
THÈSE NO 3146 (2004)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE À LA FACULTÉ SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

Institut d'ingénierie des systèmes

SECTION DE MICROTECHNIQUE

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES TECHNIQUES

PAR

ingénieur en microtechnique diplômé EPF
et de nationalité allemande

acceptée sur proposition du jury:

Prof. R. Siegwart, directeur de thèse
Prof. O. Khatib, rapporteur
Dr C. Laugier, rapporteur

Prof. J.-P. Thiran, rapporteur

Lausanne, EPFL
2004

MOTION PLANNING AND OBSTACLE AVOIDANCE FOR MOBILE
ROBOTS IN HIGHLY CLUTTERED DYNAMIC ENVIRONMENTS

Roland PHILIPPSEN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147900415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgment

I would like to express my deepest gratitude to the following people for helping me with the
work presented in this dissertation, be it through moral support during periods of stress
and doubt, through supplying alternative and usually simplifying views during scientific
and technical discussions, or by providing the possibility of embarking on the extraordinary
experience of participating in the adventures of mobile robotics.

First of all, I am deeply indebted to Roland Siegwart, my principal adviser. He provided
me with the free and open minded environment that allowed me to develop professionally
as well as personally. And thank you very much for accepting me back onto the project
after I had temporarily abandoned!

I present many thanks to the jury that kindly accepted to judge on the fulfillment of
the requirements for a PhD in mobile robotics. You turned the final exam into a fruitful
discussion on remaining issues with this dissertation. In this final version I have striven
to take your comments fully into account. In particular, I would like to thank Oussama
Khatib for his reassuring influence the day before the exam and his calm but insisting
and detailed remarks, Christian Laugier for his very valuable suggestions concerning the
readability of chapter 4, and Jean-Philippe Thiran for helping me improve the cohesion
between the various parts of the thesis.

The contact with Kurt Konolige provided a valuable impulse for the E∗ algorithm,
he pointed me to the Level Set Method during discussions about his Gradient Method.
Without this information, some of the key realization behind chapter 4 might never have
seen the day. Illah Nourbakhsh provided fresh and often cheerful support during the early
stages of this project.

Thanks go out to my friends and colleagues, Björn Jensen, Nicola Tomatis, Daniel
Burnier, Pierre Lamon, Francesco Mondada, Frédéric Pont, my friend and flat-mate Ivo
Stotz, and all the others at the Autonomous Systems Lab. I am afraid that naming you
all would exceed the reasonable length for this preamble. You know I tend to make things
more complicated than necessary, and you often brought my feet back on the ground.
Special thanks to Marie-Jose Pellaud for forgiving me my lack of administrative talent.

Last but not least, my family has always remained a reliable anchor providing support,
love, and understanding. Thank you Ursula, Peter, Karolin, and Ansgar, for being avail-
able. And also for providing very valuable feedback on my developing writing skills, which
often lacked the necessary rigor.

ii

iii

Abstract

After a quarter century of mobile robot research, applications of this fascinating technology
appear in real-world settings. Some require operation in environments that are densely
cluttered with moving obstacles. Public mass exhibitions or conventions are examples
of such challenging environments. This dissertation addresses the navigational challenges
that arise in settings where mobile robots move among people and possibly need to directly
interact with humans who are not used to dealing with technical details. Two important
aspects are solved: Reliable reactive obstacle avoidance to guarantee safe operation, and
smooth path planning that allows to dynamically adapt environment information to the
motion of surrounding persons and objects.

Given the existing body of research results in the field of obstacle avoidance and path
planning, which is reviewed in this context, particular attention is paid to integration
aspects for leveraging advantages while compensating drawbacks of various methods. In
particular, grid-based wavefront propagation (NF1 and fast marching level set methods),
dynamic path representation (bubble band concept), and high-fidelity execution (dynamic
window approach) are combined in novel ways. Experiments demonstrate the robustness
of the obstacle avoidance and path planning systems.

Zusammenfassung

Nach einem Vierteljahrhundert der Forschung erscheinen nun immer konkreter werdende
Anwendungen der mobilen Robotik. Einige davon bedeuten Einsätze in Umgebungen, die
dicht besiedelt sind mit bewegten Objekten. Die vorliegende Arbeit behandelt die Her-
ausforderungen, die an das Navigationssystem des Roboters gestellt werden, wenn dieser
in Menschenmengen zurechtkommen muss. Als Beispiele können Massenausstellungen
oder Konferenzen herangezogen werden. Möglicherweise sind die Menschen, mit denen
der Roboter interagiert, nicht bewandt im Umgang mit detailliertem technischen Wissen,
und diesem Umstand wird Rechnung getragen. Für zwei ausschlaggebende Aspekte wer-
den Lösungen präsentiert: Zuverlässiges und sicheres Ausweichen von Hindernissen; sowie
eine flüssige Wegplanung, die sich der verfügbaren Information über die teilweise bewegten
Hindernisse dynamisch anpasst.

iv

Contents

1 Introduction 1
1.1 Motion Skills and Artificial Intelligence . 1
1.2 Overview and Contribution . 4

2 Scope and Prior Art 5
2.1 Project Chronology . 5

2.1.1 Incremental Development Approach 6
2.1.2 Collision Avoidance Development 7
2.1.3 Adding Planning and Path Adaptation 8
2.1.4 Planning with Environment Dynamics 8
2.1.5 A Dynamic Approach to Weighted Region Planning 9

2.2 Publication Catalog . 10
2.2.1 Motion Generation on Robox . 10
2.2.2 Dynamic Planning and Interpolation 11
2.2.3 Background . 12

3 Motion in Dynamic Cluttered Environments 15
3.1 Robox at the Swiss National Exhibition . 15
3.2 Objectives of Robotics@Expo.02 . 17
3.3 Approach . 19
3.4 Dynamic Window . 20

3.4.1 Velocity Space . 20
3.4.2 Obstacle Model . 20
3.4.3 Collision Prediction . 23
3.4.4 Objective Functions . 25
3.4.5 Switching Movement Behavior . 27
3.4.6 Grid Effects . 28

3.5 Elastic Band . 29
3.5.1 Bubbles . 30
3.5.2 Obstacle Masking . 30
3.5.3 Amount of Bubbles . 32
3.5.4 Artificial Forces . 34

3.6 NF1 . 35

v

vi CONTENTS

3.6.1 Grid Based Environment Representation 36

3.6.2 Path Properties . 37

3.7 System Integration . 37

3.7.1 Perception . 37

3.7.2 Multitasking and Time Constraints 38

3.7.3 Memory Constraints . 40

3.7.4 Program Structure . 43

3.7.5 Replanning Behavior . 47

3.8 Results . 48

3.9 Future Work . 50

3.10 Conclusion . 51

3.11 Summary of Parameters . 51

4 E∗: Dynamic Interpolated Planning 53

4.1 The Need for Smooth Dynamic Planning 54

4.2 Navigation Functions as Distance Maps . 55

4.3 Dynamic Planning and Wavefront Propagation 56

4.4 Summary of the Level Set Formulation . 57

4.4.1 The Lagrangian and Eulerian Formulations 58

4.4.2 The Eikonal Case: Fast Marching 59

4.5 E∗ Framework . 62

4.5.1 Interpolation Kernels . 63

4.5.2 Algorithm Structure . 63

4.6 Interpolation . 68

4.6.1 Graph Distance . 68

4.6.2 Huygens’ Principle . 69

4.6.3 Gradient Approximation . 72

4.7 Evaluation and Performance Measurements 75

4.8 Global Planning with E∗ . 87

4.8.1 GridPlanner Usage . 87

4.8.2 Illustrated Operation of GridPlanner 93

4.9 Conclusion and Outlook . 93

5 Conclusion 99

Bibliography 101

A MotionPlanner Implementation Details 107

A.1 A Numerically Stable Quadratic Equation Solver 107

A.2 An Implementation of NF1 . 108

A.3 A Variant of the Lloyd-Max Quantizer . 110

CONTENTS vii

B E∗ Implementation Details 115
B.1 Event Propagation . 115
B.2 Interpolation Kernels . 116

viii CONTENTS

List of Figures

1.1 Children playing with Robox . 2
1.2 Kasparov vs. Deep Blue . 3
1.3 Gestaltist effects . 4

3.1 Robox tour-guide robot . 16
3.2 Environment clutter at Expo.02 . 17
3.3 Flowdiagram of motion generation . 21
3.4 Velocity space definition for DWA . 22
3.5 Collision prediction . 23
3.6 Calculating the heading objective . 26
3.7 Calculating the speed objective . 26
3.8 Calculating the clearance objective . 27
3.9 Avoiding grid effects of whead and wspeed 29
3.10 Elastic band definition . 31
3.11 Circle intersection . 33
3.12 NF1 example . 35
3.13 NF1 grid placement . 36
3.14 Subsystems on Robox . 39
3.15 Look-up operations in the dynamic window 41
3.16 Lloyd-Max quantizer . 42
3.17 Motion generation class diagram . 44
3.18 State machine of MotionPlanner . 45
3.19 Real data of a common situation during Expo.02 48
3.20 Typical replan sequence . 49

4.1 Continuous domain wavefront . 57
4.2 Continuous wavefront formulation . 58
4.3 Lagrangian formulation of wavefront . 59
4.4 Eulerian formulation of wavefront . 60
4.5 One-dimensional Eulerian wavefront . 60
4.6 Eikonal case of wavefront propagation . 61
4.7 Overview of the entities in E∗ . 64
4.8 Example of event-based propagation . 66

ix

x LIST OF FIGURES

4.9 Interpolation by Huygens’ Principle . 70
4.10 Cell neighborhood . 73
4.11 Geometric interpretation of LSM interpolation 74
4.12 Simulation setup for evaluating E∗ . 76
4.13 Summary of tables 4.1, 4.2, and 4.3 . 80
4.14 Summary of table 4.4 . 81
4.15 Summary of table 4.5 . 85
4.16 Simulated robot movement with E∗ . 88
4.17 States of GridPlanner . 89
4.18 Maze exploration with LSM . 94
4.19 Maze exploration with NF1 . 95
4.20 Obstacle removal with LSM . 96
4.21 Obstacle removal with NF1 . 97

A.1 NF1 example plan . 108

List of Tables

3.1 Technical requirements . 19
3.2 Motion generation parameters . 52

4.1 Relative error of E∗ without interpolation 78
4.2 Relative error of E∗ with HPR interpolation 78
4.3 Relative error of E∗ with LSM interpolation 79
4.4 Relative error of E∗ in zig-zag environment 79
4.5 E∗ performance with and without interpolation 84
4.6 E∗ computational complexity with and without interpolation 86
4.7 E∗ operation cost with and without interpolation 86

xi

xii LIST OF TABLES

Code Listings

A.1 NF1 C++ code . 109
A.2 Creating the histogram for Lloyd-Max quantizing. 111
A.3 C++ implementation of the Lloyd-Max quantizer 112
A.4 Replacing double values by quantizer indices. 113
B.1 LowerEvent propagation algorithm. 115
B.2 RaiseEvent propagation algorithm. 116
B.3 NF1Interpolation implementation . 116
B.4 HPRInterpolation implementation . 117
B.5 Computations for the LSM update equation (4.20). 118

xiii

xiv CODE LISTINGS

Chapter 1

Introduction

We may hope that machines will eventually compete with men in all purely
intellectual fields.

Alan M. Turing [57], 1950

This dissertation is a contribution to the field of mobile robot path planning and obstacle
avoidance. A large part of the work presented herein was developed in the context of a
public mass exhibition confronting individuals of various ages, background, and interests
with interactive, mobile machines: The Robotics pavilion at Swiss national exhibition
Expo.02 included an area where people met eleven Robox tour guide robots. Their task
was to give tours of exhibits, present themselves and the researchers who created the
robots, and interact with the visitors. This was an enriching experience for the majority of
individuals involved, including those behind the scenes who had spent months developing
the robotic systems and were now, for the first time, confronted with the reactions of adults
and children (see figure 1.1) exposed to Robox — and also with how their brainchild reacted
to the environment it had been built for. The five months of Expo.02 would have provided
an excellent field of study for a new breed of anthropologists.

Humans are very good at navigating crowded places, be it in train stations or bazaars,
during carnivals or international conferences. There is little or no conscious effort involved.
So it cannot possibly be very difficult, or can it?

1.1 Motion Skills and Artificial Intelligence

This thesis is about motion generation for wheeled mobile robots. This includes path
planning and obstacle avoidance, which have been research topics since the beginning of
robotics, and in particular mobile robotics since the late sixties to early seventies. Why is it
still interesting to work on making these machines move? Because real world applications
lead to objectives that are not necessarily met by existing approaches.

Mobile robot applications are (slowly) growing in number and complexity, at least in
technologically advanced countries. Some observers are predicting that a “killer app” for
mobile robots is inevitable in the near or mid term future, which could trigger an evolution

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Children playing with Robox during Robotics@Expo.02. Many visitors en-
joyed trying to trap the robot, which was difficult for a single person.

of autonomous systems that can be likened to the PC revolution. Whether these predictions
are realistic is not in the scope of this thesis, but it is clear that more and more mobile robot
installations take place in public settings in close contact with people who are not trained
for interacting with such machines. Examples are exhibitions and fairs, where robots can
effectively capture the visitor’s attention. Technologies such as mechatronics, locomotion
concepts, control software, or system architectures that were developed in research labs
are making their way into real world settings. And it turns out that robustness and safety
become of primary importance, along with other shifts in objectives. In particular, motion
being a distinctive property of mobile robots, path planning and obstacle avoidance have
a decisive impact on how people perceive and react to an autonomous system. The aim is
to produce motion behavior that is convincing for the general public: The robot’s motion
intent should be clear so that people can move out of its path, yet its motion must not be
threatening.

But what constitutes convincing movement, and how can a mobile robot exhibit such
behavior? In the context of public events with participating robots, it is argued that
communicating the intent of the motion is of primary importance. Under the assumption
that humans can effectively navigate in crowds because we are able to sense such intent in
others, it follows that a mobile robot should have a certain presence and indicate where it
is headed. This is expected to facilitate reaching the goal, even if the robot has to nudge its
way through a crowd. Goal directedness does not necessarily mean using the geometrically

1.1. MOTION SKILLS AND ARTIFICIAL INTELLIGENCE 3

Figure 1.2: In 1997, chess world champion Garry Kasparov was defeated by the Deep Blue
computer system. And yet, the considerable effort that went into developing a
program that could outperform a specific human in this intellectual game with
clearly defined rules, raises the question of whether it was really the computer
or rather the team of scientists and engineers who won.

shortest path. It might be an advantage to circumvent regions with a lot of environment
dynamics, or even better to go there on purpose if the flow of people goes into the right
direction.

This line of thought can be summarized as human-inspired motion behavior. If the
robot should convince humans with its movements, then these movements should reflect
properties of human motion to some extent. This is reminiscent of another field of endeavor
which aims at making machines behave like humans. Artificial intelligence (AI) focuses on
reproducing (and surpassing) human intellectual skills such as logical reasoning or theorem
proving. This immaterial concept of AI is reflected in the formulation of the Turing test [57],
which is intended to be independent from non-intellectual properties of the investigated
system. It is also apparent in the amount of effort invested to create a computer system
that could beat a human at chess (figure 1.2).

In the field of artificial intelligence, it is common to distinguish “hard” from “easy”
problems. And it is also common to note the curious phenomenon that the difficulty of a
given task is often the opposite of what researchers first expect! A possible explanation
of this frequent mis-evaluation lies in the fact that subconscious processes seem easy to
humans, because we are not aware of the effort involved. Hard AI problems that were
initially thought to be easy have a tendency to include subconscious processes. For exam-
ple, computer vision seemed easy at first – in his plenary speech during the International
Conference on Robotics and Automation 2003, Takeo Kanade mentioned that at the be-
ginning of his career, he once expected a student to solve object recognition in one semester
– but today the computer vision field is far from exhausted and many hard problems re-
main to be solved, robust object recognition being just one of them. In hindsight this is
less surprising: Already at the beginning of the 20th century, Gestaltists described several

4 CHAPTER 1. INTRODUCTION

OXXXXXXXXXX
XOXXXXXXXXX
XXOXXXXXXXX
XXXOXXXXXXX
XXXXOXXXXXX
XXXXXOXXXXX
XXXXXXOXXXX
XXXXXXXOXXX
XXXXXXXXOXX
XXXXXXXXXOX
XXXXXXXXXXO

Figure 1.3: The Gestaltist effects of figure-ground separation on the left (do you see two
faces, or a vase?), and grouping by similarity on the right (the letters “O”
are immediately perceived as a diagonal line). Phenomena such as these two
are innate in the human perceptive system and have been studied since the
turn of the last century. However, these seemingly straightforward effects con-
tinue to elude the kind of understanding needed to engineer systems of similar
performance.

vision phenomena that still lack satisfactory explanation. Classical examples include re-
grouping by similarity and distinguishing figure from ground, illustrated in figure 1.3. Such
phenomena do not require conscious effort, they seem easy because the human perceptive
apparatus, naively put, “just does” the processing. Tasks involving intellectual skills seem
harder, but the fact that humans are teaching those skills to others means that the prob-
lem and its solution are already formalized, which simplifies programming a machine to
perform it. Skills acquired through evolution or infant learning on the other hand are less
understood. Robot motion that is convincing for humans can be likened to hard AI prob-
lems — most of the time, little or no conscious effort is required to cope with situations
that remain tough problems for scientists and engineers.

1.2 Overview and Contribution

After the general introduction in this chapter and the description of related work nec-
essary for situating this thesis (chapter 2), the new contributions to path planning and
obstacle avoidance for mobile robots in highly cluttered dynamic environments are divided
into two parts. The first part is the motion generation system used on Robox during
Expo.02, which is presented in chapter 3 with particular focus on practical aspects of a
real-world tour-guiding application. The second, more theoretical, contribution is an inter-
polated navigation function with dynamic replanning capabilities, presented in chapter 4.
Chapter 5 concludes this dissertation by discussing the contributions in an encompassing
context.

Chapter 2

Scope and Prior Art

Robot motion planning and obstacle avoidance has been a research topic for around three
decades [31]. Manipulator research provides a basis for large parts of the more recent
mobile robotics. The amount of related work is relatively important. This chapter presents
an overview of literature relevant for this thesis on applied path planning and obstacle
avoidance for autonomous mobile robots in dynamic and cluttered environments. It is
not intended to be an exhaustive overview of publications on path planning and obstacle
avoidance, its scope is limited to the one of this thesis. Consult a good textbook such
as [50] for more introductory details1.

This chapter is organized as follows: Section 2.1 presents the development of this
thesis in more or less chronological order, explaining how it fits into activities at the
Autonomous Systems Lab (ASL), as well as introducing the most important references
in context. Section 2.2 presents very succinct summaries of prior art in form of a catalog
which is divided into three subsections according to subject. The first two correspond to the
main contributions of this thesis (2.2.1 on motion generation for applications in crowds of
people and section 2.2.2 on interpolation and dynamic replanning for navigation functions).
The third subsection of the catalog (2.2.3) presents a selection of work, both general and
applied, that is relevant when a mobile robot needs to cope with dynamic environments.
The works summarized under section 2.2.3 influenced this thesis, but the algorithms have
not been implemented on Robox, although some were evaluated in simulation.

2.1 Project Chronology

When technical development for the Robotics@Expo.02 project started in spring of 2001
at the ASL, it was obvious that its prior path planning and obstacle avoidance system was
inappropriate for the envisioned tour-guiding task. It had been the result of a successful
four-months diploma work by an exchange student [38] and employed a simplified (rect-
angular differential drive robots) and reduced (heuristic slicing of velocity space) Dynamic
Window Approach (DWA) [17] to follow a path generated using the NF1 planner [31].

1In particular, chapter 6 “Planning and Navigation”.

5

6 CHAPTER 2. SCOPE AND PRIOR ART

NF1 was invoked on sub-goals determined by depth-first search of the a-priori graph-based
map developed for localization research at ASL [2]. Robot speeds were heuristically pre-
determined for each grid cell traversed by the NF1 path to reduce problems with the
piecewise linear trajectory. This performed reasonably well in relatively static environ-
ments, but lacked the flexibility and smoothness required for operating in dynamic and
cluttered environments.

2.1.1 Incremental Development Approach

The duration available for developing a new path planning and obstacle avoidance system
was approximately one year, after which a very safe and robust system had to be in place
for multi-robot tour-guiding in a crowded exhibition2. The bibliography and some of the
evaluations taken from the above mentioned diploma thesis [38] proved valuable. However,
it was chosen to completely start over for several reasons: The existing system was expected
to perform poorly in dynamic environments, it would have been inappropriate to limit the
search for smooth and flexible planning, and the system lacked the modularity required for
incremental and concurrent engineering3.

During the evaluation phase of the present PhD thesis, the choice between developing a
completely novel approach or taking inspiration from prior art was straightforward: Given
the important number of publications, the existing approaches were expected to cover a
very broad range of possible technologies, it was thus chosen to concentrate on finding
a good combination of existing approaches, supplemented by original work especially for
providing a compatible formulations and rigorously addressing practical aspects. The strin-
gent safety and robustness requirements of the Robotics@Expo.02 project quickly lead to
discarding technologies that were not based on relatively detailed models of the robot and
the environment, because a formal description is necessary to ascertain for instance that
the robot can come to a complete stop instead of colliding with a given object.

Once these fundamental technological choices had been made, it was necessary to de-
fine a development method that ensured an incremental and modular system: The core
requirement being collision avoidance, followed by adaptation to changing environments,
motion appropriate for operation in tour-guiding, and smooth trajectories, it was decided
to first develop pure obstacle avoidance (which would not address issues with local minima)
and subsequently decide on planning and flexible path representation. Additionally, the
development of hardware and software for the project were done in parallel, and it was
clear that the prototype of Robox was not going to be available anytime soon, in addition
it was clear from the outset that the prototype would have to be shared among the dozen
developers involved in the project4. Avoiding the resource bottleneck of testing on the

2More details on the requirements can be found in the introduction of chapter 3.
3The fact that the new system described in chapter 3 also uses the DWA, but in a modified and complete

formulation, is due to a fully independent evaluation of alternative technologies.
4For two other PhD students at ASL, the Robotics@Expo.02 project was an important part of their

thesis: Björn Jensen worked on Human Robot Interaction [23] and Kai-Oliver Arras was in the final stages
of his work on Localization [2]. Other engineers addressed mechanics, electronics, and the large amount of

2.1. PROJECT CHRONOLOGY 7

physical robot is one of the reasons why a simple yet complete two-dimensional simulator
was developed in the context of this thesis.

2.1.2 Collision Avoidance Development

Scientific and technical work started by evaluating existing algorithms using published
results and simulation of the most promising candidates (in Matlab, C, and C++). This
included the Curvature Velocity and Lane-Curvature methods [51, 28], Dynamic Window
Approach [17], Nearness Diagram [34], Vector Field Histogram (VFH [6], VFH+ [58],
VFH* [59]), Potential Field Approach and variations [26, 25, 14]; as well as work by
Schlegel [43], Strobel [54], and Konolige [29] (the latter more for its Local Perceptual
Space than the Gradient Method, which subsequently become important for the second
part of this thesis).

At an intermediate stage of the Robotics@Expo.02 project, it became apparent that
the computational resources available for the real-time controllers on Robox would be
largely (over 40%) eaten up by the driver for the SICK laser scanners. Even though few
other tasks required hard real-time performance, many others (most importantly local-
ization, monitoring, and transmission of scanner data to the second on-board computer)
that were to run as non-real-time threads needed to have a sufficient number of proces-
sor cycles at their disposal. It was therefore important that obstacle avoidance and path
planning should use computational resources as efficiently as possible. By the time this
additional constraint appeared, the DWA was the favorite candidate for the core colli-
sion avoidance system by virtue of its model fidelity5 and the possibility of implementing
behavior-switches consistently with collision avoidance6. Given the high computational
burden of the calculation required for the DWA, in light of its good qualities, it was cho-
sen to discretize the robot’s immediate surroundings into a local obstacle grid such that
the complex collision predictions could be precalculated and stored in a lookup table for
very quick retrieval during operation. The additional grid effects were addressed by using
conservative approximations. This was inspired by Schlegel’s use of lookup tables in [43].

Once the precalculated tables had been implemented and tested in simulation, the first
runs on the physical robot revealed another unanticipated constraint: The XO/2 operating
system limits memory allocations to chunks of 256 kilobytes, which could only be respected
by choosing overly coarse resolutions for the local obstacle grid and discrete actuator space,
even when using single precision (64 bit) floating point values. Also, the XO/2 filesystem is
based on TFTP7 and RAM8, which lead to the adoption of a compression scheme based on a

work for developing a high-performance tour-guiding robot complete with application-specific peripherals
and subsystems. For example, multi-robot human interaction and visitor flow management is presented
in [21], the design and implementation is published in [48], and the complete project is presented in [49].

5Geometric, kinematic, and dynamic constraints are taken into account when predicting collisions.
6By acting on the form and relative weights of the objective functions that serve to optimize the actuator

commands.
7This stands for “trivial file transfer protocol”, a simple file serving layer.
8256 megabytes on Robox, no hard disk

8 CHAPTER 2. SCOPE AND PRIOR ART

modified Lloyd-Max quantizer9 such that memory would not be wasted for high-resolution
lookup tables.

2.1.3 Adding Planning and Path Adaptation

By now the core obstacle avoidance was operational for any non-holonomic robot with a
convex polygonal outline. Preliminary evaluations had shown that the elastic band con-
cept [40] was the most promising path representation, due to its clear formalism, flexibility
in the face of environmental changes, and the possibility of simplifying it to make it ex-
tremely lightweight. Other candidates had been the Gradient Method [29] (abandoned
for its slightly inferior smoothness and more intensive computations), and various bug-like
algorithms [31] for their very direct sensor-based approach (but they lacked predictability
in the highly dynamic context of a mass exhibition). It was also tried to heuristically add
sensitivity to environment dynamics as a custom objective function of the DWA, using
grid-based motion detection similar to optical flow calculations; this approach was aban-
doned mainly because its overall performance could not be formally investigated and it
was very sensitive to parameter tuning.

It was necessary to decide on a geometric planner because the pre-existing graph-based
approach was adapted to localization and could not provide the flexibility required for pro-
gramming scenographical motion elements10. Given the quick convergence of the simplified
elastic band, as opposed to the slow convergence mentioned in the original formulation [40],
it was chosen to use the NF1 for lightweight planning and let the elastic smooth the re-
sulting path.

At this stage the motion generation system on the physical Robox (prototype) per-
formed well in the lab, but there still had been no test in a setting cluttered with many
moving objects. Simulations with a large number of virtual visitors indicated that the
replanning frequency11 would be higher than necessary: When visitors move into a section
of the elastic that is far from the robot, it is often a waste of time to adapt the elastic
because by the time the robot reaches that region, the situation is bound to have changed.
An application-specific heuristic (the masking distance introduced in section 3.5.1) was
invented to create an artificially empty corridor around distant sections of the path.

2.1.4 Planning with Environment Dynamics

Consider the following issue that can arise at the transition between NF1 and elastic band:
The NF1 grid is initialized with the current scanner readings12, the algorithm is run, the

9A lossy compression scheme used in image processing, based on optimizing the sum of squared errors
between a color and it’s compressed representation. It has the advantage of very fast decompression.

10It required the robot to move along edges and stop on nodes of an a-priori map, which eliminated
the possibility of specifying a large class of useful movements, such as “move forward 0.6 meters and turn
right 30 degrees.”

11I.e. the number of times the NF1 has to be invoked for the same goal due to visitor movements that
invalidate the existing plan.

12Each laser point is blown up by the robot radius to implement C-projection as described in [31].

2.1. PROJECT CHRONOLOGY 9

sequence of grid cells from robot to goal is translated into an initial elastic band, and finally
a single update iteration of the elastic is performed13 for initial smoothing. The smoothing
uses a more recent scan than the NF1 initialization, which could cause the initial band to
be invalid because of visitor movement.

The risk of wasting a planning cycle in this way grows with the number and speed
of visitors as well as with the time required to run the NF1. The former is application
dependent and can not be influenced, whereas the latter is influenced by the load of the
on-board computer. The system load is hard to influence during operation14. Various NF1
delays were tested in simulation under the hypothesis that visitors and robots moved at
walking speed, with the informal result that the delay between initialization and smoothing
should not exceed 0.5 seconds, at which point more than a quarter of the planning cycles
were wasted15. During Expo.02 this was ensured by assigning highest priority to the NF1
and elastic band threads. However, a proper solution to this problem requires treating
moving objects differently from static ones. It was decided to defer this until after the
Robotics event to avoid jeopardizing its safety and robustness.

Extracting reliable information about environment dynamics is one of the results of
the thesis on human-robot interaction by Björn Jensen [23]. An approach for using this
information for path planning was presented during a workshop at the IJCAI conference
2003 [22]. It employs the Gradient Method by Kurt Konolige [29] to solve a weighted
region path planning problem using grid-based wavefront propagation. These results were
not included in this thesis for reasons presented below.

2.1.5 A Dynamic Approach to Weighted Region Planning

The implementation of grid-based wavefront propagation for planning with regions that are
weighted according to environment dynamics as presented in [22] was not apt to cope with
practical aspects due to the large amount of time required for calculations. It also became
apparent that the Gradient Method produces paths that are not sufficiently smooth when
compared with the results of the elastic band.

The ad-hoc solution to the lack of smoothness produced by NF1 was deemed sufficient
for operation during the Robotics event. A better solution with a sound theoretical founda-
tion was developed after Expo.02 and the IJCAI 2003 workshop. An email exchange with
Kurt Konolige, the author of the Gradient Method, lead to the inclusion of the Level Set
Method formalism by J. A. Sethian [47]. Inspiration was also taken from the D* algorithm
by Anthony Stentz [52] in order to make the planning approach flexible for dynamically
changing environments. Chapter 4 presents this method, which has been named E*.

13Adjusting the amount of bubbles (section 3.5.3) and moving bubbles according to artificial forces
(section 3.5.4).

14For example, it can peak during relocalization cycles that generate a large number of hypotheses, or
when the network is under heavy load.

15This also depends on the tuning of NF1 and elastic band parameters. It is unfortunate that the
pressure shortly before the opening of Expo.02 lead to neglecting the documentation of these tests.

10 CHAPTER 2. SCOPE AND PRIOR ART

2.2 Publication Catalog

2.2.1 Motion Generation on Robox

Chapter 3 presents the local path planning and obstacle avoidance system that was used
on Robox during Expo.02. In order to understand the choices that were made during
design and implementation of that system, it helps to be familiar with the publications
that were most influential during its development.

The NF1 navigation function algorithm is described in textbooks such as (Latombe
1991 [31]). It is a simple grid based path planner.

The Curvature-Velocity Method for Local Obstacle Avoidance (Simmons 1996
[51]): CVM treats obstacle avoidance as a constrained optimization in velocity space.
Constraints formalize vehicle dynamics and obstacle information. The optimum is defined
in terms of speed, safety, and goal-directedness.

The Dynamic Window Approach to Collision Avoidance (Fox et.al. 1997 [17]):
The DWA is very similar to the CVM in the sense that it uses constrained search in
velocity space to determine actuator commands. It also trades off speed, safety, and goal-
directedness. However, the grid-based representation makes it more straightforward to
compute velocity space obstacles, at the cost of increased memory requirements.

The system presented in chapter 3 uses the DWA16. The dynamic window is the only
hard real-time task of obstacle avoidance on the Expo.02 system, and it is the part that
uses the fewest approximations in the geometrical, kinematic, and dynamic models of the
robot.

High-Speed Navigation Using the Global Dynamic Window Approach (Brock
and Khatib 1999 [9]): Combines the NF1 navigation function and the DWA for goal-
directed reactive motion in unknown dynamic environments. In other words, obstacle
avoidance is provided by DWA following a globally planned path (which presents the
drawbacks of NF1).

Global Nearness Diagram Navigation (GND) (Minguez et.al. 2001 [35]): Partly
inspired by the way the Global Dynamic Window Approach extends the DWA, this method
adds global reasoning to the Nearness Diagram (presented in section 2.2.3). It consists of
Mapping ND which integrates information in a model of the environment, and Mapping-
Planning ND which exploits connectivity information of free space using NF1.

These two publications are examples of using a relatively simple global planner in con-
junction with high-performance reactive obstacle avoidance in order to avoid local minima.
The main drawback of using NF1 is the type of paths it produces, which are not smooth
and graze obstacles. This is the reason why the Expo.02 system adds an additional layer,
the elastic band.

Elastic Bands: Connecting Path Planning and Control (Quinlan and Khatib
1993 [41]): Aimed at bridging the gap between planning and execution, elastic bands are

16CVM and DWA being conceptually close (if not identical) and the fact that CVM uses a more compact
velocity representation could have led to the adoption of CVM, had the memory problems on Robox
appeared earlier in the development phase

2.2. PUBLICATION CATALOG 11

a flexible plan representation. Connected bubbles of free space [40] are subject to artificial
forces: Repulsive forces from obstacles, attractive forces from neighboring bubbles. The
elastic band iteratively smoothes the plan and adapts to moving or previously unknown
obstacles.

Fast Local Obstacle Avoidance under Kinematic and Dynamic Constraints
for a Mobile Robot (Schlegel 1998 [43]): This work treats obstacle avoidance as a
constrained optimization problem in the vehicle’s actuator velocity space. It trades off
speed, goal-directedness, and remaining distance until collision. In order to achieve efficient
real-time performance given arbitrary robot shapes, pre-calculated lookup tables are used.

One of the objectives of the system used for tour-guiding with Robox was the extremely
short processor time available for the real-time part, coupled with relatively tight memory
constraints. Look-up tables were used to address the timing issues. A modified Lloyd-Max
quantizer was used to compress the tables.

2.2.2 Dynamic Planning and Interpolation

After the praxis-oriented description of Robox as a tour-guide in chapter 3, chapter 4 is
more theoretical. It describes an algorithm that combines the advantages of two approaches
(one from mobile robotics, the other from supercomputing) in order to produce smooth
navigation functions that provide dynamic replanning capabilities.

A Gradient Method for Realtime Robot Control (Konolige 2000 [29]): A grid-
based navigation function with interpolation is used to calculate the optimal path from
each cell to the goal using wavefront propagation. NF1 is a special case of the proposed
algorithm. At each timestep of the controller, the navigation function is recalculated to
take into account environment dynamics and information about previously unexplored
regions.

This work provides a relatively smooth navigation function that can be calculated
quickly enough to do without dynamic replanning. It became the starting point of the
developments that ultimately led to the algorithm described in chapter 4.

Optimal and Efficient Path Planning for Partially-Known Environments
(Stentz 1994 [52]): This paper presents the D∗ algorithm, a graph based approach with
efficient replanning for changes in environment representation. Used on grids, D∗ produces
the same paths as NF1 but can “repair” existing paths when new information arrives.

The Focussed D∗ Algorithm for Real-Time Replanning (Stentz 1995 [53]): An
extension of the D∗ algorithm that changes the order of replanning propagation to make
it more efficient. Repairing the path cost information is concentrated on regions that are
close to the current position of the robot, making it more likely that the calculations will
be useful for its progress towards the goal.

D∗ is the algorithm for dynamic replanning. Formulated on graphs it is applicable to
many situations in mobile robotics. However, it lacks a method for interpolating between
the nodes and edges, which would be important for smooth motion.

A Fast Marching Level Set Method for Monotonically Advancing Fronts
(Sethian 1996 [45]): Level set methods [47] are numerical techniques for computing the

12 CHAPTER 2. SCOPE AND PRIOR ART

position of propagating fronts. A very fast implementation is possible in the case of mono-
tonically advancing fronts whose speed depends on position only (e.g. one that represents
possible configurations during robot motion planning).

Computing Geodesic Paths on Manifolds (Kimmel and Sethian 1998 [27]): An
extension of the Fast Marching Method from rectangular orthogonal meshes to triangulated
domains. It also contains an intuitive summary of the Fast Marching Method.

Note that Fast Marching Methods share a property with D∗: Values are calculated in
an upwind manner. While D∗ provides a framework for keeping track of upwind direction
after propagation, such a mechanism is absent from the other (the direction is implicit in
the order of evaluation, but is not stored permanently).

2.2.3 Background

This section presents a small selection of publications that are relevant for the kind of
application presented in this thesis.

A Note on Two Problems in Connexion with Graphs (Dijkstra 1959 [13]): A
classical paper for planning on graphs with edges of known length. Dijkstra’s Algorithm
allows (i) constructing the tree of minimum total length between the nodes and (ii) finding
the path of minimum total length between two given nodes. A∗ [31] is a refinement of
Dijkstra’s algorithm that allows focussed search.

Spatial Planning: A Configuration Space Approach (Lozano-Perez 1983 [33]): A
classical paper presenting algorithms for computing constraints on the position of an object
due to the presence of other objects, for polygonal or polyhedral geometries. Popularized
the notion of configuration space C in motion planning, which contains one dimension per
degree of freedom to allow a point-representation of the robot. Once obstacles have been
mapped from W to C, this representation simplifies various aspects of path planning and
obstacle avoidance.

The Vector Field Histogram – Fast Obstacle Avoidance for Mobile Robots
(Borenstein and Koren 1991 [6]): VFH uses a two-stage reduction of a local histogram grid
to calculate control commands that steer the robot towards a valley in a polar obstacle
density histogram. The chosen valley usually is the one closest to the goal direction. When
the robot drives around an obstacle, the choice is further influenced by the the direction
with which the obstacle is circumvented.

VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots (Ulrich and
Borenstein 1998 [58]): Several improvements of the VFH method: (i) Obstacles are en-
larged by the robot radius and a security distance, (ii) a hysteresis is applied on the polar
histogram to reduce oscillations between valleys, (iii) valleys that require control inputs
exceeding actuator limits are blocked, and (iv) goal-directedness, path smoothness, and
continuity of motor commands are traded off.

VFH*: Local Obstacle Avoidance with Look-Ahead Verification (Ulrich and
Borenstein 2000 [59]): Based on VFH+ but additionally predicts robot movements before
choosing a motor command. A projected position tree is built and searched using A∗.

2.2. PUBLICATION CATALOG 13

Real-Time Obstacle Avoidance for Manipulators and Mobile Robots (Khatib
1986 [26]): This paper describes the Potential Field Approach (PFA), of which numerous
extensions and variations exist (see [31] for a good presentation). The robot is treated like
a point that performs gradient descent on an artificial potential field which is constructed
such that obstacles generate repulsive forces and the goal exercises an attractive force.

An Extended Potential Field Approach for Mobile Robot Sensor-Based Mo-
tions (Khatib and Chatila 1995 [25]): A variation of PFA. By filtering out certain obstacles
based on robot shape, orientation, and direction with respect to the goal, some drawbacks
are alleviated (e.g. wall following).

Real-Time Path Planning Using Harmonic Potentials in Dynamic Environ-
ments (Feder and Slotine 1997 [14]): Closed-form solutions to artificial harmonic potential
are used to construct collision-free paths given a known model of a dynamic environment.
Expressing the environment in terms of harmonic potentials is not straightforward.

Nonholonomic Deformation of a Potential Field for Motion Planning (Sekha-
vat and Chyba 1999 [44]): Nonholonomic motion planning using approximation methods
(i.e. planning a holonomic path, then adapting it to the constraints) can be improved by
making the initial plan more appropriate. This paper presents such a method. It derives
potential fields for holonomic gradient descent to be subsequently adjusted to nonholo-
nomic constraints.

The Lane-Curvature Method for Local Obstacle Avoidance (Ko and Simmons
1998 [28]): Combines the CVM with the Lane Method, which chooses among lanes that
divide the environment into zones of direction. CVM is used to follow and switch lanes,
given physical limitations and environmental constraints.

Nearness-Diagram Navigation (ND): A new Real Time Collision Avoidance
Approach (Minguez and Montano 2000 [34]): ND uses a sectored (polar) environment
representation that is used to express distances to obstacles and allows selecting an optimal
valley. As navigation strategy, five laws of motion are used, selected on the basis of an
interpretation step.

Reactive Collision Avoidance for Navigation with Dynamic Constraints (Min-
guez et.al. 2002 [36]): Dynamic constraints are used to re-map the spatial representation
underlying many obstacle avoidance schemes, resulting in an Ego-Dynamic Space and
a Spatial Window. Reactive schemes can then be generically extended to take vehicle
dynamics into account.

Navigation in Partially Unknown, Narrow, Cluttered Space (Strobel 1999
[54]): Directed graph-based path planning with a user-defined optimality criterion. Robot
shapes and obstacles are modeled as multi-layered polygons. Graph expansion is based
on standardized path elements that take into account kinematic constraints. A branch and
bound method provides speedup of Dijkstra’s algorithm.

Motion Planning in Dynamic Environments Using the Relative Velocity
Paradigm (Fiorini and Shiller 1993 [15]): Extends C to allow representing velocity space
obstacles for circular robots and objects moving with constant velocities. It is a state space
representation in which a collision occurs if and only if the robot’s configuration is inside
a C obstacle or the tip of its velocity vector is inside a collision cone.

14 CHAPTER 2. SCOPE AND PRIOR ART

Trajectory Planning in a Dynamic Workspace: A ’State-Time Space’ Ap-
proach (Fraichard 1999 [18]): State-time space ST is inspired by C and unifies moving
obstacles and dynamic constraints of vehicle motion. Searching a solution over a restricted
set of canonical trajectories is used to plan a path on a graph embedded in ST .

Collision Prediction and Avoidance Amidst Moving Objects for Trajectory
Planning Applications (Bernabeu et.al. 2001 [4]): A planning method that takes into
account translational object movements, based on (i) an algorithm for calculating distances
between spherically extended polytopes, (ii) recursive subdivision of time intervals, and (iii)
the hypothesis of constant velocities during planning intervals.

Towards Real-Time Global Motion Planning in a Dynamic Environment
Using the NLVO Concept (Large et.al. 2002 [30]): A set of approximations allows
extending velocity space obstacles of circular objects with constant velocities to non-circular
objects on non-linear trajectories. Adding a notion of risk (imminent collisions are more
dangerous than distant ones), this allows obstacle avoidance using a cost function on the
robot’s velocity.

On the Influence of Sensor Capacities and Environment Dynamics onto
Collision-Free Motion Plans (Alami et.al. 2002 [1]): In order to guarantee a robot’s
immobility before collision at planning time, a (maximum) velocity profile is calculated.
This profile takes into account sensor capacities (e.g. field of view of laser scanner) and
the maximum velocity of moving objects. The resulting plans pass doors and corners
defensively by preferring greater distances to unseen regions.

Randomized Kinodynamic Planning (LaValle and Kuffner 2001 [32]): Trajectory
planning that takes into account kinematic and dynamic constraints is approached using
Rapidly-exploring Random Trees (RRT), which allows for continuous-domain representa-
tion and probabilistically complete planning at the cost of non-optimality. RRTs are a
randomized planning technique specially designed for nonholonomic constraints and high
dimensional C.

Real-Time Randomized Path Planning for Robot Navigation
(Bruce and Veloso 2002 [10]): An example of extending RRTs to interleave planning and
execution. This paper presents a method that allows continuous-domain planning for
RoboCup multi-robot control.

Randomized Kinodynamic Motion Planning with Moving Obstacles (Hsu
et.al. 2002 [20]): Planning under kinematic and dynamic constraints with moving obsta-
cles (piecewise constant velocity) by randomly sampling control inputs and integrating
the movement equations. The resulting roadmap consists of milestones in ST and is con-
structed from scratch for each query.

Other papers of interest are on roadmap planners based on the Hierarchical Generalized
Voronoi Graph [11, 12], and the Weighted Region Path-Planning Problem [37, 42].

Chapter 3

Autonomous Motion in Highly
Dynamic Cluttered Environments

This chapter presents the path planning and obstacle avoidance approach for mobile robots,
developed for the Robotics@Expo.02 mass exhibition [49]1. This work has been published
in a compact way as [39].

It describes the motion generation method (local path planning and obstacle avoidance)
used on the autonomous tour-guide robot Robox shown in figure 3.1. The system has proven
its value during a 5 month operation of eleven such robots in a real-world application,
a very crowded exhibition. Three existing approaches (DWA, elastic band, NF1) have
been integrated into a system that performs smooth motion efficiently, in the sense of
computational effort as well as goal-directedness. This chapter gives detailed description
of how these algorithms have been adapted to the tour-guiding task, and includes aspects
of software engineering.

3.1 Robox at the Swiss National Exhibition

The Swiss National Exhibition takes place approximately every 30 to 40 years. For its
2002 edition, the Autonomous Systems Lab at the Swiss Federal Institute of Technology
in Lausanne was involved in the Robotics@Expo.02 project aimed at bringing the world
of robotics closer to the visitors. This was achieved through an exhibition about robotics
in a wide sense, with a special scenographical twist: Mobile robots served as tour guides,
creating a sort of auto-reference in the frame of the exhibition. For this purpose, eleven
interactive robots named Robox were built and programmed. Among the numerous capa-
bilities required for such interactive tour guide robots, some could be adopted with little
changes from existing systems of the Autonomous Systems Lab. Among the skills that
needed to be written from scratch, local motion planning and obstacle avoidance had to
be tackled and resulted in an important part of this thesis. In the following, the specific
requirements of this navigation subsystem are presented.

1http://robotics.epfl.ch/

15

16 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

Figure 3.1: Robox was developed at the Autonomous Systems Lab for tour-guiding during
the Robotics@Expo.02 event.

3.2. OBJECTIVES OF ROBOTICS@EXPO.02 17

Figure 3.2: Environment clutter at Expo.02: On the left is a laser scanner snapshot, with
scan points (dots), robot locations (large numbered dots), and their trajectories
(lines). It shows raw data from all robots transformed to their respective poses,
the grid resolution is 1m. On the right is a video still showing a typical scene.

A tour-guide robot has to be able to move autonomously, acquire the attention of
the visitors and interact with them efficiently. Usually, the environment is known and
accessible, but the visitors make it highly cluttered and dynamic. Robox’s navigation
subsystem comprises an embedded Power PC G3 at 380 MHz running the XO/2 real-time
operating system [8], two SICK laser scanners, 8 contact sensors with soft bumpers and a
differential drive architecture.

3.2 Objectives of Robotics@Expo.02

Imagine an exhibition area of approximately 300m2 filled with around 100 persons of all
ages, with an expected flow of up to 500 visitors per hour. Figure 3.2 shows a video still
from Expo.02 and a snapshot of laser scans. In order to provide visitors with a novel and
enriching experience, the goal was to have 11 interactive mobile robots giving individual
tours to ad-hoc groups in a free-flow exhibition. This scenario has several implications for
planning and control of the mobile robot:

• Safety for visitors, personnel, and robots is of paramount importance in a public
exhibition, for ethical reasons as well as for administrative requirements and insurance
policies.

• Human movements are hard to predict and the high visitor density results in ever
changing freespace configurations.

18 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

• Even though the set of possible goal locations is limited to the places of interest in
the exposition, it is not possible to pre-program the routes. Visitors get to chose
which exhibit they want to visit next.

• Expo.02 policy required a certain visitor flow (400 to 500 per hour), the robots were
supposed to ensure this movement by using appropriate interaction modalities and
ego-motion.

• Robox being one of the attractions and the only interactive part of the Robotics
exhibition during Expo.02, it was expected that people would play with the machine
out of curiosity. This expectation turned out to be correct, many visitors could not
resist the urge to try and trap the robot.

• Having multiple robots with identical capabilities means that deadlock situations
(two robot trying to reach the same goal location) have to be avoided.

• The laser sensors of all Robox are mounted at the same height, leading to a diffi-
culty of perceiving other robots in ways suitable for simple free-space calculations.
Reflective bands were used to circumvent this problem, but lead to new issues: The
detection of the reflectors depends on the relative orientation of the robots and on
occlusions by visitors.

• A similar aspect stems from the group of visitors following a robot, it can be regarded
as an obstacle influenced by that robot’s movements, albeit in ways that are hard to
formalize.

• Several processes need to run on the robot, resulting in relatively tight computational
constraints for motion planning and execution.

• Reliable collision avoidance taking into account geometric, kinematic, and dynamic
properties of the robot.

• The delay between a visitor’s goal request and the start of the robot’s movement
should be unperceivable.

• Robot movements should be dynamic but not threatening.

This list gives an impression of the challenges encountered. However, not all these
aspects were addressed on the level of motion planning and execution. For instance, safety
considerations and regulations led to the use of a redundant controller circuit that would
short-circuit the phases of the robot’s drive motors e.g. in case of bumper contact (see [55]
for more details on safety features of Robox). This somewhat alleviated the responsibility
of the obstacle avoidance software, but also created new challenges for it: The robot could
not nudge its way through visitors in an overly insistent manner, because each contact
with too much force would trigger the emergency brake.

3.3. APPROACH 19

Translational speed ≤0.6m/s
Translational acceleration ≤0.6m/s2

Rotational speed ≤2.5rad/s
Rotational acceleration ≤2.5rad/s2

Frequency of the obstacle avoidance process ≥ 10Hz
Peak processor load for motion generation < 30%
Goal request response time < 0.25s

Table 3.1: Technical requirements of motion generation (path planning and obstacle avoid-
ance) for Robotics@Expo.02

In short, the collision risk must be low and the eventual effects of a collision be harmless.
Smooth motion is important, as visitors anticipate movement when they follow the guide.
The obstacle avoidance control loop should be fast in order to not only run in real-time,
but also leave enough processing resources to other modules such as localization, sensor
acquisition, web server and motor control. Table 3.1 summarizes the requirements in more
technical terms.

3.3 Approach

Path planning and obstacle avoidance have been treated in previous works. Similar to [9,
43, 3], existing algorithms were evaluated and the chosen ones combined such that their
drawbacks cancel out as much as possible and their advantages cover the requirements. The
main contribution here is a consistent fusion of the interfaces between the sub-tasks without
compromising any component’s functionality. Also, the used methods were modified to
either improve a component or their interaction. For instance, real-time performance and
memory usage was optimized without effect on other components by using transparently
compressed look-up tables.

The task of the motion planner was divided into two layers, one to supply a path
plan, the other to follow it while taking into account the exact geometry of the robot, its
kinematics, and the dynamics of its actuators.

From the candidates for the reactive level [6, 14, 17, 44, 51], the dynamic window
(DWA) [17] was chosen because of its physically meaningful representations (actuator
speeds and accelerations, robot geometry) and one-step calculation of rotational and trans-
lational speed.

Among the works [9, 24, 29, 35, 41] studied for the planning layer, or for their ability to
solve reactive and planning problems at the same time, the elastic band [41] approach was
chosen for Robox. Its path representation is compact and physically meaningful, smooth,
and designed to accommodate environment dynamics. The NF1 [31] is used to generate the
initial plan, the elastic band helps to compensate for its drawbacks (grazing of obstacles,
unsmooth paths). Elastic band and NF1 taken together are used for local path planning

20 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

on Robox, whereas global path planning employs a graph-based a-priori map2.
Figure 3.3 shows the flow of information and control in the motion planner. The DWA

is a real-time (RT) control loop at 10Hz, the elastic band is a non-RT loop that typically
runs at 5Hz and the NF1 is calculated upon request and can take up to 0.5s. Non-RT
execution times depend on the path length, the clutter in the environment and the overall
system load.

3.4 Dynamic Window

The DWA generates actuator commands such that the robot does not collide with obstacles,
the commands do not violate the dynamic capabilities of the actuators, and the robot
follows the elastic band.

In our implementation, the robot shape (polygon) is defined at startup (instead of
being hard-coded). Additionally, a significant speed-up and a predictable maximum cycle
time have been achieved by calculating a look-up table for the collision prediction, also
during startup. This vital part of the DWA would otherwise constantly require expensive
computations of varying numbers of intersections between circles and lines, up to 90’000
on Robox. A similar idea can be found in [43].

3.4.1 Velocity Space

Robox is a differential drive robot. The kinematic model and its inverse are given in (3.1)
and (3.2).

v(q̇) =

[
ṡ(q̇l, q̇r)

θ̇(q̇l, q̇r)

]
=

[Rwheel

2
(q̇l + q̇r)

Rwheel

Dbase
(q̇r − q̇l)

]
(3.1)

q̇(v) =

[
q̇l(ṡ, θ̇)

q̇r(ṡ, θ̇)

]
=

[
(ṡ + Dbase

2
θ̇)/Rwheel

(ṡ − Dbase

2
θ̇)/Rwheel

]
(3.2)

where Rwheel is the radius of the drive wheels, Dbase is the wheel base, (q̇l, q̇r) are the
rotational speeds of the left and right wheel and (ṡ, θ̇) are the translational and rotational
speeds of the robot. On Robox, Rwheel = 0.09m and Dbase = 0.521m

Using the actuator space q̇ = (q̇l, q̇r) properly models the acceleration and speed limits
of the actuators (figure 3.4), as opposed to the usual v = (ṡ, θ̇).

3.4.2 Obstacle Model

Obstacles are represented as points pj in a set P (3.3). This representation is appropriate
for the two SICK laser scanners that serve as main input to MotionPlanner on Robox.
They have high resolution (1 mm, 0.5◦) and low noise (less than 1 cm).

2The a-priori map was designed for localization, it contains topological and geometric information
(feature visibility, position, distance between nodes). Depth-first search is used for planning on this map.

3.4. DYNAMIC WINDOW 21

actuator
commands

RT loop
10Hz

initial plan
(delay ~0.5s)

request
~ 0.1Hz

non−RT loop
~ 5Hz

desired
heading

(using a graph−based a−priori map)
localization and global planning
user, interaction modules,

dynamic
window

NF1

elastic band

laser scanner

environment

statusgoal

motor control
actuators,

Figure 3.3: Diagram of motion planning and control loops and how they are integrated
into the overall navigation architecture. Deliberative levels specify a global
goal position to the motion planner and can query its status. The output is in
the form of actuator commands sent to the motor control level.

22 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

∆t · q̈max

∆t · q̈max

q̇l

q̇r

θ̇ ≤ −θ̇max

q̇max

ṡ ≥ ṡmax

θ̇ ≥ θ̇max

ṡ ≤ −ṡmax

-q̇max

Figure 3.4: Definition of the dynamic window: (q̇l, q̇r) are the actuator speeds, q̇max is the
maximum actuator speed, q̈max the maximum actuator acceleration, ∆t the
time-step of the control loop, (ṡ, θ̇) the robot speed in Euclidean space, ṡmax

and θ̇max are global speed limits. Dark gray regions are forbidden by ṡmax

or θ̇max, the light gray region are the available speeds and the white square
is an example of reachable actuator speeds at a given moment. Admissible
speeds are those inside the white square which would not lead to a collision.
On Robox, q̇max = 6.5rad/s, q̈max = 6.5rad/s2, ∆t = 0.1s, ṡmax = 0.6m/s and
θ̇max = 2.5rad/s

3.4. DYNAMIC WINDOW 23

φ0

x

y

rcur

a1 = (x1, y1)

a0 = (x0, y0)

c = (0, rcur)

p = (xp, yp)

{R}

Figure 3.5: Collision prediction – definition of required terms, based on the hypotheses of
static obstacles and a trajectory of constant curvature until collision.

P = {pj}, pj =

(
xpj

ypj

)
(3.3)

3.4.3 Collision Prediction

The collision prediction in [17] calculates the distance to travel before hitting an obstacle.
This is not applicable to pure rotations because any collision would seem instantaneous.
This problem was solved by using the time until collision, which does not present such a
singularity. As a side effect, the same geometric distance appears closer at high speeds,
effectively adding a buffer distance proportional to speed.

General Case

Figure 3.5 shows the required items for predicting collisions. Under the assumption of
immobile obstacles and robot motion at constant curvature, the trajectory of the obstacle
in the mobile robot frame is circular with center on the y-axis and is characterized by these
parameters:

• c = (0, rcur)
T is the center of the obstacle trajectory, with rcur = ṡ/θ̇ the radius of

curvature of the robot movement.

• rgir =
√

x2
p + (yp − rcur)2 the giration radius of the obstacle (xp, yp)

T around c.

• A = {ai}, ai = {x0i, y0i, x1i, y1i} is the robot outline given as line segments from
(x0i, y0i)

T to (x1i, y
T
1i). The notation a0 = (x0, y0)

T and a1 = (x1, y1)
T is used in the

24 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

development for calculating the intersection between the circle and one line segment.

• φ0 = arctan2(yp − rcur, xp) gives the starting angle of the obstacles movement along
the circle. Depending on the sign of θ̇, the obstacle moves clockwise or counter-
clockwise.

In order to predict the collision, the intersection between a line segment (robot outline)
and a circle (obstacle trajectory w.r.t. the robot) is calculated (3.4). The intersection is
converted to an angle φ that measures how far the obstacle moves along the circle until
hitting the outline (3.5). The direction of the movement needs to be taken into account
when determining φ.

‖a0 + λ(a1 − a0) − c‖2 = ‖λ∆a −∆c‖2 = r2
gir

⇔ λ2∆a2 − 2λ∆a∆c + ∆c2 − r2
gir = 0 (3.4)

where λ1,2 ∈ [0, 1] is a parametric form of the intersections between the line and circle,
∆a = a1 − a0, and ∆c = c − a0. Note that there can be 0, 1, or 2 solutions, and
that a numerically stable implementation of the quadratic equation is used (described in
appendix A.1). In case of two solutions, the one leading to the smaller collision time tcoll
is used in (3.5).

φ =

{
φ0 − arctan2(y0 + λ∆y − rcur, x0 + λ∆x) ⇐ θ̇ > 0

arctan2(y0 + λ∆y − rcur, x0 + λ∆x) − φ0 otherwise

tcoll =
φ mod 2π

θ̇
(3.5)

where ∆y = y1 − y0 and ∆x = x1 − x0. tcoll is the time until collision for this particular
line segment. In order to determine the collision time for the whole robot outline, it is
necessary to loop over all segments and keep the smallest tcoll.

Pure Translational Case

Pure rotations are no problem for the presented method. Straight line movement however
would result in an infinite radius of curvature. This causes the calculations to break down,
which is why a numerical guard is used in the implementation: If |εṡ| ≥ |θ̇/ε| (which would
mean |rcur| ≥ 1/ε2), a straight line approximation is used instead, replacing the circle by
a horizontal half-infinite line anchored at the obstacle point, and the collision prediction
now involves an intersection between two lines (3.6). The numerical threshold on Robox
during Expo.02 was ε = 10−9 and is used in several places.

3.4. DYNAMIC WINDOW 25

p + µeµ = a0 + λ∆a

µ ≥ 0, λ ∈ [0, 1], eµ =

{
(1, 0)T ⇐ ṡ < 0

(−1, 0)T otherwise

tcoll = µ/ṡ (3.6)

3.4.4 Objective Functions

The DWA chooses among admissible commands by maximizing an objective function on the
sampled (q̇l, q̇r) space. The usual sub-objectives are used: Heading, speed and clearance.

Heading Objective

The heading objective whead makes the robot follow the elastic band or, once the goal
radius has been reached, orient itself along a specified direction. Figure 3.6 illustrates the
calculations involved. It is important to include the braking time in the pose prediction
in order to avoid oscillations. The pose prediction is precalculated for all valid motion
commands and stored in a lookup table for quick retrieval during real-time execution.

Transforming the elastic band to a direction is delicate because the real-time DWA
task and the elastic band update thread are not synchronized due to the computational
constraints mentioned earlier. If one simply took the direction from the robot’s position to
the first bubble3, the heading error dθ would not be reliable: It would jump at each update
of either the DWA (robot position) or the elastic band (first bubble). It was thus chosen to
use as intermediate goal the position of the first bubble that lies outside the robot radius4.

Speed Objective

The speed objective is a linear function wspeed = wspeed(ṡ) shown in figure 3.7. Like the
heading objective, the speed objective wspeed can be switched at run-time (more details
in section 3.4.5). These three behaviors are stored in lookup tables to allow changing the
behavior during runtime using a single pointer assignment.

Clearance Objective

The clearance objective wclear tends to maximize the space between robot and obstacles.
It measures by how much the collision prediction exceeds the braking time for q̇, see (3.7)
and (3.8). This function is illustrated in figure 3.8.

3Bubbles encode the elastic band, they are introduced in section 3.5.1. Each bubble represents a point
along the planned path, and associated freespace information.

4The Rrobot parameter is the largest distance from the wheel axle center to the robot’s outline. It can
be interpreted as a C-projection and is used to simplify the NF1 and elastic band calculations.

26 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

dθ

1

invertedcurrent pose

predicted pose

dθ

goal

dθ

1

normal

whead

π−π

whead

π−π

Figure 3.6: Calculating the heading objective whead. For each motion command, the
robot’s movement is predicted until standstill. The predicted pose is then
used to calculate the heading error dθ (shown on the left), which in turn is
normalized into an objective value (shown on the right). The inverted heading
objective is used for moving backwards (see section 3.4.5). The pose predic-
tion is based on one time-step at the given motion command, followed by a
deceleration at constant radius of curvature until full stop. If the pose was not
predicted until standstill, an oscillating behavior would result.

ṡ

1

ṡ

1

ṡ

1

backwardsrotatenormal

ṡmax ṡmax ṡmax−ṡmax −ṡmax −ṡmax

wspeed wspeed wspeed

Figure 3.7: Calculating the speed objective depends on the wanted behavior. Usually,
it is wspeed = (ṡ + ṡmax)/2ṡmax to make the robot move forwards. The two
alternatives are wspeed = |ṡ − ṡmax|/ṡmax for turning on the spot and wspeed =
(ṡmax − ṡ)/2ṡmax for moving backwards.

3.4. DYNAMIC WINDOW 27

1

wclear

T (q̇) Tmax

tcol(q̇)

Figure 3.8: Calculating the clearance objective is behavior independent. Collision times
lower than the current brake time are mapped to zero as they would surely lead
to collisions. This makes it straightforward to detect non-admissible motion
commands.

wclear(q̇) =

0 ⇐ tcol ≤ T (q̇)
tcol−T (q̇)

Tmax−T (q̇)
⇐ T (q̇) < tcol < Tmax

1 otherwise

(3.7)

T (q̇) = max(q̇l, q̇r)/q̈max (3.8)

where tcol is the collision prediction for q̇ given the current sensor readings, T (q̇) is the
braking time when traveling at q̇ and Tmax = q̇max/q̈max is the braking time at maximum
speed (Tmax = 1s during Expo.02). Speeds where wclear is zero are constraints: They are
flagged as non-admissible because they would surely lead to collision.

Overall Objective

The overall objective w∗ (3.9) is a weighted sum of the sub-objectives. The next motion
command (3.10) is chosen to maximize w∗.

w∗ = αclearwclear + αspeedwspeed + αheadwhead (3.9)

q̇ ∗ = arg(max
q̇

(w∗)) (3.10)

where αclear, αspeed and αhead define the relative weights of the sub-objectives. During
Expo.02, values were set to αclear = 0.5, αspeed = 0.1 and αhead = 0.1.

3.4.5 Switching Movement Behavior

Three kinds of behavior should be displayed by the motion generation subsystem of Robox:
Moving forwards or backwards along circular arcs or straight lines, and turning on the

28 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

spot. In order to ensure collision avoidance for all these behaviors, they are implemented
by switching between variants of the heading and speed objective.

Turning on the spot is feasible most of the time due to the robot’s octagonal shape
and outer ring of soft bumpers, which can be considered a circle in most circumstances5.
It is used to orient the robot along the wanted heading at a goal position, or to align it
with the elastic band if the heading error becomes too large. To use this behavior, wspeed

is switched to preferring low translational speeds over high ones. The influence of whead

is then sufficient to choose between turning left or right. However, wclear can cause the
optimal motion command to contain a translational component in some cases. If this ever
becomes problematic, this issue can be addressed by decreasing αclear or defining a stricter
wspeed.

Moving forwards is the usual case during movement. In some cases it is necessary to
make the robot move backwards, which can be achieved by inverting both wspeed (such that
it prefers negative translational speeds) and whead (such that it prefers a heading error of
±π). If whead is not inverted, then Robox backs away from the goal, whereas not inverting
wspeed would makes it turn around and move away from the goal.

3.4.6 Grid Effects

Care has to be taken in order to circumvent unwanted effects of discretized motion com-
mands: If the highest objective values are not achieved for pure translations (for forward
and backward movements) or pure rotations (for turning on the spot), then the robot will
rapidly switch back and forth from going slightly left to right during translation, or mov-
ing slightly forward and backward during rotation. These effects stem from an interaction
between whead and wspeed, the latter pushes the optimum towards high speeds regardless
of (small) heading errors, whereas the former influences the optimum only once sufficient
error has accumulated. By choosing the velocity space discretization with care, it is possi-
ble to avoid this unwanted behavior. Figure 3.9 compares the wanted with the unwanted
situation. The implemented way of avoiding the unwanted effects is to use soft speed limits
ṡ∗max (3.11) and θ̇∗max (3.12) that are adjusted towards smaller values if the specified ones
are inappropriate.

q̇l = q̇r = q̇ =
2q̇max

N − 1
i, i ∈ {. . . ,−1, 0, 1, . . .}

ṡ =
2Rwheelq̇max

N − 1
i ≤ ṡmax ⇒ i ≤ i∗ =

⌊
N − 1

2Rwheelq̇max
ṡmax

⌋

ṡ∗max =

{
ṡmax ⇐ 2Rwheel q̇max

N−1
(i∗ + 1

2
) ≤ ṡmax

2Rwheel q̇max

N−1
(i∗ + 1

4
) otherwise

(3.11)

5This is the main reason for which it is possible to plan and represent the path as if the robot was
holonomic.

3.5. ELASTIC BAND 29

bad

bad

q̇r

ṡmax ṡmax

-θ̇max -θ̇max

q̇l q̇l

q̇r

Figure 3.9: Avoiding grid effects of whead and wspeed by decreasing ṡmax and θ̇max. On the
left, the soft speed limits lead to a border which does not include cells from
the diagonals that correspond to pure translations or rotations. The sketch on
the right shows the situation after adjustment.

where N is the dimension of the velocity space grid. Note that this should always be an
odd number in order to guarantee that stillstand q̇ = 0 is part of the possible motion
commands. The adjustment for θ̇max is very similar.

− q̇l = q̇r = q̇ =
2q̇max

N − 1
i, i ∈ {. . . ,−1, 0, 1, . . .}

θ̇ =
4Rwheelq̇max

Dbase(N − 1)
i ≤ θ̇max ⇒ i ≤ i∗ =

⌊
Dbase(N − 1)

4Rwheelq̇max

θ̇max

⌋

θ̇∗max =

{
θ̇max ⇐ 4Rwheelq̇max

Dbase(N−1)
(i∗ + 1

2
) ≤ θ̇max

4Rwheelq̇max

Dbase(N−1)
(i∗ + 1

4
) otherwise

(3.12)

3.5 Elastic Band

The elastic band (illustrated in figure 3.10) is responsible for path representation and
adapting the plan to the robot’s movement and changes in the environment. During
Robotics@Expo.02, path lengths rarely exceeded 20 meters. In contrast to the DWA,
the elastic band is not a hard real-time task, but a high priority thread. Whereas the
former relies on lookup tables to ensure a low and deterministic maximum time for the
computations, the latter presents more variability in its time and space requirements.

30 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

Each bubble (see section 3.5.2) of the band can be influenced by up to 722 laser points.
The number of bubbles varies as a function of the distance to the goal, the clutter and
movement in the environment, and even the movement of the robot (as that influences
which previously unseen objects appear). Nevertheless, the elastic band should be updated
with a frequency on the order of the one used for the DWA6.

3.5.1 Bubbles

The elastic band B is a directed list of waypoints with associated free space information
stored in bubbles bi (3.13).

B = {bi}, bi = {ci, ri, mi} , i = 0 . . .M − 1 (3.13)

where ci is the center of a circle of radius ri, mi is a masking distance, and M is the number
of bubbles in the band. The masking distance can be used to make the elastic band more
stable in environments where most obstacles are dynamic, as was the case during Expo.02
(details in section 3.5.2). The need for mi has been presented in section 2.1.3: Environment
dynamics far down the planned path can invalidate the elastic, even though by the time the
robot arrives at that location the situation would probably have cleared up. mi has a linear
relationship (3.18) to path length Li (3.17) and it can be tuned to specific environments.
The effect of the masking distance is that certain obstacles pj are ignored when calculating
the radius of a bubble.

3.5.2 Obstacle Masking

Each bi has an associated set of masked obstacles {pm,ij} defined in (3.14). The obstacle
p∗

i closest to bi is found (3.15) and determines ri (3.16).

{pm,ij} = {pj :‖ ci − p ‖> mi} (3.14)

p∗
i = arg

(
min

p∈{pm,ij}
‖ ci − p ‖

)
(3.15)

ri = min
p∈{pm,ij}

‖ ci − p ‖ (3.16)

The masking distance mi has a linear relationship to the bubble’s position Li along the
path, see (3.17) and (3.18).

Li =
i∑

j=1

‖ cbj−1 − cbj ‖ (3.17)

6Simulations and experience during Expo.02 indicate that elastic band performance decreases notice-
ably if its update frequency falls below approximately 3Hz in environments with humans moving at walking
speed.

3.5. ELASTIC BAND 31

fext

f int

pj

bi

p∗
i

Figure 3.10: An elastic band is a directed list of bubbles bi which represent subregions of
free space. Bubbles evolve under the influence of artificial forces f int (internal
forces to smooth the band) and f ext (external forces to increase clearance).
Obstacles are a point cloud {pj} and each bubble bi has an associated closest
obstacle p∗

i which determines the radius ri and the direction of f ext.

32 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

mi = mmax ·

0 if Li ≤ Lmin

1 if Li ≥ Lmax
(Li−Lmin)
Lmax−Lmin

otherwise

(3.18)

where Lmin and Lmax define the cumulative path lengths over which mi stretches and mmax

is the maximum distance at which readings can be ignored. During Expo.02, values were
set to Lmin = 2.0m, Lmax = 8.0m and mmax = 8.5m.

3.5.3 Amount of Bubbles

The elastic band is a dynamic representation. Under the effect of virtual forces (sec-
tion 3.5.4) it iteratively adapts to novel sensory information, be it due to moving obstacles
or changes in occlusion resulting from the robot’s motion. This implies that M is not
constant — bubbles need to be inserted when the overlap between adjacent bubbles is not
sufficient, and superfluous bubbles should be removed from the band in order to keep com-
putational effort small. Determining the overlap is based on calculating circle intersections.

Suppose that the robot travels along a straight line between the centers of two adjacent
bubbles. In order to ensure that this can be done without collision, the overlapping region
between the bubbles needs to be large enough to let the robot pass. Figure 3.11 shows the
cases that can arise, with parameter definitions for the non-degenerate case. In order to
simplify the following developments, the chosen frame of reference has its origin at ci and
its x-axis contains cj .

x̂2 + ŷ2 = r2
i ∩ (x̂ − d)2 + ŷ2 = r2

j

⇒

(i) no overlap ⇐ d > ri + rj

(ii) inclusion ⇐ d > |ri − rj |
(iii) concentric ⇐ d < ε
(iv) x̂2 − 2x̂d + d2 + r2

i − x̂2 = r2
j otherwise

(iv) ⇒

x̂ =
r2
i −r2

j +d2

2d

ŷ =
√

r2
i − x̂2

(3.19)

where (x̂, ŷ) is the intersection point and d = ‖ci − cj‖ is the Euclidean distance between
the two centers.

Removing Bubbles

Superfluous bubbles are the ones that are not strictly necessary to guarantee sufficient free
space along the elastic band. They are removed such that space and time requirements for
updating the band are reduced. This is done by looping over all bubbles and calculating
the intersection between a given bubble bi and it’s second next neighbor bi+2:

3.5. ELASTIC BAND 33

�
x

�
y

ci

�

ri

bi

cj

�

rj

bj

� �d

x̂

ŷ

�

� no overlap

�

� inclusion

�

� concentric

Figure 3.11: Circle intersection parameter definitions and special cases. The non-
degenerate case requires calculating (x̂, ŷ) to see whether the robot passes.
In the case of no overlap the band might be fixed by inserting a bubble
(which can also be attempted in the non-degenerate case). The inclusion and
concentric cases need not necessarily be distinguished from each other, both
imply that the robot has enough clearance (provided that it fits into both
bubbles).

34 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

(i) no overlap: leave bi in place;
(ii) inclusion: remove bi;
(iii) concentric: remove bi;
(iv) otherwise: remove bi if 2ŷ < Wrem, else leave it in place.

The parameter Wrem is used to tune the removal frequency of superfluous bubbles. It is
bigger than the robot width Wrobot in order to keep some spare coverage in the band7. On
Robox, Wrobot = 1.8m and Wrem = 1.8Wrobot = 3.24m.

Adding Bubbles

After removing extra bubbles, the remaining bubbles have to be checked for sufficient
coverage. This time the calculation is performed on bi and its direct neighbor bi+1:

(i) no overlap: insert a bubble with λ = 1
2

+ ri−ri+1

2d
;

(ii) inclusion: do nothing;
(iii) concentric: do nothing;
(iv) otherwise: if 2ŷ > Wadd then insert a bubble with λ = x̂

d
.

The new bubble is inserted between bi and bi+1, with center at cb = λcbi + (1 − λ)cbi+1.
The parameter Wadd has a role very similar to Wrem and allows tuning when bubbles are
added. On Robox, Wadd = 1.2Wrobot = 2.16m.

3.5.4 Artificial Forces

To reduce the computational load, Euclidean distances and forces whose magnitude is
proportional to the distance between cbi and p∗

i are used. A non-linear magnitude would
produce smoother evolution of the elastic band, at the cost of more calculations. Linear
forces are acceptable because the DWA ensures the dynamic, kinematic and geometric
constraints. More importantly, certain obstacles are masked out to make the algorithm
more stable in highly dynamic environments, where movement far from the robot can
“snap” the elastic band unnecessarily.

This simplification has negative implications because linear forces lead to oscillating
behavior of the elastic band. In applications with more computational resources available
for motion generation, a smoother model should be used [40]8.

The equations for the internal (3.20) and external (3.21) forces determine the iterative
movement ci,t+1 = ci,t + ∆ci of the bubbles (3.22). The first bubble follows the robot’s
position and the last bubble is immobile at the goal. Only the two direct neighbors of a
bubble are used to calculate the internal force acting on it: j = i ± 1 in equation 3.20.

f int,ij = αint ·
{

0 ⇐ ‖ci − cj‖ ≤ ε
cj−ci

‖ci−cj‖ otherwise
(3.20)

7Otherwise the band would easily snap after a removal.
8An earlier work by the same author [41] also uses linear expressions.

3.6. NF1 35

5 6 7 8 7

4 5 6 7 6

××× ××× ××× ××× ××× ××× ××× ××× ××× . . . 3 ××× ××× ××× 5

0 ××× 1 0 ××× 2 1 0 ××× 2 1 0 ××× 4

1 2 1 2 3 2 1 2 3

initialized step 1 step 2 finished

Figure 3.12: NF1 example, the goal is initialized to 0 and obstacles are denoted with “×××”.
On the left is the initialized grid; the grid after completing the algorithm is
shown on the right. By filling the grid with consecutive values of connected
neighbors, a discrete navigation function is constructed.

f ext,i = αext ·
{

0 ⇐ ri ≤ ε ∪ ri ≥ rlim

rlim−ri

ri
(ci − p∗

i) otherwise
(3.21)

∆ci = αtot,i ·
(
f int,i,i−1 + f int,i,i+1 + f ext,i

)
(3.22)

αtot,i =

{
1 ⇐ ri > rlim

ri

rlim
otherwise

(3.23)

where rlim is a parameter that defines the distance at which the elastic band starts to
react to obstacles, αint and αext are parameters that define how strong these forces are,
αtot,i makes smaller bubbles move smaller amounts and ε is used to avoid divisions by zero.
During Expo.02, values were set to rlim = 1.6m, αint = 0.1, αext = 0.1.

3.6 NF1

Creating an initial plan from the robot’s current position to the goal is the task of the NF1.
It is a grid-based method that constructs a navigation function (illustrated in figure 3.12),
which can be considered an approximate potential field with a globally unique minimum
at the goal. Once this navigation function is calculated, the robot can reach the goal by
descending along the gradient of this function. The idea underlying the NF1 is rather
simple: Divide the environment into equally sized grid cells, mark all cells that lie within
one robot radius of an obstacle (laser readings), then construct a monotonically increasing
potential starting at the cells that are in the goal region. It can be implemented as a cell-
labeling method described in appendix A.2. If no path is found, replanning is tried again
after doubling (then tripling etc.) the width of the grid (keeping the resolution constant)9.

As described in section 2.1.4, only the most current scan is used to initialize the NF1
grid with obstacle information. Dynamic objects are treated the same as dynamic objects,

9The width of the grid is reset to the base value after a path has been found.

36 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

gridY
Xgrid

worldY

worldX

robot

goal

(M , M)dl

width

Figure 3.13: NF1 grid placement: After transforming a point p = (x, y)T from world to
grid frame, a linear relation of the form i = round((x + doff)/∆) is used to
determine its grid indices (i, j). The width parameters Ml (distance) and Md

(dimension) are tunable, the length adapts to the situation.

leading to the issues with potentially wasted planning cycles and other problems presented
in that section, such as the incomplete view of the environment’s topology. Chapter 4
presents an approach that can be used to solve this problem, however it was developed
after Expo.02 and could thus not be tested as extensively as the system described in the
present chapter.

3.6.1 Grid Based Environment Representation

The robot’s C space is approximated by a bounded two-dimensional grid containing binary
obstacle information. It is made up of square cells which are either free or occupied,
and the robot is considered a point on this grid. It is further assumed that the robot
configuration is constrained to the center points of the cells, which is not strictly necessary
if the cell size is taken into account during the C transform. Using C projection to ignore
the robot’s orientation (reducing the dimension from 3 to 2) requires approximating its
shape by circumscription.

Figure 3.13 shows how global coordinates are mapped to grid indices. The geometric
width Ml and number of cells Md along the width are user-defined (the cell size is thus
Ml/(Md − 1)). The grid length reflects the distance from robot to goal at the time of

3.7. SYSTEM INTEGRATION 37

grid creation. The alignment of grid the axes with the direction from robot to goal is an
application-dependent optimization which reduces grid-artifacts in presence of an unstruc-
tured obstacle distribution10. Values used during Expo.02 are Ml = 5m for the width and
Md = 41 for the grid dimension along the width. The cell size is calculated accordingly
(12.5cm in this case).

3.6.2 Path Properties

The resulting path presents certain drawbacks and advantages when compared to other
methods, particularly sensor-based potential field approaches. Most prominent of these
is the fact that methods based purely on (local) potential fields can get trapped in local
minima, but NF1 makes the robot graze obstacles and move along straight segments joined
by angles that are multiplies of π/4. More details can be found in appendix A.2.

3.7 System Integration

3.7.1 Perception

The main sensor input for the motion planner comes from the laser scanners. Bumpers
are also used, but only to stop the robot if it touches something. The robot also stops if a
laser reading indicates that an object is inside the robot’s outline. The outline is modelled
as a convex polygon (Robox has octogonal shape). It would be straightforward to extend
the existing system to use a set of convex polygons for robots with concave shapes.

All calculations are based on the latest sensor data only, without any memory effects.
This is acceptable in the Robotics pavilion because the layers above the motion planner
provide subgoals which lie close to each other along a topologically feasible path and most
obstacles are visitors and tend to move out of the robot’s way sooner or later.

Having more than one robot in the same space adds the problem of how robots can
detect each other. Each Robox has the laser scanners at the same height. This is problem-
atic because even if another robot is detected, it’s not seen as the actual outline. This was
addressed by attaching reflector bands in the blind zone between the laser scanners. The
intensity of the laser data is used to detect the reflectors on other robots, which are then
injected as virtual “ghost” points into the laser data to represent the approximate shape
of surrounding robots11.

Ghost points are not only useful for avoiding other robots, they were also used to keep
Robox from leaving the exhibition space. By placing ghost walls at the entry and exit

10In other kinds of environments, another alignment should be chosen. For instance, typical indoor
environments with straight rectangular walls would benefit from aligning the grid with the wall direction.

11The current implementation simply creates 16 points on a circle of radius Rrobot = 0.9m centered at
the center of gravity of a cluster of consecutive bright scan points. The reflector results in brightness which
is an order of magnitude higher than that of usual objects, so detection is not a major issue. An example
can be seen in figure 3.19

38 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

(stored in the global map), the DWA refuses to move the robot outside the allowed area
even if visitors try to make it go there.

However, this second application of ghost points relies on localization, which can be an
issue in settings where the robot might loose track of its position. For example, at ASL
we use reflector bands to mark a descending stairway: The robot should never attempt
to go there – but if localization fails, the goal location given by the global planner does
not correspond to the wanted physical location and might make the robot attempt to
move down the stairs. In this example, ghost walls would obviously be useless because the
situation only arises when the robot is lost.

3.7.2 Multitasking and Time Constraints

In order to ensure obstacle avoidance, at least a part of the program has to run in real-time.
If there are no guarantees about the maximum execution time (or minimum frequency of
controller loops), even the most sophisticated models can lead to collisions. This is obvious
if you consider the worst case: During a given iteration in the absence of obstacles the
system will choose a high speed, and if an obstacle appears at a later time the obstacle
avoidance task has to iterate again.

However, it is neither necessary nor advisable to constrain the whole system to follow
such timing constraints. For instance, running the path planning thread is only necessary
if a new plan is required, otherwise it would only cost computational resources without
improving the avoidance performance. The importance of separating the motion generation
system into hard real-time tasks and less constrained threads (typically using priority
driven scheduling) thus becomes apparent.

This is especially true if the computational resources need to be shared among the
large number of subsystems on sophisticated robots. For instance, the PowerPC on Robox
runs drivers for sensors and actuators, maintains network connections for remote control
and data access, contains several threads related to localization, global and local path
planning, and obstacle avoidance – to name just a few. Figure 3.14 is an overview of
the most important subsystems on Robox. This diagram reflects a redesign of the system
architecture that had already been developed on predecessors of Robox at the Autonomous
Systems Lab, but not all components were ported to the new layout.

Obstacle avoidance is one of the safety critical tasks [55]. It is responsible for avoiding
injuries and damage to surrounding living beings and objects, as well as damage to the
robotic system itself. However, if all computational resources were spent on avoiding
collisions, the robot would not be able to perform any other task. This would make the
whole endeavor rather pointless, so the time available to other tasks should be maximized.

Hard real-time tasks are the ones that provide the least flexibility for the scheduler.
Other threads could be suspended in favor of more important ones, for instance preferring
localization over serving a web page, but sacrificing any real-time thread could lead to
violations of safety constraints. This discussion should make it clear that obstacle avoidance
itself should be subdivided such that a minimum amount of instructions require real-time
scheduling. Less critical parts can be high or even medium priority threads, but the core

3.7. SYSTEM INTEGRATION 39

Localization

Map

Safety

RobotModel

MotionPlanner

GlobalPlanner

Actuators

MotionController

Odometry

LaserScanner

Sensors

InteractionManager

DataLogger

SafetyController

Figure 3.14: Subsystems on Robox, arrows indicate direction of information flow. Data-
Logger and InteractionManager are on separate computers connected via
TCP/IP to the navigation system running on a PowerPC under XO/2. Safe-
tyController is running on a PIC for redundant control of safety critical tasks.
Other boxes denote a selection of components.

40 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

set of calculations that determines the speed commands must be run in real-time context.
This raises two questions:

1. What constitutes this core avoidance subsystem?

2. How can it be integrated into the overall scheme, which includes non real-time
threads?

The first question is addressed in detail in section 3.4. The second question calls for
techniques of inter-process communication and synchronization. Specific solutions have to
be found for problems such as modifying the goal or adapting a plan to unexpected obstacles
during motion, and the overhead required for this synchronization should not place too
much of a burden on the real-time task, nor make it violate its timing requirements due to
dependency on non real-time events or worse yet race conditions. A related issue is making
the core algorithm as efficient and deterministic as possible, in order to leave resources to
other subsystems and provide guarantees about collision avoidance.

3.7.3 Memory Constraints

Apart from the timing aspects, memory can be a tight constraint for real-time tasks. Espe-
cially allocating memory inside such tasks must be considered forbidden, even though cer-
tain operating systems might allow it in principle. Allocation is simply too unpredictable,
particularly on garbage collected systems. Another issue with memory allocation is the
maximum chunk size, which can rule out otherwise straightforward space-time tradeoffs for
accelerating the computations. A concrete example is described below, it was developed
after it turned out that the required four-dimensional lookup table could not be allocated
in a single chunk as that would have lead to an unacceptably coarse resolution. In addition,
the available amount of RAM was largely used up to allow diskless operation and garbage
collection, so memory was a very scarce resource. To circumvent that particular issue, a
method for transparent compression and fragmentation had to be developed.

Two grids are involved in our implementation of DWA, illustrated in figure 3.15. The
local obstacle grid samples the workspace around the robot (projected to two dimensions).
Each of its cells contains a pointer to another two-dimensional structure, the lookup table
which maps motion commands to collision times for obstacles contained in that cell. In
other words, the overall structure is four-dimensional. It maps workspace points to velocity
space (V) obstacles. The V transform involves looping over the local obstacle grid and
finding the minimum collision time for each motion command.

During initialization, the center points of the cells are used to calculate the time until
collision, which can lead to over-estimations if the actual point lies closer to the outline. As
a remedy, the robot outline is grown by half the cell diagonal to counter this. Remaining
collision prediction errors are always under-estimations of the time until collision: In the
worst case, the robot stops too early, but never too late.

3.7. SYSTEM INTEGRATION 41

local obstacle grid

quantizer table

q time

0.309913

2 0.14987

0.101231

0 0.053421
21110

1 0 1 1 2 2 3 3
3332221

22
1

1

3

2

0 0 1
0 1 2 1 1 2 2 2 22

2
2
2

2
2
2
1

1

1
1

1 1

2
1
1
1

11
1

2
2
23

3
2
2
2

2 10 2 2
22

2 3
3
4
44

3
3
3
4
4

clearance lookup
(velocity obstacle maps)

robot outline

obstacle cell

Figure 3.15: Look-up operations in the dynamic window. Obstacles are stored in a two-
dimensional grid. Each cell (ij) stores associated velocity obstacle information
in a collision table tcoll,ij = tcoll,ij(q̇l, q̇r). Transforming obstacles from W to
actuator space (fig. 3.4) involves finding min(tcoll,ij) over all (ij) that are
occupied. In other words, for each obstacle cell, we iterate over its clearance
map and keep the smallest value at each motion command (q̇l, q̇r). This is
denoted by the three arrows in the upper part.
Compression is quantizer based: The clearance lookup contains 8-bit indices
into an associated table of actual collision times. This is denoted with the
arrow pointing from the velocity obstacle map to an entry in the quantizer
table. The latter is generated using a variant of the Lloyd-Max algorithm.

42 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

bin

levelhistogram

minValidValue maxValidValue

value

Figure 3.16: The Lloyd-Max quantizer replaces values (represented here by their his-
togram) by a reduced number of bins. It minimizes the total squared error
between the level of a bin and the values contained therein.

Compressed Lookup Tables

Two layers of look-up operations are involved (figure 3.15), compression applies to the
second indirection, where collision times are retrieved for a given motion command (di-
mensions three and four of the overall structure). These compressed tables are instantiated
only for those cells in the obstacle grid which can actually lead to collision predictions that
are inferior to Tmax. Other cells, as well as those contained within the robot outline, contain
null pointers and don’t use up RAM.

The compression algorithm is a variant of the Lloyd-Max quantizer used for image
processing12. It operates on the histogram of the collision times stored in a buffer initialized
with the results of the calculations described in section 3.4.3. Our variant uses a special
bin for all negative values, and -1 is used to signify “no collision within Tmax”. The process
is illustrated in figure 3.16 and described in appendix A.3. Lloyd-Max calculates the
boundaries and levels of a given number of bins by minimizing the sum of squared errors
made when replacing all values by their bin’s level. Our implementation starts with equally
spaced bins13 across the range of time values inside the buffer (clamped at Tmax).

Once the optimal bins have been determined, the buffer is quantized and stored in a
dedicated data structure along with the quantizer values. Attention is paid to the fact that
it is worse to underestimate a collision time than to overestimate it: The quantizer does

12Other possibly simpler compression approach would have been possible on Robox due to symmetries in
shape: Collapsing collision times along trajectory curvatures, which would have made the implementation
of the DWA closely resemble the Curvature Velocity Method.

13This means that some bins will be empty and could be used to improve the resolution, especially for
cells with very uneven histograms. The current implementation can only remove empty bins, not split
existing ones. Should the resolution or error of the compressed values ever become a problem, this is where
it can be addressed.

3.7. SYSTEM INTEGRATION 43

not use the levels provided by Lloyd-Max but the smallest value inside each bin.
Instead of (N2×10) bytes when using 80-bit floating point values, compression requires

(N2×1+256×10) bytes in the case of 8-bit bins in the worst case, which leads to a break-
even point at N = 17. Experience shows that the quantizer table rarely has more than 100
entries (breaking even at N = 11). During Expo.02, N was 41 and compression decreased
the lookup size from 16kB to 2kB for each non-null cell of the local obstacle grid.

BubbleFactory

The elastic band is a dynamic path representation with a varying number of bubbles,
this makes it hard to predict runtime memory requirements. Allocating (and destroying)
bubbles would have cost too much runtime overhead, but the straightforward alternative
of pre-allocating a fixed number of bubbles would have lead to a waste of resource with
little flexibility if the fixed number is chosen too small.

The adopted solution is a separate allocation thread with a scheduling priority that
depends on the level of a pool of Bubble objects. It was inspired by Kanban just-in-time
production management: Three levels of criticality are defined (RED, YELLOW, and GREEN)
with associated pool thresholds and scheduling priorities. Instead of using the operating
system’s allocation routines, objects and methods requiring bubbles use a BubbleFactory

for creating and destroying bubbles. More details can be found in section 3.7.4. During
Expo.02, thresholds were RED = 15, YELLOW = 30, and GREEN = 100.

3.7.4 Program Structure

An overview of the classes involved in motion generation is given in figure 3.17. Some
of the components are readily recognized from earlier descriptions, whereas others will be
described in the following.

MotionPlanner

The top-level class which provides an interface for other subsystems to communicate with
the motion generation subsystem (e.g. configuration, setting the goal, querying the motion
state) is called MotionPlanner. It orchestrates the components to achieve the required
overall behavior by querying the elastic band about the best heading and feeding this
information to the DWA. If no band exists, it falls back to a purely local algorithm using
the direct line from robot to goal. It is also the motion planner’s task to switch between pure
rotation and forward movement. Replanning on the other hand is initiated independently
by the elastic band.

The real-time obstacle avoidance task is anchored in MotionPlanner, descending into
DynamicWindow and its associated objects for performing the actual obstacle avoidance.
The reason for placing the RT task here is the finite state machine which requires global
information (figure 3.18), whereas the DynamicWindow was kept purely local to keep it as
independent as possible from the rest of the system.

44 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

Bubble
Band

Replan
Handler

Motion
Planner

Field
Container

Dynamic
Window

Heading
Objective

Speed
Objective

Clearance
Objective

Compressed
Lookup

Bubble
List

Bubble
Factory

State

NF1

Bubble

Figure 3.17: Motion generation class diagram: MotionPlanner serves as façcade to other
subsystems on Robox and orchestrates the objects which implement motion
generation. The components NF1, BubbleBand, and DynamicWindow encapsu-
late path planning, path representation, and obstacle avoidance. Grey boxes
denote classes that have an associated thread. MotionPlanner manages the
hard real-time obstacle avoidance task.

3.7. SYSTEM INTEGRATION 45

don’t move

user
input

user
input

user
input

user
input

new
goal

new
goal

new
goal

take aim

aimed

adjust goal heading

at goal
keep position and orientation

turn on spot toward heading

move toward goal

turn on spot toward goal

heading error < angular precision

goal distance < radial precision

heading error < thresh1

user input

heading error > thresh2

heading error > wanted

Figure 3.18: The state machine of MotionPlanner. Arrows indicate state changes and
under which circumstances they are invoked. The task of each state is briefly
described in each box.

46 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

FieldContainer and State are closely associated with MotionPlanner. They allow
implementing a state pattern [19] such that the finite state machine is easier to adapt and
maintain.

DynamicWindow

This is where the DWA is implemented. MotionPlanner takes care of defining the local
goal and DynamicWindow behavior (e.g. turning on the spot or forward movement). Several
computations are delegated to instances of the abstract Objective base class (not shown
in figure 3.17).

HeadingObjective allows setting an offset angle and calculates whead. SpeedObjective
behavior can be switched using the methods GoFast(), GoSlow(), GoForward(), and
GoBackward() in order to calculate wspeed. ClearanceObjective

14 is the most complex of
all Objective subclasses: It contains a local obstacle grid composed of CompressedLookup
instances constructed at startup, used for processing the current laser readings to deter-
mine which motion commands are admissible (those that do not lead to collisions) and
assign wclear in function of the sensed obstacles and the stored or detected ghost points.

CompressedLookup

The data structure for compressed lookup tables described in section 3.7.3 is implemented
in CompressedLookup15 . A static buffer is filled with floating point values using the
LoadBuffer() method, then transformed into quantizer bins and values using the Lloyd-
Max algorithm upon calling SaveBuffer. The bin and quantized values are stored in fields
(i.e. non-static data) of CompressedLookup instances, and the Get() method performs the
translation from quantized to floating point value.

BubbleBand

This class is the high-level interface for path representation and planning16. It is the entry
point for the thread which updates the elastic band and contains a ReplanHandler. This
object is at the core of keeping replan events from interfering with the smoothness of robot
motion, by using a dedicated thread for replanning and preparing a new elastic band in
the background. The robot continues to use the old plan and switches to the new band
once it is ready.

BubbleBand plays a role which is similar to MotionPlanner, i.e. it maintains a state and
orchestrates sub-objects, most calculations are delegated. The actual path representation is
stored in a BubbleList instance containing Bubble objects. The separate list encapsulation

14Due to historical reasons, this class is actually called DistanceObjective in most existing versions of
the software.

15This class is simply called Lookup in most versions.
16In the design used during Robotics@Expo.02, NF1 is “buried” underneath BubbleBand. This simplifies

MotionPlanner but limits the flexibility for changing the planning algorithm. Separating planning from
representation at a higher level would be a useful refactoring [16].

3.7. SYSTEM INTEGRATION 47

makes it easier to switch from a snapped to a freshly planned elastic band by swapping two
pointers. It also performs list operations such as inserting or removing bubbles. Bubble

objects use laser and ghost points to determine their parameters (such as radius and
artificial forces) and provide methods for calculating the overlap between bubbles.

BubbleFactory

The dedicated memory manager for Bubble objects is called BubbleFactory. It’s raison
d’être is explained in section 3.7.3.

There are two “allocation” methods, New() retrieves a bubble from the pool and initial-
izes it with values passed as arguments, whereas Clone() uses an existing bubble instance
to initialize one from the pool. Both return a null pointer in case of an empty pool, which
can happen when building a new elastic band under heavy system load as the production
thread can then be starved by real-time threads17. It is thus important that clients of
BubbleFactory do some low-level checking themselves to guarantee consistent behavior18.

Another important aspect is deleting Bubble instance when they are not used any
longer. In order to not waste the time invested during allocation, the instance is given back
to the factory for recycling (filling the pool for later retrieval). This could lead to pool sizes
largely exceeding the GREEN level, and a low-priority bubble deallocation thread could be
used as remedy19. However, deallocation was completely removed from BubbleFactory to
solve a problem with elastic band creation in very cluttered situations when the robot had
been active for only a short period of time.

NF1

This class implements the NF1 algorithm and the grid representation. It also provides
methods ResetTrace() and GlobalTrace() for determining successive cell center points
from the robot position to the goal. These methods are used by ReplanHandler to generate
a new elastic band by placing a bubble at each cell center20.

3.7.5 Replanning Behavior

When the elastic band cannot guarantee sufficient clearance along the path, it snaps and
a new plan has to be generated. We want Robox to do so without halting its movement.
Here, environment properties can be taken advantage of: The band usually snaps because

17This phenomenon can be eliminated almost completely by filling the pool up to the GREEN level during
initialization of BubbleFactory and disabling pool shrinking.

18During Expo.02, allocation problems were handled by replacing the elastic band by a straight line to
the goal and continuously replanning until a complete new band could be constructed.

19In order to not starve other threads requiring memory.
20subsequent elastic band updates quickly remove bubbles from this excessive translation, but it means

that during construction of a new BubbleList the demand on BubbleFactory displays a sharp peak.
However, performing more efficient translation from NF1 to elastic band would require more computations
and thus increase the delay between planning and execution.

48 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

robot
ghost

points
laser

band
elastic

Robox

A

a−priori
map

line from

Figure 3.19: An image generated on the robot shows laser scanner data, a “ghost robot”
constructed around a reflector of another Robox, the elastic band and lines
from the map. The points in region A are masked, otherwise the second to
last bubble would be smaller.

visitors move into it from both sides, and a couple of updates later the band can become
valid again if they move on. So, Robox fires a background replanning thread but continues
to use a snapped band, confident that the DWA keeps it from colliding. As soon as the
new plan is available, it is used instead of the broken band21.

3.8 Results

Robox moves smoothly through densely crowded exhibitions. Not only are the technical
requirements of table 3.1 met, but its motion is very convincing. Numerous visitors have
been seen stepping out of the way of approaching robots with an attitude of respectful
interest, not because they were scared of being overrun. Virtually all children fearlessly

21This process is illustrated in figure 3.20.

3.8. RESULTS 49

robot

bubble

mask
obstacle

goal

band
snapped

points
laser

path
new

obstacle
grid

band
new

B
A

A
B

C

43

21

NF1

Figure 3.20: Typical replan sequence (simulated, took up to 0.5s during Expo.02). 1: An
intact band is squeezed by two visitors A and B approaching each other. 2:
The band snaps in C, a replanning thread is started. The robot continues
to update and use the snapped band to keep its movements smooth. 3: The
unsmooth NF1 path is an intermediate step of the replanning thread. 4: The
new path has been translated into a new elastic band.

50 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

approached moving robots in order to see how the machine would react – if they could
trap it alone or with others (often resulting in children dancing around robots trying to
rotate their way out of the trap). The overall visitor flow was maintained at a high level
(approximately 500 per hour) which shows that even in the presence of curious kids, the
robot succeeded in giving tours through the crowd.

Depending on the number of obstacles and the current speed, calculating one iteration
of the DWA on Robox can take up to 22ms, with a mean value of 7.5ms.

During Expo.02, the eleven Robox accumulated an operation time of 13313h, of which
9415h were spent in movement for a total distance of 3315km and met approximately
686000 visitors. The maximum speed of the robot was set to a relatively low 60cm/s such
that visitors would not feel threatened. No harm was done to any visitor, exhibit or robot.

3.9 Future Work

No collisions with immobile objects that are detectable by the laser scanner have been
reported, yet some collisions happen. They are mostly due to objects that are out of
the laser’s field of view (especially feet and protruding parts of buggies and wheelchairs),
in which case the robot simply stops as soon as contact is detected. Two main failure
modes remain. One can appear when moving Robox from the main exhibition hall into a
very narrow corridor, the other stems from the simplistic detection and modeling of other
robots:

1. Moving into a corridor, Robox sometimes gets stuck at a corner when turning into the
corridor leading to its charging station. The entry to this corridor barely leaves 20cm
of leeway, it should thus be traversed as perpendicularly as possible. However, the
approximation of holonomic movement in the path representation, can lead Robox
towards the opening such that one of its corners disappears in the blind zone before
the robot has engaged the door. Then, further along the path, the corner reappears
inside the modeled robot outline and triggers a stop. This problem could be alleviated
using a variety of techniques such as building a local map, using a nonholonomic
planner and path representation, or adding sensors that cover the blind zone.

2. Robots can also get stuck when two of them move towards each other while not
detecting the reflectors, which can be hidden behind visitors. When the reflectors
are later detected, the resulting ghost robots appear instantly, often inside the outline
and make Robox stop. A seemingly obvious solution to this problem would be to
wirelessly broadcast robot positions, but this would introduce a plethora of multi-
robot issues such as synchronization of time and reference frames, not to mention
the loss of autonomy.

A third issue is oscillating replanning that has appeared in simulation but was not
observed during Expo.02. Integrating perceptive memory along the lines of the local
perceptual space mentioned in [29] could alleviate this if it ever becomes a problem.

3.10. CONCLUSION 51

These failure modes were the only observed cases where the robots got stuck due to
deficiencies of the motion planner. Other blocked situations arose from localization failures
which made the robot seek goals inside walls, and rare sensor failures at the beginning of
Expo.02 which were subsequently detected automatically to make the robot perform an
emergency stop and notify the supervision personnel of this hardware problem.

3.10 Conclusion

This chapter presented a novel combination of known algorithms for mobile robot path
planning and control. It was shown that our combination performs well enough to be
deployed in a challenging long-term real-world application.

Using a time-based clearance measure solves a singularity present in the original DWA
and bases the dynamic window on a physically meaningful representations. Using the
speed objective as a means to switch between overall robot behaviors ensures that they all
appropriately avoid obstacles.

Relying on the DWA, the elastic band could be simplified to a point where it becomes
computationally efficient. The main speedup comes from using Euclidean distances instead
of a kinematically correct measure. Heuristically masking some obstacles reduces the
frequency of replan requests to improve the overall performance of the motion planner
in the context of highly cluttered and dynamic environments.

3.11 Summary of Parameters

Numerous parameters influence the operation of the motion generation system presented
in this chapter. Table 3.2 summarizes their names, how they influence the behavior, and
their numerical values during Expo.02.

52 CHAPTER 3. MOTION IN DYNAMIC CLUTTERED ENVIRONMENTS

Parameter (Expo.02 value) Description Remarks

Kinematics
Rwheel = 0.09m Wheel radius better calibration [5] ⇒ better pose pre-

dictionDbase = 0.521m Wheel base

DWA
∆t = 0.1s Task cycle time Real-time task frequency
q̇max = 6.5 rad

s
Max wheel speed Hardware and application dependent (i.e.

limit to walking speed during Expo.02)q̈max = 6.5 rad
s2 Max wheel acceleration

ṡmax = 0.6m/s Max translational speed

θ̇max = 2.5 rad
s

Max rotational speed

Tmax = q̇max

q̈max
= 1s Max braking time

αclear = 0.5 Weight of clearance objective αclear � αspeed, αhead ⇒ react early to
obstacles (but can deviate from elastic
band); higher αspeed ⇒ stricter on-spot
turns

αspeed = 0.1 Weight of speed objective
αhead = 0.1 Weight of heading objective

Lx = 2.2m Obstacle grid depth (x-axis) (Lx, Ly) such that braking displacement
(∝ T 2

max + Rrobot) contained in gridLy = 1.5m Obstacle grid width (y-axis)
∆grid = 0.03m Grid resolution (cell size)
N = 41 Velocity space grid dimension N odd number (ensured by software);

∆q̇ < ∆t · q̈max (otherwise no mvt.)∆q̇ = 2q̇max

N−1
= 0.325 rad

s
Velocity space grid resolution

Elastic band
Lmin = 2.0m Start of obstacle masking many small moving obstacles ⇒ low

{Lmin, Lmax} and high mmax to decrease
replanning frequency

Lmax = 8.0m End of obstacle masking
mmax = 8.5m Max obstacle masking
rlim = 1.6m f ext threshold rlim > Rrobot; high clutter ⇒ low

rlim; higher update frequency ⇒ lower
{αint, αext}; dynamic environment ⇒
higher αext (also higher rlim if little clut-
ter)

αint = 0.1 Weight of internal force
αext = 0.1 Weight of external force

Wrobot = 2Rrobot = 1.8m Robot width Wrem > Wadd (higher ∆W ⇒ more stable
band); higher W ⇒ more stable bandWrem = 3.24m Bubble removal threshold

Wadd = 2.16m Bubble insertion threshold

Bubble factory
RED = 15 High priority threshold smaller values ⇒ less RAM but depletion

risk; similar (small) thresholds ⇒ high
processor load

YELLOW = 30 Normal priority threshold
GREEN = 100 Idle priority threshold

NF1
Ml = 5m Width of grid time and space O(M2

d); smaller
{Ml, Md} ⇒ might not find existing pathMd = 41 No cells along width

Ml/ (Md − 1) = 0.125m Cell size

Other
ε = 10−9 Considered ≈ 0

Table 3.2: Motion generation parameters

Chapter 4

E∗: Generic Dynamic Interpolated
Navigation Functions for Planning

This chapter presents the E∗ algorithm, a generic path planning method that combines
dynamic replanning capabilities with path cost interpolation. Even though the algorithm
is grid-based, it produces navigation functions that are practically free from discretiza-
tion effects that commonly flaw grid-based calculations. The need for a high-performance
algorithm to solve this problem arose during work on [22], an approach to incorporating
knowledge of object movement during path planning. E∗ has been inspired by the dynamic
replanning capabilities of D∗ [52], adding generic interpolation which leads to high fidelity
navigation functions.

Dynamic replanning means that it is possible to incrementally adapt an existing navi-
gation function to changes in the environment model, instead of recalculating the function
on the whole domain. Path cost interpolation means that the distance from a given node
to the goal is not a sum of edge distances, but is measured in the continuous domain “be-
tween” edges. The algorithm is generic in the sense that it uses an approach to dynamic
replanning that is designed to work with a generic formulation of interpolation kernels.
Any method that fulfills the requirements of this formulation, which is encapsulated as a
class in the object-oriented implementation, can be plugged into E∗.

The advantage of an interpolated navigation function is its smoothness, which consid-
erably improves the path quality during gradient descent. However, interpolation requires
more computational resources, a drawback which is alleviated by dynamic replanning ca-
pabilities. As a generic algorithm independent of the interpolation method, E∗ makes it
straightforward to trade off computational effort versus interpolation quality.

Chapter Overview

Section 4.1 of the present chapter explains why the combination of NF1 and elastic band
was deemed insufficient and how the idea for a novel approach developed. Then comes a
more formal introduction to path planners in section 4.2, which also explains how so-called
navigation functions can be viewed as distance maps in order to better understand this

53

54 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

chapter. Related work on dynamic planning and wavefront propagation is presented in
section 4.3, followed by a summary of the Level Set Approach in section 4.4. The Level
Set Method is an important prior work for this chapter, but it has been rarely used in the
field of robotics and must thus be introduced in sufficient detail.

After these introductory sections, the E∗ framework is presented in section 4.5. It is a
generic algorithm that, among other features, allows to interchange interpolation methods.
Three such methods are then presented in section 4.6, with the so-called LSM kernel being
the most important of the three. The performance of E∗ is then evaluated in section 4.7,
which concentrates on the core algorithm and how it compares to D∗.

At this stage, E∗ will have been presented in a detailed manner, and section 4.8 proceeds
to address the question of how to include it into a robotic system as a global planner. It
gives a high-level view and presents a finite-state machine that takes care of the various
cycles required for E∗ operation in conjunction with a changing environment model. Finally,
section 4.9 presents the conclusions of this chapter and gives an outlook to future work,
particularly in view of extending E∗ to a more general graph-based formulation.

4.1 The Need for Smooth Dynamic Planning

The path planning approach used during the Robotics@Expo.02 event had some draw-
backs that could not be addressed in an ad-hoc way. Apart from the lack of smoothness
inherent in the NF1 approach1, there is no distinction between static and dynamic objects
(e.g. visitors). On a related note, the NF1 was initialized using only the most recent scan
data, which can be problematic because the environment topology is rarely fully reflected
in such a snapshot.

There exists a fair amount of published research that incorporates environment dynam-
ics during path planning, for example2 [15, 18, 4, 30, 1, 20]. However, these approaches are
not appropriate for an application in highly cluttered dynamic environments such as mass
exhibitions: They either rely on relatively elaborate modeling techniques that require infor-
mation and computational resources that are not readily available for such unpredictable
settings (i.e. extending C to a full-fledged state-time representation), or are limited to
constant velocity models for the objects in the robot’s vicinity. Alami’s work [1] is an
exception, as it treats environment dynamics using worst-case scenarios that take into ac-
count the sensor capacities, but during planning it treats all known obstacle information
as static.

Suppose that the robot has a sensor-based method of distinguishing static from dynamic
objects. It is not necessarily practical nor required that the motion information contain
a predictive model, even though it would be an advantage if such information exist. For
example, one of the results of [23] is a polar array that contains distance and motion
information in a format similar to what a laser scanner provides3. The idea is to formulate

1This had been worked around using the elastic band, see section 3.3.
2See also chapter 2, in particular section 2.2.3.
3It also tracks a visitor’s movement and contains information that can be used to predict motions.

4.2. NAVIGATION FUNCTIONS AS DISTANCE MAPS 55

the path planning problem in a way that treats static objects as topological information,
but moving objects in a more flexible way by assigning collision risks based on the amount
and direction of movement in a given zone. This would yield plans that are not necessarily
collision free, relying on lower levels to guarantee obstacle avoidance, but that trade off
the risk inherent in traversing a dynamic region against the additional expected path
length for circumventing that area. Obstacles that are known to be static should of course
still be treated as non-traversable in order to maintain the topological correctness of the
path. In other words, planning in highly cluttered dynamic environments is viewed as a
weighted region path planning problem [37, 42], but in this context the regions can not be
pre-determined because they depend on movement in the environment. A more flexible
environment representation such as a grid-based risk map is more appropriate.

Another issue with the approach presented in chapter 3 (using the elastic band to
smooth an initial plan) is that the elastic does not take into account movement information
in its present formulation. Applying it to a path planned with motion information would
counter the effort that went into adding this information into the planner. Making the
elastic band react to motion could be interesting research, but if the planner provides
smooth plans then this requirement disappears.

The aim of this chapter can be summarized as follows: Develop a path planner that is
capable of taking into account a continuous risk measure, defined on regions that are neither
static nor known beforehand. The planner must produce topologically correct and smooth
paths that trade off collision risk against expected path length. Additionally, changes to
the environment model are expected to be frequent due to environment dynamics, and the
planner should be able to efficiently adapt existing plans to such changes. In particular,
it should be avoided to replan if the change is of no concern to the robot’s current action
(i.e. it is farther away from the goal than the robot).

4.2 Navigation Functions as Distance Maps

Mobile robot path planning approaches can be divided into five classes [31]. Roadmap
methods extract a network representation of the environment and then apply graph search
to find a path. Exact cell decomposition methods construct non-overlapping regions that
cover free space and encode cell connectivity in a graph. Approximate cell decomposition
is similar, but cells are of predefined shape (e.g. rectangles) and do not exactly cover free
space. Potential field methods differ from the other four in that they don’t lead to a graph
representation, but treat the robot as a point evolving under the influence of forces that
attract it to the goal while pushing it from obstacles.

In the cited work, navigation functions are treated as a special case of potential fields.
They have the advantage of being free of local minima, but introduce drawbacks due to the
fact that they are calculated on grids. In this work, a different stance is taken: Navigation
functions share certain properties of graph-based planners, and can also be considered
samplings of a distance function which takes into account environment topology. This
dual interpretation is the key to formulating the E∗ algorithm.

56 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

• A grid can be considered an approximate cell decomposition. All cells are of identical
shape, they only approximate free space.

• Calculating the navigation function is equivalent to graph search. It starts at the goal
location(s) and (monotonically) propagates through the grid until a path is found.

• The distinguishing property of navigation functions is their unique minimum at the
goal. By gradient descent, the robot monotonically reduces the “height” of its lo-
cation on the grid just as it monotonically decreases the distance to the goal. This
equivalence leads to interpreting the navigation function as the sampling of an un-
derlying distance function.

Graph-based calculations have inherent drawbacks due to their discontinuous represen-
tation of workspace W or configuration space C, e.g. NF1 [31] produces paths that graze
obstacles and that are constituted of straight line segments joined by angles that are inte-
ger multiples of π/4. Potential field methods produce smoother paths than NF1 and can
often be expressed directly in terms of sensor readings, however they are flawed by the
existence of local minima.

4.3 Dynamic Planning and Wavefront Propagation

Graph-based planners rely on mechanisms that propagate path cost information among
neighboring locations and require replanning if the underlying environment model changes.
For example, A∗ uses its Open list to propagate path costs in an upwind manner, but in
case the environment changes the whole algorithm has to be run again. This drawback
is addressed by the D∗ algorithm [52, 53], which minimizes the computational cost of
replanning by recalculating the navigation function only where necessary.

During path cost propagation in D∗, the set of nodes that enter and leave the Open list
can be thought of as a discrete wavefront sweeping through the graph, being confined to
the edges and nodes. Now, in order to extend this concept, imagine a continuous contour
to sweep outward from the goal throughout the environment (see figure 4.1), and record
when this hypothetical wavefront crosses each cell. It is important to notice that the
crossing time divided by the propagation speed yields a distance. The similarity with the
progress of D∗ is clear, however the main insight comes from turning the problem around:
Consider the crossing times at the nodes as samples of an underlying continuous navigation
function, instead of extending a discretely defined distance function into the continuous
domain. This idea is not limited to the two-dimensional case.

In order to use this approach for path planning, the propagation speed (normal to the
curve) is chosen to be dependent on position only (e.g. low speed in risky regions). By
adding a time axis, the surface traced by the evolving curve becomes a navigation function.
The gradient method [29], as well as [7] and [56] take similar stances4.

4Like D∗, the gradient method encodes the risk of a location in its intrinsic cost rather than a speed.

4.4. SUMMARY OF THE LEVEL SET FORMULATION 57

Figure 4.1: Continuous domain wavefront formulation. A contour sweeps outward from the
goal throughout the environment, taking into account obstacle information. It
is important to realize that, by making the propagation speed dependent on
position to reflect environmental properties, the resulting crossing-time map
can be used to reach the goal by gradient descent.

Section 4.6 presents possible approximations of this continuous formulation. This kind
of problem has been treated in fields such as fluid mechanics or computer vision. The large
body of work on Level Set Methods [46] provides a theoretical foundation for robustly
interpolating the crossing time. Fast Marching Methods [45] are a special case formulation
that take advantage of monotonically advancing fronts such as the one considered here,
leading to a considerable reduction in computation.

An important aspect of Level Set Methods is the upwind property. It ensures that the
wavefront propagation does not violate Huygens’ principle – shocks and rarefactions need
to be treated correctly (see [47] for details). This is particularly apparent in Fast Marching
Methods and their one-pass calculation that sweeps out from the initial wavefront. In
D∗ the upwind property holds as well, and it is traced through the use of backpointers.
This is instrumental for dynamic replanning: Backpointers trace on which neighbor a cell’s
path cost depends, such that all descendants of a location can be visited if that location’s
environmental information changes. One of the contributions of E∗ is the extension of the
backpointer concept to an ordered set, such that the upwind property holds in the presence
of interpolation during dynamic replanning.

4.4 Summary of the Level Set Formulation

The Level Set Method (LSM) developed by J. A. Sethian was an important inspiration for
developing the E∗ algorithm. It is a powerful approach to calculating evolving interfaces
in various fields, such as fluid mechanics and computer vision. As it is not commonly
known in the field of mobile robotics, this section gives a quick introduction to the LSM
concepts necessary for understanding E∗. For a more detailed presentation, the book by

58 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

Figure 4.2: The wavefront propagates with speed F along its normal vector n. F can
depend on several kinds of factors (see text for details). This illustration is
inspired by figure 1.1 of [47].

J. A. Sethian is an excellent source [47]. The material in this section is mainly based on
chapters 1, 2, and 9 of that book.

Even though E∗ can be used without it, tests have shown that the LSM provides the
most robust and precise distance information of all the tested methods (see section 4.7). It
is also useful to already introduce the concepts of upwind property and the Fast Marching
Method because they make the remainder of this chapter easier to understand.

4.4.1 The Lagrangian and Eulerian Formulations

Figure 4.1 illustrates the idea of calculating a distance map by sweeping a continuous-
domain wavefront from the goal through the environment, such that it avoids obstacles
and slows down in regions of higher collision risk. This idea is formulated more precisely
in figure 4.2, which introduces the notion of propagation speed F = F (L, G, I) that can
depend on local properties L (e.g. curvature), global properties G (e.g. integrals along the
front), and independent properties I (e.g. underlying flow). The wavefront propagates
along its normal vector n with a magnitude given by F .

One approach to formulating the wavefront propagation would be the so-called La-
grangian perspective: Parameterize the curve such that its normal vector can be calcu-
lated, discretize time and space, and repeatedly move each discrete point on the curve
along ∆tFn. Figure 4.3 and equation (4.1) illustrate this.

γ : x(s, t), 0 ≤ s ≤ S, x(0, t) = x(S, t)

n : n(s, t) ⊥ x(s, t)

⇒ n · ∂x
∂t

= F (L, G, I)

(4.1)

where γ denotes the front’s parameterized form (note the periodicity of the parameter
s), n(s, t) is the normal vector to the front at x(s, t), and the last line is the differential
equation that has to be solved (numerically).

4.4. SUMMARY OF THE LEVEL SET FORMULATION 59

Figure 4.3: The Lagrangian formulation of wavefront propagation: Time and space are
explicitly discretized (see text for details). This illustration is inspired by
figure 1.2 of [47].

The Lagrangian formulation presents several serious drawbacks, which [47] explains in
detail. For instance, involved heuristics are needed to treat shocks correctly, oscillations
tend to get amplified, and topological changes in the wavefront (merging or disappearing
sections) are very difficult to detect. The solution proposed by J. A. Sethian lies in using the
Eulerian formulation, which adds a dimension to the problem and then treats the wavefront
as the intersection between a graph and the zero-level of the additional dimension. This is
illustrated in figure 4.4 and equation (4.2).

Γ(t) : closed (N − 1)D surface

Φ(x, t) : R
N → R

t0 : Φ(x, t = 0) = ±d(x, Γ(t = 0))

⇒ Γ(t) = {x | Φ(x, t) = 0}

(4.2)

where Γ denotes the wavefront, N is the supporting dimension (i.e. N = 2 in figure 4.4), Φ
is the graph that is intersected with the zero level to yield Γ, the line labelled t0 : indicates
that Φ is initialized to the signed distance from the initial wavefront, and the last line
formalizes the way in which Γ and Φ are related.

The advantage of adding the extra dimension stems from the fact that topology changes
can now occur without special treatment, and that numerically more stable methods are
available for solving the differential equation that describes the front’s evolution. This is
illustrated in figure 4.5 and equation (4.3).

∂Φ

∂t
+ F |∇Φ| = 0 (4.3)

4.4.2 The Eikonal Case: Fast Marching

The Level Set Method can now be fully described: Convert the initial wavefront Γ(t = 0)
into a graph Φ(x, t = 0) by taking the signed distance from x to the initial front (x being
sampled from a grid); repeatedly solve equation (4.3) using a fixed timestep; determine
the front’s evolution Γ(t) by intersecting Φ(t) with the zero level. This requires a discrete

60 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

Figure 4.4: In the Eulerian perspective, the front is interpreted as the intersection between
a graph and the zero-level of an additional dimension Φ. This formulation is
more indirect than the Lagrangian perspective and leads to a more robust
algorithm. The evolution of the Φ-graph is calculated, and at each instant the
wavefront Γ(t) can be retrieved by intersecting with Φ = 0. This illustration
is inspired by figure 2.1 of [47].

Figure 4.5: The one-dimensional case of the Eulerian formulation claryfies how equa-
tion (4.3) describes the wavefront’s evolution: In order to make the intersection
move towards the right with speed F , the whole curve Φ has to move down-
wards with speed F |∇Φ|.

4.4. SUMMARY OF THE LEVEL SET FORMULATION 61

Figure 4.6: The Eikonal case leads to a simplified formulation of the Level Set Method
that can be solved very efficiently. This case occurs if the propagation speed is
always positive (or negative) and depends on position only. Note the notational
change from Φ to T . This illustration is inspired by figure 2.3 of [47].

approximation of the gradient operator ∇, as well as some other heuristics to make it
efficient and stable. Details are presented in [47].

An important special formulation that makes these calculations very efficient is the
Eikonal case, which is applicable when the propagation speed is always positive (or nega-
tive) and depends on position only. This special case is thus applicable to the path planning
problem described in this chapter: Robot speed depends on position only (the traversal
risk does not depend e.g. on the front’s curvature), and it is always positive. The Fast
Marching Method can then be applied: It treats Φ as a crossing-time map. In other words,
Γ(t) is no longer defined by the zero level of Φ, but by intersecting Φ with the level of
height t. In order to stress this change of interpretation, a notational change is introduced:
Φ becomes T in order to indicate that it is interpreted as a crossing time. Figure 4.6 and
equation (4.4) illustrate the Eikonal case.

F = F (x) > 0

Γ(t) = {x | T (x) = t}
|∇T |F = 1

(4.4)

where F denotes the propagation speed (which depends only on position and is always
positive), the wavefront Γ is now defined as the intersection between the crossing-time
map T and a given instant t, and the simplified differential equation that has to be solved
is given in the last line.

The advantage of this formulation lies in the fact that the crossing time T can be built
outward starting at T = 0. This is due to the upwind property : A given location is traversed
only once by the wavefront, which can thus be likened to a grass fire spreading through a
prairie (once a patch has been burned, it stays burnt). Only locations that are downwind
from a given point can be influenced by the value of T at that point. In other words, in
order to calculate a location’s T , only its upwind neighbors must be considered. Given that

62 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

the LSM is calculated on a grid, it is useful to now introduce a discrete notation (limited
here to the two-dimensional case of two grid indices i and j). Equation (4.5) gives the
result when using a first-order gradient approximation that satisfies the so-called entropy
condition which is a formulation of the upwind property (for more details, consult [47]).

max(D−x
ij T n+1

ij , 0)2 + . . . + min(D+y
ij T n+1

ij , 0)2 = F 2
ij (4.5)

where D−x
ij denotes the finite difference along negative x at grid point (i, j), T n+1

ij is the
crossing time at (i, j) for the next step (step n starts at n = 0 and is incremented by one at
each iteration), and Fij is the propagation speed at (i, j). Note that equation (4.5) leads
to a quadratic equation, an efficient way of solving it has been developed for this thesis
and is presented in section 4.6.3.

The Fast Marching Method is best summarized by quoting the introductory paragraph
from section 9.2 The Eikonal equation and the fast marching method of [47]. The equa-
tion (9.4) mentioned in the quotation corresponds to equation (4.5) in this thesis:

The key to constructing a fast marching algorithm is the observation that the
upwind difference structure of equation (9.4) means that information propagates
“one way”, that is, from smaller values of T to larger values. Hence, we can
“solve” equation (9.4) by building the solution outwards from the smallest T
value. The algorithm is made fast by confining the “building zone” to a narrow
band around the front. The idea is to sweep the front ahead in an upwind fashion
by considering a set of points in a narrow band around the existing front, and
to march this narrow band forwards, freezing the values of existing points and
bringing new ones into the narrow band structure. The key is the selection of
which grid point in the narrow band to update. [J. A. Sethian, 1996]

Tracing Fast Marching: Backpointers

One of the key realizations that lead to the development of the E∗ algorithm is the similarity
between the “marching” of the narrow band mentioned in the above quotation, and the
order of evaluation used in the D∗ algorithm. In D∗, this evaluation order is traced using
backpointers, which makes it possible to subsequently repair the plan to changes in the
environment model by re-initializing a wavefront starting at the changed cells and following
the backpointers to repair path costs in accordance with the upwind property. There is also
a mechanism for changing the stored upwind directions, which can be considered equivalent
to changing the environment topology. The upwind property applies to D∗, but the main
difference lies in the fact that the Fast Marching Method employs a gradient approximation
that takes into account more than one neighbor of a given cell.

4.5 E∗ Framework

The E∗ formulation uses abstractions of the concepts interpolation and wavefront propa-
gation to make it generic. A grid of cells is used to represent the environment and the

4.5. E∗ FRAMEWORK 63

navigations function. E∗ relies on other processes to keep the environment model up to
date, the wavefront propagation treats it as constant (see section 4.8). Changes to the
environment information are signaled to E∗ through a high-level interface, which takes
care of initializing dynamic replanning. Wavefront propagation relies on an independently
configurable interpolation method to determine the exact form of the navigation function.

4.5.1 Interpolation Kernels

Locations are cells ci that belong to a given domain C = {ci}. Each cell has a set of
neighbors Ni and represents its environmental properties as meta information Fi (4.6).
The crossing-time at each location is stored in the cell value Ti. Wavefront propagation
runs for a number of iterations which is not necessarily known beforehand. During an
iteration, a cell can change its Ti value. This is an operation based on the propagator
set5 Pi ⊆ Ni and the cell’s meta information Fi (4.7). Each cell has a set of backpointers
Bi ⊆ Pi.

ci ∈ C, Ni ⊂ C, ci /∈ Ni, c1 ∈ N2 ⇔ c2 ∈ N1 (4.6)

Fi ≥ 0, Ti ≥ 0, {Ti, Bi} = k(Fi, P ⊆ Ni) (4.7)

The remainder of this chapter treats interpolating the wavefront direction as “coming
from” between two cells. As a consequence, a special case of the above formulation is used:
The “best” and “second best” neighbors P = {c1, c2} of a cell c0 are used to construct the
distance to the wavefront using the interpolation kernel k(Fi, c1, c2).

At first sight, the propagators are the same as the backpointers. However, the kernel
might fail to provide valid interpolation for certain combinations, and the use of fallback
or degenerate solutions is required in these cases, and this information has to be passed
to E∗ such that the backpointers reflect the actual dependency between cells. This is why
the kernel provides not only the updated value, but also backpointer information needed
to trace propagation direction during dynamic replanning.

Section 4.6 presents three examples of interpolation kernels which will be used in the
evaluation of E∗ in section 4.7. One of these kernels is not interpolating but designed to
mimic the behavior of NF1, which makes E∗ equivalent to D∗. This makes it possible to
determine the effects of adding interpolation.

4.5.2 Algorithm Structure

Figure 4.7 shows the structure of E∗. The terms used in this section reflect the object-
oriented programming paradigm employed to implement the algorithm. The algorithms
is not strictly required to be implemented this way, however this is highly recommended.
GridPlanner is a high-level façade [19] that orchestrates the Wavefront and the Grid.

5The propagator set depends on the values of Ni.

64 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

RaiseEvent LowerEventRetryEvent

neighbors
backpointers

WavefrontGrid

Cell

Interpolation

GridPlanner

Event

path representation
environment and

(re)planning
generic

implementation
numerical

Figure 4.7: Overview of the entities in E∗. Names in italics denote abstract classes, arrows
denote references among objects. Arrows that terminate in a circle indicate
one-to-many relationships, whereas dotted lines denote temporary relation-
ships. Inheritance is shown using a triangle.

4.5. E∗ FRAMEWORK 65

Communication with other software components goes through this façade as well. Interpo-
lation is a strategy object [19] to keep the framework independent from the choice of
interpolation method.

The environment model and navigation function values (path costs) are stored in the
Cell objects that constitute the Grid. The environmental representation is referred to as
meta information, stored in a cell’s Fi. How exactly this meta information is used depends
on the Interpolation object in place, but conceptually it encodes the cost or risk of
traversing a given region. Other components are kept independent from this implementa-
tion detail by requiring changes to the world model to pass through GridPlanner, which
uses the concept of normalized risk 0 ≤ ri ≤ 1. More details can be found in section 4.8.

The Wavefront plays a role similar to the Open list in A∗ and D∗: It contains a queue
of propagation events that is sorted such that the navigation function is built in an upwind
manner. Event objects are an explicit representation of propagation steps, comparable to
the implicit Raise and Lower states in D∗.

Event Objects

An Event encapsulates the elemental propagation step. It contains information and func-
tionality that is required to propagate local information to more distant cells. This includes
pointers to the destination of the update. Figure 4.8 illustrates how events (the circles)
encapsulate propagation functionality.

• Events are stored in a queue that ensures upwind propagation order. A queue key is
assigned to each event, and the queue is sorted by ascending key.

• Priority information is dependent on the type of event, it is used to ensure that a
cell never has more than one pending update request by resolving the conflict that
arises when an event is to be created on a cell that is already queued for update.

• Events make it possible to write generic event handling code while keeping implemen-
tation details open for change. They provide a location for implementing propagation
logic that would otherwise be intertwined with other code.

Three subclasses of the abstract Event are used to implement generic wavefront prop-
agation: LowerEvent for path cost decreases, RaiseEvent for path cost increases, and
RetryEvent for attempting to decrease a path cost after a wake of RaiseEvents has swept
an area.

The queue key corresponds to the upper bound on the optimal path cost at which the
event must be triggered in order to respect the upwind property. The upper bound on
optimal path costs is a value maintained by the wavefront, all cells with values at or below
this bound are valid (they can not be influenced by further event propagations). This
property of the queue key is important for correct propagation results, especially during
dynamic replanning.

66 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

2.5

1.25

0

2.13

1.25

2.5

1.25

0

2.13

1.25

2.5

1.25

0

2.13

1.252.50 1.25

2.50 1.25 2.50 1.25 2.50 1.25 2.50 1.25

pending
event

new
event

3.18

3.18

2.5

3.18

2.5

2.5

1.25 2.13

2.5 3.38

53.75

2.5 2.5 2.53.38 3.38

3.75

Initial propagation

Replan around new obstacle

obstacle backpointer

2.13

2.13

1.25

2.13

2.13

3.18

2.13

3.18

5.325.323.755.324.435.32

4.43

4.43

Figure 4.8: Example of event-based propagation: These two sequences illustrate the use
of event objects for wavefront propagation on a grid with resolution h = 1.25.
Bold numbers denote cell values Ti, empty cells are at Ti = ∞. Oblique num-
bers denote queue keys that are associated with each event, which are denoted
by circles. Arrows are backpointers (shown only right after their creation to
alleviate the illustration, but the information remains in the grid). The grey
square is an obstacle cell which was added after completion of the initial prop-
agation. Changes are highlighted using a thick border around the involved
cells. The mechanism will be explained in more detail in subsequent sections,
here the aim is to explain the role of event objects with the help of a concrete
example.

4.5. E∗ FRAMEWORK 67

LowerEvents are sent to all neighbors of a cell whose value decreases, e.g. when a
previously blocked passage is discovered to be open. The value after the decrease is used
as queue key: The lower event was triggered because the highest known optimal path
cost reached its target cell, lowering that cell’s value implies the same decrease for the
path cost bound. Propagating a lower event means calculating the best possible path cost
estimate and updating the backpointers accordingly (unless the value was not decreased).
Then, new lower events are sent to all neighbors whose value lies above the current one.
Listing B.1 in appendix B shows the C++ implementation for propagating lower events.

RaiseEvents are created when a cell’s value increases, e.g. due to a previously unde-
tected obstacle across the planned path. It is sent to all neighbors that have a backpointer
to the cell, using the value before increase as queue key: It indicates that path costs higher
than the cell’s old value are now non-optimal, which is required such that the neighbors
with backpointers to the just-updated cell get propagated next. When a raise event is prop-
agated, the destination’s value is set to infinity6 and its backpointers set to null. Then,
raise events are sent to all concerned neighbors in order to propagate the information up-
ward. Finally, a RetryEvent is triggered on the cell that has just been increased, with
a queue key determined to allow subsequent path cost decreases as soon as possible (the
updated value plus the spacing h between cells). Listing B.2 shows the implementation of
raise event propagation in C++.

A RetryEvent is the same as a LowerEvent, except for its higher priority. It acts as a
sort of rear guard trailing behind wakes of RaiseEvents to prevent backpointer loops and
a “back wash” phenomenon (a duplicate raise wake going in the opposite direction of the
original one).

Raise Events and Backpointer Consistency

There is a fundamental difference between RaiseEvent propagation in E∗ and Raise state
calculations in D∗. The latter does not set the node’s path cost to infinity, but calculates
the usual path cost propagation. This is consistent with the single backpointers used in
D∗, but interpolation and the multiple backpointers needed to trace cell dependencies raise
the following problem in E∗.

Suppose a cell receives a raise event from one of its neighbors. If we now recalculated
the interpolation, this would be likely to result in a change of backpointers because the
previously good propagator is now at a higher path cost. However, the backpointers are
needed to propagate a path cost increase to all descendants of a location: A descendant is
a neighbor that has a backpointer to the cell. Changing a backpointer while this chain has
not been completely traced back violates the upwind property and leads to inconsistent
results of dynamic replanning.

An alternative would be to force the use of the same backpointers for propagating raise
events. However, interpolation kernels typically fall back to their degenerate solutions in
this case because the values of the two backpointers will tend to be far apart after one of

6The implementation of ∞ is a finite value much higher than the maximum meaningful accumulated
path cost.

68 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

the backpointers has been raised. The fallback solution requires fewer backpointers than
the non-degenerate case, which either violates the upwind property (especially since the
non-raised backpointer will in all likelihood become the new single backpointer because it
lies below the other one), or the backpointers do not correspond to the value of the cell.
The first alternative creates the same problem described above, and the second alternative
will create this problem as soon as the next wake of raise events reaches the cell with
inconsistent backpointers.

These issues are addressed by setting a cell’s value to infinity when a raise event is
propagated, and passing on the raise wake to the unmodified backpointers. Now that the
cell is at infinity, the backpointers become useless (the cell cannot be raised further in
any case), which is why they are set to null to avoid creating spurious raise events that
would result in no change of the navigation function. In any case, after a raise event, a cell
will be subject to a retry event which applies the interpolation and sets new backpointers.
Constructing sensible calculations for propagating raise events would thus be a waste of
processing (and development) resources.

Wavefront

The Wavefront acts as event creator, queue, and sink. The separation from the grid makes
the representation of the cells completely independent of the propagation logic.

During insertion of events into the queue, attention has to be paid to not overwrite
existing ones. Events win by priority, or by their queue key in a tie. Priorities reflect
the importance of events: RetryEvent > RaiseEvent > LowerEvent. Raise events are
considered more important than lower events, because missing an existing shortcut is less
critical than trying to go through a region that is known to be of high risk. Also note
that raise events trigger retry events after they have been propagated: Retry events have
the same effect as lower events, in other words a lower event is only delayed by the higher
priorities of raise and retry events. Overriding raise by retry events is consistent because
the latter are only triggered after a raise event has been propagated (the cell in question
has an infinite value anyways, it cannot be raised further).

4.6 Interpolation

The algorithm presented above is independent of the interpolation method, but in order to
actually use E∗ for planning, an implementation has to be provided. In this section, three
possible approaches are presented. Their advantages and drawbacks will be investigated
in section 4.7.

4.6.1 Graph Distance

The simplest “interpolation” kernel is one that uses only one propagator, in other words
it does not interpolate at all. This is actually useful because it allows to quantify the

4.6. INTERPOLATION 69

effects of interpolation. In this case, E∗ becomes equivalent to D∗ on grids7. Update
equation (4.8) and environment representation (4.9) for this non-interpolating kernel are
fairly straightforward.

T0 = minc∈N0 (Tc + h + F0)
B0 = arg minc∈N0 (Tc + h + F0)

(4.8)

Fi =

{
0 ⇐ ci ∈ free space

∞ ⇐ ci ∈ C-space obstacle
(4.9)

where T0 is the value after propagation, h is the grid resolution, F0 is the meta information
of the cell which is being updated, and N0 is the set of its neighbors. Here, meta information
is treated as the additional cost of going from a cell to the one that is being updated. This
differs from the definition used in D∗, which assigns such cost to the edges between nodes,
but it is equivalent if all incoming edges of a node are set to Tc and the outgoing edges set
to the T values of the other node.

In the implementation, this kernel is called NF1Interpolation. It is given in ap-
pendix B.2.

4.6.2 Huygens’ Principle

The evolution of physical waves can be explained by Huygens’ Principle, which interprets
an arbitrarily shaped wavefront as an infinity of elementary spherical waves emanating
from each point on the front. The envelope of the elementary waves at a later instant gives
the wavefront at that instant.

Figure 4.9 shows how this principle can be used to develop an interpolation method
for E∗. In order to calculate the crossing time T0 of a cell c0, we find two neighbors c1,2

of known crossing times T1,2. Using the propagation speed F0 at c0, the origin s of the
elementary wave that lead to T1,2 can be determined. Given s, c0, and F0, it is possible to
calculate T0 as a ratio of distance over speed.

This approach is valid provided that the elementary wave from s first crosses c1 and
c2 before hitting c0. It is also necessary that, seen from c0, the wave come from between
c1 and c2, otherwise the kernel would extrapolate the wave. These conditions mean that
s lies on the opposite side of xP than c0 and inside the region spanned by (c1 − c0) and
(c2 −c0). Finally, in order to preserve the upwind property of the algorithm, T0 ≥ T2 ≥ T1

has to hold.
The following notations are used (see also figure 4.9). Positions are expressed as vectors,

which can be either in the global (G) or propagation (P) frame of reference, denoted using
a right superscript8. The unit vectors along xP and yP are expressed in the global frame
but written ex,y to simplify the notation. Equation (4.10) shows the definitions of given
terms.

7The possible extension of E∗ to graphs is discussed in section 4.9
8In some expressions independent of the reference frame, the superscript is omitted.

70 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

r1

yP

r0
c0

r2

c2

xP

c1

s

{P}

r1

r2

Figure 4.9: Interpolation by Huygens’ Principle – reconstruction of the origin of the ele-
mentary wave that led to the crossing times at two known location c1,2 makes
it possible to determine the crossing time at the cell of interest c0. The thick
circles illustrate the calculations for finding the wave origin s and the thin
circles show the wave from s to c0,1,2. The coordinate frame P is chosen to
simplify the intersection calculations, its axes are xP and yP . The global frame
G is not shown. The inset shows the conditions under which this method leads
to valid upwind interpolation: c0 has to be inside the shaded region.

4.6. INTERPOLATION 71

position cG
0,1,2, ci =

[
xi

yi

]
crossing times T1,2

propagation speed F0

(4.10)

The first step is to calculate the wave origin s by intersecting two circles around c1,2.
The calculations are performed in frame P , whose unit vectors are calculated according
to (4.11). The wave source sP is given in (4.12) which is a rewritten form of (3.19).

ex = c2−c1

d

ey =

[
0 1
−1 0

]
ex

(4.11)

sP =

[
sP

x

sP
y

]

sP
x =

d2+r2
1−r2

2

2d

sP
y = ±

√
r2
1 − sP

x
2

(4.12)

where d = ‖c2 − c1‖ and the radii r1,2 = T1,2

F0
are calculated by observing that the propa-

gation speed of the elementary wave that is to be reconstructed is given by the cell c0 for
which the crossing time is to be determined. The sign of sP

y is chosen to be the opposite
of the sign of xP

0 . The expressions for cP
0,1,2 are given in (4.13).

cP
0 =

[
xP
0

yP
0

]
= [exey]

T (cG
0 − cG

1

)
cP

1 =
[

xP
1

yP
1

]
=
[

0
0

]
cP

2 =
[

xP
2

yP
2

]
=
[

d
0

]
(4.13)

Note that two cases can require a fallback solution (presented below): If d < ε, then c1

and c2 are considered to be the same point, and ex would require a division by zero; and
if sP

y /∈ R, there is no valid intersection.

The final check before calculating T0 is the verification if c0 lies in the region spanned
by the half infinite lines s → c1 and s → c2. This is done using the sign of outer
products (4.14). If s does not pass this test (which is illustrated in the inset of figure 4.9),
the fallback solution is used. Otherwise, the crossing time at c0 is calculated according
to (4.15). Finally, if T0 < T2 then the fallback solution is used instead, in order to respect
the upwind property.

72 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

valid s ⇐

xP
0 > 0 ⇒

(
cP

0 − sP
)
∧
(
cP

1 − sP
)

> 0

∩(
cP

2 − sP
)
∧
(
cP

0 − sP
)

> 0

xP
0 < 0 ⇒

(
cP

0 − sP
)
∧
(
cP

1 − sP
)

< 0

∩(
cP

2 − sP
)
∧
(
cP

0 − sP
)

< 0

(4.14)

T0 = F0r0 = F0‖c0 − s‖ (4.15)

the validity check of s can also be written (∆s0∧∆s1)·(∆s2∧∆s0) > 0 where ∆ij = cj−ci.
If any of the above validity checks fail, then the fallback solution (4.16) is used. However,
if the fallback is used then c2 is not a backpointer of c0 because only c1 influences the
equation.

T0 = T1 + F0‖c0 − c1‖ (4.16)

In order to determine the best interpolation for a given cell, a brute force approach
is used: All combinations of neighbors that lie on different axes are tried, and the lowest
solution is retained, preferring non-degenerate over fallback solutions. The implementation
(named HPRInterpolation) is given in appendix B.2.

Reconstructing the source of an elementary wave implies encoding environmental in-
formation as propagation speeds. Obstacles can be represented by setting F = 0, because
then the wavefront will never reach the obstacle (this requires special handling in the im-
plementation to avoid divisions by zero). The maximum speed is achieved in cells for which
the risk of collision is zero, and in order to keep the interpretation of goal distance, this
maximum should be set to F = 1. The continuous range between zero and one can be used
to finely model environment properties. For example, if a region should be circumvented
in most cases, but can be traversed if the alternatives are long detours, a value of F ≈ 0.5
could be used.

4.6.3 Gradient Approximation

Gradient approximation refers to an implementation of the first-order upwind interpolation
scheme for Fast Marching Methods presented in [27]. It is constructed to satisfy the
conditions of Level Set Methods, resulting in (4.17).

max(D−x
ij T,−D+x

ij T, 0)2 + max(D−y
ij T,−D+y

ij T, 0)2 = 1/F 2
ij (4.17)

where D−x
ij is the finite difference operator along negative x at the grid point (i, j), and Fij

is the (known) propagation speed at (i, j). T corresponds to the navigation function that
is to be calculated.

4.6. INTERPOLATION 73

A B

D

C

(i, j)

Figure 4.10: Cell neighborhood – the cell in the center is being updated. Interpolation
implies using up to two neighbors, which need to lie on different axes.

Developing D
±{x,y}
ij T leads to a quadratic equation with coefficients that take values

based on a switch on the sign and magnitude of the finite difference operators. However, a
geometrical interpretation is presented below. It helps visualizing the process. In particu-
lar, it will be used to determine the propagator set that yields the optimal solution prior
to interpolating.

Geometrical Interpretation

Figure 4.10 shows the situation when updating a cell (i, j) (following the development
in [27]). The cell in the center is being updated. Interpolation implies using up to two
neighbors, which need to lie on different axes (one along x, the other along y). Without loss
of generality, it can be assumed that the two neighbors leading to the best interpolation
are A and C, and that TA ≤ TC. The update equation becomes (4.18).

(T − TA)2 + (T − TC)2 = h2/F 2 ⇔
{

T = tA = tC

(tA − TA)2 + (tC − TC)2 = h2/F 2
(4.18)

where T is the value to be determined, TA and TC are the values of the best neighbors,
h is the grid scale (the distance between two consecutive cells), and F is the propagation
speed at cell (i, j).

The novel geometrical interpretation is based on introducing two parameters tC and tA
that are interpreted as the axes of a Cartesian coordinate frame. The solutions for (4.18)
are found at the intersections between the diagonal tA = tC and a circle of radius h/F
centered at (TC, TA).

The switch expressions surrounding D
±{x,y}
ij T in (4.17) lead to constraints that need

to be added to (4.18): Either it has a real solution T with T > TC, or a real solution
to the degenerate form (4.19) with TA < T ≤ TC. The degenerate (fallback) solution is
equivalent to finding the intersection between a horizontal line tA = TA + h/F and the
diagonal tA = tC.

(T − TA)2 =
h2

F 2
⇔
{

T = tA = tC

tA = TA + h/F
(4.19)

74 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

h/F

T = t = t

T

t

t

T

A

A

C

C

C A

limit

fallback

interpolating

Figure 4.11: Geometric interpretation of LSM interpolation – equations (4.18) and (4.19)
can be read as finding the intersection between the line tC = tA and the curve
labelled interpolating (thick solid line). Two dashed curves illustrate how the
interpolation behaves when h/F becomes smaller (limit and fallback curves).
The small solid circle indicates the intersection that serves as solution for the
interpolating case, and the small dashed circles show the same for the limit
and fallback cases.

Figure 4.11 shows the overall geometrical interpretation for a given (TC, TA). It can be
seen that the quadratic equation (4.18) has to be solved only if the point (TC, TA + h/F)
lies above tC = tA (i.e. the interpolating curve in figure 4.11), and that only the higher of
the two intersections has to be found. The final equation is (4.20).

T =

{
TA + h/F ⇐ TC − TA ≥ h/F
1
2

(
−β +

√
β2 − 4γ

)
otherwise

where

{
β = − (TA + TC)
γ = 1

2
(T 2

A + T 2
C − h2/F 2)

(4.20)

recall that TA ≤ TC and note that F → 0 ⇒ T → ∞, which is treated specially in the
implementation for reasons of numerical stability. Also note that cells on the border of
the grid might not have neighbors of type A and C, in which case the fallback solution is

4.7. EVALUATION AND PERFORMANCE MEASUREMENTS 75

used. Listing B.5 shows the implementation in C++.

4.7 Evaluation and Performance Measurements

In order to verify that E∗ yields useful results, it is necessary to test the consistency of the
framework and its ability to incorporate various interpolation kernels. It is also interesting
to compare the performance of the interpolation methods presented in section 4.6. Perfor-
mance measurements are presented this section, followed by a more qualitative experiments
that show how E∗ performs as a global planner (section 4.8).

By comparing the navigation function with hand crafted “ground truth” distances in
completely known environments it is possible to verify that it yields an approximation of
the true distance to the goal, and also to evaluate the precision of different kernels. As
the interpolated distance to the wavefront is measured along an approximated direction, it
overestimates the increment in crossing time because the true direction yields the minimum
distance. The error between ground truth and the navigation function is thus expected to
be positive throughout the grid, except for small negative errors that can be attributed to
floating point processing.

It is also important to evaluate the consistency of dynamic replanning: Does it pro-
duce the same results as reinitializing and replanning the whole grid? This is especially
important in the case of environment modifications that occur while dynamic replanning
is already in progress, and because it is intended to use dynamic replanning only up to the
robot position which leaves un-propagated events in the queue. These events have keys
that lie above the path cost at the robot position and thus cannot influence its movement,
however they can not be simply erased because the encode pending changes that are likely
to be necessary for correctly propagating future environmental changes.

Dynamic replanning is supposed to make it more efficient to change the environment
model after a navigation function has been calculated. How much work can actually be
saved? And does this depend on the kernel? By counting the number of event propagations
with and without re-initialization, the performance increase can be measured.

1. The first suite of tests is run in an empty environment (lower left of figure 4.12). The
comparison with ground truth (Euclidean distance to the goal) is straightforward in
this case. All three interpolation kernels are applied and their precision compared.

2. After verifying the results in an empty environment, the same tests are run in a
simple environment with obstacles (the “zig-zag” in figure 4.12). Ground truth is
calculated by defining polygonal regions and associated way-points, a location’s true
distance is the sum of the Euclidean distance to the corresponding way-point and
the way-point’s distance to the goal.

3. Consistency and performance of dynamic replanning can be measured by simulating
a robot’s movement through an environment with unknown obstacles that are dis-
covered when they enter the sensor range of the vehicle (the “zig-zag” and “maze”
maps in figure 4.12).

76 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

zig−zag

empty
maze

Figure 4.12: Simulation setup for evaluating E∗– solid lines denote a-priori known obsta-
cles, dotted lines indicate obstacles that need to be discovered by the robot
during its movement. The empty circle is the start, and the solid circle the
goal. The empty environment is used for determining in which way the initial
goal radius influences the convergence towards the true Euclidean distance.
The zig-zag and maze environments are used to determine the gain from dy-
namic replanning and to compare the path smoothness produced by different
interpolation methods.
Actual cell sizes vary in the experiments. The grid resolution shown here is
very coarse in order to illustrate how the grid is placed onto the environment.

4.7. EVALUATION AND PERFORMANCE MEASUREMENTS 77

The goal region is a circle around the goal point, all cells within this region are initialized
to the Euclidean distance from their centers to the goal point. All cells outside the goal
are initialized to infinity. To initialize the wavefront, the cells just outside the border of
the goal are assigned lower events. Using larger goal radii increases the number of initial
cells and gives the interpolation a better starting condition because on the goal border it
can rely on true distance. In the extreme case, only one cell is in the goal region, and
the kernels are forced to start out with fallback solutions (there are no cells available for
secondary backpointer).

Note that for all these experiments, obstacle information is binary: A cell is either in
free space (risk=0) or occupied (risk=1). Also, obstacles are not grown to the robot radius
(the robot is considered a point). These simplifications are acceptable for evaluating the
general characteristics of E∗. A more elaborate planning approach that uses continuous
risks, realistic robot sizes, and buffer zones around obstacles is presented in section 4.8.

Deviation from Ground Truth

The relative error of the propagation result is measured to investigate how the kernel, the
resolution, and the goal radius influence the precision. Results are given in tables 4.1 (no
interpolation), 4.2 (Huygens’ Principle reconstruction, abbreviated HPR), and 4.3 (Level
Set Method). Values inside the goal radius are not taken into account in the relative error
calculation (4.21). Figure 4.13 summarizes the three mentioned tables.

ec =
Tc − dc

dc
(4.21)

where Tc is the value of the navigation function at cell c and dc is the true distance from
c to the goal.

None of the kernels underestimates the distance to the goal (not to within an error
of 10−14 which is considered to be due to numerical effects). All improve their maximum
relative error when increasing the ratio of goal radius over cell size, as expected. Note that
the first run in each series of a given cell size is initialized using a single goal cell and thus
indicates the effects of fallback solutions. This shows the non-interpolating nature of the
NF1 kernel ((2 −

√
2)/

√
2 = 41.4% for not being able to interpolate along the diagonal

between two neighbors of the goal cell).

Running these ground truth comparisons in the zig-zag environment indicates that the
wavefront is capable of “going around corners”. The results of the NF1 and LSM kernels
are given in table 4.4 and figure 4.14. The HPR kernel exhibits numerical instabilities for
small cell sizes, resulting in incomplete propagation. Note the very high fidelity of the
LSM kernel when the goal radius is sufficiently large (starting at four times the cell size,
it produces maximum errors that lie below 3.5%).

78 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

Setup NF1
cell size No cells goal radius min ec mean ec max ec

1 341 1 0 20.7% 41.4%
2 0 14.0% 33.3%
4 0 8.06% 23.3%

0.5 1281 0.5 0 20.7% 41.4%
1 0 16.8% 37.3%
2 0 12.5% 31.9%
4 0 6.58% 21.0%

0.1 30’401 0.1 -5.27·10−15 20.6% 41.4%
0.5 -2.72·10−15 17.7% 39.0%
1 -2.60·10−15 15.0% 35.7%
2 -2.72·10−15 11.0% 30.3%
4 -2.83·10−15 5.96% 20.5%

Table 4.1: Relative error between propagation result and true distance in an empty environ-
ment of 10×30. The kernel based on graph distances presented in section 4.6.1
is used, which is not interpolating but yields results equivalent to NF1.

Setup HPR
cell size No cells goal radius min ec mean ec max ec

1 341 1 -2.81·10−16 11.5% 29.3%
2 0 11.8% 29.3%
4 -1.99·10−16 5.04% 14.9%

0.5 1281 0.5 -2.81·10−16 14.9% 34.9%
1 0 15.0% 34.9%
2 -1.99·10−16 8.80% 24.6%
4 -1.99·10−16 4.81% 14.9%

0.1 30’401 0.1 -2.61·10−15 18.7% 41.4%
0.5 -1.97·10−15 16.4% 37.4%
1 -1.65·10−15 13.0% 32.5%
2 -1.63·10−15 8.92% 25.5%
4 -8.12·10−16 4.87% 15.9%

Table 4.2: Relative error between propagation result and true distance in an empty envi-
ronment of 10×30. The kernel based on reconstructing Huygens’ Principle was
used (section 4.6.2).

4.7. EVALUATION AND PERFORMANCE MEASUREMENTS 79

Setup LSM
cell size No cells goal radius min ec mean ec max ec

1 341 1 0 4.38% 20.7%
2 0 2.88% 8.11%
4 0 1.24% 3.45%

0.5 1281 0.5 0 2.96% 20.7%
1 0 2.23% 8.11%
2 0 1.27% 3.55%
4 0 0.545% 1.59%

0.1 30’401 0.1 -5.27·10−15 1.00% 20.7%
0.5 -2.72·10−15 0.609% 2.94%
1 -2.60·10−15 0.410% 1.35%
2 -2.72·10−15 0.232% 0.661%
4 -2.83·10−15 0.0985% 0.302%

Table 4.3: Relative error between propagation result and true distance in an empty envi-
ronment of 10×30. LSM refers to the interpolation based on Level Set Methods,
presented in section 4.6.3.

cell size No cells goal radius mean ec max ec

NF1 LSM NF1 LSM
0.92 1’249 1 30.2% 9.04% 44.5% 20.7%

2 27.2% 8.52% 43.0% 18.0%
4 23.5% 8.05% 40.3% 17.6%

0.5 4’429 0.5 28.5% 5.32% 41.4% 20.7%
1 26.7% 5.04% 39.6% 10.5%
2 24.7% 4.66% 38.7% 10.2%
4 21.6% 4.47% 36.9% 10.0%

0.1 109’661 0.1 27.0% 1.32% 41.4% 20.7%
0.5 25.8% 1.17% 39.1% 2.94%
1 24.5% 1.08% 36.2% 2.29%
2 22.5% 1.01% 35.2% 2.25%
4 19.7% 0.973% 33.6% 2.22%

Table 4.4: Relative error of E∗ in a 33×33 zig-zag environment. The cell size of 1 has been
adapted to 0.92 such that the grid better fits the environment.

80 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

m
ax

 e
rr

or
 [%

]

goal radius

max interpolation error, 10x30 empty environment

NF1
HPR
LSM

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4

m
ea

n
er

ro
r

[%
]

goal radius

mean interpolation error, 10x30 empty environment

NF1
HPR
LSM

Figure 4.13: These two plots summarize tables 4.1, 4.2, and 4.3. The top graph shows
the maximum error ec in function of the interpolation method and the goal
radius. The bottom graph shows the mean error. It can be seen that LSM
performs better than HPR, which performs slightly better than NF1. The
three lines per interpolation method correspond to the three cell sizes: 1 at
the top, 0.5 in the middle, and 0.1 at the bottom. Note the case where the
cell size equals the goal radius, it illustrates the maximum error because the
interpolation can not take advantage of a smoothly initialized goal region,
because the goal consists of a single cell.

4.7. EVALUATION AND PERFORMANCE MEASUREMENTS 81

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2 2.5 3 3.5 4

m
ax

 e
rr

or
 [%

]

goal radius

max interpolation error, 33x33 zig-zag environment

NF1
LSM

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.5 1 1.5 2 2.5 3 3.5 4

m
ea

n
er

ro
r

[%
]

goal radius

mean interpolation error, 33x33 zig-zag environment

NF1
LSM

Figure 4.14: These two plots summarize table 4.4. As in figure 4.13, the top graph shows
the maximum error and the bottom graph shows the mean error. As men-
tioned in the text, HPR has been left out of this experiment due to numerical
instabilities. The overall heightened error is due to the difference between
ground truth calculation (which can use the exact endings of the interior walls)
and the propagation (which is forced to go through the first non-occupied cell
near the end of each wall).

82 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

Performance and Consistency

Dynamic replanning is interesting because it eliminates the need to recalculate the propa-
gation throughout the whole environment, but how much work can actually be saved? This
depends on the environment and how many changes to the meta information occur before
the robot reaches the goal. These experiments were performed on the zig-zag and maze
environments. A simple robot (point size, mass evolving under a force equal to the negated
gradient9, bounded acceleration and speed) equipped with a sensor of limited range moves
through the environment. When a previously unknown obstacle is detected10, propaga-
tion is performed until the highest known optimal path cost lies above the value at the
robot’s position. During replanning, the robot is stopped. The computational complexity
is measured by counting the number of events that are propagated until the robot resumes
movement. The number of events required for full replanning (until the highest optimal
path cost lies above the robot) is also counted.

In order to determine the effects of interpolation, runs are performed with and without
interpolation. In the latter case, the method is equivalent to D∗. It requires fewer events
because there is only up to one backpointer in the non-interpolated case. The LSM kernel
requires up to two backpointers, so raise events are propagated to up to twice as many
descendants than for the NF1 kernel. The additional computational burden needed to
obtain smoother paths is reflected in the higher number of events for LSM interpolation.

The parameters that were kept fixed during all those runs are the following:

• Size of the environment: 20 × 20m for zig-zag, 20 × 25m for maze.

• Robot parameters: Maximum speed 1m/s, maximum acceleration 2m/s2, sensor
range 2m, simulation timestep 0.1s.

• Goal radius 0.5m.

Table 4.5 and figure 4.15 compare the performance with and without interpolation.
The gain is calculated without taking into account the initial planning. The path length
indicates that interpolation produces better navigation functions. The meanings of the
line labels in these tables are the following:

• cell size is the grid spacing h e.g. in (4.18). Sizes have been chosen to roughly equal
{0.8; 0.4; 0.2} but adapted such that the bounds of the environment exactly fit on
cell centers.

• No cells is the total number of cells in the grid. This number is shown to give an
idea of the relative amount of work required for replanning.

9The mean along x and y of D
±{x,y}
ij is used as gradient

10Obstacles are discovered line-wise to simplify the simulation. Long lines are subdivided into segments
to keep the information gain local.

4.7. EVALUATION AND PERFORMANCE MEASUREMENTS 83

• with init. / without init. indicates event counts with or without the very first
propagation wake. This initial planning is the same regardless of dynamic or complete
replanning.

• No dyn. propagations is the event propagation count over the whole run when
using dynamic replanning (the sum of event counts for each replanning triggered by
the discovery of a new obstacle).

• No replan prop. is the event count over the whole run when using complete re-
planning. Comparing this number to the previous one quantifies the gain of dynamic
replanning.

• gain is the relative reduction in the number of events when using dynamic replanning.
It is calculated as (ncomplete − ndynamic)/ncomplete.

• path length is the length of the robot trajectory. It gives a rough idea of path
smoothness. Shorter paths are usually smoother.

There is a performance increase when using interpolation. The cost of this improvement
is split into two aspects: An increase of computational complexity (number of operations)
due to the higher number of backpointers, and an increase in the duration of each operation
due to the more elaborate calculations required for interpolation. Table 4.6 compares the
propagation counts to measure the complexity increase, and table 4.7 presents operation
timing measurements. The former depends on the environment due to the backpointers’
dependency on events which in turn depend on when the robot discovers which parts of the
environment, whereas the latter is concerned with the operation of the kernels and depends
on the platforms and optimizations used to execute the program. The complexity increases
by up to 62% in the studied settings. The operation cost is up to 37% higher. Note that
the operation cost measurements are for a single calculation of the interpolation kernel,
which requires only a few floating point operations and some binary branches. Overall
run times are also influenced by the complexity of insertion and removal operations on the
event queue, which is O(n logn) if balanced binary trees are used in the implementation.

Figure 4.16 shows the improved path quality produced by the interpolated method.
On the left, the preference for displacements along coordinate axes and the two diagonals
illustrates the grid-based distance measure of NF1, whereas the paths produced using
interpolation are very close to the line-of-sight towards the edge of a known obstacle (or
the goal if no known obstacle is in the way).

These measurements show the performance gain from using dynamic replanning, but
is this consistent with the results that would be obtained with complete replanning? Con-
sistency of dynamic replanning means that the result of repairing the navigation function
is exactly the same as what would be achieved by re-initializing the grid with the obstacle
and goal information and replanning from the goal. More importantly for dynamic replan-
ning, namely the propagation of raise events along backpointers, consistency means that
the backpointers of each cell are identical for the two cases. This has been verified using

84 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

NF1 kernel in zig-zag map
cell size 0.67 0.37 0.20
No cells 961 3’025 10’609

with No dyn. propagations 2’048 6’596 23’289
init. No replan prop. 3’015 9’949 35’888

without No dyn. propagations 1’242 3’926 13’627
init. No replan prop. 2’209 7’279 26’226

gain 43.8 % 46.1 % 48.9 %
path length 44.1 42.8 42.1

LSM kernel in zig-zag map
cell size 0.67 0.37 0.20
No cells 961 3’025 10’609

with No dyn. propagations 2’565 9’082 29’889
init. No replan prop. 3’049 10’002 35’821

without No dyn. propagations 1’759 6’417 20’260
init. No replan prop. 2’243 7’337 26’192

gain 21.6 % 12.5 % 22.6 %
path length 41.2 39.4 38.0

NF1 kernel in maze map
cell size 0.71 0.38 0.20
No cells 1’044 3’498 12’726

with No dyn. propagations 4’184 14’233 52’524
init. No replan prop. 7’544 27’806 103’763

without No dyn. propagations 3’521 11’890 43’836
init. No replan prop. 6’881 25’463 95’075

gain 48.8 % 53.3 % 53.9 %
path length 107 97.8 91.3

LSM kernel in maze map
cell size 0.71 0.38 0.20
No cells 1’044 3’498 12’726

with No dyn. propagations 6’245 21’653 85’139
init. No replan prop. 9’346 29’646 126’530

without No dyn. propagations 5’464 18’887 74’880
init. No replan prop. 8’565 26’880 116’271

gain 36.2 % 29.7 % 35.6 %
path length 102 90.7 88.9

Table 4.5: E∗ performance with and without interpolation on a 20×20 zig-zag and a 20×25
maze map. The gain from dynamic over complete replanning is slightly worse
when interpolating. The path length is an approximate indicator of smoothness.

4.7. EVALUATION AND PERFORMANCE MEASUREMENTS 85

 0

 10

 20

 30

 40

 50

 60

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

ga
in

 [%
]

cell size

dynamic replanning gain

20x25 maze, NF1
20x20 zig-zag, NF1

20x25 maze, LSM
20x20 zig-zag, LSM

 0

 20

 40

 60

 80

 100

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

pa
th

 le
ng

th
 [m

]

cell size

path length

20x25 maze, NF1
20x25 maze, LSM

20x20 zig-zag, NF1
20x20 zig-zag, LSM

Figure 4.15: These plots illustrate the data in table 4.5. The top graph shows the gain from
using dynamic over full replanning, it can be seen that using interpolation
causes the gain to drop. This is due to the larger “spread” of the replanning
wakes, caused by the higher number of backpointers. The bottom shows the
overall path length, an indication that the LSM produces smoother (hence
shorter) paths than the non-interpolated approach. The dependency on cell
size is more or less random, except for the heightened border effects (the
relative number of border cells grows when the size diminishes).

86 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

Relative computational complexity / zig-zag
cell size 0.71 0.38 0.20

relative burden ρ(NF1) 0.562 0.539 0.520
relative burden ρ(LSM) 0.784 0.875 0.774
ρ(LSM)/ρ(NF1) 1.39 1.62 1.49

Relative computational complexity / maze
cell size 0.71 0.38 0.20

relative burden ρ(NF1) 0.512 0.467 0.461
relative burden ρ(LSM) 0.638 0.703 0.644
ρ(LSM)/ρ(NF1) 1.25 1.50 1.40

Table 4.6: E∗ computational complexity with and without interpolation. These numbers
are propagation counts that indicate the relative complexity of interpolation.
The theoretical increase is twofold (twice as many backpointers), however the
values observed in the zig-zag and maze environments lie between a 25% and
65% percent increase. ρ = ndynamic/ncomplete is a normalized measure of the
number of dynamic replanning events. ρ(LSM)/ρ(NF1) indicates how much
wider raise events spread when using interpolation.

Relative and absolute operation cost
System A System B

debug optimized debug optimized
overhead [ns] 33.0 31.3 11.3 10.9

No calls 513’939 513’971 513’939 513’971
NF1 kernel [ns] 33.7 31.6 12.8 11.0

optimum [ns] 225 181 77.2 67.0
LSM kernel [ns] 46.3 34.6 15.4 12.1

optimum [ns] 273 185 89.8 67.1
LSM / NF1 kernel 1.37 1.09 1.21 1.10

optimum 1.21 1.03 1.16 1.00

Table 4.7: E∗ operation cost with and without interpolation in maze environment (20×25,
cell size 0.2). The operations of the LSM kernel are up to 37% more expen-
sive than the non-interpolating ones. The times for single kernel calculations
and finding the optimum (lowest) interpolation for a cell were measured under
desktop system load. System A is a 466MHz Intel Celeron running linux-2.6.7,
system B is a 1.8GHz Intel Pentium 4 running linux-2.4.22. The measurements
were performed with debug and optimized executables produced with the -g

and -O3 flags of GCC-3.3.

4.8. GLOBAL PLANNING WITH E∗ 87

the same setups as for the performance measurements presented above. No discrepancies
have been detected.

4.8 Global Planning with E∗

Previous sections of this chapter presented the core of E∗. It produces smooth navi-
gation functions that combine the advantages of interpolation and dynamic replanning,
provided the meta information corresponds to the environment and the choice of interpo-
lation method. However, using the core of E∗ still requires a relatively deep understanding
of the involved entities. This section describes the next higher level in the robot control
structure: Providing a convenient way for using E∗ in global path planning. Section 4.8.1
presents GridPlanner, a façade [19] that provides a simple interface for setting obstacle
information and retrieving the gradient of the navigation function. The results that can
be obtained with GridPlanner are presented in section 4.8.2.

4.8.1 GridPlanner Usage

The GridPlanner façade makes it easy to use the E∗ algorithm for global grid based path
planning. In particular, it takes care of creating the Grid, Wavefront, and Interpolation

instances based on parameters provided by the user. In addition, it manages the environ-
ment model such that it is appropriate for the E∗ algorithm. Thus, obstacle additions
and removals (as well as direct manipulations of relative risk) are handled through this
interface.

States

GridPlanner defines states that correspond to various planning phases, from modification
of the goal or environment information to propagation of path costs. Figure 4.17 illustrates
the associated finite state machine. The following list provides more details about the
states.

IDLE No pending modifications of obstacle information and no pending events for the
path cost propagation. Calling PropagateAll() will normally leave the planner in
IDLE state (unless an error occurs). If the goal of obstacle information is modified,
the planner will respectively go into states UPDATE OBSTDIST or UPDATE PATHCOST.

RESET Transitional state that allows correct initialization of the planner’s state after
setting a goal, or after a call to Reset().

ERROR This state can only be left by calling Reset(). It signals an internal error. Occur-
rence of this state indicates a bug in the implementation.

UPDATE OBSTDIST The planner is in the process of updating obstacle distance information.
This is done by propagating a specialized wavefront that starts from the obstacles

88 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

 0

 20

 40

 60

 80

 100

 120

-180-135 -90 -45 0 45 90 135 180

co
un

t

dtheta [deg], 5 degree bins

path direction histogram

 0

 20

 40

 60

 80

 100

 120

-180-135 -90 -45 0 45 90 135 180

co
un

t

dtheta [deg], 5 degree bins

path direction histogram

Figure 4.16: Example paths from the simulations.
The top row shows the final paths: On the left, no interpolation was used
and the path shows grid effects. On the right, interpolation has been used
to achieve a better distance map. The thick dots on the trajectory indicate
where replanning occurred. These paths correspond to the experiments at
cell size 0.2 in the maze environment (table 4.5). Path lengths are 91.3 on
the left and 88.9 on the right.
The bottom row shows histograms of the path directions: On the left, you
can see that the NF1 prefers directions along multiples of π/4, whereas the
plot on the right indicates there is less preference for these angles in LSM.
Note that the environment presents sections where the best path direction
lies very close to a multiple of π/4, hence the remaining peaks in the LSM
histogram.

4.8. GLOBAL PLANNING WITH E∗ 89

UPDATE_OBSTDIST

UPDATE_RISK

UPDATE_PATHCOST

RESET IDLE

ERROR

Figure 4.17: States of GridPlanner – thick lines highlight the main states and the normal
transitions between them. IDLE is usually followed by UPDATE OBSTDIST af-
ter obstacle information has been modified. Then, the planner performs an
update of meta information when in state UPDATE RISK, a transitional state
that is followed by UPDATE PATHCOST. The latter is the state in which actual
path costs are propagated through the grid. The planner goes back to IDLE

after this task has been completed. States RESET and ERROR are not directly
related to stages of the E∗ algorithm, they are used for resetting the planner
and signalling internal errors. Table ?? provides more details.

90 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

and sweeps into free space, calculating the distance to the closest obstacle for each
location. As soon as the lower bound on the known obstacle distance reaches the
sum of robot radius and width of the transitional zone, the planner will switch to
UPDATE RISK.

UPDATE RISK Just after completing the calculation of the obstacle distance map, the
distances are mapped through the RiskMap and Interpolation instances to calculate
the meta information of each cell. Changes to this meta information trigger lower
and raise events, so the next state normally is UPDATE PATHCOST.

UPDATE PATHCOST After completing the update of the meta information, any changes to
the environment model are propagated. During this phase, the meta information
does not change. Calling PropagateTo() usually leaves the planner in this state.

Allocation

In order to facilitate creation and initialization of GridPlanner instances, a factory method
called Create() is provided. It takes a special Parameters object which regroups all pa-
rameters that are important for creating the planner object. The most important param-
eters are described in the following.

double robot radius The radius of the robot. This value is used to “blow up” obstacles
for the C projection that allows to plan without taking into account the robot’s
orientation.

double transition width The width of transitional buffer around the robot. Within this
distance in addition to the robot radius, the risk decreases from 1 to 0. How exactly
this monotonically decreasing mapping is done depends on the chosen RiskMap. The
transition width acts as a sort of buffer distance, which can be violated if the passage
is narrow but which usually keeps the robot from grazing walls.

int xdim The width (x-dimension) of the grid, measured in the number of columns. To-
gether with the grid height and scale (cell size h) this defines the workspace region
covered by the planner.

int ydim The height (y-dimension) of the grid, defines the number of lines in the grid.
Together with the grid width and scale (cell size h) this defines the workspace region
covered by the planner.

double scale The cell size h or scale of the grid defines the resolution in meters. Together
with the grid width and height this defines the workspace region covered by the
planner.

string interpolation name The interpolation method is chosen by name as well. The
purely graph based method of section 4.6.1 is called “nf1” due to it’s similarity with

4.8. GLOBAL PLANNING WITH E∗ 91

the NF1 function, the reconstruction of Huygens’ Principle (section 4.6.2) is chosen by
specifying “hpr”, and the Level Set Method’s gradient approximation of section 4.6.3
is selected using “lsm”.

string risk map name This name selects which risk map should be used for translating
obstacle distance to relative risks (0 signifying free space, 1 indicates a locations of
guaranteed collisions). RiskMap instances take the robot radius and transition zone
width as parameters, the risk map name defines the type of mapping, possible values
are “linear” or “quad”, the latter being a quadratic function tangent to the x-axis at
the transition to zero risk.

Accessors

Accessors allow querying the planner about information that is required for integrating
GridPlanner into the rest of the robot software. The most important accessor methods
are listed below.

state t GetState() Returns the current state of the planner.

bool IsReachable(position t pos) Determines whether a given location is reachable under
the currently known obstacle information. The returned value is only accurate if
there are no pending obstacle modifications.

bool IsGoal(position t pos) Returns true if the given position lies inside a cell of the goal
region. Useful for determining when the robot has reached the goal.

bool IsObstacle(position t pos) Returns true if the given position is an obstacle (added
with one of the AddObstacle() methods). Non-obstacle cells can still have a risk of
1 because of the risk map, which grows obstacles by one robot radius.

double GetPathcost(position t pos) Returns the path cost at a given location, at the
current state in the propagation. The returned value is only optimal if there are no
pending obstacle changes and the pathcost wavefront has been propagated far enough
(i.e. if GetState() == IDLE or just after a call to the PropagateTo() method). If
the provided location is not in the grid, -1 is returned.

position t CalculateGradient(position t pos) Calculate the gradient at a given location.
The robot can be controlled by making it follow the negated gradient. The returned
gradient is only optimal if there are no pending obstacle changes and the pathcost
wavefront has been propagated far enough (i.e. if GetState() == IDLE or just after
a call to the PropagateTo() method). If the location is not in the grid, (0, 0)T is
returned.

92 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

Navigation Methods

The navigation interface of GridPlanner is the part that is designed to provide high-level
control of E∗ when it is in charge of translating obstacle information into meta values and
propagating the path cost from goal to robot. A selection of its most important methods
is given here.

Reset() Resets the planner. All components (path costs, obstacles, goal, wavefront) are
reset to initial values (i.e. infinite path costs, empty environment, no goal specified).

SetGoal(Goal goal) Resets path costs to infinity outside goal and the provided initial
values (encapsulated in a Goal object) inside the goal. Initializes the wavefront to
the new goal, but leaves obstacle information untouched.

PropagateAll() Calculates the path cost throughout the environment by propagating
first the obstacle distances, then mapping the risks, and finally propagating the cell
values until all events have been processed. It is usually not necessary to use up all
events, especially if the robot is already close to the goal. Using the PropagateTo()
method is thus preferable.

PropagateTo(position t pos) Calculates the path costs until the given position lies inside
the region of known optimal path costs. If an invalid position is specified (one that
lies outside the grid) this method returns without taking any other action. Method
IsReachable() is provided to test if the wavefront has been propagated to the wanted
position.

Environment Model

Part of the GridPlanner interface is dedicated to managing environment information at
a high level, allowing to add and remove obstacles using global coordinates and even to
directly specify risk values (overriding the risk that would otherwise be obtained using
the obstacle distance and risk map). These methods are listed below. Note that the C
transform is simplified by projecting along θ, that is to say obstacles are grown by the
robot radius. In addition, a buffer zone can be inserted to implement custom transitions
from risk 1 (C obstacle) to risk 0 (free space). This is done through a RiskMap strategy
object.

AddObstacle(position t pos) Adds a location (specified either in global coordinates or
with grid indices) to the set of obstacles. This does not immediately change the risk
or meta information associated with that location, first the obstacle distance has to
be propagated.

RemoveObstacle(position t pos) Removes a location (specified either in global coordinates
or with grid indices) from the set of obstacles. As for AddObstacle(), the obstacle
distance has to be propagated before this change will start influencing the path cost
map (navigation function).

4.9. CONCLUSION AND OUTLOOK 93

SetRisk(position t pos, double risk) Override a cell’s relative risk (the one calculated
from obstacle distance). This is useful for defining high-risk zones that should be
avoided, or lower the risk in special places. As opposed to the other two ways of
influencing the environment model, changing the relative risk of a location directly
triggers dynamic replanning events.

The risk map translates risks ∈ [0, 1] to meta information Fi. GridPlanner provides
the distance to the closest obstacle for each cell, which is provided to the RiskMap to yield
a value between zero and 1, and then translated to a meta value using the Interpolation

object. This two-stage process provides flexibility with respect to (i) the form of the buffer
zone and (ii) the interpolation kernel.

Note that just like the path cost information (i.e. the crossing time map), the obstacle
distance is maintained using the E∗ mechanism. This is achieved by using obstacle locations
as “goals” in an otherwise empty environment, the resulting crossing times are equivalent
to the distance to the closest obstacle cell.

4.8.2 Illustrated Operation of GridPlanner

The four figures shown in this section are simulated sequences that were constructed to
demonstrate the performance of E∗ when used as a full-fledged global planner. The setups
are both run with two different kernels: LSM interpolation has proven the most robust
and precise method, and the NF1 kernel provides a comparison with the performance
that can be expected from D∗. In the first setup (figures 4.18 and 4.19), the robot has to
navigate through an unknown maze. The second setup (figures 4.20 and 4.21) demonstrates
the effect of removing an existing obstacle, which can lead to topological changes in the
optimal path direction.

4.9 Conclusion and Outlook

The E∗ algorithm, so named because it is based on events and can be made to mimic D∗,
allows to calculate and update smooth navigation functions that approximate true distance
much better than other grid or graph based methods – by an order of magnitude or more
given the right initial conditions. The additional computational complexity required for
this achievement is a factor of two in the theoretical worst case (for first-order kernels),
but experiments suggest a factor of approximately 1.2 to 1.6 in practice. Each of the
propagation steps becomes more elaborate as well, because a robust interpolation kernel
requires more calculations than the non-interpolating case. This amounts to a factor below
1.4 in the case of the robust LSM interpolation when compared with the NF1 kernel that
mimics D∗.

In addition to providing an interpolated navigation functions with dynamic replanning,
E∗ is independent of interpolation details and can thus be used to evaluate different kernels
in terms of their quality and computational costs.

94 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

Figure 4.18: Maze exploration with LSM. Shortly after the beginning (top row), the nav-
igation function (left) and risk map (right) reflect the lack of information
about the majority of obstacles (orange cells are C obstacles, dark blue ones
are free). The second row illustrates a topology change due to the discovery
of a wall across a passage previously expected to be free. The bottom row
shows the complete path from start to goal (left) and the final environmental
model (right).

4.9. CONCLUSION AND OUTLOOK 95

Figure 4.19: Maze exploration with NF1, the sequence of images is the same as in fig-
ure 4.18. Note the grid discretization effects that are clearly visible in the
navigation function and risk map. This leads to an unsmooth and longer
path.

96 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

Figure 4.20: Obstacle removal with LSM: After the robot has discovered the L-shaped
obstacle, it plans a path around it (top left). The top right shows the naviga-
tion function after freeing a passage in the obstacle, the optimal path switches
topology by going through this opening. Then, an obstacle was added behind
the passage, but such that the robot could pass (bottom right shows the risk
map). However, the optimal path switches back to the old topology, because
the new obstacles causes a higher accumulated risk: The robot takes a detour
to avoid the dangerous zone (bottom left).

4.9. CONCLUSION AND OUTLOOK 97

Figure 4.21: Obstacle removal with NF1, the sequence of images is the same as in fig-
ure 4.20. Again, note the grid effects, and also that more obstacles were
needed to make the robot switch back to the original topology (bottom row).
This indicates that the RiskMap and Interpolation combined determine the
amount of risk required for accepting a detour.

98 CHAPTER 4. E∗: DYNAMIC INTERPOLATED PLANNING

Generalizing E∗ to higher dimensions and interpolation orders is relatively straightfor-
ward: Event propagation relies on neighborhood information which can be defined inde-
pendent of the dimensionality. Extending to non-grid representation is feasible as well:
The only part of this chapter which really depends on the grid nature is the LSM inter-
polation, and this has already been applied to triangulated domains11 in [27]. With E∗

extended to graphs, it will be more readily applicable to the weighted regions path planning
problem [37, 42].

11Triangulated domains are used as mesh representation of surfaces embedded in higher dimensional
space. A graph representation of a robot’s environment can be described as a triangulated domain if the
regions created by its edges are all triangles.

Chapter 5

Conclusion

If I have been able to see further, it was only because I stood on the shoulders
of giants.

Isaac Newton in a letter to Robert Hooke, 1675

This thesis contains two new contributions to the field of mobile robot path planning and
obstacle avoidance: An application-oriented robust motion generation system (described
in chapter 3) and a novel framework for interpolated navigation functions with dynamic re-
planning (presented in chapter 4). All software developed for this thesis is open source and
released under the GNU General Public License1. This facilitates exchange for research,
deployment for applications, and ensures that the system remains available.

During the five months of the Robotics@Expo.02 event it has been shown that path
planning and obstacle avoidance in dynamic cluttered environments can be done in an
effective way. Furthermore, the resulting robot movement is convincing for individuals
without technical background, a requirement that has been likened to hard AI problems in
the introduction, due to the largely subconscious nature of human movement. The stringent
safety requirements for such a public event have been met and the system presented in
chapter 3 is mature. Its most important tunable parameters are summarized and explained
in table 3.2 in order to ease its adaption to future applications.

The E∗ framework presented in chapter 4 addresses the need for smooth navigation
functions in a flexible way. It builds on the stable foundations of the D∗ algorithm and
(Fast Marching) Level Set Methods and defines a generic approach to dynamic replanning.
It produces a very good approximation to the topologically correct Euclidean distance from
any point in the environment to the goal. It is flexible with respect to the interpolation
kernel and incorporates a continuous notion of risk which is important for practical motion
planning because it allows defining buffer zones around obstacles or, more generally, regions
of varying traversability. In its current implementation, E∗ applies to regular grids. How-
ever, most of the underlying theory is based on the more general graph structure, and an
extension to graphs exists for the Fast Marching Method. It can thus be anticipated that

1http://www.gnu.org/

99

100 CHAPTER 5. CONCLUSION

E∗ will be endowed with exact cell-decomposition, the missing prerequisite for complete
planning with this framework.

The contributions of this work share an important trait: Formulating novel combina-
tions of existing methods in order to fulfill objectives that are partially addressed by the
composing methods, making the whole become more than the sum of its parts. The suc-
cess that has been met with this approach illustrates the growing maturity of mobile robot
path planning and obstacle avoidance, a technology that is poised to greatly influence the
lifestyle in our societies.

Bibliography

[1] R. Alami, T. Siméon, and K. Madhava Krishna. On the influence of sensor capacities
and environment dynamics onto collision-free motion plans. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2002.

[2] Kai Oliver Arras. Feature-Based Robot Navigation in Known and Unknown Environ-
ments. PhD thesis, École Polytechnique Fédérale de Lausanne, 2003.

[3] K.O. Arras, J. Persson, N. Tomatis, and R. Siegwart. Real-time obstacle avoidance
for polygonal robots with a reduced dynamic window. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2002.

[4] Enrique J. Bernabeu, Josep Tornero, and Masayoshi Tomizuka. Collision prediction
and avoidance amidst moving objects for trajectory planning applications. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA),
2001.

[5] J. Borenstein and L. Feng. Measurement and correction of systematic odometry errors
in mobile robots. IEEE Transactions on Robotics and Automation, 12(5):869–80, 1996.

[6] J. Borenstein and Y. Koren. The vector field histogram-fast obstacle avoidance for
mobile robots. IEEE Transactions on Robotics and Automation, 7(3):278–88, June
1991.

[7] Michael S. Branicky and Ravi Hebbar. Fast Marching for Hybrid Control. In Pro-
ceedings of the IEEE International Symposium on Computer Aided Control System
Design, 1999.

[8] R. Brega, N. Tomatis, and K.O. Arras. The need for autonomy and real-time in mobile
robotics: A case study of XO/2 and pygmalion. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2000.

[9] O. Brock and O. Khatib. High-speed navigation using the global dynamic window
approach. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), 1999.

101

102 BIBLIOGRAPHY

[10] James Bruce and Manuela Veloso. Real-time randomized path planning for robot
navigation. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2002.

[11] Howie Choset and Joel Burdick. Sensor-based exploration: The hierarchical general-
ized voronoi graph. International Journal of Robotics Research, 19(2):96–125, 2000.

[12] Howie Choset, Sean Walker, Kunnayut Eiamsa-Ard, and Joel Burdick. Sensor-based
exploration: Construction of the the hierarchical generalized voronoi graph. Interna-
tional Journal of Robotics Research, 19(2):126–48, 2000.

[13] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, (1):269–271, 1959.

[14] Hans Jacob S. Feder and Jean-Jacques E. Slotine. Real-time path planning using har-
monic potentials in dynamic environments. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 1997.

[15] Paolo Fiorini and Zvi Shiller. Motion planning in dynamic environments using the
relative velocity paradigm. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 1993.

[16] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
2000.

[17] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision
avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33, March 1997.

[18] Thierry Fraichard. Trajectory planning in a dynamic workspace: a ’state-time space’
approach. Advanced Robotics, 13(1):75–94, 1999.

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[20] David Hsu, Robert Kindel, Jean-Claude Latombe, and Stephen Rock. Random-
ized kinodynamic motion planning with moving obstacles. International Journal of
Robotics Research, 21(3):233–255, 2002.

[21] B. Jensen, G. Froidevaux, X. Greppin, A. Lorotte, L. Mayor, M. Meisser, G. Ramel,
and R. Siegwart. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 2003.

[22] B. Jensen, R. Philippsen, and R. Siegwart. Motion detection and path planning
in dynamic environments. In Workshop Proceedings Reasoning with Uncertainty in
Robotics, International Joint Conference on Artificial Intelligence (IJCAI), 2003.

BIBLIOGRAPHY 103

[23] Björn Jensen. Motion Tracking for Human-Robot Interaction. PhD thesis, École
Polytechnique Fédérale de Lausanne, 2004.

[24] M. Khatib, H. Jaouni, R. Chatila, and JP. Laumond. Dynamic path modification
for car-like nonholonomic mobile robots. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 1997.

[25] Maher Khatib and Raja Chatila. An extended potential field approach for mobile robot
sensor-based motions. In Proceedings of the International Conference on Intelligent
Autonomous Systems (IAS), 1995.

[26] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Inter-
national Journal of Robotics Research, 5(1), 1986.

[27] R. Kimmel and J.A. Sethian. Computing geodesic paths on manifolds. Proc. Natl.
Acad. Sci. USA, 95(15):8431–8435, July 1998.

[28] Nak Yong Ko and Reid G. Simmons. The lane-curvature method for local obstacle
avoidance. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 1998.

[29] Kurt Konolige. A gradient method for realtime robot control. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2000.

[30] Frederic Large, Sepanta Sekhavat, Zvi Shiller, and Christian Laugier. Towards real-
time global motion planning in a dynamic environment using the NLVO concept.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2002.

[31] J.-C. Latombe. Robot motion planning. Kluwer Academic Publishers, Dordrecht,
Netherlands, 1991.

[32] Steven M. LaValle and James J. Kuffner Jr. Randomized kinodynamic planning.
International Journal of Robotics Research, 20(5):378–400, May 2001.

[33] Tomás Lozano-Perez. Spatial planning: A configuration space approach. IEEE Trans-
actions on Computers, 32(2):108–120, February 1983.

[34] J. Minguez and L. Montano. Nearness diagram navigation (ND): A new real time col-
lision avoidance approach. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2000.

[35] J. Minguez, L. Montano, T. Simeon, and R. Alami. Global nearness diagramm navi-
gation (GND). In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2001.

104 BIBLIOGRAPHY

[36] Javier Minguez, Luis Montano, and Oussama Khatib. Reactive collision avoidance for
navigation with dynamic constraints. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2002.

[37] J. S. B. Mitchell and C. H. Papadimitriou. The weighted region problem: Finding
shortest paths trhough a weighted planar subdivision. Journal of the ACM, 38(1):18–
73, 1991.

[38] Jan Persson. Obstacle avoidance for mobile robotics. In Diploma thesis, Dept. of
Electrical Eng., Linköpings University, Sweden, 2000.

[39] R. Philippsen and R. Siegwart. Smooth and efficient obstacle avoidance for a tour
guide robot. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2003.

[40] Sean Quinlan. Real-Time Modification of Collision-Free Paths. PhD thesis, Computer
Science Department, Stanford University, 1994.

[41] Sean Quinlan and Oussama Khatib. Elastic bands: connecting path planning and
control. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), 1993.

[42] N. C. Rowe and R. S. Alexander. Finding optimal-path maps for path planning across
weighted regions. International Journal of Robotics Research, 19(2):83–95, 2000.

[43] C. Schlegel. Fast local obstacle avoidance under kinematic and dynamic constraints
for a mobile robot. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 1998.

[44] S. Sekhavat and M. Chyba. Nonholonomic deformation of a potential field for mo-
tion planing. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 1999.

[45] J. A. Sethian. A fast marching level set method for monotonically advancing fronts.
Applied Mathematics, Proc. Natl. Acad. Sci. USA, (93):1591–1595, February 1996.

[46] J. A. Sethian. Evolution, implementation, and application of level set and fast march-
ing methods for advancing fronts. Journal of Computational Physics, (169):503–555,
2001.

[47] J.A. Sethian. Level Set Methods – Evolving interfaces in geometry, fluid mechanics,
computer vision, and materials science. Cambridge University Press, 1996.

[48] R. Siegwart, K.O. Arras, B. Jensen, R. Philippsen, and N. Tomatis. Design, implemen-
tation and exploitation of a new fully autonomous tour guide robot. In Proceedings of
the 1st International Workshop on Advances in Service Robotics, ASER 2003, 2003.

BIBLIOGRAPHY 105

[49] Roland Siegwart, Kai O. Arras, Samir Bouabdallah, Daniel Burnier, Gilles Froidevaux,
Xavier Greppin, Björn Jensen, Antoine Lorotte, Laetitia Mayor, Mathieu Meisser,
Roland Philippsen, Ralph Piguet, Guy Ramel, Gregoire Terrien, and Nicola Toma-
tis. Robox at Expo.02: A large-scale installation of personal robots. Robotics and
Autonomous Systems, 42:203–222, 2003.

[50] Roland Siegwart and Illah Nourbakhsh. Introduction to Autonomous Mobile Robots.
A Bradford Book, The MIT Press, Cambridge, Massachusetts and London, England,
2004.

[51] Reid Simmons. The curvature-velocity method for local obstacle avoidance. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA),
1996.

[52] Anthony Stentz. Optimal and efficient path planning for partially-known environ-
ments. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), 1994.

[53] Anthony Stentz. The focussed D∗ algorithm for real-time replanning. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), 1995.

[54] Matthias Strobel. Navigation in partially unknown, narrow, cluttered space. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA),
1999.

[55] N. Tomatis, G. Terrien, R. Piguet, D. Burnier, S. Bouabdallah, K.O. Arras, and
R. Siegwart. Designing a secure and robust mobile interacting robot for the long term.
In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2003.

[56] John N. Tsitsiklis. Efficient Algorithms for Globally Optimal Trajectories. IEEE
Transactions on Automatic Control, 40(9):1528–1538, September 1995.

[57] A. M. Turing. Computing machinery and intelligence. Mind, (59), 1950.

[58] Iwan Ulrich and Johann Borenstein. VFH+: Reliable obstacle avoidance for fast
mobile robots. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 1998.

[59] Iwan Ulrich and Johann Borenstein. VFH∗: Local obstacle avoidance with look-ahead
verification. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2000.

106 BIBLIOGRAPHY

Appendix A

MotionPlanner Implementation
Details

A.1 A Numerically Stable Quadratic Equation Solver

A numerically stable method for solving the quadratic equation αT 2 + βT + γ = 0 is
developed below. The general solution is (A.1). Special cases arise for α, β, γ ≈ 0 and
combinations thereof, by comparing their absolute values with ε � 1 considered equivalent
to zero. During Robotics@Expo.02, we used ε = 10−9.

T1,2 =
−β ±

√
β2 − 4αγ

2α
(A.1)

(|α| < ε)� βT + γ = 0

�

T = −γ/β ⇐ |β| ≥ ε

T ∈ R ⇐ (|β| < ε) ∩ (|γ| < ε)

no solution otherwise

(A.2)

(|α| ≥ ε) ∩ (|β| < ε)� αT 2 + γ = 0 ⇔ T 2 = −γ/α

�

T = 0 ⇐ |γ/α| < ε2

T1,2 = ±
√

−γ/α ⇐ (|γ/α| ≥ ε2) ∩ (−γ/α > 0)

no solution otherwise

(A.3)

(|α| ≥ ε) ∩ (|β| ≥ ε) ∩ (|γ| < ε)� αT 2 + βT = 0

⇒
{

T1 = 0

T2 = −β/α
(A.4)

107

108 APPENDIX A. MOTIONPLANNER IMPLEMENTATION DETAILS

200 400 600 800 1000 1200

700

800

900

1000

1100

1200

1300

1400

NF1, traced path

x

y

Figure A.1: Example of path plan generated using NF1. Grid values are represented as
shades of gray (0 = black), the white squares inside cells are obstacles. The
robot starts at the position indicated by the star. Note the two typical prop-
erties of paths planned using NF1: It grazes obstacles and consists of straight
segments joined by angles that are multiplies of π/4.

(|α| ≥ ε) ∩ (|β| ≥ ε) ∩ (|γ| ≥ ε)

�

no solution ⇐ β2 − 4αγ < 0

T = −β
2α

⇐ 0 ≥ β2 − 4αγ < ε2

T1,2 =
−β±

√
β2−4αγ

2α
otherwise

(A.5)

A.2 An Implementation of NF1

The NF1 navigation function is a relatively simple algorithm that constructs a discrete
potential with a unique minimum at the goal location. Any location with a path to the
goal gets assigned a natural number, and following the steepest negative gradient (i.e.
choosing the neighbor of lowest height as intermediate goal) is guaranteed to lead the
robot to the goal. Locations from which the goal is not reachable are easily recognized as
well, as the special value that signifies unvisited cells is never changed.

A.2. AN IMPLEMENTATION OF NF1 109

Listing A.1 NF1 C++ code
void NF1::Calculate(){
grid.Fill(-2); // -2 denotes unlabeled cells
for(int i(0); i < n_scan_points; ++i)
grid.SetDisk(scan_point[i], radius, -1); // -1 denotes occupied cells

for(int i(0); i < n_goal_points; ++i)
grid.SetValue(goal_point[i], 0); // 0 denotes goal cells

bool finished(false); // denotes end of iterations
int current_label(0); // wavefront label
int next_label(1); // wavefront for next iteration

while(! finished){
finished = true;
for(int ix(0); ix < dimx; ++ix)

for(int iy(0); iy < dimy; ++iy){
// skip cells that are not on the wavefront
if(grid.Value(ix, iy) != current_label)
continue;

// check for grid boundaries and update unlabeled neighbors
if((ix > 0) && (grid.Value(ix-1, iy) == -2)){
grid.SetValue(ix-1, iy, next_label);
finished = false;

}
if((ix < dimx-1) && (grid.Value(ix+1, iy) == -2)){
grid.SetValue(ix+1, iy, next_label);
finished = false;

}
if((iy > 0) && (grid.Value(ix, iy-1) == -2)){
grid.SetValue(ix, iy-1, next_label);
finished = false;

}
if((iy < dimy-1) && (grid.Value(ix, iy+1) == -2)){
grid.SetValue(ix, iy+1, next_label);
finished = false;

}
}

++current_label;
++next_label;

}
}

110 APPENDIX A. MOTIONPLANNER IMPLEMENTATION DETAILS

Listing A.1 is an implementation in C++. Figure A.1 shows an example run. When
comparing NF1 with potential field methods, the following aspects are important:

Model or sensor based: When equipped with sufficiently dense and accurate sensors, it
is possible to implement the potential field method without model: Directly convert
range readings into potentials, according to the idea that “the world is it’s own best
model”. This is not possible with the NF1, because all known obstacles have to be
added to the grid (the environment model) prior to running the propagation loop.

Global or local: NF1 is a method to find a globally valid path, taking into account the
collected obstacle information and usually traversing every cell in the grid, even the
ones far from the actual robot position. Potential field methods are local in the
sense that each obstacle’s influence is calculated only at the robot’s position. This
difference enables NF1 to avoid local minima, but at the same time requires some
kind of model to base that global calculation on.

Smoothness: Taken in it’s raw form, a path planned using the NF1 is not smooth (fig-
ure A.1). Potential field methods on the other hand tend to produce smooth trajecto-
ries (if their parameters are correctly tuned to the environment, the robot’s sensors,
and its actuators).

A.3 A Variant of the Lloyd-Max Quantizer

This implementation of the Lloyd-Max quantizer assumes all values respect 0 ≤ v ≤ Tmax,
and it uses the minimum value of each bin for representing all values within that bin
(instead of the mean value used in the original formulation). Once the buffer has been
filled with the values (i.e. collision predictions of DWA), the methods CreateHistogram()
(listing A.2), LloydMax() (listing A.3), and Quantize() (listing A.4) are called in that
order to produce the compressed collision lookup for a particular cell of the local obstacle
grid.

A.3. A VARIANT OF THE LLOYD-MAX QUANTIZER 111

Listing A.2 Creating the histogram for Lloyd-Max quantizing.
void Lookup::
CreateHistogram()
{
nBins = maxNbins;

// load buffer into histogram
int count(0);
for(int i = 0; i < dimension; ++i)
for(int j = 0; j < dimension; ++j){

histogram[count] = buffer[i][j];
++count;

}

// sort histogram (insert sort, simple but slow)
for(int j = 1; j < dimension * dimension; ++j){
double key(histogram[j]);
int i(j - 1);
while((i >= 0) && (histogram[i] > key)){

histogram[i + 1] = histogram[i];
--i;

}
histogram[i + 1] = key;

}
}

112 APPENDIX A. MOTIONPLANNER IMPLEMENTATION DETAILS

Listing A.3 C++ implementation of the Lloyd-Max quantizer
void Lookup::
LloydMax()
{
// initialize bins
double vmax;
bool found(false);
for(int i = 0; i < dimension * dimension; ++i)
if(histogram[i] <= maxValid){ found = true; vmax = histogram[i]; }
else break;

if(! found){ noValid = true; return; }
noValid = false;

double vmin;
for(int i = 0; i < dimension * dimension; ++i)
if(histogram[i] >= minValid){ vmin = histogram[i]; break; }

double scale((vmax - vmin) / maxNbins);
for(int i = 0; i < maxNbins; ++i){
bin[i].t = vmin + i * scale;
bin[i].r = -1;

}
bin[maxNbins].t = vmax;

// Main loop
nBins = maxNbins;
bool finished(false);
while(! finished){
finished = true;

double r2;
for(int i = 0; i < nBins - 1; ++i){

r2 = PartialMean(bin[i].t, bin[i + 1].t);
if(absval(bin[i].r - r2) > 1e-9) finished = false;
bin[i].r = r2;

}
r2 = PartialMeanInclusive(bin[nBins - 1].t, bin[nBins].t);
if(absval(bin[nBins - 1].r - r2) > 1e-9) finished = false;
bin[nBins - 1].r = r2;

// remove empty bins
for(int i = 0; i < nBins; ++i)

if(bin[i].r < 0){
--nBins;
for(int j = i; j < nBins; ++j){
bin[j].t = bin[j + 1].t;
bin[j].r = bin[j + 1].r;

}
bin[nBins].t = bin[nBins + 1].t; // one more boundary than levels
--i;

}

// calculate boundaries
for(int i = 1; i < nBins; ++i)

bin[i].t = 0.5 * (bin[i - 1].r + bin[i].r);
} // while(!finished)

}

A.3. A VARIANT OF THE LLOYD-MAX QUANTIZER 113

Listing A.4 Replacing double values by quantizer indices.
void Lookup::
Quantize()
{
if(noValid)
return;

if(quantizer != 0)
delete[] quantizer;

quantizer = new double[nBins + 1]; // one special bin for "no intersection"

// init quantizer values
for(int i = 0; i < nBins - 1; ++i)
quantizer[i] = PartialMin(bin[i].t, bin[i + 1].t);

quantizer[nBins - 1] = PartialMinInclusive(bin[nBins - 1].t, bin[nBins].t);
quantizer[nBins] = -1;

// quantize buffer and store it in value[][]
for(int i = 0; i < dimension; ++i){
for(int j = 0; j < dimension; ++j){

double val(buffer[i][j]);
int k;
for(k = 0; k < nBins; ++k)
if((val >= bin[k].t) && (val < bin[k + 1].t)){
value[i][j] = k;
break;

}
if(k == nBins){
if(val == bin[nBins].t){ // last bin is "right-inclusive"
value[i][j] = nBins - 1;

}
else{
value[i][j] = nBins; // no intersection (or too far)

}
}

}
}

}

114 APPENDIX A. MOTIONPLANNER IMPLEMENTATION DETAILS

Appendix B

E∗ Implementation Details

B.1 Event Propagation

Listing B.1 shows the propagation of lower events implemented in C++. The target cell is
stored in to, and the interpolation is used to calculate the best (i.e. lowest) value from
the cell’s neighbors1. If it is an improvement, the cell and its backpointers are updated
accordingly. Then, the front is used to lower all neighbors with values above the one just
updated.

Listing B.2 shows the implementation of raise event propagation in C++. The front

is used to enqueue RaiseEvents to all neighbors with a backpointer to the current cell,
and to schedule a future RetryEvent which will attempt to lower this cell once the wake
of raise events has moved on. The cell’s value is set to infinity and its backpointers are
removed to ensure that no neighbor will use this cell for path cost calculations.

1lower t is a type that contains the value and backpointers that indicate which cells have been used
to calculate the value.

Listing B.1 LowerEvent propagation algorithm.
void LowerEvent::
Propagate(Wavefront & front, Interpolation & interpolation)
{
Interpolation::lowest_t lowest(interpolation.CalculateBest(_to));
if(_to->Value() < lowest.value)
return;

_to->SetValue(lowest.value);
_to->SetPrimary(lowest.primary);
_to->SetSecondary(lowest.secondary);

front.InitLower(lowest.value, _to);
}

115

116 APPENDIX B. E∗ IMPLEMENTATION DETAILS

Listing B.2 RaiseEvent propagation algorithm.
void RaiseEvent::
Propagate(Wavefront & front, Interpolation & interpolation)
{
front.InitRaise(_to->Value(), _to);
front.Retry(_to->Value() + front.Scale(), _to);
_to->SetValue(front.Infinity());
_to->SetPrimary(0);
_to->SetSecondary(0);

}

Listing B.3 C++ implementation of the NF1 kernel presented in section 4.6.1
Interpolation::lowest_t NF1Interpolation::
Calculate(Cell * primary, Cell * secondary, Cell * to)
{
if(to->Meta() == ObstacleMeta())
return lowest_t(_infinity, 0, 0);

double primval(primary->Value());
if(primval >= _infinity)
return lowest_t(_infinity, 0, 0);

return lowest_t(primval + _scale + to->Meta(),
primary, 0);

}

B.2 Interpolation Kernels

Listing B.3 shows the implementation of graph-distance based “interpolation”. It checks
for for propagations to or from obstacles before performing the actual calculations of equa-
tion (4.8).

The kernel based on Huygens’ Principle is given in listing B.4. vec2d is a utility class
with two-dimensional vector semantics. At the beginning, attempts to propagate from
or to obstacles (and un-visited cells) are caught. Then cell positions are expressed in the
global and propagating coordinate frames. The check for dist < epsilon is to avoid using
coincident backpointers. Then comes the calculation of the wave source s and the tests for
the inclusion of c0 in the region of valid interpolation.

Listing B.5 shows the implementation in C++ of the update equation (4.20). Parameter
primary refers to node A of figure 4.10, secondary is node C, and to corresponds to the
center node. Obstacles are handled specially, because the solution breaks down for zero
propagation speeds. The second check is to ensure that obstacles and unvisited cells are not
used for updates. The third check is for the fallback solution, and finally the calculation
of the non-degenerate solution.

Note that root is never negative because previous checks ensure that the solution lies

B.2. INTERPOLATION KERNELS 117

Listing B.4 C++ implementation of the HPR kernel presented in section 4.6.2
Interpolation::lowest_t HPRInterpolation::
Calculate(Cell * primary, Cell * secondary, Cell * to)
{
const double F0(to->Meta());
if(F0 < epsilon)
return lowest_t(_infinity, 0, 0);

const double T1(primary->Value());
if(T1 >= _infinity)
return lowest_t(_infinity, 0, 0);

const double T2(secondary->Value());
if(T2 >= _infinity)
return CalculateFallback(primary, to);

const vec2d c1G(_grid.LocalPoint(primary->Ix(), primary->Iy()));
const vec2d c2G(_grid.LocalPoint(secondary->Ix(), secondary->Iy()));
const vec2d delta21G(c2G - c1G);
const double dist(delta21G.norm());
if(dist < epsilon)
return CalculateFallback(primary, to);

const vec2d echi(delta21G / dist);
const vec2d egamma(echi.x, - echi.y);
const vec2d c0G(_grid.LocalPoint(to->Ix(), to->Iy()));
const vec2d delta01G(c0G - c1G);
const vec2d c0P(vec2d::inner(delta01G, echi),

vec2d::inner(delta01G, egamma));

const double r1(T1 / F0);
const double r2(T2 / F0);
if(r1 + r2 < dist)
return CalculateFallback(primary, to);

vec2d sP((square(dist) + square(r1) - square(r2)) / 2 / dist, 0);
sP.y = sqrt(square(r1) - square(sP.x));
if(c0P.y > 0)
sP.y = - sP.y;

const vec2d ds0(c0P - sP);
const vec2d ds1(- sP);
const vec2d ds2(dist - sP.x, - sP.y);
const double signcheck(vec2d::outer(ds0, ds1) * vec2d::outer(ds2, ds0));
if(signcheck < 0)
return CalculateFallback(primary, to);

const double solution(ds0.norm() * F0);
if(solution < T2)
return CalculateFallback(primary, to);

return lowest_t(solution, primary, secondary);
}

118 APPENDIX B. E∗ IMPLEMENTATION DETAILS

Listing B.5 Computations for the LSM update equation (4.20).
Interpolation::lowest_t LSMInterpolation::
Calculate(Cell * primary, Cell * secondary, Cell * to)
{
if(to->Meta() == ObstacleMeta())
return lowest_t(_infinity, 0, 0);

const double primval(primary->Value());
if(primval >= _infinity)
return lowest_t(_infinity, 0, 0);

const double secval(secondary->Value());
const double rad(_grid.Scale() / to->Meta());
if(rad <= secval - primval)
return lowest_t(primary->Value() + rad,

primary, 0);

const double b(primval + secval);
const double c((square(primval)

+ square(secval)
- square(rad)) / 2);

const double root(square(b) - 4 * c);

return lowest_t((b + sqrt(root)) / 2,
primary, secondary);

}

on the circular section of the curve shown in figure 4.11, so there is no risk of floating point
exception when calling sqrt(root).

B.2. INTERPOLATION KERNELS 119

Curriculum Vitae

Roland Philippsen was born to German parents on May 6th 1976 in Stanford, USA. He has
an older brother and a younger sister. Starting in 1983, he went to school in Switzerland,
Germany, and the USA, until 1995 when he obtained a Scientific High School Diploma (Ma-
turität Typus C) at the Gymnasium Bäumlihof in Basel, Switzerland. In 2000, he received
a M. Sc. Microengineering EPFL (Ing. Microtechnique Dipl. EPFL) at Ecole Polytechnique
Fédérale de Lausanne, Switzerland (EPFL – Swiss Federal Institute of Technology). The
master thesis “Investigation of the Automated DNA Sequencing System at the Stanford
Genome Center ” analyzes complex material and information flow through a partially au-
tomated genomics installation shared by several research groups. He started work at the
Autonomous Systems Lab (ASL) at EPFL shortly afterwards and has been involved in sev-
eral of its activities, for example setting up the system and drivers for the educational robot
Smartease, giving lectures, supervising student projects, and participating in the launch of
a conference web site. In 2001, he started work on his doctoral thesis “Motion Planning and
Obstacle Avoidance for Mobile Robots in Highly Cluttered Dynamic Environments” at the
ASL, with the chance of beginning in the context of a challenging real-world application:
The Robotics@Expo.02 event. He passed his PhD exam on November 26, 2004.

