sampling theorems for particular nonbandlimited
signals, namely discrete-time Kronecker pulses and continuous-time
streams of Dirac pulses, nonuniform splines and piecewise polynomial
signals, were given. All of these signals belong to a certain class of
signals which have a finite rate of innovation �, where the rate of
innovation is defined as the number of degrees of freedom per unit
of time. Bandlimited signals also have a finite rate of innovation,
� = !

�
. Thus it follows that the sum of a bandlimited signal with a

stream of Dirac pulses also belongs to the class of signals with a finite
rate of innovation. A sampling and perfect reconstruction scheme for
such a signal will be exhibited in this paper.

The paper is organized as follows. Section II recalls the sampling
and exact reconstruction method for periodic streams of Dirac pulses
as given in [6]; Section III presents a sampling theorem for the sum
of a bandlimited signal and streams of Dirac pulses and to conclude
we mention that the results can be extended to the sum of bandlimited
signals with piecewise polynomials in Section IV.

II. PERIODIC STREAMS OF DIRAC PULSES

Shot noise can be modeled as a stream of Dirac pulses. Thus to re-
move shot noise from a bandlimited signal we first show how to sample
and perfectly reconstruct a periodic stream of Dirac pulses.

Consider the signal, xD(t), which is a stream of K weighted Dirac
pulses periodized at �

xD(t) =
n2

cn �(t� tn) (1)

where tn+K= tn + � and cn+K = cn

=

K�1

k=0

ck
n2

�(t� tk � n� )

=

K�1

k=0

ck
1

�
m2

ei(2�m(t�t )=�) (2)

from Poisson's summation formula

=
m2

XD[m] ei2�mt=� (3)

where

XD[m]=
1

�

�

0

xD(t)e
�i dt=

1

�

K�1

k=0

ck e
�i ; m 2

(4)

are the corresponding continuous-time Fourier series (CTFS) which
completely define the periodic signal xD(t). From (4), the number
of degrees of freedom, in one period � , is K from the locations
ftkgk=0;...;K�1 and K from the weights fckgk=0;...;K�1 therefore
the rate of innovation of xD(t) is � = 2K=� . In the proof of the
following theorem we show that 2K contiguous CTFS XD[m] are
sufficient to perfectly reconstruct the periodic stream of Dirac pulses.
We will also show that these 2K contiguous CTFS can be obtained
from a uniform set of samples of the lowpass approximation of the
periodic stream of Dirac pulses.

The sampling and reconstruction method for bandlimited signals
with additive shot noise will be based on this theorem and it is thus
worthwhile for the reader to go through the proof.
Theorem 1: Consider a �–periodic stream of K weighted Dirac

pulses xD(t) as defined in (1) with rate of innovation � = 2K
�

. Con-
sider a sinc1 sampling kernel hB(t) = B sinc(Bt) with bandwidth
2B� where B is greater than or equal to the rate of innovation �,
B � �. If the lowpass filtered signal, y(t) = (hB � xD)(t) is sampled
at N uniform locations t = nT; n = 0; . . . ; N � 1, where T = �

N
,

N � 2M + 1 and M = bB�
2
c, then the samples of the uniform set

y(nT ) = yn =< hB(t� nT ); xD(t) >; n = 0; . . . ; N � 1 (5)

where < �; � > denotes the inner product,2 are sufficient to perfectly
reconstruct xD(t).

Proof: The proof is done in two steps. First, we must show that
N = 2M+1 samples yn; n = 0; . . . ; N�1, are sufficient to determine
the CTFS coefficients XD[m]; m 2 [�M;M ] and second we show
thatXD[m]; m 2 [�M;M ] are sufficient to determine theK locations
ftkgk=0;...;K�1 and K weights fckgk=0;...;K�1 of the signal xD(t).

Letting B = � = 2K=� then M = bB�
2
c = K and substitute (3)

into (5), we obtain

yn =
m2

XD[m] < hB(t� nT ); ei > (6)

=
m2

XD[m]HB
2�m

�
ei (7)

=

K

m=�K

XD[m] ei (8)

where HB(!) = Rect( !
2�B

) =
1 if j!j � �B

0 else
is the Fourier

transform of hB(t). This Vandermonde system of equations is invert-

1The sinc definition used here is sinc(t) = sin(�t)=�t.
2Note that the inner product is defined by

< f(t); g(t) >=

1

�1

f(t)g�(t)dt:
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Fig. 2. (a) Periodic bandlimited signal with additive shot noise, x(t) = xBL(t)+xD(t), � = 512,L = 25,K = 16; (b) Reconstructed bandlimited signal
after filtering x(t) with a sinc filter of bandwidth 2L+ 1 (dotted line), relative MSE = 0:2452, and our method (solid line) relative MSE = 6:0734� 10�6.

ible since the N = 2M + 1 equations are of maximal rank 2M + 1.
Solving the linear system of equations in (8) will lead us to the 2K+1
contiguous CTFS XD[m];m = �K; . . . ; K of which 2K contiguous
values are sufficient. Consider a filter A[m] whose z–transform has K

zeros at uk = e�i , that is

A(z) =

K�1

k=0

(1� uk z
�1): (9)

Since the CTFS of the signal xD(t) is a linear combination of K com-
plex exponentials uk , that is

XD[m] =
1

�

K�1

k=0

ck u
m
k (10)

it follows thatA[m] is an annihilating filter3 and satisfies the following
condition:

A[m] �XD[m] = 0: (11)

The coefficients of the annihilating filter are found solving (11) which
is equivalent to the following Toeplitz linear system of equations:

K

k=0

A[k]XD[m� k] = 0;m = �K; . . . ; K: (12)

Thus once the annihilating filter coefficients A[m]; m = 0; . . . ; K ,
are found, the locations ftkgk=0;...;K�1 of the Dirac pulses are given
by the roots of A(z) and the associated weights fckgk=0;...;K�1 are
obtained by solving the Vandermonde linear system of equations in
(10) for m = 1; . . . ; K .

III. BANDLIMITED SIGNALS WITH ADDITIVE SHOT NOISE

Bandlimited signals with additive shot noise will be modeled as the
sum of a bandlimited signal with a stream of Dirac pulses. In the pre-
vious section it was shown that a periodic stream of K Dirac pulses
can be perfectly reconstructed from 2K contiguous CTFS coefficients
that were obtained from a uniform set of samples of the lowpass filtered
approximation of the stream of Dirac pulses. In a similar way, next we
present a sampling and perfect reconstruction method for bandlimited
signals with additive shot noise.

Consider a � -periodic signal, x(t), defined as the sum of a � -periodic
L-bandlimited signal, xBL(t), with a � -periodic stream of K Dirac
pulses xD(t), that is

x(t) = xBL(t) + xD(t) (13)

3This is also known as the error locator polynomial in error correction coding
[2].

where an L-bandlimited signal xBL(t) is such that its CTFS
XBL[m] = 0;8m 62 [�L;L] and the stream of K Dirac pulses,
xD(t), is defined in (1). The corresponding CTFS coefficients of the
bandlimited signal with additive shot noise x(t) are defined by

X[m] =
XBL[m] +XD[m] if m 2 [�L;L]

XD[m] if m 62 [�L;L]
(14)

and the rate of innovation is given by

� =
2L+ 1 + 2K

�
(15)

where (2L+1)=� and 2K=� are the number of degrees of freedom of
the bandlimited signal and the stream of K Dirac pulses, respectively.

Similarly to Section II the bandlimited signal with additive shot
noise, x(t), will be reconstructed from a contiguous set of its CTFS
coefficients, X[m];m 2 [�M;M ], that will be obtained from a
uniform set of samples of the low-pass approximation of the ban-
dlimited with additive shot noise signal, x(t). Recall that the periodic
stream of K Dirac pulses xD(t) is perfectly recovered from any 2K
contiguous frequency values XD[m]. Since the CTFS coefficients
of the bandlimited signal, XBL[m], are equal to zero outside of the
band [�L;L], it follows that the CTFS coefficients of the bandlimited
signal with additive shot noise, X[m], outside of the band [�L;L]
are exactly equal to the CTFS coefficients of the stream of K Dirac
pulses, that is

X[m] = XD[m]; m 62 [�L;L]: (16)

Therefore, in order to recover the stream of Dirac pulses it is sufficient
to take 2K contiguous CTFS coefficients X[m] outside of the band
[�L;L], for instance in [L+ 1; L+ 2K]. Once we have the CTFS of
the signal X[m], with m 2 [�2K � L;L + 2K] then the CTFS co-
efficients of the bandlimited signal are obtained by subtracting XD[m]
from X[m] for m 2 [�L;L] and thus perfectly recovering the ban-
dlimited signal xBL(t). The next theorem follows from the result in
Theorem 1.
Theorem 2: Consider a �–periodic L–bandlimited signal added to

a periodic stream ofK weighted Dirac pulses, x(t) = xBL(t)+xD(t)
with rate of innovation � = 2L+1+2K

�
. Take a sinc sampling kernel

hB(t) = B sinc(Bt) such that

B � � =
2L+ 1 + 2K

�
: (17)

If the low-pass filtered signal y(t) = (hB � x)(t) is sampled at N
uniform locations t = nT; n = 0; . . . ; N � 1, where T = �

N
, N �

2M + 1 and M = bB�
2
c, then the samples of the uniform set

y(nT ) = yn =< hB(t� nT ); x(t) >; n = 0; . . . ; N � 1 (18)

are sufficient to perfectly reconstruct x(t).
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Proof: The first step of the proof is exactly the same as the one
in Theorem 1.

Let B = 2(L+2K)
�

then M = bB�
2
c = L+ 2K and similarly to (8)

we solve the following Vandermonde system of equations:

yn =

L+2K

m=�(L+2K)

X[m] ei (19)

which will lead to the CTFS coefficientsX[m];m 2 [�(L+2K); L+
2K].

Second, we show that X[m]; m 2 [�(L+ 2K); L + 2K] are suf-
ficient4 to reconstruct the bandlimited with additive shot noise signal
x(t). Consider the spectral values X[m]; m 2 [�(L+2K); L+2K]
then we have

X[m] =
XBL[m] +XD[m] m 2 [�L;L]

XD[m] m 2 [L+ 1; L+ 2K]
: (20)

From Theorem 1 the periodic stream of K Dirac pulses xD(t) is per-
fectly recovered from 2K contiguous CTFS XD[m] = X[m];m 2
[L + 1; L + 2K]. Then, the 2L + 1 spectral components of the ban-
dlimited signal are given by

XBL[m] = X[m]�XD[m]; m 2 [�L;L] (21)

which uniquely defines the bandlimited signal xBL(t). Thus the ban-
dlimited signal with additive shot noise x(t) = xBL(t) + xD(t) is
perfectly recovered.

As an example of application of Theorem 2, we show how to recover
a bandlimited signal corrupted by additive shot noise and compare our
method to the standard approach. Consider a � = 512-periodic ban-
dlimited signal with bandwidth 2L + 1, where L = 25 with additive
shot noise made up of K = 16 Dirac pulses as illustrated in Fig. 2(a).
Fig. 2(b) illustrates the reconstructed bandlimited signal after filtering
the noisy data with a sinc function of bandwidth 2L+ 1 (dotted line)
and our reconstruction scheme (solid line). The relative mean squared
errors are = 0:2452 and 6:0734 � 10�6, respectively.

IV. CONCLUSION

As shown in [6], Theorem 1 can be extended to continuous-time
periodic nonuniform splines and piecewise polynomials. These results
could be further generalized to the sum of bandlimited and nonuniform
splines or piecewise polynomial signals by modifying the condition in
(17). In [3], these results were extended to the sum of bandlimited and
nonuniform spline signals and applied to compression of ECG signals.
We are currently investigating sampling and reconstruction of other
electrobiomedical signals, for example EEG and ENG signals.
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Abstract—In this correspondence, we address the derivation of joint
distributions and correlation coefficients for seven pairs of statistics used
commonly in a number of signal detection schemes. The upper and lower
bounds of the correlation coefficients are obtained, and relationships
among the correlation coefficients are derived. Explicit values of the
correlation coefficients evaluated for some specific noise distributions are
shown for easy reference.

Index Terms—Correlation coefficient, magnitude, magnitude rank, rank,
sign.

I. INTRODUCTION

A statistic is to convey (hopefully desirable) information from orig-
inal observations. It is well-known that using only partial information
via statistics is sometimes beneficial for signal detection. Clearly, sev-
eral statistics have been used and explored for signal detection in a large
volume of investigations, where it has been shown that signal detectors
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