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Abstract

This thesis presents a specialization of the integral equation (IE) method for the analysis of
three-dimensional metallic and dielectric structures embedded in laterally unbounded (open)
layered media. The method remains basically spatial but makes use of extensive analytical
treatment of the vertical dependence of the problem in the 2D Fourier-transformed domain.
The analytical treatment restricts somewhat the class of structures that can be analyzed. Still,
the field of applicability remains very large, and includes most printed circuit and integrated
circuit structures.

The method is developed in full numerical detail, from first principles down to the properties
of new Green’s functions and the computation of particular types of convolution integrals. We
show how the memory and time complexity are considerably reduced when compared to the
requirements of the analysis of general 3D structures.

With the newly developed tool, it is possible to deal with some peculiar characteristics of
microwave and millimeter-wave circuits and antennas. Most noteworthy among these is the
presence of thick metallizations (either electrically, or relative to circuit features). A novel
full-wave analysis of arbitrarily shaped apertures in thick metallic screens is presented. This is
compared to other methods, both full-wave and approximate, and demonstrated to offer excellent
accuracy. Comparison with measured data, obtained from specially constructed prototypes,
further validates the new technique. A second application is to the analysis of airbridges in
coplanar waveguide (CPW) and slotline (SL) circuits. Comparison of measured and simulated
data validates again our technique and provides valuable information about the behavior of
CPW-fed slot loop antennas.

Among the more specific applications, particular attention is devoted to the analysis and
design of submillimeter-wave integrated dielectric lens feeds. These were object of study in
the frame of a European Space Agency project, Integrated Front-End Receivers (IFER), which
our Laboratory carried out in cooperation with a team at University of Toronto. The analysis
method developed in this work encompasses and extends all previous work done at our Labo-
ratory (LEMA) related with the analysis of this kind of feed. Together with the advanced 3D
ray-tracing code developed at University of Toronto, it is possible to gain a high degree of insight
into the behavior of these integrated receivers.
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Resumé

Cette thèse présente une spécialisation de la méthode de l’équation intégrale (IE) pour
l’analyse de structures tridimensionnelles métalliques et diélectriques situées dans des milieux
multicouches latéralement illimités (ouverts). La méthode demeure fondamentalement spatiale
mais se sert du traitement analytique de la dépendance verticale du problème dans le domaine
transformé de Fourier 2D. Le traitement analytique limite légèrement la classe des structures
qui peuvent être analysées. Toutefois, le champ de l’applicabilité demeure très grand, et inclut
la plupart des structures de circuits imprimés et de circuits intégrés.

La méthode est développée de manière très detaillée, des premiers principes aux propriétés
de nouvelles fonctions de Green et au calcul des types particuliers d’intégrales de convolution.
Nous montrons comment la complexité de mémoire et de temps est considérablement réduite
lorsqu’on la compare aux exigences d’analyse de structures 3D générales.

Avec l’outil nouvellement développé, il est possible de traiter certaines caractéristiques parti-
culières des circuits et antennes de micro-ondes et d’ondes millimétriques. La plus remarquable
parmi ces dernières est la présence des métallisations épaisses (que cela soit électriquement,
ou relative aux dispositifs du circuit). Une nouvelle analyse full-wave des ouvertures avec une
forme quelconque dans des écrans métalliques épais est présentée. Ceci est comparé à d’autres
méthodes, full-wave et approximées, et il est démontré que la nouvelle méthode offre une pré-
cision excellente. La comparaison avec des données mesurées, obtenues à partir des prototypes
spécialement construits, valide la nouvelle technique. Une deuxième application est l’analyse
d’« airbridges »dans des circuits de guides d’onde coplanaires (CPW) et circuits de lignes à
fentes (SL). La comparaison des données mesurées et simulées valide encore notre technique et
fournit des informations valables au sujet du comportement des antennes de boucle à fentes
alimentées par CPW.

Parmi les applications plus spécifiques, une attention particulière est consacrée à l’analyse
et la conception d’alimentations avec lentilles diélectriques intégrées pour la bande d’ondes sub-
millimétriques. Ces alimentations étaient l’objet d’étude dans le cadre d’un projet de l’Agence
Spatiale Européenne (ESA), Integrated Front-End Receivers (IFER), que notre laboratoire a
effectué en coopération avec une équipe de l’Université de Toronto. La méthode d’analyse déve-
loppée dans ce travail entoure et prolonge tous les travaux précédents faits au LEMA en relation
avec l’analyse de ce genre d’alimentation. Ensemble avec le code 3D « ray-tracing »avancé déve-
loppé à Toronto, il est possible de gagner un degré élevé de connaissances dans le comportement
de ces récepteurs intégrés.
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Resum∗

Aquesta tesi presenta una especialització del mètode de l’equació integral (IE) per a l’anàlisi
d’estructures metàl.liques i dielèctriques en tres dimensions incloses a medis multi-capa lateral-
ment il.limitats (oberts). El mètode és bàsicament espacial, però utilitza un tractament analític
extensiu de la dependència vertical del problema en el domini transformat de Fourier en 2D. El
tractament analític restringeix d’alguna manera la classe d’estructures que poden ser analitza-
des. Tot i així, el camp d’aplicació roman molt ampli, i inclou la majoria de circuits impresos i
estructures de circuits integrats.

El mètode es desenvolupa amb tot detall numèric, des dels principis bàsics fins a les pro-
pietats de noves funcions de Green i el càlcul de tipus particulars d’integrals de convolució.
Mostrem com la memòria i el temps de computació són reduïts considerablement comparant-los
amb els requeriments de l’anàlisi d’estructures generals en 3D.

Amb la nova eina desenvolupada, és possible tractar algunes característiques peculiars de
circuits de microones i ones mil.limètriques i antenes. El més remarcable entre ells, és la presència
de metal.litzacions amples (ja sigui elèctricament o amb relació a paràmetres de circuit). Es
presenta una nova anàlisi full-wave d’obertures de forma arbitrària situades a pantalles metàl-
liques amples. Això ha estat comparat a d’altres mètodes, tant full-wave com aproximats, i s’ha
demostrat que el nou mètode ofereix una precisió excel.lent. La comparació amb les mesures, que
s’han obtingut de prototips construïts especialment, també valida la nova tècnica. Una segona
aplicació és per a l’anàlisi d’«airbridges» a circuits de guia d’ona coplanar (coplanar waveguide,
CPW) i de línies amb ranures (slotline, SL). La comparació de les mesures i les simulacions valida
un altre cop la nostra tècnica i proporciona una informació valuosa sobre el comportament de
les antenes de llaç alimentades per CPW.

Entre les aplicacions més específiques, es dedica una particular atenció a l’anàlisi i disseny
d’alimentacions amb lents dielèctriques integrades per a la banda d’ones submil.limètriques.
Aquestes van ser objecte d’estudi en el marc d’un projecte de l’Agència Espacial Europea (ESA),
Receptors «Front-End» Integrats (IFER), que el nostre laboratori ha efectuat en col.laboració
amb un equip de la Universitat de Toronto. El mètode d’anàlisi desenvolupat en aquesta tasca
comprèn i estén tots els treballs precedents fets al LEMA relacionats amb l’anàlisi d’aquest
tipus d’alimentació. Juntament amb el codi avançat «ray-tracing» 3D desenvolupat a Toronto,
és possible de guanyar un alt grau de coneixement sobre el comportament d’aquests receptors
integrats.

∗Traducció de Maria Eugènia Cabot.
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Resumen

Esta tesis presenta una especialización del método de la ecuación integral (IE) para el análisis
de estructuras metálicas y dieléctricas en tres dimensiones inmmersas en un medio estratificado
abierto, es decir, un medio cuyos parámetros varían exclusivamente en una dirección. El método
es básicamente espacial, pero hace use de un tratamiento analítico extensivo de la dependencia
vertical del problema (de acuerdo con la estratificación) en el dominio transformado de Fourier.
Aunque los requisitos de este tratamiento analítico restringen en cierta media el tipo de estruc-
turas que pueden ser analizadas, el campo de aplicación es muy amplio, e incluye la mayor parte
de circuitos impresos y de circutos integrados.

Se empieza por desarrollar el método con todo detalle, desde las ecuaciones de base hasta
las propiedades de las funciones de Green y el cálculo de ciertas integrales de convolución. Se
ponen de relieve las dificultades numéricas. Se muestra cómo la memoria y el tiempo de análisis
se ven reducidos gracias al precálculo de la dependencia vertical del problema, en comparación
con las exigencias de un método que fuera capaz de tratar una estructura 3D arbitraria.

Una vez que las bases de la nueva técnica han quedado establecidas, se considera su apli-
cación a ciertas características de los circuitos impresos de alta frequencia. Entre éstas, la más
destacable es el análisis de metalizaciones gruesas. Se presenta un nuevo método de onda com-
pleta para el análisis de aperturas de forma arbitraria en pantallas metálicas gruesas. Se ha
comparado este método con otros, tanto de onda completa como aproximados, así como con
medidas, y se ha demostrado una precisión excelente. Una segunda aplicación es el análisis
del efecto de puentes (air-bridges) en circuitos basados en línea de ranura (SL) y línea copla-
nar (CPW). La comparación de medidas y simulaciones proporciona información valiosa sobre
el comportamiento de las antenas de lazo alimentadas por línea coplanar.

La aplicación final es al análisis y diseño de antenas primarias para lentes dieléctricas.
Nuestro Laboratorio colaboró con un equipo de la Universidad de Toronto en el proyecto de la
Agencia Espacial Europea Integrated Front-End Receivers (IFER), dedicado al estudio de este
tipo de sistemas. El método de análisis que aquí se presenta permite, junto con las nuevas técnicas
de trazado de rayos desarrolladas en Toronto, una mejor comprensión de su comportamiento.
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Introduction

This thesis has been motivated to a great extent by a research project (IFER) which the Euro-
pean Space Agency awarded to the Laboratoire d’Électromagnétisme et d’Acoustique (LEMA)
in 2000, and which was completed in 2004 to the satisfaction of all partners involved. A
discussion of the details and results of this project can be found in the official documenta-
tion [47, 64, 65, 67, 90, 102, 103, 104]. The challenge offered to our Laboratory in the frame
of this project was the electrodynamic full-wave analysis of various structures embedded in
stratified media, including horizontal and vertical structures (in a layered or stratified medium,
horizontal means ‘parallel to the layers’) as well as slots in thin or thick metallic screens, and (if
time and resources permitted) the inclusion of dielectric inhomogeneities of arbitrary dielectric
contrast (fig. 1). The electromagnetic model was to lead to an operational software tool.

Starting with the work of the director of this thesis, there is a long tradition of work on the
integral equation method in the Laboratoire d’Electromagnétisme et Acoustique (LEMA). The

first target of the method was the microstrip patch, somewhen around the misty dawn of the
nine-hundred eighties [91]. In [11], the complete multilayered, multislot printed circuit antenna
was analyzed; all unknowns were horizontal.

Thus, our wonted answer to these type of antenna and circuit problems has been an integral
equation approach, where the unknowns are 2D vector functions defined on the metallizations
and/or the apertures. Following in the steps of these developments, it was decided to explore
whether, with the adequate upgrades and improvements, the traditional techniques would remain
competitive for the more involved aspects of the problems posed by the IFER project, compared
to brute-force approaches like FEM or FDTD. In this spirit of extending the integral equation
method, vertical metallizations were included in [39], and that work was later improved with a
fist attempt at a semi-spectral method in [45].

In the presence of vertical metallic parts (vias, airbridges), the lack of vertical symmetry of
the layered medium, which need not be taken into account when only horizontal layers are used,
becomes an essential issue. But there is an inner structure that can be used to our advantage
and that is best revealed by working in the 2D Fourier transformed domain. For that reason, a
careful consideration of the spectral dyadic Green’s functions was deemed necessary, and it was
decided that our first task was to be a reappraisal of the derivation of field and potential Green’s
functions in layered media. This reappraisal led us a very general and compact formulation that
includes several original features. It was at this point that the direction of all further work was
set.

The salient feature of a planar stratified medium is that its properties change along a single
coordinate axis (z). The structures embedded in it can be seen either as an evolution of those
analyzed by vintage 2D electromagnetic analysis software, or as a simplification and restriction
of more general 3D structures. The title of this dissertation comes, then, from a limitation, but
a limitation that is the result of an oportunity and a choice. A 2.5D structure is a structure
that is made up of some parts that are horizontal, and these parts can be connected with other
parts that are strictly vertical (fig.1). The construction of a 2.5D structure is easier to specify



2 INTRODUCTION

 

 

 

 

 

  

 

 

 

 

ε0

ε0

ε1

ε2

ε3

ε4

ε5 ε6
ε7

ε8

ε9

1

Figure 1: A complex 2.5D structure
embedded in an open layered medium,
including vertical and horizontal metal-
lizations, dielectric inclusions and thick
metallic screens.

and to normalize, which is why nowadays most of us live and work inside 2.5D structures.
Printed circuit structures are built by laying layers one on top of another and thus correspond,
approximately, to this description. There is clearly a niche for methods of electromagnetic
analysis specially tailored to 2.5D printed circuits and antennas; and where a need is fulfilled,
what is not needed is not seen as a limitation.

A specialization of the integral equation technique for the analysis of 2.5D scatterers in
layered media is presented in this work. Many methods are available that can deal with much
more general structures, and some of them are very fast and accurate. However, the integral
equation is still recognized as the most efficient way to analyze scatterers in open media, because,
being a boundary method, the computational resources are concentrated only on the features of
the problem that are of interest.

And the special constitution of the layered medium (indeed, its being ‘layered’) makes it
possible, if the limitation to 2.5D scatterers is accepted, to precompute the vertical component
of the problem, and to reuse it for any other scatterer with the same vertical structure. This
precomputation takes place in the Fourier transformed domain and, with a suitable choice of
approximation functions for the unknown currents on the scatterer, can be done analytically.
Therefrom results a simplification of the analysis of an order of magnitude, and the calificative
that has been given to this method of ‘mixed spectral/spatial’ [140].

The original contributions of this work may thus be listed:

• A very general solution of the TL model equations makes it possible to implement vertical
integration in the spectral domain on any Green’s function automatically; in fact, inde-
pendently of the particular field or potential Green’s function, as the operations depend
only on some factors of the transmission line Green’s functions (§2.4).

• The extraction of quasistatic parts, both in the spectral and the spatial part of the method,
is extended to the new integrated Green’s functions (§§2.6, 3).

• The inclusion of magnetic currents, together with the extraction of quasistatic parts men-
tioned above, gave the idea and the possibility of a new way of modeling arbitrarily shaped
apertures in thick metallic screens. This model treats the aperture as a parallel plate
waveguide (§5.1).

At the end of this thesis-time, our Laboratory possesses a new computer code, able to meet
most of the challenges formulated at the beginning and which enlarges the scope of problems
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and geometries amenable to an efficient full-wave analysis. Although inevitably some aspects of
the computer implementation fall short of the original goals, other new (one may say collateral)
applications were made possible, quite unexpectedly, during the development.

An important part of this work, which would be difficult to quantify, has consisted in
writing and debugging this code. A description of one of its most important pieces has been
included as an appendix. However, it has been decided that the dissertation should concentrate
on explaining the principles of electromagnetic analysis the code is based on, rather than on
describing the code itself.

In any case, the code has opened new possibilities to our Laboratory, and it is for instance
being used today to help define and analyze EM simulation benchmarks after the ‘Software
Inititiative’ of the European Network of Excellence ACE (2004-2005) in which the LEMA par-
ticipates actively.

Outline

I refer to chapters and sections in a uniform way: §1 is Chapter 1, Principles, and §2.1 is
section 2.1 Plane wave solution.

In §1 we present the basic principles in which the rest of the work is based: the field
equations, the equivalence principles, the mechanics of the method of moments. The purpose of
these short explanations it to allow us to go right to the subject matter in each of the subsequent
chapters, which often deal with more material than what their title alone would indicate. Some
ancillary matters, such as the solution of a linear system of equations, the principle of the
computation of a radiation pattern, and so on, are also covered here.

§2 presents the layered medium and the computation of the associated Green’s function.
The exposition begins by the computation the response of the medium to an elementary plane
wave excitation, directly from the Maxwell equations. The Green’s function is then obtained
through an inverse Fourier transform. The exponential dependence of the Green’s function
on the vertical coordinates (in the spectral domain) is obtained by direct calculation on a
transmission line model. We show how this dependence can be integrated with simple basis and
test functions, and which are the characteristics of the resulting ‘integrated’ Green’s functions.
This is the marrow of the pseudospectral-2.5D method of analysis. An section on the numerical
inversion of these spectral Green’s functions (§2.7) follows, with a section of examples (Green’s
functions for various media and relative positions of source and observer) to illustrate the theory.

The original contribution of this chapter is the development of the 2.5D method. The subject
is covered extensively, from the derivation of convenient transmission-line model equations and
the vertical integration in the spectral domain to the numerical inversion and the extraction of
quasistatic parts of the new integrated Green’s functions. Implementation notes are also given.

§3 is devoted to the analysis of metallic antennas and scatterers embedded in layered media,
using the surface equivalence principle. We also deal here with apertures in metallic ground
planes, and, in free space or ground-plane bounded homogeneous half-spaces, with homogeneous
dielectric bodies. The Mixed Potential treatment of every kind of interaction in the frame of
the 2.5D method is original. Here, the quasistatic parts obtained in §2 are used to extend the
singularity extraction technique, traditionally used for the computation of potential and field
integrals, to the new integrated Green’s functions, which for the most part present logarithmic
singularities.

§4 is devoted to the analysis of dielectric bodies embedded in layered media. We begin
with a description of the volume integral equation in free space, which is then extended to a
layered medium using the pseudospectral method. Although, unlike for surface patches, a full
implementation is still lacking, we present results for dielectrics in free space, and compare the

http://www.iam.unibe.ch/~scg/
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results of traditional 3D integration with those of the 2.5D method.
In §5, the results of the surface formulation of §3 are applied to two special problems: 1)

the analysis of apertures in thick metallic screens and 2) the analysis of CPW and SL circuits
with metallic air bridges. The analysis of apertures in thick ground planes benefits especially
from the 2.5D method, which for the first time provides an efficient technique of analysis for
arbitrarily shaped apertures, with no approximation as to the thickness. We compare our results
to measurements and, for some cases, to two other more limited numerical techniques.

§A and §B collect key expressions and calculations that were not be presented in full in the
course of the text for lack of oportunity.

§C describes the numerical integration technique used to integrate the regular part of
the Green’s functions over various subdomains (triangles, parallelograms, tetrahedra, paral-
lel wedges, and parallel hexahedra) and lists abscissas and weights for optimal Gaussian rules
that have been obtained from a variety of sources.

§D is a summary description of tm, a software package developed to implement and demon-
strate the content of this thesis. A great deal of effort was spent in it. Indeed, every equation
and figure of this work has its weight many times in lines of code. Some technical issues that are
thought to be important or interesting but that find no place in the development of the theory
are discussed here.

Finally, there is a bibliography, and an index.

Notation and conventions

• Equations are numbered within chapters.

• According to general convention, source points are primed.

• For two-dimensional vectors and distances, we do not use ρ,ρ, P but p,p, P .

• Vectors are set bold (A) and dyadics with a double bar above ( ¯̄A). Normalized vectors
carry a caron (â).

• The orientation of ẑ may vary depending on the context, but in absence of other indication,
it is, in layered media, normal to the layers.

• Only a few dyadics are used by name in this work. These are: the Green’s functions for the
electric/magnetic fields produced by an electric/magnetic dipole ( ¯̄EJ , ¯̄EM , ¯̄HJ , ¯̄HM ), the
Green’s functions for the potentials ( ¯̄A, ¯̄F , ¯̄Φ, ¯̄W ), the idemfactor ( ¯̄I), a generic reflection
dyadic ( ¯̄R) and a generic projection dyadic ( ¯̄P ). A particular kind of ¯̄P is ¯̄It = ¯̄I − ẑẑ. A
generic Green’s function is ¯̄G or perhaps ¯̄g. The distinction between spectral and spatial
quantities should always be obvious from the arguments of the functions or from context.

• In integrals, the symbol dx (or dS, dV ) is dropped when the integration variable is clear
from context.

• Symbols grad, curl, div are used, rather than ∇, ∇×, ∇·. grads, curls, divs are the two-
dimensional operators. All these imply derivation respect to observer (or field) coordinates;
derivation respect to source coordinates is indicated by grad′, curl′, div′.

• A convolution is indicated with ∗, ie f ∗ g =
r

f(r, r′)g(r′)dv′. If f is a dyadic and g a
vector or both are vectors, a dot product is implied. If both f and g are dyadics, a double
dot product is implied.

• A time factor e+jωt is assumed and suppresed.
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• An effort is made to present every plot and table in normalized dimensions, ie, the
speed of light and the constitutive parameters of empty space become 1 (cf the ‘natu-
ral’ units in [99, table I-2, pp. 466]), frequency (ω) becomes 1, and distances are multiplied
by k0 = ω/c0. For this reason, the permittivity ε0 = 8.85 · 10−12 Fm−1 and the perme-
ability µ0 = 4π · 10−7 Hm−1 will not appear in what follows, and ε0 and µ0 will be used
to denote some relative permittivity and permeability, with no different meaning than,
say, ε7. or µorichalcum.

• Some paragraphs contain important ideas or points that are referenced later in the text.
These are marked and numbered: P1, P2. . .



6 INTRODUCTION



1 . . . . . . . . . . . . . . . . . . . . . . . . . Principles

The engineering solution of any EM problem is a rather complex process that starts from the
EM field basic equations (Maxwell equations) and ends in the prediction of some measurable
quantity, like a received power or an input impedance.

Many paths are possible, ranging from purely analytical approximations (like variational
expressions) to direct, brute-force numerical solution of Maxwell equations) (finite differences,
finite elements), followed by some post-processing of the primary result —the fields.

This thesis uses systematically an integral equation approach [86] based on the application
of equivalence principles [50, §3.5] to transform the Maxwell equations in a set of coupled integral
equations. The method of moments [51] is applied on these equations to produce a linear system
that can be solved by computer using standard algorithms.

Although these steps are nowadays well known, they are briefly described in this chapter,
for the sake of completeness and to set up some notation and conventions to be assumed in the
following chapters.

1.1 Field equations

The electromagnetic field behaves according to Maxwell equations, which in differential, time-
harmonic form are [50, (1-48)]

curlE + jωµH = −M (1.1a)
curlH− jωεE = +J (1.1b)

A medium is a particular pair ε(r), µ(r). If ε(r) and µ(r) are constant everywhere, this is
an unbounded homogeneous medium. The free space is an unbounded homogeneous medium
where ε(r) = 1 and µ(r) = 1, but we may occasionally write about free-space with other
constants. A open layered medium has ε = ε(z) and µ = µ(z). If ε, µ are scalars, the medium
is isotropic. This will always be the case in this work.

We deal with two problems posed by (1.1). The first is to find the total field E,H when
the medium is excited with some known sources. This is the scattering problem. If the source is
an elementary dipole, the solution is called the Green’s function for the medium. As (1.1) are
linear and both field and source are represented by vectors, the Green’s function is a linear vector
function —a dyadic ¯̄G(r, r′); r is the position where the field is computed, and r′ the position of
the source. If the Green’s function for a given medium is known, the linearity of (1.1) guarantees
that the field produced by any excitation can be obtained by superposition, viz

E = ¯̄EJ ∗ J + ¯̄EM ∗M
H = ¯̄HJ ∗ J + ¯̄HM ∗M

(1.2)

where, for example, ¯̄EJ is the dyadic Green’s function that gives the electric field vector (E)
produced by an arbitrarily oriented electric dipole (J). In (1.2), the scattering problem has been
reduced to the computation of an integral.
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z = −z0

z = +z0

p < p0ǫ1

ǫ2 ǫ3

z = −z0

z = +z0

p < p0ǫ1

ǫ2

Figure 1.1: A complicated medium with
no embedded structure.

Figure 1.2: A manageable medium with
an embedded structure.

The second problem is that of finding the sources when a (sufficient) condition on the fields
has been given. This problem arises on application of the equivalence principle (§1.3) to simplify
the medium (§1.2).

1.2 Medium and structure

Imagine a metallic stake crossing a dielectric interface, for example, half buried in earth. We
may well imagine that this is a medium defined by (fig. 1.1)

µ(r) = 1

ε(r) =


ε1, z > z0, or z > 0 and p > p0

ε2, z < −z0, or z < 0 and p > p0

ε3, p < p0, |z| < z0

and try to compute the Green’s function for it. This is perfectly possible and sometimes use-
ful (see for instance [100]). Most often, however, it is advisable to try to compute the Green’s
function for a simpler medium, just (fig. 1.2)

µ(r) = 1

ε(r) =

{
ε1, z > 0
ε2, z < 0

The part of the medium that has been extracted can be accounted for representing it as unknown
sources using the equivalence principle and enforcing additional conditions on the field, but it
is no longer included in the Green’s function. We have then a restriction on the definition
of ‘medium’ given above, which is: we call something medium if we use its Green’s function.
Everything else, which is indeed part of the medium but is not handled with a Green’s function,
is called the structure or perhaps the scatterer.



1.3. Principles of equivalence 9

The incident field is the field produced by known sources through the Green’s function of
the (restricted) medium, in absence of scatterers. The incident field could also be given without
reference to known sources; most often this is a the plane wave, a sourceless solution of 1.1 for
free space. In any case, the problem consists in finding another field (the scattered field) so that
the sum of both fulfills (1.1) in the complete medium, in the presence of scatterers.

1.3 Principles of equivalence

We consider two principles of equivalence. The surface equivalence principle [50, §3.5] is based on
the unicity theorem [131, §9.2]. According to this theorem, the field inside a bounded, sourceless
region is completely determined by the tangential fields on the boundary of the region; this
follows in turn from Green’s theorem. If we place sources in this boundary that produce the
same tangential fields, the fields inside do not change. This principle has at least three distinct
applications.

The first is to the analysis of homogeneous dielectric bodies. The dielectric interface is
covered on each side with electric and magnetic sources. The problem is divided in two by the
interface; on each side’s problem we assume null fields on the other side. Therefore the currents
of each side reproduce a field (i = 1, 2)

Ji = n̂i ×Hi, Mi = −n̂i ×Ei (1.3)

which, by the unicity theorem above, completely determine the field. [By (1.3), the currents on
the other side produce no field in our side]. We are then free to extend our own medium to the
other side, effectively removing the dielectric interface. The equivalent currents on both sides
(and both problems) are linked by the continuity conditions [131, (9.23)]

n̂i × (E1 −E2) = 0, n̂i × (H1 −H2) = 0 (1.4)

which must be enforced separately.
The second application is to the analysis of metallic structures. It is the same as above, save

that in one of the media the fields are really zero. For this reason there is only one problem to
solve and not two. The tangential electric field on the surface of the conductor is zero, so M = 0,
and this is the condition (ie, E× n̂ = 0) to be enforced.

The third application is to the analysis of apertures on perfectly conducting bodies [53,
§2.2]. In principle, this is similar to the analysis of a homogeneous dielectric object. However,
instead of using the Green’s function of the medium that results when the scatterer is removed,
we use the Green’s function that includes the presence of the metallic body, with its apertures
closed. A tangential electric current does not radiate if placed on a perfectly conducting surface,
and so equivalent electric currents dissapear from the problem. Magnetic currents are only
required where tangential E is not actually known to be zero, that is, on the aperture. The
complication in this case is that the Green’s function in the presence of the metallic scatterer
must be known, but there are instances where it may be obtained quite trivially. The standard
example is an infinite ground plane, whose Green’s function can be obtained through image
theory.

The volume equivalence principle is much simpler in concept than the surface equivalence
principle, because it is based on a straightforward algebraic manipulation. It is discussed in §4.

In all these equivalence principles, the equivalent sources are not known. The integral
equation method, described in the next section, will be used to find them.
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1.4 Integral equation method

The integral equation method is an essential tool in the solution of electromagnetic problems in
open media: its principal advantage over other (differential-equation based) methods is that it
automatically incorporates the boundary conditions at infinity (Sommerfeld conditions) through
the medium’s Green function.

We have seen above (§1.3) that the application of the equivalence principle produced

• some unknown equivalent sources;

• a set of conditions for the field.

The integral equation is the statement of that set of conditions for the total field,

E = Ei + Es

H = Hi + Hs
(1.5)

It is an integral equation because the scattered field Es,Hs is a function of the equivalent sources
through (1.2). For example, for a metallic scatterer, the integral equation will read

( ¯̄EJ ∗ J + ¯̄EM ∗M)× n̂ = −Ei × n̂ (1.6)

enforced on the metallic surface, and for a homogeneous dielectric object, it will read

( ¯̄EJ
1 ∗ J + ¯̄EM

1 ∗M− ¯̄EJ
2 ∗ J + ¯̄EM

2 ∗M)× n̂ = −Ei × n̂ (1.7a)

( ¯̄HJ
1 ∗ J + ¯̄HM

1 ∗M− ¯̄HJ
2 ∗ J + ¯̄HM

2 ∗M)× n̂ = −Hi × n̂ (1.7b)

enforced on the dielectric interface. If the equivalence principles have been used more than once,
then we shall have to deal with a set of coupled integral equations.

If the Green’s functions ¯̄EJ , etc. are used directly in (1.6) or (1.7), the integral equation is
called an electric or magnetic field integral equation (EFIE/MFIE) depending on the field whose
continuity is being enforced. For example, of (1.7), (1.7a) is an EFIE while (1.7b) is a MFIE. It
is possible, however, to express these equations in terms of vector and scalar potentials, making
use of

E = −jωA− gradΦ− 1
ε

curlF (1.8)

and similarly for the magnetic field. The resulting Green’s functions ¯̄A, GΦ, ¯̄F , etc, have weaker
singularities and are generally easier to work with. In addition, the number of components
necessary to describe the fields completely is usually smaller in terms of potentials. This is
true both in an homogeneous and in layered media [86, §3.2]. The EFIE (1.6), written with
potentials ¯̄A, GΦ, is called the mixed potential integral equation, or MPIE. This name may, less
strictly perhaps, be applied to (1.7), if ¯̄HM is written in terms of ¯̄F and GW (magnetic mixed
potentials) and ¯̄EJ in terms of ¯̄A and GΦ.

1.5 Spectral vs spatial

An essential step in the application of the integral equation method is the computation of the
Green’s functions for the particular medium at hand. But these Green’s functions are known
in closed form (in terms of elementary and not-too-special functions) for little more than free
space. However, if a one-, two- or three-dimensional Fourier transform is applied to Maxwell
equations, the Green’s function in the spectral variables is available in closed form (or is easier
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to compute) for a much greater variety of media. Resorting to transform techniques is therefore
an almost unavoidable step in the computation of the Green’s functions. But once this is done,
there are two possibilities:

• To solve the integral equation completely in the transformed variables, and only come
back to the spatial domain (reverse the Fourier transformation) once the solutions (the
equivalent currents J, M) are known. This is the spectral domain approach.

• To convert the Green’s function to the spatial domain as soon as it is known, and to carry
out all the remaining steps for the solution in the spatial coordinates. This is the spatial
domain approach.

The respective limitations of the methods come from the point where they return to the spatial
domain. The spatial domain approach is typically more flexible, and can handle arbitrarily
shaped structures if the medium has symmetries that ease the (Fourier) inversion of the Green’s
function. The spectral domain approach is limited in this respect by the need to invert the final
solution.

1.6 Method of moments solution by subsectional basis expan-
sion

The generic integral equation, that covers as particular cases (1.7) and (1.7) among many others,
can be written in terms of a linear functional L as [51, §1.1]

L(f) = g (1.9)

where f represents the unknown equivalent currents, and g the incident field. One method to
solve (1.9) is as follows [52, §III].

Expansion The equivalent sources are written as a finite linear combination of basis functions
with unknown coefficients. If each of these were defined over the whole domain of the equivalent
sources, they would be called entire-domain basis functions. Instead, they are defined over a
part of this domain, and so they are called subsectional or subdomain bases. Their definition
must enforce certain continuity and boundary conditions so that the physical quantity they
represent is well approximated: for example, in an open metallic surface, the electric current
normal to the border must vanish, and so must the normal component of the basis functions on
that border. Thus we have

L(f) = L

n−1∑
j=0

αjbj

 =
n−1∑
j=0

αjL(bj) = g (1.10)

Test We form the inner product [51, §1.2] of (1.10) with each of a list of test functions, of
which there are as many as basis functions; in this way we obtain∑

αj〈ti, L(bj)〉 = 〈ti,g〉, i = 0..n− 1 (1.11)

The purpose of the test is to enforce the integral equation in an approximate way. The set of test
functions should cover the domain of the equivalent currents, because there is also where the
integral equation is enforced. If ti = bi, i = 0..n−1, the method of moments is called Galerkin’s
method and this choice will be tacitly assumed hereafter. The inner product is chosen so that the
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matrix elements are reaction terms. The reaction between two source distributions a = {Ja,Ma}
and b = {Jb,Mb} is [115, (1)].

‖a, b‖ ≡
w (

Jb ·E(Ja,Ma)−Mb ·H(Ja,Ma)
)
dv (1.12)

The reciprocity theorem [50, §3.8] states that ‖a, b‖ = ‖b, a‖. For each of the particular cases

Ma = Mb = 0
Ja = Jb = 0
Ja = Mb = 0

particular reciprocity relations result:

‖Jb,Ja‖ = ‖Ja,Jb‖ (1.13a)
‖Mb,Ma‖ = ‖Ma,Mb‖ (1.13b)
‖Jb,Ma‖ = ‖Ma,Jb‖ (1.13c)

These are important when the symmetry of the matrix 〈ti, L(bj)〉 of (1.11) comes into play.
Specifically, they give the reason for selecting the inner product of (1.11) according to (1.12).

Solution (1.11) is a linear system of equations in the coefficients αj . It is solved by any
conventional technique, such as Gauss-Jordan elimination. With some care in the choice of the
inner product and the test functions, it is possible to obtain a linear system with a symmetric
(indefinite) matrix. A system with a symmetric matrix can be solved with special algorithms
that take advantage of the symmetry to save half the storage space, such as the Bunch-Kaufman
method [130, §3.2.5]; see p.147 for an implementation note. Otherwise, it is well known that
these methods have unacceptably high complexity for electrically large problems. We shall only
be concerned with small problems.
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In this chapter, we introduce a systematic approach to compute Green’s functions in a layered
planar medium. Source and observer are both at an arbitrary height and within any layer.
Particular attention is devoted to the ‘vertical’ (z, z′) dependences, and an exhaustive analytical
treatment is provided for an efficient integration along these vertical coordinates.

The layered medium is depicted in fig. 2.1. Each layer i = 0..n − 1 is homogeneous and
isotropic. The medium extends to infinity in every horizontal direction. In the vertical direction,
it may extend to infinity or be closed by an impedance boundary on either end, or on both.

The study of layered media is a standard topic in electromagnetics since the early develop-
ment of the technique of radiocommunication and the study of long distance wave propagation
over the earth’s surface [141, §1]. A strong interest has long existed in optics, ever since the
first interesting solution of a layered media problem was stated in 1621 [15, p.xxvi], and more
recently for multilayer filters, antireflection coatings, and the similar structures.

The wave we still ride began at the end of the 1970’s, when the first microstrip antennas
were developed. Microstrip antennas, or antenna elements (in arrays), are mostly of the compact
kind, their size rarely exceeding a free space wavelength. They have proved very resistant to
simplified modelling, much more so than other microwave and millimeter wave structures that
are not supposed to radiate. For this reason, their apparition stimulated the development of
computational methods for the calculation of every property of the layered medium and of
structures embedded on it. These methods are much more powerful (and computer intensive)
than those applied in optics, where the multilayered medium is on its own and is rarely excited

↓

←−

Γ0 = Γinf
h0

ǫ0

h1
ǫ1

z

p

↑

−→

Γn−1 = Γsuphn−1
ǫn−1

hn−2
ǫn−2

Figure 2.1: Layered medium.
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with something other than rays or plane waves; their true source is in the works of George
Green (on his function, and on the proper formulation of the equivalence principle) and Arnold
Sommerfeld (on the fields of a dipole over a dielectric interface). The names of these two people
will appear many many times in this chapter.

Some milestones in the specific context of this work are:

• In 1980, a transmission line (TL) model was applied to the computation of layered media
Green’s functions [55].

• In 1982, the Method of Moments was combined with interpolation of the spatial Green’s
functions and applied to the study of arbitrarily shaped planar antennas [91].

• In 1990, the spatial domain technique was improved to allow analysis of arbitrarily shaped
3D metallic scatterers embedded in layered media [80, 82]. This analysis, which at least
theoretically had closed that problem, remained computationally very expensive, while
further development continued on the analysis of arbitrarly shaped antennas on multilayer
structures [12], including slots [49, 122] and cavities.

• Problems with arbitrarily oriented magnetic surface currents, for the analysis of homoge-
neous dielectric objects, were tackled by [32] and also by [20].

• Meanwhile a thorough reference appeared on the derivation and use of the Green’s func-
tions in multilayered media [78].

Also, all since [81] was published, effort has gone on in two directions:

• On one hand, to accelerate the computation of the layered media Green’s function, ei-
ther by approximating it [135] it or by devising efficient three-dimensional interpolation
schemes [20].

• On the other hand, to develop restricted approaches that allow more efficient analysis of
special types of 3D structures.

One of these restricted approaches involves the spectral treatment of the vertical dependence of
the Green’s functions, that is eliminated from the spatial domain method of moments. Thus, 3D
interpolation becomes unnecessary. This is the main subject matter of this chapter and indeed
of this whole dissertation. The restriction is that the expansion functions for the electric and
magnetic unknowns (§1.6) must have separable dependence on the coordinate axis normal to
the stratification (ie z). The meaning of this separability is precised in §2.5, but, in practice, it
means that the structures to be analyzed cannot include oblique parts, that are neither parallel
to the stratification nor normal to it —what we call a 2.5D structure.

This 2.5D technique has evolved from the limited application of [136], to a general formula-
tion of the idea in [57] and full realization in [140]. While [136] and [140] used mixed EFIE-MPIE
formulations, that of [57] was fully MPIE. All these works dealt only with electric currents.

The main advantage of a mixed potential formulation over a pure electric field formulation
lies in the reduced singularity of the Green’s function in the former case. For this reason the
plain EFIE is not normally used in the solution of surface integral equations. The treatment of
the vertical dependence of the Green’s functions in the spectral domain weakens that singularity,
however, and the plain EFIE becomes usable. But it is still necessary to deal with (in layered
media) a full dyadic (9 cartesian components, though not accounting for symmetry) while in
mixed potential form there are just 7 components (5 for the magnetic vector potential dyadic
and 2 for the scalar potential, not accounting for symmetry) to compute. The EFIE has the
advantage only for some interactions (for example, the interaction between two vertical elements
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Figure 2.2: Characteristic parameters of a
plane wave.

Figure 2.3: Projection of fig.(2.2) show-
ing the natural axes for the modal repre-
sentation.

requires up to four components for the EFIE, once the vertical dependences are integrated, and
five for the MPIE). In addition, the quasistatic terms are simpler in mixed potential form. For
these reasons only the mixed potential forms are used in this work for ¯̄EJ and ¯̄HM .

Our contribution is threefold. First, the transmission line model is solved to yield expres-
sions that are particularly convenient for the automatic computation of the specially treated
Green’s functions. Second, the quasistatic parts of the specially treated Green’s functions are
analyzed in order to enable the application of singularity extraction procedures in the spatial
domain part of the method. Third, in addition to electric currents, magnetic currents on ground
planes are also considered. This will enable the analysis of various patch-slot structures in
layered media [66, 69]; see §5.1.

2.1 Plane wave solution

Consider the incidence of a plane wave

E = E0e
−jk·r

H = Y k̂×E0e
−jk·r (2.1)

on a dielectric interface at z = 0+ (fig. 2.2). The plane determined by k and ẑ is the plane of
incidence. For (E,H) to be a solution of Maxwell’s equations, k · E0 = 0. Therefore E can be
split into two components, one parallel to ẑ× k, normal to the plane of incidence, and another
normal to both k and ẑ× k, parallel to the plane of incidence. The first field is variously called
perpendicularly polarized, horizontally polarized [108, §15.4], TE to z, H-polarized [26, §1.2], or
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simply h. The second field is called parallel polarized, TM to z, E-polarized, or simply e. In a
cartesian coordinate system (u, v, z) oriented according to the direction of arrival of the plane
wave (fig. 2.3), the h-wave has components Hu, Ev, Hz. The e-wave has components Eu, Hv,
Ez.

The boundary conditions E and H at dielectric interfaces [108, §13.4.1] ensure that an H-
polarized field remains H-polarized when refracted and reflected in either one or many parallel
dielectric interfaces. The same is obviously true also for an E-polarized wave. Even more, the
same continuity conditions force the field to depend on u according to e−jkpu, with the same kp

on every layer. In other words, E = v̂e−jkpu or H = v̂e−jkpu are eigenfunctions of the system
of fig. 2.1, and for that reason the dependence on u can be factored out of the field equations.

Now, both fields are independent of the v coordinate —indeed, it is precisely because of
this that they can be separated in e- and h-fields at all [26, §2.1.2]. Therefore, the problem of
finding the response of a system of parallel dielectric interfaces to the incidence of an arbitrarily
polarized plane wave has been reduced to the solution of two one-dimensional problems; as it
happens, of two transmission line problems.

This can be formalized quite briefly. Assume fields and sources F = (E,H,J,M) satisfying
everywhere

∂F
∂v

= 0 (2.2a)

∂F
∂u

= −jkpF (2.2b)

Using (2.2a) in (1.1),

curlv H = +jωDv + Jv

−∂Ev

∂z
= −jωBu −Mu

+
∂Ev

∂u
= −jωBz −Mz

(2.3a)

curlv E = −jωBv −Mv

−∂Hv

∂z
= +jωDu + Ju

+
∂Hv

∂u
= +jωDz + Jz

(2.3b)

(2.3a) describe an H-polarized field, and (2.3b), an E-polarized field (cf [26, (1.15, 1.16)]). They
are restated applying (2.2b) as

∂Ev

∂z
− jωµHu = +Mu

−∂Hu

∂z
+

[
jωε +

k2
p

jωµ

]
Ev = −Jv −

kp

ωµ
Mz

(2.4a)

∂Hv

∂z
+ jωεEu = −Ju

∂Eu

∂z
+

[
jωµ +

k2
p

jωε

]
Hv = −Mv +

kp

ωε
Jz

(2.4b)

A comparison of (2.4) with the telegraphist’s equations

dV

dz
+ jζZI = v (2.5a)

dI

dz
+ jζY V = i (2.5b)
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leads to the equivalences

V h ≡ Ev

Ih ≡ −Hu

vh ≡ +Mu

ih ≡ −Jv −
kp

ωµ
Mz

Zh ≡ ωµ

ζ

(2.6a)

V e ≡ Eu

Ie ≡ Hv

ve ≡ −Mv +
kp

ωε
Jz

ie ≡ −Ju

Ze ≡ ζ

ωε

(2.6b)

Note that v, i are here generators in the transmission line model [the free term in (2.5)] and this
v should not be confused with the planewave coordinate v.

From (2.3), the vertical components (Hz, Ez) are given in terms of the transmission line
parameters:

Hz =
1

jωµ
(+jkpV

h −Mz) (2.7a)

Ez =
1

jωε
(−jkpI

e − Jz) (2.7b)

Naturally k2
p + ζ2 = k2 = ω2µε (cf fig. 2.2). If the medium is bounded at zinf and/or zsup by

isotropic boundary conditions [36, §5.7]

ẑ× ZsH = ẑ× (E×±ẑ) (2.8a)

with the sign above for zinf, the equivalent transmission line model condition may be obtained
from (2.6) as

ZsI
e = ∓V e

ZsI
h = ∓V h

(2.8b)

This transmission line model is the same as that in [78, §III]. A notable alternative is offered
by [87, §9-10], where the role of the vertical component and the transversal component of the
fields is reversed in the derivation, ie, the latter are expressed in terms of the first [cf with (2.7)].
However, the final expressions differ only in the choice of constants, and they are not obtained
as straightforwardly as here.

2.2 Solution for elementary sources

In §2.1, it has been shown how to obtain the field components produced by sources that sat-
isfy the separability conditions (2.2); they are given by (2.6) and (2.7) after solving twice the
transmission line equations (2.5), once with TE parameters (2.6a) and again with TM param-
eters (2.6b). If the sources are not eigenfunctions, then they are written as a superposition of
them, the pair (2.5), (2.6) is solved for each term, and the total field is recovered again from
superposition. The required expression is the two-dimensional Fourier transform [36, §5.2], [62,
§7.1]

f(p, z) =
1

(2π)2
x

∞2

F (kp, z)e−jkp·p dξ dη (2.9a)

F (kp, z) =
x

∞2

f(p, z)e+jkp·p dx dy (2.9b)
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For example, a concentrated source J(r) = ẑδ(r− r′) can be written as

ẑδ(z − z′)e+jkp·p′ =
x

∞2

ẑδ(r− r′)e+jkp·p dx dy (2.10)

In the transmission line model, this source becomes a generator [cf (2.6b)]

ve =
kp

ωε
δ(z − z′)e+jkp·p′ (2.11)

and if substituted into (2.7b), we obtain, after solving (2.5) for Ie and using (2.9a),

EJ
zz(r, r

′) ≡ Ez(J = ẑδ(r− r′) and M = 0)

=
1

(2π)2
x

∞2

[
1

jωε
(−j

k2
p

ωε′
Ie − δ(z − z′))

]
e−jkp·(p−p′) dξ dη (2.12)

and so forth for the other components of the Green’s dyadics ¯̄EJ , ¯̄EM , ¯̄HJ and ¯̄HM . The term
inside square brackets in (2.12) is called the spectral Green’s function. It has been shown that
this is no more than a planewave field with implicit e−jkpu dependence. (The Green’s function
has evident translational symmetry

G(p,p′, z, z′) = G(p− p′, 0, z, z′)

so the factor e+jkp·p′ is not taken as part of the spectral function; in other words, the sources
are always supposed to be placed at p′ = 0.) The whole lot of spectral Green’s dyadics is listed
in [78, (28-31)]; a table with all the cartesian components can be found in [45, p. 157] or [87,
§11].

2.3 Potentials

The magnetic vector potential is computed from its definition µH = curlA; taking for H the
spectral Green’s function ¯̄HJ [78, (29)]

¯̄HJ = ûv̂Ih
i − v̂ûIe

i − ẑv̂
kp

ωµ
V h

i + v̂ẑ
kp

ωε′
Ie
v , (2.13)

making use of (2.2) on curlA and equating components for each orientation of the source,

−µIe
i =

∂Auu

∂z
+ jkpAzu (2.14a)

ûµIh
i − ẑ

kp

ω
V h

i = −û
∂Avv

∂z
− ẑjkpAvv (2.14b)

µkp

ωε′
Ie
v =

∂Auz

∂z
+ jkpAzz (2.14c)

The only certainty given by these equations is

Avv =
V h

i

jω
, (2.15a)

which is given twice by (2.14b), once directly and again through (2.5a). To obtain the other
components it is necessary to make choices. Sommerfeld’s choice [126, §33 (2)] produces the
simplest possible dyadic ¯̄A:



2.3. Potentials 19

• Auu is set equal to Avv.

• Avz and Azv are set to zero [they do not appear in (2.14) at all].

• Auz is set to zero.

With this, and substituting (2.15a) in (2.14a)

Azu =
µ

jkp
(Ih

i − Ie
i ) (2.15b)

and from (2.14c),

Azz =
µ

jωε′
Ie
v (2.15c)

The Lorenz gauge gives the scalar potential

−jωµεΦ = div A (2.16a)

and its Green’s function is defined in a homogeneous medium by

Φ = GΦ ∗ −div′ J
jω

(2.16b)

Therefore it would be natural to define

1
µε

div A = GΦ ∗ div′ J (2.16c)

It is apparent that, with the choice of ¯̄A given by (2.15), GΦ cannot be independent of the
orientation of J, in other words, GΦ cannot be a scalar. We shall abide by that choice, and
would write (cf [21, §II.B]),

1
µε

div ¯̄A ∗ J = ¯̄Φ ∗ grad′ J (2.17)

To obtain a relationship between ¯̄A and ¯̄Φ it is necessary to factor out the dependence on the
source. Integration by parts on (2.17) yields

1
µε

div ¯̄A ∗ J =
w

∂V ′

( ¯̄Φ · J) · n̂− (div′ ¯̄Φ) ∗ J (2.18)

At this stage it would be difficult to say whether the boundary integral vanishes or not. In fact,
as it will be seen during the development of the various integral equations, it does not, at least it
does not unless the medium is homogeneous. Therefore it will prove better to follow [80, (12)],
[21, (6)], put (2.17) aside, define instead the scalar potential Green’s function by

1
µε

div ¯̄A = −div′ ¯̄Φ (2.19)

and leave the boundary integral for later (§3.2). (2.19) furnishes at most three scalar conditions
on ¯̄Φ. Therefore the form ¯̄Φ = Φuûû + Φvv̂v̂ + Φz ẑẑ is postulated. Equating u components
in (2.19) produces

−jkpAuu +
∂Azu

∂z
= +jµεkpΦu (2.20a)
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wherefrom substitution of (2.15) and application of (2.5) gives

Φu =
jω

k2
p

(V e
i − V h

i ) (2.20b)

Equating v components in (2.19) gives 0 = 0, so we naturally decide in favor of Φv = Φu. Last,
equating z components,

1
jωεε′

∂Ie
v

∂z
= −∂Φz

∂z′
(2.20c)

Using (2.5b) in (2.20c)

∂Φz

∂z′
=

1
ε′

V e
v (2.20d)

Now Vv(z, z′) = −Ii(z′, z) by circuit-level reciprocity [cf (2.31)]. Also, on the exchange z ↔ z′,
(2.5a) reads

∂V e
i (z′, z)
∂z′

= −jζ ′2

ωε′
Ie
i (z′, z) (2.20e)

Comparing (2.20d) to (2.20e), and using again circuit-level reciprocity Vi(z, z′) =
Vi(z′, z) [80, (32)]

Φz =
ω

jζ ′2
V e

i (2.20f)

To conclude this section, a table has been prepared (table 2.1) with the spectral potential Green’s
functions. The dual of (2.13), viz [78, (30)]

¯̄EM = −ûv̂V e
v + v̂ûV h

v + ẑv̂
kp

ωε
Ie
v − v̂ẑ

kp

ωε′
V h

i , (2.21)

that will be used in later chapters, has also been included.
Two steps remain to arrive at the Green’s functions for layered media. The first is the solu-

tion of the transmission line model. This is addressed in §2.4 ff. The second is the computation
of the numerical inversion (2.9a), so that the Green’s functions can be used in a spatial-domain
method of moments formulation. This is addressed in §2.7.

2.4 Transmission line Green’s functions

Here we shall only be concerned with piecewise constant ε(z), µ(z), therefore piecewise con-
stant ζ(z), Z(z) in (2.5). A (rather large) number of algorithms has been published to solve
the problem of finding V and I at an arbitrary point z of the TL structure, when a generator
(voltage or current) is placed at another arbitrary point z′, that is, the solution of (2.5) when v
or i = δ(z − z′). These are the four transmission line Green’s functions (TLGF’s),

Vi(z, z′) Vv(z, z′)
Iv(z, z′) Ii(z, z′)

(2.22)

Actually some researchers do not work with parameters V and I as we have defined them in the
TL model [78, §IV] or the ‘modal network representation’ [36, §2.4] (‘modal’ meaning ‘spectral’).
Instead they handle directly the fields (the matrix method in [142, §4.11,4.13] and [86, §4.1];
also [22, §2]). In either case the results are comparable. The problem with expressions such
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component TL expression reference

potentials

Auu
V h

i

jω
(2.15a)

Azu
µ

jkp
(Ih

i − Ie
i ) (2.15b)

Azz
µ

jωε′
Ie
v (2.15c)

Φu
jω

k2
p

(V e
i − V h

i ) (2.20b)

Φz
ω

jζ ′2
V e

i (2.20f)

fields

EM
uv −V e

v (2.21)

EM
vu +V h

v (2.21)

EM
zv +

kp

ωε
Ie
v (2.21)

EM
vz − kp

ωε′
V h

i (2.21)

Table 2.1: Field and potential spectral Green’s functions to be used in this work.

as [78, (67)] is that, although they do indeed provide a excellent way to compute the TLGF’s for
fixed z, z′, they fall short when trying to manipulate analytically the dependence on z, z′. Only
when z and z′ are in the same layer is this dependence made readily apparent [78, (66)]. Similarly,
the expressions of [57, Appendix] are restricted to the same-layer case, which is noteworthy
because the (otherwise truly excellent) work developed in that paper explicitly requires TLGF’s
‘cast into a specific form, where z and z′ dependences are factored out’.

On the other hand, the algorithm given in [24] cleanly factors out these dependences in
every case; but it would be desirable to have simple, easy-to-use, plainly stated expressions for
every TLGF. Even if these expressions can indeed be obtained from that work, it is only after
some digging.

Therefore this section is devoted to the development of a direct and complete solution of
the TL model where z and z′ dependences are factored out in the simplest possible way for any
position of z and z′. The pertinent notation is given in the following table.
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symbol meaning

γ, γ′ propagation constants [jζ(z), jζ(z′) in (2.5)]
i, i′ indices of observer and source layers
z, z′ relative to bottom of layer unless obviously not
h, h′ layer thicknesses

Z, Z ′ characteristic impedances of layer
Y , Y ′ characteristic admittances of layer
−→
Z ,
−→
Z impedances looking up (from top of layer)

←−
Z ,
←−
Z idem looking down (from bottom of layer)

−→
Γ ,
−→
Γ ′ wave reflection coefficient looking up (from top of layer)

←−
Γ ,
←−
Γ ′ idem looking down (from bottom of layer)
Ig strength of current source
Vg strength of voltage source

Table 2.2: Notation for the TL model (§2.4).

I define wave coefficients according to [24]. These do not represent incident or reflected power
(for those which do, see eg [61]).

V = a + b

ZI = a− b
(2.23a)

a = V/2 + ZI/2
b = V/2− ZI/2

(2.23b)

Consequently,

−→
Γi =

−→
Z i+1 − Zi
−→
Z i+1 + Zi

(2.24a)
←−
Γi =

←−
Z i−1 − Zi
←−
Z i−1 + Zi

(2.24b)

save for
←−
Γ 0 and

−→
Γ n−1, which are given by (2.8b); clearly,

←−
Γ 0 or

−→
Γ n−1 are zero if the medium

is unbounded in that direction.

−→
Γ n−1 =

Zs, sup − Zn−1

Zs, sup + Zn−1
(2.24c)

←−
Γ 0 =

Zs, inf − Z0

Zs, inf + Z0
(2.24d)

Voltage and current generators induce discontinuities in the wave coefficients as follows. Note
that the sign of the discontinuity induced by a current generator depends on the direction of
the waves.

Vg

+

← b− ← b+

a− → a+
→

V
−

V
+

a− + b− = a+ + b+ − Vg

a− − b− = a+ − b+ (2.25a)

a+ = a− + Vg/2
b+ = b− + Vg/2

(2.25b)
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Ig

← b− ← b+

I−
a− → a+

→

I+ a− + b− = a+ + b+

a− − b− = a+ − b+ − Z ′Ig
(2.26a)

a+ = a− + Z ′Ig/2
b+ = b− − Z ′Ig/2

(2.26b)

Two source parameters s, s′ are defined by:

s = +Vg/2
s′ = +Vg/2

}
for a voltage source

s = +Z ′Ig/2
s′ = −Z ′Ig/2

}
for a current source (2.27)

The wave coefficients travel along a constant-parameter transmission line section according to

a1 → a2 →

← b1 ← b2

γ, l

[
a1

b1

]
= T

[
a2

b2

]
(2.28a)

T =
[
e+γl 0
0 e−γl

]
(2.28b)

and cross layers (cf [24, (8-9)]) according to

a0 → a1 →

← b0 ← b1

Z0 Z1

[
a0

b0

]
= T (0← 1)

[
a1

b1

]
(2.29a)

T (0← 1) =
1
2

1 +
Z0

Z1
1− Z0

Z1

1− Z0

Z1
1 +

Z0

Z1

 (2.29b)

(2.29b) comes from using (2.23a) with Z → Z1 and then (2.23b) with Z → Z0. From (2.28)

−→
Γi(0) =

−→
Γ e−2γh ←−

Γi(h) =
←−
Γ e−2γh (2.30)

It is assumed that z′ > z; the other case will be obtained at the end of this development by
application of the reciprocity properties [84, ch. 2], [78, (24)]

Vi(z, z′) = Vi(z′, z)
Iv(z, z′) = Iv(z′, z)

Vv(z, z′) = −Ii(z′, z)
Ii(z, z′) = −Vv(z′, z)

(2.31)

In what follows, z and z′ are taken relative to the base of their layers.
If source and observer are in the same layer, the wave coefficients at the observer can

be related to the wave coefficients at the source by [with α = e−γ(z′−z),
←−
Γ∗ =

←−
Γ e−2γz,

−→
Γ∗ =

−→
Γ e−2γ(h−z′)]:
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a1 →

← b1

← a2

b2 →

0

←−

Γ

←֓

z

←−

Γ
∗

←֓

z′

−→

Γ
∗

→֒

h

−→

Γ

→֒

a1

α b
−

2

1

b
+

2

−→

Γ
∗

a
+

2

1

a
−

2α

b1

←−

Γ
∗

1

s

−s′

a1 =
←−
Γ∗b1

=
(+s
−→
Γ∗ − s′)α

←−
Γ∗

1− α2
−→
Γ∗
←−
Γ∗

(2.32)

If source and observer are in different layers, the wave coefficients at the observer are related
to the wave coefficients at the closest boundary layer above, and the wave coefficients at the
source are related to the wave coefficients at the closest boundary layer below. These are then
linked together with (2.28) and (2.29). Here α = e−γ(h−z), α′ = e−γ′z′ ,

←−
Γ∗ =

←−
Γ e−2γz and

−→
Γ ′
∗ =
−→
Γ ′e−2γ′(h′−z′). The relationship between a±2 and b±2 is similar to that of (2.32) and it has

already been simplified in the following graph.

· · ·

a1 →

← b1

← a3

b3 →

a4 →

← b4

← a2

b2 →

0

←−

Γ

←֓

←−

Γ
∗

←֓

z h 0
′ z′

−→

Γ
′

∗

→֒

−→

Γ
′

→֒

h′

a4

α′

b
+

2

−→

Γ
′

∗

a
−

2

α′

b4

←−

Γ
′

s

1

−s′

b1

←−

Γ
∗

a1

α
b3

−→

Γ

a3

α

t21

t22



2.4. Transmission line Green’s functions 25

The source and observer sections can be solved separately.

a4 =
←−
Γ ′b4 =

+s
−→
Γ ′
∗ α′
←−
Γ ′ − s′α′

←−
Γ ′

1− (α′)2
−→
Γ ′
∗
←−
Γ ′

(2.33a)[
b3

a3

]
=

[
t11 t12
t21 t22

] [
a4

b4

]
(2.33b)[

t11 t12

t21 t22

]
= T (i← i + 1)

i′−1∏
j = i + 1

TjT (j ← j + 1) (2.33c)

a1 =
←−
Γ∗b1 =

←−
Γ∗αa3 (2.33d)

Putting together (2.32) and (2.33), we arrive at { a(z, z′), b(z, z′) } ≡ {a1, b1}.

qii′ ≡


1

1−
←−
Γ ′−→Γ ′e−2γ′h′

, i = i′

e−γh(t21
←−
Γ ′ + t22)

1−
←−
Γ ′−→Γ ′e−2γ′h′

, i 6= i′
(2.34a)

Aii′ ≡ qii′
−→
Γ ′e−2γ′h′

Bii′ ≡ qii′

Cii′ ≡ qii′
−→
Γ ′←−Γ e−2γ′h′

Dii′ ≡ qii′
←−
Γ

(2.34b)

a(z, z′) = sCii′e
−γz+γ′z′ − s′Dii′e

−γz−γ′z′

b(z, z′) = sAii′e
+γz+γ′z′ − s′Bii′e

+γz−γ′z′
(2.34c)

An interpretation of the meaning of coefficients {A,B, C, D} is given later on another con-
text (fig.2.5). Basically, A and B are waves that come from above to the observer, and C and
D, that come from below. The direct wave is contained in B, because the source is assumed to
be above the observer.

The transmission line Green’s functions may now be obtained, using (2.27) in (2.34c) and
the result in (2.23a). The final expressions are [Vg = Ig = 1, (absolute) z < z′, eσσ′ ≡ eσγz+σ′γ′z′ ]:

Vi(z, z′) =
Z ′

2
(+Cii′e

−+ + Dii′e
−− + Aii′e

++ + Bii′e
+−)

Iv(z, z′) =
1

2Z
(+Cii′e

−+ −Dii′e
−− −Aii′e

++ + Bii′e
+−)

Vv(z, z′) =
1
2

(+Cii′e
−+ −Dii′e

−− + Aii′e
++ −Bii′e

+−)

Ii(z, z′) =
Z ′

2Z
(+Cii′e

−+ + Dii′e
−− −Aii′e

++ −Bii′e
+−)

(2.35a)

Application of (2.31) gives the TLGFs for (absolute) z > z′. Here it is important to remember
that i, Z and γ are functions of absolute z, so the exchange of absolute z and absolute z′ implies
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not only z ↔ z′ but also i↔ i′, γ ↔ γ′ and Z ↔ Z ′.

Vi(z, z′) =
Z

2
(+Ci′ie

+− + Di′ie
−− + Ai′ie

++ + Bi′ie
−+)

Iv(z, z′) =
1

2Z ′ (+Ci′ie
+− −Di′ie

−− −Ai′ie
++ + Bi′ie

−+)

Vv(z, z′) =
Z

2Z ′ (−Ci′ie
+− −Di′ie

−− + Ai′ie
++ + Bi′ie

−+)

Ii(z, z′) =
1
2

(−Ci′ie
+− + Di′ie

−− −Ai′ie
++ + Bi′ie

−+)

(2.35b)

Coefficients {A,B, C, D} depend only on f (frequency), kp, and the layer indices i, i′.
(From (2.35) we see that the case i > i′ need never be considered.) Therefore the most ef-
ficient procedure for the computation of the spectral Green’s functions is (in the order given)

P1 Outline of computation of Green’s functions

1. Find the layers {i} where the levels {z} of the functions to be computed are located; also,
note if any of the {z} falls exactly on a dielectric interface.

2. Select f and normalize the physical dimensions hi and {z}.

3. Select P (skip if the spatial Green’s functions are not required). The Fourier inversion is
performed at this step on each of the spectral Green’s functions computed below. The
required inversion formulae depend on the azimuthal variation of the particular Green’s
function and are given in P21 on page 131. Details on the numerical inversion are given
in §2.7.

4. Select kp.

(a) Compute the layer parameters: γi, Zi,
−→
Γi,
←−
Γi. All of them (i = 0..nl−1) are necessary,

even if the structure is confined to a single layer.

(b) Compute {A,B, C, D}ii′ for all i, i with 0 ≤ i ≤ i′ < nl. This step, which consists
essentially in the application of (2.33c), is the most expensive, its complexity (to the
first order) being ∼ O(n2). Naturally if the structure to be analyzed does not span
all layers, a restricted set of {A,B, C, D}ii′ may be computed.

5. For each required pair (z, z′), compute the transmission line Green’s functions using (2.35).

6. Finally, obtain the spectral Green’s functions [the kernels F (kp, z, z′) in (2.9)] as explained
in §2.2, or using tables 2.1, [45, 6.1, p.157 and 6.2, p.169] or [78, (28–31) and (52–57)]
or [87, (54–57, 77)].

The idea behind this arrangement is to avoid as much as possible the solution of the transmission
line problem (step 4) by moving the computations that depend of z, z′ to the innermost loop.

2.5 Integrated transmission line Green’s functions

With equations (2.35) and the recipe given in P1, the computation of the spectral Green’s
functions seems to be over. However, when we deal with a structure with vertical components,
it will be necessary to compute the Green’s functions at many points in both z and z′. Although
the order of the steps in P1 has been chosen precisely to maintain efficiency in that case, a
still better possibility exists, namely, to make use of the analytical dependence of the Green’s
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functions on z, z′, which is evident in 2.35, and to produce new Green’s functions where the
dependence on z, z′ has been eliminated. That is the purpose of this section.

A generic (spatial domain) field integral using the Green’s functions computed in the last section
is

F = ¯̄G ∗B =
w

V ′

dr′ ¯̄G(r, r′) ·B(r′)

where B is one of the basis functions used to expand the current distribution; they are described
in §1.6. The Green’s function is to be computed from a spectral representation; thus, from (2.9)

=
1

(2π)2
w

V ′

dr′B ·
w

dkp ¯̄gT (kp, z, z′)e−jkp·P (2.36a)

This field is to be tested against another current distribution T; the full (still generic) expression
is

〈T,F〉 =
w

V

drT(r) · F(r)

=
1

(2π)2
w

V

drT ·
w

V ′

dr′B︸ ︷︷ ︸
spatial part

·
w

dkp ¯̄gT (kp, z, z′)e−jkp·P

︸ ︷︷ ︸
spectral part

(2.36b)

(2.36b) is representative not only of the form of full reaction terms, but also of potential terms
and of each of their (eg cartesian) components separately. It is certainly not necessary to insist
on the cost and difficulty of computing (2.36b) and in fact a sizeable portion of this dissertation
will be devoted to dissect various sorts of (2.36b). We begin by looking at some means of general
simplification.

In free space the Green’s function is available in closed form. It is tempting to try and
work in stratified media on the same principle, that is, to have ¯̄G readily available at any
required (r, r′). Direct inversion of the spectral Green’s function is extremely time consum-
ing (§2.7), so on-demand computation of the spectral part of (2.36b) is out the question. There
are only two sensible approaches:

• To develop an approximation of ¯̄G that is more amenable to repeated computation. De-
pending on the type of approximation, we have rational function expansion for the spectral
part [94, 95], plane wave expansions [9] and, last and foremost, the popular method of
complex images [5, 23, 25, 29, 34, 57, 77, 135]. The issues with these approaches are the
validity of the approximation for varying parameters (type of substrate, say, thin layer vs
thick layer; distance source-observer; frequency) or different Green’s functions (for elec-
tric/magnetic sources/fields; for horizontal/vertical sources/fields). We see this clearly in
the history of the method: the first articles dealt only with horizontal dipoles and thin
layers, and broke down in other cases; the present incarnation is a quite general and quite
complicated procedure. Besides, some precise knowledge of the Green’s function that has
to be approximated is usually required: the exact form of the quasistatic part and the
location of the poles of the modal representation. While some of this information is useful
later, in the computation of the spatial integrals (ie the quasistatic part), most of it is not.

• To compute a table of ¯̄G at some (well chosen) points (ri, rj) and later, during the
computation of the spatial part of (2.36b), to interpolate into this table. Because the
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table can be reused with different structures, the initial cost of computing it may become
negligible, particularly in applications where many related structures must be analyzed
(eg optimization of circuit/antenna dimensions).

The compute-tables-and-interpolate technique was fairly popular back when the analysis of 3D
structures was not well developed; for example, because of the symmetry of the Green’s functions,
the analysis of a coax-fed planar microstrip patch only required (and requires, of course) a couple
of one-dimensional tables and some extra values for the (cleverly approximated) interactions in
the excitation region [92].

But a general 3D structure needs 3D tables, because every spatial Green’s function depends
on three coordinates, ¯̄G ≡ ¯̄G(P, z, z′). Not only the size of the tables grows appreciably: 3D
lookup and interpolation is also more costly, and, because of the behaviour of the Green’s
function across layers or whenever z and z′ cross, the interpolation grid in z and z′ has to be
chosen with particular care. Notwithstanding, this is the only truly general technique, and it
has been implemented with success [32], [20].

The path taken in this work, however, is to realize that the factorization of the
TLGF’s (2.35) makes it possible to change the order of the integrations in (2.36b). Assum-
ing that z and z′ remain within the same layer, any spectral Green’s function component g is a
sum of up to four terms

g(kp, z, z′) = LAeA + LBeB + LCeC + LDeD (2.37a)

where LX(kp) contains precisely one of {A,B, C, D} as a factor (these depend on kp only
through kp), and the eX(kp, z, z′) are the exponential functions

eA = e+γz+γ′z′

eB = eσ(+γz−γ′z′)

eC = eσ(−γz+γ′z′)

eD = e−γz−γ′z′
(2.37b)

if z and z′ are in different layers (i 6= i′; σ = sgn i′ − i), or of

eA = e+γ(z+z′)

eB = e−γ|z−z′|

eB′= sgn(z − z′)e−γ|z−z′|

eC = e+γ|z−z′|

eC′= sgn(z − z′)e+γ|z−z′|

eD = e−γ(z+z′)

(2.37c)

if z and z′ are in the same layer (i = i′); the functions eB′ and eC′ are needed in Vv and Ii, whose
terms with Bii and Cii change sign from (2.35a) to (2.35b). By definition, these two functions
must be discontinuous at the source, ie when z = z′.

Now comes the justification for the ‘2.5D’ in the title of this work: if the test T and source B
functions are separable, ie, if they have components whose vertical and horizontal dependences
are separable:

T (r) = Tz(z)Tp(p) B(r′) = Bz(z′)Bp(p′) (2.38)

then, upon introduction of (2.37a) into (2.36b), we obtain terms like
1

(2π)2
w

V

drT
w

V ′

dr′ B
w

dkp e−jkp·PLX(kp)eX(kp, z, z′)

=
1

(2π)2
w

S

dpTp

w

S′

dp′ Bp︸ ︷︷ ︸
spatial part

w
dkp e−jkp·PLX(kp)

w

τ

dz Tz

w

τ ′
dz′ BzeX(kp, z, z′)︸ ︷︷ ︸

spectral part

(2.39)

where τ, τ ′ designate the vertical domains (z0, z1) and (z′0, z
′
1) of, respectively, T and B.

These τ, τ ′ will hereafter be called slices (there is, to my knowledge, at least one precedent
for this designation, [35, §II]). In (2.39), as it happens, the following has been accomplished:



2.5. Integrated transmission line Green’s functions 29

P2 Advantages of z-integration in the spectral domain

1. The dimension of the spatial domain integrations has been reduced. (2.39) shows the case
of volume source and test functions, where this reduction always takes place. (It will not
if neither T or B do depend on z, z, as it happens, for example, in the interaction between
two horizontal surface patches.) The advantages of an integral of reduced dimension should
be obvious from a computational point of view, both the range of numerical techniques
available and in the faster calculation.

2. If the spectral part of (2.39) is precomputed and stored in tables, there will be one such
table for each pair (τ, τ ′). Within this table, only 1D interpolation (in P ) is necessary to
compute the spatial integrals. There is no need for 3D interpolation.

3. With sensibly chosen expansion functions Tz, Bz, the integral
w

τ

dz Tz

w

τ ′
dz′ BzeX(kp, z, z′) (2.40)

can be computed in closed form.

4. As it will become apparent later, the Fourier inversion in (2.39) is easier to compute than
that in (2.36b). At this point we may note that z-integration of eX(kp, z, z′) will produce,
in the integrand of the spectral part, inverse powers of γ =

√
k2

p − k2 that will accelerate
the decay of that integrand with increasing kp. The inversion requires an integration along
the real axis of the kp plane from some point up to kp → ∞, and the decay has a direct
influence on the convergence of this integral.

5. The kernel of the spatial domain integrals in (2.39) has weaker singularities than that
of (2.36b). The reason is that the singular behaviour as P → 0 in the spatial domain is
related to the decay in the spectral domain as kp → ∞; a faster decay means a weaker
singularity (see §2.6.1).

Enticing as these advantages seem, the limitations forced on the structure by resorting to (2.39)
may seem great: all of its elements must form an angle of 90◦ or 0◦ with the axis of stratification.
However, this is to a very good approximation the case of most printed circuit structures, because
of constraints of the fabrication process. This is a class of structures of great practical importance
in which the complications of a full 3D method are wasted.

To apply efficiently the reordering in (2.39), the discretization of the structure must meet
the following conditions.

P3 Conditions on slices

1. Different slices must never overlap. Allowing this would complicate needlessly the expo-
nential integrals (2.40); indeed, it would be necessary to split them in exactly-overlapping
and non-overlapping parts, so that is what is exacted beforehand.

2. An observer point is never inside a source slice, nor is ever a source point inside an observer
slice. This condition may be considered as included in the previous one if the layers (z
coordinates of horizontal unknowns) are considered slices of zero height. Again, this could
be allowed, but at the cost of having to split the slice integrals at the position of the
offending layer.

3. A slice never crosses a dielectric boundary, ie they must be entirely confined in a single
dielectric layer. Otherwise (2.37a) becomes invalid, because the {A,B, C, D} come to
depend on z, z′.
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Figure 2.4: A 2.5D structure with three slices of equal height and two horizontal layers.

We stress the fact that these conditions do not limit the class of structures that can be analyzed
any more than (2.38) did. Vertical unknowns may still cross dielectric layers and an horizontal
layer may still cross or join a vertical wall at any height. P3 restrict only the possible discretiza-
tion of the structure.

2.5.1 Closed form integration of TLGF vs linear variation along z

In this work, the expansion functions for the application of the Method of Moments will be
exclusively linear rooftops, for either volume or surface supports. Whatever the support of the
function, these rooftops always have the form (f ≡ T,B)

f(r) = K(r− r0) · ¯̄P (2.41)

where r0, K and ¯̄P are constants, and ¯̄P is either the unit dyadic ¯̄I or a proper projection dyadic.
If such a f is to be separable and is defined within a slice τ = (z0, z1) (and let h = z1 − z0 > 0),
it can only depend on z according to

fz(z) =


1
(z − z0)/h

(z1 − z)/h

(2.42)

(fz is in (2.42), as in (2.38), the z-dependent factor of any component of f , and not f · ẑ.) Indeed
it is easy to see that the orientation of f is also restricted, so that if fz(z) = 1, ¯̄P in (2.41) must
be ¯̄I − ẑẑ, and in the other two cases, ¯̄P = ẑẑ. Consequently, the number of integrals (2.40)
that are needed is relatively small; they have been collected in table 2.3. We have assumed
that z0 = 0; a constant factor e±γz0/1 or e

±γ′z′
0/1 can always be taken out of the integrals. The

functions are then

fz(z) =


1
u(z) = z/h

d(z) = 1− u(z)

(2.43)
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once

case Tz eX

r
τ dz TzeX

I 1 eσγz 1
σγ

(eσγh − 1)

II u(z) eσγz 1
σγ

eσγh − 1
γ2h

(eσγh − 1)

III d(z) eσγz [I]-[II]

twice, τ = τ ′

case Tz Bz eX

r
τ dz Tz

r
τ ′ dz′ BzeX

IV 1 1 eσγ|z−z′| 2
γ2

(eσγh − 1)− 2h

σγ

V 1 u(z′) eσγ|z−z′| [IV]/2

VI u(z) 1 eσγ|z−z′| [V]

VII u(z) u(z′) eσγ|z−z′| − 2h

3σγ
− 1

γ2
+ eσγh 2

σγ3h
− (eσγh − 1)

2
γ4h2

VIII 1 1 sgn(z − z′)eσγ|z−z′| 0

IX 1 u(z′) sgn(z − z′)eσγ|z−z′| − 2
γ2

+ (eσγh − 1)
{

2
σγ3h

− 1
γ2

}
X u(z) 1 sgn(z − z′)eσγ|z−z′| -[IX]

XI u(z) u(z′) sgn(z − z′)eσγ|z−z′| 0

Table 2.3: Single and double integrals of exponential TLGF dependence vs linear
rooftop (basis and test function) dependence. σ = ±1.

Not all possible double integrals
r
τ dz Tz

r
τ ′ dz′ BzeX have been included in the table; however,

all can be readily obtained from it by one of the two following devices:

1. to form a product of two single integrals I, II and III. In this way all double integrals
with τ 6= τ ′ may be formed, because in that case the difference z−z′ never changes sign in
the integrand and the dependences on z and z′ are separable. If the exponential function
is eA or eD in (2.37a), then (2.40) is separable even when τ = τ ′.

2. to substitute d by 1− u and develop the products. For example, if we put u′ = u(z′), u =
u(z), etc,

dd′ = (1− u)(1− u′) = 1 + uu′ − u− u′
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and therefore, say,
w

τ

dz d
w

τ

dz′ d′eσγ|z−z′| = [IV] + [VII]− [V]− [VI]

and so on.

When, in addition to the pointwise Green’s functions, the integrated TLGF’s or integrated
Green’s functions described in this section must be computed, the algorithm P1 on page 26 can be
easily modified to accomodate them; it suffices to consider the required pairs (τ, τ ′), (τ, z′), (z, τ ′)
in steps 5 and 6. The actual compitation of the TLGF’s is carried out simply by substituting
the exponential functions (2.37a) in (2.35) by their integrals, as listed in table 2.3.

2.6 Quasistatic and singular behavior

The singular behavior of the Green’s functions is intimately related to that of their quasistatic
parts. The knowledge of this behavior is of paramount importance for the efficient inversion of
the spectral Green’s functions (§2.7) and for the computation of the spatial domain reaction
integrals (§§3–4). In free space this behavior is

To take the quasistatic approximation is to let ω → 0. There is however no absolute
measure of frequency in Maxwell’s equations, so that is meaningless unless ω is compared with
something. This something is the physical size of the system, given by the distance between
source and observer R. In the spatial domain, then, to take the quasistatic approximation means
to let kR→ 0.

This quasistatic field region (actually, kP → 0: |z−z′| → 0, of course, is clearly represented
as just that in the spectral domain) is linked to the spectral domain asymptotic region kp/k →
∞ through the Fourier transform pair (2.9). Thanks to relation (B.1d), the azimuthal (kφ)
dependence of the spectral Green’s function can be transferred to the spatial domain (on φ); it
is then enough to consider instead 1D transforms of the type (B.2)

Sn[fp] ≡
1
2π

∞w

0

dkpkpJn(kpP )fp(kp) (2.44)

(2.44) is called the Sommerfeld inverse transform of order n of fp. The transforms of various
orders are associated with functions whose fastest azimuthal (φ) variation is cos(nφ) or sin(nφ).
For example, from table 2.1, EM

uv and EM
vu require a transform of second order, EM

zv , EM
vz and Azu,

a transform of first order, and the rest, that are rotationally symmetric, a transform of zeroth
order.

A fundamental formula is Sommerfeld’s identity, which gives the relationship between the
spatial and spectral potential Green’s functions for free space:

S0

[
e−γ|z−z′|

2γ

]
=

e−jkR

4πR
≡ Ψ (2.45)

The quasistatic version of this is obtained by letting kp/k → ∞ on the left; with γ =√
k2

p − k2, γ → kp,

S0

[
e−kp|z−z′|

2kp

]
=

1
4πR

(2.46)
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which is an instance of the formula [43, (6.611)], [124, p. 59], valid for Re(n) > −1,

∞w

0

dkp e−kp|Z|Jn(kpP ) = P−n (R− |Z|)n

R
(2.47)

The following will also prove useful (cf [111, tab. 9.1-(6)]):

S0

[
e−kp|Z|

k2
p

]
= − 1

2π
log(R + |Z|) (2.48)

Naturally (2.46) gives the singular behavior of the free-space potential Green’s functions. Now
it is our objective to obtain the singular behavior of the ‘integrated Green’s functions’

w

τ

dz Tzg(kp, z, z′)
w

τ ′
dz′ Bzg(kp, z, z′)

w

τ

dz Tz

w

τ ′
dz′ Bzg(kp, z, z′)

either in the spectral or in the spatial domain, so that the same quasistatic part extraction
techniques (or singularity extraction techniques) that are usually applied to the computation
both of the spatial and of the spectral part of (2.36b) may still be used in (2.39).

2.6.1 Free space

In free space this is easy enough. For Auu = µ e−γ|z−z′|

2γ , the integrals along z, z′ in the spectral
domain are given directly by table (2.3). Indeed, from case #I there, [z′ > τ = (z0, z1)]

w

τ

dz Auu = µ
e−γz′

2γ
· 1
γ

(e+γz1 − e+γz0) (2.49a)

that does not have closed form inverse. But the quasistatic limit, kp � k, can be computed as
was done in passing from (2.45) to (2.46). The result

w

τ

dz Auu
kp�k−−−−−→ µ

[
e−kp|z1−z′|

2k2
p

− e−kp|z0−z′|

2k2
p

]
(2.49b)

does have a closed form inverse [cf (2.48)]

S0

[ w

τ

dz Auu

∣∣∣∣∣
kp � k

]
=

µ

4π

[
− log(R1 + |Z1|) + log(R0 + |Z0|)

]
(2.49c)

If z′ < τ = (z0, z1), the negative of (2.49c) is obtained, so that the general solution (recalling
that the case z0 < z′ < z1 is explicitly excluded from our consideration by rule #2 in 2 on
page 29) is

S0

[ w

τ

dz Auu

∣∣∣∣∣
kp � k

]
=

µ

4π

∣∣ log(R1 + |Z1|)− log(R0 + |Z0|)
∣∣ (2.49d)

Actually the identity (2.48) used to invert (2.49b) has been obtained by integrating inside the
quasistatic Sommerfeld identity (2.46), so the same results could have been obtained by simply
integrating (

r
τ dz·) the spatial domain quasistatic function Aqs

uu(R) = µ/(4πR).
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The source-integrated quasistatic function can be computed in a similar way, yielding

S0

[ w

τ ′
dz Auu

∣∣∣∣∣
kp � k

]
=

µ

4π

∣∣ log(R1 + |Z1|)− log(R0 + |Z0|)
∣∣ (2.50)

[(2.50) and (2.49d) look the same only by effect of the shorthand notation: here Z1 = z − z′1,
and there Z1 = z1 − z′.]

We note that either (2.49d) or (2.50) are strictly singular only when either Z1 or Z0 vanish.
The singularity in that case is like − log P . When the weighting function (Tz or Bz in table 2.3)
is u, u′, d or d′, the leading quasisingular term is the same as in (2.50) up to a constant factor.
These results have been collected in table 2.4.

When a double integration
r
τ dz

r
τ ′ dz′· is performed on the Green’s function, the results

are particularly interesting and perhaps a bit surprising. The two representative cases are
1) τ = τ ′ (same slice); 2) z1 = z′0 (source slice exactly over observer slice; the converse z′1 = z0

is identical). For the first case, the leading term +2h/γ (case #IV in table 2.3 with σ = −1)
indicates a singular space domain behavior −2h log P . Space domain integration confirms it:

w

τ

dz
w

τ ′
dz′

1
R

= 2P − 2Rh − 2h log
P

Rh + h
(2.51)

For the second case, the integrals in z and z′ are separable. We see by forming a product of two
cases #I (table 2.3) that the result will decay as k−3

p when kp � k. In the spatial domain, this
is never strictly singular. Namely,

1
γ

h′w

0

dz′ eγz′
h+h′w

h′

dz e−γz =

1
γ3

[
− e−γh − e−γh′ + e−γ(h+h′) + 1

]
and γ → kp

h′w

0

dz′
h+h′w

h′

dz
1
R

=

+Rh − h log[Rh + h]
+Rh′ − h′ log[Rh′ + h′]

−Rh+h′ + (h + h′) log[Rh+h′ + (h + h′)]
−P

(2.52)

The cases involving other weighting functions behave comparably; the leading asymptotic or
quasisingular behavior has again been collected, for reference, in table 2.4.

2.6.2 Layered medium

In general layered media, the quasistatic approximation cannot usually be computed in the
same way as in homogeneous media due to the lack of a manageable closed form expression
for the Green’s function (which always exists —but is too cumbersome for anything more than,
perhaps, two dielectric layers). Still, for the direct contribution from the source and the closest
images, it can be obtained easily enough. For point sources, the procedure is described in
the standard references [86, §7.1], [79], but most notably in papers devoted to the complex
images approximation technique, where the knowledge of the quasistatic terms, which cannot
be approximated by a decaying exponential series, is a requirement. For example [5, §B] extract
up to six quasistatic terms from Φu in a two-layer microstrip medium.

We begin with a review of eqs. (2.34a–2.35). These are valid for any number of layers and
any position of observer and source. If the restriction is allowed us: that observer and source
are in the same layer, then the simpler expresion for qii in (2.34a) is valid,

qii =
1

1−
←−
Γ
−→
Γ e−2γh

(2.53)
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once, τ > z′

case relative position γ → kp kR→ 0

c·
z′

z0

z1

e−kp|Z0|

k2
p

− log(R0 + Z0)

u·
z′

z0

z1

−e−kp|Z1|

k2
p

+ log(R1 + Z1)

d·
z′

z0

z1

e−kp|Z0|

k2
p

− log(R0 + Z0)

twice, τ = τ ′

case relative position γ → kp kR→ 0

cc′
z0

z1

z′

0

z′

1 2h

k2
p

−2h log P

uu′
z0

z1

z′

0

z′

1 2h

3k2
p

−2
3
h log P

uc′a
z0

z1

z′

0

z′

1 h

k2
p

−h log P

ud′
z0

z1

z′

0

z′

1 h

3k2
p

−h

3
log P

aThis case is actually never used in the mixed potential integral equation for free space, because the vector
potential is diagonal and the scalar potential is only applied to constant functions.

Table 2.4: Asymptotic and (quasi)singular behavior of the integrated free space po-
tential Green’s function. Factors of 1

2 (spectral) and 1
4π (spatial) have been omitted.

For the quasisingularities, only the leading term is shown. The cases uu′ and ud′

for τ > τ ′ are even better behaved than cc′ and these quasistatic parts need not be
treated either in the spectral or the spatial domain.
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twice, τ > τ ′

case relative position γ → kp kR→ 0

cc′
z0

z1

z′

0

z′

1

e−kp|Z01|

k3
p

−R01 + Z01 log(R01 + Z01)

uu′
z0

z1

z′

0

z′

1
· · · · · ·

ud′
z0

z1

z′

0

z′

1
· · · · · ·

Table 2.4: Singularities of integrated free space Green’s function. (cont.)

Now, in the quasistatic limit, (2.53) is a convergent geometric series, because |
←−
Γ
−→
Γ e−2hγ | will

eventually be < 1 when γ → kp →∞. Writing this out

qii
kp→∞−−−−−→

∞∑
n=0

(−
←−
Γ
−→
Γ )ne−2hnkp (2.54)

The coefficients {A,B, C, D} of (2.34b) read, when multiplied by their associated exponential
functions (2.37c) —the kp factor is omitted:

AiieA =
−→
Γ e−(h−z)−(h−z′)

∞∑
n=0

(−
←−
Γ
−→
Γ )ne−2hn

BiieB = e−|z−z′|
∞∑

n=0

(−
←−
Γ
−→
Γ )ne−2hn

CiieC =
←−
Γ
−→
Γ e−(2h−|z−z′|)

∞∑
n=0

(−
←−
Γ
−→
Γ )ne−2hn

DiieD = e−z−z′←−Γ
∞∑

n=0

(−
←−
Γ
−→
Γ )ne−2hn

(2.55)

(To compute Vv and Ii, BiieB′ and CiieC′ would be required instead of BiieB and CiieC . The
reader is reminded that z and z′ are relative to the bottom of the layers i, i′ and hence always
positive). These are four series of quasistatic images. The distance of each image to the observer
point is given by the negative of its exponent; for example, the direct image is the first term
of BiieB′ . The whole set is ordered by index n, not strictly, because it is possible that images
corresponding to different n be at the same distance. Fig. 2.5 illustrates the physical meaning
of the first four {A0, B0, C0, D0}. The other images {An, Bn, Cn, Dn} are the result of further
(or previous) n double reflections.

Different image terms collapse (have the same exponent, and are at the same distance from
the source) in the following circumstances:
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z′z

B0

A0D0

C0

z = 0 z = h

←−

Γ

←−

Γ

−→

Γ

−→

Γ

Figure 2.5: The first four quasistatic images of the set (2.55)

P4 Collapse of different quasistatic image terms into one

1. If z = 0 or z′ = 0, image Bi collapses with image Di.

2. If z = h or z′ = h, image Bi collapses with image Ai.

3. If z = z′, image Ci collapses with image Bi+1.

4. If z = 0 and z′ = h, or vice versa, all four images {Ai, Bi, Ci, Di} collapse into one.

If any image collapses with the direct image term B0, the leading singular or quasisingular term
of the Green’s functions will change. Therefore, to be able to manipulate this term analytically,
it is important that such situations (primarily cases #1 and #2 in P4, but perhaps, if h is very
small, also #4) be recognized and that the correct associated factor be known. Although it is
more or less clear how the factor of each of the terms of (2.55) could be computed automatically
using the equations of the TL model, a direct solution is convenient for other reasons, for example
to check the quasistatic behavior of those functions which were not present in a homogeneous
medium, like Azu.

For cases #1 and #2, of P4, this can be accomplished by neglecting
−→
Γi(z = 0) and

←−
Γi(z = h)

for all layers [cf (2.30)]. Therefore no interface can see each other and the sections of the TL
model become decoupled. The impedances

−→
Z and

←−
Z in (2.24) are then equal to the characteristic

impedances of the adjacent layers, and the coefficients
←−
Γ ,
−→
Γ become [substituting (2.6) in (2.24)]

−→
Γ h =

µi+1 − µi

µi+1 + µi

←−
Γ h =

µi−1 − µi

µi−1 + µi

−→
Γ e =

εi − εi+1

εi + εi+1

←−
Γ e =

εi − εi−1

εi + εi−1

(2.56)

Note that (2.55) is a weaker approximation than (2.56), and actually independent of it. The
limiting cases (2.24c) and (2.24d) are not contemplated here, because a proper knowledge of the
cover impedances Zs, sup and Zs, inf is required. (The common case of a ground plane, Zs = 0,
is trivial).

Effectively, the multilayered medium is being approximated by two half spaces at each
interface. Under such an approximation, there is a only one quasistatic image term in addition to
the direct term. Indeed, the TL equations (2.35) give, for a two half-space medium [with z, z′ over
the interface, ie i = i′ = 1 in fig. (2.6)]

A = 0 B = 1 C = 0 D =
←−
Γ
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−
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−
→

∞

z

z′

Figure 2.6: Medium with two dielectric half spaces [cf (2.57, 2.58)].

and

Vi =
Z ′

2
(←−
Γ e−z−z′ + e−|z−z′|)

Iv =
Y

2
(
−
←−
Γ e−z−z′ + e−|z−z′|)

Ii =
1
2
(←−
Γ e−z−z′ + sgn(z − z′)e−|z−z′|)

(2.57)

which through table (2.1), and replacing γ → kp everywhere, yield

Auu =
µ

2kp
(+
←−
Γ he−z−z′ + e−|z−z′|)

Azz =
µ

2kp

(
−
←−
Γ ee−z−z′ + e−|z−z′|)

Azu = j
µ

2kp
(
←−
Γ e −

←−
Γ h)e−z−z′

Φu =
1

2εkp

(
+
←−
Γ ee−z−z′ + e−|z−z′|) +

ω2µ

2k3
p

(
+
←−
Γ he−z−z′ + e−|z−z′|)

Φz =
1

2εkp

(
+
←−
Γ ee−z−z′ + e−|z−z′|)

(2.58)

The interpretation of (2.58) is, mostly, straightforward. Auu, being purely TE, is not aware of
a dielectric interface. The scalar potential Φz shows an image in agreement with the standard
static solution [99, §3.5, fig. 3.3]. The image of Azz has sign opposite to that of Φz. Φu agrees
with Φz for the static part but adds a rapidly decaying dynamic term. Actually this term is
meaningless because the approximation γ =

√
k2

p − k2 = kp− k2/2+ . . .→ kp cannot give terms
of order k−3

p in Φz (cf the more precise analysis in [107, §IV], which is restricted to planar
sources/fields. They expand the Green’s functions in series of ω, which is done by taking more
terms in the Taylor expansion of γ).

The interesting bit is Azu. Its behavior has been investigated, using a formulation that is
essentially the same as ours, by [18, p. 371], and further by [83, §2], who provide plots of Azp(P ).
(B.1d) gives the inversion formula for Azu

AzpP̂ = −j S1

[
Azuû

]
(2.59)

with Azp = (Azxx̂ + Azyŷ) · P̂. If both source and observation points are at the interface,
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the GPOF method:

N
!jk !z lŽ . Ž . " 4 Ž .F k ! F k " A e , k # 0, T . 8Ý" T " l " 0

l"1

Therefore, G A can be expressed asz x

N Mjk #0 0A Ž . Ž . Ž .G " ! A FF ! $ B FF $ 9Ý Ýz x l l l l2% l"1 l"1

where

!jk rMe 3 3
2Ž . Ž .FF & " !2k " z $ z' $ & 1 $ !M 3 2 2jk rr k rM M

Ž .10

2 2'Ž . Ž .r " z $ z' $ & $ " . 11

Ž .The expression in 9 contains two sets of images. The first
set consists of N complex images, which are constructed
using the DCIM. The second set consists of M real images,
which dominate the behavior of G A in the near-field region.z x

3. NUMERICAL RESULTS

To verify the accuracy of the proposed method, results of
different geometries are presented. Numerical integration is
used to validate the results. For all results presented in this
section, T and T are chosen to be 5 k and 150 k ,0 1 max max
respectively. The value of h is determined by monitoring the

Ž .representation of F k . We found that the value of h " 0.5T "

yields the best results. The number of complex and real
images is chosen to be five and ten, respectively.

In Figure 3, the magnitude of G A is computed for a halfz x
space. Results are shown for z' " 0 and different locations
for the field point. An excellent agreement between our
method and the numerical integration can be observed. In
Figures 4 and 5, two microstrip structures for different con-
figurations of the source and field points are considered. In
Figure 4, the results of a one-layer microstrip structure with a
dielectric constant ( " 12.6 and dielectric thickness of 1 mmr
are shown. Also, in Figure 5, the results of a two-layer
microstrip structure are presented. The first layer has a
dielectric constant ( " 12.6 and thickness of 0.75 mm, andr
the second layer has a dielectric constant ( " 2.1 and thick-r
ness of 1.5 mm. For both cases, the frequency of operation is
chosen to be 10 GHz. Again, the agreement between our
method and numerical integration is excellent.

4. CONCLUSION

In this work, we have presented a new method to evaluate
the nonsymmetrical components of the Green’s function in
multilayered structures. Two sets of images are obtained. The
first set consists of complex images which are constructed
using DCIM. The second set consists of real images which
account for the behavior of the nonsymmetrical component
in the near-field region. The locations of the real images are
determined a priori, and their amplitudes are obtained using
a least square procedure. The method is tried for a half space
and some microstrip structures, where an excellent agree-
ment is achieved.

Figure 3 Magnitude of G A for an HED present in a half space.z x
z' " 0, ( " 10.0, ( " 1.0, and frequency " 300 MHz1 2

Figure 4 Magnitude of G A for an HED present in a one-layerz x
microstrip structure. ( " 12.6, d " 1.0 mm, ( " 1.0, and fre-1 1 2
quency " 10 GHz
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Figure 5 Magnitude of G A for an HED present in a two-layerz x
microstrip structure. ! ! 12.6, d ! 0.75 mm, ! ! 2.1, d !1 1 2 2
1.5 mm, ! ! 1.0, and frequency ! 10 GHz3
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A STACKED CIRCULAR MICROSTRIP
ANTENNA FOR DUAL-BAND
CONICAL-PATTERN RADIATION
Shun-Yun Lin1 and Kin-Lu Wong1
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Kaohsiung, Taiwan 804, R.O.C.

Recei"ed 17 August 2000

ABSTRACT: The dual-band conical-pattern radiation of a stacked
circular microstrip antenna is demonstrated. The antenna studied con-
sists of two stacked circular microstrip patches and an air layer in
between, and is fed by a probe feed at the lower circular patch. By
"arying the air-layer thickness, the frequency ratio between the two
operating frequencies is "aried. Experimental results from the constructed
prototypes show that a frequency ratio ranging from about 1.26 to 1.37
can be achie"ed. Also, both of the two operating frequencies ha"e good
conical radiation patterns. ! 2001 John Wiley & Sons, Inc. Microwave
Opt Technol Lett 28: 202"204, 2001.

Key words: stacked microstrip antenna; dual-band operation; conical-
pattern radiation

1. INTRODUCTION

For achieving dual-frequency operation, stacked microstrip
antennas have been shown to be very promising, and very
similar radiation characteristics of the two operating frequen-
cies are usually obtained. However, it is noticed that the
available dual-frequency stacked microstrip antenna designs
# $1"4 are mainly for achieving a broadside-pattern radiation.
In this paper, we report a stacked circular microstrip antenna
for achieving dual-band conical-pattern radiation. When ex-
cited at the higher order mode of TM , circular microstrip01
antennas can have conical radiation patterns, and are a good

# $candidate for wireless local network applications 5 .
The dual-frequency stacked circular microstrip antenna

studied here has two circular microstrip patches separated by
an air layer. A coax probe, which is connected to the lower
circular patch, feeds the antenna, and the lower patch then
electromagnetically excites the upper circular patch. It was
found that, by selecting a suitable air-layer thickness, two
operating frequencies with conical radiation patterns can be
excited. Various frequency ratios between the two operating
frequencies can also be obtained. Details of the antenna
design and experimental results of the constructed prototypes
are presented and discussed.
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Figure 2.7: Half space:
ε0 = 10, ε1 = 1,
f = 300MHz, source
at interface z = 0.
The 10.0 m figure is a mis-
take for 10.0 mm. (Repro-
duced from [83, f. 3].)

Figure 2.8: One-layer mi-
crostrip: ε0 = 12.6, h0 =
1 mm, ε1 = 1, f = 10GHz,
source at interface z =
h0. (Reproduced from [83,
f. 4].)

Figure 2.9: Two-layer mi-
crostrip: ε0 = 12.6, h0 =
.75 mm, ε1 = 2.1, h1 =
1.5 mm, ε2 = 1, f =
10 GHz, source at inter-
face z = h0. (Reproduced
from [83, f. 5].)

using [43, (6.511.1)]

Azp(P, z = 0, z′ = 0) =
µ

4π
(
←−
Γ e −

←−
Γ h)

∞w

0

dkpJ1(kpP ) =
1
P

(2.60)

Otherwise the more general formula given above (2.47) can be applied, with n = 1,

Azp(P, z > 0, z′ > 0) =
µ

2π
(
←−
Γ e −

←−
Γ h)

R+ − Z+

PR+
(2.61a)

where I have written Z+ = z+z′ and R+ =
√

P 2 + Z2
+. Multiplying above and below by R++Z+,

which is always > 0,

=
µ

2π
(
←−
Γ e −

←−
Γ h)

P

R2
+ + Z+R+

(2.61b)

In the limit P → 0, because Z+ > 0, R+ → Z+ and this becomes

=
µ

2π
(
←−
Γ e −

←−
Γ h)

P

2Z2
+

(2.61c)

(2.61c) is in disagreement with [18, (24)] by a factor of Z−1
+ . But figs. 3, 4 and 5 from [83],

reproduced here as figs. 2.7–2.9, corroborate (2.61c). First, the slope of the curves for z = z′ at
an interface is one |Azp|-decade per P -decade. This confirms the ∼ P−1 behavior. Then, the
two other z curves are separated by .6, 2. and 2. |Azp|-decades, respectively, for ratios between
the two |z| values of each graph of .3 = log10(10 mm/5 mm), 1. and 1. |z|-decades. This confirms
the ∼ Z−2

+ behavior.
We can study now the case in which source and observer are in adjacent layers. Instead

of going back to the general equations of the TL model, we shall simplify the problem directly
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Figure 2.10: Source and observer on different sides of a dielectric interface [cf (2.64, 2.65)].

to that of a single dielectric interface, and postulate, on the basis of the remarks after P4 on
page 37, that this will give the right factor for the closest quasistatic images, and thus for the
correction, if there is one, to the singular behavior of the Green’s functions.

The situation is that of fig. 2.10, and allows the analysis of case P4/1 directly and of case 2
by analogy. Case 4 would require at least a two-interface model, like a dielectric slab or a
microstrip substrate. Here we must use the second form of qii′ = q01. The product of (2.33c)
has a single factor T (0← 1); this yields

th21 =
µ1 − µ0

2µ1

th22 =
µ1 + µ0

2µ1

te21 =
ε0 − ε1

2ε0

te22 =
ε0 + ε1

2ε0

(2.62)

and, through q01 = t21
←−
Γ ′ + t22,

qh
01 = e−γh 2µ0

µ0 + µ1
qe
01 = e−γh 2ε1

ε0 + ε1
(2.63)

From (2.34b), A, C and D will be 0. Therefore the relevant TLGF’s are, from (2.35)

Vi =
Z ′

2
q01e

+z−z′

Iv =
Y

2
q01e

+z−z′

Ii = −Z ′Y

2
q01e

+z−z′

(2.64)

In a typical computer implementation, there is a finite h for every layer, there are no unbounded
half-spaces; this is easily accomplished by terminating the structure on either end with a fictitious
cover that has no reflection coefficient. In this way eqs. (2.33c–2.35) are always valid. Here, the
term γ(h− z) that appears in the exponents of (2.64) after multiplication with (2.63) must be
interpreted as γ times the positive distance from the observer to the interface.

In the same way that led to (2.58) from (2.57), the following expressions are now from (2.64)
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obtained for the case of fig. (2.10)

Auu =
e−z′−(h−z)

2kp
µ1

2µ0

µ0 + µ1

Azz =
e−z′−(h−z)

2kp
µ0

2ε0
ε0 + ε1

Azu =
e−z′−(h−z)

2kp
jµ0

[
2µ1

µ0 + µ1
− 2ε0

ε0 + ε1

]
Φu =

e−z′−(h−z)

2kp

[
2

ε0 + ε1
+

ω2

k2
p

2µ0µ1

µ0 + µ1

]
Φz =

e−z′−(h−z)

2kp

2
ε0 + ε1

(2.65)

Comparing now this result to (2.58), we see that the coefficients of the various Green’s functions
correspond to the sum of the coefficients of the two images that we had when the observer was
above the interface, after they collapse into one image when the observer is at the interface [z = 0
in (2.58) and z = h in (2.65)]. The result for the charge (Φz) is well known in electrostatics [99,
§3.5]. Otherwise they are observer-continuous, as predicted by the TL model. (The TLGF’s
are always observer-continuous; for the Green’s functions, this is determined by the factors in
table 2.1.)

The results of this section have been summarized in table 2.5. A necessary remmark is that
the results for a perfect conductor boundary cannot in general be obtained by letting |ε| → ∞.
This is most clearly seen in Auu, which vanishes if the source is placed on such a boundary,
although this cannot be seen from (2.58) and (2.65). In such a case, both

−→
Γ h

i =
−→
Γ e

i and
←−
Γ h

i =
←−
Γ e

i

are −1 and there is an extra image in the quasistatic expression for Auu. A similar instance of
such a situation (that |ε| → ∞ is not equivalent to PEC; it is also necessary to let |µ| → 0 [µi±1

in our case] at the same time) is to be found in [50, §6.9].
On another note, the results of table 2.5 can be applied to the magnetic scalar and vector

potentials W and F through the duality relations

εi ←→ µi Γe
i

∣∣∣
kp�k

←→ −Γh
i

∣∣∣
kp�k

(2.66)

2.6.3 Integrated Green’s functions and layered medium

Here we shall find the necessary modifications to the free-space results summarized in table 2.4
so that they hold also in layered media. One possible way is 1) to obtain the integrated functions
in the spectral domain with the help of table 2.3, 2) apply the quasistatic approximation to these
functions; 3) perform the Fourier inversion.

An alternative, which we think sufficiently justified after the development in §2.6.1
and §2.6.2, is to integrate in the spatial domain each of the image terms obtained in the qua-
sistatic expansion for point sources (2.55). The accuracy of this assumption will later be checked
by numerical experiment. Only three cases need actually be considered.

1. When source (z′ or τ ′) and observer (z or τ) are in the same layer, and neither z′ nor z
is at a dielectric interface. (It does not matter whether τ ′ or τ do.) In that case only the
quasistatic image term B0 (fig.(2.5)) can become singular, and its singularity will be the
same as in free space save for a factor that depends on the particular Green’s function.
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image(s) A D C | A | D

coefficient(s)
−→
Γi

←−
Γ i

←−
Γi
−→
Γi |
−→
Γi |
←−
Γi

collapse(s)
with B when

z → h
z′ → h

z → 0
z′ → 0

z′ → h and z → 0
z′ → 0 and z → h

collapsed residual
for Auu

2µiµi+1

µi + µi+1

2µiµi−1

µi + µi−1
µi

(−→
Γ h

i

←−
Γ h

i +
−→
Γ h

i +
←−
Γ h

i + 1
)

collapsed residual
for Φu, Φz

2
εi + εi+1

2
εi + εi−1

1
εi

(−→
Γ e

i

←−
Γ e

i +
−→
Γ e

i +
←−
Γ e

i + 1
)

collapsed residual
for Azz

µ

ε′
2εiεi+1

εi + εi+1

µ

ε′
2εiεi−1

εi + εi−1

µ

ε′
(−→
Γ e

i

←−
Γ e

i −
−→
Γ e

i −
←−
Γ e

i + 1
)a

aDiscontinuous by µ (ε′), when z (z′) moves from i to either i + 1 or i− 1.

Table 2.5: Singular images for point-source Green’s functions when source and ob-
server are in the same layer. The asymptotic reflection coefficients

−→
Γi,
←−
Γi are defined

in (2.56), and are −1 if the layer is bounded by a ground plane. The residuals are
the factors that multiply the free-space singular behavior ∼ 1/(4πR). For the third
case C|A|D, they were computed using a dielectric-slab approximation. Note that
the residual for this case correctly agrees with Φz = 0 if

−→
Γ e

i or
←−
Γ e

i = −1. It can be
checked against the complete expansion in [107, (43)].

2. When the Green’s function has been integrated in z and the z′ is at a dielectric interface; τ
and z′ are in the same layer. An equivalent situation is when the Green’s function has been
integrated in z′, z is at a dielectric interface, and τ ′ and z are in the same layer. In either
case there are two singular images (B0 and A0 or B0 and D0) and each of them produces
the same singularity as in free space save for a constant medium-dependent factor for each
particular Green’s function.

3. When the Green’s function has been integrated both in z′ and in z, only the B0 term can
ever become singular, because for the other terms source and observer do not overlap, and if
there is no overlapping there is no singularity when P → 0 [this was demonstrated in (2.52)
and is shown in the cases τ > τ ′ of table 2.4]. The knowledge of the quasisingular terms is
less valuable here than in the case of point Green’s functions, because the quasisingularity
is much weaker.

Table 2.6 summarizes these cases. A particular case concerns the singularity of integrated Azp.
It can be confirmed by direct integration of (2.61a)

w

τ

R− Z

PR
=

Z −R

P
(2.67)
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case relative position
singular
images singularity

z, z′

in layer
z0

z1

z′

B0 log(R0 + |Z0|)

z′

at interface z0

z1

z′

B0, D0 (1±
←−
Γ ) log(R0 + |Z0|)

z
at interface z′

0

z′

1

z

B0, D0 (1±
←−
Γ ) log(R0 + |Z0|)

τ = τ ′

in layer z0

z1

z′

0

z′

1

B0 K log P

τ = τ ′

at interfaces z0

z1

z′

0

z′

1

B0 K log P

Table 2.6: Singular cases for integrated Green’s functions in layered media. In the once-integrated
cases, the singularity is actually log P when τ and z′, or τ ′ and z, are in contact. There are
equivalent cases where z = h or z′ = h and image A0, instead of D0, becomes singular. These
are the singularities of the TLGF’s: they must still be multiplied by constant factors depending
on the particular Green’s function at hand. The factor K for the doubly integrated functions is
given in table 2.4.

that the integrated function is never singular, not even when z′ is at an interface and τ touches
it, or vice versa. As for the components of ¯̄EM , the treatment of their singularities will be done
completely in the space domain. This is possible because magnetic currents will only be allowed
on ground planes, where the singular behavior of the Green’s function is the same as in free
space, as can easily be verified with the methods used all along this chapter.

2.7 Numerical inversion

As shown in P21 on page 131, the azimuthal dependence of the spectral Green’s functions can
be transferred in closed form to the spatial domain and eliminated from the Fourier inversion
integral. Therefore the inversion can be written in terms of integrals of the cylindrical coordi-
nates (P, kp) alone [36, (5.2.8a)] as a Sommerfeld integral

f(P, z, z′) =
1
2π

∞w

0

F (kp, z, z′)kpJn(kpP ) dkp (2.68)

or a combination of them. This integral will be computed numerically. To do this efficiently, it
is necessary to consider
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+jkp

+kp

kp → +∞

kp = 0 a

Figure 2.11: Integration path for (2.68)

• the range of values of p,

• the range of values of z − z′,

• the behavior of F (kp, z, z′) when kp →∞,

• special features of F (kp, z, z′), such as evenness,

• the characteristic points of F (kp, z, z′): poles, branch points.

The integration path used in the computation of (2.68) can be considered as consisting of
two parts. If it runs along the real axis, the part near the origin and up to |kmax| (where
kmax = k0 max

i

√
εiµi) contains all the surface wave poles and/or parallel plate modes of the

layered medium, and up to two branch points if the structure is open [36, §5.3a]. This part
accounts for the far field. The part from |kmax| and up to kp → ∞ is related to the near field
and the singular behavior of the Green’s function.

The problems studied in this work are electrically small. We are also interested in obtaining
general results. While it is relatively easy to extract the contributions of the characteristic modes
of a half space, a slab or a single-layer medium, and in so doing both to simplify the evaluation
of the remaining integral and to obtain valuable physical insight, the substantial efforts this
requires for the general multilayered medium (for example [114]) are not warranted in our case.

We shall address the first section of the path with the method both direct and simple
presented in [39], where the integration path takes a detour to a region in the first quadrant
of the kp plane, away from singularities and branch points, and comes back to the real axis
at kp = a (fig. 2.11). This method is impractical for P/λ larger than about 10, because the
integrand becomes rapidly oscillating, but it will suffice to cover our applications. A typical
choice for a is |kmax|+ k0.

On the other hand, it is impossible to neglect the near field behavior of the Green’s function,
which is essential to the computation of reaction terms. To handle this behavior, an accurate
integration of the tail of the integral (the interval [a,+∞) in fig. 2.11) is necessary. The method
of weighted averages [85, §A.7], [86, §8.3] will be used. This is an extrapolation technique that
depends on a certain amount of knowledge about the asymptotic behavior of the integrand.
Specifically, it is designed to handle integrals of the type

∞w

a

dkp q(kp)kα
p e−kp|Z| (2.69)

where q(kp) is a periodic or asymptotically periodic function when kp →∞.
It comes as no surprise that all the integrands that have appeared in this chapter have this

asymptotic form, either for point sources [cf (2.35), table 2.1] or for integrated sources [cf (2.3)].
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The Bessel function fits here, too, because the first term of its large-argument asymptotic ex-
pansion is [4, (9.2.1)], [43, (8.451)]

J±n(x) ∼
√

2
πx

cos
(
x∓ n

π

2
− π

4
)

(2.70)

The x−1/2 = (kpP )−1/2 is particularly important. To apply the algorithm, then, α and |Z|
of (2.69) must be known. This α can be obtained from tables (2.3) or (2.4) or directly from
equation (2.35) and table 2.1. For example, all functions that exhibit a potential-type singular-
ity (1/P ) have α = −.5 (k−1

p for the Green’s function times k+1
p for the factor in the Sommerfeld

integral times k−.5
p for the Bessel function), and those with a logarithmic singularity, α = −1.5.

In [86, §8.3], the algorithm is tested with α = −.5, and this seems to have been the only appli-
cation of the technique for a long time. In the review article [76, (56), fig. 14], good performance
is demonstrated for α = +.5 and |Z| = 0 (a strongly singular case).

The asymptotic period of the Bessel function, which is also required, is given simply by T =
2π/P , according to (2.70) and (2.68). The weighted averages algorithm uses the half-period to
split the tail in intervals where the partial integral is computed with a separate method (like
Gauss-Legendre rules) and actually tries to extrapolate the sum of these intervals. When the
oscilating function is not present (when P = 0), or if the period is very large, the intervals must
be formed according to another rule. A most practical one is to compare |Z| to P and choose
as size of the interval the shortest of π/|Z| and π/P . [76, p. 1414] suggests the use of π/|Z|
only when P = 0, but this seems too conservative. (He also notices that the weighted averages
algorithm does not improve when the intervals are chosen according to the zeros of the Bessel
function, which is a good characteristic, because it is easier to have equal-sized intervals.) Last,
if π/|Z| is chosen, α should be up by +.5, because the Bessel function is taken as constant for
the purposes of extrapolation.

1. If |Z| > 0, the integral will eventually converge whatever the value of α, and the faster
the larger |Z| is. Trying to form intervals according to P → 0 would only make it difficult
to achieve any accuracy in the integration of each ever longer interval, thereby increasing
computation time and in the end producing (probably) spurious convergence.

2. If |Z| = 0, there are two possibilities.

(a) Either the function is singular at P = 0; then computation time will increase without
bound as P → 0, because of the problem of achieving accuracy in the integral of
each interval as explained above. It appears that the first interval (a, a + T ) is
the most delicate. [75, §6.2.1] recommends a Romberg method here, but a Gauss-
Kronrod method such as implemented in [60, 101] is more efficient. (In my experience,
Romberg integration has a tendency to produce excesive accuracy with excessive
number of function evaluations.) It is clear that in this case the intervals cannot be
chosen as π/|Z|. The best bet is, if the singular behavior of the function is known
(say, the principal quasistatic terms are known), to extrapolate towards the origin
with the help of some points computed at reasonable P > 0 and then avoid numerical
inversion.

(b) Or the function is bounded at P = 0. Then the integral of the tail will converge. But
the function does not decrease exponentially, because |Z| = 0, nor does it alternate,
because P = 0. Therefore, the intervals must be chosen on other grounds and the
weighted averages method will be of little if of any help.

Fortunately, the need for values of the Green’s functions at R = 0 or, for singular functions,
at small P , can be circumvented in most cases by choosing with some care the spatial domain
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Figure 2.12: Twice integrated singular free
space potential Green’s functions. In free
space

r
τ

r
τ ′ ccΦu (or

r
τ

r
τ ′ ccΦz) is also

used, and it is identical to
r
τ

r
τ ′ ccAuu. The

slope of
r
τ

r
τ ′ ccAuu when P → 0 is (in this

plot) -2kh loge 10
4π = .367, which agrees with

table 2.4, as do the other two.

Figure 2.13: Once (z′) integrated singular
free space potential Green’s functions. The
slope of

r
τ ′ Φu when P → 0 is − loge 10

4π =
.183, which agrees with table 2.4.

integration rules. (A list of optimal Gaussian-type rules for various regions has been compiled
in §C).

2.8 Examples

In this section, a set of Green’s functions will be computed with the general methods developed
along this chapter. This will serve as justification for the properties we have claimed for them,
and also as a reference, because as far as I know no plots of the integrated functions (§2.5) have
appeared in the literature, and only a light reference to their properties [140, §C].

2.8.1 Free space

In free space, where the Green’s function is known in closed form and there is no need of
interpolation, it does not make any sense to apply the 2.5D formulation studied here. The
integrated functions are interesting, nonetheless, as comparison and check material, and as a
first step in the computation of the layered media Green’s functions. Not even in free space do the
integrated functions exist in closed form; they were computed with the same exact procedure
that will be used to compute them in layered media, ie numerical Sommerfeld transform, as
explained in §2.7.

Only the functions that could actually be used are shown. For example, because ¯̄A is
diagonal, functions

r
τ

r
τ ′ cu A are not needed.
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τ

τ ′

cc′ uu′ ud′ du′

z

h

h′

Figure 2.14: Key for figs. 2.15–2.16.

As shown in table 2.4, the only singular case for twice integrated functions is when τ = τ ′.
This is shown in fig. 2.12. In fig. 2.13, an horizontal layer touches a slice [τ ′ = (z′0, z

′
1) and z = z′0].

This is first case (c·) of table 2.4, with R0 = 0.
The non-singular cases appear in 2.15 and 2.16. The first corresponds to the cases τ > τ ′

in table 2.4 (actually τ ′ > τ , so they are mirrored: ud′ in fig. 2.15 → du′ in the table, etc; this
symmetry is, of course, dependent also on the medium) with R10 = 0 (R01 in table 2.4). The
second figure is the reciprocal of case c·, with R0 =

√
P 2 + h2 (see fig. 2.14).

Finally we show the transforms needed to compute the field dyadic ¯̄EM when the test cell
is vertical. These are given in table 3.2 as cases II (G1-c to G4-c in the plots) and III (G-u
and G-d in the plots). The cartesian components of ¯̄It · ¯̄EM are obtained from these through
formulas (B.4). Note that at most a potential-type singularity (P−1) appears as a result of (B.4)
from fig. 2.18, while all components of ¯̄EM from 2.19 are regular at P = 0.

2.8.2 Layered medium

All the examples presented for the layered medium are based on the template of fig. 2.20. Up
to five different layers and/or slices are allowed; for each medium (I, II. . . ), the permittivity of
each layer is listed in the table.

The first example uses media I and II (fig 2.20) and is both a check of table 2.6 and a
symmetry test when τ = τ ′ (the singular case for twice-integrated Green’s functions) in fig. 2.22.
Comparison between

r
τ

r
τ ′ udAzz and

r
τ

r
τ ′ duAzz is, on the other hand, a true reciprocity test on

each of the media separately (fig.2.22). These media are reflected around the midline of τ2. There
is only one slice and it is also τ2. On fig.2.23 the two scalar potentials have been represented.
As can be seen, their first-order singular behavior (dominated by the real part) is the same, but
they are very different far from the source. (Because they are integrated with cc, they are the
same for either of media I and II).

A plot of the components of ¯̄EM in a layered medium (figs. 2.24–2.25: these use medium IV
from fig. 2.20) reveals some interesting features. First of all, the two curves G3-c≡

r
τ S1{k−1

p EM
uv}

and G4-c≡
r
τ S1{k−1

p EM
vu} are different (this is easier to appreciate when source and observer are

farther away in z, fig. 2.25) and this difference produces a non-zero component in the diagonal
of ¯̄EM · ¯̄It, which is not antisymmetric in a general layered medium. This component (related
to the difference of G3-c and G4-c) is nonsingular at R→ 0 if M is on a ground plane, which is
the only case treated here. (For the general case, some information may be obtained from [32,
§C], but further study is clearly warranted).

On the other hand, the behavior at P → 0 of all the functions appearing in the singular
case (z0 = z′, fig.2.24) is the same as in free space; this is the justification for the singularity
extraction procedure developed in §§3.3.5–3.3.6 for the reaction integrals involving them.
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Figure 2.15: Twice integrated non-singular
free space potential Green’s functions. The
values at P = 0, not shown because of the
logarithmic kP axis, are (·10−2): 1.095 −
j.0794

∣∣ .466 − j.0199
∣∣ .234 − j.0199

∣∣
.1615− j.0198.

Figure 2.16: Once (z′) integrated non-
singular free space potential Green’s func-
tions. Only

r
τ ′ cf is actually used in

free space, because only ẑ-directed currents
have u or d-type variation, and these do
not interact with horizontal currents in free
space save through the associated charge.
The value at P = 0 is (5.456−j.7927)·10−2.

τ0
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c
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u

u

d

d

z′

h0

h1

Figure 2.17: Key for figs. 2.18–2.19.

2.9 Conclusion

In this chapter, the derivation of the spatial domain field and potential Green’s functions has
been carried out, starting from Maxwell equations, by dint of a plane wave (modal, spectral)
decomposition. In the spectral domain, the exponential dependence of these functions on the
vertical coordinate has been made manifest, and then eliminated through integration with the
linearly varying basis and test functions normally used in a method of moments procedure.

An idea that comes easily to mind is that of using higher order functions whose product
with an exponential could also be integrated analytically. Two obstacles can be foreseen:
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Figure 2.18: Once (z) integrated compo-
nents of ¯̄EM in PEC-bounded free space,
when observer slice is τ0 in fig. 2.17.
Some of the components are singular, be-
cause source and observer actually touch
when P → 0: note in particular
that

r
τ dEM

zx (G-d) is singular (P−1),
while

r
τ uEM

zx (G-d) is not. G2-c and G4-c
are equal in modulus, respectively, to G1-c
and G3-c in free space.

Figure 2.19: Once (z) integrated compo-
nents of ¯̄EM in PEC-bounded free space,
when observer slice is τ1 in fig. 2.17. Note
that all components go to zero (like P )
when P = 0, save G1,2-c=S0{EM

uv},
S0{EM

vu} (these are equal in modulus in free
space). Its value at the origin is .8037 −
j.7937 · 10−3.
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Figure 2.20: Key to examples of layered me-
dia z-integrated Green’s functions. For all
slices τ0–τ4, kh = .1.
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Figure 2.21:
r
τ

r
τ ′ ud′Azz and

r
τ

r
τ ′ du′Azz

for τ = τ ′ = τ2; these are equal on each
of the media I and II, fulfilling required reci-
procity.

Figure 2.22: Twice integrated Azz for τ =
τ ′ = τ2.

r
τ

r
τ ′ uu′Azz on medium I equalsr

τ

r
τ ′ dd′Azz on medium II, and viceversa.

The slope at P → 0 is the same for all
four functions. (Also, not shown here,r
τ

r
τ ′ cc

′AI
zz =

r
τ

r
τ ′ cc

′AII
zz.)

• the increase in the number of integrated Green’s function types, that will require a par-
ticularly careful implementation;

• the treatment of the quasistatic and singular parts, relatively simple when working with
linear functions (all 1/R singularities are reduced to logarithmic type, and can be treated
uniformly), will become more complicated. In the absence of analitically available qua-
sistatic terms, spatial domain integration is also more complicated, and in practice slower.

However, for especially restricted structures (single-layer circuits including vias, very thin layers
of highly conducting materials analyzed with a polarization current approach, etc) it is very
possible that the advantages would outweigh the difficulties.

Another possibility, that was not fully explored here, is to have vertical magnetic current
slices (and, in general, magnetic currents in any position, not only on ground planes). Indeed,
the bases are already laid out, as the spectral domain integration (table 2.3) has been developed
in a general way for all transmission line Green’s functions. However, before a computer im-
plementation is possible, a detailed study of the quasistatic parts of the individual components
of ¯̄EM , similar to what was done for the potentials, is necessary. This would make possible the
analysis of 2.5D dielectric homogeneous bodies in layered media using the surface equivalence
principle (see §3.4; a full 3D approach, using 3D interpolation, is described in [20, 21]).
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Figure 2.24: Source integrated components
of ¯̄EM in microstrip medium: singular case.
This is in medium IV (fig. 2.20), z′ = z1,
τ = τ2. The singularity of G1-c, G2-c
and G-d is the same (and the same as in
free space, cf fig 2.18), while G3-c, G4-c
and G-u are regular, but also behave at P →
0 in the same way as in free space. Although
it can not be appreciated in this plot, G3-c
and G4-c are different at P > 0, giving raise
to a non-zero ¯̄EM

xx.

Figure 2.25: Source integrated components
of ¯̄EM in microstrip medium: nonsingular
case. Same as fig. 2.24, but now τ = τ3.
Unlike in free space, all six components are
distinct.



3 . . . . . . . . . . . . . . . . Surface equivalence

There are mainly two formulations that can be used to solve a scattering problem by application
of the equivalence principle on the surfaces of conductors, apertures and homogeneous dielectric
bodies: the Müller formulation and the PMCHWT (Poggio, Miller et al.) formulation [73,
§1]. The former results in a second order integral operator, and is in general better behaved,
particularly for low-contrast objects [73, §6]. For high-contrast bodies and conductors, the two
behave rather similarly [150]. In this work, only the PMCHWT formulation is used.

The discretization of the unknown equivalent currents will be in terms of linear functions
(rooftops) defined on arbitrarily oriented triangular and rectangular cells. These are treated on
a similar way, and, in homogeneous media, all the results of this chapter are valid for either
kind, or for any combination of them.

We begin by discussing the analysis of metallic bodies in stratified media (§3.2). For the
particular case of perfectly conducting bodies, if the bodies are open (ie, have surface, but no
volume) it is possible to obtain valid solutions by enforcing the boundary condition for the
electric field alone. This condition is that the tangential electric field be zero on the surface of
the conductor; magnetic current unknowns are therefore unnecessary.

In layered media, the condition of separability (2.5 on page 28) must be enforced on the
structure, so that the 2.5D method can be applied. In this case, vertical elements can only
be meshed using rectangles, and triangles can only be horizontal. Depending on the relative
orientation of source and test cells, different Green’s functions are needed. All the different
cases (§§3.2.1–3.2.9) are examined with a view to implement them in a computer code. The
knowledge of the quasistatic parts of the Green’s functions (§2.6) is applied to a tailored singu-
larity extraction procedure that results in an efficient computation of the reaction integrals.

Then we present the analysis of arbitrarily shaped apertures in metallic ground
planes (§3.3), using the same discretization and integral equation approach as for metallic scat-
terers. In contrast to the analysis of metallic scatterers, here it is only necessary to use the
equation for the continiuty of the magnetic field. In some aspects, the formulation required by
this problem is dual to that required for the analysis of open metallic scatterers. The differ-
ent types of interactions between magnetic currents (always horizontal) and variously oriented
electric current cells are considered.

The range of problems solvable using a surface formulation is completed with the analysis
of arbitrarily shaped piecewise homogeneous dielectric bodies, either in free space or a ground-
plane bounded homogeneous half-space (§3.4). This is a well known technique, to which the
2.5D formulation has not been applied; both electric and magnetic currents are used in the
discretization of the body’s surface. The established results it provides will be used in the next
chapter (§4) to verify an alternative formulation using volume currents.

To conclude, a series of illustrative cases is showed in §3.5. In addition, all the results
of §5, that are supported by our own measurements, have been obtained by applying the theory
presented in this chapter.
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ê
−

A+

A
−

Figure 3.1: Parameters of the surface RWG function (3.2).

3.1 Discretization

To discretize a surface current distribution, either electric or magnetic, we shall use the classic
linear RWG functions defined on triangular or rectangular (parallelogram) cells. These functions
are the composition of two half functions defined over adjacent cells, ie cells that share an edge
of the mesh (the common edge).

b = b+ − b− (3.1)

The definition of the half functions is (fig. 3.1)

b±(r) =
l

2A±
(r− r±) on triangles, (3.2a)

b±(r) =
l

A±
(r− r±) · ê±ê± on parallelograms. (3.2b)

In the parallelogram, ê± is a vector along the edge of the cell adjacent to the common edge.
These functions have two fundamental properties [113]:

1. They have constant divergence.

2. Their component normal to the edge of the cell is zero, save on the common edge, where
it is 1. This normal component is, therefore, continuous across half functions.

The normal to the cell itself is n̂i±, or n̂j±. The normal to the edge of the cell, on the plane of
the cell, is n̂s

i±, or n̂s
j±.

3.2 Metallic scatterers

The electric field integral equation (EFIE) for conductors embedded in an open layered medium
is

(Es + Ei)× n̂ = 0 (3.3a)
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which must be enforced on the surface of the conductor. A good but imperfect conductor can
be accomodated with the approximation [cf (2.8)]

(Es + Ei)× n̂ = ZsJ× n̂ (3.3b)

with a surface impedance

Zs = (1 + j)

√
µ0f

πσ
(3.4)

The EFIE (3.3a) is not appropriate for closed bodies (cavities) because it does not guarantee
the unicity of the solution at the resonant frequencies of the cavity [72]. This problem, which is
particular to the lossless case, will not be considered, and (3.3a) will be used anyway.

Proceeding, then, with the application of the method of moments to (3.3) according to §1.6,

J =
n−1∑
j=0

αjbj (3.5)

and

Es =
n−1∑
j=0

αjEj (3.6)

where [cf (2.16–2.19)]

Ej = −jωAj − gradΦj (3.7)

When substituted in (3.3) or (3.3b), (3.7) will produce the mixed potential form of the EFIE,
which is called the MPIE. For each of the terms of the field expansion (3.6), we have

Aj = ¯̄A ∗ bj

Φj =
1
jω

(div′ ¯̄Φ) ∗ bj

(3.8)

Integrating by parts the scalar potential [cf (2.18)]

Φj = − 1
jω

¯̄Φ ∗ grad′ bj +
1
jω

w

∂S′

( ¯̄Φ · bj) · n̂s (3.9)

The subdomain S′ is composed of two cells S′+ and S′−. The boundary is then ∂S′ = ∂S′+ +∂S′−.
The line integral of (3.9) becomes

w

∂S′+

( ¯̄Φ · bj+) · n̂s
+ −

w

∂S′−

( ¯̄Φ · bj−) · n̂s
− (3.10)

In a homogeneous space or in a PC grounded half-space, ¯̄Φ is simply GΦ ¯̄I and this is continuous
in r′. The RWG basis functions satisfy bj+ · n̂s

+ = bj− · n̂s
− = 1 on the common border of ∂S′,

0 elsewhere on ∂S′ (§3.1). For these reasons (3.10) is zero [113].
In a layered medium, only strictly vertical or horizontal bi± will be considered. Be-

cause Φ = ¯̄ItΦu + ẑẑΦz, this condition allows ( ¯̄Φ · bj±) · n̂s
± to be written as Φu/z(bj± · n̂s

±),
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and to restrict the integration domain of (3.10) to the common edge. Indeed, (3.10) can now be
written (cf [21, (10)])

w

∂S′+

(
Φubj+ + (Φz − Φu)bj+ · ẑẑ

)
· n̂s

+

−
w

∂S′−

(
Φubj− + (Φz − Φu)bj− · ẑẑ

)
· n̂s

−

(3.11)

Φu is source continuous everywhere [cf (2.20b)], but Φz is discontinuous when r′ crosses a
dielectric interface [cf (2.20f)]. We write Φ+

z or Φ−
z for Φz on either S+ or S−, and (3.11) can

be simplified into
w

∂S′

Φu(bj+ · n̂s
+ − bj− · n̂s

−) (3.12a)

+
w

∂S′

(
Φ+

z − Φu

)
bj+ · ẑẑ · n̂s

+ −
(
Φ−

z − Φu

)
bj− · ẑẑ · n̂s

− (3.12b)

(3.12a) is always zero. To lighten the notation, the symbol

λj± ≡ n̂s
j± · ẑẑ · n̂s

j± (3.13)

is introduced. Its meaning is straightforward: it is 0 for half-bases directed perpendicularly to ẑ,
and 1 for half-bases directed along ẑ. We enumerate the cases in which (3.12b) will differ from
zero:

P5 Cases in which source line integral is 6= 0

1. Precisely one of λj± = 0; the other is then 1. Put in words, the cell couple is a ‘corner’
basis function [46]

2. None of λj± = 0, in which case both are 1, and Φ+
z 6= Φ−

z ; this is a vertical basis function
that straddles a dielectric interface.

In both cases, the result is a line integral whose integrand is the difference of two scalar potential
Green’s functions evaluated at the same source points. It has been shown (§P4) that the singular
behavior of all these functions is the same, which means that this integrand is regular.

To summarize, the general form of the scalar potential in layered media is restated from (3.9)
and (3.12b) (cf [80, (14)])

Φj = − 1
jω

¯̄Φ ∗ grad′ bj

+
1
jω

w

∂S′

(
Φ+

z − Φu

)
λj+ −

(
Φ−

z − Φu

)
λj−

(3.14)

with the caveat that the line integral term, which appears in non-trivial layered media, is valid
only for strictly vertical and horizontal source currents.

Testing of (3.3b) produces

n−1∑
j=0

αj〈ti,Ej〉 = −〈ti,Ei〉+ Zs〈Ji,Ji〉, i = 0..n− 1 (3.15)
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where

〈ti,Ej〉 = −jω〈ti,Aj〉 −
〈
ti, gradΦj

〉
(3.16)

The products ×n̂ of (3.3b) become superfluous because ti is tangential to the metallic surface.
Integrating the second term of (3.16) by parts,

〈ti, gradΦj〉 =
w

∂S

Φjti · n̂s − 〈div ti,Φj〉 (3.17)

The argument of (3.9–3.14) could now be repeated. In this case, the line integral is always zero
because Φj is a scalar and because it is continuous in r.

Substituting (3.14) into (3.17) and the result together with Aj = ¯̄A ∗ bj into (3.16), we
arrive at the final reaction-type integrals.

〈ti,Ej〉 = −jω〈ti,
¯̄A ∗ bj〉 (3.18a)

− 1
jω
〈div ti,

¯̄Φ ∗ grad′ bj〉 (3.18b)

+
1
jω
〈div ti,

w

∂S′

(
Φ+

z − Φu

)
λj+ −

(
Φ−

z − Φu

)
λj−〉 (3.18c)

To compute each of (3.18) we conform to the following procedure:

P6 2.5D recipe for surface patches

1. All the vertical integrations (either in the convolution or in the test) are grouped to-
gether with the Green’s function. Depending on the relative orientation of basis and test
(half-)functions, once-, twice- or non-integrated Green’s functions are produced. These
vertical integrations are introduced under the Sommerfeld transform to operate on trans-
mission line Green’s functions, whose dependence on the vertical coordinates is known
in closed form [cf §2.4 and (2.35)]. The vertical integrations are then performed analyti-
cally (§2.5).

2. The spatial-domain singularity or the most important quasi-singularity of the (integrated)
Green’s function is identified. This singularity has the form of a static free-space Green’s
function, or a sum of terms of that form. It is extracted from the (integrated) Green’s
function, either in the spectral domain or in the spatial domain, on convenience.

3. The extracted part is integrated over the source region analytically. The regular remainder
is computed with numerical quadratures (§C).

The precise way in which this procedure is carried out depends on the relative orientation
(horizontal, vertical) of both basis and test function, and the orientation of their support cell.
It is important to remark that, if 〈ti,Ej〉 is split

〈ti,Ej〉 = 〈ti+,Ej+〉 − 〈ti+,Ej−〉 − 〈ti−,Ej+〉+ 〈ti−,Ej−〉 (3.19)

each of the four terms in (3.19) contains both source and test line integrals in every case, even
in free space. It is only when they are summed up that most (or, in free space or in special
cases, all) of them cancel and it is possible to write (3.18). In other words, (3.18) is not valid for
half-function/half-function reactions, not even when (3.18c) is zero. But the computation is to
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be done by actually splitting (3.18) as in (3.19), and then adding the line integral if so needed,
according to the matrix fill algorithm of [113, end of §II]. It is in this sense that

〈ti±,Ej±〉∗ ≡ −jω〈ti±, ¯̄A ∗ bj±〉

− 1
jω
〈div ti±, ¯̄Φ ∗ grad′ bj±〉

(3.20)

must be understood, ie, the terms to be cancelled are not written.
In relation to the previous paragraph, a note on the application of reciprocity to the half-

function to half-function reaction terms is in order. Because they are computed according
to (3.20) and do not include the line integral terms, it is not necessarily true that

〈ti±,Ej±〉∗ = 〈tj±,Ei±〉∗ (3.21)

Only if the line integrals vanish in both complete reactions 〈ti,Ej〉 and 〈tj ,Ei〉 does (3.21) hold
for any of the terms of (3.19) separately. In particular, if the mixed potential expresion of Ej

[from (3.7–3.7] contains a line integral term, it is not possible to write

〈tj ,Ej〉 = 〈tj+,Ej+〉∗ − 2〈tj±,Ej∓〉∗ + 〈tj−,Ej−〉∗ (3.22)

for the self-interaction, ie 〈tj+,Ej−〉∗ and 〈tj−,Ej+〉∗ will be different.
This will also mean that the matrix of moments may not be symmetrical because reciprocal

elements are computed using different expressions [ie, with and without line integral, or using Azu

and Φu for type V (§3.2.5) and just Φz for type IV (§3.2.4) of table 3.1] that only give the same
result when they are evaluated exactly. There should be no problem if they are evaluated with
sufficient accuracy. However, if the test integral were approximated with a single sample, the
numerical lack of symmetry could be problematic.

To solve this difficulty, a matrix symmetrization procedure has been developed in [18, (32-
35)] that divides the line integral between source and observer basis functions; in practice, those
elements that are non-symmetric when evaluated approximately are evaluated twice, and then
averaged. Our matrix will always be symmetric by the simple expedient of never computing
reactions 〈ti,bj〉 with i < j. A slight (and negligible) asymmetry due to numerical error will be
apparent when solving mirrored problems. One such example is presented later (§P7).

In the forecoming sections, the subindices i± or j± will be dropped when possible, ie ti± → t, or
substituted by primes, ie τj± → τ ′. The source cell may be horizontal (1) or vertical, and in the
latter case, the half-basis function may be oriented horizontally (2) or vertically (3). This gives
three possibilities for the half-basis function; times the same three for the half-test function,
there results a total of 3×3=9 reaction types. In the extraction of singular terms, factors Λ′A
and Λ′Φ appear; these factors depend on the parameters of the medium and the position of z, z′, τ
and τ ′ relative to layer interfaces, as explained in §2.6.2.

3.2.1 Type I

This is when both observer and source cells are horizontal, λi± = λj± = 0. (3.20) becomes

〈ti±,Ej±〉 = −jω〈ti±, Auu ∗ bj±〉 (3.23a)

− div ti± div′ bj±
jω

〈1,Φu ∗ 1〉 (3.23b)
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τ
′
→

J
′

l ′
→

τ
→

J

l
→

Figure 3.2: A 〈J, ¯̄EJ ∗ J〉 interaction of type II.

This is also the general form of (3.20) in a free space medium, where Auu → µΨ, Φu → Ψ/ε,

Ψ =
e−jkR

4πR
. (3.23) may have a singularity or quasi-singularity given by

Auu =
Λ′A
R

+ Areg
uu

Φu =
Λ′Φ
R

+ Φreg
u

(3.24)

where Areg
uu , Φreg

u are regular everywhere. This assumes that z and z′ belong to the same dielec-
tric layer, its boundaries included. The resulting singular or quasi-singular integrals have the
same form as in free space and are computed likewise, with [146, (5,7)].∗. The constant projec-
tion êj±êj± in the rectangular rooftop (3.2b) can be simply taken out of the vector potential
integral, ie

w

S′

Auu(r− rj±) · êê = êê ·
w

S′

Auu(r− rj±) (3.25)

leaving the same integral as a triangular rooftop. Note that save the constant fac-
tor div ti± div′ bj±, the fourfold integral (3.23b) is common to all half-functions defined over
the pair of cells i±, j±, and thus need only be computed once for up to 16 half-test/half-basis
reaction terms. On the filling of the moment matrix by cells, see the comments after P6 on
page 57.

For reactions of this type, the functions

Auu(P, z, z′) (3.26a)
Φu(P, z, z′) (3.26b)

must be tabulated. The argument of these tables is only P ; z, z′ are parameters, the vertical
position of the cells.

3.2.2 Type II

This is when both observer and source cells are vertical, n̂ · ẑ = 0, n̂′ · ẑ, but the half-functions
are oriented horizontally, that is, λ = λ′ = 0, cf (3.13). (As per the 2.5D requirement, only

∗For the self-interaction (same source and observer cell) the full integral
r
S

r
S
ti±bj±/R can be computed in

closed form. For triangles, see [8, table I]; equivalent formulae had been published earlier by [31, (25-29)]. [8]
includes useful convergence plots. For rectangles, for example [106, (10.33)], [96, (3.31)].
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rectangles can be vertical cells.) The dependence along vertical and horizontal coordinates is
separated,

w

S′

b (·) =
w

l′

b dl′
w

τ ′

(·) dz′

w

S

t (·) =
w

l

t dl
w

τ

(·) dz
(3.27)

and (3.20) can thus be written

〈t,E〉 = −jω〈t,
w

τ

w

τ ′

Auu ∗ b〉 (3.28a)

− div t div′ b
jω

〈1,
w

τ

w

τ ′

Φu ∗ 1〉 (3.28b)

Both test and convolution integrals become one-dimensional. The functions

fA(P, τ, τ ′) =
w

τ

w

τ ′

Auu (3.29a)

fΦ(P, τ, τ ′) =
w

τ

w

τ ′

Φu (3.29b)

must be tabulated in advance. These are functions of P only; the source and observer slices are
fixed parameters for any given reaction term. The singular or quasi-singular parts of fA and fΦ

can be obtained either by inversion of their asymptotic development when kp → ∞, or in a
more straightforward way (§2.6), by spatial integration of the singular or quasi-singular parts
of Auu, Φu. The latter path yields the following:

• If τ 6= τ ′, both fA and fΦ are regular when P → 0.

• If τ = τ ′, both fA and fΦ have a logarithmic singularity given by

fA(P, τ, τ ′) = −Λ′A2h′ log P + f reg
A

fΦ(P, τ, τ ′) = −Λ′Φ2h′ log P + f reg
Φ

(3.30)

The one-dimensional singular integrals
r
l′ b log P ,

r
l′ log P that appear when one substi-

tutes (3.30) into (3.28) are (surprisingly) typical of two-dimensional problems. Although they
are immediate, they are also given by [146, (1,2)].

It is possible to go further and extract (and integrate analytically on l′) the whole free-space
static part of (3.29). This is advantageous mainly when τ 6= τ ′, when the functions (3.30) are not
strictly singular [instead of log P , they have log(R + Z) with Z > 0; cf. (2.52)]. The necessary
line and surface integrals can be found in §A. However, if the two interacting cells are not in the
same dielectric layer, or even if they begin or end at an interface, the residual corresponding to
homogeneous space cannot be used —that is valid only for the strictly singular case (see §2.6.3).

3.2.3 Type III

This is when both observer and source cells are vertical, n̂ · ẑ = 0, and the half-functions are
oriented vertically, λ = λ′ = 1. The dependence along vertical and horizontal coordinates is
separated [cf (3.27)]

w

S′

b (·) = ẑ
w

l′

dl′
w

τ ′

b(z′)(·) dz′ (3.31a)

w

S

t (·) = ẑ
w

l

dl
w

τ

t(z)(·) dz (3.31b)
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and (3.20) can now be written (the vector potential integral becomes a scalar integral, as ẑ·ẑ = 1;
we assume that there is no line integral)

〈t,E〉 = −jω〈1,
w

τ

t(z)
w

τ ′
b(z′)Azz ∗ 1〉 (3.32a)

− div t div′ b
jω

〈1,
w

τ

w

τ ′
Φz ∗ 1〉 (3.32b)

The scalar potential integral (3.32b) is the same as in (3.28b), up to a constant factor. In the
vector potential integral (3.32a), both convolution and test integrals become one-dimensional,
as in §3.2.2. The function

fA(P, τ, τ ′) =
w

τ

t(z)
w

τ ′

b(z′)Azz (3.33)

must be tabulated. As before, this is only function of P ; τ, τ ′ are fixed parameters for any
given pair of observer and source cells. An important point is that (3.33) represents up to
four functions, because on each slice τ = (z0, z1), τ ′ = (z′0, z

′
1) there are two possible vertically

oriented half basis, viz

−→
b (z′) =

l′

A′ (z
′ − z′0)

←−
b (z′) =

l′

A′ (z
′
1 − z′)

−→
t (z) =

l

A
(z − z0)

←−
t (z) =

l

A
(z1 − z)

(3.34)

and (3.33) must be tabulated in advance for all four combinations. (Note that there are four
even if τ = τ ′).

It has been shown [see §2.6.3, (2.52)] that, like (3.29), (3.33) is regular whenever τ 6= τ ′,
and otherwise it has a logarithmic singularity, which in this case is given by

fA(P, τ, τ ′) = −
Λ′A
Q

h′ log P + f reg
A (3.35a)

(3.35b)

with the factor Q

+3 if either t =
−→
t , b =

−→
b or t =

←−
t , b =

←−
b

−6 if either t =
−→
t , b =

←−
b or t =

←−
t , b =

−→
b

(3.35c)

as presented in table 2.4. The difference in sign for the second case is due to the different
orientation of the rooftop here and the function d(z) in that table.

3.2.4 Type IV

In this case, both source and observer cell are vertical, but λ = 0 and λ′ = 1. The dependence
of the half test function is separated like (3.27), while that of the half basis function is separated
like (3.31).

w

S′

b (·) = ẑ
w

l′

dl′
w

τ ′

b(z′)(·) dz′ (3.36a)

w

S

t (·) =
w

l

t dl
w

τ

(·) dz (3.36b)
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τ 1
→

J

l
1
→

τ 2
→

l
2
→

J

J

V
I

(r
.

V
II

I)

V
II

(r.
IX

)

IV (r. V)

Figure 3.3: 〈J, ¯̄EJ ∗ J〉 interactions of types IV (recipr. V) VI (recipr. VIII) and VII (recipr. IX).

The salient characteristic of this type is that, due to Sommerfeld’s Choice for the vector potential
dyadic (§2.3) there is no vector potential term. Now (3.20) becomes

〈t,E〉 = −div t div′ b
jω

〈1,
w

τ

w

τ ′

Φz ∗ 1〉 (3.37)

which is the same scalar potential integral as (3.32b), up to a constant factor, and can be
regularized in the same exact way.

3.2.5 Type V

This case is the reciprocal of type IV: both cells are similarly vertical, but here λ = 1 and λ′ = 0.
The separation is given by

w

S′

b (·) =
w

l′

b dl′
w

τ ′

(·) dz′ (3.38a)

w

S

t (·) = ẑ
w

l

dl
w

τ

t(z)(·) dz (3.38b)

The reaction (3.20) is now

〈t,E〉 = −jω〈1,
w

τ

t(z)
w

τ ′

Azb ∗ b(l′)〉 (3.39a)

− div t div′ b
jω

〈1,
w

τ

w

τ ′

Φu ∗ 1〉 (3.39b)

b being b̂b(l′). The scalar potential term is like (3.28b). For the vector potential part, we have
(cf [78, (54–55)])

Azb(P ) = −j cos(φ− φb)S1{Azu(kp)} (3.40)
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with cos(φ− φb) = R̂ · b̂. Therefore (3.39a) requires the tabulation of

fA(P, τ, τ ′) =
w

τ

t(z)
w

τ ′

S1{Azu} (3.41)

fΦ(P, τ, z′) =
w

τ

w

τ ′

Φu (3.42)

which represents two functions, depending on whether t(z) =
−→
t (z) or t(z) =

←−
t (z). These terms

are not singular, and their spectral quasistatic part is not, in any case, invertible in closed form;
it is no use extracting it.

3.2.6 Type VI

Here the source cell is vertical and the observer cell horizontal; on the source cell, we have λ′ = 0.
The separation is

w

S′

b (·) =
w

l′

b dl′
w

τ ′

(·) dz′ (3.43)

The reaction (3.20) becomes

〈t,E〉 = −jω〈t,
w

τ ′

Auu ∗ b〉 (3.44a)

− div t div′ b
jω

〈1,
w

τ ′

Φu ∗ 1〉 (3.44b)

The required spatial-domain functions are

fA(P, z, τ ′) =
w

τ ′

Auu (3.45a)

fΦ(P, z, τ ′) =
w

τ ′

Φu (3.45b)

If z touches τ ′ (ie, either z = z′0 or z = z′1) functions (3.45) have a logarithmic singularity
when P → 0, which is given by

fA(P, z, τ ′) = −Λ′A log P + f reg
A

fΦ(P, z, τ ′) = −Λ′Φ log P + f reg
Φ

(3.46)

3.2.7 Type VII

This case is like in §3.2.6, but λ′ = 1. The separation is
w

S′

b (·) = ẑ
w

l′

dl′
w

τ ′

b(z′)(·) dz′ (3.47)

There is no vector potential term, like in §3.2.4. The reaction takes the form

〈t,E〉 = −div t div′ b
jω

〈1,
w

τ ′

Φz ∗ 1〉 (3.48)

which requires the tabulation of

fA(P, z, τ ′) =
w

τ ′

Φz (3.49)

The singularity exists in the same cases and is extracted in the same exact way as (3.46), save
that Φz takes the place of Φu.
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3.2.8 Type VIII

This is the reciprocal of type VI. The separation is
w

S

t (·) =
w

l

t dl
w

τ

(·) dz (3.50)

The reaction takes the form

〈t,E〉 = −jω〈t,
w

τ

Auu ∗ b〉 (3.51a)

− div t div′ b
jω

〈1,
w

τ

Φu ∗ 1〉 (3.51b)

which requires the tabulation of

fA(P, τ, z′) =
w

τ

Auu (3.52a)

fΦ(P, τ ′, z′) =
w

τ

Φu (3.52b)

These are singular when P → 0 if z′ touches τ (ie, either z′ = z0 or z′ = z1); the regularization
is

fA(P, τ, z′) = −Λ′A log P + f reg
A

fΦ(P, τ, z′) = −Λ′Φ log P + f reg
Φ

(3.53)

3.2.9 Type IX

The last case is the reciprocal of type VII (§3.2.7). The separation is
w

S

t (·) = ẑ
w

l

dl
w

τ

t(z)(·) dz (3.54)

The reaction term is much like that of type V (3.39),

〈t,E〉 = −jω〈1,
w

τ

t(z)
(
Azxx̂ + Azyŷ

)
∗ b〉 (3.55a)

− div t div′ b
jω

〈1,
w

τ

Φu ∗ 1〉 (3.55b)

If the half basis function is rectangular, the convolution of (3.55a) can be simplified to
r
τ t(z)Azb∗

b(z′), but not in general. Here we would use the cartesian components

Azx(P ) = −j cos(φ)S1{Azu(kp)}
Azy(P ) = −j sin(φ)S1{Azu(kp)}

(3.56)

and the functions to be tabulated are now

fA(P, τ, z′) =
w

τ

t(z)S1{Azu} (3.57a)

fΦ(P, τ, z′) =
w

τ

t(z)Φu (3.57b)
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zj

b0

b2

b1

Φz+

Φz−

Φu

Φu

Figure 3.4: Three basis functions and three Φ Green’s functions on a corner. With the restriction
to 2.5D structures, no more than 4 cells can meet at a corner, that is, three basis functions
(because of

∑
J = 0 at the corner). The ones depicted here have: λ0+ = 0, λ0− = 1;

λ1+ = 1, λ1− = 1; λ2+ = 1, λ2− = 0 [cf (3.13, 3.58)].

3.2.10 Line integral

The line integral term (3.18c) can have two forms depending on the orientation of the observer
cell. Adopting the re-simplified notation

〈div ti,
w

∂S′

(
Φ+

z − Φu

)
λj+ −

(
Φ−

z − Φu

)
λj−〉 = 〈div t,

w

∂S′

∆Φ〉 (3.58)

If the observer cell is horizontal, (3.58) is

div t 〈1,
w

∂S′

∆Φ〉 (3.59a)

and we need to tabulate

f∆Φ(P, z, z′) = ∆Φ (3.59b)

If the source cell is vertical, (3.58) becomes instead

div t 〈1,
w

∂S′

w

τ

∆Φ〉 (3.60a)

and need to tabulate

f∆Φ(P, τ, z′) =
w

τ

∆Φ (3.60b)

In fact (3.59b, 3.60b) represent three different tables, depending on whether

±∆Φ =


Φz+ − Φu

Φz− − Φu

Φz+ − Φz−

(3.61)
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(see fig. 3.4) where Φz± is limu→z′± Φz(u). Each of (3.61) is a linear combination of the other
two, so that in the worst case two tables would be required. Also, as explained above, these
integrals are always regular.

3.2.11 Summary

The contents of §3.2.1–3.2.10 have been summarized in table 3.1.

3.3 Apertures

The problem of an arbitrarily shaped aperture in an infinite, thin conducting screen is most
detailedly treated by [53] and in the review article [17] an extensive, if outdated, bibliography
may be found. It is briefly reviewed here to establish the notation and as an introduction to the
more general problem with both electric and magnetic currents (§3.3.1).

The continuity of the magnetic field can be guaranteed by enforcing continuity of its tan-
gential component across the surface of the aperture.

n̂× ( ¯̄HM
+ ∗M+ − ¯̄HM

− ∗M−) = −n̂× (Hi
+ −Hi

−) (3.62a)

On the other hand, the tangential electric field on the aperture is represented by the magnetic
currents through (1.3), because in the equivalent problem, fields on the other side are zero. It,
too, must be continuous, which leads to the condition M+ = −M−. Thus (3.62a) becomes

n̂×
(
[ ¯̄HM

+ + ¯̄HM
− ] ∗M+

)
= −n̂× (Hi

+ −Hi
−) (3.62b)

The magnetic current expansion

M ≡M+ =
m−1∑
j=0

αjbj (3.63)

gives the decomposition of the scattered magnetic field (at each side of the aperture surface)

¯̄HM
± ∗M± = Hs

± =
m−1∑
j=0

αjHj± (3.64)

where

Hj± = −jωFj± − gradWj± (3.65)

In layered media, we shall consider only horizontal magnetic currents. (The general case does
not present particular difficulty; the required developments are parallel to those in §3.2. In free
space or homogeneous half space with perfect ground plane, however, just as with J, arbitrary 3D
orientation will be allowed for M). With this restriction, ¯̄W →Wu [cf (3.8)] and

Fj± = ± ¯̄F± ∗ bj

Wj± = ± 1
jω

(grad′ Wu±) ∗ bj

(3.66)

A development identical to that leading to (3.18) yields here the linear system

m−1∑
j=0

αj〈ti,H+j −H−j〉 = −〈ti,Hi
+ −Hi

−〉, i = 0..n− 1 (3.67)
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type indices of required tables dT dC singular kernel r-type

fs - 2 2 R−1 fs

I z, z′ Auu 2 2 R−1 I
Φu

II τ, τ ′
r
τ

r
τ ′ Auu 1 1 − log P (τ = τ ′) IIr

τ

r
τ ′ Φu

III τ, τ ′
r
τ

−→
t (z)

r
τ ′
−→
b (z′)Azz 1 1 − log P (τ = τ ′) IIIa

r
τ

−→
t (z)

r
τ ′
←−
b (z′)Azzr

τ

←−
t (z)

r
τ ′
−→
b (z′)Azzr

τ

←−
t (z)

r
τ ′
←−
b (z′)Azzr

τ

r
τ ′ Φz

IV τ, τ ′
r
τ

r
τ ′ Φz 1 1 − log P (τ = τ ′) V

V τ, τ ′
r
τ

−→
t (z)

r
τ ′ S1{Azu} 1 1 (none) IVr

τ

←−
t (z)

r
τ ′ S1{Azu} (none)r

τ

r
τ ′ Φu − log P (τ = τ ′)

VI z, τ ′
r
τ ′ Auu 2 1 − log P (z ∈ τ ′) VIIIr
τ ′ Φu

VII z, τ ′
r
τ ′ Φz 2 1 − log P (z ∈ τ ′) IX

VIII τ, z′
r
τ Auu 1 2 − log P (z′ ∈ τ) VIr
τ Φu

IX τ, z′
r
τ

−→
t (z)S1{Azu} 1 2 (none) VIIr

τ

←−
t (z)S1{Azu} (none)r

τ Φu − log P (z′ ∈ τ)

line Ia z, z′ Φz+ − Φu 2 1 (none) -

line IIa τ, z′
r
τ (Φz+ − Φu) 1 1 (none) -

line Ib z, z′ Φz− − Φu 2 1 (none) -

line IIb τ, z′
r
τ (Φz− − Φu) 1 1 (none) -

awith exchange of b and t

Table 3.1: Reaction terms of type 〈J, ¯̄EJ ∗J〉. Legend: fs=free space; dC=dimension of spatial
convolution integral; dT=dimension of spatial test integral; r-type=reciprocal type.
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with the reaction terms

〈ti,H+j −H−j〉 = −jω〈ti, ( ¯̄F+ + ¯̄F−) ∗ bj〉 (3.68a)

− 1
jω
〈div ti, (Wu+ + Wu−) ∗ div′ bj〉 (3.68b)

with the caveat that the inner product (test integral) in (3.68) is now

〈ti,Hj〉 = −
w

S

ti ·Hj (3.69)

due to the definition of the inner product as a reaction integral, cf (1.12). It will be assumed
that magnetic currents only appear in layered media to model apertures on horizontal ground
planes. There might na apertures sandwiched between na + 1 layered media; if so, there will
be na equations (3.67), each with [+ → a+], [− → a−], where a is the (ordered) index of the
aperture going from 0 to na − 1. The computation of the reaction terms of this system requires
that

fF (P, z, z′) = (Fuu+ + Fuu−) (3.70a)
fW (P, z, z′) = (Wu+ + Wu−) (3.70b)

be tabulated for each couple of contiguous aperture layers (z, z′) = (za, za+1). The regularization
of (3.70) is handled in the same way as 〈J, ¯̄EJ ∗ J〉 reactions of type I [§3.2.1, (3.24)]. The
medium [+] will always be the medium above the aperture, and the medium [-] the one below.
Therefore the reference normal for the definition of M+ ≡M will be +ẑ, so M = E× ẑ.

3.3.1 Apertures and metallic scatterers

The coupled integral equations are directly obtained from (3.62b), enforced at apertures, by
adding electric currents as sources of Hs, and from (3.3b), enforced at the surface of metallic
scatterers, by adding aperture magnetic currents as sources of Es (see fig. 3.5),

n̂×
(
( ¯̄HM

a + ¯̄HM
a−1) ∗Ma + ¯̄HJ

a ∗ Ja − ¯̄HJ
a−1 ∗ Ja−1

)
= −n̂× (Hi

a −Hi
a−1), a = 0 .. na − 1

(3.71a)

n̂×
( ¯̄EJ ∗ Ja + ¯̄EM

a ∗Ma − ¯̄EM
a ∗Ma+1

)
= −n̂× (Ei

a − ZsJa), a = −1 .. na

(3.71b)

It is understood that all the Green’s functions in (3.71) are zero if source and observer are not
on the same side of every aperture. The magnetic and electric current distributions are then
discretized in the same way as shown above (3.63–3.5). Now some of the basis functions bj will
represent J and others M; the distinction will be pointed out when needed. Still Galerkin (ti =
bi ∀i) will be assumed.

(3.71) produces two new types of reaction terms,

〈ti,
¯̄HJ ∗ bj〉 = −

w

S

ti ·
w

S′

¯̄HJ · bj (3.72a)

〈ti,
¯̄EM ∗ bj〉 = +

w

S

ti ·
w

S′

¯̄EM · bj (3.72b)

Due to the reciprocity relation (1.13c), 〈tj ,
¯̄HJ ∗ bi〉 and 〈ti,

¯̄EM ∗ bj〉 are equal, so only one of
them is needed; this will be 〈ti,

¯̄EM ∗ bj〉.
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Ma+ = +Ma

++ ++ +
Ma− = −Ma

M(a+1)+ = +Ma+1

++ ++ +
M(a+1)− = −Ma+1

Ja−1

Ja

Ja+1

¯̄
E

M

a−1

¯̄
EM

a

¯̄
EM

a

¯̄
E

M

a+1

¯̄
H

M

a−1

¯̄
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a

¯̄
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a

¯̄
H

M

a+1

¯̄
E

J

a−1

¯̄
EJ

a

¯̄
E

J

a+1

Figure 3.5: Multiple apertures with metallic scatterers, cf (3.71).

As in §3.2.1–3.2.9, it is necessary to consider different types according to the orientation of
the observer cell and the test half-function. But to get a taste of the proceedings, we consider
first the case of arbitrarily oriented J and M in free space. We shall deal with half bases; the
test and basis subindices will be dropped when possible (see p. 58).

3.3.2 Free space

We have [50, table 3.1, pp. 98]:

¯̄EM = −1
ε

curl ¯̄F = − 1
4π

curl
[
e−jkR

R
¯̄I
]

= − 1
4π

grad
e−jkR

R
× ¯̄I (3.73)

Using grad f(R) = − grad′ f(R), the convolution integral of (3.72b) is

4πE = 4π ¯̄EM ∗ b =
w

S′

grad′
e−jkR

R
× b (3.74)
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This is regularized by writing

e−jkR = 1− jkR− k2

2
R2 + . . . (3.75)

so that

4πE =
w

S′

grad′
e−jkR − 1 + k2R2/2

R
× b (3.76a)

+
w

S′

grad′
1
R
× b (3.76b)

− k2

2

w

S′

grad′ R× b (3.76c)

(3.76a) is regular and can be computed with cubature rules for smooth integrands. (3.76b) and
(3.76c) will be computed in closed form. Note that the integrand of (3.76c) is actually bounded
for all r; its extraction is a matter of numerical convenience.

The algebra is quite different depending on whether b is a triangular or a rectangular half
function. Let p,p′ be the projection of r, r′ on the plane of S′. Also, let (inside the free space
convolution only) ẑ := n̂′, û := n̂′s. Then Z = R · ẑ.

If S′ is a triangle,

b =
l

2A
(r′ − r + r− rj±) =

l

2A
(−R + r− rj±) (3.77)

whence
w

S′

grad′
1
R
× b = − l

2A
(r− rj±)×

w

S′

grad′
1
R

(3.78a)

w

S′

grad′ R× b = − l

2A
(r− rj±)×

w

S′

grad′ R

= +
l

2A
(r− rj±)×

[
w

S′

P
R

+ Zẑ
w

S′

1
R

]
(3.78b)

(3.78a) has been computed in [44, (25–33)]. (3.78b) has two terms which are, respectively, (6)
and (5) of [146]. Note however that if S′ is a triangle the whole electric field will be normal to

the plane of S′ (indeed, (3.74) is − l

2A
(r − rj±) ×

w

S′
grad′s

e−jkR

R
, and the gradient is parallel

to S′) and the reaction term will vanish in the test whenever the test half function is on that
plane. This includes the most common singular case, that is, when r ∈ {S′−∂S′}, and does not
depend on whether the test half function is a triangular or a rectangular rooftop.

If b is on a rectangle, the rooftop can be decomposed (recall §3.1)

b =
l

A
êê · (r′ − rj±) =

l

A
êê · (−P + p− pj±) (3.79)

and
w

S′

grad′
1
R
× [êê · (p′ − pj±)] = −ê×

[w

S′
grad′

1
R

(p′ − pj±)
]
· ê

= −ê×

[
w

S′
grad′

1
R

(p− pj±)−
w

S′

grad′
1
R

P

]
· ê (3.80a)
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The first term of (3.80a) is like (3.78a). Integration by parts in the second term gives

− grad′
1
R

P = grad′
−P
R

+
1
R

grad′P

= grad′
−P
R

+
1
R

( ¯̄I − ẑẑ) (3.80b)

The term with ¯̄I will vanish after ê× (·) · ê. The remaining integral is
w

S′

grad′
−P
R

=
w

S′

grad′s
−P
R

+ ẑ
∂

∂z′
−P
R

=
w

S′

grad′s
−P
R
− Zẑ

P
R3

=
w

S′

grad′s
−P
R
− Zẑ grad′s

1
R

=
w

∂S′

û
−P
R
− Zẑ

w

∂S′

û
1
R

=
∑

i

ûi

w

∂S′i

−P
R
− Zẑ

∑
i

ûi

w

∂S′i

1
R

(3.80c)

The final edge integrals in (3.80c) are immediate. A similar device can be used to obtain (3.76c);
we write directly

w

S′

grad′ R× b = − l

A
ê×

[
w

S′
grad′ R(p− pj±)−

w

S′

grad′(PR)

]
· ê (3.81a)

The first term is like (3.78b). The second is

−
w

S′

grad′(PR) = −
w

∂S′

ûPR + ẑZ
w

S′

P
R

= −
w

∂S′

ûPR− ẑZ
w

S′

grad′s R

= −
∑

i

ûi

w

∂S′i

PR− Zẑ
∑

i

ûi

w

∂S′i

R (3.81b)

where the line integrals are, again, immediate. As in the case of the triangle, the electric field on
the plane of S′ is normal to S′ [there is a component ê× ẑ when the second term of (3.80c, 3.78b)
is substituted into (3.80a), but it has Z as a factor] and the reaction term vanishes in the same
way when t and b are on the same plane.

The accuracy gained by the extraction of the singular or quasi-singular terms of ¯̄EM can be
observed in figs. 3.7–3.10. We have computed the source integral

r
S′

¯̄EM ·M over either two right
triangles (normalized short side lengths kl = 1 and kl = .1) and two squares (same normalized
side lengths), for an observer point that moves away from the center along the perpendicular up
to a normalized distance of kR = .5 (fig. 3.6).

On the triangle, a Gaussian rule of 13 points (7th degree) was used to compute the remainder
of the integral after the extraction of 0, 1 or 2 terms. The relative error has been obtained by
comparing these results to those obtained by using a rule of 20 points (8th degree) and the
extraction of 2 terms. Therefore, the smallest errors on each plot (with extraction of 2 terms)
may be inaccurate.
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R
→

E(r)

(l, l)/3

M(r
′

)

(0, 0)

(l, 0)

(0, l)

E(r)

.6(l, l)

M(r
′

)

(l, l)

(0, 0)

Figure 3.6: Disposition of source cell and observer point in the extraction tests of figs. 3.7–3.10.

On the square, the Gaussian rules used were of 20 points (9th order) for the plots and 40
points (13th order) for the reference. In this case the figures should be more accurate. We found
that, on the plane of the source cell, the error was greatest at some distance off the center, and
the observer point moves from that point upwards, instead of from the center of the rectangle;
this is the reason why R (distance from the observer point to the center of the cell) does not
begin at 0 in these plots.

The larger cells (kl = 1) are never used in practice, because they would produce too coarse
a discretization. It is satisfying to see that when two singular terms are extracted the error is
reasonably small even for that extreme case.

3.3.3 Homogeneous half-space bounded by ground plane

The Green’s function for a perfect electric conductor (PEC) ground plane-bounded, homoge-
neous half-space can be obtained through image theory. If the ground plane has normal ẑ and
contains the point o, the images of elementary electric and magnetic sources are, respectively

Jδ(r− r′)→ −J · ¯̄Rδ(r− r′′) (3.82a)

Mδ(r− r′)→ +M · ¯̄Rδ(r− r′′) (3.82b)

where the position of the image is r′′ = ¯̄R · r′ + 2ẑẑ · o and ¯̄R = ¯̄I − 2ẑẑ is the reflection dyadic,
which is symmetric [62, §2.8.2]. With (3.82), the potential Green’s functions are

4π

[ ¯̄F/ε
¯̄A/µ

]
=

e−jk|r−r′|

|r− r′|
¯̄I
[
+
−

]
e−jk|r−r′′|

|r− r′′|
¯̄R (3.83)

We have the following relationship for an arbitrary source distribution defined on a volume V :

w

V ′

e−jk|r−r′′|

|r− r′′|
¯̄R ·

[
M(r′)
J(r′)

]
dv′ = ¯̄R ·

w

V ′

e−jk|rp−r′|

|rp − r′|

[
M(r′)
J(r′)

]
dv′ (3.84)

with rp = ¯̄R · r + 2ẑẑ · o. (It is trivial to show that |rp − r′| = |r − r′′|.) That is, the
potential of a reflected current distribution is the same as the reflected potential of the original
current distribution, computed at the reflection of the original observation point. The second
computation is easier because only a point and a vector must be reflected, and not a whole
current distribution.
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Figure 3.7: Relative error in the computa-
tion of the electric field produced by a mag-
netic current half-rooftop on a right trian-
gle with vertices at (0, 0, 0), (1/k, 0, 0) and
(0, 1/k, 0), when the observer point moves
from the center of the triangle up to a height
of .5/k.

Figure 3.8: As in fig. 3.7, but now the sides
of the triangle have sides of length .1/k.
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Figure 3.9: As in fig. 3.7, but the source
cell is a rectangle with vertices at (0, 0, 0),
(1/k, 0, 0), (1/k, 1/k, 0), (0, 1/k, 0).

Figure 3.10: As in fig. 3.9, but now the sides
of the rectangle have sides of length .1/k.
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Similarly, we have for ¯̄EM [cf (3.73)]

4π ¯̄EM = − grad
e−jk|r−r′|

|r− r′|
× ¯̄I − grad

e−jk|r−r′′|

|r− r′′|
× ¯̄R (3.85)

the reflection property

w

V ′

grad
e−jk|r−r′′|

|r− r′′|
× ¯̄R ·M(r′) dv′ = − ¯̄R ·

w

V ′

grad
e−jk|rp−r′|

|rp − r′|
×M(r′) dv′ (3.86)

from (grad g× ¯̄I) · ¯̄R = − ¯̄R ·(grad g× ¯̄I), because ¯̄R is symmetric and grad g× ¯̄I is antisymmetric.
The interpretation of property (3.86) is the same as that of (3.84), but note the sign change.

The expressions (3.84) and (3.86) are especially useful when computing costly closed form
singular integrals like (3.76b) and (3.76c). These depend on a number of geometrical parameters
that, using the reflection properties, do not need to be recomputed, nor reordered, nor inverted.

3.3.4 Type I

In this type, both observer and source cell are horizontal. (3.72b) retains the same form. To
obtain the cartesian space-domain components EM

xx = −EM
yy , EM

xy and EM
yx it will be necessary

to tabulate [cf table 2.1, (B.4))]

f1(P, z, z′) = S0{EM
uv}

f2(P, z, z′) = S0{EM
vu}

f3(P, z, z′) = S1{k−1
p EM

uv}
f4(P, z, z′) = S1{k−1

p EM
vu}

(3.87)

The singular or strongest quasi-singular part of the convolution integral is the same as in free
space (§3.3.2), provided that source and observer belong to the same dielectric layer. The
convolution integral is regularized in that same way.

3.3.5 Type II

In this type, the observer cell is vertical, but the test half-function is horizontally oriented, λ =
0 → t · ẑ = 0. The test integral separates as type VIII of 〈J, ¯̄EJ ∗ J〉 reactions (§3.2.8). The
generic reaction term (3.72b) takes the form

〈t, ¯̄EM ∗ b〉 = 〈t,
w

τ

¯̄EM ∗ b〉 (3.88)

needing the tabulation of

f1(P, τ, z′) =
w

τ

S0{EM
uv}

f2(P, τ, z′) =
w

τ

S0{EM
vu}

f3(P, τ, z′) =
w

τ

S1{k−1
p EM

uv}

f4(P, τ, z′) =
w

τ

S1{k−1
p EM

vu}
(3.89)

The singular or strongest quasi-singular part will be obtained by performing the integration
r
τ

on the free-space static Green’s function ¯̄EM
static = − 1

4π
curl

¯̄I
R

; this is the first term extracted

in (3.76). The convolution integral [cf (3.88)] with such a kernel is

1
4π

w

S′

[
w

τ
curl′

¯̄I
R

]
· b =

1
4π

w

S′

[
−b× grad′

w

τ

1
R

]
(3.90)
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The linear rooftops are irrotational, ie curl′ b = 0, whether b is defined on a triangle or on a

parallelogram. Also, the half basis function being horizontal,
∂b
∂z′

= 0. Therefore the integrand
of (3.90) can be written

−b× grad′ f = curl′(bf)− f curl′ b

= ẑ× b
∂

∂z′
f + curl′s(bf) (3.91)

Because ẑ × curl′s(bf) = 0, the second term of (3.91) will disappear in the test integral (3.88).
The significant part is written in full

−b× grad′
w

τ

1
R
→ ẑ× b

∂

∂z′

z1w

z0

dz
1
R

= ẑ× b
[
− 1

R1
+

1
R0

]
(3.92)

This is the sum of two potential-like terms, which are handled with [146, (5–6)]. We may note
two facts. The first, trivial, is that only one of them can be singular (when z′ = z0 or z′ = z1),
and it might be possible to get by without extracting the other if |z1−z0| is not very small. The
second is that the singularity of

r
τ

¯̄EM is integrable for any position of the observer, whereas

the singularity of the bare ¯̄EM was not [cf (3.78a, 3.80a) and figs. 2.18, 2.24]. This will prove
important when modelling apertures in thick metallic screens (§5.1).

3.3.6 Type III

This is like type II, save that λ = 1. The test integral separates as type IX of 〈J, ¯̄EJ ∗ J〉
reactions (§3.2.9). The generic reaction term (3.72b) can now be written

〈t, ¯̄EM ∗ b〉 = 〈1,
w

τ

t(z)(ẑ · ¯̄EM ) ∗ b〉 (3.93)

Components EM
zx , EM

zy are to be obtained from the tables [cf (2.21)]

f1(P, τ, z′) =
w

τ

−→
t (z)S1{EM

zv }

f2(P, τ, z′) =
w

τ

←−
t (z)S1{EM

zv }
(3.94)

The convolution integral is regularized as in §3.3.5. The singular part is

1
4π

w

S′

ẑ ·

[
w

τ
t(z) curl′

¯̄I
R

]
· b =

1
4π

w

S′

ẑ ·

[
−b× grad′

w

τ

t(z)
R

]
(3.95)

Because of the product ẑ· in the test, only the second term of (3.91) (with f =
r
τ

t(z)
R ) is now

to be retained. Applying Stokes’ theorem to the convolution integral (which is easily shown to
be possible for that f)

w

S′

−b× grad′ f →
w

S′

curl′s(bf)

=
∑

i

n̂′s ×
w

∂S′i

(bf) (3.96)
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type indices of required tables dT dC singular kernel

fs - 2 2 curl(1/R− k2R/2) ¯̄I

I z, z′ EM
uv 2 2 curl′(1/R− k2R/2) ¯̄I

EM
vu

S1{k−1
p EM

uv}
S1{k−1

p EM
vu}

II τ, z′
r
τ EM

uv 1 2 ẑ× ¯̄I/Rr
τ EM

vur
τ S1{k−1

p EM
uv}r

τ S1{k−1
p EM

vu}

III τ, z′
r
τ

−→
t (z)S1{EM

zv } 1 2 ẑ · grad′ log P × ¯̄Ir
τ

←−
t (z)S1{EM

zv }

Table 3.2: Reaction terms of type 〈J, ¯̄EM ∗M〉. Legend: fs=free space; dC=dimension of
spatial convolution integral; dT=dimension of spatial test integral.

Now there are two possibilities for t(z), viz [see (3.34)]

A

l

−→
t (z) = Z + (z′ − z0)

A

l

←−
t (z) =

l

A
(z1 − z′) + Z

(3.97)

z′, z0, z1 are constants for both
r
τ and

r
S′ , so we shall compute (3.96) for

f =

{r
τ Z/R = R or

r
τ 1/R = log(Z + R).

(3.98)

When these are substituted into (3.96), and b is split appropriately [cf (3.77, 3.77)] immediate
segment integrals are obtained. Note that neither here nor in §3.3.5 has it been necessary to
specify whether S′ is a triangle or a rectangle. However, the edge integrals in (3.98) simplify
differently in either case. Also, repeating the remark that concludes §3.3.5, (3.96) is seen to be
absolutely integrable for any position of r —actually, of p and τ , with the restriction that z0 <
z′ < z1 (strictly) is, as usual, not allowed.

3.3.7 Summary

The contents of §3.3.2–3.3.6 have been summarized in table 3.2. The singular kernels are more
indicative than exact, particularly for type III; see the corresponding section (§3.3.6) for details.

It should be mentioned that the regularization of the convolution integrals in (3.88)
and (3.93) has already been published in [66, Appendix II]. The development presented here
has two distinct advantages: first, the full static part is extracted, which accounts not only for
the singular but also for quasi-singular cases, and is appropriate even when h = |z1 − z0| > 0
is small; second, it is valid for rectangles as well as for triangles, whereas the reference cited
required S′ to be a triangle.
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Figure 3.11: A penetrable homogeneous
body.

3.4 Piecewise homogeneous dielectric bodies

In this case all magnetic and electric equivalent currents must be included, because 1) the
equivalent problem’s media are such that both currents radiate their due, and 2) none of the
tangential fields is zero in the original problem. A closed homogeneous body with outward
normal n̂ is considered (fig. 3.11).

Making use of the principle of equivalence, the tangential electric and magnetic fields just
outside the body may be replaced by magnetic and electric currents

E× n̂ = M n̂×H = J (3.99)

that will reproduce the previous situation outside the body, provided that the field inside the
body is zero. The tangential fields are continuous across the interface and, as the normal is
reversed, the equivalent currents inside (which reproduce the previous situation inside the body,
provided that the fields outside are zero) are M2 = −M = −M1 and J2 = −J = −J1.

The total field outside is the sum of scattered and incident field, as usual

¯̄EJ ∗ J + ¯̄EM ∗M + Ei = E ¯̄HM ∗M + ¯̄HJ ∗ J + Hi = H (3.100)

However, as the surface is approached from outside, we have the limits (cf [62, (6.89-90)])

lim
r→S+

Etan = n̂×M

lim
r→S+

w

S

¯̄EM ·M = −
w

S

¯̄EM ·M +
1
2
n̂×M

lim
r→S+

Htan = J× n̂

lim
r→S+

w

S

¯̄HJ · J = −
w

S

¯̄HJ · J +
1
2
J× n̂

(3.101)

where −
r

is a principal value integral. Therefore, just outside S, the pair (3.100) becomes

¯̄EJ
1 ∗ J +−

w

S

¯̄EM
1 ·M−

1
2
n̂×M = −Ei

1 (3.102a)

¯̄HM
1 ∗M +−

w

S

¯̄HJ
1 · J−

1
2
J× n̂ = −Hi

1 (3.102b)
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If the same procedure is carried out from (3.99) to (3.102), but now inside the dielectric body,
we obtain:

− ¯̄EJ
2 ∗ J−−

w

S

¯̄EM
2 ·M−

1
2
n̂×M = −Ei

2 (3.103a)

− ¯̄HM
2 ∗M−−

w

S

¯̄HJ
2 · J−

1
2
J× n̂ = −Hi

2 (3.103b)

The singular terms do not change sign, because both the normal and the equivalent currents do.
The difference of (3.102) and (3.103) gives

n̂×
(
[ ¯̄HM

1 + ¯̄HM
2 ] ∗M1 − [ ¯̄HJ

1 + ¯̄HJ
2 ] ∗ J1

)
= −n̂× (Hi

1 −Hi
2)

n̂×
(
[ ¯̄EM

1 + ¯̄EM
2 ] ∗M1 − [ ¯̄EJ

1 + ¯̄EJ
2 ] ∗ J1

)
= −n̂× (Ei

1 −Ei
2)

(3.104)

Principal value integrals are assumed in ¯̄EM ∗M and ¯̄HJ ∗ J, according to (3.102–3.103). The
system (3.104) is the CFIE (Combined Field Integral Equation) for the analysis of dielectric
bodies, that was first used for arbitrarily shaped bodies with a surface patch discretization
in [137]. For further details on the development of this equation see for example [62, §6.4.4], [109,
§5.2.1, pp. 94–95] and [148, §2].

The CFIE can be can be combined with the EFIE (3.3b) for open conductor bodies and the
MFIE for apertures (3.62b) to analyze many-body problems. A nice array of examples has been
collected in [148, §6]. Although they do not offer any example that includes both dielectrics and
apertures, these have also been analyzed using (3.104), for instance in [147].

3.5 Examples

P7 Vertical stake antenna The first example is a vertical cylindrical antenna partially
buried in dry earth (εr = 16) or in salted water (εr = 81, σ = 1 S/m), from [82, fig. 6]. The
antenna has been discretized with the same number of vertical slices (10 + 4) as in [82]; the
circumference is approximated with 4 patches. The model has 56 rectangles (fig. 3.12). The
current along the dipole has been plotted in figs. 3.13 and 3.14, where a good agreement can be
observed.

In addition, this example has been simulated in an inverted position, ie with the higher
permittivity medium above. This allows to estimate the error produced by the numerical ap-
proximation of the matrix elements, because, as explained in p. 58, we force the symmetry in
the matrix of moments by only computing the reactions where the source is above the observer.
But the mixed potential expression for this reaction is different depending on the orientation
and position of source and observer; specifically, is different in the straight-up and the inverted
cases of fig. 3.12.

However, as can be seen in figs. 3.15–3.16, this ‘symmetry’ error is quite small, as must
happen if the matrix elements are computed with sufficient accuracy. (Indeed, it would not be
appreciated if both currents were plotted together with the reference curves). It does not come
as a surprise that the error is greatest near the dielectric interface.

P8 Composite dielectric sphere This example has been analyzed by [148, §6.1, fig. 7],
where it is used as a benchmark for the proper construction of rooftop junctions that enforce
the continuity of tangential components of the field at an edge where three different dielectric
regions meet. On the surface of both hemispheres, the cells have an arbitrary 3D orientation,
and the object itself is placed in free space; it cannot, therefore, be treated (nor is there any
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Figure 3.12: Vertical stake an-
tenna, from [82, fig. (6b)]:
straight up (left) and inverted
(right). Excitation is by a δ volt-
age source at the indicated po-
sition (z = ±.125 m), simulated
radius of cylinder is a = 10mm.
This model has 14 slices and 56
cells. (The drawing is not to scale
—the cylinder is thinner than it
looks here.)
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Figure 3.13: Current along a half-buried
stake antenna, εr = 16. MZ: results from [82,
fig. 6(a)]. 2.5D: the 2.5D formulation pre-
sented here.

Figure 3.14: Current along a half-submerged
stake antenna, εr = 81, σ = 1 S/m. MZ:
results from [82, fig. 6(b)]. 2.5D: the 2.5D
formulation presented here.
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Figure 3.15: Difference between currents on
the half-buried vertical antenna (earth, εr =
16) computed straight up or reversed (z →
−z).

Figure 3.16: Same as fig. 3.15, but the an-
tenna is now submerged on salted water with
εr = 81, σ = 1 [S/m].

need) with the 2.5D formulation. The justification for including it here is that it will be used to
test the results of the volume integral equation, using polarization currents and a volume mesh,
that will be presented in the next chapter.

The sphere itself is divided in two halves, rather like a Kinder egg (fig. 3.17). The problem
contains three regions that are linked together and isolated from one another by three ‘interface’
surfaces. The hemispherical caps contain currents that radiate both inside and outside the
sphere, while the currents of the ‘septum’ radiate only inside. The material of the upper half is
fixed (ε1 = 4) while the material of the lower half is either ε2 = 4 or ε2 = 8. In the first case,
the sphere is homogeneous and the results can also be compared against [137, fig. 5], where this
example seems to have been used for the first time.

The surface equivalent currents have been plotted simply by sampling the rooftop basis
functions along the paths indicated in figs. 3.18–3.21. It is easy to check the consistence of
the results by comparing the currents at θ = 0◦ and θ = 180◦ between figs. 3.18–3.19 and
figs. 3.20–3.21, respectively, because at these points the E and H plane cuts coincide.

3.6 Conclusion

In this chapter, the spatial domain integrated Green’s functions obtained in §2 have been applied
to the computation of the reaction terms of the matrix obtained by expansion of the field integral
equation (EFIE/MFIE) through a classic method-of-moments technique. Linear rooftops have
been used to expand the unknowns, and either triangular or rectangular rooftops have been
used in an unified way. We have made use of the information about the quasistatic behavior
of the various Green’s functions obtained in §2 to extend the singularity extraction technique,
customarily used to compute 3D potential and field self-interactions, to each of the spatial
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ǫ1

ǫ2

2r

E0x̂

θ

ǫ0

Figure 3.17: Composite sphere with halves of different dielectric material, excited with a linearly
polarized plane wave coming from from θ = 0. Some triangles from the upper hemisphere have
been taken apart to reveal the mesh of the septum. The sphere has radius k0r = 1. This mesh
has 160× 2 + 104 cells.

integrals that appear in the 2.5D approach. This work is original, and constitutes an essential
part of the application of the 2.5D technique to some of the problems described in §5.

In addition, we have described summarily the method based on the Combined Field Integral
Equations (CFIEs) for the analysis of arbitrarily shaped, composite metallic and homogeneous
dielectric objects in 3D. Although this work is not original, by implementing it we have obtained
a valuable tool for comparison between the results of a surface formulation, such as has been
presented in this chapter, and a volume formulation, that is the subject of the next chapter.

The possibilities for further work are numerous, but probably the most immediate is the
implementation of the CFIE method in layered media using the 2.5D technique. However, for
the analysis of dielectric inhomogeneities in layered media, we decided to implement first the
volume formulation.
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Figure 3.18: Composite sphere: Jθ along
the E-plane cut φ = 0◦.

Figure 3.19: Composite sphere: Jφ along
the H-plane cut φ = 90◦.
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Figure 3.21: Composite sphere: Mθ along
the H-plane cut φ = 90◦.
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In this chapter, we explore an possible alternative formulation for our problems, the so-called
volume integral equation method. First, the theory is developed, and the volume elements (tetra-
hedra, prisms. . . ) resulting from a 3D discretization and meshing are described. Preliminary
results show the potentialities of this approach, and pave the way for a future combination and
integration with the 2.5D approach mainly used in this thesis. In particular, the implementation
of the volume integral equation in stratified media should be the next step to be considered,
since it would provide a powerful systematic technique to analyze dielectric inclusions embedded
in a layered environment.

4.1 Dielectric bodies

To extract a dielectric volume inclusion from the medium, the excess electric field in Ampère’s
law is transfered to the excitation term, so that the remaining electric field term is what it would
be for the underlying medium, ie, with the dielectric inclusion removed.

curlH = jωε0E + jω(ε− ε0)E + Jf

= jωε0E + Jp + Jf (4.1)

The substitution (4.1) is sometimes called the ‘volume equivalence principle’ [10, §7.7]. If the di-
electric contrast, or simply the contrast, is defined by

κ ≡ ε− ε0
ε

(4.2)

then the polarization current is

Jp ≡ jωκD (4.3)

The integral equation to be solved is [cf. (3.3)]:

Es(jωκD)−D/ε = −Ei (4.4)

This is a Fredholm equation of the second kind [110, §1.2] if the dielectric body is not a perfect
conductor, ie |ε|9∞. For a numerical solution it is written in mixed potential form,

−jωA(jωκD)− gradΦ(jωκD)−D/ε = −Ei (4.5)

4.2 Discretization

The unknown D will be expanded in a sum of subsectional divergence-conforming basis functions.
These volume basis functions are defined over pairs of tetrahedra, wedges or cubes.
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Figure 4.1: Numbering of
nodes in tetrahedron.

Figure 4.2: Numbering of
nodes in parallel wedge.

Figure 4.3: Numbering of
nodes in parallel hexahe-
dron.

The definition of linear, divergence-conforming basis functions on cube doublets is of course
trivial. However, the first fully 3D solutions of the volume EFIE using subsectional basis func-
tions did not use linear bases functions and Galerkin test, but rather pulse basis functions and
point matching [63]. The corresponding basis functions for tetrahedra were first used in [120],
shortly after the introduction of the RWG functions on triangular patches. In [35], the discretiza-
tion consists solely of parallelepipeds, but in addition to linear rooftops, piecewise sinusoidal
functions are also used. In [139], rooftops on parallelepipeds are used.

The wedges have seen little use, perhaps because they do not seem useful for general 3D
structures and because automatic meshing with heterogeneous elements is difficult. In 2.5D
problems, where these elements are essential, automatic meshing is simple, by extrusion. In [136],
ground-plane connecting vias were modelled as wedges. The current was assumed constant and
strictly vertical. This made sense because the vias were short and thin. In [145], wedges are
used to discretize thin dielectric sheets. Linear functions are used for the horizontal bases, but
the normal bases are constant. In [134, (4.48)], linear functions are defined on every face of the
wedge, but they are not used thereafter (all the examples use parallelepipeds).

Of the works cited above, [35] and [139] considered the volume elements to be embedded
in a layered medium, while in [136] they were placed in a parallel plate waveguide. The others
assumed free space.

In this work, linear functions are used for every face of the wedge. These are defined as
follows. First, for the functions to be linear, it is necessary that faces 4 and 3 of the wedge be
parallel and similar, and that edges 6, 7 and 8 be parallel; the hexahedron must be a paral-
lelepiped. It is recalled (§3.1) that a RWG doublet is the sum of two half functions defined on
neighboring elements,

bi± = bi− − bi+ (4.6)

The two cells making up the i-th doublet share a face of area Ai → A; let r± be a node of the
i±-th cell that does not belong to that common face. For tetrahedra, the half functions are then

b±(r) =
A

3V±
(r− r±) (4.7)
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Figure 4.4: Volume rooftop made up of hexahedron and wedge.

In (4.7), the dependence of A, V± and r± on i is assumed. Note that A is common to both half
bases. In the wedge, there are two types. Let ê± be a unit vector along any of the edges that
connect the two triangles (6, 7 or 8 on fig. 4.2).

A is a triangle : b±(r) =
A

V±
(r− r±) · ê±ê± (4.8a)

A is a rectangle : b±(r) =
A

2V±
(r− r±) · ( ¯̄I − ê±ê±) (4.8b)

In the hexahedron, let ê be a unit vector along any of the edges that connects face i to the face
opposite (for example, edges 3, 1, 5 or 7 for face 0 in fig. 4.3).

b±(r) =
A

V±
(r− r±) · ê±ê± (4.9)

The purpose of these definitions is to ensure continuity of normal component of the unknown
across faces (bi · n̂i = 1 on face i). Therefore the three elements are compatible with each other
and it is possible to have doublets where one of the cells is a cube and the other a wedge (fig 4.4),
or one a wedge and the other a tetrahedron. This is equivalent to the compatibility of planar
RWG functions on triangles or parallelograms in chap. 3.

4.3 Solution by the Method of Moments

Contrast is assumed to be constant on each cell. We take J = Jp; the presence of other current
(for example, on surface patches) can be easily accounted for by using superposition. The electric
displacement D satisfies the same conditions as the RWG functions inside an inhomogeneous
dielectric and is amenable to the expansion

D =
n−1∑
i=0

Djbj (4.10)

The normal component of D does not vanish at the boundary of a dielectric object unless
extra conditions intervene. This means that (4.10) must include half-function terms there, ie
either bi = bi+ or bi = −bi− for certain i.
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Each of the terms in (4.10) is also a polarization current that produces a scattered
field [cf (3.7)]

DjEj = Dj

(
− jωAj − gradΦj

)
(4.11)

with potential terms

Aj = ¯̄A ∗ (jωκjbj) (4.12a)

Φj =
1
jω

(div′ ¯̄Φ) ∗ (jωκjbj) (4.12b)

through the medium’s Green’s functions ¯̄A, ¯̄Φ. For volume cells there is no need to distinguish
between n̂s

± (normal to edge of cell) and n̂ (normal to cell), because the latter does not exist.
The scalar potential can be integrated by parts [cf (2.18, 3.9)]

Φj = − 1
jω

¯̄Φ ∗ grad′(jωκjbj) +
1
jω

w

∂V ′

[ ¯̄Φ · (jωκjbj)] · n̂s (4.13)

The subdomain V ′ is made up of two cells, V ′
+ and V ′

−. Its boundary ∂V ′ is ∂V ′
+ + ∂V ′

−. The
boundary integral in (4.13) becomes

w

∂V ′
+

[ ¯̄Φ · (jωκj+bj+)] · n̂s
j+ −

w

∂V ′
−

[ ¯̄Φ · (jωκj−bj−)] · n̂s
j− (4.14)

with the integration domain restricted to the common boundary. If a projection dyadic ¯̄Pj =
n̂s

jn̂
s
j is defined (and noting that for any 3D volume mesh bj+ · n̂s

j+ = bj− · n̂s
j− = 1 and n̂s

j+ =
−n̂s

j− at the common face of bj , so ¯̄Pj is well defined), (4.14) becomes

jω
w

∂V ′

[
κj+

¯̄Φ+ : ¯̄Pj

]
−

[
κj−

¯̄Φ− : ¯̄Pj

]
(4.15)

Both terms of the integrand in (4.15) will be equal unless

P9 Conditions under which the source boundary integral is 6= 0

1. One of them does not exist (half-function)

2. κj+ 6= κj− (boundary between regions of different contrast)

In the general layered-medium case ( ¯̄Φ = ¯̄ItΦu + ẑẑΦz), a 2.5D mesh is assumed, meaning that
either bi± ·ẑ = 0 or bi±×ẑ = 0 for every i. Also, unlike in 2.5D surface meshes, in a 2.5D volume
mesh necessarily b+ · ẑẑ · n̂s

+ = b− · ẑẑ · n̂s
− if both b+ and b− exist (there can be no ‘corner’

functions). Accordingly, there is one additional case in which (4.15) does not vanish,

3. b± · ẑẑ · n̂s
± = 1 (vertical doublet) and Φ+

z 6= Φ−
z . This is equivalent to the second case of

line integrals in surface patch interactions (P5 on page 56).

Once these precisions have been made, the potential terms (4.12) can be written out as

Aj = jω
w

V ′

κj
¯̄A · bj (4.16a)

Φj = −
w

V ′

κj
¯̄Φ · grad′ bj +

w

∂V ′

[
κj+

¯̄Φ+ : ¯̄Pj

]
−

[
κj−

¯̄Φ− : ¯̄Pj

]
(4.16b)
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The two terms of the boundary integral (±), may be integrated separately, because unlike the
terms of the line integral (3.10) these are absolutely integrable on their own (a surface integral
with weakly [1/R] singular integrand).

From (4.5) we obtain the expanded equation

−jω
∑

j

Aj − grad
∑

j

Φj −
∑

j

Dj/εj = −Ei (4.17)

In the Galerkin solution, the traditional practice is apparently [120, (19)] to test (4.17) with D
(that is, with ti ≡ bi). Doing so has the inconvenient that the moments do not satisfy a reci-
procity relation: 〈ti,E(bj)〉 6= 〈tj ,E(bi)〉; the resulting matrix of moments will not be symmetric
save in special cases. The reason is that E(b) is really E(J(b)) = E(jωκb), and 〈ti,E(jωκbj)〉
is not a reaction according to the definition (1.12).

The other possibility is to test with jωκiti or with κiti. The following points must be
considered:

1. A symmetric matrix saves (almost) half the fill time. This would not be lost by testing
with D, because the reciprocal matrix elements are related by a constant factor, or are the
sum of two terms that are related by a constant factor. However, keeping track of these
relationships is obviously more complicated than if the reciprocal terms are, simply, equal.

2. A symmetric matrix saves half the storage and might be solved more efficiently. This
advantage can only be exploited if the required matrix factorization routines are available.

3. A test function κiti does not fulfill normal continuity across the two component cells if
these have different κ. This means that a boundary integral over ∂V will appear in that
case, while it would not if the test function were simply ti. However, the boundary integral
is always present if ti is a half-function, so the test boundary integral must be implemented
all the same. The advantage is reduced to tiny savings in matrix fill time.

Our choice is to test with κiti. The reaction terms are, if (4.16) is used for Aj , Φj :

〈κiti,−jωAj〉 = ω2
w

V

κiti ·
w

V ′

κj
¯̄A · bj (4.18)

〈κiti,− gradΦj〉 =
w

V

κiΦj div ti −
w

∂V

κiΦjti · n̂s
i

= −
w

V

κi(div ti)
w

V ′

κj
¯̄Φ · grad′ bj (4.19a)

+
w

V

κi(div ti)
w

∂V ′

[
κj+

¯̄Φ+ : ¯̄Pj

]
−

[
κj−

¯̄Φ− : ¯̄Pj

]
(4.19b)

−
w

∂V

(κi+ − κi−)
w

V ′

κj
¯̄Φ · grad′ bj (4.19c)

+
w

∂V

(κi+ − κi−)
w

∂V ′

[
κj+

¯̄Φ+ : ¯̄Pj

]
−

[
κj−

¯̄Φ− : ¯̄Pj

]
(4.19d)

Integration by parts, and the fact that ti± · n̂s
i± = 1, were used in the derivation of (4.19). Its

four terms (4.19a–4.19d) represent:

• (4.19a) is an interaction between volume charges.

• (4.19b) is an interaction between a source surface charge and a test volume charge. This
will be zero unless one of the conditions stated above (P9 on the preceding page) holds.
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• (4.19c) is an interaction between a source volume charge and a test surface charge. This
will be 6= 0 in the same cases as the source surface charge, save the last one (P9/3),
because ¯̄Φ is always observer-continuous.

• (4.19d) is an interaction between source and test surface charges.

Now κt is proportional to J everywhere. The symmetry of the matrix of moments is thereby
guaranteed.

4.3.1 Evaluation of reaction terms in free space

The numerical evaluation of the potential integrals (4.18–4.19), follows along the lines laid
down in §3. We begin by assuming that the medium is homogeneous and unbounded and that
the potential Green’s functions are ¯̄A = µΨ¯̄I, GΦ = Ψ/ε. The source integrals are singular
when V =V ′ (self-interaction, i = j) or S=S′ (which happens not only for the self-interaction,
but also for the interaction between neighboring elements). Even when they are not, they may
be difficult to evaluate numerically when the observation point r is close to the source region.

Given the fact that the singular part of the integrand is known and can be integrated over the
source region, volume or surface, with a closed formula, the extraction of the singularity seems
the most efficient procedure. When the source region is a face charge [terms (4.19b, 4.19d)],
the method is identical to that described in 3.2.1 for the computation of 〈1,Φu ∗ 1〉 on surface
patches. Therefore only the case of a volume source region will be described here.

If the regularization (3.24) is applied to ¯̄A and ¯̄Φ, the singular parts to be computed ana-
lytically are [cf(4.16)]:

Asing
j± = jω

µ

4π
κj±

w

V ′

1
R

bj± (4.20a)

Φsing
j± = − 1

4πε
κj± div bj±

w

V ′

1
R

(4.20b)

The integral in (4.20b) is [146, (7)]; that formula is valid for any polyhedron. In the vector
integral, the constant projections ·êê of (4.8) and (4.9) are factored out and the result, the same
for all three volume cells,

(r− rj±)
w

V ′

1
R

+
w

V ′

1
R

(r′ − r) (4.21)

is solved with formulas [146, (7,8)]. The regular parts of (4.16),

Areg
j± = jω

µ

4π
κj±

w

V ′

e−jkR − 1
R

bj± (4.22a)

Φreg
j± = − 1

4πε
κj± div bj±

w

V ′

e−jkR − 1
R

(4.22b)

are computed numerically, with gaussian point rules. A list of point rules for volume regions,
with references, is given in Appendix C.

4.4 Layered medium

In layered media, an application of the 2.5D formulation of §3 to the volume integral equa-
tion (4.4) is proposed. This imposes some constraints on the volume elements in addition to
those stated in §4.2 for the free-space 3D formulation.
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test function
type & region

basis function
type & region

integration
of kernel dimension

side-vol side-vol both 2× 2
side-face both 2× 1

top/bottom-vol both 2× 2
top-bottom-face obs only 2× 2

side-face side-vol both 1× 2
side-face both 1× 1

top/bottom-vol both 1× 2
top-bottom-face obs only 1× 2

top/bottom-vol side-vol ( not used )
side-face ( not used )

top/bottom-vol both 2× 2
top-bottom-face obs only 2× 2

top-bottom-face side-vol ( not used )
side-face ( not used )

top/bottom-vol src only 2× 2
top-bottom-face none 2× 2

Table 4.1: Map of integrals in the interaction between volume elements in the 2.5D formulation.

P10 Constraints on volume elements in the 2.5D formulation

1. Tetrahedrons cannot be used.

2. The top and bottom faces (faces 3 and 4 of the wedge in fig. 4.2 and faces 4 and 5 of the
hexahedron in fig. 4.3; naturally, the numbering is conventional) must be horizontal, and
the side faces (every other) must be strictly vertical.

3. No pair of volume elements may overlap in z. (Any volume element will have a lowest (bot-
tom) and a highest (top) z-coordinate. A slice is a pair of bottom and top coordinates, so
that if two cells have the same bottom and top, they are in the same slice. Different slices
are not allowed to overlap, so for any two slices either (z0, z1) = (z′0, z

′
1) or, if z0 < z′0,

necessarily z1 <= z′0. This is dictated by the availability of integrated Green’s function
tables, as explained in chap. P3 on page 29.)

In free space, the integrals of (4.18, 4.19) are performed in exactly the same way whatever the
orientation of basis or test functions. In the 2.5D formulation, the dimension of the integration
domain (volume, surface, line) as well as the Green’s function to be used, depend on this
orientation.

Volume integrals become surface integrals in every case, and the integrated Green’s function
will carry the z-dependence (linear or constant) of the basis and test functions. Surface integrals
may remain as surface integrals (when the surface was horizontal, ie the face charges of bottom
and top functions) or become line integrals (when the surface was vertical, ie the face charges
of the side basis and test functions).

This situation is presented in table 4.1. This table assumes that the integrals, which are
terms from (4.18–4.19), are done ‘by cells’, that is, the surface integrals are split so that there
is one integral per half-function. The actual Green’s functions to tabulate and singular kernels
can be looked up in table 3.1.
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P11 Types of integrals for the interaction between volume elements in the 2.5D
formulation

1. The type of function is ‘side’ (if λj± or bj± · ẑ = 0) or ‘top/bottom’ (if bj± · ẑ ≷ 0,
respectively; here λj± = 1). The region is ‘vol’ (the volume of the element, V ≡ Vi±
or V ′ ≡ Vj±) or ‘face’ (one of the faces, only for scalar potential integrals).

2. The kernel is integrated when there is dependence of the basis or test function on the
vertical coordinate. In practice this means for every combination of type and region, save
top/bottom-face. Some of the interaction types are not used; this is because they are
substituted for their reciprocals.

3. The dimension of the integral is determined by the original dimension of the regions (vg
vol×vol=3× 3) and the reduction by integration of the kernel, if any.

The singular kernels arise either from integration of the singular kernel of the 3D Green’s func-
tion, or from the identification of the singular part of the integrated 2.5D Green’s function.
These functions have all been used already in §3.2 (see table 3.1). There are however a number
of differences from the way things are done in the surface formulation.

P12 Peculiarities of the 2.5D formulation as applied to volume cell interactions

1. When extracting a singularity, the integrated singular kernel log P or (quasisingu-
lar) log(R + Z) needs to be integrated not over a segment, but rather over a triangle
or a rectangle [actually this happened already for types VIII and IX of surface interactions
(table 3.1) but in most cases reciprocity could be applied to use instead types VI and VII,
which only require source integration over a segment]. The required integrals are solvable
in closed form and can be found in P24 on page 133.

2. The boundary integrals (surface integrals) which result from application of integration by
parts to the scalar potential terms are absolutely integrable (unlike in the surface case)
and it is possible to integrate their terms separately. This means that the matrix can be
filled cell-by-cell (half-function by half-function) in every case.

4.5 Examples

The following examples show the application of the volume formulation just presented to some
classic examples from the literature. In every case, we compare equivalent currents or polariza-
tion currents, ie, the direct product of the solution of the integral equation by the method of
moments. This is thought to be the more strict comparison criterion instead of secondary pa-
rameters, like far fields, in which the sensitivity to errors in the formulation (or in the numerical
solution) is less.

P13 Two-layer dielectric sphere immersed in uniform field A dielectric sphere in uni-
form field is the ‘easiest’ problem of scattering by dielectrics in three dimensions. The dynamic
solution is given by the theory of Gustav Mie[15, §14.5] in series form, but in the quasistatic
case a closed form solution is possible, either for a homogeneous sphere, or a sphere made up
of a number of concentric layers, by separation of variables in spherical coordinates. [142, §2.3]
gives the expressions for a two-layer sphere.

For this comparison, a two-layered sphere with an inner core of radius r = .458 mm and
ε1 = 16 and an outer shell with greater radius r = 1 mm and ε2 = 9, centered at the origin of



4.5. Examples 91

ǫ1 ǫ2

2a

2b

E0ẑ

ǫ0

Figure 4.5: Two-layer dielectric sphere in uniform static
field. The parameters are taken from [120, fig .6] and are:
a = 1 mm, b = .458 mm, ε1 = 16, ε2 = 9. The densest
mesh has 5000 tetrahedra, arranged in 5 layers for the
inner core and 6 layers for the outer shell.

coordinates (fig. 4.5), was meshed with 4999 tetrahedra and simulated under normal plane wave
incidence at a frequency of 47.7 · 106 Hz. (This sphere is the same as that used in the example
of [120, fig. 6]). At this frequency, k0 = 1 and the radius of the sphere is λ0/(2π1000).

Although there are freely available programs that perform Delaunay ‘tetrahedralizations’
on any given closed polyhedron [2], the results are often highly irregular, much more so than in
two-dimensional triangularizations. For this reason a specially tailored mesh was prepared. The
mesh is inscribed in a sphere of radius somewhat larger than the figure given in the figures, to
match the total volume of the mesh to the volume of the true sphere with nominal radius.

In the results of fig. 4.6 we see that the only component of the electric displacement is
parallel to the ‘incident’ field. The static field is constant in the inner core. The jump in the
tangential component of D (along the line z = 0 or θ = π/2) is as expected, while the normal
component (along the line P = 0 or θ = 0) is continuous. All these features are reproduced in
the numerical solution. Overall, the agreement with the true fields is fairly good, considering
the kind of discretization that was used.

The results of fig. 4.6 validate the symmetrization of the matrix of moments expressed
in (4.18–4.19), because the internal discontinuity in the dielectric constant produces a test
surface integral that is not present if the test is done with t and not with κt.

P14 Two-layer dielectric sphere under plane wave excitation The same example just
presented has been simulated at a frequency of 38.97 GHz. Here the electrical dimensions of the
sphere of fig. 4.5 are k0a = .374, k0b = .817. (The figures given in the caption of fig. [120,
fig. 6] are in error by a factor of 2π [119]). These results, obtained with a relatively crude mesh
(fig. 4.7), are in good agreement with those of the reference. Therefore the symmetrization
of (4.18–4.19) is validaded also for the dynamic case.

P15 Dielectric cylinder under plane wave excitation: surface vs volume formula-
tion This setup is represented in fig. 4.9. It has been analyzed with two different discretization
densities, using

• the volume 3D (free space) formulation used for the spheres in the previous examples;
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Figure 4.6: Two-layer dielectric sphere illuminated by
very low-frequency plane wave (radius of outer shell is
< λ0/6000).
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Figure 4.7: Mesh for the two-layer dielectric sphere under
plane wave excitation: 888 tetrahedra. This is based on
the subdivision of an octahedron. (The mesh used for the
static case in fig. 4.5 is based on the subdivision of an
icosahedron.)
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Figure 4.8: Electric field in a two-layer dielectric sphere
subject to incident plane wave (top, fig. 4.8).

• the surface formulation presented in §3.4 and used to analyze a composite dielectric sphere
in P8 on page 78.

The meshes for the cylinder are obtained by performing an extrusion on a planar mesh, in this
case a circle (see fig. 4.10). This is in general true of 2.5D meshes, which are much simpler to
generate than arbitrary 3D meshes. The extrusion produces, for the surface formulation, vertical
rectangles, and for the volume formulation, separable (in the sense given in p. 28) wedges and
hexahedra. The resulting mesh is therefore suitable for the application of the 2.5D techniques
presented in this thesis. A comparison between the 3D and the 2.5D approaches is given in the
next section.

Note that although only a view of the mesh from outside is presented in fig. 4.10, the meshes
for the surface and the volume formulation are indeed different; the boundary is all there is in
the surface formulation, while the mesh is solid in the volume formulation.

Here, the results of the volume and the surface formulation are compared on the surface
of the cylinder. The solution of the surface problem gives the tangential field according to the
relation E = n̂ ×M, where the normal on the surface of the cylinder points outwards (this is
actually a matter of convention). The solution of the volume problem gives the displacement D =
ε1E inside the body, and this includes its surface. The representation of the field is, however,
completely different, and this must be remembered when the respective results are compared.

Another possibility, not followed here, would be to compute the near field inside the body
using the equivalent currents produced by the surface formulation, and compare this with the
expansion of D from the volume formulation [58, §6.29].

The results when a mesh of ∼ 30 is used have been represented in figs. 4.11–4.12. The
results with a mesh of ∼ 70 cells/λ0 appear in figs. 4.13–4.14. The most noticeable feature of
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φ = 0

φ = π/2

φ

h

2a

z

p

ǫ0 ǫ1

E0x̂

Figure 4.9: Homogeneous dielectric
cylinder (ε1 = 4) in free space, under
normal plane wave excitation, from [137,
fig. 7] (also in [148, fig. 8], where a
metallic cover is added). Electric field
and equivalent magnetic currents are
sampled along the indicated path and an-
other similar at φ = π/2 in figs. 4.11–
4.14. Dimensions: h = λ0/5, a =
λ0/10.

Figure 4.10: Two 2.5D volume (or surface) meshes for the
homogeneous cylinder of fig. 4.9, with 30 and 70 cells/λ0

respectively.

these plots is the failure of the volume representation to capture the singular behavior of the
radial component of the field near the edge of the cylinder [14, 4.13], which is not surprising,
considering the type of discretization that is being used. Of course, along the vertical segment
of the trace s/λ0 = (.1, .3), Ep is discontinuous; what is given is the value of the field inside the
cylinder. Here p̂Ep is normal to the cylinder and is not represented by any equivalent magnetic
current.

P16 Dielectric cylinder under plane wave excitation: 3D vs 2.5D The homogeneous
dielectric cylinder of the previous section has an appropriately orthogonal mesh, and can thus be
analyzed with the 2.5D technique of §§2–3. In that technique, the mesh is considered to consist
of horizontal layers and slices (a slice is the vertical extent of a cell which is not horizontal). In
a problem in which there are no metallic patches and all the unknowns are polarization currents
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Figure 4.11: Electric field and equivalent
magnetic current at the surface of the cylin-
der of fig. 4.9 under plane wave incidence,
with a discretization ∼ 30 cells/λ0 and along
the cut of the plane φ = 0 with the surface
of the cylinder.

Figure 4.12: Same as in fig. 4.11, but along
the cut φ = π/2.
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Figure 4.13: As in fig. 4.11, but the dis-
cretization is at ∼ 70 cells/λ0.

Figure 4.14: As in fig. 4.12, but the dis-
cretization is at ∼ 70 cells/λ0.
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defined on dielectric bodies, there are no horizontal layers, only slices, because an element of
finite volume must have a finite height. There are six slices in the coarser discretization of
fig. 4.10.

The results obtained by either the 3D or the 2.5D formulation cannot be distinguished on
a magnitude plot. For that reason, the absolute error between the 3D and the 2.5D formulation
has been plotted instead, for both ∼ 30 cells/λ0 and ∼ 70 cells/λ0 discretizations. The excellent
agreement serves as a validation of both the 3D and the 2D integration techniques used for
linear rooftops defined on wedges and hexahedra.

4.6 Assessment

The final section of this chapter is not titled ‘conclusion’ and with good reason. So far only
examples in free space have been presented, although we have introduced a formulation that,
with the restrictions demanded by the 2.5D model, should retain its validity in layered media.
Meanwhile, the symmetric formulation presented here has been validated in free space by analyz-
ing composite and homogeneous bodies with a variety of meshes, using tetrahedra, wedges and
hexahedra. We showed that there is only a small difference (error) in the method of moments
solution when the reaction terms between volume cells are computed either

• as a double volume integral using point-to-point Green’s functions, or

• as a double surface integral, using integrated (slice-to-slice) Green’s functions.

This agreement validates, in particular, the singularity extraction procedure applied to the com-
putation of these double surface integrals —the slice-to-slice Green’s function has a logarithmic-
type singularity.

Other feature that would complete the implementation of the VEFIE-2.5D technique is the
possibility of having interactions between polarization currents (volume cells) and electric or
magnetic currents defined on surface patches (see [118] for a case without magnetic currents).
In the general case of composite 3D objects with junctions between metallic parts, dielectric
bodies and slots, the CFIE is clearly more economical in terms of unknowns and implementation
complexity (because there are less types of interactions to program) and therefore preferable.

For peculiarly 2.5D problems, like the analysis of thin dielectric layers, where a single slice
of volume cells may suffice, the volume formulation requires less unknowns. Also, the condition
numbers associated to the matrix of moments are generally higher for the surface formulation.

To conclude, we note that if both the volume EFIE and the surface CFIE for dielectric
bodies were to be implemented using the 2.5D technique, the precomputation of the vertical
dependence of the Green’s functions would be independent of the permittivity of the dielectric
body for the volume EFIE; for the surface CFIE, it would be necessary to decide whether to
treat the interior problem with a 3D free-space Green’s function (in which case the Green’s
kernels of the interior and the exterior problems could not be added) or to use there, also, a
2.5D technique. But then, the precomputation of the interior problem would depend on the
dielectric permittivity of the interior medium.
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Figure 4.15: Absolute value of the difference
between the electric field at the surface of the
cylinder of fig. 4.9 obtained with a 3D volume
MPIE in free space and a 2.5 volume MPIE
in free space represented as a faked stratified
medium.

Figure 4.16: Same as in fig. 4.15, but along
the cut φ = π/2.
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5 . . . . . . . . . . . . . . . . . . . . . . . Applications

Three distinct applications of the theory and the numerical procedures presented up to now are
studied in this chapter.

The first is a novel technique for the electromagnetic analysis of arbitrarily shaped apertures
in thick metallic screens. This technique is made possible by the 2.5D integral equation approach
developed in §§2–3. Although it is more efficient for small to moderate thicknesses (relative
to λ0), it is not an approximate method and will work for large thicknesses.

The second is the analysis of slot antennas with airbridges. A simple coplanar-waveguide
(CPW) fed slot loop antenna is used as a prototype for some submillimeter-wave integrated
receiver antenna designs. An airbridge over the radiating slots is required in these designs to
provide DC return to the active element. The influence of these airbridges on the characteristics
of the antenna is computed and compared to measurements (§5.2).

Finally, some of the work done in the frame of the IFER (Integrated Front-End Receivers)
project [67] is summarily reviewed. An important part of this project involved the hybrid
analysis of a planar feed antenna (using the Method of Moments and the results of this work)
and a dielectric lens (using an advanced 3D ray-tracing method, developed at the University
of Toronto). Only some aspects exclusively related to the analysis of the feed are touched
upon (§5.3).

5.1 Apertures in thick metallic screens

Diffraction by an aperture in a black screen is a classical problem of optics [15, §VIII]. However,
the black screen is not a very clear concept in rigorous electromagnetic theory, and it is impossible

aperture rim

apert
ure

thick screen

Figure 5.1: Arbitrarily shaped aperture in a thick (metallic) screen. The screen is infinitely wide.
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to characterize with a simple choice of material parameters [15, §IX.1]; the simplest scatterer
is a perfect (electric) conductor. Sommerfeld produced the first exact solution for the simplest
diffraction problem (the half-plane) in 1896 [125, §38.A]. Since then, a number of approximations
have been used to make more complicated situations, that do not have closed form solutions,
manageable. We have the electrically small aperture [13], the infinitely thin aperture (which
was treated in §3.3), the perfectly conducting aperture (idem); often these approximations
are combined. Also, it is typical to assume a canonical shape for the aperture, and this is
actually necessary if an exact solution is desired. If a numerical approximation is acceptable,
the possibilities broaden considerably. The problem we shall attack in this section is that of an
arbitrarily shaped aperture in an (in principle) arbitrarily thick, perfectly conducting plate of
infinite lateral extent (fig. 5.1). Due to the open nature of the problem, its solution requires a
proper use of the surface equivalence principle. Indeed there are a few alternatives even if we
restrict ourselves to the integral equation technique, ie without resort to hybrid methods [40].

Consider the equivalent problem, given in §3.3, for the problem of an arbitrarily shaped
aperture in an infinitely thin conducting screen. If the screen is now a thick plate, the equivalent
problems above and below the plate should not change, because the equivalent magnetic currents
will isolate the respective half-spaces. Now, naturally, the currents Mu and Md do not occupy
the same place, are not related to the same tangential electric field, and the relationship Mu =
−Md holds no more (figs. 5.2 and 5.3). There is still a relationship, however, through the
intervening space, which is necessary to model. Due to the use of the equivalence principle, this
is now a parallel plate medium closed on every side by metallic walls —a cavity.

P17 Integral equation models for the aperture in thick screen

• A first possibility is to use modal expansions for the field in this cavity. This amounts to
using the Green’s functions of the cavity to obtain the magnetic field generated by each
set of equivalent magnetic currents on the position of the other set, and then test as usual.
This ‘cavity model’ is presented in fig. 5.3.

( ¯̄HM
cavity + ¯̄HM

above) ∗Mu + ¯̄HM
cavity ∗Md = −Hexc

u

( ¯̄HM
cavity + ¯̄HM

below) ∗Md + ¯̄HM
cavity ∗Mu = −Hexc

d

The main inconvenient of the approach is the need to compute the Green’s function for the cavity.
This may be straightforward if the aperture has a regular shape (which means a rectangle or a
circle, in practice), but it is not at all a simple matter otherwise. (A very interesting example
is given in [16, §II]). On the other hand, the use of the cavity Green’s function comes naturally
to the problem and the results should arguably be faster and more accurate, although to verify
this we shall wait and see the other techniques. Also, it seems reasonable to expect that the
problem will not become more difficult to solve when the thickness of the plate increases, but
rather the reverse, thanks to reduced coupling between high order modes at either end of the
waveguide.

• A second possibility, and the one to be adopted here, is to leverage the 2.5D methods
for open layered media that have been developed in §§2 and 3. The region between Mup
and Mdn will be modelled as a laterally open parallel plate medium (or parallel plate
waveguide, PPWG); the rim, then, is not included in the Green’s function anymore and
will be accounted for using equivalent electric currents (fig. 5.4). The integral equation is
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now

( ¯̄HM
pp + ¯̄HM

above) ∗Mu + ¯̄HM
pp ∗Md − ¯̄HJ

pp ∗ J = −Hexc
u

( ¯̄HM
pp + ¯̄HM

below) ∗Md + ¯̄HM
pp ∗Mu − ¯̄HJ

pp ∗ J = −Hexc
d

¯̄EJ
pp ∗ J− ¯̄EM

pp ∗Mu − ¯̄EM
pp ∗Md = 0

(5.2a)

The most apparent difference between the cavity model and the PPWG model is that in the latter
it is necessary to mesh the rim of the aperture, and this increases the complexity when the plate
is very thick. On the other hand, most of the computation is dependent only on this thickness
(the tabulation of Green’s functions, according to the vertical discretization and to tables 3.1
and 3.2), and not on the shape of the aperture. This means that although changing thickness is
expensive, changing shape has a low additional cost. This is precisely the opposite behaviour of
the cavity Green’s function technique. Therefore we see that our method is particularly adapted
to printed circuit technology, where the vertical structure (number, type and thickness of layers)
is more a technology constraint than a design parameter, and it is complementary to the other
method, so that each has its domain of application.

The limitations of the PPWG model that are described now are forced upon us by the
model itself: the purely numerical difficulties, such as the computation of the reaction terms,
dealing with the singularity of ¯̄EM in such a medium [electric and magnetic currents are actually
in contact in fig. (5.4)]. . . have already been solved in §3.

5.1.1 Limitations of the 2.5D parallel-plate waveguide model

The first limitation is with increasing screen thickness. The reason why this is a limitation of
the technique is that the walls (once rim) of the aperture are part of the structure, and they
must be meshed. If the mesh density is to be kept constant, the number of cells and of basis
functions grows linearly with the thickness. With plain integral equation solution techniques,
this translates into quadratic storage increase and cubic time increase. It must however be
remembered that for small problems (with current personal computers, up to a few thousand
unknowns), complexity is dominated by matrix fill time. The cells of the walls are vertical, and
consequently, thanks to the 2.5D formulation, it is only necessary to compute a 1D×1D integral
for each interaction between them, in contrast to a 2D×2D integral in the general 3D case
(see table 3.1: the integrals between vertical cells are of type II–V. Indeed, if the parallel plate
medium is homogeneous, type V is equal to its reciprocal, type IV; Azp is zero. See §3.2).

The second limitation is with decreasing screen thickness. This is most easily seen by
writing the Green’s function for the interaction between upper and lower magnetic current
layers as an image series for the case of a homogeneous parallel plate waveguide, as in [89,
§III, fig. 3]. As all the images have the same sign as the original source [cf (3.3.3)], they add
constructively when h → 0. It is thus clear that the method will break if an attempt is made
to use that function directly. Indeed, the method will break much before the computation
of ¯̄EM becomes impossible. The appearance of many quasi-singular terms in the magnetic field
convolution integral will make it difficult to evaluate, if the free space images are extracted one
by one. A first solution would involve summing the whole static part of the series analytically,
and extracting the static part not of the free space Green’s function, but of the parallel plate
Green’s function; this can be derived in closed form (cf [88, (13)], [142, §1.7], [117, (5.44)]). In
the limit, however, the reaction terms would still diverge.

The conclusion is not that the method is useless for any small thickness, but rather that
the method is inaccurate for really, really small thicknesses. As the examples will show, it is
possible to go down to h → λ/1000 and obtain good accuracy, indeed obtain convergence with
the ideal zero-thickness case. It may seem that this means that there is no practical limitation
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h ts

ǫr

Figure 5.5: Vertical structure of microstrip-fed aperture
in a thick screen, used in examples of figs. 5.6 and 5.13.
The microstrip feed is assumed to be infinitely thin.

at all, because the difficult cases are devoid of interest! But the method requires a double
discretization of the aperture, and there exists at least another technique that is ideally suited to
small thickness, handles arbitrarily shaped apertures, and does not require double discretization.
This is the “δ-function” method, developed in our Laboratory in recent years [133, §5], [89, 129].

To demonstrate the possiblities of the approach adopted here, two sets of prototypes have
been built. Both are microstrip-fed slot dipole antennas; the medium structure is that of fig. 5.5.

5.1.2 First prototype: rectangular aperture

The first is a microstrip-fed rectangular slot antenna. The geometry and the dimensions appear
in fig. 5.6.

We start by considering the case of a ‘zero’ thickness metallic screen. The thickness of the
metallization of the substrate (35 µm, which is ∼ λ0/1500 at 6 GHz) can be safely neglected, and
the methods of a §3.3 can be combined with a coarse mesh (fig. 5.7) to obtain the simulation
results of fig. 5.8, that have been plotted together with measurements of the real structure
from [133, figs. 5.26–5.28].

The aperture is rectangular and can also be modeled by the cavity Green’s function method,
that can be expected to provide the best accuracy for thicknesses comparable to the wavelength.
The cavity technique is described in [7, §5.3].

The agreement between simulation and measurements could be improved through a better
mesh or an improved excitation model (a simple delta-gap at the start of the microstrip line
was used). This is, however, not the main goal here. Rather, we want to see if the quality of
the agreement is preserved when thicker screens and/or alternative simulation approaches are
considered.

Figs. 5.9–5.12 show results for increasing screen thickness, from λ/50 up to λ/5. Now, in
addition to measurements, we present three different theoretical predictions: the cavity model,
the ‘delta’ technique [89] and the PPWG model, analyzed with the 2.5D techniques presented
in this dissertation.

Experimentally, the resonant frequency seems to wander to and fro with increasing h; it is
apparent that a full-wave model is needed for this kind of structure.

For thin screens, all three simulations agree (essentially) and the difference with respect
to measurements is essentially the same observed in the zero-thickness case of fig. 5.8. But as
screen thickness is increased, a divergence appears between the numerical models. Obviously
the cavity model is the most accurate, but we must be reminded of the difficulty of extending
it to irregular aperture shapes. The δ-function method gives good results for the least thick
screen, but quickly starts to drift off when h grows over about λ/10. The 2.5D results remain
very close to those of the cavity model up to the greatest simulated thickness of λ/5, and are
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Figure 5.6: Rectangular aperture antenna in
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4.63 mm, ws = .58 mm. The substrate
has h = .635 mm, εr = 10.5 · (1 − j.0024).
This design is from [133, fig. 5.23].

Figure 5.7: Mesh of the rectangular slot fed
by microstripline whose dimensions are given
in fig. 5.6.

clearly better than those of the ‘delta’ approach, that can be used for arbitrary shapes.

5.1.3 Second prototype: dogbone-shaped aperture

The second model is a dogbone-shaped slot antenna, also fed by coupling to a 50 Ω microstrip
line. Its dimensions are shown in fig. 5.13.

Fig. 5.14 shows the kind of mesh we used for the dogbone. This mixed triangular-rectangular
mesh was prepared with a combination of the freely available triangle [3] and in-house tools.

The results are stable with increasing mesh density, as demonstrated by the comparison of
simulated input impedance (fig. 5.15) for the two meshes of fig. 5.14. The meshes are for screen
thickness of ts = 3mm. This stability is achieved thanks to the singularity and quasi-singularity
extraction techniques developed for the 2.5D formulation in §3.

The breadboard series included screens of 0 mm (no screen, actually; the metallization of the
substrate was 35 µm), 1 mm, 3 mm and 5 mm thick. They were made of brass and gold-plated
for best contact with the printed antenna substrate; their size was 14 cm× 14 cm, large enough
to avoid finite ground plane size influencing input impedance. Simulations and measurements
are compared in figs. 5.16 to 5.19. The ‘dogbone’ resonates at 4.5 GHz if the thickness is
ts = 35 µm (fig. 5.16). For the other cases, the analysis with the present technique follows
closely the behavior indicated by the measurements, as thickness increases. While a shape like
the ‘dogbone’ does not add complexity to our approach, the cavity technique would become very
cumbersome if practicable at all.
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Figure 5.9: |S11| of rectangular slot antenna:
ts = 1 mm ≈ λ/50 at 6 GHz. The re-
sults of all simulations (PPWG, cavity and δ-
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Figure 5.10: |S11| of rectangular slot an-
tenna: ts = 3mm ≈ λ/15 at 6 GHz.
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Figure 5.11: |S11| of rectangular slot an-
tenna: ts = 6 mm ≈ λ/8 at 6 GHz. The
results from the δ-approach start to deviate.

Figure 5.12: |S11| of rectangular slot an-
tenna: ts = 10 mm ≈ λ/5 at 6 GHz. The
PPWG results are very close to the cavity
method’s. Both track correctly the measured
resonant frequency.
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Figure 5.17: |S11| of ‘dogbone’ antenna:
slot of thickness ≈ λ/60 @5 GHz.
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Figure 5.18: |S11| of ‘dogbone’ antenna:
slot of thickness ≈ λ/20 @5 GHz.

Figure 5.19: |S11| of ‘dogbone’ antenna:
slot of thickness ≈ λ/12 @5 GHz.
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Figure 5.20: Color representation of electric (feed line, dogbone vertical walls) and magnetic (top
of dogbone aperture) currents in the dogbone antenna over half a period. This has ts = 3mm
and the simulation is at 3 GHz. Excitation is a delta-gap voltage V = 1 at the other end of
the strip, not shown in the figures. The magnitude of the current has been clipped to one fifth
of its maximum value, which is the cause for the saturation on the feeding strip. Electric and
magnetic currents are normalized (dimensions → ·k0, ω → 1, c0 = ε0 = µ0 → 1).
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5.2 Airbridges in CPW and SL circuits

The coplanar waveguide (CPW) was first introduced in 1969 as a means to obtain an elliptically
polarized field that could be used in non-reciprocal microwave devices [144]. Afterwards it
came to be used more and more often for standard microwave and (especially) millimeter-wave
printed circuit applications, which were once the domain of stripline and later of microstripline
technology [123].

The main advantage of CPW lines is the possibility of connecting surface mounted elements
either in series or in parallel; in microstrip it is necessary to drill via holes to make parallel
connections. In addition to the fabrication worries, these vias add extra parasitics that become
more and more troublesome as the frequency of operation increases.

The main inconvenient of CPW circuits as such is that, as the CPW transmission line
consists of three conductors, it supports two quasi-TEM modes that propagate from zero fre-
quency (fig. 5.21). One of them (the even or antenna mode) radiates by its very nature and
is undesirable in circuit applications; this includes feed structures in slot antennas. Coupling
between the odd (or circuit) mode and that unwanted mode will occur at any asymmetry of
the structure (bends, forks, non-symmetrically connected devices, transitions). The even mode
must be actively eliminated and this is done by means of airbridges that connect left and right
ground planes of the CPW. In a conductor backed CPW, these airbridges may adopt the form
of thru-vias [136] which eliminate also the parallel plate mode.

In antenna applications, an airbridge may have other purposes, such as

• Allow the connection of a hard-to-place lumped element.

• Provide DC return for active elements.

• Provide matching for active elements.

• Kill or create antenna resonance modes.

• Any combination of the above.

Besides, when the primary objective of an airbridge is to, say, provide DC return, it is important
to assess its parasitic effect on the resonant modes of the antenna; indeed, this assessment is
bound to be more critical than the quality of the DC return provided. Because these airbridges
on extra duty are not placed systematically (as the ground plane equalizer airbridges are) and
may need specific design (ie, specific values of parameters: height, distance from slots), and also
because they may radiate, a full-wave analysis method is required. Integrated circuit technology
produces regular shaped airbridges that can be appropriately analyzed by 2.5D methods. Some
wire-bonding techniques may produce curved airbridges that require 3D methods.

5.2.1 CPW-fed slot loop antenna

The specific application we shall examine now has been inspired by work on antennas for in-
tegrated receivers in the millimeter- and submillimiter-wave bands [116], [121, §IV]. Typically,
these are lens antennas fed in the focus by some sort of planar antenna or waveguide. This will
be further discussed in §5.3; here we just point out that, because of considerable fabrication
difficulties in these bands, and also because of the requirements of the lens system, the primary
radiators, or feeds, are usually of the simplest kind. A quite popular one [98, 112, 128] is the slot
ring antenna, often fed by CPW (figs. 5.22–5.23). This structure provides the easiest fabrication
and excellent possibilities of integration with active devices.

The slot ring is almost always designed to radiate in its second resonant mode, where it is
around a wavelength in circumference, because this mode produces the best radiation patterns
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Figure 5.21: Standard coplanar waveguide
(CPW) and relative potentials for the two
modes without cutoff frequency [48, §7.4.2].
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Figure 5.23: Integrated mixer design with
centered diode.

(rotationally symmetric, with cancellation of the radiated fields at low elevation both in the E
and the H planes) as well as broadband impedance behavior that allows good matching to the
active element [96, §5.4].

One of the issues with these antennas is the placement of the active device. Because of their
compact size, at very high frequencies (> 300 GHz) an integrated Schottky diode can be as big
as the antenna itself [74], and often it cannot be placed in series in the input line as in fig 5.22.
These considerations prompted the proposal of the configuration shown in fig. 5.23. Here the
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Figure 5.24: Equivalent circuit for fig. (5.22). Figure 5.25: Equivalent circuit for
fig. (5.23).



112 5. Applications

diode is placed in the middle, where there is plenty of space. It is also very close (cannot be
more) to the antenna, and RF losses between the antenna and the mixer are minimized. Both
in this design and in that of fig. 5.22, an airbridge is needed to provide DC return to the active
element, so that it can be polarized. (Actually the configuration of fig.5.22 only makes sense if
a beam-lead diode is used; with a vertically mounted diode, the bridge would not be necessary
(cf [70, §6.2.4]). This example is provided for illustration; the beam-lead diodes can be used for
‘low’ frequency models, but not for submillimeter wave applications).

With respect to the antenna, the airbridge has a different role in each of these designs.
In the ‘centered’ design, fig. 5.23, the filter must present an open circuit to the loop, and the
airbridge is part of the RF loop composed of antenna, matching structure (the bridge) and diode,
all in series (fig. 5.25).

In the other design, the RF loop is closed by the filter; the sole purpose of the bridge is to
provide DC return (fig. 5.24), and matching is provided by the section of CPW connecting the
diode to the antenna.

In both cases the bridge should be designed so that it does not modify the characteristics of
the antenna as a radiator. For example, in [96, §5.2.2], the bridge was designed by assimilating
it to a short section of suspended microstrip line. This approximation may allow to match the
diode, but does not provide precise information on the effect of the bridge on the slot loop itself.

To verify the capability of the methods presented in this work to analyize this kind of
structure, a low frequency model (3 GHz) has been designed (fig.5.26). Airbridges of different
sizes (from ∼ λ0/12 to ∼ λ0/4) have been built (figs. 5.27–5.28) and placed in either the
symmetrical of the asymmetrical positions of figs. 5.22–5.23.

These structures provide an excellent test case for the EM integral equation models and for
the numerical techniques developed in previous chapters.

On one side we have both electric currents (used to represent the airbridges) and magnetic
currents (on the CPW slots). On the other side both vertical and horizontal currents must be
considered.

Finally, if the airbridge has a low height and/or is located close to the slots, strong cou-
pling and quasi-singular interactions may arise, which will bear out the singularity extraction
procedures applied to the computation of the elements of the matrix of moments.

An excellent agreement has been obtained for all lengths when the bridge is placed in the
symmetrical position (figs. 5.29–5.36). As expected, the longest airbridge, which in circuit terms
has the highest impedance, produces the smallest alteration respect to the bridge-less behavior
(this is shown in dashed line in fig 5.37).

In the asymmetrical position, only the shortest airbridge was tested, with good agree-
ment (fig. 5.37). Out of the design frequency of 3 GHz, the asymmetry introduced by the bridge
causes multiple resonances, but the response at 3 GHz has barely changed.
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Figure 5.26: Air-bridged CPW-fed slot antenna: low frequency model, resonant at 3 GHz.
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w

l

h

case # l h w

1 6.1 5.95 0.98
2 12.1 3.2 0.95
3 12.1 5.95 0.85
4 12.1 1.4 1.0
5 6.05 3.0 1.05
6 6.2 1.0 1.55

Figure 5.27: (above) Detail of airbridge #3 as
mounted in the symmetric position.

Figure 5.28: (left) Measured dimensions (in
mm) for each of the airbridges whose effect
on the input impedance of the CPW-fed slot
loop antenna is presented in figs. 5.29–5.34.
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Figure 5.29: |S11| for case #1 of fig. 5.28. Figure 5.30: |S11| for case #2 of fig. 5.28.
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Figure 5.31: |S11| for case #3 of fig. 5.28.
This is the longest bridge.

Figure 5.32: |S11| for case #4 of fig. 5.28.
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Figure 5.33: |S11| for case #5 of fig. 5.28. Figure 5.34: |S11| for case #6 of fig. 5.28.
This is the shortest bridge.
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Figure 5.35: Simulated |S11| for all 6 cases
of fig. 5.28.

Figure 5.36: Measured |S11| for all 6 cases
of fig. 5.28.
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Figure 5.37: Return loss for CPW-
fed antenna with asymmetrically
placed airbridge. The main reso-
nance (at 3 GHz) is not changed by
the airbridge, because in that posi-
tion (φ = 0◦ in fig.5.26) and at that
frequency there is a natural mini-
mum of magnetic current in the slot
loop.
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dielectric lens

mixing element
(diode)

slot antenna
CPW IF filter

Figure 5.38: Schema of the inte-
grated receiver on a substrate lens.

5.3 Integrated antennas in substrate lenses

Among the various possible architectures for a receiver frontend for atmospheric chemistry mis-
sions, room temperature frontends (as opposed to superconductor-based [151]) with integrated,
reliable Schottky diode technology, seem among most promising [90], as evidenced by the sizable
literature on the subject [6, 37, 38]. The basic structure of such a frontend is depicted in fig-
ure 5.38. It consists in a feed section (mixer with integrated antenna) coupled to a dielectric lens,
and it is intended to work in the sub-millimeter waveband (up to 1 THz). The term ‘substrate
lens’ is used because the lens is attached directly to the substrate of the planar antenna, so that
the slots may radiate most of their power into it [59, (33)], [149, §E (37-38)]. The structure is
also free from surface waves, because the slots see what amounts to a homogeneous half-space.

Part of the radiation produced by the feed is reflected back from the lens-air interface, and
causes a change on the input impedance of the integrated antenna, which has been estimated
by certain authors [138, §IV], [42, §II, fig. 4], and, at least for large lenses (� > 10λ0/

√
εr) is

small. In principle, this effect is not taken into account in the present work.
Therefore, we postulate that the magnetic currents radiated by the slots into the lens are

the same as they would be if the lens were replaced by a semi-infinite homogeneous medium of
the same dielectric constant. This approximation effectively decouples feed and lens and allows
for a much greater ease of analysis.

In an open structure receiver, all circuit elements (filter, diode matching network) are on
the same plane as the antenna, and they produce parasitic radiation. To keep it within tolerable
limits, a careful design of the receiver as a whole is required.

5.3.1 60 GHz models

The tools developed in §§ 2–3 have been used in the production of two different low-frequency
(60−−65 GHz) prototypes. The are all based around the IFER baseline design, which places
the vertically-mounted diode at the and of a CPW tuning stub (fig. 5.39). This design was
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Figure 5.39: IFER baseline design. Figure 5.40: Input impedance of un-
polarized Schottky diode (HSCH-9161)
around 60 GHz, according to the data
sheet.

studied, substituting a rectangular loop, in [98]. The diode may also be placed in the input line,
in series, and then the stub must be shorted to provide the required DC return. However, as
discussed above (p. 111), this configuration becomes less attractive at higher frequencies. One
advantage of the tuning stub with the diode at the end is that the design is practically the same
with either a beam-lead or a vertically mounted diode.

The prototypes are subharmonically-pumped mixers, which means that the RF signal is not
mixed with a directly generated LO signal, but rather with a higher harmonic generated in the
diode’s nonlinear junction [70, §7.3.4]. In our measurement system (described in [96, §E]), this
is the 16th harmonic for RF of 65 GHz. In the real-size system, the LO would be introduced
quasi-optically.

The beam-lead Schottky GaAs diode HSCH-9161 from Hewlett-Packard was available in
our Laboratory and was selected as the active element. The dimensions of this piece are approx-
imately 250 µm × 250 µm without the leads, which are 231 µm long ×120 µm wide. Its input
impedance has been computed from the equivalent circuit in the datasheet [54], based on 1 GHz
measurements (fig. 5.40).

The first design is shown in fig. 5.43. With the facilities of our lab, the minimum dimension of
the layout was limited to 50 µm. This is the width of the slots (s1, s2) of the quarter-wavelength
stubs of the IF filter in fig. 5.43. Because of the great difference between the RF (60.5 GHz) and
the IF (330.11 MHz) the filter has been designed as a bandstop filter instead of as a low-pass
filter. Compact CPW filters have become increasingly popular in recent years [127]. A 10 GHz
standalone filter was designed, built and measured on the same principle, to verify the ability of
our code to analyze it. The layout and the results appear in figs. 5.41–5.42. A frequency shift
can be appreciated. The simulation was checked with commercial software (HPADS) and the
results were very similar. Three causes appear as most likely.

• Conductor (ground plane) losses have not been taken into account. Indeed it is possible to
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Figure 5.41: Above: test bandstop com-
pact CPW filter at 10 GHz. Dimen-
sions in mm: l1 = 2.81, w1 = 0.091,
s1 = 0.154, ls = 1.26, w = 0.5, s = 0.2,
l2 = 3.02, w2 = 0.052, s2 = 0.061.

Figure 5.42: To the right: test bandstop
compact CPW filter at 10 GHz. Mea-
sured and simulated |S11| and |S12|.
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make simulation and measurement agree slightly better by adding these losses, but not by
much, and in any case the effect is not a frequency shift, but an adjustment of levels [67,
fig. 4.3].

• Metalization thickness is not taken into account. This is thought to be the most impor-
tant source of error. The overall effect is to lower the effective dielectric constant of the
CPW lines, thus moving upward the resonances [19, §IV.4]. The effect may be specially
important because the slots have widths comparable to the metallization thickness, vg
s2 = 52µm vs t = 17µm. It is clear that this is more likely to happen as frequency
increases and the same fabrication process is used. An extension of the technique demon-
strated in §5.1 to the case of CPW excitation would be of help.

• There is a difference between the actual value of the permittivity of the substrate and the
value introduced in the simulation. A slight adjustment of the permittivity does indeed
produce a closer match between measurement and simulation. This source of error is
difficult to separate from the precedent.

The radiation patterns for the first design, that of fig. 5.43, after the lens, appear in
figs. 5.44–5.47. These patterns were measured on the final prototype. No simulation appears,
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Figure 5.43: First IFER design for operation at 60.5 GHz with alumina (εr = 10) lens, to
scale. The tuning stub and the end gap have been sized to accomodate the HSCH-9161 diode
(g = 250µm is the size of its body; wd = 120µm is the width of the lead).
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since ray-tracing from the complete current distribution would have required excessive computer
resources. Simulations that do not include the lens have been reported in [67].

The extension (7.7 mm) of the alumina lens [104, §2.3] (radius 24.3 mm, εr = 10) was
hyperhemispherical [37, §1], and the lack of directivity in the patterns of figs. 5.44–5.45 is
expected. On the other hand, they show good symmetry, particularly (again as expected) the
H-plane patterns. It was discovered much later, after the IFER project ended, that the alumina
lens was defective —a Rexolite antireflection layer had been attached, which hid an imperfectly
smooth alumina surface. These defects should be taken into account when evaluating figs. 5.44–
5.45.

The same design was also measured with a near-synthesized ellipsoidal lens (radius 25 mm,
extension 8.5 mm; the synthesized-ellipsoidal extension being 9.1 mm) that had been built for a
former effort [96, §5.5] in Stycast HI-K material of relative permittivity εr = 12. The design is
not meant for a lens of this permittivity, which is evident in the relatively high crosspolarization
levels, in particular in the H-plane. However, considering that mismatch, the results obtained
do not differ much from those of [96, (5.27–28)].

The main inconvenient of the simple design of fig. 5.43, apart from those inherent to the
uniplanar structure, is the lack of parameters to match the diode with a relatively short stub (ld =
λ/4 at most). In an attempt to address this shortcoming, an improvement on traditional slot
loops is proposed in fig. 5.48. The T-match for CPW-fed antennas [68, 105] has been shown to
offer a wideband, compact matching solution with limited effect on the cross-polarization of slot
loops. The T-match is used only in the tuning stub. However, the design rules would have to
be forced down to 30 µm for this design. The simulated performance of this prototype has been
reported in [67].
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Figure 5.44: E-plane radiation pattern cut
of first IFER design (fig. 5.43) using an alu-
mina lens.

Figure 5.45: H-plane radiation pattern cut
of first IFER design (fig. 5.43) using an alu-
mina lens.
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Figure 5.46: E-plane radiation pattern cut of
first IFER design (fig. 5.43) using an εr = 12
lens.

Figure 5.47: H-plane radiation pattern cut
of first IFER design (fig. 5.43) using an εr =
12 lens.
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Figure 5.48: Second IFER design for operation at 65 GHz with silicon (εr = 12 lens), to scale.
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6 . . . . . . . . . . . . . . . . . . . . . . . Perspectives

We have described the bases and the details of the implementation of a technique to precompute
the vertical component of the general problem of a 3D scatterer embedded in stratified media.
Actually, it was necessary, because of the characteristics of the technique, to restrict the scat-
terers that could be analyzed to be 2.5D —each part of the structure must either be parallel to
the axis of stratification or form a right angle with it.

The main motivation for this development was to avoid the 3D tables and 3D interpolation
required by a completely general spatial-domain integral equation technique. The precomputed
dependence on the vertical component consists in a series of 1D tables, and only 1D interpolation
(in P ) is required during the evaluation of any of the reaction terms produced by the application
of the method of moments to the integral equation. Therefore, there is an advantage in storage
—because less tables are needed— and a double advantage in efficiency: first, 3D interpolation
is reduced to 1D interpolation, and second, the dimension of the spatial integrals is reduced
from 3 to 2 (for volume integrals) or from 2 to 1 (for surface integrals).

The main limitation of the technique is that it requires a careful and extensive analytical
treatment of the Green’s functions both in the spatial and the spectral domain, and to ease
the implementation some simplifications had to be made. For example, the unknowns were
expanded exclusively in combinations of linear rooftops. In these last years, when the use of
higher-order basis functions in electromagnetics can finally be said to have arrived to its mature
age, such simplification may seen outdated. However, it is easy to check in the recent literature
the fact that almost all the development on higher order functions is restricted to methods that
use only the free space Green’s functions, or, if they concern layered media, the higher order
bases are applied exclusively to horizontal unknowns.

The 2.5D technique has been explored quite extensively in this work; we have analyzed
problems with electric and magnetic surface currents, where the electric currents could be de-
fined on vertical patches, and electric polarization currents defined on volume elements. But
the subject was not in any way exhausted. We have shown examples of extended formulations
(analysis of composite dielectric objects in free space, with the CFIE) that could be reimple-
mented to some advantage using the semi-spectral method. In addition, a combination of all the
methods presented here could also be used, in which any particular structure or inhomogeneity
could be meshed using volume or surface elements according to its characteristics.

Preliminary results show the potentialities of this approach, and pave the way for a future
combination and integration with the 2.5D approach mainly used in this thesis. In particular,
the implementation of the volume integral equation in stratified media should be the next step
to be considered, since it would provide a powerful systematic technique to analyze dielectric
inclusions embedded in a layered environment.

A trend that together with the higher-order basis functions is being rapidly accepted by the
electromagnetic modeling community is the multipole technique, that allows the analysis of large
problems using a traditional moment-method approach. So far the multipole method has barely
begun to be used for anything other than free space problems, and it would be daring indeed to
propose its application to the 2.5D methods presented here, because we did not even attempt to
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develop the asymptotic approximations for the far field, which the multipole method requires.
However, it could be used in free space or in ground-plane bounded half-spaces to analyze, with
a sort of hybrid method, such structures as the slot-antenna fed substrate lenses studied in the
IFER project. The multipole technique is ideally suited to the treatment of electrically large
problems in simple media, such as the lens, while the 2.5D technique can be used to analyze
efficiently the feed.

Finally, an extremely important point that has been barely mentioned in this thesis is
the treatment of excitations. We have used simple delta-gap (or combinations thereof) and
plane wave excitations. It has long been evident, however, that the delta-gap model is not
really accurate for the prediction of input impedances and circuit parameters. We were mostly
concerned with other aspects of the method of moments technique. It is clear that the treatment
of excitations would have been a favored area of work if this dissertation had not needed, at
some point, a full stop.
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P18 Volume
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P19 Surface These are computed simply by noting that for a function f(p, z) [50, (A-11)],
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P20 Line
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In the following integrals, the source region is a line segment with orientation ê and normal û.
It is contained on a plane with normal ẑ = û× ê. It is assumed that:

R = Zẑ + P = Zẑ− P0û− lê

R2
0 = Z2 + P 2

0

Then:
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These are useful enough, when they apply:
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P21 2D Fourier transform in cartesian and polar coordinates Assume p′ = 0;
also f(kp, kφ) = fp(kp)fφ(kφ). Then

+∞w

−∞

+∞w

−∞
f(kp, kφ)e−jkp·p dξdη =

∞w

0

dkpkpfp

2πw

0

dkφfφe−jkpp cos(kφ−φ) (B.1a)

Let fφ(kφ) = ejkφn, n an integer. Substitution of [36, (5.2.7c)]

e−ja cos b =
+∞∑

m =−∞
(−j)mJm(a)ejmb (B.1b)

into (B.1a) yields
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0
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+∞∑
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2πw

0

dkφejkφ(n+m) (B.1c)

The innermost integral of (B.1c) is zero unless n = −m. This reduces the sum to a single term,
cf [78, (34)]:
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1
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∞w

0

dkpkpJn(kpp)fp (B.1d)

Let us adopt the definition [124, (2.13-14)], [78, (35)], [107, (7)] (but see [87, 61])
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With (B.1d) and the recurrence formula for Bessel functions [50, (D-16)]

Bn(x) =
2(n− 1)

x
Bn−1 −Bn−2 (B.3)

we get (cf [45, table 6.8], [80, (65-70)]):
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p fp] + sin2 φS0[fp]

(B.4)
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P22 Extension of limits of integration to ±∞ in the Fourier-Bessel transform On
ocassion the integration limits of the Sommerfeld integral (B.2) are extended to

r +∞
−∞ . This is

done by a procedure detailed in [36, 64–68], that depends on the relations

Jn(x) =
1
2
[
H(1)

n (x) + H(2)
n (x)

]
(B.5a)

Jn(xe±jπ) = e±jnπJn(x) (B.5b)

H(1)
n (xe+jπ) = −e−jnπH(2)

n (x) (B.5c)

H(2)
n (xe−jπ) = e+jnπH(1)

n (x) (B.5d)

and on fp of (B.2) being an even function of kp [which is always the case for transmission line
Green’s functions (§2.4), that depend on kp only through γ =

√
k2

p − k2], and that results in

Sn[fp] = 1
4π

+∞w

∞e−jπ

dkpkpH
(2)
n (kpp)fp (B.6)

If (B.6) rather than (B.2) is chosen, care must be taken to circunvent the branch cut of the
Hankel function, which conventionally extends from 0 to −∞ on the real axis. (On the other
hand, Jn is entire).

P23 Source-continuous scalar potential Green’s function for the charge associated
with a vertical dipole We begin with the expression

Φz(z, z′) =
ω

kx

z′w

−∞
dz′′EM

zx(z′′, z) (B.7)

derived by reciprocity in [39], although any other integral expression will yield similar results.
The lower limit of integration is not important, at least as far as we go low enough to ensure the
desired continuity. If we substitute EM

zx for its expression in terms of the TLGF’s, we obtain [78,
(28)]

Φz(z, z′) = −
z′w

−∞
dz′′

1
ε′′

Ie
v(z

′′, z) (B.8)

(B.8) must be source continuous, because the integrand contains at most step discontinuities.
Now, typical derivation follows taking 1/ε′′ outside the integral.This is not valid when layers are
crossed. The resulting expression (2.20f), [80, (32)], [45, (6.82)] is

Φz(z, z′) =
jω

γ2
V e

i (z′, z) (B.9)

This expression remains valid within layers, however —but it is not source continuous and leads
to a line integral term that, in principle, would be better to avoid. Therefore we proceed to
compute (B.8) by making use of the TL equation (2.5a)

∂Vi(z, z′)
∂z

= −γZIi(z, z′) (B.10a)

Exchanging variables and dividing by ε′

1
ε′

Ii(z′, z) =
1

−γ′Z ′ε′
· ∂Vi(z′, z)

∂z′
(B.10b)
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The second term can be integrated by parts (defining A(z) = 1/[γZ(z)ε(z)])

Φz(z, z′) =
Vi(z′, z)
A(z′)

− Vi(∞, z)
A(∞)

−
z′w

∞
dz′′

{
Vi(z′′, z)

∂A(z′′)
∂z′′

}
(B.10c)

To perform the derivative inside the integral, we note that γ′′, Z ′′ and ε′′ are piecewise continuous
functions of z′′.

n(−∞)

n(z)

n(z′

)
z

z′

. . .

Φz(z, z′) =
Vi(z′, z)
A(z′)

− Vi(∞, z)
A(∞)

−
z′w

∞
dz′′

Vi(z′′, z)
n(+∞)∑

n(−∞)+1

δ(z′′ − zn)
[
A(z+

n )−A(z−n )
] (B.11a)

The sum extends over all layer discontinuities. Finally,

Φz(z, z′) =
Vi(z′, z)
A(z′)

− Vi(∞, z)
A(∞)

−
n(z′)∑

n(−∞)+1

Vi(zn, z)
[
A(z+

n )−A(z−n )
]

(B.11b)

We find that this is the same as (B.9), save for the addition of the discontinuity step at each
layer interface. As for the implementation: the terms Vi(zn, z) have to be computed. They have
an exponential dependence on z which is the same for them all; in fact it is the same as that of
Vi(zn, z), so it is possible to factor it out.

However, without pursuing this work further, it seems that it will be more work to compute
this source continuous scalar potential Green’s function than to just accept the discontinuity
in (B.9) and compute the line integral; the corner line integrals have to be implemented anyway.
We have decided to go with (B.9).

P24 Integral of log(R+Z) over a triangle or a rectangle There are two cases of interest
here, a) the factor function is constant or b) linear. The following two functions shall be used,
from (A.2c) and (A.2f) respectively:

f = −P
2

(
log(R + Z)− R2

2P 2
+

ZR

P 2

)
(B.12a)

g = −f ·P (B.12b)
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Before applying the appropriate integral theorem to transfer the integration from the surface of
the polygon (S) to its contour (∂S), a small circle of radius ε centered at P = 0 is excluded, so
that the integrand and its antidivergence or antigradient are regular on S − Sε.

If the log function is multiplied by a constant function, then,
w

S′

log(R + Z) =
w

S′

div′s f

= lim
ε→0

 w

∂S′−∂S′ε

f · n̂ +
w

S′ε

log(R + Z)


=

w

∂S′

f · n̂ + α(p) lim
ε→0

[
−εf · (−P̂) +

εw

0

dP P log(R + Z)

]
=

w

∂S′

f · n̂ + α(p)
(
− Z2/2 + Z|Z|

)
(B.13a)

The angle α(p) is as in [146, 5] and is computed as indicated there. The remaining contour
integral (over a polygonal contour) is doable in closed form by splitting P in parts normal and
tangential to each segment and using formulas from P20 on page 128.

If the log function is multiplied by a linear vector function,
w

S′

P log(R + Z) =
w

S′

grad′s g

= lim
ε→0

 w

∂S′−∂S′ε

gn̂ +
w

S′ε

P log(R + Z)


=

w

∂S′

gn̂ (B.13b)

The composition of (B.13a) and (B.13b) allows to compute the singular or quasi-singular in-
tegrals arising from the use of the z-integrated Green’s functions, whose singularities or quasi-
singularities are (for the potentials at least) of this type (tables 2.4 and 2.6). We note that the
case Z = 0 is included in (B.13a–B.13b).

To estimate the need of computing the integrals of log |R+Z| over triangular and rectangular
cells according to the exact formulas (B.13a–B.13b), the direct integration using a number of
Gaussian rules on increasing order has been plotted on figs. B.1–B.4. (These Gaussian rules are
given in tables C.1 and C.2). The disposition of source cells and observer points is the same as
in fig. 3.6. Only the results for

r
S′ log(R+Z) are shown;

r
S′ P log(R+Z) is (presumably) better

behaved.
As discussed in §3.3.2 the case kl = 1 (figs. B.1 and B.3) is not representative of what is

found in a typical mesh. In the more meaningful case kl = .1 (figs. B.2 and B.4), we see that
except for kR < .1, a low (3-4 points) degree rule may be sufficient to compute accurately this
type of integrals. On the other hand, when Z = 0, results are poor whatever the degree of the
rule and the use of (B.13a) is imperative.
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Figure B.1: Direct numerical computation of
the integral of log(R +Z) over a large trian-
gle.

Figure B.2: Direct numerical computation of
the integral of log(R + Z) over a small tri-
angle.
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Figure B.3: Direct numerical computation of
the integral of log(R + Z) over a large rect-
angle.

Figure B.4: Direct numerical computation of
the integral of log(R + Z) over a small rect-
angle.
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C . . . . . . . . . . . . . . . . . . . . Gaussian rules

The numerical integration with 2D or 3D quadrature rules is based on the following principle:
there is an affine mapping that transforms certain ‘unit’ region (the unit element) in normal-
ized coordinates s = (u, v, w) into the region of interest (the element) in real-world coordi-
nates r = (x, y, z).

The unit elements are defined so that the transformation T (s) is the same for all: triangle,
parallelogram, tetrahedron, parallel wedge and parallelepiped. Because T (s) is an affine trans-
formation, the elements are completely specified by a position vector o and two (three) edge
vectors a b (c). The position vector is any vertex of the element, and the edge vectors the two
(three) vectors from o to the two (three) neighboring vertices (figs. C.1 and C.2). Naturally we
take w = 0 for the triangle and the parallelogram.

T (s) = o + ua + vb + wc (C.1)

A point integration rule is defined over this unit region, and the integral is performed in nor-
malized coordinates.

w

R

f(r) =
w

S=T−1(R)

f(T (s))
AR

AS
≈ AR

AS

∑
i

ωif(T (si)) (C.2)

All the rules {ωi, si} that appear in this appendix are fully symmetric. This means that the
position of the transformed integration points is as independent on the ordering of the nodes as

u

v

w

1

1

1

a

b

c

•

o

•

x
y

z

Figure C.1: The five unit elements.
The unit triangle, base of tetrahedron
and wedge, is shaded.

Figure C.2: The five elements defined by oabc
in real-world coordinates, according to (C.1).
The triangle, base of tetrahedron and wedge, is
shaded.
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it can be. (In the rectangle, for instance, it does not matter whether the nodes are numbered
cw or ccw, or which one is the first of the list —the transformed points fall in the same places.)
This also means that the choice of origin and axes for the transformation is immaterial, and do
not even need to be positively oriented, although this might be advisable on other grounds.

This rules should also be useful for general quadrilaterals [109] or hexahedra [93]. The
rules are what in one dimension would be called Gauss-Legendre and perform best with smooth
integrands. They are optimal, in the sense that they integrate exactly a monomial of higher or
equal degree than any other rule with the same number of points.

P25 Triangle The unit triangle has its vertices at s = (0, 0), (0, 1), (1, 0). It is the base of
the unit tetrahedron or the unit wedge and has area AS = .5. The {ωi} given here have been
doubled so that the factor A−1

S in (C.2) is already included.
The points si are to be produced according to symmetry generators. There are three classes

of symmetry for the triangle rules:

Class I produces s0 = (1/3, 1/3).

Class II (vertices) produces s = (a, a), (a, 1− 2a), (1− 2a, a).

Class III (2×sides) produces s = (a, b), (b, a), (a, 1−a−b), (1−a−b, a), (b, 1−a−b), (1−a−b, b).

Coordinates and weights are listed in table C.1. The most complete reference for optimal rules
on the triangle is [28], who gives rules up to order 20 (79 integration points) with up to 15
significant figures. Other accessible sources are [4, §25.4.63] (7p.).

To build denser rules by subdivision, it is preferable to split the triangle in four by the
midpoint of each side. In this way the aspect ratio of the triangle and the symmetry of the rule
are preserved.

P26 Rectangle The unit rectangle has its vertices at s = (0, 0), (0, 1), (1, 1), (1, 0) and has
area 1. It is the base of the unit hexahedron.

The points si are to be produced according to symmetry generators. There are four sym-
metry classes for the rectangle rules (take all sign combinations):

Class I produces s0 = (.5, .5).

Class II (sides) produces s = (.5± a/2, .5), (.5, .5± a/2).

Class III (vertices) produces s = (.5± a/2, .5± a/2).

Class IV (2×sides) produces s = (.5± a/2, .5± b/2), (.5± b/2, .5± a/2).

Coordinates and weights are listed in table C.2. These rules can be gotten from [27]. Other
accessible sources are [4, §25.4.62] (4 & 9p.).

P27 Tetrahedron The unit tetrahedron has its vertices at s = (0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1). Its volume is 1/6 and a factor of 6 has already been included in the {ωi} given here.

The points si are to be produced according to symmetry generators. There are three
symmetry classes for the tetrahedron rules.

Class I produces s0 = (.25, .25, .25).

Class II (vertices) produces s = (a, a, a), (a, a, 1− 3a), (a, 1− 3a, a), (1− 3a, a, a).

Class III (edges) produces s = (a, a, b), (b, b, a), (a, b, a), (b, a, b), (b, a, a), (a, b, b).

Coordinates and weights are listed in table C.3. These rules come from [41], save the 24 point
rule [56].
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ω a b

1 1 I 1. .333333333333333333333

3 2 II .333333333333333333333 .166666666666666666666

4 3
I -.5625 .333333333333333333333
II .520833333333333333333 .2

6 4
II .109951743655321867638 .091576213509770743459
II .223381589678011465695 .445948490915964886318

7 5
I .225 .333333333333333333333
II .12593918054482715259 .10128650732345633880
II .13239415278850618073 .47014206410511508977

9 5
II .205950504760886603012 .437525248383383867325
III .063691414286223365160 .037477420750087775659 .165409927389841422924

13 7

I -.149570044467681750630 .333333333333333333333
II .175615257433207811754 .260345966079039826926
II .053347235608838491270 .065130102902215811538
III .077113760890257140260 .048690315425316411793 .312865496004873861407

16 8

I .072157803838893584126 .333333333333333333333
II .051608685267359125141 .170569307751760206622
II .016229248811599040155 .050547228317030975458
II .047545817133642312397 .459292588292723156029
III .013615157087217497132 .728492392955404281241 .263112829634638113422

Table C.1: Integration rules for the triangle.

P28 Wedge The unit wedge has its vertices at s = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 0, 1), (0, 1, 1). Its volume is 1/2 and the {ωi} given here have already been doubled.

Nobody seems to have produced optimal gaussian rules for the wedge. Therefore, I have
used product rules of optimal gaussian rules on the triangular base × linear Gauss-Legendre
rules along its height, with number of points: 1×1, 3×2, 3×3, 4×3, 4×4 and 6×4.

P29 Hexahedron The unit hexahedron has its vertices at s = (0, 0, 0), (1, 0, 0), (1, 1, 0),
(0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1). Its volume is 1.

The points si are to be produced according to symmetry generators. There are five sym-
metry classes for the hexahedron rules.

Class I produces s0 = (.5, .5, .5).

Class II (faces) produces s = (.5± a/2, .5, .5), (.5, .5± a/2, .5), (.5, .5, .5± a/2).

Class III (vertices) produces s = (.5± a/2, .5± a/2, .5± a/2).

Class IV (edges) produces s = (.5±a/2, .5±a/2, 0), (.5±a/2, 0, .5±a/2), (0, .5±a/2, .5±a/2, 0).

Class V (2×edges) produces s = (.5 ± a/2, .5 ± a/2, .5 ± b/2), (.5 ± a/2, .5 ± b/2, .5 ± a/2),
(.5± b/2, .5± a/2, .5± a/2).

Coordinates and weights are listed in table C.4; the rules come from [27].
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ω a b

1 1 I 1. 0.

4 3 II 0.25 .57735026918962576450

8 5
II .204081632653061224490 .841565025531986612774
III .045918367346938775510 .940958551844098431750

9 5
I .19753086419753086419 0.
II .12345679012345679012 .774596669241483377036
III .07716049382716049382 .774596669241483377036

12 7
II .06049382716049382716 .92582009977255146157
III .13014822916684861428 .38055443320831565638
III .05935794367265755855 .80597978291859874371

13 7
I .01234567901234567901 0.
II .15123456790123456790 .585540043769119907613
IV .04783950617283950617 .929497072097828568789 .579685425866102036070

20 9

II .071613424709810966785 .984539811942252392433
II .454090352551545224132 .488886342842372416228
III .042784615466778051169 .939567287421521534134
IV .215755803635932878957 .836710325023988974095 .507376773674613005277

40 13

III .190130011633091768921 .551473280569941928827
III .013028158998051469058 .968340720218421941014
IV .139527516092232388746 .026667673869542453606 .377724312589881160245
IV .137999398640593062673 .235988332487411073425 .793396171109383868545
IV .039497677876689456247 .265486560240884896496 .978761747825121715591
IV .081396322074913473345 .702141598362496912618 .913909457030225547757

Table C.2: Integration rules for the rectangle.
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ω a b

1 1 I 1. .25

4 2 II 0.25 .1381966011250105151796

5 3
I .8 .25
II .45 .166666666666666666666

11 4
I -.078933333333333333333 .25
II .045733333333333333333 .399403576166799204996
II .149333333333333333333 .100596423833200795004

14 5
II .112687925718015850799 .310885919263300609797
II .073493043116361949544 .092735250310891226402
III .042546020777081466438 .454496295874350350508 .04550370412564964949188

24 6

I .03992275025816749210 .214602871259152029289
II .01007721105532064295 .0406739585346113531156
II .05535718154365472210 .3223378901422755103440
III .04821428571428571429 .0636610018750175252992 .2696723314583158080340

Table C.3: Integration rules for the tetrahedron.
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ω a b

1 1 I 1. 0.

6 3 II .166666666666666666666 1.

8 3 III .125 .577350269189625764509

12 3 IV .083333333333333333333 .707106781186547524401

14 5
II .110803324099722991690 .7958224257542214632645
III .041897506925207756233 .758786910639328146269

25 5
I .21052631578947368421 0.
V .032894736842105263158 .478009811915070604711 .8998221524793131673895

58 9

II .4332749957496545430098 .6136814695917089938349
III .1988598381440235003209 .5641108070200300542666
III .05014879529934902986745 .8700997846619759176151
IV .09178980613617764217124 .8776871232576782864868
V .09611680351337336643248 .4322679026308621644160 .938530421864671745329

Table C.4: Integration rules for the hexahedron.
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D . . . . . . . . . . . Documentation for TM

Perilous to us all are the devices of an art deeper than we
possess ourselves.

J.R.R. Tolkien

tm is a software package intended to serve as simulation tool and demonstration benchmark for
this thesis work. It is written in C++ [132] and is scriptable in Scheme [30]. It implements
the conductor patch and aperture MPIE/CFIE (§§3.2, 3.3, 3.3.1), the dielectric-body volume
MPIE (§4.2) and the dielectric-body surface CFIE (§3.4) in homogeneous (unbounded or perfect
ground-plane bounded) space and, save the dielectric-body surface CFIE, in laterally unbounded
layered media (§2).

tm is, as most overly ambitious software packages, a never-finished, never-correct piece
of work. Somebody said that writing software documentation takes at least as much effort as
actually writing the code; if it is true, it is proposed as an excuse for the roughness of these
pages, whose purpose is not to teach to use the code, but to give a glimpse into its feature set.

Installation

tm compiles and runs in unix-style systems. A reasonably standards-conforming C++ compiler
is required. The freely available guile package from the Free Software Foundation, v. 1.6 or
above, must be installed.

tm requires two input files per simulation, one describing the medium, another the structure.
The distinction is however not so clear-cut when dielectric bodies are analyzed with the surface
equivalence principle; the specification of the different homogeneous regions is made in the
structure file.

Medium description file

The medium file has extension .in. It contains a lists of blocks, each with the following format:

block number-of-block
base block-start-z
bottom-boundc
{ layer height εr µr σ }+

top-boundc
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block 0
base -1.51 mm
infty
layer 1 mm 1 0 1 0 0
layer 0.51 mm 2.33 -0.0028 1 0 0
ground

block 1
base ontop
ground
layer 3 mm 1 0 1 0 0
ground

block 2
base ontop
ground
layer 1 mm 1 0 1 0 0
infty

Figure D.1: The medium specifica-
tion file for the microstrip-fed, dogbone-
shaped aperture in a 3 mm thick screen
of §5.1.3

.

number-of-block is present only to mark the sequence of blocks but it is not used otherwise. The
first block (number-of-block = 0) must give a numeric value (with units) for block-start-z. The
following blocks may just indicate ontop, which places them on top of the previous block. In
this way it is possible to create multiple ground-plane media. The boundary conditions bottom-
boundc and top-boundc can be:

• a complex number. Both TM and TE reflection coefficients are forced to this value in the
modal representation.

• cond <σ> a conductivity. The surface impedance of a metal with this conductivity is
used.

• ground the same as putting -1. This is a ground plane boundary.

• infty the same as putting 0. This means to continue the adjacent layer (first or last of
the block) to infinity, which produces a half-space.

The medium specification file for the microstrip-fed ‘dogbone’ shaped antenna (§5.1.3) is
given in fig. D.1.

Structure file

The structure file has the extension .mesh. It is composed of four sections.

[defs] This contains the definition of the length unit in SI meters. For example <unit 1e-3>
sets up the millimeter as the default unit.

[nodes] A numbered list of 3D nodes (<x y z>), one per line.

[cells] A list of cells. A group of these may be preceded by a ‘group definition’ which has the
form
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group group-number group-name
group-type group-data region-spec

The group-type can be one of boundary, volume or volume. For each of these, group-data
has the format:

boundary <elec|magn {Zs|Ys|σ}> Zs or Ys are surface impedaces or admitances (for
the magnetic conductor boundary), σ (for electric conductor boundary) a conductiv-
ity. These provide for a Leontovich-type condition on the surface of the conductor.
If group-data has this value, the cells following must be surface patches.

volume <εr µr σ> material parameters of a dielectric inclusion. If group-data has this
value, the cells following must be volume elements.

interface <εr µr σ> material parameters. The cells following (which must be surface
patches) bound a homogeneous dielectric body of that material. If region-spec allows,
this group will create a region to which the other groups can refer.

The possibilities for region-spec are:

in <other-group-name> the group will not radiate in open space but inside a region
bounded by an interface group named by other-group-name. There are a number
of laterally unbounded implicit regions defined by the layered medium (the block’s
in the description of the medium file format), and if a group has no region-spec, in
open is assumed (open is a reserved name) which automatically makes the cells of
the group radiate in the unbounded region that its vertical position places it in.

from <group-name-a to group-name-b> the group, which must be an interface or
a horizontal boundary magn placed on the position of an infinite metallic ground
plane, is a boundary between two regions. The integral equations to be solved will
enforce the continuity of the tangential components of E and H (or only of H for
a boundary magn) across this boundary. Either from or to may be omitted; in that
case, open is assumed. The reference normal for the definition of equivalent currents
is taken from the first region to the second region, or upwards if both are open (the
unbounded block’s are ordered in the direction of increasing z). These region-spec’s
provide support for the analysis of composite dielectric bodies and aperture-coupled
dielectric resonators.

The list of cells, by itself, is simply a numbered list of lines of the form

index number-of-nodes { node-index }number-of-nodes

where node-index is an index into the list of nodes given in the previous section of the file.

[ports] A list of edges (planar cell index plus two node indices) where delta-gap excitation
can be impressed. (A plane wave excitation is indicated through configuration parame-
ter currents-exc.)

[metaports] These group port edges to form multicell delta gaps [33, VII], differential ports,
CPW ports (which are a type of differential port [97], [143, §II]), etc.

Two examples are given: the mesh for the composite sphere of P8 on page 78, and the first
mesh for the ‘dogbone’ antenna of fig. 5.14 in p. 107 —see figs. D.2–D.3.
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[defs]
unit 0.001

[nodes]
0 0 0 1
1 0 0.894427 0.447214
<...>

[cells]
group 0 sphere-up
interface (4,0) (1,0) 0

0 3 1 28 27
1 3 8 26 28
<...>

group 1 sphere-dn
interface (4,0) (1,0) 0

160 3 92 109 108
161 3 99 107 109
<...>

group 2 midwall
interface (4,0) (1,0) 0

from sphere-dn
to sphere-up

320 3 166 24 162
321 4 166 167 173 172
<...>

'

&

$

%

[defs]
unit 0.001

[nodes]
0 -70 -1.082 -0.76
1 -67.7838 -1.082 -0.76
<...>

[cells]
group 0 feed
boundary elec (0,0)

0 4 0 1 39 38
1 4 2 3 41 40
<...>

group 1 dogbone-bottom-cover
boundary magn (0,0)

37 3 141 179 142
38 3 142 179 143
<...>

group 2 dogbone-top-cover
boundary magn (0,0)

144 3 254 292 255
145 3 255 292 256
<...>

group 3 dogbone-extr-boundary
boundary elec (0,0)

251 4 302 303 441 440
252 4 303 304 442 441
<...>

[ports]
0 0 0 38 % port-one, subport 0

[metaports]
simple const 50. 0 % port-one

Figure D.2: Structure input file
for two-material composite sphere
of fig. 3.17 in p. 81.

Figure D.3: Structure input file
for microstrip-fed ‘dogbone’ antenna
of fig. 5.14 in p. 107.
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Command line

tm’s command line has 4 compulsory arguments, 1 optional argument, and an indeterminate
number of key=value arguments in any position, that change the default configuration options
documented in the next section. In addition to that, interpreted command scripts (written
in Scheme) can be loaded, from which the simulation can be started and controled program-
matically. If no scripts are given, a default script, that runs a standard simulation with the
parametrized by default arguments, is started instead.

tm mesh-file start-freq end-freq number-of-samples [output-name]
[- {var=value | scheme-file}+ [-] ]

output-name is used as prefix for all output files produced by tm. If it is not given, mesh-file
is used. Depending on the frequency sampling mode (configuration option sampling-method),
mesh-file, start-freq and end-freq may actually be ignored.

If the command line ends in a hyphen, the program will open a command line interface and
show a prompt. From this prompt a series of commands (for instance (help-tm ’commands))
can be entered.

Configuration options

Some options have one or more aliases and these are listed between parentheses after the name
of the option. False is to be indicated with 0 and true with 1.

use-packed-momm (pm, use-bunch-kaufman-factor) If this is false, solve the moment sys-
tem using LU decomposition with partial pivoting, as implemented by the lapack rou-
tines zgetrf, zgetrs and zgecon. This requires that the whole system matrix be stored
in memory.

If this is true, solve the moment system using the Bunch-Kaufman diagonal pivoting
method, as implemented by the lapack routines zsptrf, zsptrs and zspcon. This
method requires the system matrix to be symmetric and uses half the storage space of
the previous method. Unfortunately it is much slower in practice, not because of any
fault in the algorithm, but because the routines have not been so well optimized for each
particular computer architecture as the LU routines have been [1].

sampling-method (sm) Select the method for sampling when doing a frequency sweep. The
posibilities are:

uniform uniformly spaced sampling.

list an explicitly given list of points.

adaptive adaptive sampling based on the variation of the S parameters, with the algo-
rithm given in [71, Part II].

reduce-rectangles-to-triangles (r2t) Divide every rectangle of the mesh in two triangles
before starting the analysis. (Useful mainly for tests).

reduce-hexahedra-to-wedges (h2p) Divide every hexahedron of the mesh in two wedges be-
fore analysis.

reduce-hexahedra-to-tetrahedra (h2t) Divide every hexahedron of the mesh in six tetra-
hedra before analysis.
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reduce-wedge-to-tetrahedra (p2t) Divide every wedge of the mesh in three tetrahedra be-
fore analysis.

quad-eps-wav The minimum relative error to be attained in the weighted averages algorithm,
that is used to integrate the tail of the Sommerfeld transform.

ellipse-convergence-precision (ecp) The minimum relative error to be attained in the
integration along the elliptic part of the Sommerfeld integration path.

absolute-rhomax (pmax) Sets a minimum k0P down to which to compute spatial domain
Green’s function tables that is independent of the mesh.

absolute-rhomax (pmax) Sets a maximum k0P up to which to compute spatial domain Green’s
function tables that is independent of the mesh.

atar-file (af) Name a file that contains a substrate (layered medium) specification. The use
of this option is mandatory.

always-extract-first-order-singularity (aes) Always extract the first potential-type
quasistatic term, no matter how far away the source and the observer cells are. Useful for
tests.

extract-field-cubic-singularity (ecs) Always extract the first quasistatic term of ¯̄EM ,
no matter how far away source and observer cells are. Useful for tests.

ms-extract-singularity (mses) Always extract the first quasistatic term of
r
τ

¯̄EM , no mat-
ter how far away source and observer cells are. Useful for tests.

write-cache (wc) Write the Green’s function tables to a cache on disk. This is the default.

use-cache (uc) Try to read a cache of Green’s function tables from disk. If they are found
but they do not match the current medium and mesh, they will be discarded.

radpat-include-groups (rp+) This option takes a comma-separated list of cell groups, which
are included in the computation of the radiated (far) field. The default is to include all
groups. The interest of this and the next option (rp-) is to separate the radiation of main
radiating elements from parasitic radiation.

radpat-exclude-groups (rp-) This option takes a comma-separated list of cell groups, which
are excluded in the computation of the radiated (far) field. The default is to exclude no
group. This option has priority over rp+.

include-electric-radiation (erp) If this is false, the electric currents will not be included
in the computation of the radiated (far) field. Default is true.

include-magnetic-radiation (mrp) If this is false, the magnetic currents will not be included
in the computation of the radiated (far) field. Default is true.

use-free (uf) Use closed form specializations for the Green’s functions (and the reaction in-
tegrals) in unbounded and ground-plane bounded homogeneous media. These allow arbi-
trarily oriented cells. If this is not true, the medium will be treated as a general layered
medium and a 2.5D mesh will be required.

currents-exc (ce) Set the excitation used to compute the current distribution on the struc-
ture. The default loads on the ports are given in the structure file; they can only be
modified by using the script commands. The options are:
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default excite the first port on the circuit with unit excitation, all else turned off.

all excite all ports with unit excitation. loads.

given <list-of-excs> a comma separated list of complex numbers gives the excitation of
each one of the ports in the circuit.

• <θ> [φ [ζ [A]]] excite with a plane wave incident from (θ, φ) and polarization angle ζ
(ζ = 0 → TM polarization, ζ = 90 → TE polarization); A is the amplitude of the
wave and can be complex. This works also in layered media.
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airbridges, 110–112

basis functions
higher order, 125
linear, see rooftop

convergence
of ¯̄EM integrals, 71
of logarithmic integrals, 134
with mesh density, 104

CPW, 110

dielectric contrast, 83

EFIE, see integral equation

factorization, see separability
free space, 7

Green’s function, 7
plots, 46
spectral, 18

hexahedron
basis function, 85
figure, 84
rules, 139

homogeneous half-space, 117

IFER, 117
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incident field, 9
inner product, 12
integral equation, 1, 10

aperture, 66
dielectric interface, 78
EFIE, 10
electric conductor, 55
MFIE, 10
MPIE, 10
MPIE vs plain EFIE, 14
volume, 83

volume vs surface, 96

layered medium, 34, 41, 88
lens, 117

substrate ·, 117
line integral, 55

corner, 56
crossing interface, 56

Lorenz’s gauge, 19

MPIE, see integral equation
multipole method, 125

orichalcum, 5

polarization current, 83
prism, see wedge

quasistatic
collapse of · terms, 37
layered medium

z and z′ in the same layer, 34
z and z′ in adjacent layers, 39

reaction, 12, 87
reciprocity

and line integrals, 58
transmission line Green’s functions, 23
VEFIE reaction terms, 87

rectangle
basis function, 54
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of z, z′ exponential integrals, 31
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singularity
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conditions on, 29
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conditions, 10
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integral, 43
transform, 32

spatial domain approach, 11
spectral domain approach, 11
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surface impedance, 17, 22, 37, 55, 144
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basis function, 84
figure, 84
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