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Abstract

Suppose Q is a family of discrete memoryless channels. An unknown member of Q

will be available, with perfect, causal output feedback for communication. Is there

a coding scheme (possibly with variable transmission time) that can achieve the

Burnashev error exponent uniformly over Q ? For two families of channels we show

that the answer is yes. Furthermore, for each of these two classes, in addition to

achieve the maximum error exponent, it is possible to uniformly attain any given

fraction of the channel capacity. Therefore, in terms of achievable rates and delay,

there are situations in which the knowledge of the channel becomes irrelevant.

In the second part of the thesis, we show that for arbitrary sets of channels the

Burnashev error exponent cannot in general be uniformly achieved. In particular

we give a sufficient condition for a pair of channels so that no coding strategy

reaches Burnashev’s exponent simultaneously on both channels.

As a third part we study a scenario where communication is carried by first

testing the channel by means of a training sequence, then coding according to the

channel estimate. We provide an upper bound on the maximum achievable error

exponent of such coding schemes. This bound is typically much lower than the

maximum achievable error exponent over a channel with feedback. For example

in the case of binary symmetric channels this bound has a slope that vanishes at

capacity. This result suggests that in terms of error exponent, a good universal

feedback scheme combines channel estimation with information delivery, rather

than separating them.

In the final chapter, we address the question of communicating quickly and

reliably. We consider a simple situation of two message communication over a

known channel with feedback. We propose a simple decoding rule, and show that

it minimizes a weighted combination of the probability of error and decoding delay

for a certain range of crossover probabilities and combination weights.
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Version Abrégée

Soit Q une famille de canaux discrets, sans mémoire, avec feedback instantané et

non bruité. Supposons que la communication soit effectuée sur un des éléments de

Q , et que celui-ci ne soit divulgué ni au transmetteur ni au récepteur. Existe-t-il

une stratégie de codage qui atteint l’exposant d’erreur de Burnashev uniformément

sur Q ? On démontre que pour deux familles de canaux la réponse est affirmative.

De plus, pour chacune de ces deux familles, en plus d’atteindre l’exposant d’erreur

maximal, il est possible d’atteindre n’importe quelle fraction de la capacité du canal

utilisé. Dès lors, en terme de délai et de taux de communication, la connaissance

du canal n’est plus nécessaire.

Dans la seconde partie de la thèse, on démontre de façon générale, qu’étant

donné une famille de canaux arbitraires, l’exposant de Burnashev ne peut être si-

multanément atteint. En particulier, on donne une condition suffisante sous laque-

lle aucune stratégie de codage n’atteint l’exposant de Burnashev simultanément

sur une paire de canaux donnée.

Dans une troisième partie, on étudie un scénario où une séquence test destinée

à estimer le canal est envoyée préalablement à la transmission d’information. On

exhibe une borne supérieure sur l’exposant d’erreur maximum que de telles straté-

gies peuvent atteindre. Cette borne est typiquement bien inférieure à l’exposant

de Burnashev. Par exemple, dans le cas des canaux symétriques à entrée et sortie

binaire, cette borne est représentée par une fonction qui a la propriété d’avoir une

pente nulle lorsque le taux égal la capacité. Ce résultat suggère que si le critère

de performance est l’exposant d’erreur, un bon schéma de communication com-

binera l’estimation du canal avec codage de l’information, au lieu de les effectuer

séparemment.

Dans le chapitre final on s’intéresse à la question de pouvoir communiquer

rapidement et de manière fiable. On considère une situation simple avec seule-

ment deux messages où la communication s’effectue sur un canal connu du trans-

metteur et du récepteur. On propose une simple règle de décodage qui minimise

une fonction qui tient compte à la fois de la probabilité d’erreur et du délai de

transmission.



vi



Preface

The starting point of this thesis is an important result due to Burnashev (1976).

This result tells us the maximum performance, in terms of reliability and delay,

that can be achieved by a coding strategy over a discrete memoryless channel with

feedback.

In this thesis we extend Burnashev’s result by considering the case where the

channel is revealed to neither the transmitter nor the receiver. Hence we are

interested in optimal universal coding schemes, namely strategies that act without

knowing the underlying channel, yet minimize the error probability and achieve a

wide range of communication rates.

While for channels without feedback it is well known that not knowing the

channel results in a significant drop in the communication performance, the main

result of this thesis tells us that if feedback is available, there are situations in

which no penalty occurs by lack of channel knowledge: communication can be

performed as well as in the case of known channel. These situations are rather

specific, but include important channel families.
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Introduction

Consider two agents who wish to communicate. One of the entities has information

to be sent to the other over a channel. Unlike the standard model of communication

theory, we consider a channel which gives causal information to the encoder about

what is received at the decoder (Shannon 1956). Such communication situations

are termed communication with feedback.

In practice feedback is inherently present, such as in the internet (Stevens 1994),

in satellite communication (Wyner et al. 1971, Chen et al. 2000), sensor networks

(Pados et al. 1995, Alhakeem and K.Varshney 1978, Swaszek and Willett 1995),

etc...

Two assumptions have been made in the vast majority of the works related

to feedback communication: that the feedback link is noiseless and introduces no

delay.

Although the noiseless hypothesis appears to be somewhat stringent, in many

cases it may be considered as a reasonable assumption. For example, in satellite

communication the link in the earth–to–satellite direction may be assumed noise-

less, because of the large amount of available power on the earth. In contrast, in

the opposite direction, the available power is very limited, hence the channel is

noisy. The sensor network setting in which a central base station is surrounded

by low power sensors is analoguous to the previous case in that the earth be-

comes now the base station and the satellite replaces the sensors. Studies that

handle the case where the feedback loop is noisy can be found for example in

(Kashyap 1968, Lavenberg 1971, Sahai and Şimşek 2004).

The definition of delay depends upon the channel model we consider. For

continuous time channels, the feedback link is said to be delayless if the transmitter

knows instantaneously which symbol is observed by the receiver. For discrete time

channels, the feedback link is said to be delayless if the transmitter knows with unit

delay which symbol is emitted by the receiver. In other words, causality introduces

no delay for continuous time channels whereas it implies a unit delay for discrete

time channels.

For a wide family of channels, such as the class of memoryless channels, it can

be shown that a feedback link with a finite delay is no worse than a feedback link

without delay.1 More precisely, any coding scheme designed for the instantaneous

1The situation with unbounded or variable delay is different from the case of fixed delay.
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feedback case can be adapted to the non instantaneous case by simply “delaying”

it. The “delayed” scheme is as reliable as the initial scheme, and since the delay

can be made negligible compared to the length of the codewords, no penalty occurs

in the communication rate.

However, there are cases in which the situation with and without delay substan-

tially differs. This is the case for instance for Markov channels (Viswanathan 1999).

In the following discussion the feedback loop is assumed to be noiseless and

delayless.

The main quantity that characterizes the quality of a channel is capacity . Since

feedback gives additional capabilities to the communicating parties it can only im-

prove the communication performance and thus the capacity with feedback cannot

be smaller than the capacity without. For example Ozarow (1990) showed in the

case of additive Gaussian channel, feedback strictly increases capacity when the

noise process is not white (hence the noise induces a channel with memory). How-

ever, it is well known that feedback does not increase the capacity of a discrete

memoryless channel as has been shown by Shannon (1956) and Csiszàr (1973),2

and generalized to continuous time memoryless channels by Kadota et al. (1971).

Another important quantity is the reliability function or maximum achievable

error exponent. It expresses the trade-off between the probability of error and the

codeword length. More precisely, the reliability function quantifies the exponential

behavior of the probability of error for the best coding schemes, as the coding delay

is increased with the rate of transmission held fixed.

Even in channels for which feedback does not increase capacity, the error expo-

nent is in general improved by the availability of feedback (Horstein 1963, Forney

1968, Schalkwijk and Kailath 1966, Schalkwijk 1966, Schalkwijk and Barron 1971).

However, the cases for which the error exponent is known for all rates is rare

(among them the “very noisy channels” and the Poisson Channel). It therefore

came as a surprise that Burnashev (1976) was able to give an exact expression for

the error exponent for all discrete memoryless channels with feedback.

In the case of discrete memoryless channels, a result due to Dobrushin (1963)

tells us that for symmetric channels, if we restrict ourselves to fixed length block

codes, the maximum achievable error exponent is upper bounded by the sphere

packing bound (Fano 1961, Shannon et al. 1967). An extension of this result

to arbitrary discrete memoryless channels can be found in (Arutyunyan 1977).

Now consider a symmetric channel with a critical rate (Gallager 1968) strictly

below capacity. One can show that at rates above the critical rate the maximum

achievable error exponent given by Burnashev exceeds the sphere packing bound.

Hence for rates close to capacity, having feedback does not improve the exponent

for fixed length block codes, but yields an improvement for variable length codes.

In this situation we see that it is not just because of the fact that with feedback“the

2Shannon (1956) and Csiszàr (1973) considered fixed length codes and variable length codes

respectively.
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transmitter can look over the shoulder of the receiver to see how well it is doing”3

that we may expect a boost in the error exponent when feedback is available,

but also because in the presence of perfect feedback the sender can use a variable

length channel code. In other words, the capability of the code to adapt its length

is fundamental.

The research on feedback channels so far has been mostly along the lines of

investigating the performance of a communication system in which the channel

statistics are known to the communicating parties in advance so that a commu-

nication system with a given data rate can be designed a priori. Nevertheless, in

practice the channel parameters are partially known, if at all. Let us come back

to the previous examples. In the internet, some connection parameters, such as

the packet loss probability are not known in advance. In satellite communication,

because of the non–stationary nature of the setting, the link in the satellite–to–

earth direction may be assumed unknown. Finally in sensor networks: due to the

randomly placement of the sensors, the link in the sensor–to–base direction may

be assumed unknown.

Indeed, from the previous examples, the channel might be considered as un-

known either because the channel statistics are not available but the channel is

stationary, or because the channel statistics vary in time (Ahlswede 1978). In this

work we are interested in the situations where the channel is fixed but unknown

to the communicating parties. The question arises as to whether, and to what

extent, feedback can facilitate coding over an unknown channel.

Our initial curiosity was nurtured by the example of the binary erasure channel

where the channel accepts as input binary symbols 0 or 1, and at the output either

reproduces the input symbol faithfully or, with some probability p outputs an

erasure symbol E. The capacity of this channel is known to be 1− p bits per

use, and it is known that when p is revealed in advance to the communicating

parties feedback will not improve the capacity. However, if p is not available in

advance, in the absence of feedback, the best that can be done is to design a

coding scheme tuned for the worse case p (Blackwell et al. 1960). However, with

feedback, one can do much better. Send the symbols in order over the channel,

repeating each symbol, should an erasure occur, until it is received correctly. One

can easily show that the expected time it takes for a symbol to be correctly received

is 1/(1− p), which corresponds to an average rate equal to 1− p (Gallager 1968,

p. 506, Problem 2.10). Hence, by means of feedback one can achieve a rate of

1− p symbols per use which is the capacity of the channel, without knowing the

channel. Furthermore, since the decoder decides on a bit every time a non-erasure

symbol is received, no other scheme could decide quicker without making errors,

and finally, since the communication is error free, the error exponent is infinite!

The question that springs to mind is whether this is a general phenomenon,

that is: given a family of channels with feedback, can one design a coding scheme

3Citation of Wolfowitz in (Schalkwijk and Post 1971).
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so that whichever member of the family is picked the system will transmit reliably

at rates close to the capacity of the member? The above discussion settles this

question in the affirmative if the class consists of binary erasure channels. Also it

is not too difficult to convince oneself that the use of training sequences allows one

to answer the question in the affirmative for very broad classes channels, which

include the set of discrete memoryless channels (Feder and Lapidoth 1998).

Nonetheless, the situation is far from settled: the training sequence approach

may allow us to conclude some statements on capacity, but what about the er-

ror exponents? Our concern about achievable rates and error exponent ultimately

poses the following question: in terms of error exponent is it better to know the

channel and not have feedback, or to have feedback and not know the channel?

Thesis Outline

The communication setting is the same for the Chapters 2, 3 and 4, and related

preliminaries are provided in Chapter 1. The channel over which communication

is conducted is a stationary discrete memoryless channel Q that is known only to

belong to some family of channels Q . In Chapter 2 we show two nontrivial families

of channels such that, for each of these families, one can find coding schemes that

achieve Burnashev’s exponent, on any channel in the class. Therefore, for these

two families, there is no penalty in terms of error exponent if the channel is not

revealed.

In Chapter 3 we show a converse, namely, in general, given some set Q , there

is a penalty due to the uncertainty about the channel. In particular, we give

a sufficient condition for a pair of channels so that no coding strategy reaches

Burnashev’s exponent simultaneously on both channels.

In Chapter 4 we focus on training based schemes, namely coding strategies that

separate channel estimation from information delivery. We give an upper bound

on the maximum error exponent that can be achieved by any such scheme. In

particular, in the case of binary symmetric channels, this bound shows a dramatic

loss compared to Burnashev’s exponent, suggesting that optimal universal feedback

schemes entangle channel estimation and information transmission rather than

separating them.

In Chapters 2, 3 and 4 the performance measure we use is the error expo-

nent, namely we look for coding schemes that (asymptotically) achieve the lowest

possible error probability given a certain communication delay. Chapter 5 has

a different perspective: we want to minimize simultaneously transmission delay

and error probability. We look at a simple feedback communication setting where

the channel is known, and seek for transmission schemes that allow small error

probability and quick information delivery.
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Preliminaries

We first introduce some basic definitions related to communication over a sta-

tionary DMC with causal instantaneous noiseless feedback link. To that aim we

illustrate the definitions of encoder, decoder and rate by considering the “repeat

until non–erasure” coding scheme, for two–message communication, over the bi-

nary erasure channel with erasure probability ε (see discussion p.5). Then we

define a notion of universally achievable error exponent, and finally we establish

the concept of an optimal feedback scheme for a given family of channels.

The Definitions 1, 2, 3, 4, 5, 6, and 7 are standard (see, e.g., (Csiszàr and

Körner 1981)). Definition 8 as well as the optimality criterion defined thereafter

are new.

We assume that communication is carried out over a DMC Q with finite input

and output alphabets X and Y , and with perfect (noiseless and instantaneous)

causal feedback. In the presence of perfect feedback, the encoder is aware of what

has been previously received by the decoder. This allows a variable time delivery

per message and also allows the encoder to adapt the codewords on the run, based

on the available feedback information. Hence the following definition of a codebook

for feedback communication is natural:

Definition 1 (Codebook (or Encoder) and Random Codebook). Given

a message set M of size M ≥ 1, a codebook (or encoder) is a sequence of functions

C
M = {Xn :M ×Y n−1 −→ X }n≥1 (1.1)

where Y n−1 denotes the (n−1)-th Cartesian product of Y . The symbol xn to be sent

at time n is obtained by evaluating Xn for the message and the feedback sequence

received so far, i.e., xn , Xn(m,yn−1). A codeword for message m is the sequence

of functions {Xn(m, · )}n≥1.

A random codebook is a set of randomly and independently generated code-

words, such that each codeword {Xn(m, · )}n≥1 is replaced by a sequence of samples

x1(m),x2(m), . . . i.i.d. according to some probability distribution P defined over X .

Since the channel has perfect feedback, the transmitter is aware of the receiver’s

decision, and the decoding may be performed at a nondeterministic time, on the

basis of the received symbols Y1,Y2, . . .
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Definition 2 (Decoder). Given a message set M of size M ≥ 1, a decoder is a

sequence of functions

ΨM = {ψM
n : Y n −→M }n≥1 , (1.2)

together with a stopping time U(M) relative to the received symbols Y1,Y2, . . .
1 The

decoded message is ψM
U(M)(y

U(M)).

Definition 3 (Coding Scheme and Sequence of Coding Schemes). Given

a message set M of size M ≥ 1, a coding scheme is a tuple S M = (C M,ΨM,U(M)).

A sequence of coding schemes {S M}M≥1 is denoted by θ. The set of all sequences

of coding schemes is denoted by A .

Suppose the transmitter and the receiver use a coding scheme (C M,ΨM,U(M))

and that the transmitter sends a large number n of randomly chosen messages.

The corresponding time–average rate equals to n logM
l1+l2+...+ln

where li denotes the

transmission duration of the i-th message. By the law of large numbers l1+l2+...+ln
n

approaches the expected transmission time EU(M) with probability one. Hence,

as n gets large, the average transmission rate approaches logM/EU(M) with prob-

ability one. Therefore the following definition is justified:

Definition 4 (Rate and Asymptotic Rate). Given a message set of size

M ≥ 1 and a coding scheme S M = (C M,ΨM,U(M)), the transmission rate is

R(S M,Q) ,
lnM

EU(M)
nats per channel use (1.3)

where EU(M) denotes the expected decision time over uniformly chosen messages,

i.e.,

EU(M) ,
1
M ∑

m∈M
E(U(M)|message m is sent) . (1.4)

The asymptotic rate for a sequence of coding schemes θ = {S M}M≥1 and a given

channel Q is

R(θ,Q) , lim
M→∞

R(S M,Q) (1.5)

whenever the limit exists.

Example 1. Consider two–message communication over a binary erasure channel

with a erasure probability ε and the “repeat until non erasure” coding scheme. Let

1An integer–valued random variable U is called a stopping time with respect to a sequence

of random variables Y1,Y2, . . . if, conditioned on Y1, . . . ,Yn, the event {U = n} is independent of

Yn+1,Yn+2, . . . for all n ≥ 1.
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the message set be M = {0,1}. Since the transmitter keeps sending the same symbol

until an non–erasure occurs, the codebook is defined as

Xn(m,yn−1) = m, . . .

for all n ≥ 1 and m ∈M . The receiver makes a decision as soon as a non–erasure

occurs, hence the decoding time is defined as

U(2) = inf{n ≥ 1 : Yn 6= E}

where E denotes the erasure symbol. The decoder makes a decision on the basis of

the last received symbol, hence the set of decoding functions are defined as ψ2
n(y

n) =

yn for all yn ∈ {0,1,E}n and n ≥ 1.

Definition 5 (Error Probability). Given a message set M of size M and a

coding scheme S M, the average (over uniformly chosen messages) error probability

is defined as

P(E|Q,S M) =
1
M ∑

m∈M
P

(

ψM
U(M)(Y

U(M)) 6= m
∣

∣

∣
message m is sent

)

. (1.6)

Given a probability distribution P over X and a decoder, the average error proba-

bility over the ensemble of codebooks (and uniformly chosen messages) is denoted

by P(E|Q,P).

In the sequel it shall be clear from the context which decoder is used when we

mention P(E|Q,P).

Definition 6 (Capacity). The capacity C(Q) of a DMC Q with input and output

alphabet X and Y is defined as

C(Q) , max
P

I(PQ) (1.7)

where the maximization is over all input probability distributions P, and where

I(PQ) denotes the mutual information induced by the input distribution P and the

conditional distribution of the channel Q, i.e.,

I(PQ) , ∑
x∈X

P(x) ∑
y∈Y

Q(y|x) ln
Q(y|x)

∑x′∈X P(x′)Q(y|x′) .

Example 2. Consider the coding scenario described in the Example 1. One can

easily show that the average decoding time per transmitted message equals to 1/(1−
ε), where ε denotes the erasure probability of the BEC under use. Therefore the

transmission rate equals to (1− ε) ln2, which corresponds to the capacity of the

BEC.
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In general, given a message set of finite size, finding a coding scheme that

minimizes the error probability for a certain coding delay is an open question.

For this reason, we shall instead consider the behavior of the error probability as

the message set size tends to infinity. Remarkably, as will be shown in the next

theorem, for DMCs and message sets tending to infinity, the exponential behavior

of the error probability of the best coding schemes is known.

Definition 7 (Error Exponent). Given a channel Q and a sequence of coding

schemes θ = {S M}M≥1 = {(C M,ΨM,U(M))}M≥1 such that P(E|Q,S M) → 0 as M →
∞, the error exponent is

E(θ,Q) , lim inf
M→∞

− 1
EU(M)

lnP(E|Q,S M) . (1.8)

We now state a fundamental result concerning feedback communication over a

DMC:

Theorem (Burnashev 1976). Let Q be a DMC with perfect feedback, input

and output alphabet X and Y , and with capacity C(Q). Let R be any constant in

[0,C(Q)]. For any θ = {S M}M≥1 ∈ A such that R(θ,Q) = R,

limsup
M→∞

− 1
EU(M)

lnP(E|Q,S M) ≤ EB(R,Q) (1.9)

where

EB(R,Q) , max
(x,x′)∈X ×X

D(Q(·|x)||Q(·|x′))
(

1− R
C(Q)

)

. (1.10)

Moreover there exists θ ∈ A such that R(θ,Q) = R and

E(θ,Q) = EB(R,Q). (1.11)

The above theorem is surprising in that not only it claims the achievability of

the error exponent EB(R,Q), but it also provides the converse, namely this bound

cannot be exceeded (see Figure 1.1 for the typical shape of EB(R,Q)). Except for

a few specific examples (e.g., the Poisson channel (Lapidoth 1993, Wyner 1988a,

Wyner 1988b) and“very noisy channels” (Gallager 1968)), no such result exists that

claims the achievability and the converse with respect to some error exponent for all

rates. Moreover, in general there is a significant difference between upper and lower

bounds on the best error exponents (e.g., DMCs without feedback, the random

coding error exponent and the sphere packing bound (Fano 1961, Gallager 1968)).

In the sequel the function EB will be referred as the Burnashev’s exponent.

In general, given a sequence of coding schemes θ, the error exponent depends on

the channel under use. Consider now the case where the channel is neither revealed

to the transmitter nor to the receiver but is known to belong to some set Q of

DMCs. How can we characterize the robustness of a coding strategy with respect to
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R

EB(R,Q)

C(Q)

Figure 1.1: For a given DMC Q with perfect feedback, the maximum achievable

error exponent is given by EB(R,Q). The slope of EB(R,Q) is always equal or

steeper than −1.

a family of channels? One possibility is to consider the error exponent. A coding

strategy may be considered robust with respect to Q if it yields a “high” error

exponent on any channel in Q . The following definition introduces a main concept

of this thesis. We quantify the set of error exponents that can simultaneously be

achieved over a given family of channels.

Definition 8 (Universally Attainable Error Exponent). Let Q be a

set of discrete memoryless channels. Let L(Q) be a nonnegative function defined

over Q . Let E(R,Q) be a function such that E(R,Q) > 0 for every Q ∈ Q and

R ∈ [0,L(Q)), and such that E(R,Q) = 0 for every Q ∈ Q and R with R ≥ L(Q).

The function E(R,Q) is a universally attainable error exponent over Q for rates in

the range [0,L(Q)] if for any Q ∈ Q and any R ∈ [0,L(Q)), there exists a sequence

of coding schemes θ ∈ A such that the following two conditions hold:

I.

R(θ,Q) ≥ R and E(θ,Q) ≥ E(R,Q) , (1.12)

II. for every W ∈ Q with L(W ) > 0,

E(θ,W) ≥ E(R(θ,W),W ) > 0 . (1.13)

Condition I of Definition 8 requires that, for a given channel Q and for any

R ∈ [0,L(Q)), there exists a sequence of coding schemes θ yielding a rate at least

equal to R and a corresponding error exponent at least equal to E(R,Q). By

condition II, this sequence θ, if used on any channel W ∈ Q (with L(W ) > 0),

has to achieve a strictly positive error exponent and therefore a rate strictly less

than capacity. Without condition II, the definition would have implied that for

each channel there is a good coding scheme, which does not capture the notion of

universality. We illustrate Definition 8 with an example.
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R(θ,Q1) R(θ,Q2)L(Q1) L(Q2)

R R

E(R,Q1) E(R,Q2)

E(R(θ,Q1),Q1)

E(R(θ,Q2),Q2)

Figure 1.2: The function E(R,Q) consisting of the two functions E(R,Q1) and

E(R,Q2), is a universally achievable error exponent over the set Q = {Q1,Q2}
for rates in the range [0,L(Q)].

Example 3. Figure 1.2 shows an example of universally achievable error exponent

over two channels Q1 and Q2. The error exponent given by E(R,Q), where Q ∈
{Q1,Q2} and R∈ [0,L(Q)], is a universally achievable error exponent over {Q1,Q2}
for rates in the range [0,L(Q)]. This implies that for any constant R ∈ [0,L(Q1))

there exists θ ∈ A such that:

I. R(θ,Q1) ≥ R and E(θ,Q1) ≥ E(R,Q1).

II. When θ is used upon the channel Q2, the corresponding rate R(θ,Q2) may be

any value in [0,L(Q2)) provided that, the error exponent E(θ,Q2) is at least

equal to E(R(θ,Q2),Q2).

The same implications as above must hold by interchanging the roles of Q1 and

Q2.

In order to define our optimality criterion, we first introduce a new quantity,

the diversity with respect of a set of channels.

Let Q be a family of channels. For any θ ∈ A , we first set

∆(θ,W ) , EB(R(θ,W),W )−E(θ,W) ,

∆+(Q,R) , inf
θ∈A

R≤R(θ,Q)<C(Q)

sup
W∈Q

∆(θ,W ) ,

and ∆−(Q,R) , inf
θ∈A

R(θ,Q)≤R

sup
W∈Q

∆(θ,W ) (1.14)

where EB(R,W) is defined in (1.10). In the case where E(θ,W ) = ∞ (which implies

that EB(R(θ,W ),W) = ∞) we set ∆(θ,W ) = 0.

For any family of discrete memoryless channels Q , we define the diversity ∆(Q )

as

∆(Q ) , sup
Q∈Q

sup
0≤R≤C(Q)

max{∆+(Q,R),∆−(Q,R)} . (1.15)



13

We say that a family Q satisfies the optimality criterion if it is non–diverse, i.e., if

∆(Q ) = 0 . (1.16)

A few comments are in order. The nonnegative term ∆(θ,W ) compares the se-

quence of coding schemes θ, in terms of error exponent, with the best possible

sequence of coding schemes designed for the channel W and rate R(θ,W). The

quantity ∆+(Q,R) expresses the following idea. Suppose a sequence of coding

schemes θ yields a certain rate R(θ,Q) and error exponent E(θ,Q) over a given

channel Q in Q . If we use θ over some other channel W ∈ Q instead, the corre-

sponding rate R(θ,W) and error exponent E(θ,W ) might differ from R(θ,Q) and

E(θ,Q) respectively. If ∆+(Q,R) is small, one can find some θ ∈ A such that

R ≤ R(θ,Q) < C(Q) and for every W ∈ Q the error exponent E(θ,W) is close to

the best possible error exponent achievable over W . In particular we may notice

that if in the definition of ∆+(Q,R) we do not restrict R(θ,Q) to be strictly less

than C(Q), then ∆+(Q,R) equals zero. In fact suppose θ is such that for every

W ∈ Q , R(θ,W ) is above the highest capacity in Q . Since above capacity the error

exponent vanishes, we deduce that ∆(θ,W ) = 0 for all W ∈ Q , hence ∆+(Q,R) = 0.

Before we comment the quantity ∆−(Q,R), we give two other definitions for the

diversity that may appear more natural than the one we propose, and show why

they are weak. This will provide a justification for introducing the term ∆−(Q,R)

in our definition of diversity.

The first alternative is to define the diversity as

∆′(Q ) = inf
θ∈A

R(θ,W )<C(W ) ∀W∈Q
∆(θ,W ) .

In this case ∆′(Q ) = 0 means that there exists some θ ∈ A that yields a rate strictly

below capacity and an error exponent equal to Burnashev’s, on any channel in Q .

However if transmitter and receiver use such a θ they have a priori no idea what rate

will be achieved. In particular for different channels this rate might be negligible

or close to capacity.

A second alternative is to define diversity “simply” as

∆′′(Q ) = sup
Q∈Q

sup
0≤R≤C(Q)

∆+(Q,R) .

On can check that this definition of diversity is stronger than the previous one in

that if ∆′′(Q ) = 0, then ∆′(Q ) = 0. Nevertheless, while

∆′′(Q ) = 0

is equivalent to claiming that Burnashev’s exponent is universally achievable over

Q for rates in the range [0,C(Q)], such a definition is also weak in terms of the

control of the rate, and we illustrate this fact with an example. Let Q = {Q1,Q2}
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with C(Q1) = C(Q2) = C. In order to have ∆′′(Q ) = 0, it suffices that A contains

two subsets Υ1 and Υ2 with the following properties. Any θ in either of these two

sets yield Burnashev’s exponent on Q1 and Q2 at a rate strictly below C. Any

rate in [0.999C,C) can be achieved over Q1 with some θ in Υ1 while any rate in

[0.999C,C) can be achieved over Q2 with some θ in Υ2. Hence, if one is interested

in low error probability rather than high communication rate, ∆′′(Q ) is not the

right quantity to look at. As may become obvious, the problem arises because the

quantity ∆+(Q,R) allows us to control the rate only from below. Hence, and for

the sake of symmetry between high and low rates, we also introduced ∆−(Q,R) in

the definition of the diversity in (1.15).

Finally we justify the terminology “diversity” for the quantity ∆(Q ) defined in

(1.15). Having ∆(Q ) large means that there exists two channels in Q , Q and W ,

and a constant R ∈ [0,C(Q)) such that at least one of the following two conditions

is fulfilled:

- any θ ∈ A such that R(θ,Q) ≥ R performs poorly in terms of error exponent

on either Q or W , or both,

- any θ ∈ A such that R(θ,W ) ≤ R performs poorly in terms of error exponent

on either Q or W , or both.

Informally, if ∆(Q ) is large, the family contains some “too different” channels (the

family is too “diverse”) in that, at some particular rate, no coding scheme can

attain Burnashev’s exponent on each of them.

From the above discussion it follows that having ∆(Q ) = 0 not only implies

that EB(R,Q) is universally achievable over Q for rates in the range [0,C(Q)], but

also that it is possible to have some control on the communication rate, i.e., for

every Q∈ Q and R∈ [0,C(Q)], it is possible to find θ1,θ2 ∈ A such that R(θ1,Q)≤R
and R(θ2,Q) ≥ R, and such that θ1 and θ2 achieve Burnashev’s exponent over any

channel in Q .

The quantities ∆±(Q,R) and ∆(Q ) correpsond to a minimax criterion (see,

e.g. (Lehmann and Casella 1998)). The difference ∆(θ,W ) designates the loss in

error exponent incurred by employing a sequence of coding schemes θ that ignores

W . To make this loss uniformly as small as possible across Q , we seek a decision

rule that minimizes the worst-case value of this difference, i.e., its maximum.

As a general concept, the minimax criterion has been often employed. For

example, the same approach has been used in (Davisson 1973) to define the notion

of minimax redundancy in universal source coding.
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Variable Length Coding Over

Unknown Channels

In order to communicate across a channel, the transmitter and receiver are often

designed based on the channel statistics. However, knowing the channel statistics

is not always necessary. The main concern of the present chapter is to show that

in the context of feedback communication over an unknown channel, there are sit-

uations in which neither the transmitter nor the decoder need to know the channel

statistics. It is possible to communicate as well, in terms of error probability and

delay, as if the channel was revealed to both the transmitter and the receiver. More

precisely we prove, for two non trivial families of channels, the existence of cod-

ing schemes that achieve the Burnashev exponent uniformly over these families.

For each of these two classes, in addition to achieving the maximum error expo-

nent, it is possible to uniformly attain any given fraction of the channel capacity.

Therefore, in terms of rate achievability and error exponent, the knowledge of the

channel becomes irrelevant: no penalty occurs because of the channel uncertainty.

This is in contrast, for example, with the case of compound channels studied by

Dobrushin (1959) and Blackwell et al. (1960), where the channel is unknown but

where no feedback is available. In this last situation, the maximum achievable rate

that can be uniformly achieved over a given class of channels Q is the compound

channel capacity given by supP infQ∈Q I(PQ), where the supremum is taken over all

input distributions and where I(PQ) stands for the mutual information between

the input and the output of the channel Q when the input distribution is P. Hence,

when no feedback is available, the maximum rate that can be achieved is at most

equal to the smallest capacity in the family!

This chapter is organized as follows. In Part 2.1.1 we exhibit a decoder that

performs without knowing the statistics of the channel under use, i.e., a universal

decoder. For the ensemble error probability of codes randomly generated according

to some distribution P, this decoder achieves an error exponent equal to I(PQ)−R,

where Q is the current channel. For the class BSCL of binary symmetric channels

(BSCs) with crossover probability ε∈ [0,L] with 0≤ L < 1/2, one can find (univer-

sal) encoders that, combined with the above universal decoder, yield a universal

coding scheme that achieves the error exponent I(PQ)−R for every channel in

BSCL.
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In Part 2.1.2 we append a second coding phase to the above universal coding

scheme. The addition of this second phase augments the error exponent: it is

now possible to attain the maximum achievable error exponent that could be ob-

tained if the channel statistics were revealed to both the encoder and the decoder

(1.10). The same results as for BSCs are proved for the class ZL of Z channels

with crossover ε ∈ [0,L] where now L ∈ [0,1). We end Section 2.1.2 with a result

concerning the case of known channel statistics. We give a sufficient condition for

which a two–phase scheme achieves Burnashev’s exponent.

In Section 2.2 we prove our results. In Part 2.2.1 we prove all the claims related

to Part 2.1.1 whereas 2.2.2 concerns the claims of Part 2.1.2.

We conclude this section with notational conventions. The Z channel is the

binary input binary output channel Q given by Q(0|0) = 1 and Q(0|1) = ε. We use

“ln” for the natural logarithm. Random variables are denoted by capital letters,

e.g., X , and their samples by small letters, e.g., x. The notation EX stands for the

expectation of X . Given an n-sequence xn = x1,x2, · · · ,xn we define its empirical

distribution P̂xn(x) as
∑n

j=111x(x j)

n . We denote by xn(m) = x1(m),x2(m), · · · ,xn(m)

the first n symbols of the m-th codeword (m ∈ M ). Given two sequences xn and

yn we write I(P̂xn,yn) for the mutual information induced by the joint empirical

distribution P̂xn,yn(x,y) =
∑n

j=111(x,y)(x j,y j)

n . The set of all joint types of length n defined

over X ×Y is denoted by Pn whereas P denotes the set of all joint distributions

over X ×Y . If A is a set, Ac denotes its complement with respect to some reference

set.

2.1 Main Results

2.1.1 Phase 1: A Universal Coding Scheme

Suppose we use a codebook {{xn(m)}n≥1}M
m=1, from the ensemble of randomly

generated codebooks according to some distribution P,1 to communicate through

a channel Q that is not revealed to either transmitter or receiver. The transmitter

starts sending x1(l),x2(l),x3(l), . . . for some l ∈ M until a decision is made by the

receiver. What is a good time to decode? Since the code has been generated

according to P, we may hope to achieve rates up to I(PQ) over the channel Q,

and aim for a rate I(PQ)/α with α > 1. But, since Q is unknown, we cannot use

I(PQ) directly in our decoding rule. However, one would expect that the empirical

distribution of the sent codeword and the received sequence would be close to

PQ, and that among all codewords the sent one would have the largest empirical

mutual information with the received sequence. Hence, a reasonable candidate for

the decoding instant is as the first time n for which maxm I(P̂xn(m),yn)/α≥ (logM)/n.

For a given codebook {{xn(m , · )}n≥1}M
m=1, consider the following universal

1See bottom of page 8 for the definition of a random codebook.



2.1 Main Results 17

threshold:
α logM

n

I(PQ)

T1

n

Figure 2.1: The above picture illustrates the first phase of one transmission cycle

with M = 3. Each trace represents a sequence of empirical mutual informations

{I(P̂xn(m),yn)}n≥1, m = 1,2,3. As soon as a trace exceeds the threshold curve α ln M
n ,

the decoder declares the corresponding message.

decoding time T1 = T1(α,M) defined as

T1(α,M) = inf

{

n ≥ 1 :∃m ∈ {1, . . . ,M}with I(P̂xn(m,Y n−1),Y n) >
α lnM

n

}

(2.1)

where α> 1 is some fixed constant. At time T1, the receiver declares the message

m for which the empirical mutual information exceeds the threshold that defines

T1(see Figure 2.1). If multiple messages have empirical mutual informations that

exceed this threshold, the receiver picks the one with the smallest index. Through

feedback this decision is also known to the transmitter. This universal decoder,

which we denote by (ΨM
u ,T1(α,M)), is an extension of the well known Maximum

Mutual Information decoder (Goppa 1975, Csiszàr and Körner 1981). The differ-

ence between (ΨM
u ,T1(α,M)) and the MMI decoder stands in that the MMI decoder

is used in combination with fixed length codebooks, whereas (ΨM
u ,T1(α,M)) chooses

the moment to decode according to the stopping time defined in (2.1). Another

variation of the MMI decoder with variable length decision time was previously

initiated by Shulman (2003, Chapter 3). In his Ph.D. thesis, Shulman considers

the MMI decoder with a decision time that differs somewhat from T1(α,M). The

related results will be discussed after Proposition 2.

Proposition 1. Let Q be a DMC with input alphabet X and let P be a probability

distribution over X . Let α be any constant with α> 1 and let E
1 denote the error

event at time T1. The universal decoder (ΨM
u ,T1(α,M)) satisfies

lim inf
M→∞

− 1
ET1(α,M)

lnP(E1|Q,P) ≥ I(PQ)−R (2.2)

where R = limM→∞
lnM

ET1(α,M) =
I(PQ)

α . The quantity P(E1|Q,P) refers to the ensemble

average error probability and ET1(α,M) denotes the ensemble average decoding

time.
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One of the parameters in Proposition 1 is the input distribution P, and this

might be considered as a weakness of the proposition. A question that naturally

arises is the choice of this distribution when different channels in the class have

different capacity achieving distributions. We don’t have an answer to this ques-

tion, but for any set Q of binary input channels, setting P to be the Bernoulli 1/2
distribution yields I(PQ)≥ 0.94C(Q) for any element Q in Q , where C(Q) denotes

the capacity of the channel Q (see (Majani and Rumsey 1991) and (Shulman 2003,

Chapter 5)). Also notice that, in Proposition 1, the codebooks in the random

ensemble admit infinite sequences of digits as codewords. Hence, except for the

decision time, these codewords ignore feedback: The transmitter needs to be in-

formed only when the receiver has made a decision and therefore the feedback link

needs to convey only one bit of information. Finally suppose that the transmitter

and the receiver may observe a same random source that generates symbols from X

according to some P.2 This allows them to construct the same random codebook,

on the run, until the receiver makes a decision. At each instant n the transmitter

and the receiver generate M random symbols distributed according to P, that cor-

respond to the n-th digit of each codeword. Such a randomly constructed codebook

together with the decoder defined by T1 yields an error exponent at least equal to

I(PQ)−R and an asymptotic rate equal to I(PQ)/α.

The next proposition shows that for some classes of channels the error expo-

nent I(PQ)−R is universally achievable with one single sequence of (non–random)

codebooks. In other words, in certain cases the error exponent I(PQ)−R is uni-

versally achievable without the transmitter and the receiver sharing a source of

common randomness.

For any constant L ≥ 0 we denote by BSCL and ZL the set of binary symmetric

channels and Z channels respectively with crossover probability ε ∈ [0,L].

Let P be a probability distribution over X and Q a conditional probability

distribution over X ×Y such that I(PQ) > 0. For any fixed constant α > 1 and

any integer M ≥ 1 define

n∗(α,P,Q,M) , min

{

n ≥ 1 : min
V∈P :I(V )≤α lnM

n

D(V ||PQ) ≥ (α−1)
lnM

n

}

. (2.3)

Proposition 2. Let L be any constant with 0≤ L < 1/2 and let

n∗(α,P,M) , max
Q∈BSCL

n∗(α,P,Q,M) . (2.4)

For any constant α> 1 and any probability distribution P over {0,1}, there exists

a sequence of codebooks {C M}M≥1 such that for every Q ∈ BSCL

θ = {S M = (C M,ΨM
u ,T1(α,M)∧n∗(α,P,M))}M≥1 , (2.5)

2This may be possible for instance if both have the same seed of some random generator.
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satisfies

E(θ,Q) ≥ I(PQ)−R(θ,Q) and

R(θ,Q) = lim
M→∞

lnM
E(T1(α,M)∧n∗(α,P,M))

=
I(PQ)

α
. (2.6)

The same result holds for the family ZL with 0≤ L < 1.

Remark: The decoder (ΨM
u ,T1(α,M)∧n∗(α,P,M)) differs from (ΨM

u ,T1(α,M)) only

in that the decoding time of (ΨM
u ,T1(α,M)∧n∗(α,P,M)) is bounded by n∗(α,P,M).

In particular if no sequence of empirical mutual informations exceeds the threshold

that defines T1(α,M) up to time n∗(α,P,M), the decoder (ΨM
u ,T1(α,M)∧n∗(α,P,M))

declares an error.

In (Shulman 2003) a result similar to Proposition 2 was given:

Theorem (3.1, Shulman (2003)). Let Q be any set of DMCs defined over

the same input alphabet X . For any probability distribution P over X , there is a

sequence of coding schemes θ = {S M = (C M,ΨM,U(M))}M≥1 such that

I. for any µ> 0 and M large enough, P(E|Q,S M) ≤ µ for all Q ∈ Q ,

II. the limiting rate R(θ,Q) equals to I(PQ) for all Q ∈ Q .

The above theorem has a more general setting than Proposition 2, since Q can

be any set of DMCs defined over the same input alphabet. The theorem says that

even though the channel is almost completely unknown to both the transmitter and

the receiver (only the input alphabet needs to be revealed), it is possible to reliably

communicate, in the sense that the error probability can be uniformly bounded. In

Proposition 2, we restricted ourselves to smaller families of channels while having

a refined expression for the error probability. Also it may be emphasized that in

Shulman’s case the rate is governed by the input distribution P whereas in our

case the limiting rate is set by both P and the parameter α in the definition of

T1(α,M).

In the next section we provide a mean for boosting the error exponent obtained

in Proposition 2.

2.1.2 Phases 1+2: Boosting Error Exponents

We describe a two–phase coding scheme where the first phase is carried out by the

universal coding scheme mentioned in Proposition 2 with decision time T1(α,M)∧
n∗(α,P,M) (see (2.5)). As we shall see, the addition of a properly chosen second

phase will boost the error exponent from I(PQ)−R to Burnashev’s exponent.

From now on and without loss of generality (w.l.o.g.) we assume that message

1 is sent.

At time T1(α,M)∧n∗(α,P,M)), the receiver labels “most probable” the message

m for which the empirical mutual information exceeds the threshold that defines
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x(1)

m 6= 11

x(A) x(N)

A N N A

x(1)x(1)

Correct transmission Incorrect transmission

Figure 2.2: The graph illustrates a two–phase transmission procedure. The

vertices indicate what the transmitter sends. The edges indicate the receiver’s

decision. In particular codeword x(1) is correctly transmitted only if: message

1 is declared as the “most probable” codeword and x(A) is correctly decoded.

T1(α,M)∧ n∗(α,P,M)). If multiple messages have empirical mutual informations

that exceed this threshold at time T1, the receiver picks the one with the smallest

index. Through feedback this decision is also known to the transmitter.

The second phase consists in performing a hypothesis test between message

m, which has been labeled “most probable” at the end of the first transmission

phase, and M \{m}. Namely, let x(A) and x(N) (“A” stands for “Ack” and “N”

for “Nack”) be codewords for two additional messages A and N respectively. If

m = 1, the transmitter acknowledges the choice of the receiver by sending x(A).

If m 6= 1, the transmitter denies the receiver’s decision by sending x(N). If the

receiver decodes the sent codeword as “Ack”, the transmission of the message is

complete (either correctly or incorrectly), and the transmitter starts reemitting a

new message. Otherwise, if the decoder decides on “Nack” we begin afresh and

message 1 is retransmitted (see Figure 2.2).3

The results of this section are obtained by studying two–phase coding strategies.

Theorem 1 and 2 below are to be compared with Proposition 2. They imply that

for the classes BSCL and ZL, Burnashev’s exponent is universally achievable.

In the following theorem we use D(ε||1− ε) to denote the relative entropy

between the distributions Bernoulli(ε) and Bernoulli(1−ε), i.e,

D(ε||1−ε) , ε log(ε/(1−ε))+(1−ε) log((1−ε)/ε) .

Theorem 1. Let L and ν be two constants with 0≤ L < 1/2 and 0≤ ν < 1. There

exists θ1,θ2 ∈ A such that for every Q ∈ BSCL with crossover probability ε and

3The idea of a two–phase transmission procedure characterized by first choosing a “most

probable” message and then accepting or rejecting this choice was previously studied, e.g., in

(Schalkwijk and Barron 1971, Burnashev 1976). Our scheme differs from the previous works

mainly because it is independent of the channel under use.
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capacity C(ε),

E(θ1,Q) ≥ D(ε||1−ε)
(

1− R(θ1,Q)

C(ε)

)

and νC(ε) ≤ R(θ1,ε) < C(ε) (2.7)

and,

E(θ2,Q) ≥ D(ε||1−ε)
(

1− R(θ2,Q)

C(ε)

)

and 0≤ R(θ2,ε) ≤ νC(ε) . (2.8)

Corollary 1 follows from (1.15) and Theorem 1.

Corollary 1. If L ∈ [0,1/2), then ∆(BSCL) = 0.

In (Ooi 1997, p. 77) a result similar to Theorem 1 is claimed. However, to the

best of our knowledge, there appears to be a minor glitch in the proof given there:

for the proof to work, the quantity D(1−ε||ε) needs to be an achievable error ex-

ponent for binary hypothesis testing between the all-zero and the all-one sequence

when majority rule decoding is used. Evidently, only the exponent D(1/2||ε) is

achievable in this case; it seems possible to fix this glitch but it appears that this

requires a significant modification of the proposed 2–message coding scheme, in

particular the use of a random decoding time appears to be necessary.

Theorem 2. Let L and ν be two constants with 0≤ L < 1 and 0≤ ν < 1. There

exists θ ∈ A such that for every Q ∈ ZL with crossover probability ε and capacity

C(ε)

E(θ,Q) = ∞ and R(θ,ε) = νC(ε) . (2.9)

Corollary 2 follows from (1.15) and Theorem 2.

Corollary 2. If L ∈ [0,1), then ∆(ZL) = 0.

For BSCL and ZL the optimality criterion is satisfied and in addition, the cor-

responding “optimal coding schemes” have the property, for large M, that they

simultaneously achieve any given fraction of the capacity.

We conclude with the following proposition that implies the achievability part

of Burnashev’s result (see the theorem after Definition 7).

Proposition 3. Let Q be a DMC known by both the encoder and the decoder such

that C(Q) > 0 and let δ be any constant in (0,C(Q)]. Let Υ ⊂ A be such that for

any R ∈ [C(Q)−δ,C(Q)) there exists θ′ = {S ′M}M≥1 ∈ Υ with R(θ′,Q) = R and such

that P(E|Q,S ′M)
M→∞−→ 0. For any 0 ≤ ν < 1 there exists a sequence of two–phase

coding schemes θ = {S M}M≥1 that satisfies

I. for every M ≥ 1, the first phase of S M is an element of a sequence θ′ in Υ

II. E(θ,Q) = EB(R,Q) and R(θ,Q) = νC(Q).
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Proposition 3 makes no assumption on the decay of the error probability of

the sequences in Υ . Hence Burnashev’s exponent can be achieved with two–phase

coding strategies even if the first phase has a corresponding error probability that

vanishes arbitrarily slowly: it only needs to achieve capacity. Notice however

that Proposition 3 hides a difficulty: finding capacity achieving coding schemes

for the first phase. Therefore the proposition gives only a conceptually simple

way to reach Burnashev’s exponent. Indeed, the two–phase scheme proposed in

(Burnashev 1976) to prove the achievability of Burnashev’s error exponent, may

appear very complex (at each time a complex randomized decision at both the

transmitter and the receiver is required), but has the advantage that it can be

implemented.

The main contribution of this chapter concerns the two classes of channels

BSCL and ZL for which we proved the existence of variable length channel coding

schemes that satisfy the optimality criterion (1.15). As mentioned in the paragraph

following Corollary 2, these coding schemes, in addition to satisfying the optimality

criterion, attain simultaneously any given fraction of the capacity of the channel

under use (without knowing the channel). From a higher level perspective, it is

possible for coding schemes to adapt according to the underlying channel without

any penalty in terms of delay and error probability. Notice that for the ZL family,

these codes in particular adapt their relative proportion of symbols according to

the capacity achieving distribution of the current channel.

We may ask if for general families of channels there also exist such optimal

codes. An answer will be provided in Chapter 3.

Finally we would like to draw the reader’s attention to the fact that Proposi-

tions 1 and 2, Theorems 1 and 2 and Corollaries 1 and 2 still hold if the feedback

loop has any constant delay, provided it remains noiseless. This can be easily

checked from the analysis we provide in the next section.

2.2 Analysis

2.2.1 Phase 1

In this section we shall prove Propositions 1 and 2 (see Section 2.1.1) in a sequence

of lemmas.

Lemma 1 gives the probability that the empirical mutual information of an

incorrect codeword exceeds the threshold that defines T1 (see (2.1), p. 17) at some

time n, when the codebook is randomly generated according to a distribution P.

Lemma 1. Let {(Xi,Yi)}i≥1 be an i.i.d. sequence of pairs of random variables where

the Xi’s take value in X , the Yi’s in Y , and such that P(Xi = x,Yi = y) = P(x)PY (y)
for all i ≥ 1. For any constant α> 1,

P

(

I(P̂Xn,Y n) >
α lnM

n

)

≤ M−α(n+1)|X ||Y | . (2.10)
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Proof. The event {I(P̂Xn,Y n) > α lnM
n } is the union of all joint empirical distributions

V yielding a mutual information larger than α lnM
n . From the method of types

(see (Csiszàr and Körner 1981)), the probability that P̂Xn,Y n equals a particular

empirical joint distribution V is upper bounded by e−nD(V ||PPY ). Now let P denote

the set of all probability distributions over X ×Y . A direct computation yields for

any V ∈ P

D(V ||PPY ) = I(V)+D(VX ||P)+D(VY ||PY ) (2.11)

where VX(x) = ∑yV (x,y) and VY (y) = ∑xV (x,y). It follows that D(V ||PPY ) ≥ I(V ),

and therefore

P

(

I(P̂Xn,Y n) >
α lnM

n

)

≤ ∑
V∈Pn:I(V )≥α lnM

n

e−nD(V ||PPY )

≤ ∑
V∈Pn:I(V )≥α lnM

n

e−nI(V )

≤ M−α(n+1)|X ||Y | (2.12)

where Pn, the set of empirical distributions of order n defined over X ×Y , satisfies

|Pn| ≤ (n+1)|X ||Y | (see, e.g., (Csiszàr and Körner 1981, Lemma 2.2)), which justifies

the last inequality.

We now present a technical lemma that will often be used in the sequel. It

shows that the quantity n∗(α,P,Q,M) introduced in (2.3) grows logarithmically in

M provided that I(PQ) > 0.

Lemma 2. Let α be any constant with α > 1. Let P be a probability distribution

over X and let Q be a conditional probability distribution over X × Y such that

I(PQ) > 0. The quantity n∗(α,P,Q,M) defined as

n∗(α,P,Q,M) , min

{

n ≥ 1 : min
V∈P :I(V )≤α ln M

n

D(V ||PQ) ≥ (α−1)
lnM

n

}

(2.13)

is well defined and finite for all M ≥ 1. Moreover we have4

n∗(α,P,Q,M) = Θ(lnM) . (2.14)

Proof. Fix some integer M ≥ 1. The function D( · ||PQ) defined over the compact

convex finite-dimensional set P is convex, and therefore (see Luenberger (1969))

continuous. Since {V ∈ P : I(V ) ≤ α lnM
n } is compact,

inf
V∈P :I(V )≤α lnM

n

D(V ||PQ) = min
V∈P :I(V )≤α lnM

n

D(V ||PQ) . (2.15)

4We write f (M) = Θ(g(M)) if there exists three constants c1 > 0, c2 > 0, and M0 ≥ 0 such that

c1g(M) ≤ f (M) ≤ c2g(M)

for M ≥ M0.
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minV :I(V )≤r D(V ||PQ)

α−1
α

r

r
r∗ I(PQ)

Figure 2.3: 0 < r∗ = r(α,M,n∗) < I(PQ)

The function minV∈P :I(V )≤α lnM
n

D(V ||PQ) is non decreasing with n. Since I(PQ) > 0,

and because (α−1) lnM
n strictly decreases with n, we conclude that n∗ < ∞ for all

M ≥ 1.

Let us rewrite (2.3) as

n∗(α,P,Q,M) = min

{

n ≥ 1 : min
V∈P :I(V )≤r(α,M,n)

D(V ||PQ) ≥ α−1
α

r(α,M,n)

}

(2.16)

with r(α,M,n) , α lnM
n .

Since D(V ||PQ) = 0 if and only if V ≡ PQ,

min
V∈P :I(V )≤r

D(V ||PQ) > 0 (2.17)

for all r ∈ [0, I(PQ)) (see Figure 2.3). Therefore, since n∗ < ∞, by defining

r∗ = r∗(α,P,Q,M) = r(α,M,n∗)

we have r∗ ∈ (0, I(PQ)) for all M ≥ 1. Let us define r̃ = r̃(α,P,Q) as the unique

solution of the equation

min
V∈P :I(V )≤r

D(V ||PQ) =
α−1
α

r . (2.18)

The same arguments as for r∗ applies and therefore we have that r̃ ∈ (0, I(PQ)).

Let us write r∗(M) for r∗(α,P,Q,M) since α, P and Q are kept fixed. Using the

definitions of r̃ and r∗(M) one can easily show that for any M ≥ 1

0≤ r̃− r∗(M) ≤ α lnM
n∗−1

− α lnM
n∗

=

(

α lnM
n∗

)2 1
α lnM(1−1/n∗)

= (r∗)2 1
α lnM− r∗

≤ I(PQ)2

lnM− I(PQ)
(2.19)
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where the last inequality follows from the fact that r∗ < I(PQ) and α> 1. There-

fore, from (2.19) have5

n∗ ,
α lnM

r∗

=
α lnM

r̃ +o(1)

= Θ(lnM) . (2.20)

We now want an estimate of T1. To that aim we consider the first time the

sequence of empirical mutual informations that corresponds to the correct code-

word crosses the threshold defined by the curve α lnM/n. Lemma 3 will show that

this time has low probability to occur after n∗, when the codebook is randomly

generated according to a certain distribution P.

Lemma 3. Let P be a probability distribution over X and let Q be a conditional

probability distribution over X ×Y such that I(PQ)> 0. Let {(Xi,Yi)}i≥1 be an i.i.d.

sequence of couples such that P(Xi = x,Yi = y) = P(x)Q(y|x). Fix some constant

α> 1 and let n∗ = n∗(α,P,Q,M) be defined as in (2.3). We have

P

(

I(P̂Xn∗ ,Y n∗ ) ≤ α lnM
n∗

)

≤ M−(α−1)(n∗ +1)|X ||Y | . (2.21)

Proof. From the method of types we have

P

(

I(P̂Xn∗ ,Y n∗ ) ≤ α lnM
n∗

)

≤ ∑
V∈Pn∗ :I(V )≤α ln M

n∗

e−n∗D(V ||PQ)

≤ (n∗ +1)|X ||Y |e
−n∗ min

V∈P :I(V )≤α lnM
n∗

D(V ||PQ)

= M−(α−1)(n∗ +1)|X ||Y | (2.22)

where the last equality follows from the definition of n∗ in (2.3).

Lemma 4 states results about T1 in terms of its mean and its concentration

around the mean as the message set size increases. Unless stated otherwise, from

now on we assume without loss of generality that message 1 is sent.

Lemma 4. Let P be a probability distribution over X and let α be a constant with

α > 1. For any conditional distribution Q such that I(PQ) > 0, the ensemble of

codes generated according to P satisfies

I.

P

(

T1(α,M) >
α lnM
I(PQ)

d1(M,P,Q)

)

≤ e
−

√
lnM

2I(PQ) (1+o(1))
(2.23)

where d1(M,P,Q) = 1+o(1),

5We write f (M) = o(g(M)) if limM→∞ | f (M)/g(M)| = 0.
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II.

P

(

T1(α,M)≤ α lnM
I(PQ)

d2(M,P,Q)

)

≤ e−
√

lnM
ln |X | (1+o(1))

(2.24)

where d2(M,P,Q) = 1+o(1),

III.

ET1(α,M) =
α lnM
I(PQ)

(1+o(1)) . (2.25)

Proof. We prove the claims in the order I, III and II.

I. Let s = 1+ α lnM
I(PQ)d′

1(M,P,Q) where we define

d′
1(M,P,Q) =

I(PQ)

minV∈P : D(V ||PQ)≤ 1√
lnM

I(V )
. (2.26)

We first show that d′
1(M,P,Q) is well defined for M large enough. Since I(V)

is a continuous function over the closed set
{

V ∈ P : D(V ||PQ)≤ 1√
lnM

}

,

the minimum in the denominator of the right hand side of (2.26) is well

defined. Now suppose that V (x,y) = VX(x)VY (y) for all (x,y) ∈ X × Y . A

direct computation (as for (2.11)) yields

D(PQ||V) = I(PQ)+D(P||VX)+D(QY ||VY )

≥ I(PQ) , (2.27)

where QY (y) , ∑x∈X P(x)Q(y|x). Then, since the set P π of product measures

in P is closed and D(PQ|| ·) is continuous over P π, from (2.27) we have

inf
V∈P π

D(PQ||V) = min
V∈P π

D(PQ||V) ≥ I(PQ) . (2.28)

In other words, any product measure is at least at a distance I(PQ) from PQ.

This implies that for large enough M, the set {V ∈ P : D(V ||PQ)≤ 1/
√

lnM}
contains no product measures. Hence for large enough M

min
V∈P :D(V ||PQ)≤ 1√

lnM

I(V) > 0 , (2.29)

i.e., d′
1(M,P,Q) < ∞. This implies that for large enough M the sequence

d′
1(M,P,Q) is decreasing, and since it is lower bounded by 1, it converges and

therefore d′
1(M,P,Q) = 1+o(1).

From the definition of T1 (see (2.1)) and since message 1 is sent, we get

P(T1 > s) ≤ ∑
n≥bsc

P(T1 = n+1)

≤ ∑
n≥bsc

P

(

I(P̂Xn(1),Y n) ≤ α lnM
n

)

≤ ∑
n≥bsc

(n+1)|X ||Y |e
−nmin

V∈P :I(V)≤α lnM
s−1

D(V ||PQ)
. (2.30)
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Let us focus on the expression minV∈P :I(V )≤α lnM
s−1

D(V ||PQ). If we expand d′
1

in the definition of s, we have

α lnM
s−1

= min
V∈P :D(V ||PQ)≤ 1√

lnM

I(V ) , (2.31)

which implies that

min
V∈P :I(V)≤α ln M

s−1

D(V ||PQ) ≥ 1√
lnM

. (2.32)

Hence from (2.30) and (2.32) we have

P(T1 > s) ≤ ∑
n≥s−1

(n+1)|X ||Y |e
−n 1√

lnM . (2.33)

Since s = 1+ α lnM
I(PQ)d′

1(M,P,Q) and since d′
1(M,P,Q) = 1+o(1), by setting

d1(M,P,Q) , d′
1(M,P,Q)+

I(PQ)

α lnM
,

from (2.33) we get

P

(

T1 >
α lnM
I(PQ)

d1(M,P,Q)

)

≤ ∑
n≥s−1

(n+1)|X ||Y |e
−n 1√

lnM

= e
−

√
lnM

2I(PQ) (1+o(1))
(2.34)

where d1(M,P,Q) = 1+o(1). Claim I follows.

III. From (2.30)-(2.33) we deduce that

(n+1)P(T1 = n+1) ≤ (n+1)|X ||Y |+1e
−n 1√

lnM (2.35)

for all n ≥ bsc. Hence, from the equality in (2.34) and the definition of s we

have

ET1(α,M) ≤ α lnM
I(PQ)

(1+o(1)) . (2.36)

From (2.36) and in order to prove claim III, we now show that

ET1(α,M) ≥ α lnM
I(PQ)

(1+o(1)) . (2.37)

First notice that from the definition of T1(α,M), we have T1(α,M)≥
⌈

α lnM
ln |X |

⌉

.

Let us define

v ,
α lnM
ln |X | and q ,

α lnM
I(PQ)

d′
2(M,P,Q)−1 ,
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where d′
2(M,P,Q) is the well defined quantity

d′
2(M,P,Q) ,

I(PQ)

maxV∈P :D(V ||PQ)≤ 1√
lnM

I(V)
. (2.38)

We have

ET1(α,M) ≥
dqe
∑
n=1

P(T1 ≥ n)

≥ q−qP(dve ≤ T1 ≤ dqe) . (2.39)

From (2.39) and since q = α lnM
I(PQ) (1+o(1)), it follows that in order to derive

(2.37) it suffices to prove that qP(dve ≤ T1(α,M) ≤ dqe) = o(1). From the

definition of T1 it follows that

P(dve ≤ T1 ≤ dqe)

= P

(

∃m ∈ {1, . . . ,M} and j ∈ {dve , . . . ,dqe}with I(P̂X j(m),Y j) >
α lnM

j

)

.

(2.40)

Assuming w.l.o.g. that message 1 is sent, from the union bound and Lemma

1 we get

P(dve ≤ T1 ≤ dqe) ≤(M−1)P

(

∃ j ∈ {dve , . . . ,dqe}with I(P̂X j(2),Y j) >
α lnM

j

)

+P

(

∃ j ∈ {dve , . . . ,dqe}with I(P̂X j(1),Y j) >
α lnM

j

)

≤ M1−α(dqe+1)|X ||Y |+1

+P

(

∃ j ∈ {dve , . . . ,dqe}with I(P̂X j(1),Y j) >
α lnM

j

)

.

(2.41)

An easy computation yields

P

(

∃ j ∈ {dve , . . . ,dqe}with I(P̂X j(1),Y j) >
α lnM

j

)

≤

≤ (dqe+1)|X ||Y |+1e
−vmin

V∈P :I(V)≥α lnM
q+1 D(V ||PQ)

. (2.42)

By expanding d′
2(M,P,Q) in the definition of q we have

α lnM
q+1

= max
V∈P :D(V ||PQ)≤ 1√

lnM

I(V) (2.43)

which implies that (same trick as in (2.31) - (2.32))

min
V∈P :I(V)≥α ln M

q+1

D(V ||PQ) ≥ 1√
lnM

. (2.44)
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From (2.41), (2.42), (2.44) and the definition of v and q we have

P(dve ≤ T1 ≤ dqe) ≤ e
−

√
lnM

ln |X | (1+o(1))
, (2.45)

and we deduce that

qP(dve ≤ T1 ≤ dqe) = o(1) . (2.46)

Inequality (2.37) follows, thus also claim III.

II. Since P(T1 ≥ dve) = 1, from (2.45) we have

P(T1 ≤ q) ≤ e
−

√
lnM

ln |X | (1+o(1))
. (2.47)

Expanding q it follows that

P

(

T1 ≤
α lnM
I(PQ)

d2(M,P,Q)

)

≤ e
−

√
lnM

ln |X | (1+o(1))
(2.48)

where we set d2(M,P,Q) , d′
2(M,P,Q)− I(PQ)

α lnM .

Remark: We may notice that the function
√

lnM in the definition of d′
1(M,P,Q)

and d′
2(M,P,Q) in the proof of Lemma 4 can be replaced by any strictly positive

function g(M) such that g(M) = o(lnM).

Lemma 5 is a key lemma and Proposition 1 is essentially an immediate conse-

quence of it. We consider communication over a channel Q with input alphabet

X and output alphabet Y . We use a random codebook of independent codewords

{{Xn(m)}n≥1}M
m=1, where {Xi(m)}i≥1 is a sequence of i.i.d. random variables tak-

ing value in some alphabet X , and drawn according to some distribution P, for

all m ∈ {1, . . . ,M}. Decoding is performed according to (ΨM
u ,T1(α,M)) defined in

Section 2.1.1 (p.16).

Let n be any integer such that n ≥ 1. Let us denote by E
1
n the event that

the correct decision has not been made during the period [1,n]. In particular E
1
n

includes the decoding error event of (ΨM
u ,T1(α,M)).

Lemma 5. let P be any probability distribution over X . Let Q be a discrete mem-

oryless channel such that I(PQ) > 0. Let α be any constant with α > 1 and let

n∗ = n∗(α,M,P,Q) be defined as in (2.3). We have

I.

P(E1
n∗|Q,P) ≤ O

(

M1−αn|X ||Y |+1
∗

)

as M → ∞ , (2.49)
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II.

lim inf
M→∞

− 1
ET1(α,M)

lnP(E1
n∗|Q,P) ≥ I(PQ)−R (2.50)

where R = limM→∞
lnM

ET1(α,M)
= I(PQ)

α
.

Proof. I. We have

P(E1
n∗|Q,P) ≤ P

(

I(P̂Xn∗(1),Y n∗ ) ≤
α lnM

n∗

)

+P

(

∃l ∈ {2, . . . ,M}and j ∈ {1, . . . ,n∗}with I(P̂X j(l),Y j) ≥ α lnM
j

)

.

(2.51)

Since message 1 is sent, we have P(X j(1) = x,Yj = y) = P(x)Q(y|x), and

Lemma 3 yields

P

(

I(P̂Xn∗(1),Y n∗ ) ≤
α lnM

n∗

)

≤ M1−α(n∗ +1)|X ||Y | . (2.52)

Then for every l ∈ {2, . . . ,M} and j ≥ 1, we have P(X j(l) = x,Yj = y) =

P(x)PY (y) with PY (y) = ∑x Q(y|x)P(x), hence Lemma 1 together with the

union bound gives

P

(

∃l ∈ {2, . . . ,M}and j ∈ {1, . . . ,n∗}with I(P̂X j(l),Y j) ≥ α lnM
j

)

≤ M1−α(n∗ +1)|X ||Y |+1 . (2.53)

Hence, from (2.51)-(2.53) we have

P(E1
n∗|Q,P) ≤ O

(

M1−αn|X ||Y |+1
∗

)

(2.54)

and claim I follows.

II. Defining R(M) = lnM
ET1(α,M) , we readily obtain

M1−αn|X ||Y |+1
∗ = e−(α−1+o(1)) lnM

= e
−
(

I(PQ)− I(PQ)
α +o(1)

)

ET1(1+o(1))

= e−(I(PQ)−R(M)+o(1))ET1(1+o(1))

= e−(I(PQ)−R(M))ET1(1+o(1)) . (2.55)

The first equality follows from the fact that n∗ is of order lnM by Lemma 2.

The second and third equalities are justified by Lemma 4 claim III. Finally

combining (2.54) and (2.55) we get

P(E1
n∗|Q,P) ≤ e−(I(PQ)−R(M))ET1(α,M)(1+o(1)) . (2.56)
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Therefore,

lim inf
M→∞

− 1
ET1(α,M)

lnP(E1
n∗|Q,P) ≥ I(PQ)−R (2.57)

where R = limM→∞
lnM

ET1(α,M) = I(PQ)/α by Lemma 4 claim III.

Proof of Proposition 1. Since P(E1|Q,P)≤ P(E1
n∗|Q,P), Proposition 1 follows from

Lemma 5.

From Proposition 1 we deduce that for any channel Q it is possible to find

a codebook that combined with the universal decoder described in Section 2.1.1

(p.16), yields a low error probability. However, in general, this does not imply the

existence of a codebook that guarantees low error probability for every channel

in a given family. The main point in the proof of Proposition 2 is to show that

there exists a codebook that admits low error probability on all channels in BSCL

(L ∈ [0,1/2)), and similarly for ZL (L ∈ [0,1)). An essential ingredient is a coupling

among the channels in the families BSCL and ZL. This coupling is made possible

because of the ordering among channels in the families.

Proof of Proposition 2. We first consider the family BSCL where L ∈ [0,1/2). Pick

an input distribution P over {0,1}, a constant α> 1 and let

n∗(α,M,P) , max
Q∈BSCL

n∗(α,M,P,Q) . (2.58)

For the moment we assume that n∗(α,P,M) is well defined and such that n∗(α,P,M) =

lnM(1+o(1)). We will prove this claim at the end of the proof.

Without loss of generality we introduce a coupling between the channels in

BSCL. This coupling will be used to show the existence of a universal codebook

with desired error probability and expected decision time.

Let {Zi}i≥1 be an i.i.d. sequence of random variables such that Z1 is uniformly

distributed within the interval [0,L], and set

Y ε
i = xi ⊕11Zi≤Lε . (2.59)

where 11Zi≤Lε = 1 if Zi ≤ Lε and 11Zi≤Lε = 0 if Zi > Lε. We interpret Y ε
i as the

i-th output symbol of the BSC with crossover ε when the input symbol is xi. In

particular one can verify that the crossover probability of the channel described in

(2.59) is indeed ε. At time n, we partition BSCL as follows. Let {Z i}n
i=1 be the

order statistics of {Zi}n
i=1, i.e., {Z i}n

i=1 represents the same set of random variables

as {Zi}n
i=1 but labeled in increasing order. Then set

BSCL =
[

i∈N
0≤i≤n

bl (2.60)

where b0 = {BSC(ε) : ε∈ [0,Z1)}, bl = {BSC(ε) : ε∈ [Z l,Z l+1)} for l ∈{1, . . . ,n−1}
and bn = {BSC(ε) : ε ∈ [Zn,L]}. The coupling introduced above is such that:
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- whenever the channel BSC(ε) makes a crossover, all the channels BSC(δ)

with δ ∈ [ε,L] also make a crossover,

- at time n, the family BSCL has produced at most n + 1 distinct output

sequences {Y ε
i }n

i=1, i.e., the set BSCL behaves as if there was only at most

n+1 distinct channels.

We shall use the decoding rule described in Section 2.1.1 with decision time

T1(α,M)∧n∗(α,P,M) instead of T1(α,M). Using a random coding argument that

makes use of the coupling introduced above, we will prove that for any M large

enough, greater than, say, Mo(α,P), there exists a coding scheme that simulta-

neously over all channels in BSCL has the desired error probability and desired

expected decision time.

- One can check that claim I of Lemma 5 still holds when n∗(α,M,P,Q) is

replaced by n∗(α,M,P). Therefore for any Q ∈ BSCL, the average over the

ensemble of codes satisfies

P(E1
n∗(α,M,P)|Q,P) ≤ O(M1−αn∗(α,M,P)|X ||Y |+1) . (2.61)

For sake of conciseness let n∗ = n∗(α,M,P) and for convenience write

EC M(P(E1
n∗|Q,C M))

instead of P(E1
n∗|Q,P) where EC M denotes the expectation over the ensemble

of codes C M randomly generated according to P. Using Markov’s inequality

yields

P(P(E1
n∗|Q,C M) > M1−αn3(|X ||Y |+1)

∗ ) ≤
EC M(P(E1

n∗|Q,C M))

M1−αn3(|X ||Y |+1)
∗

≤ O
(

n−2(|X ||Y |+1)
∗

)

(2.62)

where the last inequality follows from (2.61). Using the union bound we have

P

(

[

Q∈BSCL

{

P(E1
n∗|Q,C M) > M1−αn3(|X ||Y |+1)

∗
}

)

≤ O
(

n−(|X ||Y |+1)
∗

)

.

(2.63)

- Let
{

T1∧n∗ > α lnM
I(PQ)d1(α,M,P,Q)

}

denote the event that a randomly cho-

sen codebook has decision time that exceeds α lnM
I(PQ)

d1(α,M,P,Q), when the

channel Q is used. On the other hand, because of the coupling between the

channels in BSCL, the probability that for some channel Q ∈ BSCL a ran-

domly chosen codebook has a decision time that exceeds α lnM
I(PQ)d1(α,M,P,Q),
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can be upperbounded as

P

(

[

Q∈BSCL

{

T1∧n∗ >
α lnM
I(PQ)

d1(α,M,P,Q)

}

)

≤

≤ (n∗ +1) max
Q∈BSCL

P

(

T1∧n∗ >
α lnM
I(PQ)

d1(α,M,P,Q)

)

. (2.64)

From Lemma 4 claim I, for every Q ∈ BSCL

P

(

T1 >
α lnM
I(PQ)

d1(α,M,P,Q)

)

≤ e
−

√
lnM

2I(PQ) (1+o(1))
(2.65)

where d1(M,P,Q) = 1+o(1). It follows that

max
Q∈BSCL

P

(

T1∧n∗ >
α lnM
I(PQ)

d1(α,M,P,Q)

)

≤ e
−

√
lnM

2I(PQm) (1+o(1))
(2.66)

where Qm denotes the channel in BSCL that minimizes I(PQ), i.e., the BSC

with crossover probability equal to L. From (2.64) and (2.66) we have

P

(

[

Q∈BSCL

{

T1∧n∗ >
α lnM
I(PQ)

d1(α,M,P,Q)

}

)

≤ (n∗ +1)e
−

√
lnM

2I(PQm) (1+o(1))
.

(2.67)

A similar argument as above together with Lemma 4 claim II yields

P

(

[

Q∈BSCL

{

T1∧n∗ ≤
α lnM
I(PQ)

d2(α,M,P,Q)

}

)

≤ (n∗+1)e
−

√
lnM

ln |X | (1+o(1))

(2.68)

where d2(M,P,Q) = 1+o(1).

Since n∗ = n∗(α,P,M) grows logarithmically with M, the sum of the right hand sides

of (2.63), (2.67) and (2.68) are smaller than 1 for M large enough, M ≥ Mo(α,P)

say. We deduce that for every M larger than Mo(α,P), there exists a code C M such

that for every Q ∈ BSCL the two following conditions are satisfied:

P(E1
n∗|Q,C M) ≤ M1−αn3(|X ||Y |+1)

∗ and (2.69)

α lnM
I(PQ)

d2(α,M,P,Q)≤ E(T1(α,M)∧n∗) ≤
α lnM
I(PQ)

d1(α,M,P,Q) . (2.70)

From (2.69) and (2.70) and a similar computation as in (2.55)-(2.57), by setting

θ = {S M = (C M,ΨM
u ,T1(α,M)∧n∗(α,P,M))}M≥1 ,
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we have

E(θ,Q) ≥ I(PQ)−R(θ,Q) and

R(θ,Q) = lim
M→∞

lnM
E(T1(α,M)∧n∗(α,P,M))

=
I(PQ)

α
(2.71)

for every Q ∈ BSCL.

For the case where Q = ZL with 0≤ L < 1, an argument similar to that for BSCL

can be made. The only difference is that the coupling should be made according

to

Y ε
i = 11xi=111Zi>Lε . (2.72)

We finally show, along the lines of the proof of Lemma 2, that n∗(α,M,P) < ∞
for all M ≥ 1 and that n∗(α,M,P) grows logarithmically in M. From (2.3) and the

convexity of the sets {V ∈ P : I(V ) ≤ α lnM
n } and BSCL, we have

n∗(α,P,M) = min

{

n ≥ 1 : min
V∈P :I(V)≤α ln M

n

min
Q∈BSCL

D(V ||PQ) ≥ (α−1)
lnM

n

}

. (2.73)

On the one hand the function

min
V∈P :I(V )≤α lnM

n

min
Q∈BSCL

D(V ||PQ) (2.74)

is nondecreasing with n. On the other hand (α−1) lnM/n strictly decreases with

n, and since minQ∈BSCL I(PQ) > 0, we infer that n∗(α,P,M) < ∞. Let us define

r̃ = r̃(α,P) as the unique solution of the equation

min
V∈P :I(V )≤r

min
Q∈BSCL

D(V ||PQ) =
α−1
α

r . (2.75)

Since minQ∈BSCL I(PQ)> 0, we deduce that 0< r̃(α,P)< minQ∈BSCL I(PQ). Finally,

from a reasoning similar to that concluding the proof of Lemma 2 (see from (2.18)

onwards) we deduce that n∗(α,P,M) = Θ(lnM).

2.2.2 Phases 1+2

This section is devoted to the analysis of the two–phase coding procedure intro-

duced in Section 2.1.2. We now define the coding schemes used for the second

phase.

Definition 9 (2–Message Coding Scheme). An encoder is a sequence of func-

tions

Ξ = {ξn : {A,N}×Y n−1 −→ X }n≥1 . (2.76)
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A decoder consists of a set of functions

Γ = {γn : Y n −→ {A,N}}n≥1 , (2.77)

and a stopping time F relative to the received symbols Y1,Y2, . . . A 2–message coding

scheme is a tuple (Ξ ,Γ ,F) and is denoted by S (2). A sequence of 2–message coding

schemes is a sequence ω = {S M(2) = (ΞM,ΓM,FM)}M≥1 where

ΞM = {ξM
n : {A,N}×Y n−1 −→ X }n≥1 and ΓM = {γM

n : Y n −→ {A,N}}n≥1 .

For a given set of M messages, we denote by S M(1) and S M(2) the first and

second phase coding of a two–phase coding schemes S M. The universal coding

schemes we use for the first phase are the ones for which we proved existence in

Proposition 2. More precisely in Proposition 2 (p.18) it was shown that for any

L ∈ [0,1/2), α > 1 and any probability distribution P, there exists a sequence of

codebooks {C M}M≥2 such that for every Q ∈ BSCL

θ = {S M(1) = (C M,ΨM
u ,T1(α,M)∧n∗(α,P,M))}M≥1 (2.78)

satisfies

E(θ,Q) ≥ I(PQ)−R(θ,Q) and

R(θ,Q) = lim
M→∞

lnM
E(T1(α,M)∧n∗(α,P,M))

=
I(PQ)

α
, (2.79)

where

n∗(α,P,M) , max
Q∈BSCL

n∗(α,P,Q,M) . (2.80)

And similarly for the family ZL with L ∈ [0,1).

Based on the sequence Y T1∧n∗(α,P,M) that the receiver has obtained at the end of

the first transmission phase, the transmitter chooses a 2–message coding scheme

S M(2) = (ΞM,ΓM,FM) for the second transmission phase. In particular we notice

that the duration of the second phase FM may depend upon Y T1∧n∗(α,P,M). Let Y FM

be the second phase received symbols.6

The binary decision made at the end of the second phase is given by γM
FM

(Y FM):

if γM
FM

(Y FM) = “Ack” , transmission stops and the message m that was declared

“most probable” at the end of the first transmission phase is decoded, whereas

if γM
FM

(Y FM) =“Nack”, a new transmission involving a first and a second phase is

started afresh with a resending of the initial message. An error occurs at the end

of the second phase only if a message “Ack” is declared while “Nack” was sent. We

denote this error event by E
2. It follows that

P(E2|S M(2),Q) = P(γM
FM

(Y FM) = A|x(N),Q) . (2.81)

6Writing Y FM for the second phase received symbols is somewhat misleading, we should write

Y T1∧n∗(α,P,M)+FM
T1∧n∗(α,P,M)+1 instead. However no confusion will occur since the analysis of the first and the

second phases are done separately.
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In (2.81), similar to the notation we had in 2.1.2, we use x(N) to denote the

codeword that corresponds to “Nack”, and x(A) for the “Ack” codeword. This

notation will be kept during the subsequent proofs in this section. In particular

for the purpose of the proofs of the present chapter, we will use only the all-zero

and all-one sequence as the codewords for the 2–message coding phase. For sake

of completeness, we introduced the general definition 9, that will also be used in

Chapter 3.

From now on, and unless needed, we shall omit indicating with respect to which

channel and which coding scheme the probabilities and expectations are taken. For

instance we shall simply write P(E2) for P(E2|S M(2),Q). Also, and for simplicity,

we shall simply write γ(Y FM) instead of γM
FM

(Y FM).

Lemma 6 will be used in the proofs of Theorem 1 and 2. It provides a bound

on the error probability of a two–phase coding scheme.

Lemma 6. Let E denote the decoding error of a two–phase coding scheme S M with

first and second phase carried out with

S
M(1) = (C M,ΨM,T1(α,M)∧n∗(α,P,M)) and S

M(2) = (ΞM,ΓM,FM)

respectively. Then,

P(E) ≤ P(E1)P(E2)

1−P(E1)−P(γFM(Y FM) = N|x(A))
(2.82)

Proof. Let Ei denote the event that an error occur at the end of the i-th cycle and

let, as above, Ni denote the event that the receiver declares “Nack” at the end of

the i-th cycle. We have

P(Ei) = P(Ei,Ni−1)

= P(Ei|Ni−1)P(Ni−1)

= P(γ(Y FM) = A|x(N))P(E1)P(Ni−1)

= P(E2)P(E1)P(N1)
i−1 . (2.83)

where by definition (see (2.81)) we have P(γ(Y FM) = A|x(N)) = P(E2).

Since {Ei}i≥1 is a family of disjoint events, (2.83) and (2.156) yield

P(E) = ∑
i≥1

P(Ei)

= P(E1)P(E2) ∑
i≥1

P(N1|S M,Q)i−1

≤ P(E1)P(E2)

1−P(E1)−P(γ(Y FM) = N|x(A))
(2.84)

where the last inequality follows from the inequality (2.156).
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Proof of Theorem 1. Pick any L in [0,1/2) and assume that communication is

carried over some BSC Q with crossover probability ε. The proof is divided into

a few subsections. We first propose the 2–message coding scheme for the second

phase of communication. Then we introduce the coding scheme used for the first

phase. In the last subsections we combine the previous result to derive the desired

result.

- The messages “Ack” and “Nack” are encoded by using the all one sequence

x(A) = 1,1, . . . and the all zero sequence x(N) = 0,0, . . . respectively. Suppose

that x(A) is being sent. The resulting output sequence Y1,Y2, . . . is an i.i.d.

Bernoulli sequence with P(Y1 = 1) = 1− ε, where ε is the parameter of the

BSC under use. Define the random variables Zi’s as

Zi = 1 if Yi = 1 and Zi = −1 if Yi = 0 . (2.85)

Define also Vn = ∑n
i=1Zi and the stopping time

F = F(β,M) , inf{n ≥ 1 : |Vn| ≥ dβ lnMe} (2.86)

for some β > 0. Consider the decoding rule:

- if VF ≥ dβ lnMe: γ(yF) = “Ack” ,

- if VF ≤−dβ lnMe: γ(yF) = “Nack” .

By symmetry we have

E(F |x(A)) = E(F |x(N)) , EF (2.87)

and

P(γ(Y F) = A|x(N)) = P(γ(Y F) = N|x(A))

= P(VF = −dβ lnMe|x(A)) . (2.88)

Now P(VF = −dβ lnMe|x(A)) ≤ e−dβ lnMer∗ where r∗ is the strictly positive

root of the function ln(EerZ1) (see, e.g., (Gallager 1995, Corollary 1 p. 233))
and equals to D(ε||1−ε)/(1−2ε). Therefore we have

P(VF = −dβ lnMe |x(A)) ≤ e−
dβ lnMe

1−2ε D(ε||1−ε) (2.89)

From Wald’s equality7 we have

E

(

F

∑
i=1

Zi

∣

∣

∣
x(A)

)

= E(Z1|x(A))EF

= D(ε||1−ε)EF . (2.90)

7Let Z1,Z2, . . . be a sequence of i.i.d. random variables such that EZ1 < ∞, and let F be a

stopping time with respect to Z1,Z2, . . .. Wald’s equality (see, e.g.,Siegmund (1985, Chapter II))

states that

E

(

F

∑
i=1

Zi

)

= EZ1EF .
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Since

E

(

F

∑
i=1

Zi

∣

∣

∣
x(A)

)

= dβ lnMeP(VF = dβ lnMe |x(A))

−dβ lnMeP(VF = −dβ lnMe|x(A))

= dβ lnMe−2P(VF = −dβ lnMe|x(A)))dβ lnMe , (2.91)

from (2.89) and (2.90) we conclude that

EF =
β lnM
1−2ε

(1+o(1)) (2.92)

and

P(γ(Y F) = N|x(A)) = P(VF = −dβ lnMe|x(A))

≤ e−D(ε||1−ε)(1+o(1))EF . (2.93)

- Letting α be some arbitrary constant with α> 1, and P be the Bernoulli 1/2
distribution in Proposition 2 (p.18), we deduce that there exists a sequence

of coding schemes θ = {S M(1)}M≥1 such that for every W ∈ BSCL

E(θ,W ) ≥ I(PW)−R(θ,W ) and R(θ,Q) =
I(PW)

α
. (2.94)

- Let S M be the first phase coding scheme S M(1) from the previous subsection,

together with the 2–message coding scheme proposed in the first subsection,

for the second phase. From (2.81), (2.88) and Lemma 6 we have

P(E) ≤ P(γ(Y F) = A|x(N))

1−P(E1)−P(γ(Y F) = A|x(N))
. (2.95)

Let T (α,β,M) be the overall decoding time. Rewriting inequality (2.93) with

the arguments in the exponential we have

P(γ(Y F) = A|x(N)) ≤ e
−D(ε||1−ε)

(

1−ET (α,β,M)−EF(β,M)
ET(α,β,M)

)

ET (α,β,M)
. (2.96)

In the Appendix Section 2.3.1 (p. 45) it is shown that

ET (α,β,M)−EF(β,M) = E(T1∧n∗(α,P,M))(1+o(1)) (2.97)

where E(T1∧n∗(α,P,M)) is the expected duration of S M(1). From (2.79) and

(2.92), for any two constants α> 1 and β > 0

lim
M→∞

ET (α,β,M)−EF(β,M)

ET (α,β,M)
=
αR′(α,β,ε)

C(ε)
(2.98)



2.2 Analysis 39

where,

R′(α,β,ε) ,
C(ε)

α+
βC(ε)
1−2ε

= lim
M→∞

lnM
ET (α,β,M)

. (2.99)

Hence from (2.95)-(2.99) we have for every Q ∈ BSCL

− lim inf
M→∞

1
ET (µ,β,M)

lnP(E|S M,Q) ≥ D(ε||1−ε)
(

1− R(µ,β,ε)

C(ε)
−µ
)

(2.100)

where

µ, α−1 and R(µ,β,ε) ,
C(ε)

1+µ+ βC(ε)
1−2ε

= lim
M→∞

lnM
ET (µ,β,M)

. (2.101)

In the Appendix 2.3.2 (p.48) we show that (2.100) and (2.101) still hold if

µ= 0, i.e., there exists {S M = (C M,ΨM,T(β,M))}M≥1 such that

lim inf
M→∞

− lnM
ET (β,M)

lnP(E|Q,S M) ≥ D(ε||1−ε)
(

1− R(β,ε)

C(ε)

)

(2.102)

where

R(β,ε) = lim
M→∞

lnM
ET (β,M)

=
1

1+
βC(ε)
1−2ε

C(ε) . (2.103)

- One can easily show that for every L ∈ [0,1/2) and any channel Q ∈ BSCL

with crossover probability ε,

0 < C(L) ≤ C(ε)

1−2ε
≤ ln2

1−2L
. (2.104)

Now pick any ν ∈ [0,1). Since β > 0 is arbitrary, if we set β = β(ν) =
1−2L
ln2

(

1
ν −1

)

, we find from (2.102), (2.103) and (2.104) that there exists θ1∈A
such that for every Q ∈ BSCL with crossover probability ε

E(θ1,Q) ≥ D(ε||1−ε)
(

1− R(θ1,Q)

C(ε)

)

, (2.105)

where

T (ν,M) , T (β(ν),M) and νC(ε) ≤ R(θ1,Q) < C(ε) . (2.106)

Similarly, setting now β=β(ν) = 1
C(L)

(1
ν −1

)

, we deduce from (2.102), (2.103)

and (2.104) that there exists θ ∈ A such that for every Q ∈ BSCL with

crossover probability ε,

E(θ2,Q) ≥ D(ε||1−ε)
(

1− R(θ2,Q)

C(ε)

)

, (2.107)

where

T (ν,M) , T (β(ν),M) and 0≤ R(θ2,Q) ≤ νC(ε) . (2.108)



40 Variable Length Coding Over Unknown Channels

We now give the proof of Proposition 3 which goes along the lines of the proof

of Theorem 1.

Proof of Proposition 3. The 2–message coding scheme for the messages “Ack” and

“Nack” we present here is the same as in (Burnashev 1976).

Let x(A) = x1,x1, . . . and x(N) = x2,x2, . . . where (x1,x2) satisfy

max
x,x′

D(Q(Y |x)||Q(Y |x′)) = D(Q(Y |x1)||Q(Y |x2)) . (2.109)

Define the random variables Vn for n ≥ 1 as

Vn =
n

∑
i=1

Zi where Zi = ln
Q(Yi|x1)

Q(Yi|x2)
. (2.110)

Fix some constant β > 0 and consider the stopping time F(β,M) defined in (2.86)

together with the decoding rule γ (described just after (2.86)). From standard

results in sequential analysis ((Siegmund 1985), Chapter II), the above 2–message

coding scheme yields

P(γ(Y F(β,M)) = N|x(A))
M→∞−→ 0 (2.111)

lim inf
M→∞

− 1
EF(β,M)

lnP(γ(Y F(β,M)) = A|x(N)) ≥ D(Q(Y |x1)||Q(Y |x2)) (2.112)

and, lim
M→∞

E(F(β,M)|x(N))

lnM
=

β

D(Q(Y |x2)||Q(Y |x1))
. (2.113)

By hypothesis there exists Υ ⊂ A such that, for any R ∈ [C(Q)− δ,C(Q)), there

exists θ′ = {S ′M}M≥1 ∈ Υ with R(θ′,Q) = R and such that P(E|Q,S ′M)
M→∞−→ 0. Fix

some constant α ∈
(

1, C(Q)
C(Q)−δ

)

and pick a sequence θ= {S M(1)}M≥1 ∈ Υ such that

R(θ,Q) = C(Q)/α. Consider a two–phase coding scheme S M with decision time

T = T (α,β,M) where the first and second phase are performed according to S M(1)

and the 2–message coding scheme above. A calculation along the lines of (2.95)-

(2.100) yields

lim inf
M→∞

− 1
ET (α,β,M)

lnP(E|Q,S ′M) ≥ D(Q(Y |x1)||Q(Y |x2))

(

1− R(α,β)

C(Q)
− (α−1)

)

(2.114)

where

R(α,β) ,
C(Q)

α+
βC(Q)

D(Q(Y |x2)||Q(Y |x1))

= lim
M→∞

lnM
ET (α,β,M)

. (2.115)
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Since (2.114) and (2.115) hold for any α > 1 and β > 0, we infer that for any

0 ≤ ν < 1 and any 0 < µ < min
{

1
ν ,

C(Q)
C(Q)−δ

}

−1 there exists a sequence of two–

phase coding schemes S M with decision time T (ν,µ,M) such that

− lim inf
M→∞

1
ET (ν,µ,M)

lnP(E|Q,S M)

≥ D(Q(Y |x1)||Q(Y |x2))

(

1− limM→∞ R(S M,Q)

C(Q)
−µ
)

and lim
M→∞

R(S M,Q) = νC(Q) . (2.116)

Finally from the same argument as the one ending the proof of Theorem 1 (see

discussion after (2.101) and Appendix Section 2.3.2 (p. 48)), we conclude that

(2.116) remains true if µ = 0. Hence, for any constant ν ∈ [0,1), there exists

θ = {S M}M≥1 with decision times {T (ν,M)}M≥1 such that

lim inf
M→∞

− 1
ET (ν,M)

lnP(E|Q,S M) ≥ D(Q(Y |x1)||Q(Y |x2))

(

1− R
C(Q)

)

(2.117)

where R = limM→∞
lnM

ET(ν,M) = νC(Q). By construction, {S M}M≥1 has property I in

the Proposition, yielding the desired result.

Proof of Theorem 2. The proof is divided into a few subsections. As in the proof of

Theorem 1, we first propose the 2–message coding scheme for the second phase of

communication. Then we introduce the coding scheme used for the first phase. The

resulting two–phase coding strategies have zero error, i.e., infinite error exponent,

for rates in the range [0, I(PQ)), for some fixed input distribution P. As a final

step we show that the concatenation of two two–phase coding schemes also yields

error free communication, but now in a range of rates in [0,C(Q)).

Pick any L in [0,1) and assume that communication is carried over some Z

channel Q with crossover probability ε.

- The messages “Ack” and “Nack” are encoded by using the all-one sequence

x(A) = 1,1, . . . and the all-zero sequence x(N) = 0,0, . . . At time i, the decoding

rule is given by:

- if there exists 1≤ j ≤ i such that y j = 1 : γ(yi) =“Ack”,

- else: γ(yi) =“Nack”.

It follows that for every i ≥ 1

P(γ(Y i) = A|x(N)) = 0 and P(γ(Y i) = N|x(A)) = εi . (2.118)

- Let P be a probability distribution over {0,1}. Letting T ′(α,M) , T (α,M)∧
n∗(α,P,M), we have from Proposition 2 that there exists

θ = {(C M,ΨM
u ,T ′

1(α,M))}M≥1
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that satisfies

E(θ,Q) ≥ I(PQ)−R(θ,Q) and

R(θ,Q) = lim
M→∞

lnM
ET ′

1(α,M)
=

I(PQ)

α
(2.119)

for every Q ∈ ZL.

- Let S M be the first phase coding scheme S M(1) from the previous subsection,

together with the 2–message coding scheme proposed in the first subsection,

for the second phase. Fix two constants α > 1 and 0 < ν < 1/α. Let the

second phase length be equal to dκT ′
1e where κ= 1/(αν)−1. Define T to be

the overall decoding time. Similarly as for the BSC case (see Appendix Sec-

tion 2.3.1), the average decoding time of the two–phase scheme is essentially

equal to the length of one cycle, i.e.,

ET = (1+κ)ET ′
1(α,M)(1+o(1)) . (2.120)

The average rate of the two–phase scheme is given by

R(α,κ,M) =
lnM
ET

, (2.121)

and thus, setting θ = {S M}M≥1, we get

R(θ,Q) , lim
M→∞

R(α,κ,M) = νI(PQ) , (2.122)

and from (2.118) and Lemma 6 we trivially have

E(θ,Q) = ∞ , (2.123)

since the two–phase coding scheme is error free for any message size. In the

case where ν = 0, it suffices to have κ= κ(M) such that κ(M)
M→∞−→ ∞. In this

case R(θ,Q) = 0 and E(θ,Q) = ∞.

- We now show that by concatenating two two–phase coding schemes, with M0

and M1 messages respectively, it is possible to achieve any rate in [0,C(Q)],

while having infinite error exponent.

Let P0 be the uniform distribution over {0,1}, and P1 some other distribution

over {0,1} that will be specified below. From the above arguments we deduce

that for any 0≤ ν < 1 there exists θ0 = (S M0,ΨM0,S0) and θ1 = (S M1,ΨM1,S1),

both satisfying (2.123) and such that, for every Q ∈ ZL, we have R(θ0,Q) =

νI(P0Q) and R(θ1,Q) = νI(P1Q).

The transmitter starts sending a message out the M0 message from the first

two–phase coding scheme. At time S0, the receiver decodes the sent mes-

sage and the transmitter makes an estimate Q̂ of the underlying Z channel
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according to8

I(P0Q̂) =
ν lnM0

S0
, (2.124)

then sets P1 as the capacity achieving distribution of Q̂, i.e.,

P1 = max
P∈∇

I(PQ̂) , (2.125)

where ∇ is the set of all binary distributions P such that P(0) ∈ [1/e,1/2].9

At a second stage the transmitter chooses a message out of a second message

set of size M1, and sends it using a two–phase coding scheme with input

distribution P1. Clearly, the overall two two–phase coding scheme is error

free, since at the end of each of the two coding periods no error occurs.

Let us set M1 = eM0. It now suffices to show that the rate of the two two–

phase scheme, that we denote by R0,1, converges to νC(Q) as M0 tends to

infinity. Clearly the case ν = 0 can be obtained with one two–phase scheme

and therefore we assume ν ∈ (0,1). We have

R0,1 =
log(M0 ·M1)

ES0 +ES1

=
logM0

ES0

ES0

ES0 +ES1
+

logM1

ES1

ES1

ES0 +ES1

=
logM1

ES1

(

1+ logM0
logM1

)

(

1+ ES0
ES1

) . (2.126)

Now since the two–phase schemes we consider have second phase duration

linear in the first phase length, Lemma 4 (p.25) extends in particular to the

decoding time S0 as

P

(

S0(ν,M0) >
ν lnM0

I(P0Q)
d1(M0,P0,Q)

)

≤ e
−
√

lnM0
2I(P0Q)

(1+o(1))
and

P

(

S0(ν,M0) ≤
ν lnM0

I(P0Q)
d2(M0,P0,Q)

)

≤ e−
√

lnM0
|X | (1+o(1))

(2.127)

as M0 → ∞, and where di(M0,P0,Q) = 1+o(1) as M0 → ∞, i = 1,2.

For sake of conciseness let us define

N =

[

ν lnM0

I(P0Q)
d2(M0,P0,Q),

ν lnM0

I(P0Q)
d1(M0,P0,Q)

]

. (2.128)

8By means of feedback, this operation is performed also at the receiver.
9Majani and Rumsey (1991) proved that, for any Z channel, the capacity achieving distribu-

tion is such that P(0) ∈ (1/e,1/2).
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From the above bounds (2.127), we have

P(S0 /∈ N ) = e
−

√
lnM0

2I(P0Q)+|X | (1+o(1))
. (2.129)

We now derive upper and lower bounds on E(S1(S0)). On the one hand we

have

ES1(S0) ≤ max
s0∈N

E(S1|S0 = s0)P(S0 ∈ N )+ max
s0/∈N

E(S1|S0 = s0)P(S0 /∈ N ) .

(2.130)

From (2.124), (2.125) and (2.127), we deduce that

max
s0∈N

E(S1|S0 = s0) ≤
ν lnM1

C(Q)
(1+o(1)) as M0 → ∞ , (2.131)

and that

max
s0/∈N

E(S1|S0 = s0) ≤
ν lnM1

minP∈∇ minW∈ZL I(PW)
(1+o(1)) as M0 → ∞

(2.132)

where minP∈∇ minW∈ZL I(PW) > 0 since L < 1.10

From (2.129)-(2.132) we have

ES1(S0) ≤
ν lnM1

C(Q)
(1+o(1)) . (2.133)

On the other hand since

ES1(S0) ≥ min
s0∈N

E(S1|S0 = s0)P(S0 ∈ N) , (2.134)

a similar computation to that above yields

ES1(S0) ≥
ν lnM1

C(Q)
(1+o(1)) as M0 → ∞ (2.135)

and we derive

ν lnM1

C(Q)
(1+o(1)) ≤ ES1(S0) ≤

ν lnM1

C(Q)
(1+o(1)) as M0 → ∞ . (2.136)

Hence, from (2.126), (2.136) and the fact that M1 = eM0, we conclude that

the overall two two–phase coding scheme with M = M0 ·M1 messages has its

rate R0,1 that converges to νC(Q) as M tends to infinity.

The theorem follows.

Remark: in Chapter 4 (see paragraph after Theorem 4) we will sketch alternative

proofs for Theorems 1 and 2.

10The set ∇ has been defined in (2.125).
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2.3 Appendix

2.3.1 Two–Phase Coding Scheme Decoding Time

In this section we prove (2.97). Let T = T (α,β,M) be the overall decoding time

and let S denote the number of cycles of the 2–phase scheme (i.e., the number of

“Nacks” before the final “Ack”, plus one). We have

ET = ∑
s≥1

E(T |S = s)P(S = s)

= ∑
s≥1

[(s−1)E(T1|N)+E(T 1|A)]P(S = s)

= E(T 1|N)E(S−1)+E(T 1|A) (2.137)

where E(T 1|l) denotes the expected value of the first cycle given that at the end

of the second phase the decoder declares message l ∈ {Ack,Nack}.
We will show that

E(T 1|N)E(S−1)+E(T 1|A) = E(T 1|A)(1+o(1)) (2.138)

where E(T 1|A) is approximatively equal to the average length of the one cycle, i.e,

E(T 1|A) = E(T 1)(1+o(1)) . (2.139)

We first prove (2.139). From the identity

ET 1 = E(T 1|A)P(A)+E(T1|N)P(N) , (2.140)

and since P(A) = 1+o(1) it suffices to show that

E(T 1|N)P(N) = o(E(T 1|A)) . (2.141)

We have

E(T 1|A) = E(T ′
1|x(A))P(x(A)|A)+E(F|x(A),A)P(x(A)|A)

+E(T ′
1|x(N))P(x(N)|A)+E(F|x(N),A)P(x(N)|A) (2.142)

where for conciseness we wrote T ′
1 instead of T1∧n∗(α,M,P),11 and where P(x(m)|m′)

is the probability that at the beginning of the second phase x(m) (m∈{Ack, Nack})
is sent conditioned on the event that, at the end of the second phase, the decoder

declares message message m′ (m′ ∈ {Ack, Nack}). Similarly

E(T 1|N)P(N) = E(T ′
1|x(A))P(x(A)|N)P(N)+E(F|x(A),N)P(x(A)|N)P(N)

+E(T ′
1|x(N))P(x(N)|N)P(N)+E(F|x(N),N)P(x(N)|N)P(N) .

(2.143)

11P denotes the Bernoulli 1/2 distribution (see paragraph after (2.93).)
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Since P(N) = o(1), we have

E(T ′
1|x(A))P(x(A)|N)P(N) = o(1)E(T ′

1|x(A)) . (2.144)

Then, by symmetry of the 2–message coding scheme we have E(F|x(N),N) =

E(F|x(A),A), and therefore

E(F|x(N),N)P(x(N)|N)P(N) = E(F |x(A),A)o(1) . (2.145)

Now for the term E(T ′
1|x(N)). Let us define T̃1 = T̃1(α,M) as

T̃1(α,M) = inf

{

1≤ n ≤ n∗(α,P,M) : ∃m ∈M \{1} such that I(P̂xn(m),Y n) ≥ α lnM
n

}

.

By definition we have T̃1 ≥ T ′
1 and hence

E(T ′
1|x(N)) ≤ E(T̃1|x(N))

= E(T̃1|T̃1 ≤ T ′
1)

≤ E(T̃1) . (2.146)

Using Lemma 1 and the union bound we have12

E(T̃1) = ∑
1≤n≤n∗

nP(T̃1 = n)

≤ ∑
1≤n≤n∗

nM−(α−1)(n+1)|X ||Y |

≤ M−(α−1)(n∗ +1)|X ||Y |+2 . (2.147)

Since n∗(α,M,P) = Θ(lnM) (see paragraph after (2.75) p. 34) we conclude that

E(T̃1) = o(1), and therefore (2.146) gives

E(T ′
1|x(N)) = o(1) . (2.148)

Finally we show that

E(F|x(A),N)P(x(A)|N)P(N) = o(1) . (2.149)

First, using the property of the 2–message coding scheme that

P(N|x(A)) = P(A|x(N)) ,

one can check that

E(F|x(A),N)P(x(A)|N)P(N) = E(F11γ(Y F )=N|x(A))P(x(A)) . (2.150)

Hence, since P(x(A)) = 1+o(1), to prove (2.149) it suffices to show that the term

E(F11γ(Y F )=N|x(A)) = o(1). To that aim we refer the reader to (Gallager 1995,

12We remind to the reader that by assumption message 1 is being sent.
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Chapter 7) in which one can find the tools that we will be used here. Let g(r) ,
lnE(erZ) where Z is the binary random variable taking value in {+1,−1} and such

that EZ = 2ε−1 (0≤ ε≤ L < 1/2). Let r0 be the strictly positive root of g(r) and

let g′(r) denote the derivative of g at r. Let r̄ be any value in (0,r0) such that

0 < g′(r̄) < g′(r0) . From (Gallager 1995, p. 236)13 one deduces that

E(F11γ(Y F)=N |x(A)) ≤ n̄e−r̄β lnM + ∑
n>n̄

eng(r̄) (2.151)

where n̄ = dβ logMe/g′(r̄). Since g(r̄) < 0, the right hand side of (2.151) vanishes

as M tends to infinity, i.e.,

E(F11γ(Y F)=N |x(A)) = o(1) (2.152)

and therefore (2.149) follows from (2.150).

Combining (2.143),(2.144),(2.145), (2.148), and (2.149) we have

E(T 1|N)P(N) = o(E(T 1|A)) (2.153)

and (2.140) gives

E(T 1|A) = E(T 1)(1+o(1)) (2.154)

yielding (2.139).

Notice that in order to prove (2.153) the only property of P(N) we used is that

it tends to zero as M goes to infinity. In other words we made no assumption on

the speed of decay of P(N). Hence, since E(S−1) = o(1),14 we also deduce that

E(T 1|N)E(S−1) = o(E(T 1|A)). From (2.137), (2.138) and (2.139) we have

E(T ) = E(T 1)(1+o(1))

= (ET ′
1 +EF)(1+o(1)) . (2.157)

13In (Gallager 1995, p.236) there is a typo in equation (28). The first term on the right hand

side of (28) should be e−rα+nγ(r) instead of e−rα+γ(r).
14Letting Ni denote the event that a “Nack” is declared at the end of the i-th cycle we have

ES = ∑
i≥1

P(S ≥ i)

= 1+ ∑
i≥1

P(Ni)

=
1

1−P(N1)
. (2.155)

We justify the last equality in (2.155). The family of events {Ni}i≥1 is such that Ni+1 ⊂ Ni and

satisfies P(Ni+1|Ni) = P(N1). Hence we have the recursion relation P(Ni+1) = P(Ni)P(N1), and

therefore P(Ni−1) = P(N1)
i−1. Now Bayes’ rule yields

P(N1) = P(γ(Y FM) = N|x(N))P(E1)

+P(γ(YFM) = N|x(A))(1−P(E1))

≤ P(E1)+P(γ(YFM) = N|x(A))

= o(1) . (2.156)

Therefore (2.155) yields E(S−1) = o(1) .
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From (2.157) and since EF = O(ET ′
1) we conclude that

ET −EF = ET ′
1(1+o(1)) (2.158)

where we wrote T ′
1 for T1∧n∗(α,P,M), proving (2.97).

2.3.2 The Closure of a Set of Achievable Error Exponents

We prove that (2.100) and (2.101) still hold when µ= 0.

Let {µn}n≥1 be a nonincreasing sequence such that limn→∞µn = 0. For conve-

nience let us define the six quantities

R(m,µn,β) =
lnM

ET (µn,β,m)
, E(m,µn,β) = − 1

ET (µn,β,m)
lnP(E|Q,S ′m)

(2.159)

R(µn,β) = lim
m→∞

R(m,µn,β) , E(µn,β) = lim inf
m→∞

E(m,µn,β) (2.160)

and,

R(β,ε) =
1

1+
βC(ε)
1−2ε

C(Q) , E(β,ε) =

(

1− 1

1+
βC(ε)
1−2ε

)

D(ε||1−ε) . (2.161)

Then we introduce the sequence {M(n)}n≥0 where M(0) = 1 and for every n ≥ 1,

the quantity M(n) is obtained by recursion as

M(n) =min

{

M > M(n−1) : E(µn,β)− inf
m≥M

E(m,µn,β) ≤ 1
n

and

|R(µn,β)−R(m,µn,β)| ≤ 1
n

, for all m ≥ M

}

. (2.162)

From (2.162) we deduce that

E(M(n),µn,β)−E(β,ε)≥−1
n

+E(µn,β)−E(β,ε) . (2.163)

Using (2.100) we have that lim infn→∞ E(µn,β)≥ E(β,ε) and therefore from (2.163)

we get

lim inf
n→∞

E(M(n),µn,β) ≥ E(β,ε) . (2.164)

Similarly we obtain

lim
n→∞

R(M(n),µn,β) = R(β,ε) . (2.165)

Since the sequence {M(n)}n≥0 is nondecreasing, by defining

n(M) = max{n ≥ 1 : M(n) ≤ M} , (2.166)
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we conclude that

lim inf
M→∞

E(M,µn(M),β) = E(β,ε) and lim
n→∞

R(n,µn(M),β) = R(β,ε) . (2.167)

Setting T (β,M) = T (µn(M),β,M), we infer that there exists a sequence of coding

schemes {S M = (C M,ΨM,T (β,M))}M≥1 such that

lim inf
M→∞

− lnM
ET (β,M)

lnP(E|Q,S M) ≥ D(ε||1−ε)
(

1− R(β,ε)

C(ε)

)

, (2.168)

where,

R(β,ε) = lim
M→∞

lnM
ET (β,M)

=
1

1+
βC(ε)
1−2ε

C(ε) . (2.169)



3

Optimality is not

Always Possible

In Chapter 2 we showed that for certain classes of channels, such as BSCs and

Z channels, no penalty occurs in terms of error exponent if both the transmitter

and the receiver are unaware of the underlying channel. There are blind coding

schemes that achieve the same performance as the best strategies that could be

designed if the channel were revealed to both the transmitter and the receiver.

In other words, no loss occurs in terms of error exponent because of the channel

adaptation these blind schemes need to perform.

We consider the possibility of extending the results of Chapter 2 to an arbitrary

family of channels. Given a family of DMCs Q , do we always have ∆(Q ) = 0?1

We tackle this problem by studying two–message communication and restrict the

family to have only two elements Q1 and Q2. We give a simple criterion based

on the transition probability matrix of Q1 and Q2 under which no coding scheme

universally yields the Burnashev’s exponent at zero–rate. Therefore, for a given

family of channels Q , if there exists a pair of channels in Q that satisfy this

criterion, then ∆(Q ) > 0.

In Section 3.1, we first revisit two–message coding schemes and emphasize

the structure of the probability space generated at the receiver by the sending of

a particular message. In Section 3.2 we study the situation where the channel

is unknown, it may be either Q1 or Q2. We derive a bound on the maximum

achievable error exponent at zero–rate that can be simultaneously attained over

two distinct channels with one single coding scheme.

3.1 Two–Message Coding for One Channel

Throughout this section we shall be concerned with two–message feedback commu-

nication over some known DMC Q with finite input and output alphabets X and

Y . Let the message set be {A,N}. Unlike in Chapter 2 where we were concerned

with averages, over uniformly chosen messages, of error probability and decoding

1∆(Q ) has been defined in Chapter 1, equations (1.14)-(1.16).
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time, here we shall study error probability and decoding time with respect to a

particular sent message.

Let us recall the definition of binary coding scheme that was introduced in

Section 2.2.2:

Definition 10 (Binary Coding Scheme). An encoder is a sequence of func-

tions

Ξ = {ξn : {A,N}×Y n−1 −→ X }n≥1 . (3.1)

A decoder consists of a set of functions

Γ = {γn : Y n −→ {A,N}}n≥1 (3.2)

and a stopping time T relative to the received symbols Y1,Y2, . . . A binary coding

scheme is a tuple = (Ξ ,Γ ,T) and is denoted by S . A sequence of binary schemes

is a sequence ω = {(Ξi,Γi,Ti)}i≥1 where

Ξi = {ξi
n : {A,N}×Y n−1 −→ X }n≥1 and Γi = {γi

n : Y n −→ {A,N}}n≥1 .

The set of all binary coding schemes is denoted Ω.

Notice that in the definition of a coding scheme that we introduced in Chapter

1 (see definition 3 p.8), the elements of a sequence of coding schemes are labeled

by the number of messages. This is not the case for a sequence of binary coding

schemes, which contains only binary message coding schemes.

Given a decoder, the set of all output sequences for which a decision is made

can be represented by the leaves of a complete |Y |-ary tree. The set of leaves is

divided into two sets that correspond to declaring either message A or message N
(see Figure 3.1 for an example). The decoder starts climbing the tree from the

root. At each time it chooses the branch that corresponds to the received symbol.

When a leaf is reached the decoder makes a decision as indicated by the label of

the leaf.

From a probabilistic point of view, the decision time determines the probability

space of the output sequences, or, equivalently the set of leaves. On this probability

space, each set of encoding functions {ξn(m, ·)}n≥1, m ∈ {A,N}, together with the

transition probability matrix of the channel Q, induces a probability measure that

we denote by Pm. In other words, associated to any channel Q and coding scheme

(Ξ ,Γ ,T), there is a natural probability space with two probability measures PA and

PN that correspond to the sending of message A or N. It will be important in Section

3.2, when dealing with an unknown channel, to have this perspective in mind,

namely to consider the messages as inducers of probabilities on the probability

space defined by the decision time. In the sequel, we shall also often be concerned

with the relative entropy between PA and PN that we denote by D(PA||PN). This

quantity is defined on the probability space mentioned above.
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Figure 3.1: Given a coding scheme (Ξ,Γ ,T ) for a Binary Symmetric Channel,

the set of all received sequences for which a decision is made is represented

by the leaves of a complete binary tree. Message A is declared at the squared

leaves whereas N is declared at the round leaves. The decoder climbs the tree

by moving left or right depending whether it receives a zero or a one, until it

reaches a leaf and makes a decision accordingly.

Given a coding scheme S = (Ξ ,Γ ,T), the probability of declaring message N
while A is sent is denoted PA(N). In other words, PA(N) is the probability under PA

of the set of all leaves of the decision tree for which message N is declared. Similarly

let PN(A) be the probability of declaring message A while N is sent. With these

conventions, the average error probability P(E) is given by 1
2(PA(N)+PN(A)) and

the average decoding time ET is given by 1
2(EAT + ENT ), where the subscript

indicates to which message the expectations refer to.

Definition 11 (Error Exponents). Given a sequence of binary coding schemes

ω= {(Ξi,Γi,Ti)}i≥1, let Pi
A(N) and Pi

N(A) denote the error probabilities with respect

to (Ξi,Γi,Ti). Given a sequence of binary coding schemes ω = {(Ξi,Γi,Ti)}i≥1 such

that Pi
A(N) → 0 and Pi

N(A) → 0 as i → ∞, the error exponents with respect to mes-

sages A and N are defined as

EA(ω) , lim inf
i→∞

− 1
EATi

lnPi
A(N) and EN(ω) , lim inf

i→∞
− 1

ENTi
lnPi

N(A) (3.3)

and the average error exponent is defined as

E(ω) , lim inf
i→∞

− 1
ETi

lnP(Ei) (3.4)

where P(Ei) and ETi denote the average error probability and average decoding time

with respect to (Ξi,Γi,Ti).
2

2In Chapter 2 we denoted by Ei the event that an error occurs at the end of the i-th cycle of

a two-phase coding procedure. However no confusion will occur with the new definition of Ei,

since in this Chapter we will not consider two-phase coding schemes.
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3.2 Two–Message Coding for Two Channels

Consider two probability measures P1 and P2 on a probability space (Ω,F ). It is

well known that unless P1 and P2 are singular,3 the quantities P1(B) and P2(Bc)

cannot both be rendered arbitrary small by B ∈ F . More precisely, from the data

processing inequality for divergence,4 we have the following lower bounds on P1(B)

in terms of P2(Bc)

P1(B) ≥ exp

[−D(P2||P1)−H(P2(Bc))

1−P2(Bc)

]

(3.7)

where H(α) , −α logα− (1−α) log(1−α). In the sequel we shall use (3.7) in

order to derive bounds on the maximum error exponents that can simultaneously

be achieved over two channels.

Suppose we use some coding scheme S on some known channel Q1. Letting B
denote the set of leaves for which message A is declared, from (3.7) we obtain

PN(A) ≥ exp

[−D(PA||PN)−H(PA(N))

1−PA(N)

]

and PA(N) ≥ exp

[−D(PN ||PA)−H(PN(A))

1−PN(A)

]

. (3.8)

Assume now that the transmitter and the receiver still want to communicate using

S but neither the transmitter nor the receiver know which channel will be used, it

might be either Q1 or Q2, both defined on the same input and output alphabets

X and Y . Let Pm,i denote the probability measure of the output sequences when

message m ∈ {A,N} is being sent through channel Qi, i ∈ {1,2}. We now have four

error probabilities PA,1(N), PA,2(N), PN,1(A) and PN,2(A) that, similarly to (3.8),

3P1 and P2 are said to be singular if there exists some E ∈ F such that P1(E) = 0 and P2(E) = 1.
4 Let (Ω,F ) be a probability space, let P1 and P2 be two probability measures on (Ω,F ) and

let B ∈ F . The data processing inequality for divergence (Csiszàr and Körner 1981, p. 55) yields

D(P2||P1) ≥ D(P2(B)||P1(B)) (3.5)

where

D(P2(B)||P1(B)) , P2(B) log
P2(B)

P1(B)
+ (1−P2(B)) log

(1−P2(B))

(1−P1(B))
.

Expanding (3.5) we deduce that

P1(B) ≥ exp

[−D(P2||P1)−H(P2(B))

P2(B)

]

(3.6)

where H(P2(B)) , −P2(B) logP2(B)− (1−P2(B)) log(1−P2(B)).
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satisfy the inequalities

PA,1(N) ≥ exp

[−D(PN,1||PA,1)−H(PN,1(A))

1−PN,1(A)

]

(3.9)

PA,1(N) ≥ exp

[−D(PN,2||PA,1)−H(PN,2(A))

1−PN,2(A)

]

(3.10)

PA,2(N) ≥ exp

[−D(PN,1||PA,2)−H(PN,1(A))

1−PN,1(A)

]

(3.11)

PA,2(N) ≥ exp

[−D(PN,2||PA,2)−H(PN,2(A))

1−PN,2(A)

]

(3.12)

and the four inequalities obtained from (3.9)-(3.12) by exchanging the roles of A
and N,

PN,1(A) ≥ exp

[−D(PA,1||PN,1)−H(PA,1(N))

1−PA,1(N)

]

(3.13)

PN,1(A) ≥ exp

[−D(PA,2||PN,1)−H(PA,2(N))

1−PA,2(N)

]

(3.14)

PN,2(A) ≥ exp

[−D(PA,1||PN,2)−H(PA,1(N))

1−PA,1(N)

]

(3.15)

PN,2(A) ≥ exp

[−D(PA,2||PN,2)−H(PA,2(N))

1−PA,2(N)

]

. (3.16)

Proposition 4. Let Q1 and Q2 be two distinct DMCs on X ×Y such that Q1(y|x) >

0 and Q2(y|x) > 0 for all x ∈ X and y ∈ Y . For any coding scheme (Ξ ,Γ ,T), we

have

D(PN,1||PA,1)+D(PN,1||PA,2) ≤ K(Q1,Q2)EN,1T (3.17)

D(PN,2||PA,2)+D(PN,2||PA,1) ≤ K(Q2,Q1)EN,2T (3.18)

where K(Qi,Q j) , maxx,x′
[

D(Qi(·|x)||Qi(·|x′))+D(Qi(·|x)||Q j(·|x′))
]

.

Notice that EB(0,Qi) ≤ K(Qi,Q j) for i, j ∈ {1,2}.
In the next theorem E(ω,Qi) stands for the average error exponent obtained

when ω is used upon channel Qi.

Theorem 3. Let Q1 and Q2 satisfy the hypothesis of Proposition 4 and in addition

assume that

K(Q1,Q2) < 2max
x,x′

D(Q1(·|x)||Q1(·|x′)) and K(Q2,Q1) < 2max
x,x′

D(Q2(·|x)||Q2(·|x′)) .

(3.19)

Then, for any ω ∈Ω, either E(ω,Q1) < EB(0,Q1) or E(ω,Q2) < EB(0,Q2).
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Example 4. Let Q1BSC(ε) and Q2 = BSC(1−ε) where ε ∈ [0,1/2). Since

K(Q1,Q2) = max
x,x′

D(Q1(·|x)||Q1(·|x′))) = max
x,x′

D(Q2(·|x||Q2(·|x′)) = K(Q2,Q1) ,

(3.20)

the conclusion of Theorem 3 holds.

Since the zero–rate error exponent is upper bounded by the error exponent

obtained with a fixed number of messages (Gallager 1968), whenever Q1 and Q2

satisfy the hypothesis of Theorem 3, no zero–rate coding scheme achieves both an

error exponent equal to EB(0,Q1) on Q1 and an error exponent equal to EB(0,Q2)

on Q2. Stated otherwise, if Q1 and Q2 satisfy the hypothesis of Theorem 3, then no

zero–rate coding scheme achieves on both channels the maximum error exponent

that could be obtained if the channels were revealed to both the transmitter and

the receiver. The following corollary follows:

Corollary 3. Let Q be a family of DMCs such that there exists Q1,Q2 ∈ Q that

satisfy the assumptions of Theorem 3, then ∆(Q ) > 0.

From two–message communication over an unknown channel as described in

this chapter, we conclude that given some family of DMCs Q , in general no zero–

rate coding scheme can achieve the maximum error exponent universally over Q .

Hence the optimality property of certain codes over the family of BSC and Z

channels that was shown in Chapter 2 does not hold for an arbitrary class of

channels. Thus, even with perfect feedback, the fact that the channel is unknown

may result in an error exponent smaller than the best error exponent that could

have been obtained if the channel were revealed to the transmitter and the re-

ceiver (Burnashev 1976).

3.3 Analysis

Proof of Proposition 4. We prove only inequality (3.17). Inequality (3.18) can be

easily derived from (3.17) by exchanging the roles of Q1 and Q2.

Since by hypothesis Q1 and Q2 are distinct, we have K(Q1,Q2) > 0. Hence, if

EN,1T = ∞, then (3.17) trivially holds; hence from now on we make the assumption

that EN,1T < ∞.

Let us define, for all n ≥ 1, the random variables

Zn = ln
PN,1(Y n)

√

PA,1(Y n)PA,2(Y n)
and Sn = Zn −

n
2

K(Q1,Q2) . (3.21)

We first prove that the sequence {Sn}n≥1 forms a supermartingale with respect

to the output symbols Y1,Y2, . . . when this sequence is generated according to PN,1.
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By applying the Stopping Theorem for Supermartingales (see, e.g., (Ross 1996,

Chapter 6)) we will obtain

0≥ EN,1ST (3.22)

which is equivalent to the desired result

D(PN,1||PA,1)+D(PN,1||PA,2) ≤ K(Q1,Q2)EN,1T . (3.23)

By assumption Q1(y|x) > 0 and Q2(y|x) > 0 for all x ∈ X and y ∈ Y . This

implies that K(Q1,Q2) < ∞ and EN,1|Zn| < ∞ for all n ≥ 1, and we deduce that

EN,1|Sn| < ∞ for all n ≥ 1 . (3.24)

To show that {Sn}n≥1 is a supermartingale, note that

E(Zn+1|yn,Q1,N) = zn +E

(

ln
P(Yn+1|yn,Q1,N)

√

P(Yn+1|yn,Q1,A)P(Yn+1|yn,Q2,A)

∣

∣

∣

∣

∣

yn,Q1,N

)

.

(3.25)

Denote by βm
j the probability that Xn+1 = j given yn and that the sent message is

m. It follows that

P(Yn+1 = k|yn,Qi,m) = ∑
j

Qi(k| j)βm
j , (3.26)

and hence

E

(

ln
P(Yn+1|yn,Q1,N)

√

P(Yn+1|yn,Q1,A)P(Yn+1|yn,Q2,A)

∣

∣

∣

∣

∣

yn,Q1,N

)

=
1
2∑

k

(

∑
j

Q1(k| j)βN
j

)

ln
∑ j Q1(k| j)βN

j

∑ j Q1(k| j)βA
j

+
1
2∑

k

(

∑
j

Q1(k| j)βN
j

)

ln
∑ j Q1(k| j)βN

j

∑ j Q2(k| j)βA
j

=
1
2

(

D(P1(β
N)||P1(β

A))+D(P1(β
N)||P2(β

A))
)

(3.27)

with βm , (βm
1 ,βm

2 , . . . ,βm
|X |) and where Pi(β

m) denotes the distribution ∑ j Qi(·| j)βm
j .

Now since Pi(β
m) is linear in βm, by the convexity of the divergence in both of its

arguments (see, e.g., (Cover and Thomas 1991, Theorem 2.7.2)) the function

(βA,βN) 7→ D(P1(β
N)||P1(β

A))+D(P1(β
N)||P2(β

A))

is convex and its maximum occurs at some (βA,βN) where βA and βN have all but

one coordinate equal to zero.5 Therefore we have

max
βA,βN

[D(P1(β
N)||P1(β

A))+D(P1(β
N)||P2(β

A))]

= max
x,x′

[D(Q1(·|x)||Q1(·|x′))+D(Q1(·|x)||Q2(·|x′))]

= K(Q1,Q2) . (3.28)

5Notice that βm is not a function of the channel, it depends only on the coding scheme. In

particular, as shall be clear from the proof of the theorem, Proposition 4 still remains valid if one

considers coding schemes with randomized encoding procedures (which is captured by vectors

βm having at least two nonzero components).
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From (3.25), (3.27) and (3.28) we deduce that EN,1S1 ≤ 0 and that, for all n ≥ 1
and yn,

E(Sn+1|yn,Q1,N) ≤ sn. (3.29)

Hence, from (3.24) and (3.29), the sequence {Sn}n≥1 forms a supermartingale with

respect to Y1,Y2, . . . when this sequence is generated according to PN,1.

We now check that the Stopping Theorem for supermartingales can be applied,

i.e, we verify that E

(
∣

∣

∣
Sn+1−Sn

∣

∣

∣
|S1, . . . ,Sn,Q1,N

)

< k for some constant k < ∞. We

have

E(|Sn+1−Sn| |yn,Q1,N) ≤ K(Q1,Q2)

2

+E

(
∣

∣

∣

∣

∣

ln
P(Yn+1|yn,Q1,N)

√

P(Yn+1|yn,Q1,A)P(Yn+1|yn,Q2,A)

∣

∣

∣

∣

∣

∣

∣

∣
yn,Q1,N

)

.

(3.30)

Then one can easily check that, for any a ∈ Y ,

0 < min
x,y

Qi(y|x) ≤ P(Yn+1 = a|yn,Qi,N) ≤ max
x,y

Qi(y|x) < 1 i ∈ {1,2} (3.31)

and hence, the second term on the right hand side of (3.30) can be upper bounded

by some finite constant for all n ≥ 1. Therefore there exists some k < ∞ such that

E(|Sn+1−Sn||S1, . . . ,Sn,Q1,N) < k (3.32)

for all n ≥ 1. Since by assumption EN,1T < ∞, the Stopping Theorem for super-

martingales yields

0≥ EN,1S1 ≥ EN,1ST . (3.33)

Proof of Theorem 3. The main idea that underlies the proof is the following. In-

formally, from Proposition 4 we will first deduce an upper bound on the sum of

the error exponents that can be obtained by any ω ∈ Ω on two distinct chan-

nels Q1 and Q2. Under the assumption (3.19), this upper bound is smaller than

EB(0,Q1)+EB(0,Q2), which yields the desired result.

Suppose (Ξ ,Γ ,T) is a coding scheme. From Proposition 4 we have

D(PN,1||PA,1)+D(PN,1||PA,2) ≤ K(Q1,Q2)EN,1T (3.34)

D(PN,2||PA,2)+D(PN,2||PA,1) ≤ K(Q2,Q1)EN,2T (3.35)

and by exchanging the roles of A and N we also obtain

D(PA,1||PN,1)+D(PA,1||PN,2) ≤ K(Q1,Q2)EA,1T (3.36)

D(PA,2||PN,2)+D(PA,2||PN,1) ≤ K(Q2,Q1)EA,2T . (3.37)
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From (3.34)-(3.37) we get

D(PN,1||PA,1)+D(PN,2||PA,1)+D(PA,1||PN,1)+D(PA,2||PN,1)

+D(PN,1||PA,2)+D(PN,2||PA,2)+D(PA,1||PN,2)+D(PA,2||PN,2)

≤ 2K(Q1,Q2)E1T +2K(Q2,Q1)E2T (3.38)

where EiT denotes the average decoding when channel Qi is used, i.e., EiT =
1
2(EA,iT + EN,iT ). From (3.38) we infer that at least one of the two following

inequalities must hold:

min{D(PN,1||PA,1)+D(PN,2||PA,1),D(PA,1||PN,1)+D(PA,2||PN,1)} ≤ K(Q1,Q2)E1T
(3.39)

min{D(PN,1||PA,2)+D(PN,2||PA,2),D(PA,1||PN,2)+D(PA,2||PN,2)} ≤ K(Q2,Q1)E2T .

(3.40)

If we now consider any sequence of coding schemes ω = {(Ξi,Γi,Ti)} j≥1 such that

the error probabilities Pi
A,1(N), Pi

A,2(N), Pi
N,1(A) and Pi

N,1(A) vanish as i → ∞, we

have that for each i ≥ 1 at least one of the two following inequalities holds:

min{D(Pi
N,1||Pi

A,1)+D(Pi
N,2||Pi

A,1),D(Pi
A,1||Pi

N,1)+D(Pi
A,2||Pi

N,1)} ≤ K(Q1,Q2)E
i
1T

(3.41)

min{D(Pi
N,1||Pi

A,2)+D(Pi
N,2||Pi

A,2),D(Pi
A,1||Pi

N,2)+D(Pi
A,2||Pi

N,2)} ≤ K(Q2,Q1)E
i
2T .

(3.42)

Thus, at least one of the two inequalities (3.41) and (3.42) holds for infinitely

many i. Suppose that (3.41) holds for infinitely many i. Since by assumption

K(Q1,Q2) < 2maxx,x′ D(Q1(·|x)||Q1(·|x′)), from (3.9), (3.10) and (3.13), (3.14), we

deduce that at least one of the following two inequalities holds:

EA,1(ω) < max
x,x′

D(Q1(·|x)||Q1(·|x′)) EN,1(ω) < max
x,x′

D(Q1(·|x)||Q1(·|x′)) (3.43)

and therefore E(ω,Q1) < maxx,x′ D(Q1(·|x)||Q1(·|x′)). Similarly, if (3.42) holds and

since K(Q2,Q1) < 2maxx,x′ D(Q2(·|x)||Q2(·|x′)), at least one of the following two

inequalities holds:

EA,2(ω) < max
x,x′

D(Q2(·|x)||Q2(·|x′)) EN,2(ω) < max
x,x′

D(Q2(·|x)||Q2(·|x′)) (3.44)

and therefore E(ω,Q2) < maxx,x′ D(Q2(·|x)||Q2(·|x′)).
Hence whenever Q1 and Q2 satisfy the hypothesis of Theorem 3, for any se-

quence of coding schemes ω, either E(ω,Q1) < EB(0,Q1) or E(ω,Q2) < EB(0,Q2).
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Training Based Schemes

When considering information transmission over a channel that is partially known

to either transmitter or receiver, it is common to employ a training sequence. This

sequence is sent prior to the data to be carried and its purpose is to help the decoder

(for channels without feedback) or both the encoder and the decoder (for channels

with feedback) to adjust its/their parameters for the upcoming communication.

For example, in slow fading channels without feedback, a training sequence can be

sent at the beginning of each coherence interval, so that the receiver can estimate

the channel characteristics, and then decode the message on the basis of these

parameters (see, e.g.,(Brehler et al. n.d., Hassibi and Hochwald 2003, Sun et al.

2002, Wong and Park 2004)).

In the framework of feedback communication over an unknown channel, training

based schemes appear to be natural candidates for communication. In principle,

the sending of a training sequence need not affect the rates achievable by the

communication system: the length of the test sequence can be made negligible

compared to the length of the subsequent data sequence. However, and this is the

main concern of this chapter, the separation of the channel estimation from the

information coding results in a penalty in terms of error exponent.

In this Chapter we provide an upper bound on the maximum error exponent

that can be achieved with training based schemes. This bound is typically much

lower than EB(R,Q). For example in the case of binary symmetric channels we

will see that this bound has a slope that vanishes at capacity. This is to be com-

pared with the results in Chapter 2 that demonstrates the existence of codes that

achieve Burnashev’s exponent (which has a nonzero slope at capacity), even though

the channel is not revealed to either the transmitter or the receiver. Hence, the

present result suggests that in terms of error exponent, a good universal feedback

scheme should combine channel estimation with information delivery, rather than

separating them.

This Chapter is organized as follows. Section 4.1 is divided into two parts. In

Section 4.1.1 we propose a definition of a training based scheme for BSCs, provide

an upper bound on the error exponent of any such scheme and compare it with

Burnashev’s exponent. We then draw a few comparisons between training based

schemes and optimal universal schemes studied in Chapter 2. In Section 4.1.2 we
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extend the results to more general classes of channels. Finally in Section 4.2 we

prove our results.

4.1 Main Results

Before we present our results, we would like to mention the work of Feder and

Lapidoth (1998) in which universal decoders for families of channels without feed-

back are considered. They that there exists universal decoders that are optimal in

the sense that they perform (asymptotically) as well, in terms of error exponent,

as the ML decoder tuned for the channel over which transmission is carried out.

In particular they show that the combination of a training sequence and a ML

decoder designed for the estimated channel is not optimal. The results of this

section, while concerning feedback channels, have the same flavor.

4.1.1 Training Sequence Based Schemes for BSCs

Training based schemes have two phases: a first phase of fixed length t, the training

period (or test period), during which the channel parameter is estimated, and a

second phase used to carry information. The choice of the encoder/decoder pair

used for the second phase is based upon the channel estimate that results from the

first phase. Formally we define training based schemes for BSCL, with L∈ [0,1/2),1

as coding schemes that satisfy the following two requirements:

I. Given a set of M messages, a training based scheme S M = (ΦM,ΨM,U(M))

admits a rate function Nt : {0,1}t −→ R+ that associates to each output yt of

the training sequence, the (average) length of the second phase.

II. A sequence of training based schemes {S M = (ΦM,ΨM,U(M))}M≥1 satisfies

for some γ ∈ [0,1) and A < ∞, the conditions U(M) ≤ A lnM for all M ≥ 1
and

lim
M→∞

P

(

lnM
U(M)

= γC(Q)
∣

∣

∣
Q

)

= 1

for all Q ∈ BSCL with capacity C(Q).

A few comments are in order. Requirement I says that a training based scheme

employs for the second phase a code whose rate depends only upon the output of

the test sequence. This condition captures the fact that a training based scheme

separates the channel estimation from the information transmission: one cannot,

for instance, use as second phase a coding scheme with a rate that would adapt

according to the channel under use, implicitly estimating the channel (see Chapter

2). In particular, the decoding time U(M) equals t +Nt . Also without condition I,

it may be possible to first train, then use a variable length code that simply ignores

1We remind that BSCL denotes the set of binary symmetric channels with crossover probability

in the range [0,L].
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the result of the training part while adapting its rate on the run. However notice

that requirement I imposes no restriction on either the channel estimation itself

or the decision that results from it. Moreover, variable length codes can be used

for the second phase provided that, once the training period is over, the average

decoding time is set.

We impose condition II essentially in order to have some control on the rate,

through the “normalized rate” γ, and also to compare training based schemes with

universal coding strategies that do not separate the channel estimation and the

coding part. Finally the restriction that U(M) ≤ A lnM for all M ≥ 1 is a mild

technical requirement if L < 0.5.

From now on and for conciseness ε denotes both the crossover probability and

a BSC with crossover probability ε. For this channel C(ε) denotes its capacity,

i.e., C(ε) = ln2+ε lnε+(1−ε) ln(1−ε). As in Chapter 2, P(E|ε,S M) denotes the

average (over uniformly messages) error probability given that the coding scheme

S M is used upon the channel ε.

Proposition 5. Let L ∈ [0,1/2) and let θ = {S M}M≥1 be a sequence of training

based schemes for BSCL and with parameter γ ∈ [0,1). For every channel ε∈BSCL

limsup
M→∞

− 1
EU(M)

lnP(E|ε,S M) ≤ Etbs(γ,ε) (4.1)

where

Etbs(γ,ε) = min
δ∈[0,ε]

max{D(δ||ε),EB (γC(δ),ε)} . (4.2)

Remark: the function Etbs(γ,ε) satisfies, for all ε ∈ (0,L],

lim
γ↑1

Etbs(γ,ε)

1−γ = 0 . (4.3)

As one may notice, Etbs(γ,ε) is the same function for any value of L ∈ [0,0.5).

In Figure 4.1, we plot for two channels (ε = 0.1 and ε = 0.4) the function

R 7→ Etbs(R/C(ε),ε) (lower curve) and R 7→ EB(R,ε) (upper line). In particular

in the case ε = 0.1, we observe a regime change of Etbs(γ,0.1) at a value of γ

approximatively equal to 0.27. This will be briefly discussed after the proof of

Proposition 5.

In contrast with the universal coding schemes exhibited in Chapter 2, training

based schemes do not achieve Burnashev’s exponent for BSCs. While feedback

increase capacity, Burnashev’s result tells us that feedback is of particular help at

rates close to capacity: a little drop in the rate results in a linear augmentation of

the error exponent. Training based schemes fail precisely in having this property:

the slope of their error exponent equals zero at capacity. Hence, in terms of

maximum achievable error exponent at rates close to capacity, an important feature

of feedback is lost and the situation becomes essentially the same as if the channel
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Figure 4.1: Upper bound on the error exponent of training based schemes (lower

curve) and Burnashev’s error exponent (upper line).

were revealed to either transmitter or receiver and no feedback were available. Also

we may draw a parallel between feedback communication over a known BSC and an

unknown BSC. In the first case, Dobrushin (1963) showed that, the restriction to

fixed length block codes results in an error exponent limited by the sphere packing

bound,2 hence having zero slope at capacity. In the second case, the restriction

to training based schemes also results in an error exponent that has zero slope at

capacity, even though training based schemes allow variable length codes.

Thus, informally, for BSCs, a necessary condition on a universal coding scheme

to achieve Burnashev’s exponent is that it has to be variable length and must

combine information conveying with channel estimation.

4.1.2 General Case

In this section we handle the case where Q is an arbitrary set of DMCs that have

the same input alphabet X and same output alphabet Y . The requirements I and

II of Section 4.1.1 are generalized as follows.

I. Given a set of M messages, a training based scheme S M = (ΦM,ΨM,U(M))

admits a rate function Nt : {0,1}t −→ R+ that associates to each output yt of

the training sequence, the (average) length of the second phase. During the

test period, each input symbol x ∈ X is trained a fixed number of times.

The second requirement remains unchanged:

II. A sequence of training based schemes {S M = (ΦM,ΨM,U(M))}M≥1 satisfies,

for some γ ∈ [0,1) and A < ∞, the conditions U(M)≤A lnM < ∞ for all M ≥ 1
and

lim
M→∞

P

(

lnM
U(M)

= γC(Q)
∣

∣

∣
Q

)

= 1

2The result remains true for symmetric channels.
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for all Q ∈ Q with capacity C(Q).

Theorem 4. Let Q be a family of DMCs that have the same input alphabet X

and same output alphabet Y , and let θ = {S M}M≥1 be a sequence of training based

schemes for Q , and with parameter γ ∈ [0,1). For every channel Q ∈ Q

limsup
M→∞

− 1
EU(M)

lnP(E|Q,S M) ≤ Etbs(γ,Q) (4.4)

where,

Etbs(γ,Q) = min
V∈A(Q)

1
C(V )

max

{

max
x∈X

D(V (·|x)||Q(·|x)),EB(γC(V),Q)

}

. (4.5)

with A(Q) , {W ∈ Q : C(W ) ≥C(Q)}.

It can be checked that if Q = BSCL then Theorem 4 reduces to Proposition 5.

Let us illustrate the above Theorem with an example. Let L ∈ [0,1) and let ZL

be the set of Z channels with crossover probabilities ε ∈ [0,L]. Pick a particular

channel Q ∈ ZL with nonzero crossover probability. One can find a γ ∈ [0,1) suffi-

ciently close to 1 as well as a channel W ∈ ZL such that γC(W ) > C(Q). Therefore

we have

Etbs(γ,Q) , min
V∈A(Q)

1
C(V)

max

{

max
x∈X

D(V (·|x)||Q(·|x)),EB(γC(V ),Q)

}

≤ 1
C(W)

max

{

max
x∈X

D(W (·|x)||Q(·|x)),EB(γC(W),Q)

}

=
1

C(W)
max
x∈X

D(W(·|x)||Q(·|x))

< ∞ (4.6)

where the equality holds because EB (γC(W),Q) = 0 since Burnashev’s exponent

vanishes above capacity, and where the last inequality holds since Q has a nonzero

crossover probability. Hence, training based schemes for the ZL family have a

finite error exponent for any Q ∈ ZL with nonzero crossover probability, and for γ

sufficiently close to 1. This is in contrast with Theorem 2 (p.21) that claims that

given the family ZL, with L∈ [0,1), and any constant γ ∈ [0,1), there exists a coding

schemes that achieve a rate equal to γC(Q) and a corresponding error exponent

equal to Burnashev’s, in this case equal to ∞, for every channel Q ∈ ZL. Hence, we

deduce that for the BSCs and Z channels, training based schemes perform clearly

suboptimally. However training based schemes may be combined with a 2–message

communication phase to form a two–phase coding scheme,3 which in certain cases

yields Burnashev’s exponent.

We now refer to the remark that ends Chapter 2 and consider an alternative

proof to Theorem 1 (Chapter 2, p.20) that makes use of training based schemes.

3We refer the reader to Chapter 2 where two–phase coding schemes are studied.
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Theorem 1 (p.20) is proved by considering two–phase coding schemes. In par-

ticular we used Proposition 2 (Chapter 2, p.18) that claims the existence of coding

schemes, which we used for the first phase, that achieve an error exponent equal to

C(Q)−R with R = C(Q)/α, uniformly over the family BSCL, for any α> 1. How-

ever, as follows from the proof of the theorem, the error exponent of the first phase

coding scheme is irrelevant: what is important is to be able to achieve capacity.

Hence, let us keep the second phase of 2–message communication and replace the

first phase by a training based scheme. After the training period, transmitter and

receiver communicate using a fixed length block code together with the maximum

likelihood decoder designed (i.e., yielding low error probability) for the empiri-

cal channel that results from the training. It may be easily checked that such a

training based scheme can achieve a rate R = C(Q)/α uniformly over BSCL, for

any α> 1. Hence the two–phase scheme where the first phase is a training based

scheme, achieves Burnashev’s exponent at a rate that is controlled as stated in

Theorem 1.

A similar argument as above holds for Theorem 2 (p.21) that concerns the

family ZL. By using using a training based scheme followed by a 2–message coding

scheme, it is possible to achieve Burnashev’s exponent at a rate that is controlled

as stated in Theorem 2. Therefore, in this case we found a two–phase strategy

that yields the same performance as the coding scheme that results from the con-

catenation of two two–phase schemes (see proof of Theorem 2 p. 41).

The reader may want to ask why we did not immediately use the above argu-

ments to prove Theorems 1 and 2, which clearly renders these proofs simpler. The

reason is the following. A codebook for a channel with feedback is a set of sequences

of functions {{Xn(m,Y n−1)}n≥1}M
m=1. As mentioned above, Proposition 2 proves the

existence of coding schemes that achieve an error exponent equal to C(Q)−R uni-

formly over the family BSCL. A look at its proof reveals that such universal codes

can be written simply as {{xn(m)}n}M
m=1 instead of {{Xn(m,Y n−1)}n≥1}M

m=1. In

other words, the universal codebook of Proposition 2 is composed by M infinite

sequences of digits, that are not functions of the received symbols, i.e., do not make

use of feedback. Stated otherwise, the encoder knows, before communication starts

which symbol will be sent at any time, unless the decoder makes a decision previ-

ously. If we use training based schemes instead, at the end of the test period, the

encoder needs to have a large set of available codebooks for the different channel

estimates, which is complex. For this reason we preferred to prove Theorems 1

and 2 with a method that does not involve training based schemes, and which we

found also more elegant.

4.2 Analysis

Proof of Proposition 5. We show that in order to fulfill requirement II, the rate

function has to “strongly” rely on the empirical channel Q̂yt |xt that results from
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the training period. More precisely, condition II requires the length of the second

phase to be approximatively lnM
γC(Q̂yt |xt )

− t. Due to the fact that the rate function’s

decision is essentially based on the empirical channel, a large probability of error

occurs because of atypical behaviour of the channel during training, which yields

the desired result. Without loss of generality we make the following assumptions:

- the training sequence is the all-zero sequence,

- the length of the training sequence t = t(γ,L,M) tends to infinity as M tends

to infinity.

That the first assumption is without loss of generality is clear. Now consider a

training sequence of length t with a particular rate function. On the one hand,

to any longer training sequence, one can associate the same rate function that

depends only on the results of the first t output symbols. On the other hand,

letting t(γ,L,M) grow sub-logarithmically in M, one can render the contribution

of the testing part to the overall rate equal to zero in the limit M → ∞. Therefore

assuming the training sequence length to grow with M has asymptotically no effect

on the rate and error probability, thus also no effect on the reliability function,

which justifies the second assumption.

We define two coding schemes S M and S ′M to be equivalent over BSCL if

R(S M,ε) = R(S ′M,ε) and P(E|ε,S M) = P(E|ε,S ′M) (4.7)

for all ε ∈ BSCL. Hence, two sequences of coding schemes θ = {S M}M≥1 and

θ′ = {S ′M}M≥1, where S M and S ′M are equivalent for all M ≥ 1, yield

limsup
M→∞

− 1
EU(M)

lnP(E|ε,S M) = limsup
M→∞

− 1
EU ′(M)

lnP(E|ε,S ′M) (4.8)

for every ε ∈ BSCL.

Let S M be a training based scheme with Nt as rate function. Let K , ∑t
i=1Yi

and consider the randomized rate function NK,t defined as follows: if ∑t
i=1 yi = k,

choose with probability 1/
(n

k

)

a sequence vt out of the
(n

k

)

sequences that satisfy

∑t
i=1vi = k, and set NK,t = Nt(vt). If we replace the rate function Nt in S M by

NK,t , a little thought reveals that S M and S ′M are equivalent.4 From now and for

convenience, we will consider S ′M instead of S M and assume that communication

is carried out over some BSC ε with ε ∈ (0,L], postponing the case ε = 0. The

virtue of NK,t is that it depends only on ∑t
i=1 yi.

Fix η ∈ (0,1/2) and define the two quantities

N (ε, t) =

{

yt ∈ {0,1}t :
∣

∣

∣

1
t

t

∑
i=1

yi −ε
∣

∣

∣
≤ 1

tη

}

S(ε,µ, t) =

{

yt ∈ {0, t}t : P

(

Nw(yt),t >
lnM
γC(ε)

− t

)

> µ

}

(4.9)

4S ′M has now a randomized decision time equal to t + NK,t
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where w(yt) , ∑t
i=1 yi. For the moment the parameter µ is chosen such that 0 <

µ� 1.

We now will compute a lower bound on P(E|ε,S M) that will later be used to

compute the desired bound on the reliability function. Pick some δ ∈ [0,ε]. We

will obtain a lower bound on P(E|ε,S M) by restricting ourselves to the case where

Y t lies in Sc(δ,µ, t)∩N (δ, t). We have

P
(

E ∩{Y t ∈ Sc(δ,µ, t)∩N (δ, t)}|ε,S ′M
)

= P
(

Y t ∈ Sc(δ,µ, t)∩N (δ, t)|ε,S ′M
)

P
(

E
∣

∣Y t ∈ Sc(δ,µ, t)∩N (δ, t),ε,S ′M
)

= P
(

Y t ∈ Sc(δ,µ, t)∩N (δ, t)|ε
)

P
(

E
∣

∣Y t ∈ Sc(δ,µ, t)∩N (δ, t),ε,S ′M
)

. (4.10)

where the last equality of (4.10) holds since, for training based schemes, during

the test period the same symbol (“0”) is sent irrespectively of the channel output.

Therefore Y t only depends on the channel ε.

In the following three subsections below we will derive lower bounds on

P
(

Y t ∈ Sc(δ,µ, t)∩N (δ, t)|ε
)

and P
(

E
∣

∣Y t ∈ Sc(δ,µ, t)∩N (δ, t),ε,S ′M
)

and combine these bounds to prove the theorem.

- From requirement II, P(Y t ∈ Sc(δ,µ, t)|δ) t→∞−→ 1. Since we have also P(Y t ∈
N (δ, t)|δ) t→∞−→ 1, it follows that

P
(

Y t ∈ Sc(δ,µ, t)∩N (δ, t)|δ
) t→∞−→ 1 . (4.11)

Now an event of high probability under measure P(·|δ) cannot have too small

a probability under P(·|ε). In particular, combining (4.11) with the data

processing inequality for divergence5 yields

P
(

Y t ∈ Sc(δ,µ, t)∩N (δ, t)|ε
)

≥ e−tD(δ||ε)(1+o(1)) . (4.12)

- Since the length of the second phase only depends on the output of the

training period (requirement I), we have

E

(

U ′(M)
∣

∣

∣
Y t ∈ Sc(δ,µ, t)∩N (δ, t),S ′M,ε

)

= E

(

U ′(M)
∣

∣

∣
Y t ∈ Sc(δ,µ, t)∩N (δ, t)

)

. (4.13)

By definition we have, for any yt ∈ Sc(δ,µ, t),

P

(

Nw(yt),t ≤
logM
γC(δ)

− t

)

> µ . (4.14)

5See footnote 4 in Chapter 3, set Ω = {0,1}t, B = Sc(δ,µ,t)∩N (δ, t), P1 = P(·|ε) and P2 = P(·|δ)
in (3.6).
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Hence, since the requirement II yields U ′(M) ≤ A lnM < ∞ for all M ≥ 1, we

have

E

(

U ′(M)
∣

∣

∣
Y t ∈ Sc(δ,µ, t)∩N (δ, t)

)

≤ µA lnM +
lnM
γC(δ)

≤ lnM
γC(δ)

(1+ν) (4.15)

where ν , µA. Notice that since µ > 0 is arbitrary, ν can be rendered arbi-

trarily small.

From (4.15), the average length of the second phase, conditioned on the event

that Y t ∈ Sc(δ,µ, t)∩N (δ, t), is at most lnM
γC(δ) (1+ν)− t. Now, since feedback

is available, the maximum achievable error exponent at a rate R over some

BSC with crossover probability ε is given by EB(R,ε) = D(ε||ε̄)(1−R/C(ε)).

Therefore letting the second phase be carried by a code of length lnM
γC(δ)(1+

ν)− t that achieves Burnashev’s exponent, we get

P
(

E |Y t ∈ Sc(δ,µ, t)∩N (δ, t),ε,S ′M
)

≥ e
−
(

lnM
γC(δ)

(1+ν)−t
)

(

EB

(

lnM
lnM

γC(δ)
(1+ν)−t

,ε

)

+o(1)

)

. (4.16)

- Combining (4.10), (4.12) and (4.16), one obtains

− lnP(E|ε,S ′M)

≤ t(D(δ||ε)+o1(1))

+

(

lnM
γC(δ)

(1+ν)− t

)

(

EB

(

lnM
lnM

γC(δ) (1+ν)− t
,ε

)

+o2(1)

)

(4.17)

where oi(1) → 0 as M → ∞. From condition I, we have EU ′(M) = lnM
γC(ε)(1+

o(1)). Hence from (4.17) we have

− 1
EU ′(M)

lnP(E|ε,S ′M)

≤
C(ε)

[

(1−αM)D(δ||ε)(1+o1(1))+αM

(

EB

(

γC(δ)
αM(1+ν) ,ε

)

+o2(1)
)]

C(δ)(1+o3(1))

(4.18)

where αM = αM(γ,δ,ν) ,
lnM

γC(δ)
(1+ν)−t

lnM
γC(δ)

(1+ν)
.

Since 0≤ αM ≤ 1 and since ν > 0 can be made arbitrarily small, taking the

limsupM→∞ on both sides of (4.18) we have

limsup
M→∞

− 1
EU ′(M)

lnP(E|ε,S ′M)

≤ C(ε)

C(δ)
max

α∈[0,1]

[

(1−α)D(δ||ε)+αEB

(

γC(δ)

α
,ε

)]

(4.19)
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where the right hand side is now independent of {S ′M}M≥1. Since δ ∈ [0,ε]

is arbitrary, we may minimize the right hand side of (4.19) and obtain

limsup
M→∞

− 1
EU ′(M)

lnP(E|ε,S ′M)

≤C(ε) min
δ∈[0,ε]

1
C(δ)

max
α∈[0,1]

[

(1−α)D(δ||ε)+αEB

(

γC(δ)

α
,ε

)]

. (4.20)

If ε= 0, the term in brackets in (4.20) becomes EB(γ,ε) which is clearly an

upper bound on the error exponent of any feedback scheme that yields a rate

equal to γ ln2 on the channel ε. Therefore (4.20) also holds for ε= 0.

Now observe that the term in squared bracket in (4.20) is convex in α, hence

is maximized at either α= 0 or α= 1. Therefore we have

limsup
M→∞

− 1
EU ′(M)

lnP(E|ε,S ′M)

≤C(ε) min
δ∈[0,ε]

1
C(δ)

max
α∈{0,1}

[

(1−α)D(δ||ε)+αEB

(

γC(δ)

α
,ε

)]

= C(ε) min
δ∈[0,ε]

1
C(δ)

max{D(δ||ε),EB (γC(δ),ε)} (4.21)

for all ε ∈ [0,L].

The bound Etbs we derived is based on the fact that the true channel might

behave like a better channel during the training period, and an error is made in

part because a code is designed for a better channel than the actual. In particular,

given a channel ε, Etbs(γ,ε) is computed only on the basis of the subsets of channels

in BSCL that have a higher capacity than ε.

Before we prove the remark following Proposition 5, we examine Figure 4.1

and note that the function Etbs(γ,0.1) admits a regime change at a value close

to 0.27. One can show that for γ below this threshold, Etbs(γ,0.1) = EB(γC(δ),ε)

whereas for γ above this threshold, Etbs(γ,0.1) = D(δ||ε). In the light of the proof

of Proposition 5, this regime change can be explained as follows. Etbs has been

obtained by computing a lower bound on the error probability of training based

schemes. For γ & 0.27 this bound is dominated by the event that the channel

behaves atypically, whereas for γ . 0.27 this bound is dominated by the error made

in the message transmission phase, given that the channel behaves atypically.

To prove the remark that the error exponent has zero slope at capacity we

proceed as follows. Pick some ε ∈ (0,L] and some γ ∈ [0,1). We refer the reader to

Figure 4.2 in which we draw D(δ||ε) and EB(γC(δ),ε) as functions of δ. The value

δ∗(γ) is defined as the value of δ such that

D(δ||ε) = EB(γC(δ),ε) . (4.22)
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D(δ||ε)
EB(γC(δ),ε)

ε
δ

δ∗(γ)

Figure 4.2: Given γ ∈ [0,1), Etbs(γ,ε) = D(δ∗(γ)||ε).

One can easily check that δ∗(γ) satisfies

Etbs(γ,ε) = min
δ∈[0,ε]

max{D(δ||ε),EB (γC(δ),ε)} = D(δ∗(γ)||ε) . (4.23)

Now EB (γC(δ),ε) is concave in the range of δ for which EB (γC(δ),ε) is positive.

Hence one can easily deduce that

ε− δ∗(γ) ≤ EB(γC(ε),ε)
dEB(γC(δ),ε)

dδ

∣

∣

∣

δ=ε

= (1−γ) C(ε)

γ ln 1−ε
ε

. (4.24)

On the other hand as γ ↑ 1 the quantity δ∗(γ) tends to ε. Since D(δ∗(γ)||ε) =

O((ε− δ∗(γ))2), using (4.23) and (4.24) gives

0≤ lim
γ↑1

Etbs(γ,ε)

1−γ

= lim
γ↑1

O((ε− δ∗(γ))2)

1−γ

≤ lim
γ↑1

C(ε)2

γ2
(

ln 1−ε
ε

)2O(1−γ)

= 0 . (4.25)

Proof of the Theorem 4: The proof goes along the lines of the BSC case studied

in the previous section. We shall therefore mention only the important steps.

Let tx = tx(γ,Q ,M) denote the fraction of the training period dedicated to

train the input symbol x, i.e. the input symbol x is trained t · tx times. We may

assume w.l.o.g. that t · tx tends to infinity as M tends to infinity, for each x ∈ X .

Let S M be a training based scheme with Nt as rate function. We consider S ′M

the equivalent scheme to S M over Q , obtained from S M by replacing Nt with a

randomized rate function NW,t that only depends on the conditional empirical type



70 Training Based Schemes

W ∈ P t(Y
t |xt).6 We assume that communication is carried over a channel Q such

that C(Q) 6= maxW∈Q C(W ) and postpone the case where C(Q) = maxW∈Q C(W ).

Define the two quantities

N (Q, t) =

{

W ∈ P t(Y
t |xt) : |W(y|x)−Q(y|x)| ≤ 1

(t · tx)η
for all y ∈ Y ,x ∈ X

}

S(Q,µ, t) =

{

yt ∈ Y t : P

(

NW,t >
lnM
γC(Q)

− t

)

> µ where W = Q̂yt |xt

}

(4.26)

where η is some constant in (0,1/2) and where µ is chosen so that 0 < µ� 1.

Pick a channel V in the set

A(Q) , {W ∈ Q : C(W) ≥C(Q)} . (4.27)

We have

P
(

E ∩{Y t ∈ Sc(V,µ, t)∩N (V, t)}|Q,S ′M
)

= P
(

Y t ∈ Sc(V,µ, t)∩N (V, t)|Q
)

P
(

E
∣

∣Y t ∈ Sc(V,µ, t)∩N (V, t),Q,S ′M
)

. (4.28)

- As for the BSC case, we deduce that

P
(

Y t ∈ Sc(V,µ, t)∩N (V, t)|V
) t→∞−→ 1 (4.29)

and using the data processing inequality for divergence, we obtain

P
(

Y t ∈ Sc(V,µ, t)∩N (V, t)|Q
)

≥ e−t ∑x∈X txD(V (·|x)||Q(·|x))(1+o(1)) . (4.30)

- From requirement II we get

E

(

U ′(M)
∣

∣

∣
Y t ∈ Sc(V,µ, t)∩N (V, t)

)

≤ lnM
γC(V )

(1+ν) (4.31)

where ν , µA.

Since Burnashev’s exponent yields a lower bound to the error probability of

the second phase, we infer

P
(

E |Y t ∈ Sc(V,µ, t)∩N (V, t),Q,S ′M
)

≥ e
−
(

lnM
γC(V) (1+ν)−t

)

(

EB

(

lnM
lnM

γC(V)
(1+ν)−t

,Q

)

+o(1)

)

(4.32)

6P t(Y
t |xt) denotes the set of all empirical channels that might be observed during the training

period. The randomized rate function NW,t acts as follows. Suppose that yt yields {Q̂x}x∈X as the

|X | empirical distributions obtained at the output and that correspond to the sending of each

input symbol. Let vt be defined as follows. For each x ∈ X , among all sequences of length t ·tx that

have Q̂x as empirical distributions, pick one randomly and uniformly. The sequence vt is then

obtained by concatenating each of these randomly chosen sequences. Finally set NW,t = Nt(vt).
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- Combining (4.28), (4.30) and (4.32) one obtains

− lnP(E|Q,S ′M) ≤ t ∑
x∈X

txD(V (·|x)||Q(·|x))(1+o1(1))

+

(

lnM
γC(V )

(1+ν)− t

)

(

EB

(

lnM
lnM

γC(V ) (1+ν)− t
,Q

)

+o2(1)

)

. (4.33)

Since EU ′(M) = lnM
γC(Q)(1+o(1)), from (4.33) we have

− 1
EU ′(M)

lnP(E|Q,S ′M)

≤
C(Q)

[

(1−αM)∑x∈X txD(V (·|x)||Q(·|x))(1+o1(1))+αM

(

EB

(

γC(V )
αM(1+ν)

,Q
)

+o2(1)
)]

C(V )(1+o3(1))

≤
C(Q)

[

(1−αM)maxx∈X D(V (·|x)||Q(·|x))(1+o1(1))+αM

(

EB

(

γC(V )
αM(1+ν) ,Q

)

+o2(1)
)]

C(V)(1+o3(1))

(4.34)

where αM = αM(γ,V,ν) ,
lnM

γC(V) (1+ν)−t
lnM

γC(V) (1+ν)
, and where oi(1) → 0 as M → ∞, i =

1,2,3. Taking the limsupM→∞ on both sides of (4.34), we conclude that

limsup
M→∞

− 1
E(U ′(M))

lnP(E|Q,S ′M)

≤C(Q) min
V∈A(Q)

1
C(V )

max

{

max
x∈X

D(V (·|x)||Q(·|x)),EB(γC(V),Q)

}

, (4.35)

proving the theorem.



5

Reliability and Latency in

Binary Communication

In the previous chapters, the emphasis was upon the notion of maximum achiev-

able error exponent, which addresses the question (for large message sets) of find-

ing coding schemes that minimize the error probability given a certain codeword

length.

Here the approach differs somewhat in that we would like to minimize simulta-

neously delay and error probability. Let us motivate this outlook with an example.

Suppose a customer wants to communicate to his stock broker either to buy or to

sell a particular security. We assume that a penalty is associated to a misunder-

standing and at the same time the customer, say, in order to maximize his profit,

wants to minimize the time it takes to send the message. The goals of being

fast and being reliable are clearly contradictory, and we aim to investigate their

trade-off.

We shall consider a very simple situation of two message communication over

a known channel with feedback. We propose a simple decoding rule, and show

that it minimizes a weighted combination of the probability of error and decoding

delay for a certain range of crossover probabilities and combination weights.

The results presented in this chapter are narrow in scope, but provide a contrast

with the ones of the previous chapters where the notion of error exponent is central.

5.1 Two Message Communication

We assume that communication is carried out over a BSC with known crossover

parameter ε and perfect and instantaneous feedback. The transmitter chooses

randomly one of two equally likely messages A and N and starts sending the all-

zero sequence x(A) = 0,0, . . . or the all-one sequence x(N) = 1,1, . . . respectively,

until the decoder makes a decision. By means of feedback, the transmitter knows

when to stop.

At each instant n, the receiver computes the maximum likelihood probability

of error P(E|ε,yn) given the received symbols yn. We define the cost of decoding
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at time n with the observation yn as

f α,ε,ρ(yn) , αP(E|ε,yn)ρ +n, (5.1)

where α> 0 and 0< ρ≤ 1 are fixed constants parameterizing the penalty should a

message be wrongly decoded. Our aim is then to find a decoding rule minimizing

the expected value of this objective function. More precisely let T be the set of all

stopping times relative to the output sequence Y1,Y2, . . .. We say that a stopping

time T ∗ ∈ T is optimal if it satisfies

inf
T∈T

E( f α,ε,ρ(Y T )) = E( f α,ε,ρ(Y T ∗
)) (5.2)

From now on and without loss of generality, T is restricted to the set of all stopping

times T such that E( f α,ε,ρ(Y T )) < ∞, i.e., such that E(T ) < ∞.

We shall consider only the case 0≤ ε≤ 1
2. The situation 1

2 < ε≤ 1 is obtained

by symmetry.

5.1.1 A General Solution

Dynamic Programming (Chow et al. 1971, Bertsekas 1995) provides us with a

general tool that allows us to compute formally the stopping time that satisfies

(5.2).

Theorem 5. Fix α> 0, 0≤ ρ≤ 1 and 0≤ ε≤ 1
2. Let N be a fixed positive integer.

Define first successively γN
N , γN

N−1, . . ., γN
1 by setting

γN
N , f α,ε,ρ(Y N)

γN
n , min{ f α,ε,ρ(Y n),E(γN

n+1|Y n)} n = N −1, . . . ,1. (5.3)

Next, define

γn , lim
N→∞

γN
n for all n = 1,2, . . . (5.4)

and set

T d p , inf{n ≥ 1 : f α,ε,ρ(Y n) = γn} . (5.5)

Then,

inf
T∈T

E( f α,ε,ρ(Y T )) = E( f α,ε,ρ(Y T dp
)) . (5.6)

The solution given by Theorem 5 is difficult to handle. The difficulty lies in the

fact that, at each instant n, this stopping rule compares the current value of the

objective function with values that may happen in the infinite future. Moreover,

there is no simple recursive relation between f α,ε,ρ(yn) and f α,ε,ρ(yn+1).
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5.1.2 A Short Sighted Optimal Strategy

Consider now a stopping rule that compares the current value of the objective

function to the expected value of the objective if it had stopped at the next step,

and stops if the current value is better. This rule is in general suboptimal since

it compares the current value only against a horizon that is one step ahead. The

advantage of such a short sighted rule lies in its simplicity. Nonetheless, there are

cases when it is best to be short sighted:

Theorem 6. Let T o be the stopping time defined as

T o , inf
{

n ≥ 1 : E
(

f α,ε,ρ(Y n+1)− f α,ε,ρ(Y n)
∣

∣ Y n)> 0
}

and let u(ε) , 1−ε
ε

.

I. For any 0 < ρ< 1, and any (α,ε) such that

α≥ max

{

1
ερ−21−ρε(1−ε)− (ε2+(1−ε)2)1−ρε2ρ

,
2ρ

1−2ρερ

}

and

0 < α≤ min

{

2(1+u(ε)2)ρ,
(1+u(ε)2)ρu(ε)ρ

u(ε)ρ−1

}

,

T o is optimal.

II. For any 0 < ρ< 1, and any (α,ε) such that

2ρ

1−2ρερ
≤ α<

1
ερ−21−ρε(1−ε)− (ε2+(1−ε)2)1−ρε2ρ

and

0 < α≤ min

{

(1+u(ε))ρ,
(1+u(ε))ρu(ε)ρ

u(ε)ρ−1

}

,

T o is optimal.

III. For ρ= 1 and any (α,ε) satisfying

0 < α≤ 1
1
2 −ε

,

T o is optimal.

5.2 Analysis

Lemma 7. For any BSC with crossover probability 0≤ ε ≤ 1
2 and any output se-

quence yn, the maximum likelihood probability of error is given by

P(E|ε,yn) = [1+u(ε)|n−2wn|]−1 . (5.7)

with u(ε) = 1−ε
ε

and wn , ∑n
i=1yi.
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Proof. By defining u(ε) = 1−ε
ε , the probability of x(0) conditioned on a received

sequence yn is given by

P(x(0)|yn) =
P(yn|x(0))

P(yn|x(0))+P(yn|x(1))
= [1+u(ε)2wn−n]−1 (5.8)

where the first equality holds because the two messages are equiprobable. In the

same way we have

P(x(1)|yn) = [1+u(ε)n−2wn]−1 . (5.9)

First assume that 0≤ ε< 1
2. Since u(ε) > 1, if wn < n

2, then P(x(0)|yn) > P(x(1)|yn)

and if wn > n
2, then P(x(0)|yn) < P(x(1)|yn). Hence from (5.8) and (5.9), the maxi-

mum likelihood decoding error probability for a received sequence yn with wn 6= n
2

is given by,

P(E|ε,yn) = [1+u(ε)|n−2wn|]−1 (5.10)

If wn = n
2, then P(x(0)|yn) = P(x(1)|yn) so that P(E|ε,yn) = 1

2 and therefore (5.10)

holds for any 0≤ wn ≤ n.

For ε = 1
2, P(x(0)|yn) = P(x(1)|yn) for any wn ∈ [0, . . . ,n]. The probability of

error is equal to 1
2 no matter what is received, implying that (5.7) also holds for

ε= 1
2.

Proof of Theorem 5: Fix α > 0, 0≤ ρ ≤ 1 and 0≤ ε ≤ 1
2. Since the cost function

is the sum of a bounded term αP(E|ε,Yn)ρ and a nonrandom linear term n, from

standard results in dynamic programming (see, e.g., Theorem 4.4 (Chow et al.

1971)) we conclude that

inf
T∈T

E( f α,ε,ρ(Y T )) = E( f α,ε,ρ(Y T dp
)) . (5.11)

Proof of Theorem 6: First we prove that, for any α> 0, 0≤ ε≤ 1
2 and any 0≤ ρ≤

1, if S≤ T o, then necessarily E( f α,ε,ρ(Y T o
))≤E( f α,ε,ρ(Y S)). Let qn , f α,ε,ρ(Y n∧T o

).

By definition of T o, {qn}n≥1 is a supermartingale. It follows that EqT o ≤ EqS for

any S ∈ T , or equivalently that E( f α,ε,ρ(Y T o
)) ≤ E( f α,ε,ρ(Y S)) for any S ≤ T o.

Statements I and II are proved in a similar way. We consider the noncausal

“clairvoyant” strategy T cl defined by

f α,ε,ρ(Y T cl
) , min

j≥0
f α,ε,ρ(Y T o+ j) . (5.12)

In other words, T cl ≥ T o and once T o stops, T cl may stop at a future time that

would achieve a lower cost than f α,ε,ρ(Y T o
).1 It follows that, for any S ∈ T ,

E

(

f α,ε,ρ(Y S)
)

≥ E( f α,ε,ρ(Y T cl
)) . (5.13)

1Clearly T cl is not a stopping time.
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We finally prove that under the hypothesis I and II, we have T cl = T o, yielding the

desired result. For statement III, we show that { f α,ε,ρ(Y n)}n≥1 is a submartingale,

and since T o = 1, T o is optimal.

For convenience, we write dn for |n−2wn|.

I. It is easy to check that for any yn with dn = 1,

E
(

f α,ε,ρ(Y n+1)− f α,ε,ρ(Y n)
∣

∣ yn)= 1+α[21−ρεε̄−ερ +(ε2+ ε̄2)1−ρε2ρ] ,

(5.14)

and, for any yn with dn = 0,

E
(

f α,ε,ρ(Y n+1)− f α,ε,ρ(Y n)
∣

∣ yn)= 1+α

[

ερ− 1
2ρ

]

. (5.15)

Hence under the assumption that

α≥ max

{

1
ερ−21−ρε(1−ε)− (ε2+(1−ε)2)1−ρε2ρ

,
2ρ

1−2ρερ

}

, (5.16)

from (5.14) and (5.15) we deduce that E
(

f α,ε,ρ(Y n+1)− f α,ε,ρ(Y n)
∣

∣ yn
)

≤ 0
for any yn with dn = 0 or dn = 1. Therefore from the definition of T o, if T o = n
then necessarily dn ≥ 2, and thus from Lemma 7 we have P(E|ε,YT o

)≤ 1
1+u(ε)2 .

Now since T cl < f α,ε,ρ(Y T o
), it follows that

T o ≤ T cl < T o +αP(E|ε,YT o
)ρ . (5.17)

Hence,

T o ≤ T cl < T o +α
1

(1+u(ε)2)ρ
. (5.18)

If in addition to satisfying (5.16), α also fulfills the condition

α≤ 2(1+u(ε)2)ρ , (5.19)

from (5.18) the clairvoyant policy stops either at n or n +1. We now prove

that if

α≤ (1+u(ε)2)ρu(ε)ρ

u(ε)ρ−1
, (5.20)

then the clairvoyant policy will stop at n. A straightforward computation

yields,

f α,ε,ρ(yn)− f α,ε,ρ(yn,yn+1) ≤ α

(

1
(1+u(ε)dn)ρ

− 1
(1+u(ε)dn+1)ρ

)

−1

= α
1

(1+u(ε)dn)ρ

(

1−
(

1+u(ε)dn

1+u(ε)dn+1

)ρ
)

−1

≤ α
1

(1+u(ε)2)ρ

(

1− 1
u(ε)ρ

)

−1 , (5.21)
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where the last inequality follows from the fact that dn ≥ 2 and
1+u(ε)x

1+u(ε)x+1

decreases with increasing values of x, thus
1+u(ε)x

1+u(ε)x+1 is minimized by taking

the limit x → ∞.

Finally imposing the right hand side of the last inequality of (5.21) to be

negative is equivalent to (5.20). Thus, under the assumptions (5.16), (5.19)

and (5.20), T o is optimal.

II. Under the assumption

2ρ

1−2ρερ
≤ α<

1
ερ−21−ρε(1−ε)− (ε2+(1−ε)2)1−ρε2ρ

, (5.22)

we have E
(

f α,ε,ρ(Y n+1)− f α,ε,ρ(Y n)
∣

∣ yn
)

> 0 for any yn with dn = 1. There-

fore T o stops at n = 1. Since P(E|ε,YT o
)ρ = 1

(1+u(ε))ρ , it follows from (5.17)

that

1≤ T cl < 1+α
1

(1+u(ε))ρ
. (5.23)

If α≤ (1+u(ε))ρ, we conclude that T cl = T o, i.e., T o is optimal.

III. We prove that { f α,ε,ρ(Y n)}n≥1 is a positive submartingale.

Since we assume that ρ= 1, we readily have

E( f α,ε,ρ(Y n+1)− f α,ε,ρ(Y n)|yn)

= 1+αE(P(E|ε,Yn+1)−P(E|ε,Yn)|yn))

= 1+α [P(Yn+1 = 0|yn)P(E|ε,yn,Yn+1 = 0)

+ P(Yn+1 = 1|yn)P(E|ε,yn,Yn+1 = 1)]−αP(E|ε,yn)

≥ 1+α

(

min

{

1

1+u(ε)|n−2wn−1| ,
1

1+u(ε)|n−2wn+1|

}

− 1
1+u(ε)dn

)

= 1+α

(

1
1+u(ε)dn+1 −

1
1+u(ε)dn

)

. (5.24)

Now since 1
1+u(ε)x is a convex function in the range [0,∞), it follows that the

quantity 1
1+u(ε)dn − 1

1+u(ε)dn+1 is maximized for dn = 0. Hence from (5.24) it

follows that

E( f α,ε,ρ(Y n+1)− f α,ε,ρ(Y n)|yn) ≥ 1−α
(

1
2
− 1

1+u(ε)

)

= 1−α
(

1
2
−ε
)

. (5.25)

Therefore, if α ≤ 1
1
2−ε

then { f α,ε,ρ(Y n)}n is a submartingale and since T o

stops at n = 1, T o is optimal.
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Conclusion

The main concern of this thesis has been in showing in how much feedback may

help when communication is carried out over a stationary discrete memoryless

channel that is unknown to both the transmitter and the receiver. In Chapter 2

we have demonstrated that in some specific but nevertheless important cases, the

ignorance of both the transmitter and the receiver of the channel in use is not a

fundamental impediment to reliable communication. The communicating parties

can employ a universal coding strategy to asymptotically perform as well as the

best communication schemes tuned for the channel over which communication

is carried out. This allows us to partially answer the question we raised in the

introductory chapter : In terms of error exponent is it better to know the channel

statistics and not have feedback, or to have feedback and not know the channel?

Clearly, for BSCs and Z channels, it is better to have feedback than to know

the channel. Unfortunately the results we obtained for the BSCs and Z channels

cannot be extended to arbitrary families of channels. In Chapter 3 we showed

that the best universal feedback schemes cannot, in general, attain Burnashev’s

exponent, even for the case where the family consists of only two channels.

Training based schemes, which might appear to be natural candidates for com-

munication over an unknown channel with (or without) feedback, have been shown

to perform poorly in terms of error exponent in Chapter 4. This suggests that good

universal feedback schemes combine channel estimation with the delivery of the

information rather than separating them.

In the final part of the thesis we have studied the situation of binary communi-

cation over a known channel, with a performance measure that takes into account

simultaneously both delay or error probability. The goal was to obtain high reli-

ability and low communication delay instead of seeking for high reliability given

a particular communication delay, as was the case in the previous chapters. This

study reveals that finding simple coding schemes that guarantee quick and reliable

communication is a difficult task, even for this simple communication scenario.

At this point many issues may be explored as future research.

- It might be difficult to extend Theorems 1 (p.20) and Theorem 2 (p.21) to

more general family of channels, in particular because of the converse result

from Corollary 3. To gain more insight on the limitation of universal coding
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schemes and its connection with hypothesis testing, it might be interesting

to further investigate two message communication. For instance, suppose

that Q = {Q1,Q2} does not satisfy the hypothesis of Theorem 3 (p.54) and

that

max
x,x′

D(Q1(·|x)||Q1(·|x′)) = D(Q1(·|x1)||Q1(·|x2)) 6= max
x,x′

D(Q2(·|x)||Q2(·|x′)) .

Is there a sequence of binary coding schemes

{(ΞM,ΓM = {γM
n }M≥2,FM)}M≥2

such that for Q = Q1,Q2

I. P(γM
FM

(Y FM) = N|x(A),Q)
M→∞−→ 0,

II. P(γM
FM

(Y FM) = A|x(N),Q)
M→∞−→ 0,

III. lim infM→∞− 1
EFM

lnP(γM
FM

(Y FM) = A|x(N),Q) = max(x,x′) D(Q(·|x)||Q(·|x′))?

- In practice the feedback link has low rate. What error exponent can be

achieved if we restrict ourselves to a low–rate feedback link or to decision

feedback? Is Burnashev’s exponent still achievable? How much feedback is

necessary to attain Burnashev’s exponent? In the case where the channel is

known, Forney (1968) showed that error exponents larger than C−R can be

achieved with decision feedback. In the case where the channel is unknown

we showed that, in some cases, C−R can be achieved with decision feedback

(see Proposition 2).

To the best of our knowledge, Burnashev’s exponent has been obtained only

by using two–phase coding schemes, which basic structure was first intro-

duced by Schalkwijk and Barron (1971) for Gaussian channels. In these

schemes full feedback is needed to inform the transmitter about which mes-

sage has been declared “most probable” by the receiver at the end of the first

phase (see Section 2.1.2, p. 19). Perhaps this amount of feedback may be

reduced, for example, by using the fact that the sent and received symbols

are correlated.

- The communication setting we considered has a noiseless feedback link. Sup-

pose the feedback link is noisy and that the forward and the reverse channel

statistics are revealed to both the transmitter and the receiver. What is the

maximum achievable error exponent? This situation is difficult to analyze.

An important difficulty arises from the fact that, unless the communication

delay is set in advance, it is impossible to have perfect synchronization be-

tween the transmitter and the receiver. More precisely, if the receiver uses a

stopping time to decide when to decode, then, because the feedback channel

is noisy, the transmitter doesn’t know with probability one when the deci-

sion is made. A related work is (Sahai and Şimşek 2004) where the authors
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propose a coding strategy with the property that as the feedback link tends

to a noiseless channel, the error exponent tends to Burnashev’s.

- In the thesis our main performance measure is the error exponent. Is this

quantity the correct quantity to look at? In Chapter 5 we proposed a different

performance measure that quantifies how quick and reliable a communication

scheme can be. Clearly this approach and the error exponent approach yield

different conclusions.

- An aspect that we haven’t touched in this thesis is complexity. In this

framework we would like to mention Ooi’s Ph.D. thesis (Ooi 1997) in which

practical low complexity feedback schemes have been derived for different

categories of channels, such as discrete channels with and without memory

and multiple access channels. It might be interesting to further study low

complexity coding schemes in the framework of a more general question that

seeks the trade-off between performance and complexity.
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5. A. Tchamkerten and İ. E. Telatar, Communication over Unknown Channels,

MICS Annual Workshop, July 2004, Zurich, Switzerland
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