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Abstract

We consider the design of optimal strategies for joint
power adaptation, rate adaptation and scheduling in a
multi-hop wireless network. Most existing strategies con-
trol either power and scheduling, or rates and schedul-
ing, but not all three together as we do. We assume the
underlying physical layer is in the linear regime (the rate
of a link can be approximated by a linear function of the
signal-to-interference-and-noise ratio), like in time hopping
UWB (TH-UWB) and low gain CDMA systems, and that
it allows fine-grained rate adaptation, like in 802.11a/g,
HDR/CDMA, TH-UWB. The goal is to find properties of the
power control in an optimal joint design. Our main finding
is that optimal power control is simple 0 − P MAX power
control, i.e. when a node is sending it uses the maxi-
mum transmitting power allowed. We consider both high
rate networks where the goal is to maximize rates un-
der power constraints and low power networks where the
goal is to minimize average consumed power while meet-
ing minimum rate constraints. We prove analytically that
in both scenarios the optimal can always be attained with
0−P MAXpower allocation. Moreover, we prove that, when
maximizing rates, and if power constraints are on peak and
not average, 0 − P MAX is the only optimal power control
strategy, and any other is strictly suboptimal.

1 Introduction

1.1 Power Control and Optimal Wireless MAC
Design

The first wireless MAC protocols for multi-hop networks
were designed to control only medium-access. A typical
example is the original 802.11 MAC. It always uses maxi-
mum power for transmitting a packet and aims to establish
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communication on a fixed, predefined link rate. Then sev-
eral improvements to the initial approach were proposed.
According to the type of improvement, the MAC protocols
can be divided globally in two groups. The former group
of protocols [19, 8, 11] is focused on rate adaptation: the
transmission power is still kept fixed, but the rate is adapted
to the actual channel conditions and the amount of interfer-
ence. The latter group of protocols [10, 12, 14, 13] consid-
ers power adaptation while keeping the rates fixed. How-
ever, there are no MAC protocols that adapt both rate and
power at the same time, and the fundamental issues in this
joint adaptation problem are not well understood. In this pa-
per we make a first step by showing that, perhaps contrary
to intuition, there is a whole class of networks (those oper-
ating in the linear rate function regime, see paragraph 1.3)
for which power control is not required, or may even be
suboptimal.

We consider a wireless network with arbitrary schedul-
ing, rate adaptation and routing strategies, and we are inter-
ested in characterizing the properties of the optimal power
allocation strategy in this setting.

1.2 Rate Adaptation and Rate Function

The physical layer of a wireless link defines communica-
tion parameters such as bandwidth, modulation and coding,
which can be used to establish communication with some
level of bit or packet errors. One of the most important pa-
rameters of the physical layer is signal-to-interference-and-
noise ratio (SINR) at the receiver. The higher the SINR is,
the higher communication rates can be attained, and one of
the goals of networking design is to efficiently track and
adapt SINRs and/or rates on links.

Some of the existing wireless systems use fixed commu-
nication rates. A typical example is a cellular voice net-
work, where one voice channel has a fixed rate. There, a
goal of the system is to maintain the SINR of each user
above a threshold, such that there are no outages. Initially,
the first version of 802.11 used the same approach. In con-
trast, most of the recently proposed wireless physical lay-
ers allow rates to vary with SINR. Typical examples are

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147900537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


802.11a/g [1], CDMA/HDR [15], and TH-UWB [23]. The
physical layers use adaptive modulation [16, 1] and/or adap-
tive coding [23] to adjust the rate to the SINR at the receiver
while maintaining a constant, guaranteed bit-error rate. The
function that gives the maximum achievable rate for a given
SINR is called the rate function. Examples of protocols that
use rate adaptation can be found in [19, 8, 11].

1.3 Linear Regime
The rate function of an efficiently designed system is a

concave function of SINR. Furthermore, in many cases, es-
pecially when bandwidth is large or the target SINR is low,
it is a linear function. Some examples of physical layers,
where rate function is linear, are TH-UWB [23] and low or
moderate-gain CDMA [4]. These physical layers are in lin-
ear regime in the whole operational SINR range due to a
very large bandwidth, and they can operate on high as well
as low data rates. Also, physical layers with non-linear rate
functions, like 802.11a/g, may operate in the linear regime
if the received power is low (e.g. distances between nodes
are large). Our findings in this paper are for networks whose
physical layers operates in the linear regime.

1.4 Rate Maximization and Power Minimization
There are two typical deployment scenarios for wireless

networks: high bit-rate networks and low power consump-
tion networks. The first one considers real-time video and
audio communication, web surfing, data transfer, and the
like. The primary design focus here is to maximize avail-
able rates, subject to power constraints. Typical examples
of this type of networks are 802.11 and 802.15.3a wireless
LANs and CDMA-HDR cellular systems. We call this case
rate maximization scenario; here we are interested in the set
of feasible rates.

The second scenario is focused on low power networks
like sensor networks or networks of computer peripherals.
The main goal is to maximize network lifetime, or equiva-
lently, to minimize average consumed power. At the same
time, end-to-end flow rates are lower bounded by appli-
cation requests, and each sender typically has a minimum
amount of information to send to a destination in a given
time. Here we are interested in minimizing power consump-
tion, subject to minimum long term rate constraints. Long-
term average power consumption is defined in Section 2.4.
We call this case power minimization scenario; here we are
interested in the set of feasible power allocations.

Different performance objectives for comparing the fea-
sible sets in both scenarios are presented in detail in Sec-
tion 2.5.

1.5 Power Control in Existing Systems
The goal of power control is to determine which power a

transmitter should use when transmitting a packet. The op-

timal transmitted power of a packet depends on a large num-
ber of parameters, such as the distance from the destination,
the background noise, the amount of interference incurred
by concurrent transmissions, etc. In an ad-hoc network, the
optimal power also depends on transmitting powers of other
concurrently scheduled links. Since power control is tightly
coupled with scheduling, it is typically implemented within
the MAC protocol.

Perhaps the simplest way to choose the transmitted
power is not to do any power control. In other words,
whenever a packet is sent, it is sent with maximum al-
lowed power. We call this 0 − P MAX power control. The
0 − P MAXpower control was widely used in the design of
the first wireless MAC protocols, such as 802.11, due to its
simplicity, and due to the fact that the optimal power control
was not well understood.

Much of the research on power control is focused on
voice cellular systems. Those systems typically use quasi-
orthogonal channels for different users (e.g. CDMA spread-
ing) in order to decrease multi-user interference, i.e. in-
terference between competing users in the same network.
However, the orthogonality of channels is not complete,
and some amount of interference between users cannot be
avoided (this is captured by the orthogonality factor in Sec-
tion 3.1). Classically, the physical layer of CDMA systems
is designed to operate when multi-user interference is small;
otherwise (this is is known as the near-far problem), signal
acquisition and decoding do not work. This is why such
systems must employ some form of power control; for ex-
ample, on the CDMA-HDR uplink, the near-far problem is
avoided by equalizing all received powers at the base sta-
tion. Some pioneering work in this area can be found in
[7, 2, 24, 13]. These papers propose iterative algorithms that
converge to a power allocation where all nodes’ SINRs are
above thresholds, should such allocation be possible. These
ideas have been extended to multi-hop wireless networks in
[6].

An attempt to design an optimal power control protocol
for 802.11 networks has been made in [10, 12, 14]. They
consider the 802.11b physical layer with a fixed rate, and
the common conclusion is that the power should be adjusted
to the minimal value required to be successfully decoded at
the destination. The above power control protocols are op-
timal only when the physical layer offers a fixed rate, re-
gardless of the signal-to-noise level at the receiver. Not too
much work has been done on power control for networks
with variable link rates. An adaptive power control mech-
anism for cellular networks with variable link rates is pre-
sented in [16]. However, this mechanism is adapted to voice
traffic. It does not consider scheduling and thus leaves out
an important design parameter of data wireless networks.

Several power adaptation protocols have been proposed
for power minimization scenarios. A typical example is
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given in [18] where the power of a link is adjusted to a min-
imum necessary to reach a destination, and the routing is
chosen to minimize the overall power dissipation.

In most of these existing systems, the benefits of power
control derive from assumptions on the physical layer (such
as fixed rate coding, or the need to avoid near-far problems).
It is however possible to do without such assumptions:
some examples are the CDMA-HDR downlink (which does
rate adaptation), or TH-UWB systems with interference
mitigation [11]. This motivates us to pose the problem of
optimal MAC design in general terms, assuming power con-
trol is an option but not a requirement. Protocols that con-
sider rate adaptation, power adaptation and scheduling in
this general setting have been proposed in [4, 5]: they fo-
cus on low processing gain CDMA or UWB networks (thus
linear regime) and show that 0 − P MAX power control is
optimal when the objective is to maximize the total sum of
rates. However this objective is known to be defective [17],
as it requires that the most expensive links be shut down
completely. We go beyond these results and establish the
optimality of 0−P MAXfor any performance objective, and
the non-optimality of any non 0−P MAXpower control for
rate maximization scenarios.

1.6 Performance Comparison
For different power control strategies, we are interested

in comparing the resulting rate allocations. By using dif-
ferent scheduling strategies with one power control strat-
egy however, one can obtain different rate allocations. The
set of all possible rate allocations that can be obtained with
a given power control strategy, and with different sched-
ules, is called the feasible rates set. In this paper we use
the most general way to compare performances of the two
power control strategies, which consists in comparing the
sets of their Pareto efficient feasible allocations. Precise
definitions of these concepts are given in Section 2.5.

1.7 Modeling of Wireless Networks
We are interested in the fundamental principles in a de-

sign of a wireless MAC, and not in designing a specific pro-
tocol. Therefore, we assume an ideal, zero overhead MAC
protocol, which comprises ideal scheduling and rate adap-
tation strategies. And we are interested in characterizing
properties of an optimal power control strategy.

General models of wireless networks that incorporate
various physical layers, MAC and routing protocols, are dis-
cussed in [4, 21, 9, 17]. These models represent the most
general assumptions on physical layers (including variable
rate 802.11, UWB or CDMA) and MAC protocols. Note
however that they exclude the possibility of cooperative
coding and decoding at the physical layer across multiple
links, as this requires synchronization assumptions that are
not realistic today.

We use a model similar to these; we assume arbitrary
routing (single-hop or multi-hop) and we assume point-to-
point links whose conditions change randomly over time
due to fading or mobility. For a given network topology and
traffic demand, we characterize the set of feasible average
end-to-end rate allocations under given maximum average
power constraints, and equivalently the set of feasible av-
erage power constraints under minimal average end-to-end
rate constraints. We use the model to prove our findings by
theoretical analysis and numerical simulations. More de-
tailed assumptions on the network model are given in Sec-
tion 2.

1.8 Our Contribution
We consider a general multi-hop wireless network with

random channels due to fading or mobility, where link rates,
transmission powers and medium access can be varied, and
we focus on physical layers that operate in the linear regime.
For such systems, one can find rate control, power control
and theoretical MAC protocols that maximize the perfor-
mance. This is a joint optimization problem and a change
in any of the three components influences the choice of the
other two. We consider different power control strategies,
for each of them we assume the optimal MAC and rate adap-
tation, and we compare their performances. The goal is to
characterize the optimal power control.

We first consider the rate maximization scenario and we
mathematically prove that every feasible rate allocation can
be achieved without power control (power adaptation is not
needed beyond 0−P MAX ), and that, if there are no average
power constraints (i.e. only peak power constraints), any
power control that does not use 0−P MAXpower control is
not Pareto efficient (power adaptation is suboptimal).

We further consider the power minimization scenario.
We prove that any feasible average power allocation is
achievable without power adaptation. In other words,
any feasible average power allocation is achievable with
0 − P MAXpower control and an appropriate schedule, and
power adaptation is not needed.

Our findings are based on the assumption that, for ev-
ery power control protocol of choice, we design an optimal
scheduling and rate adaptation protocol, which is not neces-
sarily simple to implement. However, our results do suggest
that, for multihop networks operating in the linear regime
and that can live with arbitrary levels of rate and power,
power control beyond 0− P MAX can be avoided, and thus,
the MAC layer should concentrate on scheduling (by means
of a protocol) and rate adaptation, using full power when-
ever a transmission is allowed by the protocol.

1.9 Organization of The Paper
In the next section we describe system assumption. In

Section 3 we give a mathematical formulation of the model
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of a network. In section Section 4 we present our main find-
ings. In the last section we give conclusions and directions
for further work. Proofs of the results are in the appendix.

2 System Assumptions

We analyze an arbitrary multi-hop wireless network that
consists of a set of nodes, and every two nodes that directly
exchange information are called a link. For each pair of
nodes we define a signal attenuation, i.e. a level of signal
received at the receiver, assuming the sender is sending with
unit power. This attenuation is usually a decreasing function
of a link size due to power spreading in all directions, but
here we assume it can be an arbitrary number defined for
each pair of nodes. We assume the network is located on
a finite surface and that all attenuations are always strictly
positive, hence every node can be heard by any other node
in the network and there is no clustering. Signal attenua-
tion also changes in time due to mobility and different vari-
ations of characteristics of paths the signal takes, thus we
will model it as a random process. Next, we give properties
of the physical model of communications on links.

2.1 Physical Model Properties
All physical links are point-to-point, this means each link

has a single source and a single destination. A node can
either send to one next hop or receive from one at a time.

We model rate as a function r(SINR) of the signal-to-
interference-and-noise ratio at the receiver, which is the ra-
tio of received power by the total interference perceived
by the receiver including the ambient noise and the trans-
missions of other links that occur at the same time. In
case of systems with spreading, such as CDMA, frequency-
hopping OFDM or TH-UWB, a receiver does not capture
the full power of an interferer, but just a fraction that de-
pends on the correlation of the spreading sequences of the
sender and the interferer. The total noise at a receiver can
thus be modeled as the sum of the ambient noise and the to-
tal interference multiplied by the orthogonality factor. The
more efficient the spreading is, the smaller the orthogonality
factor is.

This model corresponds to a large class of physical layer
models, for example:

• Shannon capacity of Gaussian channels [3]:
r(SINR) = 1/2 log2(1 + SINR).

• Low-power and/or wide-band Gaussian channels [20]:
r(SINR) ≈ K × SINR

• Time-hopping ultra-wide band [23]: r(SINR) = K ×
SINR.

• Moderate processing gain CDMA [4]: r(SINR) =
K × SINR.

• Fixed rate 802.11b [standard]: r(SINR) is a step func-
tion of SINR

• Variable rate 802.11a/g [standard]: r(SINR) is a stair
function of SINR.

• CDMA HDR [15]: r(SINR) is a stair function of
SINR.

In all the examples except 802.11b, the rate is variable
and is a function of signal-to-noise ratio at a receiver. This
is achieved by adaptive modulation, like in [16, 19, 8], or
adaptive coding [11]. Rate as a function of SINR is a con-
cave function. For an efficiently designed system, it usually
approaches the Shannon capacity of the system [3], which
is a log-like function. However, for low-power (e.g. sen-
sor networks) or high-bandwidth systems (e.g. UWB [23]
or CDMA systems with moderate processing gain [4]), the
total noise is much larger than received powers, and the ca-
pacity can be approximated with a linear function of SINR
[20]. Also, physical layers with a non-linear rate function
operate in a linear regime when the SINR at the receiver is
low. In this paper we focus on physical layers with a linear
rate function.

2.2 MAC Protocol
The model of the MAC protocol is similar to the one

from [17]. We assume a slotted system. In each slot a node
can either send data, receive or stay idle, according to the
rules defined in Section 2.1. Each slot has a power alloca-
tion vector associated with it, which denotes what power is
used for transmitting by the source of each link. If a link
is not active in a given slot, its transmitting power is 0. A
schedule consists of an arbitrary number of slots of arbitrary
lengths.

The first part of a MAC is a power control strategy. The
power control strategy is defined by a set of possible powers
that can be allocated to links in any slot. An example of
power control strategy is 0 − P MAX power control where
any link in any slot can send with power P MAX or stay
idle. This is the simplest strategy where powers are fixed
and there is no power adaptation.

The second part of a MAC is the rate adaptation and
scheduling. Having chosen a power control strategy, a MAC
chooses a schedule and assigns powers that belong to the set
of possible powers to links in each slot. Finally, the rate on
each link in each slot is adapted to the SINRs at receivers.

We assume that for a given power control strategy we
have an optimal MAC protocol that calculates the optimal
transmission power of each link out of the set of possible
powers defined by power control, and in each slot in a ideal
manner and according to a predefined metric. This is equiv-
alent to a network where nodes dispose of an ideal control
plane with zero delay and infinite throughput to negotiate
schedule and power allocation.

A more realistic MAC protocol would introduce some er-
rors and delays, but a good approximation should be close
to the ideal case. Also, by considering an ideal protocol,
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we focus our analysis on properties of performance met-
rics, and not artifacts of leaks in protocol design. Our as-
sumption corresponds to neglecting the overhead (in rate
and power) of the actual MAC protocol.

We also assume random fading. Since we have an ideal
MAC protocol, it can instantly adapt the schedule and the
power and rate allocation to any state of the random fading
of links. For a precise mathematical model of MAC proto-
col, see Section 3.2.

2.3 Routing Protocol and Traffic Flows
We assume an arbitrary but constant routing protocol

(routes and flow demands do not change in time). Flows
between sources and destinations are mapped to paths, ac-
cording to some rules specific to the routing protocol. At
one end of the spectrum, nodes do not relay and only one-
hop direct paths are possible. At the other end, nodes are
willing to relay data for others and multi-hop paths are pos-
sible. There can be several parallel paths. All these cases
correspond to different constraint sets in our model, as de-
fined in Section 3.2. Sources can send to several destina-
tions (multicast) or to one (unicast).

2.4 Power and Rate Constraints
There are four types of power and rate constraints in a

wireless network: peak power constraint, short-term aver-
age power constraint, long-term average power constraint
and average rate constraint. Here we describe them in de-
tail:

Peak power constraint: Given a noise level on a re-
ceiver, a sender can decide which codebook it will use to
send data over the link during one time slot. Different sym-
bols in the codebook have different powers. The maximum
power of a symbol in a codebook is then called peak power.
In our model, the peak power constraint is integrated in a
rate function, given as an input.

Short-term average power constraint: We assume a
slotted system. In each slot a node chooses a codebook and
its average power, and it sends data using this codebook
within the duration of the slot. We call transmitted power
the average power of a symbol in the codebook. This is a
short-term average power within a slot, since a codebook
is fixed during one slot. We assume that this transmission
power is upper-bounded by P MAX . This power limit is
implied by technical characteristics of a sender and by reg-
ulations, and is not necessarily the same for all nodes. For
example, this is the only power constraint that can be set by
users on 802.11 equipment.

Long-term average power constraint: While transmit-
ting a burst of data (made of a large number of bits), a node
uses several slots, and possibly several different codebooks.
Each of these codebooks has its transmission power. We
call the consumed power the average of transmission pow-

ers during a burst, and we assume it is limited by P
MAX

.

Consumed power P
MAX

is set by a node to control its life-
time and it can vary from node to node.

Average rate constraint: In networks such as sensor
or peripheral networks, the goal is to minimize power con-
sumption and to maximize the lifetime of nodes rather than
maximize the rates of links. Still, there is a lower bound
on the rate a node has to transmit. For example, a temper-
ature sensor on a car engine or a computer mouse have a
well-defined rate of information they need to communicate
to a central system. This is what we call the average rate
constraint and we define it as the average amount of bits
a node has to transmit over the network in one second. We
assume this average limit is the same on both long and short
timescales.

We incorporate explicitly in our model the transmission
power constraints, the average consumed power constraints
and the average rate constraints. The peak power is incor-
porated implicitly through the choice of the rate function.

2.5 Performance Objectives
Design criteria in wireless networks can be divided into

two groups: rate maximization and power minimization.
We first consider rate maximization. Given a network topol-
ogy and a family of MAC protocols, one can define a set of
feasible rate allocations as the set of all rate allocations that
can be achieved on the network with some MAC protocol
from the given family. An interesting subset of the feasible
rate set is the set of Pareto efficient rate allocations. A rate
allocation is Pareto efficient if no rate can be increased with-
out decreasing some other rate. When maximizing rates, we
are clearly interested only in the Pareto efficient rate alloca-
tions.

The most general way to compare two families of net-
work protocols on a same network is to compare their Pareto
efficient rates’ sets. If all Pareto efficient rates of one family
of protocols are feasible under the other family of protocol,
then one can undoubtedly say that the second family is as
good as the first. Furthermore, if neither of the Pareto ef-
ficient rates of the second family is achievable under the
first family of MAC protocols, then we can say that the
second family is strictly better than the first. We will use
this criterion to compare different power control strategies
throughout the paper. We use the analog approach to com-
pare different power minimization scenarios: in this case a
power allocation is Pareto efficient if no average power can
be decreased without increasing some other power. Mathe-
matical definitions of terms are given in Section 3.2.

3 Mathematical Model

3.1 Notations
We model the wireless network as a set of I flows, L

links and O nodes. Flows are unicast or multicast. We as-
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sume the network is in a random state S belonging to set
S. For each state s ∈ S we define the attenuations among
nodes in the network and the power of background noise
at every receiver. Since we analyze a theoretical MAC, we
assume for each system state s ∈ S that there is a separate
instance of the MAC. We give here a list of notations used
in this section to describe the model. The precise definitions
are given in subsequent subsections:
– hl1l2(s) is the attenuation of a signal from the source of
link l1 to the destination of link l2 when the system is in
state s. We assume no clustering, hence hl1l2(s) > 0.
– β is the orthogonality factor that defines how much power
of interfering signals is captured by a receiver.
– f ∈ R

I is the vector of average rates achieved by flows.
– x̄ ∈ R

L is the vector of average rates achieved on links.
– {1, · · · , N(s)} ∈ R is the number of slots in the schedule
corresponding to the system state s.
– for every n ∈ {1, · · · , N(s)}, xn(s) ∈ R

L is the vector
of rates achieved on links in time slot n when the system is
in state s.
– for every n ∈ {1, · · · , N(s)}, pn(s) ∈ R

L,prcvn(s) ∈
R

L are the vectors of transmitted and received powers allo-
cated on links in time slot n, respectively, when the system
is in state s.
– F

MIN
∈ R

I is the vector of minimum average rates
achieved by end-to-end flows (every flow may have a dif-
ferent minimum average rate).
– PMAX ∈ R

L is the vector of maximum allowed trans-
mission powers on links, which are assumed constant in
time (every link may have a different maximum power).

– P
MAX

∈ R
L is the vector of maximum allowed average

transmission powers on links (every link may have a differ-
ent maximum power).
– ηl(s) ∈ R is the white noise at the receiver of link l when
the system is in state s.
– for every n ∈ {1, · · · , N(s)}, SINRn(s) ∈ R

L is
the vector of signal-to-interference-and-noise ratios at the
links’ receivers in time slot n, when the system is in state s.
– for every n ∈ {1, · · · , N(s)}, αn(s) ∈ [0, 1] is the rela-
tive frequency of time slot n (fraction of the total schedule
duration occupied by slot n) in the schedule assigned to the
system when in state s.
– R (routing matrix) is such that Rl,i = 1 if flow i uses link
l. We have Rf ≤ x̄. The matrix R is defined by the routing
algorithm.

3.2 Mathematical Formulation
We assume that for every state s there is a schedule con-

sisting of time slots n = 1...N(s) of frequency αn(s). This
is an abstract view of the MAC protocol, without overhead.
We normalize these lengths such that

∑N(s)
n=1 αn(s) = 1.

Let us call pn(s) the vector of transmission powers as-
signed to links in slot n and state s, and let SINRn(s) be
the vector of signal-to-interference-and-noise ratios at re-
ceivers of the links, induced by pn(s). The rate achievable
on link l in slot n and state s is xn

l (s) = K SINRn
l (s).

The vector of average rates on the links is thus x̄ =

E

[

∑N(S)
n=1 αn(S)xn(S)

]

, averaged over the distribution of

states. Since xn(s) has dimension L (where L is a number
of links), by virtue of Carathéodory theorem, when in state
s, it is enough to consider N(s) ≤ N = L + 1 time slots of
arbitrary lengths α(s) in order to achieve any point in the
convex closure of points xn(s).

Feasible rate and power allocations: Given a network
topology and a routing matrix R, we define the set of fea-
sible average powers, link rates and end-to-end rates T
(without average power or rate constraints). It is the set
of f ∈ R

I , x̄ ∈ R
L and p̄ ∈ R

L such that there exist
schedules α(s), sets of power allocations pn(s) and corre-
sponding sets of rate allocations xn(s) for all n = 1 · · ·N
and all states s ∈ S, such that the following set of equal-
ities and inequalities are satisfied for all n = 1 · · ·N, i =
1 · · · I, l = 1 · · ·L, o = 1 · · ·O:

Rf ≤ x̄

p̄ = E

[

∑L+1
n=1 αn(S)pn(S)

]

x̄ = E

[

∑L+1
n=1 αn(S)xn(S)

]

xn
l (s) = K SINRl(p

n(s))

SINRl(p
n(s)) =

pn

l
(s)hll(s)

ηl(s)+β
P

k 6=l
pn

k
(s)hkl(s)

(1)

1 =
∑L+1

n=1 αn(s)

1 ≥
∑

l : l.src=o 1{pn

l
(s)>0}+

∑

l : l.dst=o 1{pn

l
(s)>0}

pn
l (s) ≤ P MAX

l

where l.src = o and l.dst = o are true if node o is the
source or the destination of link l, respectively.

We are interested in comparing average rates and power
consumptions with 0 − P MAXand with arbitrary control.
With 0 − P MAX power control, a node sends with maxi-
mum power when sending. More formally this means that
in any slot n, power allocation vector pn has to belong
to the set of extreme power allocations PE = {p | (∀l =
1 · · ·L) pl ∈ {0, P MAX

l }}. In contrast, with an arbi-
trary power control, any power from the set of all possible
power allocations P is possible. The set P is defined as
P = {p | (∀l = 1 · · ·L) pl ∈ [0, P MAX

l ]}.
We say that an average rate allocation f and average

power consumption p̄ is achievable with a set of power
allocations belonging to P if for all n = 1 · · ·N, i =
1 · · · I, l = 1 · · ·L, o = 1 · · ·O, it satisfies constraints (1),
and for all n = 1 · · ·N, s ∈ S,pn(s) ∈ P .
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We can similarly define the set of average end-to-end
rates, link rates and power allocations T = T (P) that is
achievable with power allocations belonging to P , as the
set of all (f , x̄, p̄) that are achievable using power allocation
P . Thus, sets T and T (PE) represent the sets of all possi-
ble average end-to-end rates, link rates and power consump-
tions with an arbitrary and with 0 − P MAX power control,
respectively.

When we consider rate maximization under constraints
on average consumed power, we are interested only in
the set of feasible rates. If the average consumed power

is limited by P
MAX

, then the set of feasible rates is

F = {f | (f , x̄, p̄) ∈ T , p̄ ≤ P
MAX

}. Similarly, with
0 − P MAXpower control, the set of feasible rate is FE =

{f | (f , x̄, p̄) ∈ T (PE), p̄ ≤ P
MAX

}. For notational con-
veience, we analogly define X̄ = {x̄ | (f , x̄, p̄) ∈ T , p̄ ≤

P
MAX

} and X̄E = {x̄ | (f , x̄, p̄) ∈ T (PE), p̄ ≤ P
MAX

}.
Similarly, when considering power minimization, we fo-

cus on the set of feasible average consumed powers. If the

average end-to-end flow rate is lower-bounded by F
MIN

,
then the set of feasible average consumed powers, under
arbitrary power control, is P = {p̄ | (f , x̄, p̄) ∈ T , f ≥

F
MIN

}. Similarly, with 0 − P MAXpower control, the

set of feasible rate is P
E

= {p̄ | (f , x̄, p̄) ∈ T (PE), f ≥

F
MIN

}.
Performance Objectives: Finally, we formally define

notion of Pareto efficiency that was introduced in Sec-
tion 2.5. Rate vector f ∈ F is Pareto efficient on F if there
exist no other vector f ′ ∈ F such that for all i, f ′i ≥ fi
and for some j, f ′j > fj . Average power dissipation vector
p ∈ P is Pareto efficient on P if there exists no other vector
p′ ∈ P such that for all i,p′

i ≤ pi and for some j,p′
j < pj .

4 Main Findings

4.1 Rate Maximization
In this section we show that any rate allocation that is

feasible with an arbitrary power control and under some
average power constraint, is also achievable with 0 −
P MAXpower control. Moreover, if we consider a scenario
without average power constraints, then 0 − P MAX is the
only optimal power control.

We clearly have FE ⊆ F , and we want to show that
every feasible flow rate allocation can be achieved by a set
of extreme power allocation from PE , that is F ⊆ FE . In
other words that every feasible flow rate allocation can be
achieved only with an appropriate scheduling, and without
power control.

Theorem 1 If the rate is a linear function of the SINR,
then for arbitrary values of parameters of constraint set
(1), we have that FE = F .

(Proof in appendix) The theorem says that every feasible
rate allocation, thus including the Pareto efficient ones,
can be achieved with 0 − P MAXpower control, and with
an appropriate scheduling. Hence 0 − P MAX is at least as
good as any other power control, and power adaptation is
not needed.

To interpret this finding, consider a UWB MAC protocol
presented in [5] where both power adaptation and schedul-
ing is used. Any rate achieved by this MAC protocol could
be achieved with another protocol that would not adapt
power and would use an appropriate scheduling.

Comment. One could be tempted to interpret Theo-
rem 1 by saying that in the case of a linear rate function,
adapting power can be directly mapped into scheduling time
shares. This is not correct. Indeed, in the linear regime,
the rate of a link is a linear function of the SINR, but it is
not a linear function of the transmission powers of interfer-
ing nodes. Therefore, it is not obvious that the gain from
power adaptation can be completely achieved by making
linear combinations through scheduling. The intuitive ex-
planation lies in the fact that, since the SINR is non-linear
in interference, when increasing the transmitted power of a
node, this has a more important effect on increasing the sig-
nal than on increasing interference (which yields a strictly
positive second derivative, as shown in the proof). We con-
jecture that there are non-linear rate functions that yield the
same conclusion.

We next consider a scenario where there are no con-
straints on average consumed power (or equivalently

P
MAX

≥ PMAX ), and we prove that power adaptation
is strictly suboptimal. In other words, if any node at any
time uses less than maximum power for a transmission, then
there exists an alternative schedule with 0 − P MAXpower
assignment which yield higher rate for at least one flow, and
higher or equal rates for other flows. The finding is more
precisely formulated in the following theorem:

Theorem 2 Consider an arbitrary network where the
rate is a linear function of the SINR, and an arbitrary
schedule α and a set of power allocations pn for that
network. If for some n, αn > 0 and power allocation
pn 6∈ PE then the resulting average rate allocation f is
not Pareto efficient on F .

(Proof in appendix) The theorem says that a Pareto efficient
allocation cannot be achieved if in any time slot a power
allocation different from 0 − P MAX is used.

Applying the finding on the framework of [5] we can
conclude that there exists a different schedule that does not
use power control and that improves the performance of a
network.

The main use of Theorem 1 and Theorem 2 is the fol-
lowing corollary:

7



Corollary 1 When the rate is a linear function of the
SINR, 0 − P MAXpower control is actually the single op-
timal power control strategy, and any other power adap-
tation is strictly suboptimal.

4.2 Power Minimization
We next analyze the effect of power adaptation on mini-

mizing dissipated power of a network. By decreasing trans-
mitting power, one decreases the dissipated power and also
the destructive effect of interference on others, hence, intu-
itively, power control should minimize power consumption.
However, as we show here, in the case of linear rate func-
tion, power control does not bring any benefit.

Theorem 3 If the rate is a linear function of the SINR,
then for arbitrary values of parameters of the constraint

set (1), we have that P
E

= P .

(Proof in appendix) The theorem says that any average
power consumption that is feasible under some average
rate constraints is achievable with 0 − P MAXpower
control. Intuitively, by using maximum power for every
transmission we can increase the transmission rate, and use
the channel for a shorter time. It can be shown that this
compensates the effects of power control.

All feasible average power dissipations, hence all Pareto
efficient ones, can be achieved with 0 − P MAXpower con-
trol, hence it is at least as good as any other power control.
Again here, power adaptation is not needed. We note here
that for power minimization there is no statement analog
to Theorem 2. Theorem 2 assumes that there are no av-
erage power constraints. In the framework of power mini-
mization, this corresponds to a setting with no average rate
constraints, which leads to the trivial solution of having the
network silent all the time.

4.3 Numerical Example
In order to illustrate the above findings we give a simple

example. Consider a network of two links presented on the
left of Figure 1. This network is known as the near-far sce-
nario as an interferer is closer to a receiver than the corre-
sponding transmitter. Node S1 transmits to D1 and node S2

transmits to D2. We introduce two simple MAC protocols.
The first MAC protocol assumes 0 − P MAX power control
and arbitrary scheduling. The second assumes no schedul-
ing (constant power allocations through time, like in some
cellular systems), and arbitrary power control strategy. The
corresponding sets of feasible rates and powers are given on
the right of Figure 1.

We see that when maximizing rates, only 0 −
P MAXpower control can achieve all feasible rates, in-
cluding the Pareto efficient ones. On the contrary, the
second MAC protocol that does not use scheduling but

uses power adaptation achieves only a fraction of feasible
rates. Furthermore, only in cases when power allocation is
0 − P MAX , the achieved rates are Pareto efficient.

However, when there is an average power limit, there
might exist a schedule and a power control strategy, dif-
ferent from 0 − P MAX , that can achieve Pareto efficient
allocations, as discussed in Section 4.2. To see this, con-
sider an even simpler example of a single link. Let P MAX

be the maximum transmitting power, P
MAX

< P MAX

the maximum average consumed power, h be the fading
from the source and η be the power of background white
noise. There exist only one Pareto efficient rate allocation

which is R = P
MAX

h/η. It can be achieved by sending

α = P
MAX

/P MAX fraction of the time using full power,

or by sending all the time using P
MAX

as the transmitting
power. The second strategy thus does not have the form of
0 − P MAX power control, yet it achieves the Pareto effi-
cient allocation. An analogous construction can be made
to show that a non-0 − P MAX power control can achieve
Pareto efficient average power allocation.

On the right of Figure 1 we depict the feasible average
dissipated powers allocations for an arbitrary power control,
and for 0 − P MAXpower control. We see that the two sets
coincide.

5 Conclusion

We have considered multi-hop wireless networks in the
linear regime and have shown that 0 − P MAXpower con-
trol, is always optimal, both for power minimization and
rate maximization. We have also shown that for rate maxi-
mization, and when there are no average power limitations,
any other power control strategy yields non-Pareto optimal
rate allocations, hence power adaptation is strictly subopti-
mal.

Since power control is a difficult task in a distributed,
ad-hoc system, and is not needed beyond 0 − P MAX is not
needed, our findings suggest that the complexity of a pro-
tocol should be invested in optimizing scheduling and rate
adaptation, and not the power adaptation. If the number of
possible physical link rates is small, one should use power
adaptation and scheduling (as for example in [13]), but if the
number of possible link rates is large, which is usually the
case with adaptive modulation and/or coding, one should
adapt rates, use 0 − P MAX power control and scheduling.

Another conclusion that stems from our work is that,
unlike common belief that in CDMA or similar data net-
works with almost-orthogonal links’ transmissions, and for
rate maximization, it is better to solve near-far problems by
scheduling and rate adaptation and to use 0−P MAXpower
control, instead of using power adaptation that tend to
equalize received powers.
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(0,P      )MAX

(P      ,0)MAX

(P      ,P      )MAXMAX

R2

R1

P2

P1

Figure 1. A simple example of a network with 2 links. The topology of the network is given on the left. Node S1 sends to node D1 while
node S2 sends to D2. The feasible rate set for this network is given in the middle. The lighter region in dashed lines represents the set of feasible
rates that can be achieved without scheduling, only with power adaptation. The lighter region in full lines represents an increase that is achieved by
scheduling and without power adaptation (0 − P MAXpower control). The darker region in dashed lines is the same example without scheduling
and with power control, but this time with additional average power constraints. Again the darker region in full lines represents an improvement
introduced by scheduling. We see that the second protocol cannot achieve Pareto efficient rates of the feasible rate set, except for the three rate
allocations. But these three rate allocations are achieved with power allocations (0, P MAX), (P MAX , 0) and (P MAX , P MAX) which belong to
0−P MAXpower strategy. In the figure on the left, the feasible set of average consumed power under minimum rate constraints is depicted in gray.
The region in full lines represents average power consumption achievable with scheduling and without power adaptation, and the region in dashed
lines represents average power consumptions achievable without scheduling and with power adaptation. All average powers belonging to this set can
be achieved without power adaptation.

It remains as a future work to further investigate the
trade-off between scheduling and power adaptation by in-
corporating costs of different power control and scheduling
protocols.

6 Appendix

6.1 Proof of Theorem 1
The outline of the proofs is as follows: we first take an

arbitrary linear objective function of the form U(x̄, p̄) =
∑

i µix̄i −
∑

i λip̄i, we maximize it on T , and we show
that the maximization point has to be generated with pow-
ers from PE . This is showed in Lemma 1. Next, we use the
property of convex sets saying that for every Paretto effi-
cien point there exists a plane touching the set in that point.
Since this Pareto efficient point is also the maximizer of a
linear objective function that corresponds to the plane, it
follows that it has to be generated with 0 − P MAX .

We start by proving some properties of the optimal point
with respect to a linear objective function:

Lemma 1 Consider a function U(x̄, p̄) =
∑

i µix̄i −
∑

i λip̄i for some arbitrary vectors µ, λ. Then:

1. There is a unique maximum U ∗ = U(x̄∗, p̄∗) on set T ,

2. The maximum (f∗, x̄∗, p̄∗) ∈ T E ,

3. If some i, |µi| > 0 and for all j, λj = 0, then for
arbitrary α and {pn(s)}1,···,N , such that for some n,
αn > 0 and 0 < pn

i < P MAX
i , and the resulting

(x̄, p̄) we have U(x̄, p̄) < U(x̄∗, p̄∗).

Proof of 1): Both function U(x̄, p̄) and set T are convex,
hence the maximum is attained in some (f ∗, x̄∗, p̄∗) ∈ T .
We also know there exist α∗, {pn∗(s)}1,···,N that satisfy
(1).

Proof of 2): Let us first assume there is a single sys-
tem state S = {s} hence there is no randomness in the
system. We use an approach similar to [4, 5]. Without
loss of generality, we fix all α(s), {pn(s)}1,···,N to ar-
bitrary values, except p1

1(s), and we consider a function

p1
1(s)

V
→

∑

i µix̄i −
∑

i λip̄i as a function of a single free
variable p1

1(s).
We then have the following derivatives:

∂V

∂p1
1(s)

=
µ1α1(s) h11(s)

η1(s) + β
∑

k 6=1 pn
k (s)hk1(s)

− λ1α1(s)(2)

−
∑

i=2···I

µiαi(s) p1
i (s)hii(s)h1i(s)

(

ηi(s) + β
∑

k 6=i p1
k(s)hki(s)

)2 ,(3)

∂2V

(∂p1
1(s))

2 =
∑

i=2···I

µiαi(s) 2p1
i (s)hii(s)h

2
1i(s)

(

ηi(s) + β
∑

k 6=i p1
k(s)hki(s)

)3 .(4)

We first suppose that for all i, µi > 0. It is easy to
see from (4) that regardless of the values of other variables,
the second derivative is always positive, V (p1

1(s)) is al-
ways convex, hence the maximum is attained for p1

1(s) ∈
{0, P MAX}.

Next we suppose, without loss of generality, that for
some m we have µ1 ≤ 0, · · · , µm ≤ 0. Then clearly the
optimal is to have x̄1 = 0, · · · , x̄m = 0. Then by setting
µ1 = 0, · · · , µm = 0, the new optimization problem has
the same maximum as the old one, and we again have that
the optimal values belong to {pn∗(s)}1,···,N ∈ PE , and
x̄ ∈ X̄E .

At this point we proved the second claim under assump-
tion that there is no randomness in the system. We next
relax this assumption. From the above we know that for ev-
ery state s ∈ S there is a power allocation from PE that
maximizes the utility. Since averaging over S is a linear op-
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eration, the average over S is also going to be maximized,
which concludes the proof of the second claim.
Proof of 3): In the previous point we proved that maxi-
mum of function V (p1

1) is reached at one end of the inter-
val [0, P MAX ]. Here we want to prove that it is reached
only at one end of the interval and that any point in be-
tween yields smaller V . Suppose the maximum is reached
at V (0). Intuitively, due to convexity of V we have that,
if there is another p such that V (0) = V (p), then we have
V (0) = V (p′) = V (p) for every 0 ≤ p′ ≤ p. Furthermore,
this means that V ′(p′) = 0 for every 0 ≤ p′ ≤ p. We want
to show that this is not possible.

More formally, consider the case when |µ1| > 0 and
λj = 0 for all j. We again suppose no randomness
(S = {s}), and we suppose that α1(s) > 0 and 0 <
p1
1(s) < P MAX

1 . It is easy to verify from (3) that equation
∂V

∂p1

1
(s)

= 0 can be transformed into Q(p1
1(s)) = 0 where

Q is some polynomial of degree nQ. Furthermore, one can
verify that the coefficient of the polynomial of degree nQ

is strictly positive, hence Q is not identical to 0. Therefore
there is only a finite number of values of p1

1(s) that solves
Q(p1

1(s)) = 0, and thus also ∂V
∂p1

1
(s)

= 0.

We know from above that the maximum V ∗ is achieved
at one of the extremal points, say P MAX

1 without loss of
generality. By assumptions, we have V (p1

1(s)) = V ∗.
Now for some γ we have that p1

1(s) = γP MAX
1 and

V ∗ = V (p1
1(s)) ≤ (1 − γ)V (0) + γV (P MAX

j ) ≤ V ∗.
We thus have V ∗ = V (p) for all p ∈ [0, P MAX

j ]. Now this
is impossible since V ′(p) has only a finite number of zeros,
hence {pn(s)}1,···,N cannot maximize V .

Now we introduce randomness. Again, due to linearity
of averaging it is easy to see that if for any state s with pos-
itive probability (P [S = s] > 0) we have {pn(s)}1,···,N 6∈
PE, then the utility in that slot is going to be strictly smaller
than the maximum achievable, hence the overall utility will
be strictly smaller than the maximum, which proves the last
claim. q.e.d.

Proof of Theorem 1: We will first show that X̄ = X̄E ,
and then that F = FE . We clearly have X̄E ⊆ X̄ ,
and it remains to be shown that X̄ ⊆ X̄E . First, con-
sider the optimization problem max

∑

i µix̄i such that p̄ ≤

P
MAX

, (f , x̄, p̄) ∈ T . This is a convex optimization
since set T is convex, hence if the constraint set is not
empty there is a unique maximum (f ∗, x̄∗, µ∗). The dual

problem is minλ≥0 g(λ) +
∑

i λiP
MAX

i where g(λ) =

max(f ,x̄,p̄)∈T

∑

i µix̄i −
∑

i λip̄i. According to lemma 1,
point (f∗, x̄∗, p̄∗) that maximizes g(λ∗), thus also maxi-
mizes the above maximization problem, belongs to T (PE).

We now prove the theorem by contradiction. Suppose
there exists a point x̄ ∈ X̄ that is not in X̄E . Then by
the separating hyperplane theorem [22] there exists a hy-
perplane defined by (c, b) that separates x̄ and X̄E , that is

cT f > b and for all g ∈ X̄E , cT g < b. This on the other
hand means that x̄ 6∈ X̄E maximizes the above maximiza-
tion problem, which leads to contradiction, and we prooved
X̄ = X̄E .

Finally, set F is completely determined by set X̄ and the
routing matrice R. Since we have X̄ = X̄E , it follows that
F = FE . q.e.d.

6.2 Proof of Theorem 2
Next we proove Theorem 2. The proof consists of two

parts. In the first part we get rid of routing by showing that
if f is Pareto efficient on F then x̄ is Pareto efficient on X̄
regardless of the network topology or routing strategy. In
the second part we use the last statement from Lemma 1 to
show that if in any slot the power allocation does not belong
to PE , then the resulting average link rate allocation does
not belong to X̄E .

Lemma 2 Let (f , x̄, p̄) ∈ T . If f is Pareto efficient on F
then the corresponding average link rate x̄ has to be Pareto
efficient on X̄ .

Proof:We proceed by contradiction. Suppose that f is
Pareto efficient on F but x̄ is not Pareto efficient on X̄ ,
and we can increase x̄i for some i without decreasing other
rates. In other words, we have (f , x̄′, p̄) ∈ T such that
x̄′

i = x̄i + ε and x̄′
k = x̄k for all k 6= i. If there is flow

fj such that link i is its bottleneck, than we can increase
the rate of fj since x̄′

i > x̄i, hence f is not Pareto efficient.
Hence we conclude no flow has a bottleneck on link i.

We next choose an arbitrary flow k, we start from link
rate allocation x̄′ and we show how to construct a schedule
that will increase the rate of flow k. Let us denote with j
the bottleneck link of flow k (if k has no bottleneck f is
obviously not Pareto efficient). We first try to find a slot in
which both j and i are active. If this slot exists (say it is
slot n) than we can decrease the power pn

i (s) (in some state
s with positive probability) by some εi > 0 such that the
resulting x̄′′

i has the property x̄′
i > x̄′′

i > x̄i. Since link j is
also active in slot n and we have decrease the interference
(due to the assumption, hij(s) > 0), we have also increased
x̄′′

j > x̄j , and we can in turn increase fk which violates the
Pareto efficient property of f .

Finally we have the case when links i and j are not ac-
tive in the same slot. We pick slot ni and nj , in which
i and j are active, respectively, such that αn

i (s) > 0 and
αn

j (s) > 0 (for some states s with positive probability). We
then decrease the power pni

i by some εi > 0 such that the
resulting x̄′′

i has the property x̄′
i > x̄′′

i > x̄i. At the same
time, we increased the average rates of all links scheduled
during the slot αn

i (s). Now we can decrease the duration
of the slot αn

i (s) such that in the new allocation all those
links will have at least the same rates as in the initial con-
figuration x̄′′

l ≥ x̄l. However, since we decreased αn
i (s),

we can now increase αn
j (s), hence also increase x̄j . Now
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flow k looses its bottleneck, hence we can increase fk again
violating Pareto efficient assumption. q.e.d.

Proof of Theorem 2: We proceed by contradiction, and
assume there exist a schedule α and a set of power allo-
cations {pn(s)}1,···,N such that the resulting average rate
allocation f is Pareto efficient (and thus on the boundary
of set F), and for some n, i, 0 < pn

i < P MAX
i . From

Lemma 2 we have that since f is Pareto efficient on F then
is so x̄ on X̄ , and we focus further on contradicting that x̄

is Pareto efficient.
Since X̄ is convex and x̄ is on the boundary, there exists

a supporting hyperplane [22] (µ, b) which contains x̄ (that
is µT x̄ = b) and contains X̄ in one of the half-spaces (that
is for all x̄′ ∈ X̄ , µT x̄′ ≤ b).

Let us first suppose |µi| > 0. Then, according to lemma
1 there exists (x̄∗, p̄∗) ∈ X̄E such that µT x̄∗ > µT f = b,
which leads to contradiction. Therefore, we have that µi =
0, and

∑

j 6=i µj x̄
′
j ≤ b for all x̄′ ∈ X̄ . However, it is then

easy to construct find a counter example, starting from x̄. If
there exist another j 6= i such that pn

j > 0, then by setting
pn

i = 0 we increase x̄j , thus now
∑

j 6=i µj x̄
′
j > b, hence

the contradiction. On the contrary, if for all j 6= i, pn
j = 0,

we then set αn = 0 and increase some other αm such that
for some j, pm

j > 0. Again, this way we increase x̄j , thus
∑

j 6=i µj x̄j > b, that also leads us to a contradiction. q.e.d.

6.3 Proof of Theorem 3
Consider the optimization problem min

∑

i µip̄i such

that f ≥ F
MIN

, (f , x̄, p̄) ∈ X . Since we have a constraint
Rf ≤ x̄, we can also express the minimum constraint as

x̄ ≥ X
MIN

= RF
MIN

.
This is a convex optimization since set X is convex,

hence if the constraint set is not empty there is a unique min-
imum (f∗, x̄∗, µ∗). The dual problem is maxλ≥0 g(λ) +
∑

i λiX
MIN

i where g(λ) = min(f ,x̄,p̄)∈X

∑

i µip̄i −
∑

i λix̄i. According to lemma 1, point (f ∗, x̄∗, µ∗) that
maximizes −g(λ∗), thus also minimizes the above mini-
mization problem, belongs to X (PE). The rest of the proof
is the same as in Theorem 1. q.e.d.
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