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Abstract

The need of durable and abundant energy sources for future ages stimulates the studies of
thermonuclear energy sources, based on hot plasma confinement by magnetic fields. The most
developed concept of hot plasma trap is the tokamak, where the plasma confinement is obtained by a
combination of external magnetic fields with the magnetic field of the current flowing in the plasma
torus. The stability of the tokamak plasmais the main subject of the present work.

The hot plasma is approximated by the model of the ideal magnetohydrodynamics (ideal MHD) as a
superconductive liquid. Being relatively simple, this model describes basic plasma stability properties
and establishes necessary stability conditions.

The analytical ideal MHD theory is well developed, but some assumptions, required for analytical
treatment may not be valid for the plasmas of modern tokamaks and for future tokamak-based
reactors. To circumvent this numerical codes have been created. These codes are free from such
limitations, but they are not as convenient in use as anaytical formulae. In the present work the
validity of the analytical approach for the conditions of tokamaks like TCV and MAST isexamined in
comparison with numerical code predictions by studying the dependence of the ideal MHD stability
on plasma toroidicity and shape parameters. The experimental study of the plasma dependence on
triangularity, carried out on the TCV tokamak, is consistent with the results of the numerica
calculations. A new formula, describing the ideal MHD stability dependence on plasma toroidicity
and shape parametersis proposed for use in modern tokamaks and future reactors. This formula could
be used instead of analytical expansions, which are not valid in such conditions.

The ideal MHD stability of highly elongated TCV plasmas has been studied using numerical codes
and the optimum plasma shape, which allows higher plasma performance, was found. Experimental
data on the high elongation plasmasin TCV are consistent with the numerical predictions.

Advanced tokamak plasma configurations, which provide better plasma properties, are amongst the
main goals of the TCV tokamak research activity. The ideal MHD stability analysis of such plasmas,
using numerical codes, can be useful for optimization of plasma parameters, and designing new
experiments with improved plasma performance. Reversed shear plasmas with internal transport
barrier were analyzed and the influence of the plasma pressure and current profiles on the ideal MHD
stability of these plasmas was examined in detail. By fine tuning of the electron cyclotron heating and
current drive system of TCV it was found that it might be possible to improve the plasma

performance in reversed shear plasmas, by creating the optimal current and pressure profiles.



Version abrégee

La nécessité de trouver des sources d’ énergie durables et abondantes pour les siecles a venir stimule
les recherches sur les sources d’ énergie thermonucléaire, basées sur le confinement du plasma chaud
dans un champ magnétique. Le concept le plus developpé est le tokamak, ou le confinement du
plasma est obtenu par une combinaison des champs magnétiques externes avec un champ magnétique
dd au courant circulant dans le plasma toroidal. La stabilité de plasma du tokamak est le sujet
principal de cetravail.

Dans le modéle de la magnétohydrodynamique idéale (la MHD idéale) le plasma chaud est modelisé
par un liquide supraconducteur. Relativement simple, ce modele décrit les propriétés de base de la
stabilité du plasma et établit les conditions nécessaires de stabilité.

Lathéorie analytique de la MHD idéale est bien developpée, mais certaines approximations, requises
pour le traitement analytique, peuvent ne pas étre valides pour les plasmas des tokamaks modernes et
pour les réacteurs futurs basés sur le concept du tokamak. Pour circonvenir ces obstacles, les codes
numeériques ont été créés. Ces codes sont libres de ces limitations, mais ils ne sont pas aussi pratiques
gue les formules analytiques. Dans ce travail la validité de I’ approche analytique dans les conditions
des tokamaks comme TCV et MAST est examinée et comparée avec les codes numériques par une
étude de la dépendance de la stabilité MHD idéale sur la toroidicite et les paramétres de forme du
plasma. L’ étude expérimentale de la dépendance du plasma sur la triangularité sur le tokamak TCV,
correspond aux résultats des calculs numériques. Une nouvelle formule qui décrit la stabilité MHD
idéale est proposee pour I’ utilisation dans les tokamaks modernes et dans les réacteurs futurs. Cette
formule peut étre utilisée ala place des développements anal ytiques, non valides dans ces conditions.
La stabilité MHD idéale des plasmas a haute élongation sur le TCV a éé éudiée avec des codes
numériques, et la forme optimale permettant la meilleure performance stable du plasma a été trouvé.
Les données expérimentales sur les hautes élongations sur le TCV sont en accord avec ces
prédictions.

Les scénarios avances dans les tokamaks, générant des meilleures propriétés du plasma, sont parmi
les objectifs majeurs de I’ activité expérimentale de TCV. L’anayse de la stabilité MHD idéale de ces
plasmas peut étre utile pour I'optimisation des paramétres du plasma et pour I'éaboration de
nouvelles expériences plus performantes. Les plasmas avec cisaillement renversé avec une barriére du
transport interne ont été analyses en détails. En gjustant le systeme du chauffage et la génération du
courant par les ondes cyclotroniques électroniques du TCV, on peut améliorer la performance du

plasma par création de profils optimaux de la densité de courant et de la pression.
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Chapter 1. Introduction

1.1 The thermonuclear fusion: why a hot plasma in magnetic fields?

Successful control of thermonuclear fusion could provide the amounts of energy required for the
future development of mankind for many centuries. Using the unlimited reserves of ocean water as the
fuel, producing much less radioactive waste than the conventional fusion powered reactors, and zero
emission of polluting and greenhouse gases, thermonuclear power stations could become the basis of
the energy producing industry of the future, along with renewable energy sources.

The idea of thermonuclear fusion is based on the nuclear reaction between nuclei of light elements
(isotopes of hydrogen and helium) which by collisions can form a single nucleus of a heavier element
and release a substantial amount of energy. The most promising reaction of this type involves two
nuclei of hydrogen isotopes, one of Deuterium (D) and one of Tritium (T). As a result of their
collision, a nucleus of Helium can be formed and some 17.6 MeV of energy produced. The
temperatures of the initial Deuterium-Tritium fuel mixture has to be at least around 10 keV to
maximize the probability of undergoing such reactions and the density has to be high enough to
provide the amount of released energy required for the sustainment of the plasma temperature (so-
called ignition). At such temperatures the fuel is no more solid or liquid, it becomes a highly ionized
gas, caled plasma. It is extremely difficult to confine and control such matter in terrestrial conditions.
In order to obtain the required number of fusion reactions to keep the plasma “burning’, the
thermonuclear reactor has to be able to confine sufficient amount of particles of high energy inside the
plasma to alow them to react. Formally, this requirement of keeping high temperature and density is

expressed by the Lawson criterion [1],

nz, >10*m>s (1.1)

where n is the plasma density in [m™] and z is the energy confinement time in seconds (D-T reaction
at the temperature of 20 keV).

Such a hot plasma confined in conventional materials will amost immediately loose all its energy and
disappear, because the losses of energy and of particles will be enormous. It is only possible to deal
with such matter by placing it in some kind of trap, constructed in a way that provides simultaneously
the confinement of plasma and its thermal insulation. Since a small contact with solid matter can cause
substantial losses of energy or destabilization and destruction of the plasma, a promising way of

creating such conditions is based on the use of magnetic fields.



For this reason since the early 1950s, much effort was concentrated on the design and creation of such
magnetic field configurations. After many years, two concepts are considered now as being the most
prominent ones for the creation of a magnetically confined thermonuclear reactor: the tokamak
(artificial word, abbreviation of the Russian phrase “Toroidal’'nga Kamera s Magnitnymi
Katushkami”, meaning “ Toroidal Chamber with Magnetic Coils™), which involves the magnetic field
of the plasma current, flowing inside the plasmatore, and secondly the stellarator (“Stella’, the star in
Latin), where complicated shapes of magnetic coils are required to create the effective magnetic trap.
Thefirst experimental thermonuclear reactor, ITER, is based on the tokamak concept [2].

The Lawson criterion involves two basic parameters: the plasma density and the energy confinement
time. The energy confinement time is mostly determined by the microscopic phenomena that occur in
the plasma, i.e. by collisions and microinstabilities that are usualy treated by kinetic models. The
plasma density depends essentially on macroscopic equilibrium; the highest achievable density at a
given temperature is determined by the stability limits that are set by the magnetic geometry. Fluid
models are most relevant here and the model of ideal magnetohydrodynamics is of particular interest.
Idea magnetohydrodynamics (ideal MHD) is one of the most developed and useful models,
combining the relative simplicity with a wide range of validity. ldeal MHD describes the stability
limits, determined by magnetic energy, thermal pressure and inertial forces in a perfectly conducting
plasma placed in an arbitrary magnetic configuration. The past years of experiments show that the
magnetic configuration has at least to fulfill the restrictions set by ideal MHD to confine successfully
the plasma, i.e. ideal MHD is a necessary but not sufficient test of the stability properties of the plasma
configuration. The phenomena that are not described by ideal MHD only make the restrictions more
rigorous. Non-ideal effects, not included in the ideal MHD model, for example finite plasma
resistivity, can cause instabilities that are weaker than ideal ones, but present in ideally stable
conditions. Such non-ideal instabilities can deteriorate the plasma confinement or even lead to plasma
disruption. Hence another important direction of plasma physics is the development of models
describing the influence of these non-ideal effects.

Ideal MHD is used presently as a general tool for the search of ways to optimize and improve
magnetic trap configurations. If analytical solutions are available, they can be analyzed and the main
parameters that can influence the macroscopic plasma stability can be easily found. Unfortunately,
being simple in comparison with many other more elaborated theories, the model of ideal MHD is still
difficult to dea with analytical solutions for the many magnetic geometries of practical interest.
Moreover, the basic analytical approach, using expansions of the ideal MHD equations, is not
necessarily valid for the conditions of the many modern experimental devices, because some
parameters that are considered small, are not presently small any more (for example, the inverse aspect

ratio & determined by the ratio of the minor radius of the torus to the mgjor radius). In such cases,
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numerical codes, solving the ideal MHD equilibria and stability problems for the given magnetic
configurations should be used.

1.2 A short history of the MHD theory

The early concepts that can be considered as the precursors of the MHD theory appeared in the X1Xth
century. The famous British scientist Michael Faraday has carried out the first experiment that can be
related to the MHD domain: he tried to measure the current, generated by the dynamo effect, caused
by the magnetic field of Earth in the flowing water of the Thames river under the Waterloo bridge in
London [3]. Unfortunately, the generated voltage was too small to be measured.
Apart from these early experiments, MHD theory hasits roots in the first decades of the XXth century.
Larmor supposed in 1919 that the Earth's magnetic field was generated by dynamo action within the
liquid-metal of its core and Hartmann started serious studies of the behavior of the mercury in the
magnetic field. In 1918 he invented the electromagnetic pump, working on principles of what he called
“Hg-dynamics’.
Further studies of the behavior of conducting liquids and gases in electric and magnetic fields are
associated with the name of Hannes Alfvén (1908 — 1995), who has put the basis of the modern MHD
theory. The proof of the possibility of propagation of electromagnetic waves in highly conducting
mediums, the theory of hydromagnetic waves, called now Alfvén waves (1942), the concept of the
guiding-center approximation for the motion of charged particles in electric and magnetic fields and
the concept of frozen-in magnetic flux are among his achievements. The Nobel Prize in Physics in
1970 for these “contributions and fundamental discoveries in magnetohydrodynamics’ was a well
deserved recognition of his talent.
Until 1940, MHD theory was developed with regards to astrophysical objects like space magnetic
fields, radiation belts, etc. The studies of thermonuclear fusion that begun intensively in the late 1940s
gave a strong impact to the MHD theory, because the thermonuclear plasma is a unigue object, where
MHD theory can be implemented and where experiments can be made. The basic outlines of ideal
MHD theory in its implementation to the hot thermonuclear plasmas were formulated towards 1960:
the concept of the MHD equilibrium [4, 5] of magnetic traps, the concept of the Energy Principle [6,
7], basic types of ideal instabilities etc. Ideal MHD theory developed further in the ways of creation of
more complicated models. In addition to the analytical approach, based on the expansion of the MHD
equations on some small parameters, computer codes are widely used, allowing numerical solutions to
the problems without assuming the smallness of these parameters.
Ideal MHD theory describes only a limited number of physical effects arising in thermonuclear
plasmas. Other theories have been developed, partially on the basis of the ideal MHD, the resistive
3



MHD for example. Nevertheless, ideal MHD theory is till under development and its applications are

far from being completed.

1.3 The motivation and the goals of the present work

Ideal MHD studies are used extensively, in particular for the design of new experiments, like the
ITER-FEAT experiments [2]. It was also used to design the TCV experiment aimost 20 years ago [8].
These studies are useful because ideal MHD is known to set the maximum achievable beta value that
can be reached for given current and pressure profiles, and given plasma boundary shape. The actual
beta values reached in present experiments are often below the ideal limit. This is sometimes because
of the lack of heating power, sometimes because of non-ideal MHD effects and sometimes because the
ideal limit islower than expected. However there has never been a systematic study of the relevance of
ideal MHD calculations for the present TCV experiments. This is useful first to qualify if the design
studies had some predictive merits. It is aso useful to understand the present unstable modes which
limits the TCV performances. Finaly it is useful to know when ideal MHD cannot explain the
measurements and non-ideal effects need to be included.
The main study relates to the internal kink mode, which is responsible for periodic relaxations of the
central temperature and current profile (see [9] and references therein). This cause for the trigger of
this mode is also important because it can also destabilize other modes, in particular the neoclassical
tearing modes [10], which can degrade the overal plasma performance [11]. The internal kink has
been studied extensively, in particular with analytical work [for example in 12, 13, 14, 15, 16].
However the numerical analyses have not been systematic, in particular concerning the dependence on
shaping parameters. This is why we have calculated numerically the growth rate of the internal kink
mode for a wide variety of plasma elongation, triangularity and aspect ratio. We also compare with
analytical results and show that they are not always applicable for present tokamak parameters. Thisis
why we also propose a formula which is obtained by fitting the numerical results, in order to help
rapid evaluation of the internal kink growth rate.
We have also calculated the effects of higher order change in the plasma shape on the external kink
mode stability at high elongation. This was required because TCV experiments have shown that it is
difficult to find stable plasmas for elongations larger than about 2.2-2.4. Such results are in agreement
with the design studies [8]. The analysis of the current limit of highly elongated plasmas varying the
triangularity and squareness has enabled the development of optimised shapes. This has alowed TCV
to reach elongation of 2.8 and a normalized current of 3.9 [MA/mT]. This study confirms the
predictive capabilities of ideal MHD.
Finally an important subject of experimental studies in TCV dea with advanced scenarios. These
scenarios are related to obtaining internal transport barriers capable of improving both the energy and
4



particle confinement properties [17, 18]. These scenarios, in particular on TCV, are related to non-
monotonic current density profiles [19, 20, 21, 22 and references therein]. Such scenarios are known
as reversed shear plasmas. It is known that such current profiles significantly change the ideal beta
limit properties [for example 23, 24, 25]. However no systematic studies of the ideal limit of TCV
advanced scenarios have been performed so far. The present work has analysed specific TCV
discharges and shows that the observed disruptions are due to the ideal beta limit. In addition we have
anaysed the variation of the beta limit on the value and position of the minimum safety factor, the
pressure gradient and the total current in order to describe the expected operational domain of TCV
experiments with internal transport barriers. This study is aso of interest to the many tokamaks which
develop plasmas with non-monotonic current density. The latter is required in order to develop steady-

state scenarios for fusion tokamaks[17, 18].

1.4 The organization of the work

The present work is organized in the following way.

Chapter 2 describes the ideal MHD model, its basic assumptions, validity, main methods of analytical
analysis and their applications. The tokamak equilibrium and some results on the ideal MHD stability
of the tokamak plasmas are presented with the emphasis on the internal kink mode stability. The
anaytical expansions that consider the plasma shaping are given and the roles of various terms are
discussed.

Chapter 3 is devoted to the numerical calculations of the MHD stability and to the MHD stability code
KINX. The calcul ations schemes that were used are also discussed.

Chapter 4 describes the results obtained for the ideal internal kink stability, including the anaytical
and numerical studies along with the experimental TCV data on the plasma shape variations.

The theoretical and experimental results are compared and an approximative scaling for the ideal
internal kink growth rate based on the numerical resultsis presented.

Chapter 5 presents the contribution of the ideal MHD calculations for various shapes and very high
elongations to the analysis and optimization of TCV experiments.

Chapter 6 presents the TCV experiments with internal transport barrier and non-monotonic current
density profiles and it is shown that the profiles at the disruption are consistent with the ideal MHD
limit. The dependence of the ideal MHD limit of these scenarios on the position of the barrier
(maximum plasma pressure gradient) and of the minimum safety factor is also presented.

The summary and conclusions are presented in the Chapter 7.



Chapter 2. The linear ideal MHD model

Theideal MHD model is presented in this chapter along with the basic predictions of this model on the
ideal internal and external mode stability in tokamaks. The MHD system of equations is obtained by
neglecting the electron inertia in the collison dominated plasma, thus providing the single fluid
description of the plasma. Using the ideal MHD equations, it is possible to identify the major stability
qualities of different types of plasma configurations, from purely abstract and simple models to more
complicated ones, close to real experimental plasmas.

2.1 Ideal MHD: formulation, assumptions, validity

The equations that form the basis of the ideal MHD are given by the continuity equation, the

momentum equation, the equation of state and the Maxwell equations:

—+V-pv=0
at
dv (2.2)
—=JxB-V
pdt X P
a(P_g (2:3)
dt{ p"
E+vxB=0 (2.4)
vxE=-28 (2.5)
ot
2.6
VxB=u,l (26)
V-B=0 @7

where E is the electric field, B the magnetic field, J the current density, p the mass density, v the fluid

velocity, p the pressure, I' =5/3and d / dt = d / dt + v-V isthe convective derivative.



This system of equations can be derived from the Maxwell equations and the general kinetic

Boltzmann equations. The full derivation of the MHD equations itself is not the matter of the present

work. It can be found for example in [26]. Nevertheless it is useful to list the assumptions, relevant to

the MHD equations:

o The plasmais fully ionized and consists of negative electrons and positive ions of hydrogen or
isotopes (H, D, T);

e  Thelow-frequency limit of Maxwell equationsis considered, formally by letting g — O.

Thus the displacement current & JdE/dt and the net charge & V-E are neglected. As aresult, the phase

velocities of electromagnetic waves have to be much slower than the speed of light, e’k << ¢ and the

characteristic thermal velocities are limited to non-relativistic velocities, Vre, V1i << C, V1o =

(2Ta/ma)” 2. The plasmais considered quasineutral

Ni=Ne=n (2.8)

This requires that the macroscopic charge separation that can develop in the low-frequency
phenomenais rapidly compensated by electrons, keeping the plasmain local quasineutrality.

e  Theé€lectron inertiais neglected formally by letting me— 0 in the Maxwell equations. To satisfy
this condition, the consideration is limited to frequencies smaller than the electron plasma
frequency, ape= (noe?/m.&)“2and the electron cyclotron frequency, @ = eB/m. and to the scale
lengths longer than the Debye length Ap =V1e/ @ and the electron Larmor radius, rie= Vrel ke.

e  Theplasmaisconsidered as asingle fluid by the following formal procedures:

- Asthe mass of electronsis neglected, the mass density of the single fluid becomes

L£=min (2.9
- The momentum of the fluid is carried by the ions, so that the fluid velocity v corresponds to the
ion velocity v;.

- The current density is proportional to the difference in velocity between electrons and ions:

J=en(Vi—Ve) (2.10)
- Thetotal plasma pressure and temperature are defined as follows:

p=nT=pe+pi (2.11)

T=Te+T; (212)



The plasma is dominated by collisions. This means that the electron and ion distribution
functions are nearly Maxwellian and the pressure is isotropic. It isimportant to mention that this
condition is sufficient for creating a closed system of equations and no other assumptions
about the character of collisionsis required for that. To satisfy this condition, the considerations
have to be limited to macroscopic phenomena, where the characteristic times have to be
sufficiently long to allow the collisions to make the distribution function nearly Maxwellian and
whose characteristic lengths have to be longer than the mean free path of the plasma particles.
This can be expressed as follows:

ot~ VTigila<<l1 (2.13)

OTe ~ (Me/Mi)Y? Vrizii fa << 1 (2.14)

where ;i is the ion-ion collision time, %e ~ (me/mi)l’2

%i, a Te ~ T, is the electron-electron
collision time, w ~ Vy; /a is the characteristic frequency of the MHD phenomena, a is the
characteristic plasma dimension. Since (me/m;)"/? << 1, it is clear that (2.14) is fulfilled if (2.13)
is satisfied.

Ideal Ohm’slaw hasto be satisfied. Thisimplies that:

- the MHD frequencies are considered much slower than the ion gyro-frequency, or, similarly,

theion Larmor radius is much smaller than the macroscopic plasma dimension:
al axi ~ rla <<, (2.15)

- the macroscopic plasma dimension a is large enough and the resistive diffusion time is long
compared to the characteristic MHD time, this implies that

(me / I’ni )1/2
T

(fiy <1 (2.16)
a

The energy equilibration time has to be longer than the momentum exchange time, implying that

m a

e

m 1/2 V
(_i] nli g (2.17)



The assumptions required for the formulation of the ideal MHD equations define the formal validity
range of theideal MHD model. Generally speaking, they lead to three basic requirements:

- high collisionality;

- characteristic plasma size much greater than the ion Larmor radius;

- large plasma size, so that resistive diffusion is negligible.

These requirements are restrictive, and they are not fulfilled in all achievable plasmas. Let us consider
the fusion plasmas that represent the greatest interest. The formal MHD validity conditions for
deuterium plasma, formulated in terms of the density n and temperature T, ratio of plasma pressure to

magnetic pressure 4= 2u,nT/B? and plasmasize a are given by:

3.0x 10° (T¥an) << 1
2.3x 102 (B/na?)'? << 1 (2.18)
1.8x 107 B/aT? << 1,

when a is expressed in meters, T inkeV, n in 10° m, and the Coulomb logarithm is set to 15.
Let us substitute with the characteristic parameters for the devices TCV and ITER-FEAT [2].

TCV, atypical experiment with electron cyclotron resonance heating and current drive:
T=T;=0.5keV, a=0.24 m, n =1.5x10" m*, B~ 0.005 (parameters of ohmic low density plasmas):

2.1x10*>> 1
1.75x10% << 1 (2.19a)
1.5x10% << 1

ITER-FEAT, typica conditions: T = 20 keV, a = 2.0 m, n =1.0x10%° m™, =~ 0.035:

6.0x10°>> 1
2.2x10% << 1 (2.19b)
7.9x10% << 1

It is clearly seen that the requirement of high collisionality is not satisfied in present tokamak
experiments and it will not be satisfied in fusion plasmas (first conditions in (2.19a) and (2.19b)).
Nevertheless, during many years of fusion researches, the ideal MHD theory was successfully used to

explain some important phenomena in fusion-grade plasmas. This is because different ideal MHD



equations in (2.1 — 2.7) have different validity ranges and the parts of the model that imply the high

collisionality are not determinant in the description of most macroscopic plasma phenomena.

2.2 The plasma equilibrium. Grad-Shafranov equation. Tokamak

2.2.1 The plasma equilibrium: basic considerations

We consider static equilibria, where the velocity v and its derivative dv/dt are set to zero. Thus, the

MHD equations become:

JxB=Vp (2.20)
VXB =1 (2.21)
V-B=0 (2.22)

These equations show that the plasma pressure gradient force Vp is balanced by the magnetic force
JxB in the equilibrium. The magnetic trap has at least to satisfy these equations in order to be able to
confine the plasma. Another important condition is the stability of the equilibrium in the trap against
different kinds of distortions, as described in the next section.

According to the ideal MHD equations, the plasma particles can freely move along the magnetic field
lines. If the magnetic field lines leave the plasma, the particles, following them, will aso leave the
plasma, thus the plasma will disappear very soon. To avoid this, the magnetic field lines have to be
contained inside the plasma. The simplest configuration that has this property is the torus. In the tore,
the magnetic field lines do not leave the plasma and the losses in such a configuration are due to
diffusion of heat and particles across the magnetic field lines. The perpendicular thermal diffusivity
could be very small, but in reality there are numerous processes, like particle drift, instabilities of
different kinds, convection etc, that enhance the losses of heat and particles. To close the most
important channels of leak, the particle drifts, caused by various forces, the magnetic field lines have
not only to be enclosed inside the plasma, but aso they have to wind around the tore, going from the
outer side to the inner side, thus they are twisted in both toroidal and poloidal directions.

From equation (2.20) one can see that

B-Vp=B-[JxB]=0 (2.23)
J-Vp=J-[IxB]=0 (2.24)
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It follows that the magnetic lines lie on the p=const surfaces and the current lines are also following
these surfaces. The magnetic field lines are turning around the torus within a magnetic surface. If the
magnetic field line closes on itself after a rational number of toroidal turns, this surface is called a
rational surface, since the ratio of the number of toroidal rotations to the number of poloidal rotations
after which the field line closes on itself is a rational number. If the field lines do not close, then they
cover the entire magnetic surface, which corresponds to ergodic surfaces. Most of magnetic surfacesin
the configurations of interest are ergodic, but the rational surfaces are of great importance for the

plasma stability.

2.2.2 Equilibrium of the axysimmetric plasma tore: the Grad-Shafranov
equation

The cornerstone of the MHD theory of toroidal systems is the Grad-Shafranov equation [4, 5], which
describes the two-dimensional equilibrium of atoroidal axysimmetric plasma. This equation provides
the basis for subsequent stability analysis. The derivation of the Grad-Shafranov equation is given here
according to [26].

The following plasma configuration is considered: the plasma torus, assumed symmetric with respect
to the vertical axisZ (Figure 2.1). (R, ¢, Z) form a cylindrical right-handed coordinate system.

Zz

Q¢

Figure 2.1: The geometry of the axysimmetric toroidal equilibrium

The axial symmetry of the system implies that 0S/0¢ = 0, where S is any scalar. Therefore equation
(2.22) can be written as

_19(RB,) 3B, _
R oR oz

Thisyields a stream function w for the poloidal magnetic field:

V-B

+

0 (2.22)

B=—"2% B, ==2% (2.25)



where = RA, and A, is the toroidal component of vector potential. In other terms,
_ ithB = 1
B=B,e, +B, ,withB _EVy/xe¢ (2.26)
The stream function is related to the poloidal flux in the plasma, ¥

- [B,-ds (2.27)

Let us choose the integration area S as the surface, lying in the Z=0 plane, extending from the

magnetic axis R=Ris t0 an arbitrary w contour defined by y=y(R,,0) as shown in Fig. 2.2. Then,

27 Ry ¥(R;.0)
jd¢ [dRRB,(RZ=0)=27 deRlaaZ 21 [dy=27(W(R, 0)~ (R, 0)) =27y (2.28)
Raxis Raxis ¥(Raxis 0)

The integration constant is chosen such that the poloidal flux is equal to zero at the magnetic axis:

Waxis= U(Raxis,0)=0. It is convenient to label the flux surfaces by w-

ZA

w contours

= YRp,0)
R
Poloida
surface

Figure 2.2: The surface through which the poloidal flux y, passes (the ring in the Z=0 plane,

contoured by dashed lines)

The Grad-Shafranov equation is obtained from equations (2.20-2.22, 2.26). Substituting (2.26) into

(2.21), the following expression for the current density is obtained:
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1
Uod =u0J¢e¢+EV(RB¢)><e¢

(2.29)
1 *
ﬂo‘]¢ Z_EA 4
where the elliptic operator A* is given by
Vy Jd(1oy) oy
A*y =R?V. =R—| === |+ 2.30
v (sz E)R(R&Rj 0Z? (230

Then equations (2.26) and (2.29) are substituted into the momentum equation (2.20). This equation is
decomposed in three components, along B, J and V i, normal to the flux surface.
The B component gives:

B-Vp=g, - VyxVp=0 (2.31)

Thisimpliesthat p is aflux surface quantity,

P=p(¥) (2.32)
For the J component one obtains:

J-Vp=ge, - VyxV(RB,)=0 (2.33)

and thusRB, isalso aflux surface quantity,
RB,= F(y) (2.34)

F(w) is related to the net poloida current flowing in between the plasma and the toroidal field coils.
The current flowing through a surface lying in the Z=0 plane and extending out to an arbitrary

contour defined by w=(R,,0), equals

2z

| :IJp-dS:—Id¢RidRRJZ(R,Z=O)=—2ﬂF(W) (2.35)

p
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The Grad-Shafranov equation can be obtained by substitution of equations (2.32) and (2.34) into the

V w component of the momentum equation, resulting in [26, p. 111]

A*y=—yr? 9P _p I8 (2.36)
dy dy
1 F F
B:EV1,//><e¢,+Ee¢:Bp+Ee¢j
(2.37)
1 dF 1 dF 1
J==—Vwxe, - =A* =—B_ -—A* 2.38
Ho Rdww¢Rl/fe¢deRwe¢ (2.38)

where p(y) and F(y) are two free functions, and B, = %Vy/x% isthe poloidal magnetic field.

The Grad-Shafranov equation (2.36) is a second-order nonlinear partial differential equation
describing axysimmetric toroidal equilibria. Different types of magnetic traps are described by this
equation, depending on the choices of the two free functions p(y) and F(w) and of the boundary

conditions.

2.2.3. The tokamak. Conception, figures of merit, aspect ratio and ordering

The tokamak is the most advanced type of magnetic plasma trap at the moment. Most experimental
devices for thermonuclear plasma researches are tokamaks and the project of the first international
thermonuclear experimental reactor ITER is also based on the tokamak conception.

The tokamak is a toroidal axysimmetric device, where the required confinement properties are
obtained by combination of the toroidal magnetic field, produced by the toroidal coils surrounding the
plasma, and the poloidal magnetic field produced by the current flowing inside the plasmatorus. In the
tokamak the plasma current is useful for the ohmic heating of the plasma, and it is required for the
creation of a stable configuration of magnetic fields. Without the poloidal magnetic field of the plasma
current the ExB drift would rapidly throw out the plasmato the wall. This current is usualy created by
the inductive effect, and the sustainment of a constant plasma current requires a constant increase or
decrease of the current in the inductive coils (the primary current). Therefore, the tokamak is only able
to work periodically, and breaks are required between pulses. Efforts are now devoted to the non-
inductive sustainment of the plasma current, in order to increase the length of plasma discharges in
tokamaks, up to steady-state operations.

The tokamak is presented schematically in Figure 2.3.

14



transformer yoke

coils for plasma position control
and coils of primary winding transformer

poloidal cross-

. section
diagnostic port ’

helical field lines

Figure 2.3 Basic elements of a tokamak

It is useful to introduce here some plasma parameters that will be used later.
The toroidal coordinate systemr, 6, ¢ (Figure 2.1) is very convenient for the description of tokamak

geometry, including the main shaping terms [27]

R=R,+rcos(6+0sind))
Z=rksing

(2.39)

This equation defines the shape of flux surfaces, = const. The trajectory of the magnetic field lineis
described by

dl
Rdg _ 0, (2.40)
B¢ Bp
where dl,={ (dr)*+(r d6)*} V2 is the poloidal arc length and
p
\%
B, =(B2+B? )1’2:% (2.41)

isthe poloidal magnetic field.
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The safety factor that describes the ratio of poloidal to toroidal rotations of the magnetic field line on

the magnetic surface is defined as

de

a(v) == (242)

where the integral istaken on the flux surface where the magnetic field lineslie, defined by (2.40).
The magnetic shear is given by

V|9 |_,dq
S(W)_Z(V'j[qj q dp|,

where V is the flux surface volume, p represents the radial coordinate and the prime means

(2.43)

differentiation with respect to w. The magnetic shear is very important for the plasma stability, as it

will be shown later. The “toroidal beta’, the ratio of the plasma pressure and the magnetic pressure is

given by
2
= 2el?) @4)
where
(p)= vi jp(V )dv (2.45)

is the volume average plasma pressure, Vo=V () and y isthe value of y at the plasma boundary
The poloidal betais defined as

2410(P)
§2

p

B, = (2.46)

where §p Is an average poloidal magnetic field.

The so-called “beta Bussac”, the key value for the stability of the ideal internal kink mode, asit will be
discussed later, is given by

Zﬂo(< p>1 -p,)
By,

Bow = (2.47)

where p; is the plasma pressure on the magnetic surface where q(y) = 1,
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1
v

i oV dy (2.48)
l

[p(v)dv =

[SEI—.

[iN

is the average plasma pressure inside the g = 1 surface, V1 being the volume inside the q = 1 surface

and §p1 isthe average poloidal magnetic field at the q = 1 surface.

One of the most important parameters of atokamak is the aspect ratio
a=Ro (2.49)
a

where Ry and a are the major and minor radii of the plasma tore, respectively. Often it is more

convenient to use the inverse aspect ratio,

a
£E=— 2.50
5 (250
The major plasma parameters are of the following orders with respect to €in present tokamaks
BP
P (2.51)
B,
B~ Zﬂg P_ 2 (2.52)
B,
B, ~2HP g (2.53)
BP
5 1 (2.54)
97 RB '

The Grad-Shafranov equation can not be solved in quadratures in the general tokamak case. There are
some “standard” equilibria that can be solved analytically [10, 28] and are used, for example, for
testing the computer codes that solve the Grad-Shafranov equation numerically. Anayticaly, this
equation is usually solved by expansion of basic values on small parameters that exist in the tokamak
plasma. Corresponding linearized equations are then solved analytically. The solution is thus obtained
as a sum of terms, corresponding to different orders of these small parameters. The most important
small parameter is the inverse aspect ratio £ Depending on the model, expansion on other small
parameters can be combined with the expansion on &

The early generation of tokamaks had £ ~ 0.1 and it was reasonable to consider this parameter as
small. However, more recent tokamak experiments demonstrate the trend to increasing & mostly

because of better confinement and stability properties that such configurations have. Tokamaks like
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TCV have ¢ ~ 0.3 and the recently constructed tight aspect ratio tokamak MAST (Culham
Laboratories, UK) and NSTX (Princeton Plasma Physics Laboratory, US) have inverse aspect ratios
around 0.7 - 0.8, which clearly can not be considered as small anymore. The theory of many physical
phenomena, nevertheless, is developed under the classical consideration of small and even moderate €
and therefore the question of the validity of these theoretical predictions in the case of high ¢ is

important.

2.3 ldeal MHD stability

The MHD equilibrium is a state where the forces that act on the system are completely balanced. The
perturbations of this state that occur inevitably in real systems change the force balance. The
evolution of the equilibrium depends on the behavior of these perturbed forces that can either restore
the initial equilibrium state or enhance the perturbations, leading to the partial or complete destruction
of the plasma confinement. The instabilities, described by the ideal MHD theory, are very dangerous
because they develop on the ideal MHD time scale, which is of the order of microseconds. Thus, the
ideal MHD stability is a necessary condition of the good performance of the magnetic plasmatrap.
Different approaches to the task of determination of the ideal MHD stability of the plasma equilibrium
will be shortly considered below.

2.3.1 Normal mode formulation. Eigenvalue problem

Following the description in [26], one can formulate the linear stability equations by assuming that the

deviations from the equilibrium state are exponential and can be expressed as

Qur,t)=Qy(r)e™ (2.55)

where (51 represents a small perturbation about the equilibrium value Q,, such that ‘61‘ / |Q0| <<1.
If Im(w) < 0, the system is exponentially stable and (2.55) describes periodical oscillations around the
equilibrium state. If Im(w) > O, then the initial deviation from the equilibrium increases exponentially,
so the system is exponentially unstable.
Under the assumption that, as other perturbed values, %(r D =E(re ', equations (2.1, 2.3, 2.5)
become
Pr ==V (pe8)
P ==E-Vpo—m,V-& (2.56)
Q=B,=Vx(xB,)
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Substitution of these expressionsinto (2.2) gives [26]

P =F (D), (257)
where
F(&)= 2 (VXBo)XQ+ = (VXQ)xBq + V(&- Vpy + oV - &) (258)

The equation (2.57) gives the normal-mode formulation of the ideal MHD stability problem. This
equation can be interpreted as the eigenvalue problem for the eigenvalue «f. This approach is often
implemented in the linear stability numerical codes (see the next chapter).

It isimportant to note that the operator F(§) isself-adjoint, i.e. [29]

[nF(&)dr = [eF(n)dr (2.59)
This property of the operator F(£) is very useful. For example, it means that the eigenvalues « of

equation (2.57) are real. This can be seen by integrating the dot product of equation (2.57) with & (r)

over the plasma volume:

o [ple?|dr =- [&" - F(&)dr (2.60)
Then integrating the dot product of the vector § (r) with the complex conjugate of (2.57):

o [ple?ldr =- [&-F(& dr (2.61)

Subtracting (2.61) from (2.60), one obtains for any displacement &

(o o) [pler =- [& -F(e)dr — (- [o-F(2 )dr)=-[& -F(e)r -[- [& - F(e)dr)=0 (262)

Thus, @® = @ “and &f is redl. This guarantees that w is either purely real, when o > 0 and equation
(2.55) describes the oscillations around the equilibrium or @ is purely imaginary, when « < 0 and

(2.55) describes exponential growth. The transition from stability to instability occurs at af = 0.
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The solutions of equation (2.57) gives a spectrum of eigenvalues. Typicaly, the spectrum consists of
discrete negative unstable modes, if they exist, and of both discrete modes and continua in the

positive, stable range [30, 31, 32]. The most negative eigenvalue «f < 0, if present, is the most

unstable mode. In thiscase y = Im(+/@* ) = V- @* gives the mode growth rate.

2.3.2 The potential energy variation and the energy principle

The equation (2.57) has a direct relation with the change of potential energy oW of the system,
associated with the perturbation & AW can be obtained by integrating the dot product of equation

(2.57) and & over the plasma volume:

B(E 2)=—7 Je -F(&)r =

(2.63)
le-(1 1 .
- 2 k [E (VXBO)XQ"'E(VXQ)XBO +V(&-Vp, + WOV'g)Jdr =’K(E &)
where K(& ,&) = —% jp‘&z‘dr is proportional to the kinetic energy of the plasma.
oW can be interpreted as the work done against the force F(€), when the plasma displaces by &.
It can be shown accurately [6] that it is necessary and sufficient that
(g ,8)=0 (2.64)

for al possible displacements &, for the plasma equilibrium to be stable. In other words, if for all
displacements the minimum variation of the potential energy is positive, the equilibrium is stable, but
if it is negative for a displacement, then the equilibrium is unstable. Thisis called the energy principle
and iswidely used for analysis of the ideal MHD stability of the plasma equilibria of different kinds.

2.3.3 Extended energy principle. Basic types of ideal MHD instabilities.

External and internal kink modes

There exist a variety of idea MHD instabilities that can be unstable in the plasma. They can be
classified by the main driving mechanism and by the type of plasma displacement, especially by the

presence or absence of the plasma boundary perturbation.
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Equations (2.57, 2.58) describe the plasma, directly surrounded by a conducting wall or separated
from the wall by a vacuum region. In the first case the boundary condition is evident: the plasma

cannot move across the wall,

n-¢§

=0 (2.65)

w

where r, is the wall position and n is the norma vector of the plasma surface. Thus, in this case

§|r =§”‘ . The unstable modes in such configurations do not disturb the plasma boundary and

Tw

therefore they are called internal modes. If there is vacuum between the wall and the plasma, then the
mode can disturb the plasma boundary. Such modes are denoted as external modes if they become
stable when the wall is on the plasma. In this case the energy principle has to be reformulated,
including the influence of the vacuum and plasma-vacuum interface [26]. Another distinction is often
used between pressure driven and current driven modes. Upon neglecting surface-vacuum and vacuum
volume terms, thisis seen by re-writing W as follows[33, 34]:

|2

B,’ 2 2 " R
&N=%Ldl‘ —+ﬂ_0|v'§J_+2§J_'K| +7’po|v‘§| — 28, -Vpo )(k-E,)—Jg(8, xb)-Q, | (2.66)

where x = (b-V) b is the field line curvature, Q, is the parallel component of Q, Joj is the parallel
component of Jo. The terms in (2.66) have different physica meanings and describe the various
factors determining the equilibrium stability. The term |Q.f is the energy required to bend the
magnetic field lines. The second term represents the energy required to compress the magnetic field.
The third term corresponds to the energy of plasma compression. These three terms are aways
positive, i.e. stabilizing. The fourth term is proportional to Vpo, the gradient of the plasma pressure.
This term can be negative and it can be shown that generally the high pressure gradient is a
destabilizing factor [34]. The modes, where this term is predominating, are called pressure-driven
modes. They can exist even if there are no parallel currents in the plasma, because they are driven by
perpendicular currents (Vpo ~ Joi X Bp). The most important pressure-driven modes are interchange
modes and ballooning modes.

The last term is proportiona to Jo; and is negative. The modes that are driven by this term can exist
even in zero-pressure force-free plasma with parallel current. Among these current-driven modes, the
modes with long parallel wavelengths and macroscopic perpendicular wavelengths (kyk, << 1, k,a~1)
are the most dangerous and are called kink modes. Depending on the perturbation of the plasma
boundary, they can be divided into internal kink modes and external kink modes.
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The behavior of these modes is the subject of the present work and will be analyzed in more details
below. It is important to mention that the division into pressure-driven and current-driven modes is
rather academical. In realistic cases, both driving mechanisms are present and have to be taken into

account.

2.4 The ideal kink mode stability: analytical approach

Here the main aspects of the stability of the internal and external kink modes, representing the greatest

interest for the present work, will be discussed.

2.4.1 The internal kink mode in a cylindrical “straight” tokamak

To understand the main assumptions used to obtain an analytical formulation of the ideal internal kink
mode, it is useful to use the result obtained in a straight tokamak. In such a simple geometry one can
calculate the first contribution to the potentia energy [26, p.340]. Since we are ultimately interested in
the growth rate y7, =7 S with oW :\jvﬂ, where

S

1 0
2g2p2 2
w, = 270 BoRof” 50;0R0‘9 , (267)
0

ande = R—l we discuss the order of the various contributions with respect to the normalized potential
0

energy S . It is important to note that Wy ~ O(¢?) which is why SN terms of order O(&%) here
correspond to O(¢*) in Ref. [26] for example. The first non-vanishing term is of 0" order in this

notation:

2p2 a 2
§N80=i2ﬂ By j(ﬂ_ij (r’&2+(m? 1) )rdr (2.68)
Wy 4Ry Jilm g

where ¢ is the radia displacement. For m > 1 and arbitrary n both terms in (2.68) are positive and
nonzero. Thus, dﬂlgo >0 and these modes are stable. Withm =1, the mode is aso stableif g increases
with r and if ngo > qo > 1. If aq = 1 surface exists in the plasma, then it is possible to construct aftrial

function for £ that will reduce &NSO to zero: a step function that equals zero outside the g = 1 surface
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and equals & inside g = 1 surface. It jumps from 0 to & in asmall vicinity 8 — 0 of the q = 1 surface
(Figure 2.4). This special behavior of the m = 1 mode is caused by the coupling between them =1

poloidal structure of the mode and the poloidal curvature of plasma.

0

|

% : \

»
| o

r r

Figure 2.4: Thetop-hat” radial displacement function & for the internal kink mode m = 1 in a

““straight”” tokamak

Since dﬂlgo =0, the higher order expansion terms determine the mode stability, the next non-vanishing

term being of order £ [35]:

S, = R j[,b’ (1_5)(3+ )jrdr (2.69)

where r; isthe location of the g = 1 surface (see Fig. 2.4). It isimportant to mention that contributions
from both pressure gradient and parallel current are present and are negative, i.e. destabilizing. Thus,
in the case of the “straight” tokamak the m = 1 mode is unstable with SN ~ &. The “straight” tokamak
model, although useful for understanding the concepts of the ideal MHD stability of a tokamak, does
not include important effects, arising in the redlistic toroidal configurations, where the contribution
(2.69) disappears in the most important case of n = 1. The toroidal effects will be discussed in the
Section 2.4.3.
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Figure 2.5 The m=1 kink mode

2.4.2 The external kink mode

The externa kink modes are generally more unstable and mode dangerous than the internal modes,
because their stability is determined by the £ contribution to yz and because they alter the plasma up
to the edge boundary.

In the case of the external mode, SV consists of the plasma, surface and vacuum terms

SN = MF + &KIS + &ﬂ/v (2.70)

Assuming the conducting wall is at infinity, the first non-vanishing SN contribution is of the order &

[26, p.342]:

MEOZLZ"ZBZK” ](rzf' H(M? —1)E2 rdr + &2 (———]D |(———j (Lr—ﬂ 2.71)
Wo 4Ry glm m q, m dq,

The first term, corresponding to the fixed-boundary case (2.68), is aways positive and nonzero and

thus, the external mode stability is determined by the second term. Considering g,>0, m > 0 and
arbitrary n, which does not affect the generality of the consideration, one can see that the second term
is positive and the mode is stable if
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—>= (2.72)
m q,
or if
Moo (2.73)
m
The mode can be unstable if and only if
o< 1 (2.74)
m g,

In the case of q increasing with the radius, as in tokamaks, this condition implies that the @ = m/n

surface lies outside the plasma, in the vacuum region.

Inthem = 1 case, the first term in (2.71) vanishes if the eigenfunction in plasmais &r) = & = const.
Such a choice is possible only for the external mode, because the internal mode requires that & = 0
(2.65). The minimizing eigenfunction is flat and does not depend on the g profile and thus, the
stability isfunction of g, only:

_An’Bgér

A 1
W, =—228 n(n——)] (2.75)
¢ Wot,R, [ '

For the most dangerous case, n = 1, the stability condition becomes
ga>1 (2.76)

This criterion, named the Kruskal-Shafranov condition [36, 37], sets the limitation to the total toroidal

current that can be created in the tokamak plasma with the circular cross-section:

(2.77)
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2.4.3 The large aspect ratio tokamak: the role of toroidicity in the internal

kink mode stability

The next step towards the real plasma is the model of the large aspect ratio tokamak with circular
cross-section. The stability of internal kink modes in such geometry was first analytically considered

in[12]. Note that in the case of the toroidal tokamak the plasma represents a tore with the major radius

Ro and the minor radius a. For the usua tokamak ordering and assuming that & sRi« 1, it was
0

found after complicated calculations that in the case of the toroidal tokamak the term dﬂlgz becomes
[12]:

W, {1——)&\&/ +n—§v§/t (2.78)

where &/Vc is the contribution corresponding to the straight tokamak model, right-hand side of Eq.

(2.69), rs being the radius of the surface where nq = 1. In the case of n = 1, [1— izj =0 , thus this
n

cylindrical contribution is completely cancelled by toroidal effects, even at € — 0, so that the
remaining contribution is of toroidal origin. The reason for that is the matching between then = 1

toroidal mode structure with the toroidal curvature of the tokamak.

&/Vtis the toroidal contribution and it is in general extremely complicated. It can be expressed

analyticaly in the following particular case, assuming that ho £,and the shape of the q profile inside
a

q(r)=1- Aqll— (H ] (2.79)

Aq=1-gq,. (2.80)

g = 1 surface defined as

where

For aparabolic q profile (1 = 2) oW, becomes[12]

2
< 13 2u, % ,dP
AN, =n’e’Aq ——{—0 rz—er (2.81)
t [48 Bjnzgfrsz-[ dr

0

For n = 1, the most severe case, the term with W, in (2.78) vanishes and (2.78) becomes
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S, = ¢ Aq(——Sﬂbuj (2.82)

Therefore the mode is stableif A, isbelow some critical value

13
— ~0.3 2.83
:Bcrlt 11 1 ( )

If n> 1, the pictureis closer to the straight tokamak and at n >> 1 it becomesidentical to that model.
The expression (2.82) represents a benchmark for all analytical and numerical calculations of the ideal
internal kink mode stability researches. However this depends to a large part on the form of the q
profile inside g = 1. Assuming a constant current density inside g = 1, it was shown in [38] that the
critical B is much lower than (2.83). Furthermore, assuming that qo is close to 1 such that Aq ~ &,
equation (2.82) becomes O(&*). Thisiswhy the next order term of order £ has been calculated in [13]:

(1 14:Bbu)j

- (2.84)

Mgz +M _81Aq[__3ﬂbu)+gl (6ﬂbu(l+ﬂbu) ﬂbu

2.4.4 The internal kink mode in a shaped large aspect ratio tokamak

The minimization procedure, discussed in the example of the “straight” tokamak model is applied to
more complex models. The shaped tokamak model, analyzed by numerous authors [14, 15, 39, 40] is
of great interest for the present work, because the role of plasma shaping is considered here in details.
The algebraic calculations, required for solving the equations that arise in this consideration are highly
sophisticated and usually are performed with computational algebraic manipulations. They are mostly
omitted here. The initial considerations and the basic results on the mode stability that are of interest
for us are discussed. It isimportant to note that only the n=1 mode stability will be discussed here.

The conventional notation of the shaped tokamak geometry is presented schematically on Fig. 2.6.
Most important shaping parameters are the plasma elongation x and triangularity ¢. For the circular
tokamak k=1, 0= 0. It is often convenient to use a measure of elongation that equals to zero for the

circular tokamak and can be used as an expansion parameter, the éllipcity:
e=—— (2.85)

In most cases it has been assumed that x~ 1, which yields
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e (2.86)

Za

Figure 2.6 The geometry of a shaped tokamak: the arbitrary flux surface

Other plasma shape parameters, like quadraticity, etc, can also be introduced. The shaped tokamak
plasma is considered here, described by the following general expressions for the flux surfaces
[16, 40]:

R=R,+fcosw—A(T)+> S™(F)cos(n-1)w (2.87)

Z =tsinw-> S™(F)sin(n-1)w (2.88)

where wis the angular variable, non-orthogonal to the minor radius r and Ry is the mgjor radius of the
magnetic axis, n > 2. Note that Tis not strictly equivalent to r. The latter is usualy derived as the
average minor radius, as shown in Figure 2.6. However t contains information about the elongation
and isrelated to r with

r
1-e

where e is given by (2.85). It is important not to employ (2.86) instead of (2.85) since (2.89) would

F= (2.89)

then diverge for x=3.
The Grad-Shafranov equation is solved assuming that the flux surfaces are described by equations
(2.87, 2.88), thus the solution of the Grad-Shafranov equation gives the dependences of the Shafranov
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shift A(T) and the shaping coefficients for the Fourier harmonics S™( ) on . According to [16] the

shaping coefficients dependence on t can be described as

)n_ s™"(a) (2.90)

| =

s<”>(F)~[

The coefficients S and S® and their relation with the conventional shaping parameters can be found
in [40]:

(2) _
7 _x-1_, (2.91)
r K+1
(3)
S”_9 (2.92)
r 4

(higher harmonics are omitted). The inverse aspect ratio is considered as a small parameter £ << 1.
The plasma current profile is considered to be the same as it was in the case of the circular tokamak,

r

i.e. the q profile is described by (2.80) with 4 = 2, El ~ ¢ and Aq ~ & The shaping parameterse and ¢

are considered of the order of &
The non-circular geometry adds new terms to the dW expansion, and some terms, existing in the

circular case, are modified. For instance, the Bussac term (2.82) becomes [9]
S, = 3@qu(( 0.3- 0.5%)— B2 j (2.93)

where F, =r,\/; and @ =a+/x, thus taking into account the volume effect in the effective minor
radius.

The plasma shaping gives rise to the quasicylindrical terms [14, 16, 39], existing in the case of the
shaped straight tokamak. They depend on the shaping parameters xand ¢ and have the following form

for our conditions;

n 3
SN, =- 2A3q 62 (2.94)
W, = %52 (2.95)

Theterm (2.94) israther small, but the term (2.95) can become important.
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There are dso terms arising due to the combined effects of toroidicity and shaping. They were

identified for the ideal internal kink mode in [15] and in our conditions become

a/’\\/e‘ze = 2'29[—§ﬂbu +%(156ﬂbzu _3ﬂbu -12 )) (296)
~ R 5 Aq
Mee& = 895[3:Bbu + F( 4ﬂbu -7 )) (297)

The terms O(Ag?) have been neglected. The terms (2.96, 2.97) are often referred to as the Mercier-like
terms, because they are identical with the potential energy terms in the expression for the Mercier
stability criterion [14].

Thus, the whole expression for MW inthe shaped large aspect ratio tokamak reads [41]:

~ T _ 3
M=Séqu((o.s—o.s%)—ﬂbij+é“(6ﬁsu(1+ﬁp)+/3bu (1-145, )j—ZAq e2+ 8052,
a 32 3 4 (2.98)

+£‘2e(_gﬂbu +%(156ﬂb2u — 3L _12)j+295(3ﬂb2u +A_6q(4ﬂbu _7)j

where £ =¢/(1-e)and al the terms are evauated at the q = 1 surface. It is important to note that
according to (2.96) and (2.97) the plasma elongation is a strong destabilizing factor. The plasma
triangularity Jin the term W 52 (2.99) is stabilizing both when negative and positive, but in the term
&K/ée 5(2.97) it is stabilizing when positive and destabilizing when negative (it is assumed here that
k> 1). Thus, a given Aq, x> 1 and 3, the dependence of MW on & isaquadratic parabola, displaced
dightly to the negative side (Figure 2.7).

Knowing MW, it is possible then to find the growth rate of the mode ¥ normalized to the toroidal
Alfven time[42, 43]:

yr,=——8N (2.99)

where the toroidal Alfven timeisz, =+/3R, / v, , va isthe Alfven velocity and s; is the magnetic shear

(2.43) onthe g = 1 surface.
The interna kink mode with m/n = 1/1 is the most unstable interna mode. It has a simple physical
explanation: the top-hat shape of the corresponding displacement function (Fig. 2.4) means that this

mode does not cause deformations of the plasma cross-section, but only of the toroidal bending of the
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magnetic lines (Fig. 2.5). Thus, less energy is involved in the development of this instability and it

occurs earlier than for other modes which deform the plasma cross-section.

ole

Figure 2.7 The characteristic dependence of W on the plasma triangularity (x> 1)

Experimentally, this mode is relatively benign and occurs periodically. At each crash, the profile tends
to relax to flat profilesinside g = 1 and then builds up until it is unstable again [9, 44]. Thisleadsto a
sawtooth-like behavior of the soft X-ray measurements or of the central temperature [45]. Thisis why
they are called sawtooth crashes. In experiments with large plasma current, the g = 1 radius is large
and more than half of the plasma minor radius is affected by these sawtooth crashes.

2.5 The infernal mode

Another important ideal MHD instability that can appear in the tokamak is the inferna mode, which
represents the features of both kink and ballooning modes. This mode can become unstable in low
shear conditions, where the q profile becomes flat or reversed in the plasma core. Such conditions are
met in some prominent advanced confinement regimes, widely studied on the present-day tokamaks,
including TCV. The infernal modes limit the plasma performance in these regimes. The numerical
analysis of idea MHD stability of such plasmas is presented in the Chapter 6, and here a short
description of the theoretical basis of these modesis given.

The infernal modes were firstly derived from the implementation of the ballooning modes theory to
the low-shear configurations. Ballooning modes are pressure-driven MHD modes with short
perpendicular wavelengths, localized in the low field side of the magnetic surfaces, where the

magnetic lines curvature is unfavorable for the mode stability.
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The classical ballooning theory [45, 46] was developed by Connor, Hastie and Taylor on the basis of
the extended energy principle (2.66), assuming n >> 1. Finite (non-zero) shear was an important
assumption for this theory, and the basic result was that the instability growth rate is decreasing
linearly with 1/n. The growth rate is a maximum at 1/n = 0, so the n — oo limit provides the stability
limit for the ballooning modes.

If somewhere in the plasma the magnetic shear reaches zero, however, the theory [45, 46] does not
work and modifications are required. In [47] Hastie and Taylor have presented the modified
ballooning modes description of low shear plasmas, assuming as before n >> 1 and showing that the
growth rate dependence on n becomes more complicated, oscillations on n appear and allowing that
the highest instability growth rate can occur at finite n, and not at n— oo, as in the monotonic high
shear q profile case. Thiswas also found by Dewar et a [48].

The next revision of the ballooning theory [23, 24] included the lower n > 1 and lower shear values
into consideration. Cases were found that were unstable even if the modified ballooning theory of
Hastie-Taylor predicted the complete stability. The term “infernal mode” was introduced [23] to
describe these modes. It was shown that the low n ~ 1 modes may be aso very unstable and may be
more unstable than higher n modes.

Another important step was done by analyzing the stability of reversed shear modes [24], showing that
a Qmin ~ 1 the low n infernal modes with n > 1 can be the most unstable ones. The n = 1 mode was still
classified as the kink mode, and thus identified separately from the infernal mode. Let us note that at
low n, the characteristic feature of classica high n ballooning modes, namely the localization in
perpendicular direction that is a clear characteristic for n >> 1, vanishes and the low n modes become
more global and kink mode-like. Nevertheless the mode retains prominent localization on the outer
magnetic surface side with unfavorable curvature.

Subsequent work [49, 115] has also considered n = 1 modes in the infernal mode studies, noting that in
some cases the internal n = 1 mode can be the most unstable one even if thereisno q = 1 surfacein
the plasma.

The development of ballooning theory for reversed shear cases is also continued. Recent publications
[51, 52] have shown that for reversed shear plasmas with interna transport barrier, the n >> 1 mode
stability is optimized at low gmin values. We shall see this is not the case for n = 1 inferna modes
(Chapter 6).

Thus, historically the meaning of the term “infernal mode” has evolved, going from high, but finite n
ballooning modes towards low n and even n = 1 modes, existing in the low or reversed shear plasma
even in the absence of corresponding resonant surfaces. The latter meaning of infernal modes is
referred in thiswork. That is, infernal modes are low n modes (n > 1) that remain unstable even in the

presence of the ideal wall on the plasma boundary. They have a ballooning characteristic and yet are
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similar to externa kink. They are both pressure and current driven. The analysis of the reversed shear
plasmas stability in the Chapter 6 is devoted to the low n infernal modes which, as it can be seen, are

the most unstable modes in the cases of interest.

2.6 Conclusions

The ideal MHD equations and some important applications of the ideal MHD theory were reviewed in
this chapter, for instance, the concepts of the MHD equilibrium and stability. Several approaches to
the problem of the stability of the magnetically confined plasmas in the MHD equilibrium were
discussed and the formulations of these problems, used in the analytica and numerical stability
analysis were introduced. Some important analytical solutions of the stability problem in different
plasma models were presented and discussed, including the internal kink mode stability in the straight,
circular toroidal and shaped toroidal tokamak and the external kink mode stability in the straight
tokamak.

The analytical approach, presented in this chapter, is based on some important assumptions, the most
important of which isthat ¢ is considered as a small parameter. As it was mentioned above, modern
tokamaks have increasing & so the validity of these results for moderate and tight aspect ratio
tokamaks has to be examined. It will be done by comparing the analytical results with the results of

numerical simulations, described in following chapters.
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Chapter 3. The numerical approach to the ideal MHD stability.
The numerical code KINX. The organization of calculations.

In this chapter we present numerical approaches to solving the ideal MHD equations and describe the
computer codes and procedures, used for caculations of the ideal MHD stability of the tokamak

plasmas.

3.1. The ideal MHD stability: numerical approach.

In the previous chapter the ideal MHD equations and different formulations of the MHD stability
problem were introduced. As it was also described in the previous chapter, the MHD stability can be
investigated analytically, which often requires some assumptions and simplifications that are not
always satisfied in real plasmas. Another approach to the stability problem is the use of numerical
codes, solving the MHD equations in a more general form than it can be done analytically. Numerous
computer codes, for example KINX [53], ERATO [54], GATO [55], PEST [56], PEST 2 [57], DCON
[58], MISHKA [59], etc. are developed for the ideal MHD stability analysis. The numerical approach
will be demonstrated here on the basis of the stability code KINX, used throughout the work.

3.1.1 The stability problem in the KINX code

The code KINX solves the ideal MHD stability problem for axisymmetric plasmas in the eigenvalue
formulation, described in the Chapter 2, Sections 2.3.2 — 2.3.3:

(L &)=wrK(E &) (31)

where dW is the change of potential energy of the system, associated with an arbitrary perturbation
E(r,)=¢(r)e"* and K(g*,g):—% jp‘éﬂdr is proportional to the kinetic energy of the plasma,

related to this perturbation. The sign of «f (note that «f is necessarily real, see Section 2.3.1)
determines the stability of the perturbation: if it is positive, then the configuration is stable and the
perturbation will cause harmonic oscillations with the frequency w. If it is negative, then the plasma

configuration is unstable and theinitia plasma perturbation will grow with the rate:

y=Im(Na? ) =v- a? (32

The displacement vector &(r) is projected as



DxB BxVy . B
E=gV 5 +& 48— (33)
Bl El Bl
where D is the vector orthogonal to the magnetic field:
B=VyxD, (34)

B is the equilibrium magnetic field (Section 2.2.2, equation 2.37) andy is the poloidal magnetic flux
stream function (Section 2.2.2., equations 2.25-2.28).

It is assumed that the plasma is surrounded by a vacuum region and by an ideally conducting wall
outside the vacuum region (there is also a possibility to consider a resistive wall realized in the code
version KINX-R, but it was not used in our work). Then dW can be represented as the sum of the

plasma and vacuum contributions
N =N, + N, (3.5)

and the kinetic energy is evidently present only in the plasma

In the plasmathe potential energy variationis

Vyxd

—E 2 Y(J-VEP @ V/Z
aNP—ZVPI{Wx(axB» +2£7(3-VER )+ dl//|¢5| "

V><D|§"’ +IpV-g }d (3.6)

where J=VxB is the current density, I" = 5/3 is the adiabatic index, p is the plasma pressure, Vp is the
plasma volume. The last term in (3.6) describes the plasma compressibility, which makes difference
with the incompressible theory, presented in Chapter 2. Thisterm is positively defined and thereforeis
always stabilizing. The plasmaincompressibility condition V - & = 0 can be imposed by setting I" = 0.
Thekinetic energy K is given by

Y WDDVW | B
) {|§' g X g S F} &7

where pp isthe plasma density.

In the vacuum region, surrounding the plasma the contribution to the potential energy is
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1 2
SN, = EVVj|V><A| dv (3.8)

where Vy is the vacuum volume and A is the vector potential of the vacuum magnetic field
perturbation MBy=VxA. The pseudodisplacement &, is introduced [60, 61] in the vacuum region, such

that the perturbed vector potential in vacuum can be represented as

where By is an artificial magnetic field, which does not coincide with the equilibrium vacuum
magnetic field, but ensures the correctness of the representation (3.9). In this case the field Bys can be
represented similarly to (3.3) and the problem for the vacuum region is represented in away similar to

the plasma region, providing the same convergence properties to the whol e plasmat+vacuum system.
The boundary condition at the ideally conducting wall reads
nxA=0 (3.20)

where n is the normal vector of the ideally conducting wall surface and at the plasma-vacuum

interfaceit is defined by the tangentia electric field continuity condition:

nxA =nx(&xB) (3.11)

where n is the normal vector to the plasma-vacuum boundary. Imposing also the continuity of the total
pressure at the plasma-vacuum interface, these equations form the stability problem, solved by the
KINX code.

The displacement & can be represented as sum of the Fourier modes, corresponding to different
toroidal wave numbers n, &, e™. In axisymmetric geometry, these modes are decoupled and the
stability problem (3.1) becomes a set of separate two-dimensional eigenvalue problems for each &,

It is important to mention that the code can be implemented in a wide range of plasma geometries,
current density and pressure profiles, because the formulation of the stability problem does not set any

condition on these parameters. In complicated geometries with separatrix or in presence of severa
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magnetic axis the whole plasma cross-section is decomposed into a number of nested flux domains,

and the stability task is solved separately for each of these domains.

3.1.2 The numerical methods, used in the KINX code.

The code KINX uses the finite elements method. Equation (3.1) is solved by the PAMERA [62]
matrix solver. Detailed description of numerical methodsis givenin [62, 63].

The procedure of eigenvalue computation by the KINX code consists of the following steps:

1. The grid (s,6) of the size NexNy is set, and the initial displacement & with its derivatives is
discretized on this grid, forming the column vector z. The hybrid finite elements method [64] is used
for this goal. The displacement components &, &, & and their derivatives are expanded using
different basis functions, so that all terms in the potential energy functional (3.6) are constant in each

(s,6) grid mesh. The equation (3.1) then becomes an eigenval ue equation
Az=/Bz (3.12)

where A and B are Hermitian matrices of the potential and kinetic energy of displacement normalized

to square of Alfven frequency at the magnetic axis a? and A=af/ @’

2. Aninitia eigenvalue guess ay is set and the eigenvalue shift

W(E ,&)-afK(E ,8) (3.14)

is performed. This corresponds to the matrix and eigenvalue shifts A = A - 4o B, A = A1 - A. Then

(3.12) can berewritten as
Az =Bz (3.14)

3. Equation (3.14) is solved by inverse vector iteration [65], using the PAMERA package. The

equation (3.14) is rewritten as

o = ABZ¢ (3.15)
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k

where z :|U—k| and theinitial guess z°=1 corresponds to the initial trial displacement.
v

The iterations (3.15) continue until A converges to the eigenvalue closest to A, with convergence

criterion

AL< Epam M’norm - ﬂO| (316)

where A4 is the change of A between iteration steps, Ao iS the normalized eigenvalue, obtained from
normalization Anom = 1/Jz] and epam equals to 10 in our calculations.

The eigenvalueis also estimated by the Rayleigh quotient [66]:

(", A7)
(Z",B2)

A (3.17)

The difference |Ag - Anorm| IS @ measure of the round-off error by A matrix inversion. The solution € is

the eigenfunction, corresponding to the eigenvalue A.

4. The kinetic energy matrix B is positively definite and therefore the Cholesky decomposition [65]
can be performed: B = R" R, where R is an upper triangular matrix with positive real diagonal values,
and H is the Hermitian operator. With the vector transformation u=Rz one obtains by multiplying the
equation (3.14) from the left by (R :

(RHMAR =4, lu (3.18)

where (R AR s the diagonal matrix, consisting of eigenvalues of u, A, According to the

Sylvester’s law of inertia [67] the number of positive, negative and non-vanishing eigenvalues of A
and (R™M)" AR is the same. Counting the negative entries in the matrix (R™)" AR, one can find the
number of solutions more unstable than the initial guess. Thus, changing the initial guess, one can find
the largest negative eigenvalue, the most unstable mode. The initial guess is increased gradually from
a very negative value towards zero, until the most unstable negative eigenvalue is found or the

maximum (closest to zero) preset initial guess value is reached, and the equilibrium is considered as
stable.
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The code KINX uses as input the Grad-Shafranov equation solution on a quasi-polar grid, which is set
by the 2D tensor pj;, related to the orthogonal coordinates (R;j, Zi;) by the mapping:

Rij :Rmag+pij(R R

bound,j ~ ' ‘mag )

(3.19)
Zij = Zmag +pij(zbound,j -Z

mag )

where Rmag, Zmag SPeCify the magnetic axis and Ryound, Znound define the plasma boundary. Ny elements
of constant i describe magnetic surfaces and Ny elements of constant j describe straight radial lines.
Such equilibrium mapping is produced by the code CAXE [68] which can use the equilibrium,
calculated by the CHEA SE code [27], asinput.

The code benchmarks are described in [53] in comparison with other numerical codes. In our work, a
partial benchmarking was also carried out by comparing the growth rates of the ideal internal kink
mode, calculated by the KINX code, with analytical results in the low aspect ratio case, where the
analytica expansions are justified (see Chapter 4, Section 4.1.3). Good correspondence between
anaytical predictions and those of KINX in this important particular case confirms the correctness of

the problem formulation and of the numerical method used in the code.

3.2 General organization of the calculations

The organization of the calculations is presented in the scheme 3.1. The typica task consists of
scanning the plasma parameters like elongation, triangularity, aspect ratio, safety factor and beta for
given current density and pressure profiles and, determining of the stability of these configurations in
order to outline the influence of these parameters on the plasma stability. Other kind of tasks consisted
of the analysis of experimental TCV equilibrium, reconstructed on the basis of TCV experimental
measurements by the LIUQE code [69]. In both cases the plasma parameters, either set artificialy or
taken from the LIUQE equilibrium reconstitution, were used as input data for the CHEASE code. The
CHEASE equilibrium after some mapping procedure was used as input for the CAXE code, and then
the KINX stability calcul ations were performed by iteration on the initial guess value.

Perl and Unix shell scripts were written for controlling the plasma parameter scan and the genera flow
of calculations, according to the scheme 3.1. These scripts collect basic input parameters and the
eigenvalue and write them to the output file. These scripts alowed for example the scans of elongation
and triangularity for the internal kink mode stability studies (Chapter 4) and the scans of normalized
beta and gmin in the studies of the stability of reverse shear plasmas (Chapter 6).
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Input : plasma profiles, shape, aspect ratio (arbitrary or from TCV)

Initial equilibrium calculation.

Iterations, if some prescribed CHEASE

values have to be obtained

CHEASE to CAXE interface Xpo2cxa

Equilibrium recalculation.

Setting the optimized CAXE «— Mesh parameters

flux mesh for KINX calculations

Search of the lowest negative Wall position

\ 4
eigenvalue. Iterations with KINX «— toroidal number n
eigenvalue guess adaptation eigenvalue guess

|

Output: plasma parameters and the lowest negative eigenvalue, if unstable solution was found,

stable otherwise.

Schema 3.1 General calculations flow

The calculations were performed on the IBM pSeries 650 server of CRPP. Typical calculation cycle
CHEASE — CAXE — KINX takes 10-30 minutes, depending on the grid sizes and stability of the
mode: stable configurations required more computing time, because in this case the initial eigenvalue
guess has to pass all the way from initial value to the lowest absolute preset value. In unstable cases

iterations were aborted, when the most unstable eigenval ue was found.
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Chapter 4. The internal kink mode stability dependence
on plasma shape parameters and inverse aspect ratio

In this chapter the numerical studies of the internal ideal kink mode stability are presented and
discussed. The dependence of the internal kink growth rate on beta Bussac, aspect ratio, plasma
elongation and triangularity, according to the KINX calculations is analyzed in comparison with
anaytica formulae. The experimental studies of the sawtooth period dependence on plasma
triangularity on TCV, inspired by numerical predictions, are presented. An empirical scaling formula
is proposed, describing the dependence of the growth rate as obtained by KINX, on basic plasma
parameters. Most of the results presented in this chapter can be found in [41].

4.1 Internal ideal kink mode stability: comparison of numerical and
analytical predictions.

4.1.1 Important plasma parameters

According to the analytical theory (see equations 2.98 - 2.99), the ideal internal kink mode stability
depends on following plasma parameters (the range of variation of these parameters in our simulations

is also presented):

e [ “betaBussac’, the poloidal betainside g=1 surface, see equation (2.49); 0< S, <2

o & inverse aspect ratio at the g=1 surface; 0.001 < £ < 0.3

AQ = 1-qo: qo being the value of the safety factor on the plasmaaxis; 0.05 < Aq < 0.3

s;: the magnetic shear at theq = 1 surface 0.01<s; <1.4;

o e = (x-1)/( xi+1) the élipcity of g = 1 surface -0.1 < e; < 0.6; usually the elongation «i is
used instead of e1, 0.8 < xK3< 2.2;

o o thetriangularity of the q =1 surface -0.3 < ¢, < 0.3;

o n= rl\/?l and a= a\/zc_a average minor radius of the q = 1 surface and the plasma

boundary.

It isimportant to note that the formula (2.98) was obtained assuming parabolic g profile, expressed by
(2.80) with 4 =2 and ry/a << 1. Different shape of q = 1 profile will lead to expression for the growth

rate different from (2.98). In our numerical calculations, the parabolic profiles as well as other g
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profiles were analyzed in order to estimate the role of the q profile shape on the ideal internal kink
mode stability.

The above parameters, determining the idea internal kink mode stability, are internal plasma
parameters, i.e. they are defined at the g = 1 surface or at the plasma axis. In experimental conditions
these parameters are in most cases not measured and not known exactly, but they are reconstituted on
the basis of the available experimental measurements. These parameters cannot be controlled directly.
On the contrary, the external plasma parameters are well known, because they can be directly
measured and controlled.

To be able to compare our numerical results with the experimental data and to study the role of these

external parameters, we have also saved these parameters with the growth rate in the output file:

e /3 thetota poloidal betaO < 4, <1,

o & inverse aspect ratio on the plasmaboundary 0.012 < < 0.8;

o e, = (x-1)/( xx+1) the dlipcity of the plasma boundary; usually the plasma edge elongation
was used, 1.0 < x; < 3.0;

o &, the triangul arity of the plasmaboundary -1.0 < d,< 1.0;

e (. theedge plasma safety factor 2.2 < g, < 100 (in some exotic cases);

The role of these parameters was studied with an emphasis on those that can be controlled in
experimental conditions: edge aspect ratio &, edge safety factor g, or the total plasma current I,
current density profile, plasma boundary elongation x; and triangularity &, These parameters
determine the plasma equilibrium and, consequently, the values of other parameters.

It is important to mention that while the input parameters of the plasma equilibrium can be changed
independently, corresponding variations of the output parameters are correlated. For example, at
constant edge plasma triangularity the value of ¢; evolves with elongation, and so does the value of
shear at g = 1 surface, the aspect ratio at q = 1 surface and other parameters. Therefore, this contrasts
with the analytical approach described in Chapter 2 where the role of each parameter can be analyzed

independently. The latter is evidently less representative of experimental conditions.

4.1.2 The dependence on A,

The “beta Bussac”, S, is the most important value determining the ideal internal kink mode stability.

According to the analytical formula (2.34), the increase of /4, causes the increase of the destabilizing

42



effect of toroidicity, so the growth rate becomes more unstable with /. If the mode is stable at low
Sou, 1t is destabilized at higher 4,,. The value of 4, a which the mode becomes unstable, is called the
critical beta Bussac and is denoted as A5 . The mode can also be unstable at low or even at zero B, —
usualy in cases of high plasma elongation. Zero A, means, according to the definition (2.49), that
either the pressure profileisflat inside g = 1 surface or the plasma pressure equals to zero.

The dependence of the ideal interna kink mode growth rate on 4, was studied for different plasma

configurations. Some examples of this dependence are shown in Figure 4.1.
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Figure 4.1 Different kinds of dependence of the ideal internal kink mode growth rate on S.: B is

negative (downward triangles), S is slightly positive (upward triangles), A"~ 0.2 (squares). The

dependence on £, is essentially linear for A, of interest.

It was found that this dependence can be well described by the following formula

Vla = A( ﬂbu - ti:it )C (41)

The correspondence between this formula and the calculated growth rates is shown in Figure 4.2. The
formula (4.1) is a significant simplification — as compared to (2.98), for example. Evidently, this
formula outlines the leading term in the dependence, which generally is more complicated. But from a
practical purpose it is very convenient (and sometimes more accurate) to analyze the elements A,

crit

., and C of the simple formula (4.1), because such analysis can give important information on the

mode stability.
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Figure 4.2 a) An example of the growth rate dependence on A, and of the corresponding
approximation by the formula (4.1); b) The correspondence of the whole set of the calculated growth

rates and of the formula (4.1), with different A, g™, C for each /3, scan.
4.1.3 The inverse aspect ratio.

The inverse aspect ratio at the q =1 surface, &, is one of the most important values in the analytical
theory of the ideal interna kink stability. Usually it is considered as a small parameter, & << 1, and
the potential energy variation is expanded in terms of & (see Section 2.4.1). In our numerical
simulations we have looked at high values of &, corresponding to realistic geometries of TCV and
tight aspect ratio tokamaks, like MAST, where g ~ 0.1 - 0.3. It turns out that such & can not be
considered as a small parameter anymore. It is interesting to compare the numerical and analytical
predictions for different values of & and thus to determine the validity region of the analytic approach.
Such comparison is presented in Figure 4.3 for parabolic current profile, corresponding to the profile
used for (2.98).

It can be seen in Figure 4.3, that at the lowest & = 0.012 the KINX results correspond well to the
anaytical ones, especially in the case of circular cross-section and at moderate elongation. Up to

& =0.28 (&~ 0.1) this correspondence remains good. This is assisted by the form of the W ,term

(2.98), taking into account the volume effect in the effective minor radius. At high elongation (x;~2.0),
however, this correction is too strong and analytical predictions are different from numerical ones for
most values of &. At larger A, corresponding to higher growth rates, the analytical predictions roll
over and the difference between them and numerical calculations becomes significant. This saturation

is caused by the stabilizing term dW , and by the term dW . which become too stabilizing at large S

and & Note however that these cases are beyond the expected range of validity of Eq. (2.98):
& < ~0.1, k1< ~1.4, and beyond these limits the overstabilizing term &V , may not be applied.
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Figure 4.3 The internal ideal kink mode growth rate, calculated with the analytic formula (2.98) at
different inverse aspect ratios and /., compared with corresponding KINX results for a) circular

plasma cross-section and for b) x;=1.4 and c¢) x;=2.0

The aspect ratio influences the dependence of the growth rate on 4, In Figure 4.4 analytical and
numerical calculations are presented for g, = 0.28 (¢ ~ 0.1) and & = 0.8(& ~ 0.2). The character of
this dependence varies with aspect ratio: at high &, the dependence has the tendency to roll over, while

at lower & the dependence is constantly increasing. The values of S are not so dependent on the

inverse aspect ratio and stay approximatively the same. The analytical predictions are substantially
higher than the numerical predictions in the case of g = 0.8. The roll over of the analytical formula

which has been seen aready in Figure 4.3, can occur at relatively low S, for high values of £, in
particular for high x: Thisis mainly dueto the dW_, term, which should not be applied at these values

of .
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Figure 4.4 The internal ideal kink growth rate versus [, for different plasma elongations and
parabolic g profile at a) & = 0.28 and b) & = 0.8. Open symbols correspond to analytical prediction
(2.98), solid symbols are KINX calculations. Shown are x;=1 (diamonds), x;=2.0 (up triangles) and
K,=2.6 (circles).

The role of the inverse aspect ratio can also be seen on the dependence of the coefficient C of the

scaling (4.1) on &, presented on the Figure 4.5.
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Figure 4.5 Dependence of the coefficient C on a) & and b) on &

The coefficient C decreases with &, going from values > 2 at low & as expected from anaytical

predictions to 1 and below 1 at high &. This corresponds to the results shown in Figure 4.4, more

convex for smal & (y%” > 0) and concave for large & (7’ < 0). Thus, in the case of high &, it is not

legitimate to use the usual anaytical approach, yz, o (32 — kfu”‘z)[g]. Instead, the approximation
crit

7T, < (B — By, ) l00ks more reasonable for high & values, corresponding to modern tokamaks like

TCV or MAST.
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4.1.4 The plasma elongation.

The plasma elongation is the most important shape factor influencing the internal kink mode stability.
It modifies mainly the critical beta Bussac, asit can be seen in Figure 4.4, where the dependence of the

growth rate on 4, at different elongations and inverse aspect ratios is shown. The plasma elongation

is a strong destabilizing factor, and it is expressed in the decrease of A" with elongation, as seen in
Figure 4.6. When S&™ becomes negative, it signifies that the internal ideal kink mode is unstable at

« = 0 (as mentioned before this means a flat pressure profile). For finite & values, A™ ~ 0 typically
bu

a x3=>1.6.
0.3
—wv—0.012
—a—0.1
—m—0.28
—eo—0.56
02 —<—0.8
&8
0.1
o
0.0 w
1.6

Figure 4.6 The dependence of AS™ on the plasma elongation at different inverse aspect ratios.
4.1.5 The plasma triangularity.

The influence of triangularity on the internal kink mode growth rate is illustrated in Figure 4.7. The
trend, discussed in Section 2.4.4 (Figure 2.7) is reproduced qualitatively on these plots: the growth rate

decreases with increasing triangularity, both positive and negative, with the maximum growth rate
shifted at negative triangularity. The effects of elongation and triangularity on A" can be seen
simultaneously in Figure 4.8 [70] as obtained with the KINX code over a wide range of xand ¢. Note
that at k,=1 the dependence on &, is different from the dependence at higher elongation. This is
because the Mercier term dW s equals to zero for circular plasma shape.

The stabilizing effect of the negative triangularity was reported in [70, 71] in the initial stage of the
present work and has motivated a series of experiments on the TCV tokamak, presented in the next

Section. The effect can be partially understood examining the quasi-cylindrical termdW , in (2.98)

which is clearly stabilizing for positive and negative o.
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Figure 4.7 The ideal internal kink growth rate versus triangularity by KINX calculations (solid

squares) and according to equation (2.98) (open circles) for k3 = 1.7, = 0.35 and
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Figure 4.8 The dependence of AS™ on plasma elongation and triangularity.
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4.2 Experimental studies on the TCV tokamak

4.2.1 The TCV tokamak

The TCV tokamak at CRPP in Lausanne, Switzerland was designed especialy for studies related to
the shaping effects [72, 73, 74]. The design of this tokamak allows control of plasmas with various
shapes, and even allows changing the plasma shape and position during shots. In Figure 4.9, some
plasma shapes obtained on the TCV tokamak are presented.

TCV TOKAMAK
VARIOUS CONFIGURATIONS ACHIEVED
S8 sac
TCV & 5559 @ (0.5 sec TCY & S608 & 0266 TCOV # 8513 @ O.882
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Figure 4.9 Some examples of plasma shapes obtained on the TCV tokamak
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The main parameters of the TCV tokamak are:
e Magorradius R=09m
* Minorradius a=0.25m
* Toroidd field B; =15T
* Plasmacurrent I, up to 1 MA
» Elongation x; upto 2.8
e Triangularity ¢, between —0.7 and +0.9
* AgpectratioA=3.6
* Inverse aspect ratio & = 0.28. & up to 0.15 — 0.2 have been obtained.

The unique flexibility of the TCV tokamak makes it the best machine for the studies of the dependence
of the internal kink mode stability on plasma triangularity. The growth rate of the ideal interna kink
mode can not be measured directly, so in experimental studies other phenomena which are presumably
triggered by this mode are studied: the sawtooth oscillations and in particular the sawtooth period.
Another very important feature of the TCV tokamak is its very powerful and flexible electron-
cyclotron plasma heating and current drive system. Six launchers on the low field (external) side of the
tokamak, independently controlled in toroidal and poloidal directions, can inject into the plasma each
up to 450 kW of power at the frequency of 82.7 GHz (second harmonics of the electron-cyclotron
resonance at 1.4T). Added to this from the top of the tokamak is 1.14 MW of the EC-power on the 3"
electron-cyclotron resonance harmonics (118 GHz). Using this system, arbitrary configurations of the
power deposition and current drive can be created in the TCV plasmas.

4.2.2 Sawtooth oscillations and the internal ideal kink mode.

Sawtooth oscillations were discovered in 1974 on the ST tokamak [75]. These are periodic relaxation
oscillations of temperature and density in the plasma center. The sawtooth oscillations are best seen on
the traces of the soft X-ray emission from the plasma center. A typical sawtooth trace is presented in
Figure 4.10.

Ohmic sawtesth in TCW

Sawtooth crash / . | -
‘ A |
|

| ved

L=

£
= 24F

Sawtooth ramp

Figure 4.10 An example of the sawtooth oscillations in the TCV tokamak. Central soft X-ray trace. A is

at the top of the sawtooth crash, B is the end of the crash and the beginning of the slow ramp-up phase
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A sawtooth crash is the fast drop of central temperature and density which occurs when qo < 1. At this
moment a fast instability process displaces the hot central part of the plasma out to the plasma
periphery. After the crash the q value on the plasma axis can be above 1. Then the plasma is slowly
recovering the initial profile, increasing the density and temperature at the plasma center, until the
crash condition is met again and a new crash occurs. The condition go < 1 is necessary, but not
sufficient for the sawtooth crash. The plasma has to accumulate enough energy within the g = 1
surface to trigger the instability mechanisms, causing the crash.

Several theoretical models were proposed for the explanation of the sawtooth crash mechanism and of
the crash trigger conditions, for example [9, 44, 76, 77]. Although there is no complete agreement
about this question, there is evidence that the m/n=1/1 MHD mode has a direct relation with the causes
of the sawtooth crash.

The sawtooth crash model, proposed in [9], relates the sawtooth crash occurrence with the
development of the ideal or resistive internal kink mode. The sawtooth crash occurs when the kink
mode growth rate overcomes the stabilizing ion and electron diamagnetic effects. Thus, in the
situations where the ideal kink mode growth rate is higher than half of the ion diamagnetic frequency,
the value of the ideal internal kink growth rate has a direct influence on the sawtooth crash conditions
[9]: the higher is the growth rate, the sooner the sawtooth crash occurs and the shorter is the sawtooth
oscillation period, which is easily measured by the soft X-ray emission traces. Thus, the sawtooth
oscillations can presumably be used for analysis of the idea internal kink mode growth rate

dependence on the plasma shape.

4.2.3 The TCV experiments

First experimental studies of the dependence of the sawtooth behavior on plasma shape on the TCV
tokamak [ 78, 79, 80] were performed in 1999 and their results are presented in Figure 4.11.

These results confirm the trends discussed in the previous Section: the increase of the sawtooth period,
corresponding to a decrease of the kink mode growth rate, occurs when triangularity increases (Figure
4.11 a). The sawtooth period decreases with elongation, and this corresponds to an increase of the
growth rate of the mode (Figure 4.11 b).

When these experiments were performed, the fact that the negative triangularity has a stabilizing effect
on the ideal internal kink mode was not yet realized, so the negative triangularity was realy not
explored.
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Figure 4.11 The sawtooth oscillations period dependence on plasma shape parameters. Ohmic

discharges, results averaged over the stationary phase.

A new series of experiments was performed in September - October 2003, and now the attention has
been focused on the negative triangularity region. The edge triangularity & was modified between -0.6
and 0.3, thus the triangularity at q = 1 was between -0.1 and 0.06. Two sets of experiments were
carried out. In the first set the total plasma current was kept fixed, and in the second set the qgs value
was fixed in order to keep the g = 1 radius nearly constant [81]. Only a few shots have been performed
in the second set because of difficulties with obtaining the required plasmas. Therefore the results of
thefirst set will be mainly discussed here.

The first set of experiments was carried out at the following plasma parameters. x; =1.5, I, = 280 KA,
ri/a = 0.4. There are no current density profile measurements in the TCV tokamak, so the g profile
shape, s; and Aq are not well known. The reconstruction of the experimental equilibria was carried out
using the LIUQE code [69], yielding Aq = 0.2, s; = 0.5 — 1. The value of ggs was between 2.8 and 3.6
in these shots. The scenarios were typical for ohmic L-mode plasmas.

The dependence of the sawtooth period on edge triangul arity is shown in Figure 4.12. It is known from
experiments [82] that the sawtooth period in ohmic plasmas is in general linearly proportional to the
plasma density. Some theoretical models were proposed that explain this feature [83] and it was also
recovered in transport simulations using a sawtooth trigger model [84]. The normalization of the
sawtooth oscillation period is a standard procedure used in the TCV experimenta studies in order to
compensate the influence of the plasma density on the sawtooth period:

normalized z-saw
saw = ﬁe [1019 m_3] (42)

where n, isthe line-averaged electron density, obtained by the laser interferometer.
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Figure 4.12 The sawtooth oscillation period normalized as in Equation (4.2), averaged over the

steady-state discharge phase versus edge triangularity in TCV experiments with 1, =280 KA.

This normalization is confirmed in TCV for different elongations (x; = 1.6 - 2.2), at similar measured
inversion radii (rin,= 0.40 - 0.45) for densities ranging from 210" to 510" m™>.

The minimum of the sawtooth oscillation period in Figure 4.12, corresponds to the maximum of the
ideal internal kink growth rate versus triangularity for TCV conditions (Figures 4.7b, 4.8) at x; = 1.3.
The idea kink growth rates were calculated using the experimental equilibria of the discharges shown
in Figure 4.12 and the result is presented in Figure 4.13. The analytical predictions, according to
equation (2.98), are also presented. The contributions of different terms of this equation are aso
shown in order to clarify therole of these terms.

The maximum of the ideal kink mode growth rate is observed in the KINX results, but dightly less
clearly on the analytical formula predictions. This is because, as it was mentioned above, not only the
shape changes with triangularity but other plasma parameters, like pressure and current profiles, are
also modified [85] in the self-consistent equilibrium solutions based on experimental data. For
example, the shear at q =1 changes between 0.5 and 0.8 in these equilibria (Figure 4.14), athough it is
relatively constant for ¢, > -0.5. It is important to note, however, that in the absence of q profile
measurements, the equilibrium reconstructions can give only approximate results. In these L-mode

ohmic plasmas, though, this reconstruction should be relatively accurate.
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Figure 4.13 Normalized growth rate yz, of the ideal internal kink for the discharges shown in Fig.
4.12. The following results are shown: KINX calculations (solid squares), analytical predictions,

according to equation (2.98) (solid triangles) and its contributing terms: toroidal terms &V ,+ W,
(downwards open triangles), quasi-cylindrical terms dW_,+ AW, (open circles), Mercier terms,

MW, + N5 (upwards open triangles).
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Figure 4.14 Variations of the magnetic shear at g = 1 in the reconstructed equilibria, for the shots,

shown on the Figure 4.12

In the second set of experiments only 3 shots were performed, because it proved to be very difficult to
create plasmas with negative triangularity and the required parameters. The normalized sawtooth
period in these shots is presented in Figure 4.15. We see that a similar dependence is obtained for

these discharges as well.
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Figure 4.15 The normalized sawtooth period versus edge triangularity for the second set of shots with
fixed qos =2.4. 1, = 405, 414, 395 KA for shots witho, = -0.5, -0.25, 0.14 respectively.

The qualitative agreement between the sawtooth period dependence on the plasma triangularity with
the behavior of the ideal internal kink growth rate could be a coincidence. The ideal internal kink can

be stabilized by diamagnetic effects, when y< 0.5+ [9]. In our cases y = 0.5ax;, but in scenarios with

positive triangularity in the TCV tokamak the ideal growth rate is usualy lower than 0.5ax. In these

cases the sawtooth crash is triggered by the onset of the resistive kink mode, for which two formulas
are used, depending on the regime [9, 86, 87]. It isimportant to estimate the resistive kink growth rate
in order to check whether it can trigger the sawtooth crash in our cases as well. The estimations of

these two formulas are given in Figure 4.16.
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0.014

0.00

Figure 4.16 Resistive internal kink mode growth rates, estimated in two ways, for the regimes, usually

relevant for TCV [83]
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There is no evident dependence on the plasma triangularity, so the resistive kink mode cannot explain
the observed experimental dependence of sawtooth period on triangularity.

On the contrary, the remarkable correspondence between the behavior of the ideal internal kink mode
growth rate and the sawtooth period allows us to conclude that the sawtooth crash is triggered by the
ideal internal kink mode in our experiments. It is seen from Figure 4.13 that increasing triangularity to
positive values leads to a rapid decrease of yz, according to KINX calculations. Thus, at positive
triangularity, usual in many present experiments, the ideal internal kink mode growth rate is too small
to be able to trigger the sawteeth and instead of the ideal mode, the resistive kink mode triggers the

sawtooth crash.

4.3 Shape, aspect ratio and pressure scaling of the ideal internal kink
growth rate

4.3.1 General considerations

The utility of an empirical fit of the numerical data can be seen from the evident discrepancies
between the analytical predictions and the numerical calculations, demonstrated in Figures. 4.3, 4.4,
4.7. As it was also shown in the previous Section, the numerical predictions correspond qualitatively
better to the experimental results than analytical results. But the numerical calculations are time-
consuming and in many cases the time required for the ideal MHD code to run is too long for the task
to solve. For example, in the ssimulations of sawtooth oscillations by transport codes like PRETOR
[88] and ASTRA [89] the sawtooth crash trigger condition includes the ideal kink mode growth rate.
However it is not possible to wait a few minutes for the ideal MHD code to run at each time step,
because the ssimulations of time evolution require usually tens of thousands of time steps. For such
kind of tasks afit of numerical results can be useful, and simple formula can be used for estimating the
ideal internal kink mode growth rate instead of long computations.

The scaling has been built on the basis of the approximation (4.1). The practical modification to this
formula was done using the dependence of the coefficient C on the inverse aspect ratio (Figure 4.5),
where it can be seen that at &, of interest for us (& > 0.2), C is close to 1. Therefore this coefficient

was fixed to C = 1 for simplicity and the scaling formulais chosen as

Waﬁt =A(Bo = B") (4.3)
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where for coefficients A and A" separate scalings are constructed and then they are joined to form

the resulting formula.

4.3.2 The scaling for the critical beta Bussac ;Bl;:it

The dependence of S on &/ and x is presented in Figure 4.17. It shows a small decrease of

crit

o With increasing values of &/&, which has motivated the correction to the term dW ,, proposed in

[9], equation (2.93). The latter also includes a smal dependence on /x /K, since

nla=¢leqklkK,.

0.5 :
0.4

0.3- .
s mmsEs .

02- & f? Il"_:_ B & ™ .

0.11 B e
00— W b G
T 0.1
0.2-
-0.3-
0.4- 1
5
0.15 020 025 030 035 040 0.45 0.50
51/5a

rit
-
NNN_AAA Ao
OPRNONOTWOO

Figure 4.17 Dependence of the critical beta Bussac A", obtained from fitting the numerical results,

on x and &/é&,.

Another kind of approximation for A" was proposed in [71], describing the dependence on plasma

elongation and triangularity, presented in Figures. 4.6, 4.7, 4.8 and 4.17:

it 0.5—%( K, —1.55,+0.04)) (4.4)

a

However, Figure 4.17 shows that the main dependence is clearly on the value of xi. In order to
simplify as much as possible the formula, an even simpler expression was chosen, which describes this

main feature of S, the dependence on «; (the validity of this choice will be discussed later):
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crit

oy = 0.7—0.5x;

(4.5)

This reproduces the color coded horizontal linesin Figure 4.17 with g" = 0.2 for ki =1and "= 0

e

for k1 = 1.4. The latter is consistent with the results shown in Figure 4.6 that the value of xi, such that

ot = 0, does not depend much on &, except at very small &.

4.3.2 The scaling for the coefficient A

The coefficient A depends mainly on &, as presented in Figure 4.18.
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Figure 4.18 Dependence of the coefficient A on x; and &;.

In Ref. [71] we have proposed the following approximation for A:

A=0.5¢(x,—-0.5)

(4.6)

However, when combining equations (4.5) and (4.6) to fit the actual growth rates calculated by KINX,

abetter fit is obtained using:

A~045_ 5K
140,785,
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4.3.3 The general scaling for yt,

Expressions (4.5) and (4.7), combined to the single formula (4.3), give

it —045— 1% 3 _(07-05k 48
Wa 1+ 0.78151 [ﬁbu ( 1 )] ( )

The Figure 4.19 compares the fit with the whole set of the calculated data.
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Figure 4.19 a) Global scaling obtained from fitting the numerical KINX results for the ideal internal

kink versus the KINX results, b) Zoom of the scaling for yz<0.05.

About 300 equilibria were used for the fitting, with the following parameter limits: 0.02 < & < 0.8, 1<
K:<2.8, -0.6 < &, <0.9, 0.02 < s; < 0.75. Note that these results were obtained assuming an ideally
conducting wall on the plasma boundary. Without the wall the results would be up to two times larger.
The fit (4.7) describes well the set of KINX results, with the exception of some cases with low &, and
small growth rate. These cases, however, are not of practical interest because low &, is not realistic for
modern tokamaks and low growth rate means that the mode is likely to be stabilized by non-ideal
effects.

The fit has a functional form which is different from (2.98, 2.99). There is no dependence 1/s;, as
predicted by (2.99): we did not find a good fit with such a functional dependence. Figure 4.20a shows

the dependence of the growth rate on s;.
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Figure 4.20 a) The growth rate dependence on s;, b) same as in Figure 4.19, but without correction
1/(1+0.7&5))

Two distinct groups of points are seen in Figure 20a, corresponding to two different current density
profiles used in our calculations. one with low shear and one with higher shear. It is seen that there is
no pole characteristics, 1/s;, for small values of s;. If one removes the denominator 1 / (1 + 0.7&; S1)
from the formula (4.8), the remaining fit gives the results presented in Figure 20b, spanning the values
between one and two times the KINX results. The discrepancy increases with increasing & s; and the
color groups are well “aigned”, confirming that the combination & s; isagood choice.

The comparison of the analytical predictions (2.98-2.99) with the KINX results is presented in Figure
21. It is clearly seen that the analytical formula describes the KINX data much worse than our fit. The
analytical formula works much better than the fit for the case of low inverse aspect ratio, as shown on
the Figure 21b, but at redlistic &, it overestimates the growth rate. Therefore we argue that the fit (4.7)
should be used instead of formulae (2.98-2.99) for realistic plasmas.

The absence of a dependence of A2 on triangularity in the fit (4.5) is astonishing at first, since it was

present in the earlier version of the fit (4.4), and it was important to explain the experiments presented

in Section 4.2.3. It can be explained by the fact that the role of triangularity in ™ is arelatively small

effect, especialy at large yz, evenif in some casesit isimportant, as the above described experimental

studies have shown.
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Figure 4.21 a) Analytical formulae, (2.98-2.99) versus the KINX results, as in Figure 4.19. (b) Zoom

for yr < 0.05.

In real experiments the edge elongation and triangularity are usually controlled, and the internal values
self-adjust, following the variations of the edge geometry. The penetration of elongation into the
plasma depends substantially on the triangularity: at high triangularity the elongation penetrates the
plasma much less than at low or zero triangularity. Therefore the effect of triangularity on the ideal
kink mode growth rate can partially be explained by variations of x; with ¢ at the same ;. Figure 4.22
illustrates this. The growth rate dependence on ¢, is presented there for two cases: one with fixed x; =
2.4 (dash-dotted line) and another with fixed x; = 1.4 (solid line). It is seen that in the second case the
growth rate is higher, because ;i is larger. The current profile is the same and the shear at g = 1
surface varies only dightly. For high triangularity, &, > 0.4, the edge elongation required to keep xi
constant, increases substantially (Figure 4.22b), in particular for ¢, > 0. On the other hand, at fixed &3
the elongation at g = 1 decreases at high triangularity. This effect has the same trend as discussed in
the previous Section and explains a substantial part of the stabilizing effect of positive and very
negative triangularity, although not the whole effect: the solid line in Figure 22a still shows the
tendency to stabilization at constant x3 with increasing negative or positive triangularity.

This shape effect is illustrated by the fit (4.8), shown in Figure 4.22a for both cases. They both
reproduce the triangularity stabilization trend, even if it is not introduced explicitly in the formula.
This trend is also seen in Figure 4.23, where the fit (4.8) is compared with the KINX results for our

experiments. Even without an explicit triangularity term in the formula for A", the Figure 4.8

reproduces much better the KINX results than the analytical fits (see Figure 4.13).
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Figure 4.22 Dependence of the ideal growth rate on triangularity, varying &, between -0.6 and 0.8 by
steps of 0.2, with standard parabolic profiles and ri/a = 0.5. At larger positive d, one needs a much
larger x; to keep x3 fixed and elongation penetrates much less, leading to a 40% larger growth rate

It should also be noted that the penetration of elongation into the plasma depends substantially on the
shape of the g profile. For example, in the case of low shear the elongation penetrates the plasma much
better and higher x; values are obtained for the same xz. In this case the fit (4.8) can overestimate the

growth rate. The following correction to the fit is proposed in order to minimize this effect:

yrit = 0.44$’;1lSl 18, - (0.9-(0.6+0.1s, )x; )] (4.9)
This small correction improves the fit at very large elongation and at decreasing li;, where the
sawtooth oscillations disappear [90], as well as in the case of experiments described above (Figure
4.23, upward triangles).
As follows from the discussion, the important feature of the fits (4.8) and (4.9) is that in order to
obtain valuable results, one has to modify not only a single parameter to find its influence on the mode
stability, but to modify in a self-consistent way the other parameters in the sense that they correspond
to an equilibrium which can be obtained in experimental conditions. Thus, these fits are very
convenient for the transport codes, where the equilibrium needs to be re-calculated at each time step

[86] and these self-consistent parameters are readily available.
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Figure 4.23 KINX results as in Fig. 4.13 and the corresponding values using the fits (4.8)
(downward triangles) and (4.9) (upward triangles). The non-monotonic dependence on ¢'is very well
reproduced and it is consistent with the minimum in sawtooth period shown in Fig. 4.12.

4.4 Conclusions

e  Atlow inverse aspect ratio the numerically calculated ideal internal kink growth rate corresponds
well with analytically predicted values. The correspondance remains good until the aspect ratio
of the TCV tokamak, & < 0.28, in particular for small and moderate A, values, even up to
k:~2.0. At higher ¢the agreement deretiorates and at & ~ 0.8, which corresponds to the modern
tight aspect ratio tokamaks like MAST, NSTX etc. the analytical formula (2.98) is not useful

anymore, even if £ <0.3( £,<0.6).

e At moderate and high &, the dependence of the ideal internal kink growth rate on basic plasma
parameters is different from that analytically predicted: the growth rate is linearly and not
quadratically proportional to & and the dependence on 3, is essentialy linear and not quadratic.

e The behavior of sawtooth oscillations in the TCV experiments with varying negative
triangularity correlates very well with the dependence of the ideal internal kink growth rate on
triangularity, and not with the behavior of the available formulae for the resistive kink mode
growth rate. It is thus possible to conclude that in these experiments the sawtooth crash was
triggered by theideal interna kink mode.

e A new approximate fit of the numerically calculated ideal growth rates for the wide variety of
plasma conditions is proposed. This fit (4.9) should be used for the prediction of the ideal
internal kink mode behavior instead of the analytically derived formulae in case of moderate and

high inverse aspect ratio. Note that the effect of removing the wall on the plasma boundary can
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increase yr, typically by up to afactor of two. This aso shows that the eigenmode is not a top-
hat and explains the discrepancy with analytical predictions.

When using the analytical formulae or the fit of numerical data for the kink mode growth rate, it
Is important to remember that in real plasmas the plasma parameters are interconnected. Thus by
modifying only one parameter, leaving others intact, one can come to wrong conclusions
regarding the effect of this parameter. When modifying one plasma parameter, one should
change other values in a self-consistent way, as it happens in real plasmas or in equilibrium
caculations. For example, the stabilizing role of the plasma triangularity can be partially
explained by the weakening of the plasma elongation penetration from the plasma edge to the
plasma core at increasing positive or negative triangularity. The proposed fit can be used in the
transport codes, where the equilibrium is re-calculated at each time step. The transport codes can
also be used for providing the “self-consistent” equilibria to be used for the MHD stability

analysis when a given parameter is modified.



Chapter 5. The ideal stability of highly elongated TCV plasmas:
shape optimization

This chapter deals with the stability of ideal externa kink mode for highly elongated TCV plasmas
and with possible ways of obtaining the maximum possible plasma elongation with better
confinement properties by plasma shape optimization [72, 73].

5.1 First numerical estimations of the ideal MHD stability of high x;
plasmas

One of the most important missions of the tokamak TCV isto study the influence of the plasma shape
on various plasma properties, and in particular plasmas with very high elongation (x; up to 3.0). The
predictions of the ideal MHD stability of such plasmas by numerical simulations were used for the
TCV tokamak design [8]. Two different plasma shapes, the “racetrack” and D-shaped plasma were
analyzed against the n = 1 external kink mode stability with different q profiles.

Conducting
wall ;<

Ro

Plasma .

Figure 5. 1 (Figure 1 in [8]) TCV geometry showing the racetrack and D-shape cross-sections

The current limitations for these plasmas were established and expressed as the operating diagramsin
the g4 — (o Space. The beta optimization was also carried out for these two plasma shapes with

elongation 2.5 and the maximum achievable 4 was plotted versus the normalized current

Mo
= 51
st )

where 1 = 41107 Hm™ is the free space permeability, 1, is the plasma current [A], a is the plasma

minor radius [m] and By is the vacuum toroidal field [T] in the plasma center. It is important to note
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that a different and more practical notation of the normalized plasma current is used more widely than
(5.1:

I[IMA]
N a[ m] B[T] NA ( )
Asthe stability measure, the “normalized beta’ is usually used:
0,
ﬂN — 100,81 — ﬂt[/o] (53)

IN IN

where £ is the toroidal beta (2.44), which is often expressed in %. It was shown in [91] by Troyon et
al that in different tokamaks and different plasma configurations the ideal MHD modes become

unstable when fy exceeded some critical value. Thisled to the formulation of the Troyon limit:

B, <30 (54)

which can be expressed interms of 4 and Zy:

B.[%] < 3.0l (5.5)

Numerous experimental studies have confirmed (Ref. [92] for example) the existence of the Troyon
beta limit and it is widely used as a reference for the search of better plasma configurations. The
normalized beta is a convenient measure of the state of stability of the plasma relative to the Troyon
beta limit. Furthermore it was shown that the effect of the current profile changes the actual limit, so

that the following formulais often used:

B, <4l (5.6)

The optimized beta corresponded to very flat q profiles in the plasma center, very close to 1 at the
plasma axis. The value of qo was set on purpose above one to avoid the internal kink mode discussed
in the previous Chapter, since the operation limit set by the external kink mode was a goal of the
study. The Figure 5.2 shows the results of the calculations of the operation range for D-shaped plasma
and for the racetrack. The highest achievable normalized current is Iy = 3.4 in the racetrack

configuration and Iy = 2.8 for the D-shaped plasma. The elongated plasmas allow to achieve much
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higher A than the circular ones, as seen from the comparison with the beta limit for the circular
plasma, shown in Figure 5.2 (dashed line). Another important result is that the & limit is lower than
the Troyon limit, indicated by the solid linesin Figure 5.2 for high values of Iy, Iy > 2.50.8 = 2.0.
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A=3.65/
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Figure 5.2 (Figure 4 from [8]) Beta limit scaling with normalized current (5.1) for the racetrack and

D-shape configurations

5.2 The experimental studies of highly elongated plasmas on TCV
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Figure 5.3 The plasma with record elongation (#19373), obtained in TCV:  Ip =750 kA, B = 0.8T,
k= 2.80, 6,=0.3, 1,=0.38, Iy =3.9: a) the plasma shape, b) the time traces: plasma current Ip, edge
elongation x;, edge triangularity &, edge squareness A,, normalized beta Ay, normalized current Iy ,

plasma density n. and toroidal beta 4 in %
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During the TCV experimental activity much effort was devoted to the extension of the TCV operating
limits towards higher elongation and higher normalized current. The highest elongation, obtained on
TCV is xy = 2.8 [72, 73], a world record and the maximum normalized current, obtained in these
experiments, is Iy = 3.9 (Ina = 4.9), presented in Figure 5.3. These record values were obtained in
conditions of off-axis plasma heating by the second harmonics ECCD, by the optimization of the
vertical position system and by plasma shape optimization with respect to theideal MHD stability.

5.3 The TCV plasma shape optimization

The plasma shape optimization was carried out in a way similar to the preliminary stability
calculations. But instead of finding the dependence of the optimized 4 on Iy, only the maximum
achievable current at constant 4 = 1% was looked for. This value corresponds to the typical value
obtained in these experiments with mainly ohmic heating, as in the shot presented in Figure 5.3. The
n = 1 kink mode stability in plasmas of different shapes with very flat q profiles just above 1 in the
center was studied.
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Figure 5.4 The q, current and pressure profiles, used in the plasma shape optimization studies. j* is

the surface averaged current density, j, - the toroidal current density.
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A number of plasmas with standard shapes, described by equations (5.4) with high elongation ;= 2.7
and different edge triangularity ¢, and squareness A, were studied in order to define the dependence of

the current limit on A, and &, and to find the optimum plasma shape.

R=R,+alcos(8+Jsind—Asin20)] (5.0
Z=2Z,+aksiné '

In Figure 5.5 the results of these studies for xz=2.7 are shown together with the n = 0 mode stability

analysis of these plasmas, at the n = 1 current limit, by the code DPM [93], performed by F.

Hofmann.

SQUARENESS ()
SQUARENESS (A)

0.30 0.40 0.30 0.60 0.70 0.30 0.40 0.30 0.60 0.70
TRIANGULARITY (§) TRIANGULARITY (d§)

Figure 5.5 @) The ideal MHD current limit in kA due to n = 1 mode; b) the growth rate of n = 0 mode

in s at the current limit.

It is seen that the current limit increases with the triangularity and decreases with the squareness, but
the n = 0 growth rate has a minimum around &, = 0.6 and A, = 0.25. These optimal conditions
correspond to the TCV experimental results. In most cases the plasmas with x> 2.5 were performed
with almost the same shape parameters. 0.50 < ¢, < 0.63 and 0.22 < A, < 0.25. The deviations from
this shape did not lead to improvement of the plasma stability. It isimportant to note that the optimum
plasma shape depends to a large extent on the plasma wall shape. The conclusions about the plasma
shape are not universal, but are valid for this particular tokamak. For example, the rectangular shape
of the TCV vacuum vessel, serving as the stabilizing wall, implies the relatively high squareness of
the plasma for better n = 0 mode stability. In tokamaks with a D-shaped vacuum vessel the optimum
shape conditions would be different (lower 4, and higher 6).
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5.4 New plasma shapes

In addition to the usual plasma shapes, described by equations (5.4), several aternative plasma shapes
were also studied, asin Figure 5.6.
The current and pressure profiles were the same, as in the previous Section (Figure 5.4). The

parameters of these plasmas and the corresponding current limits at 4=1% are presented in Table 5.1.

(A)

(B)

=

/4

Figure 5.6 Classical D-shaped plasma (a) and alternative shapes: (b) trapezoid, (c) peapod, (d)

racetrack, (e) triangle

D-shaped Trapezoid Peapod Racetrack Triangle
Elongation & 2.7 2.7 2.7 2.7 2.7
Jos 2.36 2.35 247 251 2.26
In 3.65 3.25 3.39 3.25 3.54
=0, st 2507 1327 >10000 3080 >10000

Table 5.1 Parameters and current limits of various plasma shapes

The trapezoidal plasma is the only configuration, having j-o better than the classical D-shaped
plasma, although its n = 1 current limit is lower. Thus, the trapezoidal plasma can be an interesting
target for experimental studies.

The comparison of trapezoidal and D-shaped TCV plasmas is presented in Figure 5.7. In both cases
Ky = 2.6, = 1.1%. The current limit manifested itself by the appearance of MHD modes, thus leading
to the plasma disruption. The D-shaped plasma current limit is Iy = 3.35, which is close to the
calculated one (Table 5.1). In the case of the trapezoidal plasma shape, the highest achievable current
was Iy = 2.77. The growth rates y-o were 2730 and 2118 s, respectively. These results are consistent
with the numerically calculated limitsin Table 5.1. Although higher elongations were not obtained in
the trapezoidal plasma shape, it is possible that by further shape and current profile optimization
higher elongations could be reached.
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Figure 5.8 D-shaped and trapezoidal plasmas in TCV: plasma shapes (a,b) and (c.d) the time traces:
plasma current Ip, edge elongation x;, edge triangularity ¢, edge squareness A,, normalized beta /A,

normalized current Iy, plasma density n. and toroidal beta 4 in %
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5.5 Conclusions

For TCV conditions, the analysis of the ideal MHD stability dependence on plasma triangularity
and squareness revealed that the optimum conditions are met at &, = 0.6 and 4, = 0.25.

The plasma shape, optimized with respect to the ideal MHD n = 1 and n = 0 modes, corresponds
well to the experimental plasma shape, with which record elongated plasmas were obtained in
TCV.

The current limits experimentally obtained with the aternative plasma shape (trapezoid),
compared with the D-shaped plasmas are consistent with the numerically predicted values.

The ideal MHD stability of highly elongated plasmas determines the experimentally achievable
operationa limits, the latter can be predicted by means of numerical calculations. This has
confirmed the predictive calculations performed earlier and it shows the value of ideal MHD

calculations for designing experiments.
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Chapter 6. The ideal MHD stability of the reversed shear TCV
plasmas

This chapter is devoted to a very promising kind of tokamak equilibrium: the reversed shear
configuration. The experiments on the TCV tokamak are described and then the ideal MHD stability
of such plasmasis discussed in detail on the basis of numerical calculations. Infernal and external kink
modes are discussed. On the basis of this anaysis, possibilities of obtaining better plasma

performance, while avoiding disruptions caused by ideal MHD instabilities, are proposed.

6.1 The reversed shear plasmas: why create and study them?

The search for plasma configurations, which provides better confinement conditions, is one of the
major research areas of modern tokamak physics. One of promising directions is the creation of
plasmas with an inverted q profile. In such plasmas, interna transport barriers (ITB) can be formed,
leading to improved plasma performance [94, 95, 96, 97]. The so-called advanced regimes, with
inverted g profiles, are very interesting for future thermonuclear reactors. In particular, such scenarios
are of interest for steady state operations in the ITER reactor. These plasmas are investigated both
experimentally and theoretically throughout the world. The TCV tokamak, because of its unique
capability of modification of plasma current and pressure profiles by adjustment of its six independent

EC-wave launchers, is an excellent tool for such studies[98, 99, 100, 101].

6.2 Fully non-inductive current sustainment and elTB creation in TCV

f—l\ The reversed shear plasma studies are intensively studied in CRPP and represent

: one of main objects of experimental studies on TCV tokamak [19, 20, 21, 22, 102,
103] experimental program. In Ref. [102, 104, 105, 106, 107] TCV experiments are
| described where the full replacement of the plasma current by non-inductive current

was achieved. The plasma current was sustained by the bootstrap current and by the
EC-driven current. Two independent EC waves launchers were adjusted so that
most of the EC-power was absorbed off-axis (beams A in Figure 6.1). The non-
inductive current jcp generated in the off-axis area of the EC power deposition led

! / , to a very broad current density profile [23]. The third gyrotron was turned on later

and its power was absorbed on the plasma axis (beam B). The toroidal injection

Figure 6.1 angle ¢ of this third EC-waves beam was changed between shots, so the influence
The EC-power

launch geometry of the pressure profile and on-axis plasma current modification to the confinement

properties was studied, as shown in Figure 6.2.
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Figure 6.2 TCV reversed shear discharges with different toroidal injection angle ¢ of the central
beam: #21654, p=0°¢, #21655, p =-5 #21653, p=-15¢

The hollow current density profiles in these experiments correspond to inverted q profiles (Figure 6.5).
The confinement enhancement over the standard RLW scaling [108] Hriw = ¢/ Triw, Where 7= is the
electron energy confinement time and zz.w IS the RLW scaling is presented in Figure 6.3. Vaues of
HrLw above 2 indicate the formation of an electron internal transport barrier (el TB) in these plasmas.
It is clearly seen that counter current drive on the plasma axis leads to a confinement improvement.
However, too much increase in the on-axis counter-current (by increasing the toroidal injection angle)
leads to a disruption (#21653).

— 21649
— 21654
r| — 21655
21653

: ’—_f/;\/’\*f/’-/

a

—i.5°

Q.5 1 1.5 2
time [s]

Figure 6.3 The confinement enhancement factor for different on-axis toroidal injection angles

The changes of the on-axis toroidal injection angle lead not only to modifications of the q profile (the
stronger the counter-current, the deeper is the g profile inversion), but also to the pressure profile, as
seen in Figure 6.4.

The m/n = 3/1 and 2/1 components in the edge magnetic signal were observed during the disruption in
the shot #21653 with the characteristic growth time of ~ 20 us, which is atypical growth rate for ideal
instabilities. It indicates the presence of m/n = 3/1 and 2/1 modes during the disruption. For this reason
the main attention was devoted to the n = 1 stability, although for some cases the n = 2 stability was
also examined.
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Figure 6.4 The pressure profiles (Thomson scattering) for different toroidal injection angles,
t =1.25- 1.5 s, corresponding to the discharges shown in Figure 6.2. For the discharge #21653 the

profile corresponds to the last measurement about 20 ms before the disruption.

In Figure 6.4 and below in this chapter

VYV —¥o
NF PO 6.1
P \ll//a_l/jo ( )

where yisthe poloidal flux (2.28), ys isthe value of y at the plasma edge and ¥, — on the axis.

6.3 Numerical MHD stability analysis

The TCV shot #21655 was used for the MHD analysis because it is situated in between two extreme
cases, the shot #21654 with zero on-axis toroidal injection angle and shot #21653, for which the high

toroidal injection angle caused a disruption. By varying the pressure and current profiles for shot
#21655, it is possible to simulate both cases.
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The Thomson scattering data of the pressure profile and the g profile for the shot #21655 are shown in
Figure 6.5. Note that gmin = 2.7 is close to 3. This q profile corresponds to the basic results obtained
with the bootstrap current density and the EC current density jcp under assumption of a constant radial
diffusion profile [109, 110]. The profile jcp is obtained using the Fokker-Planck code CQL3D [111]. It
depends on the effective profile of the radial diffusion coefficient. If better confinement is assumed in
the centre, even more reversed q profile is obtained [109, 110]. The effect of varying gmin and of the
degree of current inversion will be discussed in Sections 6.3.5 and 6.3.6.
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Figure 6.5 The Thomson scattering pressure profile with error bars (blue), its basic fit (red) and the q
profile (green) for the TCV shot #21655

6.3.1 Stability analysis of the shot #21655. Infernal mode. Stability
dependence on gpmin.

For the experimental conditions of the TCV shot #21655 the KINX code calculations assuming fixed
boundary conditions have revealed an unstable ideal mode m/n = 3/1, with the growth rate dependence
on f\ as shown in Figure 6.6 (5" = 1.0):

0.025

0.020+ u
0.015+
> 0.010+

exp
0.005- Ay /

0000 T T T T T

Figure 6.6 The dependence of the 3/1 ideal mode growth rate on Sy for the shot #21655
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The shot #21655 is close to the stability threshold, with the m/n=3/1 ideal mode close to the stability
limit. The instability is possibly caused by a very high pressure gradient at p= 0.5, wherethe el TB is
formed. The value of gmin is also of great importance. The role of gmi, can be seen in Figure 6.7, where
the different g profiles analyzed are presented. Here the analytical pressure profile from Figure 6.5 and
the experimental value of By~ 1.0 were used. The profiles that proved to be stable are shown in green,

whereas those with unstable modes arein red.
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Figure 6.7 The g profiles, for which the ideal modes are stable (green) and unstable (red) for the shot
#21655: a) whole profiles, b) profiles near gmin. The correspondence of subfigures of Figure 6.8 to

unstable zones is shown on the right.

It is clearly seen that the “red” unstable profiles correspond to values of gmin close to integer values
1, 2 and 3. The mode structures for these instability regions are presented in Figure 6.8.

The mode, presented in Figure 6.8 is known as the infernal mode. This mode appears in the area of the
low positive shear (just outside the minimum q surface for non-monotonic q profiles). In this area the
ballooning theory breaks and the low-n ballooning instability becomes possible. This mode was first

described in [23] for monotonic g profiles and then in [24] for reversed shear profiles.

77



KINX2000: Narmal displacement of n=1 mode 160x128 1o 0.2 0.4 , 0B 0.8 1

08f &
0.3
08F
0z 1 B
07
01 0Bl 13
>
il = 05 f=
n 2.5
04t g
=01
03t =
0.2
0zf 1.5
03 01l J
—— 41
-04
be 07 06 1 T 1 0 01, ,0g 03 04 05 0B 07 08 03 1
a) ww?=-0.0014392; kinetic energy norm; unstable e lowest eigenvalus sqrify; o) =-0.0014982; kinetic energy norm; unstable aq; lowest eigenvalus
KINX2000: Mormal displacement of n=1 mode 180x128 10 0.2 04 0.5 0.8 1
4 T t T t 7 t T t T
09t
0.3
08
0.z
07k
o 0.6}
=
1} b= 05
win
_od 04
03
-0z
0z
-03
01F
2_ 2U.E 0.7 0g 09 1 1 1.2 13 14 1] IJ:] 0.e 0.3 o 0s 8 1
b) wfu,=-0.000162393; kinetic energy narm; unstable eq; lowest eigenvalue sotfy);  w¥w?=-0.00016233; kinetic energy narm; unstable eq; lowest elgenvalus
KINX2000: Normal displacement of n=1 mode 180x128 1O 0.2 04 0.8 0.3 1
T T T T AT T T T
03 nA - 18
0.8
0.z 14
07 -
01 a6k 12
ES
0 = 05+ (=
—n 10
_o1 04
8
0.3 -
-0z
nzp 5
e 0.1
: 4
- = e G &y
. M8 0F 08 08 o1 10012 13 A 0 0] , 02 03 04 0 06 0. 0E 08 1
C) o, ==0.00033108; kinetic energy norm; unstahle eq.; lowest eigenvalue sqrify);  w'fw}=-0.00033108; kinetic energy norm; unstahle eq.; lowest eigenvalue

Figure 6.8 The mode structure for unstable q profiles in Figure 6.7: poloidal cross-section and radial
structure of -V Fourier harmonics with different m: a) gmin = 1.0, most unstable mode is m/n=1/1,

b) Omin =2.0, m/n=2/1, ¢) qmin =3.0, m/n=2/1 and 3/1

The influence of the gmin value and of the normalized beta £y can be seen together, by following the
“stability-instability” boundary in the gmin - S Space, calculated by a specialy developed Perl script
using the following scheme: the pressure and current profiles are given as input. Starting at some
values of gmin and By (gmin = 0.8 and Sy = 0.7 in the case presented in Figure 6.9) the script calculates
the equilibrium by means of the CHEASE code, using iterations in order to obtain the prescribed
values of gmn and Ay and then the equilibrium stability is analyzed by the KINX code. If the

78



configuration is stable, then the pressure is increased at fixed gmin until the unstable equilibrium is
found. Then qmin is increased again and the procedure repeated until the maximum prescribed Qmin iS
achieved. It isimportant to note that the current profile, and not the g profile, is kept constant, so the g
profile is modified by changing gmin and the plasma pressure. The stability boundary is presented in
Figure 6.9 for the same pressure profile asin Figure 6.5.

18

1.6 " instability

1.4+

1.2
4

Q exj "
1.04 A~

0.8+

0

05 1.0 15 2.0 25 3.0 35 4.0 45
qmin

Figure 6.9 The n=1 mode stability boundary plotted in qmin - Ay Space. Green and red squares

correspond to ideally stable and unstable configurations, respectively. Pressure and q profiles of the
shot #21655.

It is seen that at qmin = 1.0 the instability begins at very low /Ay, because of the m/n=1/1 internal kink
mode. In most TCV reversed shear experiments omin does not reach such low values and the internal
kink mode is not dangerous. Nevertheless, the internal and external modes with m=2, 3, 4 etc, develop
when gmin IS close to corresponding integers. Between these zones “stability windows® are seen, where
the ideally stable plasma can be obtained at relatively high Sy. These “stability windows” correspond
to gmin vValues between integers. Thus, one way of improvement of the reversed shear plasma
performance is to avoid the integer values of gmin by fine adjustment of the current drive and plasma
heating. At increasing qmin > 3-4, the infernal mode is stabilized or becomes an external kink mode,
which is less sensitive to the value of Qpin.

Them/n = 2/1 and 3/1 components were measured just before the disruption for the shot #21653 [112].
This would correspond to the gmin value near 3, as shown in Figure 6.8c. This is compatible with the
slightly more reversed q profiles obtained assuming a lower radial diffusion coefficient in the CQL3D
simulations [111]. Thisis also in agreement with more recent transport simulations using the ASTRA
code [113].
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6.3.2 Fixed and free boundary. External kink mode.
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As seen in Figure 6.10, the infernal mode stability limit does not depend substantially on the boundary
conditions, although the growth rate varies between the fixed boundary and free boundary cases.
Figure 6.11 illustrates this.
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Figure 6.11 The dependence of the infernal mode growth rate on Ay in similar conditions in fixed

boundary and free boundary conditions.

The difference of the A\ limit for the fixed and free boundary cases is around 0.2 and is not substantial
in comparison with variations of the Ay limit with gmin, for example.

With free boundary conditions and a qmin > 3 another ideal MHD mode becomes unstable: the
external kink modes with different m, described in the Section 2.4.2. These modes are localized close
to the plasma edge and their existence is not directly connected with the non-monotonic character of g
profiles. The external kink mode is mainly a current driven mode, while the infernal mode is mainly
pressure driven. However in a real configuration both drives are effective and the modes are not
always distinguishable. The structure of the external modes is presented in Figure 6.12, which shows
that the maximum amplitude of the radial displacement is more off-axis as compared to Figure 6.10.

Thisiswhy thefact that qminisinteger does not play arole any longer.
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Figure 6.12 An external kink modes at qmin = 4.4 with free plasma boundary: the plot of the radial
displacement in the poloidal cross-section and the radial displacement of Fourier harmonics with

different m.
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At gmin < 3, the large pressure gradients in regions with small shear, particularly when qmin is an
integer, are the main drive and can lower the £y limit significantly. At intermediate qmin = 3 to 5, both
pressure and current density drives are important, while at larger qmin the external kink is more
important.

The infernal modes are more localized in the plasma core and this could explain the minor disruptions,
leading to aloss of the core transport barrier, but not of the whole plasma confinement [114].

6.3.3 The role of the pressure gradient

The pressure gradient in the low shear region is considered as one of the main free energy sources of
the ideal instability in the reversed shear plasma [23]. Several pressure profiles were studied: one
broad profile with parabolic P’ profile, typical for standard L-mode plasmas and three profiles with
steep and localized pressure gradient, similar to the profile presented in Figure 6.5 and characteristic
for plasmas with an internal transport barrier. These profiles and corresponding stability limits are

presented in Figure 6.13.
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Figure 6.13 Four pressure profiles(a) and corresponding pressure gradients (b) at the low shear

region and corresponding stability-instability boundaries in the gmin - Ay Space (c).
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The stability limit in case of the wide “parabolic” pressure profile, reaching the Troyon limit Sy = 3.0,
is substantially higher than in the case of elTB profiles. Evidently, the steepness of pressure profiles
plays an important role for the infernal mode stability. The formation of elTB, while improving
plasma confinement in the core region, leads to an increase of the pressure gradient in the barrier zone
near gmin, thus lowering the ideal stability limit. This also causes an even higher current density
inversion. As a result, the Troyon limit Ay = 3.0 can hardly be obtained in reversed shear plasmas
without wall stabilization, unless the possibility to avoid the infernal mode development by profile
optimization is found.

The role of pressure profiles and of the type of g profiles can be seen in Figure 6.14. The pressure
profiles from Figure 6.13a and the g profiles, presented in Figure 6.14a are of three types. monotonic,
flat and reversed.

12 : _ 3.0 u
e monotonlf: q profile = monotonic q profile
10| ----flatqprofile 2.5 e flat g profile
------ reversed g profile A reversed q profile
2.0 5
- 1.54 L]
o sy °
1.0 A
0.5
0 T T T T 0.0 T T
0.0 0.2 0.4 0.6 0.8 1.0 3 4 5 6 7
P P/<P>,

Figure 6.14 a) Different types of g profiles and b) Ay limit dependence on the pressure profile peaking
factor for monotonic (squares), flat (circles) and reversed (up triangles) q profiles. Colors correspond
to colors of pressure profiles in Figure 6.13a, used for calculations.

The highest ideal stability limit corresponds to the monotonic g profile, while flat and reversed g
profiles are more exposed to ideal MHD modes because in the low shear zone the conditions for the
infernal mode development appear, especially in case of high pressure gradient or peaked pressure
profile. This also explains why fully sustained scenarios with too peaked pressure profile can disrupt
even at relatively low 4 values[104, 106].

Another way to see the effect of the localized pressure gradient is in the value of the pressure peaking
factor Po/<P>. It was shown that in reverse shear plasmas this parameter is very important [25], and
high £ vaues can be obtained only at low peaking values, without wall stabilization. Thisis also seen
in Figure 6.14b where A\ limit almost doubles for the reversed shear case for peaking values between
4.5 and 3. It is interesting to note that this is also the case for a monotonic q profile which has a Ay

limit about half the Troyon limit for peaking values greater than 5 (squares in Figure 6.14b). The |;
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variation between the cases in Figure 6.14b are negligible, I; = 1.3 in all these cases, thus the I;
variation cannot explain the stability limit changes as equation (5.6) would indicate. Thisis related to

the low shear in the core which gives this sensitivity to the pressure drive, similarly to infernal modes.

6.3.4 The g profile

The g profiles in the reversed shear plasma can be very different. It is important to define, which
parameters of the g profiles are important for the mode stability and have to be controlled, and which
parameters can be | eft unattended, because they do not substantially influence the mode stability.

To define the g profile parameters, a number of substantially different current profiles were studied at
two values of qmin =2.2 and 4.4 with different pressure profiles (Figure 6.14). The current profiles were
chosen so that a wide range of profile shapes and values of pgmin, qo and g, were covered, also at the

same pgmin different go and gmin val ues were represented.
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Figure 6.15 a) The pressure and b) the surface averaged current profiles studied for the ideal MHD

stability, and corresponding q profiles at ¢) Qqmin =2.2, and d) gmin =4.4. Note the different scale in c)
and d)

The basic parameters of the q profiles for the case with gnin = 2.2 varied in the following limits: qo
between 2.6 and 6.0, g, between 4.5 and 12. At Qnin= 4.4 they varied as follows: qo between 4.9 and
9.5, (a between 8.8 and 23. pymin in both cases varied between 0.35 and 0.66.
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Note that in both cases, same plasma current profiles were used, but the corresponding q profiles are

different. In some cases at gmin = 4.4 a second minimum appears in the g profiles.

The pressure profiles, as shown in Figure 6.15a, varied by shifting the pressure gradient zone between

p =0.3and 0.6, the position of the gradient zone remained unchanged.

The fy limit for the pressure and g profiles in Figure 6.15 is presented in Figure 6.16. The

dependencies of Ay on p, on gmiw& and on the square root of the volume within the surface of

minimum g, relative to the total plasma volume, are shown. In the case of gnin =2.2 the infernal modes

dominate, and at higher qmin= 4.4 the external kink modes are most important.
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Figure 6.16 The dependence of the Ay limit on p, gmin/& and /qum IV, at Qmin =2.2 and Qpin =4.4

for different g profiles and pressure profiles , shown in Figure 6.14. The colors correspond to the

colors of pressure profiles in Figure 6.14 a.
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Itisseenin Figure 6.16 that at gmin = 2.2 and 4.4 the dependence of [y 0N gmin& and on ,/quin IV, is

close to linear. The linear dependence of By on gmiv& and on ,/quin /'V, inthe case of q profiles with

one minimum allows to suppose that the basic parameters that define the infernal mode stability in the
reversed shear configuration are the minor radii of qmin and of the maximum of P’. On the contrary, qo,
Omin and the shape of the g profiles in some limits are not so important for the infernal mode stability.
The stability of infernal modes increases with the radius of the pressure gradient and with the radius of

the minimum g.
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Figure 6.17 The dependence of the ideal MHD stability limit on 1/g, at @) gmin =2.2. and b) gmin =4.4,

on the pressure peaking factor (c,d)

At gmin = 4.4, when the external kink modes start to dominate, at large radius of pressure gradient the
dependence on pgqmin alSO appears to be linear. In addition we clearly see in this case an ideal mode
stability dependence on 1/qg,, as shown in Figure 6.17b. At gmin = 2.2 the relation to 1/g, depends more
on the radius of the pressure gradient zone pp, thus on the pressure peaking factor (Figure 6.17a,C).

The dependence on the plasma pressure peaking factor Po/<P>y is linear in both cases (Figure
6.17c,d). Note that the variations of the peaking factor for the same pressure profiles are due to the
equilibrium difference at different g profiles. Therefore there is always a link between the q profile and

the pressure profile which are difficult to separate.
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In order to better understand the apparent dependence of By on g, in Figure 6.17a,b, we show in Figure
6.18 the dependence of £ on Iy for both of these profiles. We see that in fact we recover the “ Troyon
curve’, except that the 4 limits are dlightly lower than Sy = 3.0 because of the high value of the
peaking factor and of the reversed shear. The solid symbols (gmin = 4.4), a small Iy, have a quadratic
dependence on Iy which explains the linear dependence of Ay on 1/q, in Figure 6.17b. However we see

that both groups of profiles arein fact not so different from the normal external kink £ limit.
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Figure 6.18 The dependence of £ limit on the normalized current Iy for cases shown in Figures 6.16
and 6.17. Open symbols correspond to gmin = 2.2, solid symbols correspond to Qmin = 4.4 cases. The

Troyon limit Ay = 3.0 is also shown

6.3.5 The position of g, and of the plasma pressure gradient

The flexible system of EC current drive and plasma heating of TCV allows the creation of a wide
range of reversed shear plasma configurations. The current and pressure profiles can be varied
substantially and relatively independently. On the basis of the analysis of the stability of plasmas with
various current and pressure profiles the configurations with enhanced ideal stability can be proposed
for future experiments. Thus, it is important to study the role of the current and pressure profiles and
of their combined influence on theideal stability of such plasmas.

The stability limit behavior in the space qmin - Ay Was studied for severa current profiles, Figure 6.14,
and for different pressure profiles with different pymin from Figure 6.14a. The results are presented in
Figure 6.19.

In most cases, the calculations started at qmin = 1.5, because at lower gmin the behavior of the stability
limit was similar. At gmin below 4 to 5 one can see the resonant structure, characteristic of the infernal
modes with “stability windows’ between the integer values of gmin. At higher gmin in many cases the

stability limit can go up, signifying the stabilization of the infernal mode. This happens mostly at low
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Pamin @Nd at low pp, whereas at high pymin and/or high pp the external kink mode becomes unstable and
the stability limit depends on 1/g, and not on gmin. The calculations aborted by Ay increase because of
convergence problems, appearing in equilibrium calculations by CHEASE. It is seen in Figure 6.19c,d
that at high pgmin the mode, localized near the plasma edge, remains unstable at higher gmin than at
lower pgmin, probably because of interaction with the external kink modes. One can aso see in Figure
6.17a that at very low pgmin and at high pp the external mode dominates the ideal MHD stability,
starting from gmin ~ 1.6. The calculations in the fixed boundary regime have shown that for pgmin =0.4
the infernal modes are stable with pp = 0.6 and 0.7, that is when there is little pressure gradient in the

low shear region.
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Figure 6.19 The dependence of Sy limit on qmin for different g and pressure profiles. Free boundary

case.
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These specific features of the ideal MHD modes in the reversed shear plasmas can be used for
optimization of the plasma pressure and current profiles in the TCV experiments in order to obtain
better plasma performance.

Possible ways of profiles optimization are:

1. Qmin in “stability windows” closeto 1.5, 2.5 or 3.5;

2. The pressure profiles with high radius of pp, flat in the plasma center;

3. Very high (~0.7) or very low (~0.3 - 0.4) radius of gmin.

In this case the external kink modes are weak, and the ideal MHD stability is dominated by the
infernal modes.

Another way of optimizing the profiles is the high gmin > 6.0 and moderate or low pgmin and pe. In
these conditions the infernal mode is stabilized and the external modes are not devel oped.
Optimization of q and pressure profiles can probably allow to increase Ay, achievable in the TCV
reversed shear experiments, to Ay ~ 2.0, two times higher than the values obtained in described TCV
shots.

6.3.6 The n = 2 stability

As it was mentioned, in TCV reversed shear experiments the modes with m/n = 2/1 and 3/1 were
observed during the plasma disruption. The n = 1 modes are considered as the most dangerous ones
and the above analysis is devoted to the stability of these modes. It can be useful, however, to consider
the stability of modes with higher n, especially with n = 2. The m/n = 3/2 mode can become unstable at
Omin Close to 1.5, where the “stability window” exists in the case of n = 1 mode. The analysisof n = 2
mode stability in comparison with n = 1 mode is shown in Figure 6.20 for the same conditions as in
Figure 6.19a.

The n = 2 mode has a resonance at gmin = 1.5, thus reducing the stability window between gnin=1 and
2. Nevertheless, this stability window remains interesting for profiles optimization, because it still

allows to reach higher Ay than at gmin close to integer values.
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Figure 6.20 The n = 1 (solid squares) and n = 2 (open circles) stability limits at different pressure
profiles for the case shown in Figure 6.19a

6.4 Conclusions

e A series of TCV experiments with reversed shear profiles and internal transport barriers have
been analyzed. The increase of the current inversion leads to a confinement improvement within
the el TB zone and the local pressure gradient increases. The profiles just before the disruption
are marginal with respect to then = 1 mode.

e Them/n = 3/1 and 2/1 components observed experimentally, are consistent with numerically
calculated ideal modes with gmin near 3. The characteristic time of the disruption, ~ 20 us, is
consistent with the ideal growth rate. Thusit is shown that reversed shear scenarios with internal
transport barrier are limited by ideal modes. The unstable mode is identified as an infernal mode,
localized near the qmin, low shear region. This mode is mainly pressure driven. The marginal Sy
stability limit for the infernal mode is not very sensitive to the presence of an ideal wall on the

plasma boundary, but it is very sensitive to integer min Values.
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By increasing the position of the maximum pressure gradient, the mode is localized in the
positive shear region and close to the edge. The transition to the external kink mode occurs. It
becomes less sensitive to the actual gmin value, as expected for external kink modes.

The Ay limit increases with increasing radius of the position of gmin and of the maximum
pressure gradient.

The strong dependence on the pressure peaking factor is confirmed in these reversed shear
scenarios. The localized pressure gradient due to the internal transport barrier reduces the Ay
limit with respect to the Troyon limit. This is aso true for monotonic q profile with similar |; if
Po/<P>y > 4-5.

The n = 2 mode, although not observed in disruptions of TCV reversed shear plasmas, decreases
the Ay limit near the resonance qmin = 3/2, if the position of qmi, and of the pressure gradient is
close to the plasma centre.

By current and pressure profile optimization it is possible to obtain better plasma performance.

Several ways of the profile optimization are proposed.
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Chapter 7. Summary and conclusions

Internal kink

e Theideal MHD stability of modern tokamak plasmas has been examined by means of analytical
and numerical calculations. The validity limits of the analytical approximations of the internal
kink mode growth rate, based on an expansion on the inverted aspect ratio &, have been analyzed.
It has been established that the analytical approach cannot be used in the case of present tight
aspect ratio tokamaks, due to the size of & Thisis true even though the value of e at theq =1
radius, which determines the internal kink growth rate, is significantly smaller than the plasma
boundary &. Numerical corrections to inaccuracies, incurred by expansion in g, are due to the
combined treatment of toroidicity and plasma shaping.

e  The dependence of the ideal internal kink mode growth rate on the aspect ratio and on plasma
shape parameters has been studied in detail, with an emphasis on the effects of elongation and
triangularity. It is found in particular that the growth rate has a minimum at slightly negative
triangularity, which does not depend on the plasma elongation. The dependence on beta Bussac
at moderate and low & was found to be essentialy linear and not quadratic, as predicted

analytically. It can even have a dependence on f,,, which isweaker than linear when gislarge

e Thecritica vaueof 4, A" above which the internal kink mode is unstable depends mainly on

elongation for &> 0.2. It isfound that A" = 0 for x> 1.5. That is, flat pressure profiles inside

g = 1 are unstable at high elongation. This is in agreement with experimental measurements,
which show that pressure profiles are not peaked just before sawtooth crashes when the crash is
triggered by an ideal internal kink mode [80].

e  Experiments with a variation of plasma triangularity were performed on the TCV tokamak
including discharges with very negative triangularity. The experimental dependence of sawtooth
oscillations on the plasma triangularity agrees well with the dependence of the numerically
obtained results of the ideal internal kink mode growth rate on triangularity. Thusit is consistent
with the sawtooth crash being triggered by the ideal internal kink mode in these experiments.
The significant stabilization at positive triangularity explains why the resistive internal kink is
more relevant for triggering sawtooth crashes in present experiments with 9:>0.3.

e  Onthe basis of the numerical calculations a new formulais proposed, describing the dependence
of the ideal internal kink mode growth rate on basic plasma parameters. This formula differs
substantially from analytical formulae and is intended for the use at moderate and high values of

& which is characteristic for modern tokamaks. The importance of self-consistent variation of
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equilibrium parameters with the variation of each single parameter is highlighted, in particular in

order to compare with experimental results.

External kink at high elongation

The ideal MHD stability analysis of TCV plasmas with high elongation has been performed,
using the numerical codes. This work has contributed to the experimental studies of high current
plasmas on TCV. The caculations of the n = 1 externa kink mode stability dependence on
plasma shape have been carried out, and the optimum shape found. Some unusual plasma shapes
have also been analyzed and possible candidates for experimental studies determined. The results
of the experiments on TCV are in good agreement with the ideal stability analysis, which can be

used for prediction and optimization of high elongation plasma beta limits.

Reversed shear profiles

The stability of plasmas with non-monotonic current density profiles have been studied and the
role of pressure and current profile parameters was examined. A series of TCV experiments with
reversed shear profiles and internal transport barriers have been analyzed. With increasing
reversed shear, the confinement is improved and the local pressure gradient increases. It was
shown that the profiles just before the disruption were marginal with respect to the n = 1 mode.
The mode structure, with dominant 3/1 and 2/1 components observed experimentaly, is
consistent with an ideal mode with gnin Near 3. The characteristic time of the disruption, ~ 20 us,
Is consistent with the ideal growth rate. Therefore the study shows that reversed shear scenarios
with internal transport barrier are limited by ideal modes. The unstable mode is identified as an
infernal mode, localized near gmin, low shear region, and is mainly pressure driven. The marginal
stability limit for this mode is not very sensitive to the presence of an ideal wall on the plasma
boundary. The Sy limit for the infernal mode is very sensitive to integer qmin values.

It has been shown that by increasing the position of the maximum pressure gradient, the mode is
localized in the positive shear region and close to the edge. It becomes less sensitive to the actual
Omin Value, as expected for external kink modes.

It is found that the £y limit increases with increasing radius of the position of gmin and of the
maximum pressure gradient.

The strong dependence on the pressure peaking factor is confirmed in these reversed shear
scenarios. It was shown that the localized pressure gradient due to the internal transport barrier
reduces the Sy limit with respect to the Troyon limit. It has been shown that thisis also true for
monotonic q profile with similar |; if Po/<P>y > 4-5.

93



Bibliography

Note: To be distinguished from Dr. Martynov A.A. from Keldysh institute in Moscow, Russia, the
name of Andrey Martynov iswritten as Martynov An. in all publications.

[1] Lawson J. D. (1957) Proc. Phys. Soc. London, Sec. B 70, 6
[2] Aymar R. et al (2001) Nucl. Fusion 41 1301-1310
[3] Williams L. P. (1965) Michael Faraday - A Biography, Basic Booksinc., New Y ork

[4] Grad H. and Rubin H (1958) in Proceedings of the Second United Nations International
Conference on the Peaceful Uses of Atomic Energy, United Nations, Geneva, Vol. 31, 190

[5] Shafranov V. D. (1960) Sov. Phys. — JETP 26, 682
[6] Laval G., Mercier C., Pellat R.M. (1965) Nuclear Fusion 5, 156

[7] Bernstein I. B., Frieman E. A., Kruskal M. D., Kurlsrud R. M. (1958) Proc. R. Soc. London, Ser. A
244, 17

[8] Turnbull A.D., Roy A., Sauter O., Troyon F. (1988) Nuclear Fusion 28 1379
[9] F. Porcelli, Boucher D., Rosenbluth M.N. (1996) Plasma Phys. Control. Fusion 38, 2163
[10] Sauter O. et a (2002) Phys. Rev. Lett. 88, 105001

[11] ITER Physics Expert Group on Disruptions, Plasma Control, and MHD (1999) “ITER Physics
Basis, Chapter 3> Nuclear Fusion 39 2251

[12] Bussac M. N., Pellat R., Edery D., Soule J. L. (1975) Phys. Rev. Lett. 35, 1638
[13] Wahlberg C. (2004) Phys. Plasmas 11, 2119

[14] Edery D et d. (1976) Phys. Fluids 19, 260
%!



[15] Eriksson H. G. and Wahlberg C. (2002) Phys. Plasmas 9, 1606

[16] Connor J. W. and Hastie R. J. (1985) The Effect of Plasma Cross Sections on the Ideal Internal
Kink Mode in a Tokamak, Rep. CLM-M-106, Culham Laboratory, Abingdon, OXON

[17] Connor J. W. et a. (2004) Nuclear Fusion 44 R1

[18] Walf R. C. et a, (2003) Plasma Phys. Contr. Fus. 45R1

[19] Henderson M. et al. and Martynov An. (2003) Phys. Plasmas 10 1796

[20] Goodman T. et a. (2003) Nuclear Fusion 43 1619

[21] Henderson M. et a (2005) submitted to Phys. Rev. Lett.

[22] Sauter O. et al (2005) “Inductive current density perturbations to probe electron internal
transport barriers in tokamaks™, accepted to Phys. Rev. Lett.

[23] Manickam J., Pomphrey N., Todd A.M.M. (1987) Nuclear Fusion 27 1461

[24] Ozeki T., Azumi M., Tokuda S., Ishida S. (1993) Nuclear Fusion 33 1025

[25] Chu M.S. et a. (1996) Phys. Rev. Lett. 77 2710

[26] Freidberg J. P. (1987) Ideal Magnetohydrodynamics , Plenum Press, New Y ork and London

[27] Lutjens H. et al. (1996) Comp. Phys. Comm. 97, 219

[28] Soloviev L. S (1968) Sov. Phys. — JETP 26, 400

[29] Berge G., Freidberg J. P. (1975) Phys. Fluids 18, 1362

[30] Grad H. (1973) Proc. Natl. Acad. Sci. USA 70, 3277

[31] Goedbloed J.P. (1975) Phys.Fluids 18, 1258

95



[32] Goedbloed J.P. (1979) Lecture Notes on Ideal MHD, Fom-Institut voor Plasmafysica, Neiwegein,
Netherlands

[33] Furth H. P, Killeen J., Rosenbluth M. N., Coppi B. (1964) In Plasma Physics and Controlled
Nuclear Fusion Research IAEA, Vienna, v. 1, 103

[34] Greene J. M., Johnson J. L. (1968) Plasma Phys. 10, 729

[35] Rosenbluth M. N., Dagazyan R. Y., Rutherford P. H. (1973) Phys. Fluids 11, 1984

[36] Kruskal M. D., Schwarzschild M. (1954) Proc. R. Soc. London, Ser. A 223, 348

[37] Shafranov V. D. (1956) At. Energy 5, 38

[38] Bondeson A., Bussac M.-N. (1992) Nuclear Fusion 32 513

[39] Krymskii K. M. and Mikhailovskii A. B. (1978) Fiz. plazmy 4, 888.

[40] Litjens H., Bondeson A. and Vlad G. (1992) Nuclear Fusion 32, 1625

[41] Martynov An. et a, (2004) submitted to Plasma Phys. Contr. Fus.

[42] Graves J.P., (1999) “Kinetic Stabilisation of the Internal Kink Mode for Fusion Plasmas™ PhD
thesis, University of Nottingham

[43] AraG., Basu B., Coppi B. et a. (1978) Annals of Physics 112, 443

[44] Kadomtsev B. B., (1975) Fiz. Plasmy 1 710; Sov. J. Plasma Phys. 1 389

[45] Mirnov S.V. (1969) Nuclear Fusion 9, 57

[45] Connor JW., Hastie R.J,, Taylor J.B (1978) Physical Rew. Lett. 40 396

[46] Connor JW., Hastie R.J., Taylor J.B (1979) Proc. R. Soc. A365, 1

96



[47] Hastie R.J., Taylor J.B (1981) Nuclear Fusion 21 187

[48] Dewar R.L., Manickam J., Grimm R.C., and Chance M.S. (1981) Nucl. Fusion 21, 493;
Corrigendum (1981) Nucl. Fusion 22, 307

[49] Philips M.W, Zarnstoff M.C., Manickam J., Levinton F.M., Hudges M.H (1996) Phys. Plasmas 3
1673

[50] HoltiesH.A., Huysmans G.T.A., Goedbloed J.P., Kerner W., Parail V.V., Soeldner F.X. (1996)
Nuclear Fusion 36 973

[51] Connor JW., Hastie R.J. (2004) Physical Rew. Lett. 92 075001-1

[52] Connor JW., Hastie R.J. (2004) Phys. of Plasmas 11 1520

[53] Degtyarev L, Martynov A. A., Medvedev S. et al. (1997) Comput. Phys. Commun. 103, 10

[54] Gruber R, Troyon F, Berger D. et al. (1981) Comput. Phys. Commun. 21, 323

[55] Bernard L.C. et a. (1981) Comput. Phys. Commun. 24, 377

[56] Grimm R.C., Greene J.M., Johnson J. L. (1976) Methods Comput. Phys. 9, 253

[57] Grimm R.C., Dewar R.L., Manickam J. (1983) J. Comput. Phys 49, 94

[58] Glasser A.H. and Chance M.S. (1997) Bull. Am. Phys. Soc. 42, 1848

[59] Mikhailovskii A.B. et a. (1997) Plasma Physics Reports 23, 844

[60] Ward D.J., Jardin S.C., Cheng C.Z. (1993) J. Comput. Phys. 104, 221

[61] Ward D.J., Bondeson A. (1995) Phys. Plasmas 2, 1570

[62] Gruber R., Cooper W.A., Beniston M. et al. (1991) Phys. Rep. 207 167

97



[63] Degtyarev L.M., Medvedev S.Y u. (1986) Comput. Phys. Commun. 43, 29

[64] Gruber R. (1978) J. of Comput. Physics 26, 379

[65] Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery (1997) Numerical recipes
in FORTRAN B.P. Univ. of Cambridge Press, 2™ edition

[66] Noble B., Daniel JW. (1977) Applied Linear Algebra Prentice-Hall, 2" edition

[67] Ostrowsky A.M. (1959) Proc. N.A.S. 45, 740

[68] Medvedev S.Yu., Villard L., Degtyarev L.M., Martynov A.A., Gruber R. and Troyon F. (1993)
20™ EPS Conf. on Controlled Fusion and Plasma Phys., Lisbon, Proc. Contrib. Papers, 17C, part IV,
1279

[69] Hofmann F., Tonetti G. (1988) Nuclear Fusion 28, 1871

[70] Martynov An., Sauter O. (2002) ISPP-20 Theory of Fusion Plasmas, Varenna, SIF, Bologna, 297

[71] Martynov An., Sauter O. (2000) ISPP-19 Theory of Fusion Plasmas, Varenna, SIF, Bologna, 387

[72] Hofmann F., Behn R., Martynov An. et a. (2001) Plasma Phys. Control. Fusion 43 A161

[73] Hofmann F., Coda S., Martynov An. et al. (2002) Nuclear Fusion 42 743

[74] Moret J-M. et al and Martynov An., (2004) In proceedings of the 20" IAEA Fusion Energy
Conference, Portugal (2004): Progress in the understanding and the performance of ECH and plasma
shaping on TCV

[75] von Goeler S., Stodiek W., Sauthoff N. (1974) Physical Review Letters 33, 1201

[76] Itoh K., Itoh S.-1., FukuyamaA. (1997) Plasma Phys Control. Fusion 37 1278

[77] Gimblett C. G., Hastie R.J. (1994) Plasma Phys. Contr. Fus 36 1439

98



[78] Pochelon A. et a and Martynov An., (2001) Nucl. Fus. 41 1663

[79] Pochelon A. et a and Martynov An., (1999) Nucl. Fus. 39 1807

[80] Reimerdes H. et al and Martynov An. (2000) Plasma Phys. Control. Fusion 42 629

[81] Weisen H. et a and Martynov An., (2002) Nucl. Fus. 42 136

[82] Campbell D.G. et al. (1986) Nucl. Fusion 26, 1085
[83] Alladio F., Ottaviani M., Vlad G. (1988) Plasma Phys Control. Fusion 30 597

[84] Sauter O., Angioni C. et al. (1998) ISPP-18 Theory of Fusion Plasmas, Varenna, SIF, Bologna,
403

[85] Pochelon A. et al. (1999) Nuclear Fusion 39, 1807

[86] Angioni C. et al. (2003) Nuclear Fusion 43, 455

[87] Porcelli F. et d and Martynov An., (2001) Nucl. Fus. 41 1207

[88] Boucher D. et a. (1997) “Predictive Modeling and Simulations of Energy and Particle
Transport in JET”, Proc., 16th Int. Conf. Montreal, 1996 (IAEA, Vienna 1997) 2, 945.

[89] Pereverzev G. et al. (1991) Report IPP 5/42

[90] Reimerdes H. (2002) PhD Thesis, EPFL

[91] Troyon F. et a. (1984), Plasma Physics and Controlled Fusion 26 (1a) 209

[92] Troyon F. et a. (1988) Plasma Phys. Control. Fusion 30 1597

[93] Hofmann F. et al. (1998) Nuclear Fusion 38 1767

[94] Levinton F. M. et al. (1995) Phys. Rev. Lett. 75 4417

99



[95] Rice B.W. et al. (1996) Phys. Plasmas 3 1983

[96] FujitaT et al. (1997) Phys. Rev. Lett 78 2377

[97] Soeldner F. X. et a. (1999) Nucl. Fusion 39 407

[98] Moret J. M. et a and Martynov An., (2002) Plasma Phys. Contr. Fus. 44 B85

[99] Henderson M. A. et ad and Martynov An., (2004) Plasma Phys. Contr. Fus. 46 A275
[100] Sauter O. et a and Martynov An., (2005) Phys. Rev. Lett. 94, (2005) 105002

[101] Coda S. et a and Martynov An., to be published in Phys. Plasmas, May, 2005

[102] Sauter O. et a. (2002) 29th EPS Conference Montreux (Switzerland), June 17-21 2002,
poster P-2.087 http://crppwww/conferences EPS02/os_paper.pdf

[103] CodasS. et al (2005) submitted to Phys. Plasmas

[104] Sauter O. et a and Martynov An., (2000) Phys. Rev. Lett. 84 3322

[105] Coda S. et al and Martynov An., (2000) Plasma Phys. Contr. Fus 42 B311

[106] Sauter O. et a and Martynov An., (2001) Phys. Plasmas 8 2199

[107] Weisen H. et a and Martynov An., (2001) Nucl. Fus. 41 1459

[108] Rebut P. H. et al. (1989), Proc. 12th IAEA conf., Nice 1988, IAEA, Vienna, 12 191

[109] Nikkola P., Sauter O., et al. (2003) Nucl. Fusion 43 1343

[110] Nikkola P. (2004) PhD thesis LPR 793/04 CRPP EPFL

[111] Harwey R.W., McCoy M.G. (1992) Proc. IAEA/TCM/Advances in Simulation and Modeling in
Thermonuclear Plasmas (Montreal 1992)

100



[112] Scarabosio A., private communication

[113] Fable E., Sauter O. (2004) ISPP-21 Theory of Fusion Plasmas, Varenna, SIF, Bologna, 443

[114] Zhuang G., Scarabosio A. et al. (2004) 31th EPS Conference London (United Kingdom), June-
July 2004, poster P2-143; CRPP preprint LPR 795/04 67

101



Acknowledgements

| am grateful to all people who have helped me during the work on the present thesis.

Firstly, to Dr. Olivier Sauter, my thesis supervisor, who guided me during these years and
supported me in numerous difficult situations. His extremely effective way of working, his
motivation for research work and especially his endless patience will be for me an example to

imitate and to follow in my further activity.

| would like to thank Dr. John Graves, whose assistance in the elaboration of theoretical aspects

of the work can not be overvalued.

My sincere gratitude to Dr. Antoine Pochelon, who supported and encouraged me in my first

contacts with CRPP and during all these years.

| thank Prof. C. Wahlberg, Prof. T. Schietinger, Dr. H. Lutjens and Dr. J. Graves for their kind
agreement to examine this work as experts and jury members and to Prof. V. Savona, the jury
President.

It was a pleasure for me to work in the hearty atimosphere of CRPP, so | thank all CRPP

members and its direction for excellent working conditions, created there.

My stay in Switzerland could end in a different, rather mournful way, if not the brilliant work of
Dr. A.P. Fischer from Centre Hospitalier Universitaire Vaudois in Lausanne, who has performed
the cardiosurgery in September 2004, having completely eliminated the serious heart disease,
discovered by occasion afew months earlier.

And, of course, | must express my sincere gratefulness to my wife Tatiana for her love and
patience and to my son Dmitry, who came into being in May 2002 and who infinitely enriches

our life since that time.

Thiswork was partly supported by the Swiss National Science Foundation.



Curriculum vitae

Andrey MARTYNOV

Born in Moscow, Russia the 7" of November 1972.

1979-1989

1989-1995

1995-1999

1999-2005

Elementary, then secondary schools n° 52 and n° 999 in Moscow, Russia. Graduated
from the secondary school n° 999 of the city of Moscow with the secondary education

certificate.

Moscow Engineering and Physics Institute (Technical University), Moscow, Russia
Graduated with the diploma of engineer-physicist with speciaization in nuclear
physics.

Russian Research Center “Kurchatov Institute” Moscow, Russia

Engineer, Institute of Nuclear Fusion.

Swiss Federal Institute of Technology in Lausanne (EPFL).
Assistant-doctorant, Center of Plasma Physics Researches (CRPP)



List of publications

Martynov An., Graves J., Sauter O. “ The stability of the ideal internal kink mode in
realistic tokamak geometry” submitted to Plasma Phys. Contr. Fusion

Sauter O. et a and Martynov An., (2005) Phys. Rev. Lett. 94, (2005) 105002

Coda S. et a and Martynov An., to be published in Phys. Plasmas, May, 2005

Henderson M. A. et al and Martynov An., (2004) Plasma Phys. Contr. Fus. 46 A275

Moret J.-M. et a and Martynov An., (2004) In proceedings of the 20" | AEA Fusion Energy
Conference, Portugal (2004): Progressin the understanding and the performance of ECH and plasma
shaping on TCV

Henderson M. et al. and Martynov An. (2003) Phys. Plasmas 10 1796

Martynov An., Sauter O. (2002) |SPP-20 Theory of Fusion Plasmas, Varenna, SIF, Bologna, 297
Hofmann F., Coda S., Martynov An. et a. (2002) Nuclear Fusion 42 743

Weisen H. et a and Martynov An., (2002) Nucl. Fus. 42 136

Porcelli F. et al and Martynov An., (2001) Nucl. Fus. 41 1207

Pochelon A. et a and Martynov An., (2001) Nucl. Fus. 41 1663

Sauter O. et a and Martynov An., (2001) Phys. Plasmas 8 2199

Weisen H. et a and Martynov An., (2001) Nucl. Fus. 41 1459

Hofmann F., Behn R., Martynov An. et a. (2001) Plasma Phys. Control. Fusion 43 A161

Martynov An., Sauter O. (2000) |SPP-19 Theory of Fusion Plasmas, Varenna, SIF, Bologna, 387



Sauter O. et a and Martynov An., (2000) Phys. Rev. Lett. 84 3322

CodaS. et d and Martynov An., (2000) Plasma Phys. Contr. Fus 42 B311

Reimerdes H. et al and Martynov An. (2000) Plasma Phys. Control. Fusion 42 629

Alikaev V.V. et a and Martynov an. (2000) Plasma Physics Reports 26 177

Pochelon A. et al and Martynov An., (1999) Nucl. Fus. 39 1807

Alikaev et a and Martynov An. (1998 ) 25th EPS Conference, Prague (Czech Republic), June 29 —
July 3 1998, poster P2.088; http://epsppd.epfl.ch/Praha/ WEB/98ICPP_W/EO083PR.PDF

Esipchuk Yu.V., KirnevaN.A, Martynov An., Trukhin V.M. (1995) Plasma Physics Reports 21 543





