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Abstract

The purpose of this thesis is to investigate, from both the mathematical and numerical view-
point, the coupling of surface and porous media flows, with particular concern on environmental
applications.

Domain decomposition methods are applied to set up effective iterative algorithms for the numer-
ical solution of the global problem. To this aim, we reformulate the coupled problem in terms
of an interface (Steklov-Poincaré) equation and we investigate the properties of the Steklov-
Poincaré operators in order to characterize optimal preconditioners that, at the discrete level,
yield convergence in a number of iterations independent of the mesh size h.

We consider a new approach to the classical Robin-Robin method and we reinterpret it as an
alternating direction iterative algorithm. This allows us to characterize robust preconditioners
for the linear Stokes/Darcy problem which improve the behaviour of the classical Dirichlet-
Neumann and Neumann-Neumann ones. Several numerical tests are presented to assess the
convergence properties of the proposed algorithms.

Finally, the nonlinear Navier-Stokes/Darcy coupling is investigated and a general nonlinear
domain decomposition strategy is proposed for the solution of the interface problem, extending
the usual Newton or fixed-point based algorithms.





Version abrégée

L’objet de cette thèse est l’étude du point de vue mathématique et numérique du couplage
d’un écoulement fluide de surface et d’un écoulement en milieu poreux, pour des applications à
l’environnement.

Les méthodes de décomposition de domaines sont appliquées afin de caracteriser des algorithmes
itératifs efficaces pour résoudre numériquement le problème global. Pour cela, nous écrivons le
problème couplé sous la forme d’une équation d’interface (dite de Steklov-Poincaré) et nous
étudions les propriétés des opérateurs de Steklov-Poincaré afin de définir des préconditionneurs
optimaux qui, au niveau discret, garantissent une vitesse de convergence indépendante de la
taille h du maillage considéré.

Nous nous proposons de réinterpreter la méthode classique de Robin-Robin comme un algo-
rithme des directions alternées (alternating direction iterative method). Ceci nous permet de
caracteriser un préconditionneur robuste pour le problème linéaire de Stokes/Darcy, qui améliore
le comportement des préconditionneurs de type Dirichlet-Neumann et Neumann-Neumann. Des
résultats numériques sont présentés pour valider les propriétés de convergence de la méthode
proposée.

Finalement, nous étudions le problème non linéaire de Navier-Stokes/Darcy et nous proposons
un cadre général des possibles méthodes itératives issues de la décomposition de domaines qui
étendent les méthodes de Newton et du point fixe.
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Introduction

The filtration of fluids through porous media is a very interesting subject with relevant applica-
tions. To quote some examples, these phenomena occur in physiology like the filtration of blood
through vessel walls, in industrial processes involving e.g. air or oil filters, in the environment
concerning the waters of an hydrological basin which can percolate through rocks and sand.
In this thesis we address this last application from both a mathematical and a numerical view-
point.
Our computational domain will be a region naturally split into two parts: one occupied by the
fluid, the other by the porous media, as represented in Fig. 0.1. In each subregion we consider
two different mathematical models, typically the Navier-Stokes and Darcy equations in Ωf and
Ωp, respectively. These equations, linked through suitably chosen conditions which describe the
fluid flows across the upper surface of the porous media Γ (hereafter called interface), give rise
to a global differential heterogenous model.

Hydrological basin

Semi-permeable soil

Γ

Ωf

Ωp

Fig. 0.1. Computational domain configuration.

A Galerkin discretization of this coupled problem based e.g. on conforming, or mixed finite
elements, or discontinuous Galerkin methods would lead to represent it as a linear system with
a large, sparse and ill-conditioned matrix, that requires an effective preconditioning strategy to
be solved using iterative methods.
Moreover, based on the naturally decoupled structure of the fluid-porous media problem, it
would be interesting to reduce the size of the global problem by keeping separated the fluid
and the porous media parts and exchanging information between surface and groundwater flows
only through boundary conditions at the interface. Such a strategy would also permit to reuse
existing codes specifically implemented for fluid or groundwater flow simulations.



4 Introduction

Domain decomposition methods seem to fulfill both these requests. In fact, the basic idea of
a domain decomposition approach is to split the computational domain, say Ω, into M ≥ 2
subdomains Ωi, i = 1, . . . ,M , such that Ω =

⋃M
i=1 Ωi. The intersection Ωi ∩ Ωj (i �= j) may be

empty: if this occurs, we speak of nonoverlapping domain decomposition, overlapping otherwise.
Then, the original problem

P (u) = 0 in Ω (0.1)

can be reformulated as a family of subproblems of reduced size Pi(u) = 0, i = 1, . . . ,M , within
each subdomain Ωi. If the differential operator is the same in all subdomains then (0.1) is
said to define a homogeneous domain decomposition problem, otherwise we say that (0.1) is a
heterogeneous domain decomposition problem.
Finally, each subproblem is coupled to the others through the values of the unknowns across the
interfaces.
This coupling is then removed introducing an iterative scheme among subdomains which permit
to recover the solution of the original problem (0.1) by independently solving the subproblems
Pi(u) featuring a lower complexity over each subdomain.

In view of our application, let us consider more in details the nonoverlapping (or Schur) domain
decomposition. In this case, we can associate to the original problem (0.1) an equivalent interface
problem which solely involves the unknowns at the interface Γ:

S(uΓ) = 0 . (0.2)

S is a pseudo-differential operator called Steklov-Poincaré operator and it is composed of local
operators Si (also called Dirichlet-to-Neumann maps). In the case of two subdomains (M = 2),
we can write

S = S1 + S2, (0.3)

where each Si is associated to the subproblem Pi(u) in Ωi and it inherits the properties of the
differential operator which models Pi(u).
Steklov-Poincaré operators are named in this way since the pioneering work of Agoshkov and
Lebedev in the years 1981-1983 (see, e.g., [AL85, Ago88, AL90a, AL90b]), while addressing
iterative methods for solving the interface problem (0.2). More precisely, they have introduced
the inverse operators S−1

i and called them Poincaré-Steklov operators.
Indeed, we are interested in using iterative methods to solve (0.2) since they would require to
compute at each step k the application of S to a given value uk

Γ. Then, owing to (0.3), this would
imply to apply independently each Si, that is to solve separately the subproblems Pi(u) = 0 in
Ωi with suitable boundary data on the interface.
In order to increase the convergence rate of the iterative method, we introduce a preconditioner
or, more generally, a scaling operator, say P.
At the stage of choosing P, the analysis of the Steklov-Poincaré operators is crucial to identify a
preconditioner which would be spectrally equivalent to S and, therefore, would serve to achieve
convergence in a number of steps independent of the physical quantities characterizing S (or,



Introduction 5

equivalently, P (u)) and, at the discrete level, of the size of the original problem. A preconditioner
P which fulfill these requests will be said optimal.
In the literature of homogeneous nonoverlapping domain decomposition, basic classical optimal
preconditioners are the so-called Neumann-Neumann preconditioners which involve a weighted
combination of inverses of the local Steklov-Poincaré operators. For the case of two subdomains
we have:

P−1 = θ1S
−1
1 + θ2S

−1
2

with at least one θi �= 0 (see [SBG96, QV99, TW04]).
Concerning heterogeneous domain decomposition, the issue of characterizing optimal precon-
ditioners is not straightforward because of the difficulty of finding a preconditioning operator
which can account for the different models defined in each subdomain.
An overview on the literature about heterogeneous domain decomposition can be found, e.g., in
[QV99] chapter 8.

The aim of this work is to interpret the coupled fluid-porous media problem in terms on an inter-
face equation analogous to (0.2) and to study it in order to devise effective solution strategies for
its numerical approximation. In particular, we would like to characterize ad-hoc precondition-
ers with optimality properties not only with respect to the grid size h, but also to the relevant
physical quantities of this problem, such as the fluid viscosity and the conductivity of the porous
media.
To our knowledge this thesis constitutes the first attempt in literature to carry out such an
analysis. In fact, although the mathematical and numerical analysis of the single fluid and
porous media problems are well-developed and the literature on their numerical approximation
is really broad, the study of the global model is far less standard due to its intrinsic complexity.
The first rigorous mathematical studies are those by Jäger and Mikelić [JM96, JM00, JMN01]
concerning the characterization of proper coupling conditions, but well-posedness analysis of the
linear Stokes/Darcy coupling and possible discrete approximations can be found only in the very
recent works [BH02, DMQ02, DQ03, DQ04, LSY03, MQS03, Riv03, RY03].
Hints to iterative substructuring methods for the numerical solution of the linear fluid-porous
media problem can be found also in the works by I. Yotov and B. Rivière, however a thorough
investigation of such methods based on the domain decomposition theory is presented only in
[DQ03, DQ04].
Finally, we point out that no result about the nonlinear coupled problem involving the full
Navier-Stokes equations in the fluid domain has been published yet.

Thesis Outline

In chapter 1 we introduce the setting of the coupled Navier-Stokes/Darcy problem. In partic-
ular, we discuss the issue of matching conditions between the two subproblems and we briefly
present the approach based on homogenization theory that has been used in the literature to
derive them.
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Chapter 2 is devoted to the analysis of the linear Stokes/Darcy problem. We address the
well-posedness of this coupled model and then we rewrite it in terms of Steklov-Poincaré inter-
face problems. We consider two possible choices of the interface variables and we analyze the
related pseudo-differential operators. This allows us to characterize in both cases two optimal
preconditioners to solve the interface problems.

A Galerkin finite element approximation of the coupled problem is presented in chapter 3,
taking conforming grids across the interface. We guarantee the existence and uniqueness of the
discrete solution and we replicate at the discrete stage the analysis developed in chapter 2.
In particular, we write the Schur complement systems associated to the vector unknowns at
the interface. Then, we define the optimal algebraic preconditioners which can be used in the
framework of Krylov type methods. Finally, we set up and analyze two iterative substructuring
algorithms to compute the problem solution.

Chapter 4 presents some numerical results obtained using the algorithms devised in chapter 3.
We show the optimality properties of Dirichlet-Neumann methods with respect to grid param-
eters, and we point out some difficulties encountered in handling realistic physical parameters.
In order to study possible improvement strategies, in chapter 5 we analyze an operator-splitting
based method for the solution of the Steklov-Poincaré equation associated to a generic elliptic
problem. Precisely, we prove the equivalence between the so-called Robin-Robin method and the
alternating direction iterations (ADI) to solve the interface problem, and we discuss the issue of
accelerating the convergence rate of this method by suitably chosen relaxation parameters.

Based on this theory, we can set up an ADI method for the Stokes/Darcy coupling which,
provided a good choice is made for the acceleration coefficients, yields satisfactory convergence
results as illustrated in chapter 6.

Finally, chapter 7 focuses on the nonlinear coupled Navier-Stokes/Darcy problem. We write the
nonlinear Steklov-Poincaré equation associated to this coupling and we prove its well-posedness.
Then, we set up a domain decomposition framework for its solution which extends the classical
fixed point or Newton based algorithms.



1. Coupling of Surface and Subsurface Flow

In this chapter we introduce the Navier-Stokes and Darcy equations that we

shall extensively use in the following. In particular, we shall discuss the derivation

and physical meaning of these equations and we shall address the issue of finding

suitable coupling conditions to describe the filtration processes between free fluids

and porous media.

1.1 Introduction

We consider a bounded domain Ω of R
d (d = 2, 3) composed of two subdomains Ωf and Ωp such

that Ω = Ωf ∪Ωp, Ωf ∩Ωp = ∅ and Ωf ∩Ωp = Γ. The hypersurface Γ (a line if d = 2, a surface
if d = 3) is the interface separating the domain Ωf filled by an incompressible fluid from the
domain Ωp formed by a porous medium. We assume that the fluid has a prescribed upper surface;
however, at the end of this chapter we shall give some guidelines to extend our considerations to
the more general case of free surface fluids. We denote by nf the unit outward normal direction
on ∂Ωf , and by np the normal direction on ∂Ωp, oriented outward. Then nf = −np on the
interface Γ and we shall indicate n = nf on Γ. Throughout this work we shall always suppose
the boundaries ∂Ωf , ∂Ωp to be Lipschitz continuous.
We adopt the Navier-Stokes equations to describe the flow field in the domain Ωf and Darcy
equations in the porous part Ωp.

1.1.1 The Navier-Stokes Problem

The Navier-Stokes equations provide a model for the flow motion of a homogeneous incompress-
ible Newtonian fluid. A rigorous derivation of Navier-Stokes equations can be found, e.g., in
[Gal94]. In the steady case they read:

−ν�uf + (uf · ∇)uf +∇pf = f in Ωf (1.1)

∇ · uf = 0 in Ωf (1.2)

where uf denotes the velocity of the fluid, pf the ratio between its pressure and density ρf , f is
the external force field and ν > 0 is the kinematic viscosity.
We have indicated by ∇ the gradient operator for vector functions:
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(∇v)ij =
∂vi

∂xj

while ∇· is the divergence operator:

∇ · v =
d∑

i=1

∂vi

∂xi
.

Finally, � is the Laplace operator

(�v)i =
d∑

j=1

∂2vi

∂x2
j

and

(v · ∇)w =
d∑

i=1

vi
∂w
∂xi

for all vector functions v = (v1, . . . , vd), w = (w1, . . . , wd).

Adimensional Form of the Navier-Stokes Equations. After introducing suitable adimen-
sional variables for the velocity and pressure, it is well-known that the Navier-Stokes equations
can be rewritten in the adimensional form

− 1
Ref
�uf + (uf · ∇)uf +∇pf = f in Ωf (1.3)

∇ · uf = 0 in Ωf (1.4)

where we have introduced the Reynolds number

Ref =
LfUfρf

µ
(1.5)

Lf being a characteristic length of the domain Ωf and Uf a characteristic velocity of the fluid,
while µ = νρf is the fluid dynamic viscosity. Notice that, for the sake of simplicity, we have used
the same notations as in (1.1), (1.2), but all the variables in (1.3), (1.4) are to be intended as
adimensional variables.

1.1.2 Darcy Equations

The filtration of an incompressible fluid through porous media is often described using Darcy’s
law. The latter provides the simplest linear relation between velocity and pressure in the porous
domain under the physically reasonable assumption that fluid flows in porous media are usually
very slow and all the inertial (nonlinear) terms may be neglected.
Groundwater flows could be treated microscopically by the laws of hydrodynamics if the gran-
ular skeleton of the porous medium were a simple geometrical assembly of unconnected tubes.
However, the seepage path is tortuous and it branches into a multitude of tributaries. Darcy’s
law avoids the insurmountable difficulties of the hydrodynamic microscopic picture by introduc-
ing a macroscopic concept. In fact, it considers a fictitious flow velocity, the Darcy velocity or
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specific discharge q through a given cross section of the porous medium, rather than the true
velocity up with respect to the porous matrix:

up =
q
n

(1.6)

with n being the volumetric porosity, defined as the ratio between the volume of void space and
the total volume of the porous medium.
This simplifying concept was introduced by the nature of Darcy’s experiment (see [Dar56])
which only permitted the measurement of averaged hydraulic values from the percolation of
water through a column of horizontally stratified beds of sand in a cylindrical pipe.
To introduce Darcy’s law, we define a scalar quantity ϕ called piezometric head which essentially
represents the fluid pressure in Ωp:

ϕ = z +
pp

g
(1.7)

where z is the elevation from a reference level, accounting for the potential energy per unit
weight of fluid, pp is the ratio between the fluid pressure in Ωp and its viscosity ρf , and g is the
gravity acceleration.
Then, Darcy’s law can be written as

q = −K∇ϕ, (1.8)

where K is a symmetric positive definite tensor K = (Kij)i,j=1,...,d, Kij ∈ L∞(Ωp), Kij > 0,
Kij = Kji, called hydraulic conductivity tensor, which depends on the properties of the fluid as
well as on the characteristics of the porous medium. In fact, its components are proportional to
the intrinsic permeability k of the porous medium:

K =
kρfg

µ
(1.9)

and k is equal to nε2 (times a multiplicative adimensional constant), ε being the characteristic
length of the pores; then, K ∝ ε2. The hydraulic conductivity K is therefore a macroscopic
quantity characterizing porous media and in table 1.1 we report some typical values that it may
assume (see [Bea79]).

K (m/s): 1.e− 0 1 2 3 4 5 6 7 8 9 10 11 12

Permeability Pervious Semipervious Impervious

Clean Clean sand or Very fine sand, silt,
Soils gravel sand and gravel loam

Peat Stratified clay Unweathered clay

Good Breccia,
Rocks Oil rocks Sandstone limestone, granite

dolomite

k (m2): 1.e− 7 8 9 10 11 12 13 14 15 16 17 18 19

Table 1.1. Typical values of hydraulic conductivity K and permeability k.

Finally, we notice that the hydraulic conductivity tensor K can be diagonalized by introducing
three mutually orthogonal axes called principal directions of anisotopy. In the following, we will
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always suppose that the principal axes are in the x, y and z directions so that the tensor will
be considered diagonal: K = diag(K1,K2,K3).

In conclusion, the motion of an incompressible fluid through a saturated porous medium is
described by the following equations:

up = −K

n
∇ϕ in Ωp (1.10)

∇ · up = 0 in Ωp (1.11)

where (1.10) is Darcy’s law, while (1.11) states the conservation of the mass.

Adimensional Form of Darcy Equations. An adimensional form of Darcy equations may
be written as well. If we set for simplicity z = 0 in (1.7), we can write

up = − 1
n
· kρfg

µ
· 1
ρfg
∇pp

and since k 
 nε2, we have
up = − ε

µ
∇pp .

After introducing adimensional variables as for the Navier-Stokes case, we obtain the adimen-
sional form of Darcy’s law:

up = −δRep∇pp (1.12)

(here again we use the same notation for the adimensional and dimensional variables) where

δ =
ε

Lp

is the ratio between the pore size (microscale) and the characteristic length of the porous medium
(macroscale), while Rep is the adimensional Reynolds number

Rep =
εUpρf

µ
. (1.13)

Usually, it is assumed that Darcy’s law is valid as long as Rep < 10. For higher Reynolds number,
a common extension to Darcy’s law is the Forchheimer equation:

−K∇ϕ = q + βρf |q|q

where β is a constant possibly depending on the geometry of the pores (see [For01, Dup63,
Gio97, MPM00]), or the Brinkman equation

nup + µ′K�up = −K∇ϕ

where µ′ is the so-called effective porosity (see [Bri47]).
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1.2 Coupling Conditions

We consider now the issue of finding effective coupling conditions across the interface Γ which
separates the channel flow and the porous medium. This is a classical problem which has been
investigated both from a physical and from a rigorous mathematical point of view.
A mathematical difficulty arises from the fact that we need to couple two different systems of
partial differential equations: Darcy equations (1.10), (1.11) are second order for the pressure
and first order for the velocity, while in the Navier-Stokes system it is the opposite.
Three conditions are to be prescribed on Γ.

1. The obvious condition to assign at a permeable interface is the continuity of the normal
velocity, which is a consequence of the incompressibility.

2. Moreover, a suitable condition relating the pressures of the two fluids across Γ has to be
prescribed.

3. Finally, in order to have a completely determined flow of the free fluid, we have to specify
some condition on the tangential component for the fluid velocity at the interface.

Concerning 3., a classically used condition for the free fluid is the vanishing of the tangential
velocity at the interface. However, this condition, which is correct in the case of a permeable
surface, is not completely satisfactory for a permeable interface. Beavers and Joseph proposed a
new condition postulating that the difference between the slip velocity of the free fluid and the
tangential component of the seepage velocity is proportional to the shear rate of the free fluid
(see [BJ67]). They verified this law experimentally and found that the proportionality constant
depends linearly on the square root of the permeability. Precisely, the coupling condition that
they advocated reads:

τ j ·
∂uf

∂n
=
αBJ√

K
(uf − up) · τ j on Γ (1.14)

where αBJ is a dimensionless constant which depends only on the structure of the porous
medium; τ j (j = 1, . . . , d− 1) are linear independent unit tangential vectors to the boundary Γ.
This experimental coupling condition was further studied by Saffman who pointed out that the
velocity up was much smaller than the other quantities appearing in the law of Beavers and
Joseph (1.14) and that, in fact, it could be dropped. Therefore, he proposed to consider the
interface condition (see [Saf71]):

τ j ·
∂uf

∂n
=
αBJ√

K
uf · τ j +O(

√
K) on Γ. (1.15)

This problem was later reconsidered in [ESP75] and [LSP75] using an asymptotic expansion
argument and distinguishing two cases. First, the authors considered the case of a pressure
gradient on the side of the porous medium normal to the interface (see Fig. 1.1 a)); they found
that the flow is balanced on both sides of the interface and that the velocities across Γ are of the
same order. Then, using an asymptotic expansion, they obtained the following interface laws:
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b)a)

ΓΓ

ΩfΩf

qq

uf
uf

ΩpΩp

|∇pf ||∇pf |

|∇pp||∇pp|

Fig. 1.1. Two configurations for the gradient of pressure: a) normal to the interface Γ; b) not normal to Γ.

uf · n = up · n, pf = const on Γ.

Secondly, they studied the case of pressure gradient not normal to the interface (see Fig. 1.1 b)).
In this case, they found that the velocity uf is much larger than the filtration velocity in the
porous body and, in the first approximation, the flow around the porous medium is the same
as if the body were impervious. Then, they conducted a local study in the vicinity of Γ leading
to the existence of an intermediate layer, of characteristic thickness ε (the representative length
of the porous matrix), which allows the asymptotic matching of the free fluid with the flow in
the porous body. The free fluid contains a Prandtl’s type boundary layer near Γ if the Reynolds
number Ref � 1 (see Fig. 1.2). Finally, they concluded that, in the first approximation, the
suitable boundary condition at Γ is the continuity of the pressure.

intermediate layer

Prandtl’s boundary layer

O(ε)

Ωf

Ωp

Γ

Fig. 1.2. The intermediate layer of thickness O(ε) and the Prandtl’s boundary layer if Ref � 1.

In practice this approach leads to some mathematical difficulties in solving the effective equa-
tions, since the boundary conditions given on Γ are not enough to guarantee the well-posedness
of the fluid problem. On the contrary, the law of Beavers and Joseph leads to a well-posed
problem in the free fluid domain.

A first attempt towards an analytical study of the interface conditions between a free fluid and
a porous medium can be found in [PS98]; however, a rigorous mathematical investigation has



1.2 Coupling Conditions 13

been conducted by Jäger and Mikelić using homogenization theory (see [JM96, JM00, JMN01]).
For completeness, we briefly recall their approach and the main results they achieved.
They considered a porous medium containing a large number of periodically distributed channels
of characteristic size ε small if compared with the characteristic length Lp of the porous domain,
as represented in Fig. 1.3.

Ωf

Ωεp

Γ

ε

Lp

Fluid domain

Ωε

Fig. 1.3. Schematic representation of the domain Ωε, with porous matrix of width ε and characteristic length
Lp.

As done by Beavers and Joseph, Jäger and Mikelić considered a uniform pressure gradient in
the longitudinal direction of Ωε = Ωf ∪ Γ∪Ωεp ⊂ R

2 and, for a fixed ε > 0, they looked for two
functions uε and pε satisfying the Navier-Stokes equations:

−ν�uε + (uε · ∇)uε +∇pε = 0 in Ωε

∇ · uε = 0 in Ωε

with suitable boundary conditions (see [JM00]).

Remark 1.2.1. Adopting the Navier-Stokes equations not only in Ωf but also in Ωεp is motivated
by the fact that Darcy’s law can be obtained from the (Navier-)Stokes equations through homog-
enization, at least in the interior of Ωεp. A proof can be found, e.g., in [Tar80] where it is shown
that the sequences of functions (depending on ε) uε and pε in Ωεp, with homogeneous Dirichlet
boundary conditions uε · n = 0 on ∂Ωεp, tend to the asymptotic velocity u0

p and pressure p0
p:

uε

ε2
⇀ u0

p weakly in L2(Ωp)

pε → p0
p strongly in L2(Ωp)

where u0
p and p0

p satisfy the boundary value problem

u0
p = −K∇p0

p

∇ · u0
p = 0

in Ωp
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with u0
p ·np = 0 on ∂Ωp. From the convergence proof it can be seen that K ∝ ε2/ν, according to

(1.9). ��

Jäger and Mikelić proved that, consistently with the considerations by Ene and Sanchez-Palencia,
the velocity field is of order O(1) in Ωf , of order O(ε2) in Ωεp, and that there is a boundary
layer of thickness O(ε) for the velocity at the interface, while the pressure fields are of order
O(1) in both media. In particular, the effective velocity field in Ωf is described by the solution
u0

f of Stokes equations with the no-slip condition u0
f = 0 on Γ, giving an L2-approximation of

order O(ε) for the velocity uε.
However, this approximation is too rough since it cannot account for the velocity in the porous
medium which is O(ε2). Therefore, they considered higher order terms in ε for the velocity
introducing a boundary layer problem across Γ whose solution decays exponentially away from
Γ and which accounts for the shear effects near the interface.
This correction led to introduce two positive non-null constants Cbl

1 and Cbl
2 (bl stands for bound-

ary layer) and to characterize the following interface conditions for the macroscale problem:

uf · τ j − εCbl
1 τ j ·

∂uf

∂n
= 0 on Γ (1.16)

and
pp = pf − νCbl

2 n · ∂uf

∂n
on Γ . (1.17)

Finally, the following estimates hold (see [JM00]):

‖∇(uε − uf )‖L1(Ωf ) ≤ Cε| log ε|
‖uε − uf‖H1/2−γ (Ωf ) ≤ C ′ε3/2| log ε| 0 < γ < 1/2

(the log term is due to the presence of corners in the domain).
Notice that (1.16) is exactly Saffman’s modification of Beavers and Joseph’s law with

√
K/α =

εCbl
1 , while condition (1.17) shows that, contrary to intuition, the effective pressure in the system

channel flow/porous medium is not always continuous and, therefore, the continuity assumption
of Sanchez-Palencia is not generally correct.
The constants Cbl

1 , Cbl
2 have been computed for some configurations of porous media and, on

the base of the results reported in [JMN01], we shall assume Cbl
1 , C

bl
2 ∼ 1.

Strictly speaking, (1.16) is not a coupling condition in the sense that it does not relate quantities
from the two subdomains Ωf and Ωp, but it is actually a boundary condition on Γ for the fluid
problem. Moreover, the term in (1.16) involving the normal derivative of uf is multiplied by ε
and the velocity itself can be supposed at least of order O(ε) in the neighborhood of Γ; therefore,
this term is small and, actually, we will set it equal to zero in chapters 2 and 3 in order to simplify
our analysis.

We point out that the conditions studied by Jäger and Mikelić have been adopted also in
[LSY03, RY03, BH02].
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Finally, the condition τ j · ∇uf · n = 0 can be regarded as a simplified form of (1.16); in fact,
although not completely precise from the physical point of view, it is perfectly acceptable from
the mathematical viewpoint since it allows to write a well-posed problem for the fluid part, and,
in this sense, it could be adopted as well.

1.3 Boundary Conditions and Problem Setting

In order to complete the definition of our coupled problem, we have to introduce suitable bound-
ary conditions.

Concerning Darcy’s equation, we split the boundary ∂Ωp as ∂Ωp = Γ∪Γp∪Γb
p as shown in Fig. 1.4

and we assign the piezometric head ϕ = ϕp on the bottom surface Γb
p. Moreover, we require that

the normal component of the velocity vanishes on the lateral surfaces, that is, up ·np = 0 on Γp.

Ωf

Ωp
nf

np

Γin
f

Γf

Γf

Γp Γp

Γb
p

Γ

Fig. 1.4. Schematic representation of a 2D vertical section of the computational domain.

For the Navier–Stokes problem in Ωf , several combinations of boundary conditions could be
considered, representing different kinds of flow problem; we indicate some of them and we refer
to Fig. 1.5 for the notation that we adopt hereafter. A comprehensive description of possible
boundary conditions for the Navier-Stokes equations can be found in [QV94] chapter 10, [Pir88]
chapter 4, and references therein.

ΩfΓ1
f

Γ2
f

Γ3
f

Γ

Fig. 1.5. Schematic representation of a 2D vertical section of the computational domain Ωf .
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A first possibility is to assign the velocity vector uf = 0 on Γ1
f ∪ Γ3

f and a natural boundary
condition T(uf , pf ) · nf = g on Γ2

f (a fictitious boundary). Here,

T(uf , pf ) = ν∇uf − pf I

is the stress tensor, and g a given vector function, representing the flux across Γ2
f of the fluid

column standing above.
Alternatively, we can prescribe a non-null inflow uf = uin on the left-hand boundary Γ1

f , a slip
condition uf · nf = 0 and (T(uf , pf ) · nf ) · τ j = 0 on Γ2

f , and an outflow T(uf , pf ) · nf = 0 on
the right-hand boundary Γ3

f .
A third possibility consists in assigning again a non-null inflow uf = uin on the left-hand
boundary Γ1

f and a no-slip condition uf = 0 on the remaining boundary Γ2
f ∪ Γ3

f .
In the next chapters we shall consider the last choice we have indicated, but, as we shall see, our
analysis could be modified to accommodate the other boundary conditions as well. From now
on, we denote Γ1

f as Γin
f (standing for Γinflow

f ) and the remaining boundary Γ2
f ∪ Γ3

f simply by
Γf (see Fig. 1.4).

Using Darcy’s law (1.10), we can rewrite the system (1.10), (1.11) as an elliptic equation for the
scalar unknown ϕ:

−∇ · (K∇ϕ) = 0 in Ωp. (1.18)

Therefore, the differential formulation of the coupled Navier-Stokes/Darcy problem we consider
reads:

−ν�uf + (uf · ∇)uf +∇pf = f in Ωf (1.19)

∇ · uf = 0 in Ωf (1.20)

−∇ · (K∇ϕ) = 0 in Ωp (1.21)

uf = uin on Γin
f (1.22)

uf = 0 on Γf (1.23)

−K∇ϕ · np = 0 on Γp (1.24)

ϕ = ϕp on Γb
p (1.25)

and it must be completed with the interface conditions on Γ:

uf · n = −K

n

∂ϕ

∂n
(1.26)

−νn · ∂uf

∂n
+ pf = gϕ (1.27)

uf · τ j − ετ j ·
∂uf

∂n
= 0. (1.28)

We will assume that uin is null in a neighborhood of the intersection Γ ∩ Γin
f .
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The global problem is then nonlinear. A linearization can be obtained by replacing the Navier-
Stokes momentum equation (1.19) with the Stokes one:

−ν�uf +∇pf = f in Ωf (1.29)

i.e. dropping the nonlinear convective terms. This replacement is justified when the Reynolds
number Ref of the fluid is low, i.e. in case of slow motion of fluids with high viscosity. This
linearized problem is also interesting since a steady Stokes problem can be generated when
considering a semi-implicit time advancement of the Navier-Stokes equations where all terms
but the nonlinear convective one have been dealt with implicitely.

1.4 Some Extensions

We would like to introduce two generalizations of the Navier-Stokes/Darcy coupling we have
just presented. In particular, we want to consider the case with a free surface fluid in the upper
domain Ωf and a similar problem encountered in external aerodynamics.

1.4.1 The Free Surface Case

In the case of a free surface fluid, we would like to replace the Navier-Stokes equations by a
simpler model based on the so-called Shallow Water equations. With this aim we characterize
the domain Ωf as follows. Let Ω̂ be a bounded domain of R

2 representing the undisturbed free
surface of the fluid, while z = h(x, y) and z = η(x, y, t) are two functions describing respectively
the bathymetry and the free surface with respect to a reference level z = 0. Ωf is therefore the
normal domain with respect to the z axis defined as

Ωf = {x = (x, y, z)|(x, y) ∈ Ω̂, z ∈ (h, η)}

(see Fig. 1.6).
We describe the motion of the free surface fluid in Ωf by the 3D non-hydrostatic Shallow Water
equations with constant density. The total pressure is the sum of a hydrostatic part and a
hydrodinamic correction: pf = ρg(η− z) + q. We consider therefore the following model: ∀t > 0,

Duf

Dt
− ∂

∂z

(
νv
∂uf

∂z

)
+∇q + diag(g, g, 0) · ∇η = f̂ in Ωf (1.30)

∇ · uf = 0 in Ωf (1.31)
∂η

∂t
+∇ ·

∫ η

h
(u1

f , u
2
f )T = Q̃ ∀(x, y) ∈ Ω̂ (1.32)

where g is the gravity acceleration, f̂ = (f1, f2, 0)T is the external force vector, q is the hydro-
dynamic pressure and νv is the vertical viscosity coefficient. Q̃ is equal to the normal compo-
nent of the velocity uf and is equal to zero when the bottom surface is impermeable. Finally,
D/Dt = ∂/∂t+ (uf · ∇) denotes the Lagrangian derivative.
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x

y

z

water

ground

Ωf

Ωp

Γfict
η(x, y, z)

h(x, y)

Fig. 1.6. Schematic representation of the domain of free surface/Darcy problem.

For the coupled model free surface fluid/Darcy we propose the following interface conditions on
Γ (analogous to the ones for the channel fluid case):

uf · n = up · n, (1.33)

τ j ·
∂uf

∂n
=
αBJ√

K
(uf − up) · τ j, (1.34)

ρfgϕ = ρfgH + pp = pf (1.35)

where H = η − h is the total height of the fluid in Ωf .
We observe that condition (1.33) imposes the continuity of the normal component of the velocity,
however it allows a discontinuity of its tangential components; the pressure can be discontinuous
across the interface Γ.
For a more detailed presentation of the free surface/Darcy problem we refer, e.g., to [Mig00,
MQS03, DMQ02] and references therein.

To resume, the two problems Navier-Stokes/Darcy and free surface/Darcy can be seen in abstract
form as follows: we have a problem

Pf (ξf ) = 0 in the domain Ωf , (1.36)

where ξf indicates all the unknowns therein (velocity, pressure and free surface location in the
case of free surface flow), and a problem

Pp(ξp) = 0 in Ωp, (1.37)

where ξp represents the unknowns of Darcy’s problem. Finally, we have three interface conditions
involving pressure and velocity on Γ that we can indicate in a compact form as follows:

up · n = uf · n (1.38)
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Ψf (uf , pf ) = Ψp(up) (1.39)

Φf (uf , pf ) = Φp(pp) (1.40)

with Ψ. and Φ. suitable functions of the velocities and pressures in the two subdomains.

1.4.2 A Stokes/Laplace Problem

Models similar to the one we have introduced in Sect. 1.3 can be used in external aerodynamics to
describe the motion of an incompressible fluid around a body such as, for example, a ship, a boat
or a submerged body in a water basin. In fact, such problems can be studied by decomposing
the computational domain into two parts: a region Ωint close to the body where, due to the
viscosity effects, all the interesting features of the flow occur, and an outer region Ωext far away
from the body where one can neglect the viscosity effects.
Therefore, suitable heterogeneous differential models comprising Navier-Stokes equations, Euler
equations, potential flows and other models from fluid dynamics could be envisaged (see, e.g.,
[IC03]).
Here, we present a simple model where in Ωint we consider the full Navier-Stokes equations,
while in Ωext we adopt a Laplace equation for the velocity potential.
A coupled heterogeneous model of this kind has been studied in [SH94] considering a computa-
tional domain as in Fig. 1.7 and the following generalized Stokes problem:

βuε − µε�uε +∇pε = f̃ in Ω̃ (1.41)

∇ · uε = 0 in Ω̃ (1.42)

uε = 0 on Γw (1.43)

with suitable boundary conditions on the outer boundary Γ∞. The viscosity is µε = µ in Ωint,
while µε = ε in Ωext.

Γ∞

Γw

Ωext

Γint

body

Ωint

nint

inflow

Fig. 1.7. Schematic representation of the domain computational domain for an external aerodynamics problem.

Then, they applied a vanishing viscosity argument letting ε → 0 in Ωext in order to set up a
suitable global model and to define the correct interface conditions across Γint. Precisely, they
found the following limit coupled problem:
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βu− µ�u +∇p = f̃ in Ωint (1.44)

∇ · u = 0 in Ωint (1.45)

�q = ∇ · f̃ in Ωext (1.46)

with suitable boundary conditions and the coupling conditions across the interface Γint

−µ ∂u
∂nint

+ pnint = qnint on Γ (1.47)

∂q

∂nint
= (f̃ − βu) · nint on Γ . (1.48)

nint denotes the unit normal vector on Γint directed from Ωint to Ωext. We remark that, apart
from the physical meaning of the variables, these coupling conditions are similar in their structure
to those for the Navier-Stokes/Darcy case (1.26)-(1.28). In fact, (1.48) corresponds to (1.26),
and in (1.47) we allow again the pressure to be discontinuous across Γint, even if we do not
distinguish between the normal and the tangential components of the stress tensor as in (1.27),
(1.28).
Because of these similarities, the analysis we shall develop for the Navier-Stokes/Darcy problem
could be accommodated with minor changes to account also for the heterogenous coupling
(1.44)-(1.48).



2. Mathematical Analysis of the Coupled Problem:

the Linear Case

In this chapter we analyze the linear coupled problem formed by Stokes and

Darcy equations. We write it as a saddle-point problem, then we prove an ex-

istence and uniqueness result. Moreover, after introducing appropriate interface

variables, we rewrite the coupled problem in terms of equations solely defined on

the interface.

The results presented in this chapter extend those published in [DQ03].

2.1 Introduction

We begin our analysis of the coupled problem (1.19)-(1.28) considering the linear Stokes problem
(1.29). Our goal is to guarantee the well-posedness of this problem and to reformulate it in terms
of its unknowns across the interface Γ. This re-interpretation of the global problem in terms of
the interface unknowns will be crucial to set up iterative substructuring procedures to solve it
as we shall see also in chapter 3.
Before starting the analysis, we introduce some functional analysis tools that we need for the
following sections and chapters. We refer to [Ada75, Bre83, LM68, Yos74] for a rigorous and
exhaustive presentation of these results.

2.1.1 Preliminary Notations and Results

Lp Spaces. Let D be an open set contained in R
d (d = 2, 3) and consider in D the Lebesgue

measure. We consider the set of real measurable functions v on D and we introduce the equiva-
lence relation:

v ≡ w iff meas({x ∈ D|v(x) �= w(x)}) = 0. (2.1)

Then, for 1 ≤ p < ∞, we define Lp(D) as the space of classes of equivalence of measurable
functions with respect to (2.1) such that∫

D
|v(x)|p <∞ 1 ≤ p <∞.

This is a Banach space endowed with the norm

‖v‖Lp(D) =
(∫
D
|v(x)|p

)1/p

1 ≤ p <∞.
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If p = 2 we have an Hilbert space with the scalar product

(v,w)L2(D) =
∫
D
v(x)w(x) .

Finally, if p =∞, we say that v ∈ L∞(D) if

inf{M ≥ 0| |v(x)| ≤M almost everywhere (a.e.) in D} <∞

and we define its norm as

‖v‖L∞(D) = inf{M ≥ 0| |v(x)| ≤M a.e. in D}.

We recall that in the Hilbert space L2(D) the Cauchy-Schwarz inequality holds:

|(v,w)L2(D)| ≤ ‖v‖L2(D)‖w‖L2(D) . (2.2)

Sobolev Spaces Hk(D). The Sobolev space Hk(D), with k a non-negative integer, is the
space of functions v ∈ L2(D) such that all the distributional derivatives of v of order up to k
are a function of L2(D):

Hk(D) = {v ∈ L2(D)|Dαv ∈ L2(D) ∀multi-index α ≥ 0 : |α| ≤ k},

where

Dαv =
∂|α|v

∂xα1
1 · · · ∂x

αd
d

.

Hk(D) is a Hilbert space endowed with the norm

‖v‖Hk(D) =

⎛⎝∑
|α|≤k

‖Dαv‖2L2(D)

⎞⎠1/2

,

the seminorm

|v|Hk(D) =

⎛⎝∑
|α|=k

‖Dαv‖2L2(D)

⎞⎠1/2

,

and the scalar product
(v,w)Hk(D) :=

∑
|α|≤k

(Dαv,Dαw)L2(D) .

Remark 2.1.1. In the following, for simplicity of notation, we shall indicate by ‖ · ‖0 and ‖ ·
‖1, respectively, the norm in L2(D) and in H1(D) (analogous notations will be adopted for
seminorms and scalar products). In particular, we shall distinguish the norms in Ωf and in Ωp

by a lower index f or p, for example, ‖ · ‖1,f , ‖ · ‖1,p. ��
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Some Results about Sobolev Spaces. We recall some properties enjoyed by the functions
belonging to Sobolev spaces and, in particular, we consider some results on traces. We begin by
the following theorem.

Theorem 2.1.1 (Trace theorem). Let D be a bounded open set in R
d with Lipschitz contin-

uous boundary ∂D.

1. There exists a unique linear continuous surjective map γ0 : H1(D) → H1/2(∂D) such that
γ0v = v|∂D for each v ∈ H1(D) ∩C0(D).

2. There exists a linear continuous injective extension operator R0 : H1/2(∂D) → H1(D) such
that γ0R0η = η for each η ∈ H1/2(∂D).

Analogous results hold if we consider the trace γΣ over a Lipschitz continuous subset Σ of the
boundary ∂D of positive measure.

H1/2(∂D) is the space of traces of functions in H1(D).
By means of these trace operators it is possible to characterize the spaces

H1
0 (D) = {v ∈ H1(D)|γ0v = 0} and H1

Σ(D) = {v ∈ H1(D)|γΣv = 0}.

The traces over Σ of functions in H1
∂D\Σ(D) belong to the trace space H1/2

00 (Σ) which is strictly

included in H1/2(Σ) and is endowed with a norm which is larger that the norm of H1/2(Σ). In
particular, H1/2

00 (Σ) is the completion of the smooth functions with compact support in Σ with
respect to the norm

‖µ‖H1/2(∂D) =
(
‖µ‖2L2(∂D) +

∫
∂D

∫
∂D

|µ(t1)− µ(t2)|2
|t1 − t2|d

dst1dst2

)1/2

.

Any function µ ∈ H1/2
00 (Σ) has the property that its extension by zero to ∂D gives a function

µ̃ ∈ H1/2(∂D) with
‖µ̃‖H1/2(∂D) ≤ C‖µ‖H1/2

00 (Σ)
.

The following trace inequalities hold:

‖v|Σ‖L2(Σ) ≤ C1
tr‖v‖1 ∀v ∈ H1(D); (2.3)

‖v|Σ‖H1/2(Σ) ≤ C2
tr‖v‖1 ∀v ∈ H1(D); (2.4)

‖v|Σ‖H1/2
00 (Σ)

≤ C3
tr‖v‖1 ∀v ∈ H1(D). (2.5)

Finally, an important result that we will often use in our proofs is the so-called Poincaré in-
equality.

Theorem 2.1.2 (Poincaré inequality). Let D be a bounded connected open set of R
d and Σ

a (non-empty) Lipschitz continuous subset of the boundary ∂D. There exists a constant CD > 0
such that ∫

D
v2(x) ≤ CD

∫
D
|∇v(x)|2 (2.6)

for each v ∈ H1
Σ(D).
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2.2 Weak Formulation of the Stokes/Darcy Problem

To write the weak form of the Stokes/Darcy problem as a saddle-point problem, we need to
introduce the following functional spaces:

HΓf
= {v ∈ H1(Ωf )|v = 0 on Γf} , (2.7)

HΓf∪Γin
f

= {v ∈ HΓf
|v = 0 on Γin

f } , (2.8)

Hf = (HΓf∪Γin
f

)d , (2.9)

H̃f = {v ∈ (H1(Ωf ))d|v = 0 on Γf ∪ Γ} , (2.10)

H0
f = {v ∈ Hf |v · n = 0 on Γ} , (2.11)

Q = L2(Ωf ) , (2.12)

Hp = {ψ ∈ H1(Ωp)|ψ = 0 on Γb
p} , (2.13)

H0
p = {ψ ∈ Hp|ψ = 0 on Γ} , (2.14)

and the trace spaces
Λ := H

1/2
00 (Γ) and Λ† = H1/2(Γ). (2.15)

Finally, we consider the Hilbert space W = Hf ×Hp with norm

‖w‖W =
(
‖w‖21,f + ‖ψ‖21,p

)1/2 ∀w = (w, ψ) ∈W.

We introduce a continuous extension operator

Ef : (H1/2(Γin
f ))d → H̃f . (2.16)

Then ∀uin ∈ (H1/2
00 (Γin

f ))d we can construct a vector function Efuin ∈ H̃f such that Efuin|Γin
f

=
uin.

Remark 2.2.1. Alternatively, we could consider a divergence free extension Ẽfuin of uin. To this
aim, let Efuin ∈ (HΓf

)d such that Efuin = uin on Γin
f . Then, we construct a function win which

is the solution of the following problem: find win ∈ Hf such that for all q ∈ Q

−
∫

Ωf

q∇ ·win =
∫

Ωf

q∇ · (Efuin) . (2.17)

The solvability of (2.17) is guaranteed by the inf-sup condition: there exists a constant β∗ > 0
such that

∀q ∈ Q ∃v ∈ Hf , v �= 0 : −
∫

Ωf

q∇ · v ≥ β‖v‖1,f‖q‖0,f (2.18)

(see, e.g., [QV99] p. 158–159). Finally, we indicate by Ẽfuin = Efui + win the divergence-free
extension of uin. We remark that Ẽfuin = uin on Γin

f , Ẽfuin = 0 on Γf and that, thanks to
(2.17), it holds ∫

Ωf

q∇ · (Ẽfuin) = 0 ∀q ∈ Q .

We point out that the extension Ẽfuin cannot satisfy the additional constraint Ẽfuin · nf = 0
on Γ, except for the special case of uin such that

∫
Γin

f
uin · nf = 0. ��
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We introduce another continuous extension operator:

Ep : H1/2(Γb
p)→ H1(Ωp), such that Epϕp = 0 on Γ. (2.19)

Then, for all ϕ ∈ H1(Ωp) we define the function ϕ0 = ϕ− Epϕp.

Finally, we define the following bilinear forms:

af (v,w) =
∫

Ωf

ν∇v · ∇w ∀v,w ∈ (H1(Ωf ))d (2.20)

bf (v, q) = −
∫

Ωf

q∇ · v , ∀v ∈ (H1(Ωf ))d, ∀q ∈ Q (2.21)

ap(ϕ,ψ) =
∫

Ωp

∇ψ · K∇ϕ , ∀ϕ,ψ ∈ H1(Ωp) . (2.22)

Now, if we multiply (1.29) by v ∈ Hf and integrate by parts we obtain

af (uf ,v) + bf (v, pf ) +
∫

Γ

(
−ν ∂uf

∂n
+ pfn

)
v =

∫
Ωf

f v .

Notice that we can write∫
Γ

(
−ν ∂uf

∂n
+ pfn

)
v =

∫
Γ

[(
−ν ∂uf

∂n
+ pfn

)
· n
]
v · n

+
∫

Γ

d−1∑
j=1

[(
−ν ∂uf

∂n
+ pfn

)
· τ j

]
v · τ j

so that we can incorporate in weak form the interface conditions (1.27) and (1.28) as follows:

∫
Γ

(
−ν ∂uf

∂n
+ pfn

)
v =

∫
Γ
gϕ(v · n) +

∫
Γ

d−1∑
j=1

ν

ε
(uf · τ j)(v · τ j) .

Finally, we consider the lifting Efuin of the boundary datum and we split uf = u0
f + Efuin

with u0
f ∈ Hf ; we recall that Efuin = 0 on Γ and we get

af (u0
f ,v) + bf (v, pf ) +

∫
Γ
gϕ(v · n) +

∫
Γ

d−1∑
j=1

ν

ε
(uf · τ j)(v · τ j)

=
∫

Ωf

f v − af (Efuin,v). (2.23)

From (1.20) we find
bf (u0

f , q) = −bf (Efuin, q) ∀q ∈ Q. (2.24)

On the other hand, if we multiply (1.21) by ψ ∈ Hp and integrate by parts we get
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ap(ϕ,ψ) +
∫

Γ
K
∂ϕ

∂n
ψ = 0 .

Now we incorporate the interface condition (1.26) in weak form as

ap(ϕ,ψ) −
∫

Γ
n(uf · n)ψ = 0

and, considering the splitting ϕ = ϕ0 + Epϕp we obtain

ap(ϕ0, ψ) −
∫

Γ
n(uf · n)ψ = −ap(Epϕp, ψ). (2.25)

We multiply (2.23), (2.24) by n, and (2.25) by g and sum up; then, we define

A(v,w) = n af (v,w) + g ap(ϕ,ψ)

+
∫

Γ
ng ϕ(w · n)−

∫
Γ
ng ψ(v · n) (2.26)

+
∫

Γ
n

d−1∑
j=1

ν

ε
(w · τ j)(v · τ j)

B(w, q) = n bf (w, q) (2.27)

for all v = (v, ϕ), w = (w, ψ) ∈W , q ∈ Q. Finally, we define the following linear functionals:

〈F , w〉 =
∫

Ωf

nf w − n af (Efuin,w)− g ap(Epϕp, ψ) (2.28)

〈G, q〉 = −nbf(Efuin, q) (2.29)

for all w = (w, ψ) ∈W , q ∈ Q.
Adopting these notations, the weak formulation of the Stokes/Darcy coupled problem reads:

find u = (u0
f , ϕ0) ∈W , pf ∈ Q such that

A(u, v) + B(v, pf ) = 〈F , v〉 ∀v = (v, ψ) ∈W (2.30)

B(u, q) = 〈G, q〉 ∀q ∈ Q. (2.31)

The interface conditions (1.26)-(1.28) have been incorporated in the above weak model as natural
conditions on Γ: in particular, (1.27) and (1.28) are natural conditions for Stokes problem, while
(1.26) becomes a natural condition for Darcy’s problem.

2.3 Well-Posedness of the Coupled Problem

To prove existence and uniqueness we apply the abstract theory of saddle-point problems devel-
oped in [Bre74].
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Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two normed real Hilbert spaces, and let X ′ and Y ′ be their
dual spaces (i.e. the spaces of linear and continuous functionals on X and Y , respectively). We
introduce two bilinear forms

a(·, ·) : X ×X → R, b(·, ·) : X × Y → R (2.32)

such that

|a(v,w)| ≤ c1‖v‖X‖w‖X , |b(w, q)| ≤ c2‖w‖X‖q‖Y , ∀v,w ∈ X, q ∈ Y. (2.33)

We consider the following constrained problem:

find (u, η) ∈ X × Y such that

a(u, v) + b(v, η) = 〈l, v〉 ∀v ∈ X
b(u, q) = 〈σ, q〉 ∀q ∈ Y

(2.34)

where l ∈ X ′ and σ ∈ Y ′, and 〈·, ·〉 denotes the duality pairing between X ′ and X, or Y and Y ′.
Then, the following result can be proved (see [Bre74, BF91]).

Theorem 2.3.1. Assume that the following hypotheses hold true:

1. the bilinear form a(·, ·) satisfies (2.33) and there exists a positive constant c3 > 0 such that

a(v, v) ≥ c3‖v‖2X ∀v ∈ X0 (2.35)

where
X0 = {v ∈ X| b(v, q) = 0 ∀q ∈ Y } ; (2.36)

2. the bilinear form b(·, ·) satisfies (2.33);
3. the following compatibility condition ( inf-sup or Ladyzhenskaya-Babuška-Brezzi (LBB) con-

dition) holds: there exists a constant β∗ > 0 such that

∀q ∈ Y ∃v ∈ X, v �= 0 : b(v, q) ≥ β∗‖v‖X‖q‖Y . (2.37)

Then, for each l ∈ X ′, σ ∈ Y ′, there exists a unique solution (u, η) ∈ X × Y to (2.34); further-
more, the map (l, σ)→ (u, η) is an isomorphism from X ′ × Y ′ onto X × Y and

‖u‖X ≤
1
c3

(
‖l‖X′ +

c1 + c3
β∗

‖σ‖Y ′

)
(2.38)

‖η‖Y ≤
1
β∗

[(
1 +

c1
c3

)
‖l‖X′ +

c1(c1 + c3)
c3β∗

‖σ‖Y ′

]
. (2.39)

In order to apply Theorem 2.3.1 in our case, we need to prove some preliminary results concerning
the bilinear forms A and B and the functionals F and G.
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Lemma 2.3.1. The following results hold:

1. A(., .) is continuous and coercive on W and, in particular, it is coercive on the space

W 0 = {v ∈W | B(v, q) = 0 ∀q ∈ Q} ;

2. B(., .) is continuous on W × Q and satisfies the following inf-sup condition: there exists a
positive constant β > 0 such that ∀q ∈ Q ∃w ∈W such that

B(w, q) ≥ β‖w‖W ‖q‖0,f . (2.40)

3. F is a continuous linear functional on W .
4. G is a continuous linear functional on Q.

Proof. 1. Thanks to the Cauchy-Schwarz inequality and to the trace inequality (2.3) we have

|A(v,w)| ≤ nν‖v‖1,f‖w‖1,f + gmax
j
‖Kj‖∞,p‖ψ‖1,p‖ϕ‖1,p

+ngC1
tr,fC

1
tr,p‖ϕ‖1,p‖w‖1,f + ngC1

tr,fC
1
tr,p‖ψ‖1,p‖v‖1,f

+n(d− 1)(ν/ε)(C1
tr,f )2‖v‖1,f‖w‖1,f .

We define
γ = max{γ1, γ2} (2.41)

where

γ1 = max{nν + n(d− 1)(C1
tr,f )2(ν/ε), ngC1

tr,fC
1
tr,p},

γ2 = max{gmax
j
‖Kj‖∞,p, ngC

1
tr,fC

1
tr,p},

so that

|A(v,w)| ≤ γ(‖v‖1,f + ‖ϕ‖1,p)(‖w‖1,f + ‖ψ‖1,p)

≤ 2γ‖v‖W ‖w‖W (2.42)

where (2.42) follows from the inequality

(x+ y) ≤
√

2(x2 + y2)1/2, ∀x, y ∈ R
+ .

The coercivity is a consequence of the Poincaré inequality; in fact we have, for all v = (v, ϕ) ∈W ,

A(v, v) = n af (v,v) + g ap(ϕ,ϕ) +
∫

Γ
n

d−1∑
j

ν

ε
(v · τ j)2

≥ n af (v,v) + g ap(ϕ,ϕ)

≥ nνmin
(

1,
1
CΩf

)
‖v‖21,f + gmK min

(
1,

1
CΩp

)
‖ϕ‖21,p

≥ α‖v‖2W ,
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where

α = min
{
nνmin

(
1,

1
CΩf

)
, gmK min

(
1,

1
CΩp

)}
, (2.43)

mK = min
i=1,...,d

inf
x∈Ωp

Ki(x), (mK > 0) (2.44)

and CΩf
, CΩp are the constants from the Poincaré inequality. Finally, since W 0 ⊂W , the thesis

follows.

2. Concerning continuity, thanks to the Cauchy–Schwarz inequality, we have

|B(w, q)| ≤ n‖q‖0,f‖w‖W , for all w ∈W, q ∈ Q .

Moreover, thanks to (2.18), there exists a constant β∗ > 0 such that ∀q ∈ Q ∃w ∈ Hf , w �= 0,
such that

−
∫

Ωf

q∇ ·w ≥ β∗‖w‖1,f‖q‖0,f . (2.45)

Then, considering w = (w, 0) ∈ Hf ×Hp, the result follows with β = nβ∗ > 0.

3. Thanks to the Cauchy–Schwarz inequality, the trace inequality (2.3) and the continuity of the
extension operators Ef and Ep, whose continuity constants are denoted hereafter by C1 and C2,
respectively, we have

|〈F , w〉| ≤ n‖f‖0,f‖w‖1,f + nνC1‖uin‖H1/2(Γin
f )‖w‖1,f

+gmax
j
‖Kj‖∞,pC2‖ψ‖1,p‖ϕ‖H1/2(Γb

p)

≤ CF (‖w‖1,f + ‖ϕ‖1,p)

≤
√

2CF‖w‖W ,

where

CF = max{n‖f‖0,f + C1nν‖uin‖H1/2(Γin
f ), gC2 max

j
‖Kj‖∞,p‖ϕp‖H1/2(Γb

p)}. (2.46)

4. The continuity of the functional G follows from the Cauchy-Schwarz inequality and of the
continuity of the extension operator Ef , in fact it holds:

|〈G, q〉| ≤ CG‖q‖0,f , (2.47)

with CG = C1n‖uin‖H1/2(Γin
f ). ��

We can now prove the main result of this section.

Proposition 2.3.1. The Stokes/Darcy coupled problem (2.30), (2.31) admits a unique solution
(u0

f , pf , ϕ0) ∈ Hf ×Q×Hp which satisfy the following a-priori estimates:

‖(u0
f , ϕ0)‖W ≤

1
α

(√
2CF +

α+ 2γ
β

CG

)
,
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‖pf‖0,f ≤
1
β

[(
1 +

2γ
α

)√
2CF +

2γ(α + 2γ)
αβ

CG

]
,

where β, γ, α, CF and CG are the constants defined in (2.40), (2.41), (2.43), (2.46) and (2.47),
respectively.

Proof. It is a straightforward consequence of Theorem 2.3.1, whose hypotheses are satisfied
thanks to Lemma 2.3.1. ��

Remark 2.3.1. The analysis we have just presented can be replicated with minor changes if we
consider as interface condition

τ j · ∇uf · n = 0 on Γ

instead of (1.28) as already pointed out at the end of Sect. 1.2. In that case we need to slightly
modify the definition of the functional spaces and, in particular, we should replace the space H̃f

introduced in (2.10) by the space

H ′f = {v ∈ (H1(Ωf ))d| v = 0 on Γf , v · n = 0 on Γ}.

Then, the structure of the analysis remains essentially the same. For all the details we refer to
[DMQ02, DQ03]. ��

Remark 2.3.2. In our approach we have chosen to rewrite Darcy’s equation in form of the Poisson
problem (1.21). Should we keep the mixed formulation (1.10), (1.11) a well-posedness analysis
can be developed as well; we refer to the recent work [LSY03]. The authors study a Stokes/Darcy
coupling analogous to ours, still adopting the interface conditions proposed by Jäger and Mikelić,
however they use the mixed form of Darcy’s equations and realize the coupling via Lagrange
multipliers. In particular, they introduce the Lagrange multiplier � ∈ Λ:

� = −ν ∂uf

∂n
· n + pf = pp on Γ,

and the dual pairing

bΓ(v, �) = 〈v1 · n + v2 · n, �〉 : (Hf ×X2)× Λ→ R

where X2 is a suitable subspace of H(div; Ωp) accounting for the boundary conditions and we
have denoted v = (v1,v2).
Then, they guarantee existence and uniqueness of the solution of the global mixed problem: find
u = (uf ,up) ∈ Hf ×X2, p = (pf , pp) ∈M , � ∈ Λ:

a(u, v) + b(v, p) + bΓ(v, �) = f(v) ∀v ∈ Hf ×X2 (2.48)

b(u, q) = g(q) ∀q ∈M (2.49)

bΓ(u, σ) = 0 ∀σ ∈ Λ (2.50)
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with

a(u, v) = af (uf ,vf ) +
∫

Γ

d−1∑
j=1

ν

ε
(uf · τ j)(vf · τ j) +

∫
Ωp

K−1up vp

b(v, p) = bf (vf , pf )−
∫

Ωp

pp∇ · vp

and f , g are suitably defined linear continuous functionals. Finally,M is a subspace ofQ×L2(Ωp).
If the computational domain is such that Γ ∩ ∂Ω = ∅, i.e. if the porous medium is entirely
enclosed in the fluid region, then (2.48)-(2.50) can be equivalently restated on the subspace of
Hf×X2 with trace continuous normal velocities: {v ∈ Hf×X2|bΓ(v, σ) = 0 ∀σ ∈ Λ} ⊂ Hf×X2.

��

Remark 2.3.3. An alternative “global” approach could be adopted to treat the Stokes/Darcy
coupling by considering only (1.27) and (1.28) as interface conditions and introducing a suitable
product space, say H, on Ω endowed with the following norm

‖(u, p)‖H =
(∫

Ω
ν̃|∇u|2 +

µ̃

ε
|u|2 + |∇ · u|2 + |p|2

)1/2

,

where ν̃ = ν in Ωf , ν̃ = 0 in Ωp, and µ̃ = 0 in Ωf , µ̃ = µ in Ωp. Notice that in this case the
continuity of the normal velocities across Γ would be guaranteed by the definition of the norm
‖ · ‖H ([Ago04]). ��

2.4 Multidomain Formulation of the Coupled Problem

After proving the well-posedness of the Stokes/Darcy problem, we aim at setting up effective
methods to compute numerically its solution. As we shall illustrate in chapter 3, a discretization
of this problem using e.g. finite elements leads to a large sparse ill-conditioned linear system
which requires a suitable preconditioning strategy to be solved.
Moreover, we would like to exploit the intrinsic decoupled structure of the problem at hand to
design an iterative procedure requiring at each step to compute independently the solution of
the fluid and of the groundwater problems.
Therefore, in the next sections we shall apply a domain decomposition technique at the differen-
tial level to study the Stokes/Darcy coupled problem. Our aim will be to introduce and analyze
the Steklov-Poincaré interface equation associated to our problem, in order to reformulate it
solely in terms of interface unknowns. This re-interpretation will be crucial to set up iterative
procedures between the subdomains Ωf and Ωp, that will be later replicated at the discrete level.

In this section we start by rewriting the Stokes/Darcy problem in a multidomain formulation
and, in particular, we prove the following result.
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Proposition 2.4.1. Let Λ be the space of traces (2.15). Problem (2.30), (2.31) can be reformu-
lated in an equivalent way as follows: find u0

f ∈ Hf , pf ∈ Q, ϕ0 ∈ Hp such that

af (u0
f + Efuin,w) + bf (w, pf )

+
∫

Γ
n

d−1∑
j=1

ν

ε
(u0

f · τ j)(R1µ · τ j) =
∫

Ωf

f w ∀w ∈ H0
f (2.51)

bf (u0
f + Efuin, q) = 0 ∀q ∈ Q (2.52)

ap(ϕ0 +Epϕp, ψ) = 0 ∀ψ ∈ H0
p (2.53)∫

Γ
n (u0

f · n)µ = ap(ϕ0 + Epϕp, R2µ) ∀µ ∈ Λ (2.54)

∫
Γ
gϕ0µ =

∫
Ωf

f (R1µ)− af (u0
f + Efuin, R1µ)− bf (R1µ, pf )

−
∫

Γ

d−1∑
j=1

ν

ε
(u0

f · τ j)(R1µ · τ j) ∀µ ∈ Λ , (2.55)

where R1 is any possible extension operator from Λ to Hf , i.e., a continuous operator from Λ
to Hf such that (R1µ) · n = µ on Γ for all µ ∈ Λ, and R2 is any possible continuous extension
operator from Λ† to Hp such that R2µ = µ on Γ for all µ ∈ Λ†.

Proof. Let (u, p) ∈W×Q be the solution to (2.30), (2.31). Considering in (2.30) as test functions
(w,ψ) ∈ H0

f ×H0
p , we obtain (2.51) and (2.53). Moreover, (2.31) implies (2.52).

Now let µ ∈ Λ, R1µ ∈ Hf , and R2µ ∈ Hp. From (2.30) we have:

n af (u0
f + Efuin, R1µ)−

∫
Ωf

nf(R1µ) + g ap(ϕ0 + Epϕp, R2µ)

−
∫

Γ
ng(u0

f · n)µ+ nbf (R1µ, pf )

+
∫

Γ
n

d−1∑
j=1

ν

ε
(u0

f · τ j)(R1µ · τ j) = −
∫

Γ
ngϕ0µ,

so that (2.54) and (2.55) are satisfied.

Consider now two arbitrary functions w ∈ Hf , ψ ∈ Hp and let us indicate by µ the normal trace
of w on Γ, i.e. w · n|Γ = µ ∈ Λ, and by η the trace of ψ on Γ, that is ψ|Γ = η ∈ H1/2(Γ). Then
(w −R1µ) ∈ H0

f and (ψ −R2η) ∈ H0
p . Setting u = (u0

f , ϕ0) and v = (w, ψ) we have:
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A(u, v) + B(v, p) = n af (u0
f ,w −R1µ) + nbf(w −R1µ, pf )

+
∫

Γ
n

d−1∑
j=1

ν

ε
(u0

f · τ j)((w −R1µ) · τ j)

+gap(ϕ0, ψ −R2η) +
∫

Γ
ngϕ0(w −R1µ) · n

−
∫

Γ
ng(ψ −R2η)(u0

f · n)

+naf (u0
f , R1µ) + nbf (R1µ, pf )

+
∫

Γ
n

d−1∑
j=1

ν

ε
(u0

f · τ j)(R1µ · τ j)

+
∫

Γ
ngϕ0(R1µ · n) + gap(ϕ0 + Epϕp, R2η)

−gap(Epϕp, R2µ)−
∫

Γ
ng(R2η)(u0

f · n) .

Then, using (2.51) and (2.53)-(2.55) we obtain:

A(u, v) + B(v, p) =
∫

Ωf

nf (w −R1µ)− naf (Efuin,w −R1µ)

−gap(Epϕp, ψ −R2µ) +
∫

Ωf

nf (R1µ)− naf (Efuin, R1µ)

+
∫

Γ
ng(u0

f · n)η −
∫

Γ
ng(u0

f · n)η

−gap(Epϕp, R2η)

and, recalling the definition (2.28) of the functional F , we find that u = (u0
f , ϕ0) and pf satisfy

(2.30), for all w ∈ Hf , ψ ∈ Hp.
The proof is completed by observing that (2.31) follows from (2.52). ��

Now we have to choose a suitable governing variable on the interface Γ. Considering the interface
conditions (1.26) and (1.27) which couple the Stokes and Darcy subproblems, we can foresee
two different strategies to select the interface variable:

1. we can set the interface variable λ as the trace of the normal velocity on the interface:

λ = uf · n = −K

n

∂ϕ

∂n
(2.56)

2. we can define the interface variable σ as the trace of the piezometric head on Γ:

σ = ϕ =
1
g

(
−ν ∂uf

∂n
+ pfn

)
· n. (2.57)
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Both choices are suitable from the mathematical viewpoint since they guarantee well-posed sub-
problems in the fluid and the porous part. We shall analyze the interface equations corresponding
to both λ and σ and the correlated preconditioned substructuring methods.

The role played in this context by the interface variables λ and σ is quite different than the
classical cases encountered in domain decomposition. We clarify this point on a test example.
Consider the Poisson problem −�u = f on a domain split into two nonoverlapping subdomains.
The interface conditions are

u1 = u2 and
∂u1

∂n
=
∂u2

∂n
on the interface.

We have therefore two possible choices of the interface variable, say λ̃:

1. λ̃ = u1 = u2 on the interface: this is the classical approach (see [QV99] chapter 1) which gives
the usual Steklov-Poincaré equation in λ̃ featuring the so-called Dirichlet-to-Neumann maps.
Note that λ̃ provides a Dirichlet boundary condition on the interface for both subproblems.

2. λ̃ = ∂u1/∂n = ∂u2/∂n: this is the so-called FETI approach (see [TW04] chapter 1) which
can be seen as dual to the one recalled in 1. In this case the value of λ̃ provides a Neumann
boundary condition on the interface for the two subproblems.

After computing λ̃, we have to solve in both cases the same kind of boundary value problem in
the subdomains to recover the global solution.
For the Stokes/Darcy problem this is no longer true: in fact, should we know λ on Γ, then
we would have to solve a “Dirichlet” problem in Ωf and a Neumann problem in Ωp. On the
other hand, choosing σ as interface variable would lead to consider a Stokes problem in Ωf with
a Neumann boundary condition on Γ, and a Darcy problem in Ωp with a Dirichlet boundary
condition on Γ.
This behaviour is due to the heterogeneity of the coupling itself and it will strongly influence
the construction of the Steklov-Poincaré operators that will not play the role of Dirichlet-to-
Neumann maps for both subdomains as in the Laplace case.
We have encountered an analogous asymmetry in the interface conditions when dealing with an
heterogeneous fluid-structure coupling (see [DDQ04]).

2.5 Interface Equation for the Normal Velocity

We consider as governing variable on the interface Γ the normal component of the velocity field
λ = uf · n as indicated in (2.56).
Should we know a priori the value of λ on Γ, from (2.56) we would obtain a Dirichlet boundary
condition for the Stokes system in Ωf (uf ·n = λ on Γ) and a Neumann boundary condition for
the Darcy equation in Ωp (−(K∇ϕ · n)/n = λ on Γ).
Joint with (1.28) for the fluid problem, these conditions allow us to recover (independently) the
solutions (uf , pf ) of the Stokes problem in Ωf and the solution ϕ of the Darcy problem in Ωp.
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For simplicity, from now on we consider the following condition on the interface:

uf · τ j = 0 on Γ (2.58)

instead of (1.28). This simplification is acceptable from the physical viewpoint as discussed in
Sect. 1.2 and it does not dramatically influence the coupling of the two subproblems since, as
we have already pointed out, condition (1.28) is not strictly a coupling condition but only a
boundary condition for the fluid problem in Ωf .

Remark 2.5.1. Using the simplified condition (2.58), the multidomain formulation of the Stokes/
Darcy problem (2.51)-(2.52) becomes:

find u0
f ∈ Hτ

f , pf ∈ Q, ϕ0 ∈ Hp such that

af (u0
f + Efuin,w) + bf (w, pf ) =

∫
Ωf

f w ∀w ∈ (H1
0 (Ωf ))d (2.59)

bf (u0
f + Efuin, q) = 0 ∀q ∈ Q (2.60)

ap(ϕ0 + Epϕp, ψ) = 0 ∀ψ ∈ H0
p (2.61)∫

Γ
n(u0

f · n)µ = ap(ϕ0 + Epϕp, R2µ) ∀µ ∈ Λ (2.62)

∫
Γ
gϕ0µ =

∫
Ωf

f (Rτ
1µ)− af (u0

f + Efuin, R
τ
1µ)

−bf (Rτ
1µ, pf ) ∀µ ∈ Λ (2.63)

with R2 defined as in Proposition 2.4.1, and Rτ
1 : Λ→ Hτ

f is any possible continuous extension
operator from Λ to Hτ

f such that Rτ
1µ · n = µ on Γ for all µ ∈ Λ, with

Hτ
f = {v ∈ Hf |v · τ j = 0 on Γ}. (2.64)

��

We define the continuous extension operator

EΓ : H1/2(Γ)→ Hτ
f , η → EΓη s.t. EΓη · n = η on Γ. (2.65)

We consider the (unknown) interface variable λ = uf ·n on Γ, λ ∈ Λ, and we split it as λ = λ0+λ∗
where λ∗ ∈ Λ depends on the inflow data and satisfies∫

Γ
λ∗ = −

∫
Γin

f

uin · n , (2.66)

whereas λ0 ∈ Λ0, with

Λ0 =
{
µ ∈ Λ

∣∣∣∣∫
Γ
µ = 0

}
⊂ Λ . (2.67)
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Then, after defining the subspace of Q:

Q0 =

{
q ∈ Q

∣∣∣∣∣
∫

Ωf

q = 0

}
(2.68)

we introduce two auxiliary problems whose solutions (which depend on the problem data) are
related to that of the global problem (2.59)-(2.63), as we will see later on:

P1) find ω∗0 ∈ (H1
0 (Ωf ))d, π∗ ∈ Q0 such that

af (ω∗0 + Efuin + EΓλ∗,v) + bf (v, π∗) =
∫

Ωf

f v ∀v ∈ (H1
0 (Ωf ))d (2.69)

bf (ω∗0 +Efuin + EΓλ∗, q) = 0 ∀q ∈ Q0; (2.70)

P2) find ϕ∗0 ∈ Hp such that

ap(ϕ∗0 + Epϕp, ψ) =
∫

Γ
nλ∗ψ ∀ψ ∈ Hp. (2.71)

Now we define the following extension operators:

Rf : Λ0 → Hτ
f ×Q0, η → Rfη = (R1

fη,R
2
fη)

such that (R1
fη) · n = η on Γ and

af (R1
fη,v) + bf (v, R2

fη) = 0 ∀v ∈ (H1
0 (Ωf ))d (2.72)

bf (R1
fη, q) = 0 ∀q ∈ Q0 ; (2.73)

Rp : Λ→ Hp , η → Rpη

such that
ap(Rpη,R2µ) =

∫
Γ
nηµ ∀µ ∈ Λ†. (2.74)

We define the Steklov-Poincaré operator S as follows: for all η ∈ Λ0, µ ∈ Λ,

〈Sη, µ〉 = af (R1
fη,R

τ
1µ) + bf (Rτ

1µ,R
2
fη) +

∫
Γ
g(Rpη)µ (2.75)

which can be split as the sum of two suboperators S = Sf + Sp:

〈Sfη, µ〉 = af (R1
fη,R

τ
1µ) + bf (Rτ

1µ,R
2
fη) , (2.76)

〈Spη, µ〉 =
∫

Γ
g (Rpη)µ (2.77)

for all η ∈ Λ0 and µ ∈ Λ.
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Moreover, we define the functional χ : Λ0 → R ,

〈χ, µ〉 =
∫

Ωf

f (Rτ
1µ)− af (ω∗0 + Efuin + EΓλ∗, R

τ
1µ)

−bf (Rτ
1µ, π

∗)−
∫

Γ
g ϕ∗0µ (2.78)

for all µ ∈ Λ.

Now we can express the solution of the coupled problem in terms of the interface variable λ0;
precisely, we can prove the following result.

Theorem 2.5.1. The solution to (2.59)-(2.63) can be characterized as follows:

u0
f = ω∗0 +R1

fλ0 + EΓλ∗, pf = π∗ +R2
fλ0 + p̂f , ϕ0 = ϕ∗0 +Rpλ0 , (2.79)

where p̂f = (meas(Ωf ))−1
∫
Ωf
pf and λ0 ∈ Λ0 is the solution of the following Steklov-Poincaré

problem:
〈Sλ0, µ0〉 = 〈χ, µ0〉 ∀µ0 ∈ Λ0 . (2.80)

Moreover, p̂f can be obtained from λ0 by solving the algebraic equation

p̂f =
1

meas(Γ)
〈Sλ0 − χ, ζ〉 , (2.81)

where ζ ∈ Λ is a fixed function such that

1
meas(Γ)

∫
Γ
ζ = 1 . (2.82)

Proof. Thanks to the divergence theorem, for all constant functions c,

bf (w, c) = c

∫
∂Ωf

w · n = 0 ∀w ∈ (H1
0 (Ωf ))d.

Then, by direct inspection, the functions defined in (2.79) satisfy (2.59), (2.61) and (2.62).
Moreover (2.60) is satisfied too. Indeed, ∀q ∈ Q

bf (ω∗0 +R1
fλ0 + EΓλ∗ + Efuin, q) = bf (ω∗0 +R1

fλ0 + EΓλ∗ +Efuin, q − q)
+bf (ω∗0 +R1

fλ0 + EΓλ∗ + Efuin, q)

where q is the constant q = (meas(Ωf ))−1
∫
Ωf
q. Still using the divergence theorem,

bf (ω∗0 +R1
fλ0 + EΓλ∗ + Efuin, q) = q

∫
Γ
λ0 + q

∫
Γ
λ∗ + q

∫
Γin

f

uin · nf .

The right hand side is null thanks to (2.66) and since λ0 ∈ Λ0.
We now consider (2.63). Using (2.79) we obtain, ∀µ ∈ Λ,
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∫
Γ
g(Rpλ0)µ+ af (R1

fλ0, R
τ
1µ) + bf (Rτ

1µ,R
2
fλ0)

=
∫

Ωf

f (Rτ
1µ)−

∫
Γ
gϕ∗0µ

− af (ω∗0 + Efuin + EΓλ∗, R
τ
1µ)− bf (Rτ

1µ, π
∗)− bf (Rτ

1µ, p̂f ) ,

that is,
〈Sλ0, µ〉 = 〈χ, µ〉 − bf (Rτ

1µ, p̂f ) ∀µ ∈ Λ . (2.83)

In particular, if we take µ ∈ Λ0 ⊂ Λ, we can invoke the divergence theorem and conclude that
λ0 is the solution to the Steklov-Poincaré equation (2.80).

Now any µ ∈ Λ can be decomposed as µ = µ0 + µΓζ, with µΓ = (meas(Γ))−1
∫
Γ µ , so that

µ0 ∈ Λ0.
From (2.83) we obtain

〈Sλ0, µ0〉+ 〈Sλ0, µΓζ〉 = 〈χ, µ0〉+ 〈χ, µΓζ〉+ p̂f

∫
Γ
µ ∀µ ∈ Λ .

Therefore, thanks to (2.80), we have

µΓ〈Sλ0 − χ, ζ〉 = p̂f

∫
Γ
µ ∀µ ∈ Λ .

Since
∫
Γ µ = µΓmeas(Γ), we conclude that (2.81) holds. ��

In next section we prove that (2.80) has a unique solution.

2.5.1 Analysis of the Steklov-Poincaré Operators Sf and Sp

We shall now prove some properties of the Steklov-Poincaré operators Sf , Sp and S.

Lemma 2.5.1. The Steklov-Poincaré operators enjoy the following properties:

1. Sf and Sp are linear continuous operators on Λ0 (i.e., Sfη ∈ Λ′0, Spη ∈ Λ′0, ∀η ∈ Λ0 );
2. Sf is symmetric and coercive;
3. Sp is symmetric and positive.

Proof. 1. Sf and Sp are obviously linear. Next we observe that for every µ ∈ Λ0 we can make
the special choice Rτ

1µ = R1
fµ . Consequently, from (2.76) and (2.72) it follows that Sf can be

characterized as:
〈Sfη, µ〉 = af (R1

fη,R
1
fµ) ∀η, µ ∈ Λ0 . (2.84)

To prove continuity, we introduce the vector operator H : Λ0 → Hf , µ→Hµ, such that∫
Ωf

∇(Hµ) · ∇v = 0 ∀v ∈ (H1
0 (Ωf ))d

(Hµ) · n = µ on Γ
(Hµ) · τ j = 0 on Γ , j = 1, . . . , d− 1
Hµ = 0 on ∂Ωf \ Γ.

(2.85)
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By comparison with the operator R1
f introduced in (2.72), (2.73), we see that, for all µ ∈ Λ0,

the vector function
z(µ) = R1

fµ−Hµ (2.86)

satisfies z(µ) = 0 on Γ; therefore z(µ) ∈ (H1
0 (Ωf ))d. By taking v = z(µ) in (2.72), in view of the

definition (2.86) we have

|af (R1
fµ, z(µ))| =

∣∣bf (Hµ,R2
fµ)

∣∣ ≤ ‖R2
fµ‖0,f‖Hµ‖1,f . (2.87)

We now consider the function R2
fµ. Since it belongs to Q0, there exists w ∈ (H1

0 (Ωf ))d, w �= 0,
such that

β0‖R2
fµ‖0,f‖w‖1,f ≤ bf (w, R2

fµ)

where β0 > 0 is the inf-sup constant, independent of µ (see, e.g., [BF91]). Since w ∈ (H1
0 (Ωf ))d,

we can use (2.72) and obtain:

β0‖R2
fµ‖0,f‖w‖1,f ≤ |af (R1

fµ,w)| ≤ ν‖R1
fµ‖1,f‖w‖1,f .

The last inequality follows from the Cauchy–Schwarz inequality. Therefore

‖R2
fµ‖0,f ≤

ν

β0
‖R1

fµ‖1,f ∀µ ∈ Λ0 . (2.88)

Now, using the Poincaré inequality and relations (2.86)-(2.88), we obtain:

‖R1
fµ‖21,f ≤

1 + CΩf

ν
af (R1

fµ,R
1
fµ)

=
1 + CΩf

ν

[
af (R1

fµ, z(µ)) + af (R1
fµ,Hµ)

]
≤

1 + CΩf

ν

[
‖R2

fµ‖0,f‖Hµ‖1,f + ν‖R1
fµ‖1,f‖Hµ‖1,f

]
≤ (1 + CΩf

)
(

1 +
1
β0

)
‖R1

fµ‖1,f‖Hµ‖1,f

for all µ ∈ Λ0. Therefore

‖R1
fµ‖1,f ≤ (1 + CΩf

)
(

1 +
1
β0

)
‖Hµ‖1,f

≤ α∗(1 + CΩf
)
(

1 +
1
β0

)
‖µ‖Λ . (2.89)

The last inequality follows from the observation that Hµ is a harmonic extension of µ; then
there exists a positive constant α∗ > 0 (independent of µ) such that

‖Hµ‖1,f ≤ α∗‖Hµ|Γ‖Λ = α∗‖µ‖Λ

(see, e.g., [QV99]).
Thanks to (2.89) we can now prove the continuity of Sf ; in fact, for all µ, η ∈ Λ0, we have
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|〈Sfµ, η〉| = |af (R1
fµ,R

1
fη)| ≤ βf‖µ‖Λ‖η‖Λ ,

where βf is the positive continuity constant

βf = ν

[
α∗(1 + CΩf

)
(

1 +
1
β0

)]2

. (2.90)

We now turn to the issue of continuity of Sp. Let mK be the positive constant introduced in
(2.44). Thanks to the Poincaré inequality and to (2.74) we have:

‖Rpµ‖21,p ≤ (1 + CΩp)‖∇Rpµ‖20,p

≤
1 + CΩp

mK
ap(Rpµ,Rpµ)

=
1 + CΩp

mK

∫
Γ
n(Rpµ)|Γ µ .

Finally, the Cauchy–Schwarz inequality and the trace inequality (2.3) allow us to deduce that

‖Rpµ‖1,p ≤
(1 + CΩp)
mK

nC1
tr,p‖µ‖Λ ∀µ ∈ Λ0 .

Then, ∀µ, η ∈ Λ0 ,

|〈Spµ, η〉| ≤ g‖Rpµ|Γ‖L2(Γ)‖η‖L2(Γ)

≤ gC1
tr,p‖Rpµ‖1,p‖η‖Λ ≤

ng(C1
tr,p)

2(1 +CΩp)
mK

‖µ‖Λ‖η‖Λ .

Thus Sp is continuous, with continuity constant

βp =
ng(C1

tr,p)
2(1 + CΩp)
mK

. (2.91)

2. Sf is symmetric thanks to (2.84). Again using the Poincaré inequality and the trace inequality
(2.5), for all µ ∈ Λ0 we obtain

〈Sfµ, µ〉 ≥ min
(
ν

2
,

ν

2CΩf

)
‖R1

fµ‖21,f

≥ 1
C3

tr,f

min
(
ν

2
,

ν

2CΩf

)
‖(R1

fµ · n)|Γ‖2Λ = αf‖µ‖2Λ ;

thus Sf is coercive, with a coercivity constant given by

αf =
1

C3
tr,f

min
(
ν

2
,

ν

2CΩf

)
. (2.92)

3. Sp is symmetric: for all µ, η ∈ Λ:
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〈Spµ, η〉 =
g

n

∫
Γ
n(Rpη)|Γµ =

g

n
ap(Rpµ,Rpη)

=
g

n
ap(Rpη,Rpµ) =

g

n

∫
Γ
nη(Rpµ)|Γ = 〈Spη, µ〉.

Moreover, thanks to (2.74), ∀µ ∈ Λ0

〈Spµ, µ〉 =
∫

Γ
g (Rpµ)µ =

g

n
ap(Rpµ,Rpµ) .

On the other hand, we have

‖µ‖Λ′ = sup
η∈Λ0

〈nµ, η〉
n‖η‖Λ

= sup
η∈Λ0

〈K∂Rpµ

∂np
, η〉

n‖η‖Λ

= sup
η∈Λ0

ap(Rpµ,Hpη)
n‖η‖Λ

≤ sup
η∈Λ0

α∗ap(Rpµ,Hpη)
n‖Hpη‖1,p

≤ sup
η∈Λ0

α∗maxj ‖Kj‖∞,p

n
· ‖Rpµ‖1,p‖Hpη‖1,p

‖Hpη‖1,p

=
α∗maxj ‖Kj‖∞,p

n
‖Rpµ‖1,p .

We have denoted by Λ′ the dual space of Λ0 , and by 〈·, ·〉 the duality pairing between Λ′ and
Λ0 . Moreover, Hpη is the harmonic extension of η to H1(Ωp), i.e., the (weak) solution of the
problem:

∇ · (K∇Hpη) = 0 in Ωp

K∇(Hpη) · np = 0 on Γp

Hpη = 0 on Γb
p

Hpη = η on Γ,

and we have used the equivalence of the norms

α∗‖η‖Λ ≤ ‖Hpη‖1,p ≤ α∗‖η‖Λ

(see, e.g., [Neč67] or [QV99] chapter 4).
We conclude that 〈Spµ, µ〉 ≥ C‖µ‖2Λ′ , for a suitable constant C > 0 . ��

The following result is a straightforward consequence of Lemma 2.5.1.

Corollary 2.5.1. The global Steklov-Poincaré operator S is symmetric, continuous and coer-
cive. Moreover S and Sf are spectrally equivalent, i.e., there exist two positive constants k1 and
k2 (independent of η) such that

k1〈Sfη, η〉 ≤ 〈Sη, η〉 ≤ k2〈Sfη, η〉 ∀η ∈ Λ0.
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2.6 Interface Equation for the Trace of the Piezometric Head

Now, let us consider the interface variable σ corresponding to the trace of the piezometric head
on Γ, as indicated in (2.57). In this case, if we recovered the value of σ on Γ, then we would
have a Dirichlet boundary condition ϕ = σ on Γ for Darcy’s equation and a Neumann boundary
condition (−ν∂uf/∂n + pfn) · n = gϕ on Γ for Stokes problem. We assume again the interface
condition (2.58) for Stokes problem as in Sect. 2.5.

We introduce the following auxiliary problems whose solutions depend on the data of the original
problem:

Π1) find �∗0 ∈ Hτ
f , π∗ ∈ Q such that

af (�∗0 + Efuin,v) + bf (v, π∗) =
∫

Ωf

f v ∀v ∈ Hτ
f (2.93)

bf (�∗0 + Efuin, q) = 0 ∀q ∈ Q ; (2.94)

Π2) find φ∗0 ∈ H0
p such that

ap(φ∗0 + Epϕp, ψ) = 0 ∀ψ ∈ H0
p (2.95)

Then, we define the following extension operators:

Rf : Λ† → Hτ
f ×Q, η → Rfη = (R1

fη,R2
fη)

(where Λ† is the space introduced in (2.15)) such that

af (R1
fη,v) + bf (v,R2

fη) +
∫

Γ
gηv · n = 0 ∀v ∈ Hτ

f (2.96)

bf (R1
fη, q) = 0 ∀q ∈ Q; (2.97)

Rp : Λ† → Hp, η → Rpη

such that Rpη = η on Γ and
ap(Rpη, ψ) = 0 ∀ψ ∈ H0

p . (2.98)

We define the Steklov-Poincaré operator S as follows: for all η, µ ∈ Λ†

〈Sη, µ〉 = ap(Rpη,R2µ)−
∫

Γ
n(R1

fη · n)µ (2.99)

which can be split as S = Sf + Sp:

〈Sfη, µ〉 = −
∫

Γ
n(R1

fη · n)µ (2.100)
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〈Spη, µ〉 = ap(Rpη,R2µ) (2.101)

for all η, µ ∈ Λ†.
Finally, we define the functional ς : Λ† → R,

〈ς, µ〉 =
∫

Γ
n(�∗0 · n)µ− ap(φ∗0 + Epϕp, R2µ) ∀µ ∈ Λ† . (2.102)

Now, we can rewrite the solution of the global problem in terms of σ and, in particular, we can
state the following result, which is the counterpart of Theorem 2.5.1.

Theorem 2.6.1. The solution to (2.59)-(2.63) can be characterized as follows:

u0
f = �∗0 +R1

fσ, pf = π∗ +R2
fσ, ϕ0 = φ∗0 +Rpσ (2.103)

where σ ∈ Λ† is the solution of the Steklov-Poincaré equation

〈Sσ, µ〉 = 〈ς, µ〉 ∀µ ∈ Λ† . (2.104)

Proof. By direct inspection and knowing that (H1
0 (Ωf ))d ⊂ Hτ

f , (2.59)-(2.61) are satisfied.
Then, if σ is solution to (2.104), (2.62) is satisfied for all µ ∈ Λ, since it does for all µ ∈ Λ† ⊃ Λ.
Finally, we substitute (2.103) in (2.63) and we check if the equality is true. Recalling the definition
of the extension operator Rp and that φ∗0 ∈ H0

p , then the left hand side is equal to
∫
Γ gσµ. On the

other hand, thanks to (2.93) and to (2.96), the right hand side can be written as
∫
Γ gσ(Rτ

1µ ·n)
and using the definition of Rτ

1 we can conclude that the equality is satisfied. ��

In the next section we shall study the properties of the Steklov-Poincaré operators (2.100),
(2.101).

2.6.1 Analysis of the Steklov-Poincaré Operators Sf and Sp

We can prove the following result.

Lemma 2.6.1. The Steklov-Poincaré operators Sf and Sp enjoy the following properties:

1. Sf and Sp are linear continuous operators on Λ†;
2. Sf is symmetric and positive;
3. Sp is symmetric and coercive;
4. the global Steklov-Poincaré operator S is symmetric, continuous and coercive. Moreover, S

and Sp are spectrally equivalent, i.e. there exist two positive constants k̃1 and k̃2 such that

k̃1〈Spη, η〉 ≤ 〈Sη, η〉 ≤ k̃2〈Spη, η〉 .

Proof. 1. Sf and Sp are obviously linear. Then, we consider v = R1
fη in (2.96) so that we obtain

|af (R1
fη,R1

fη)| =
∣∣∣∣∫

Γ
gηR1

fη · n
∣∣∣∣ ∀η ∈ Λ†.



44 2. Mathematical Analysis: the Linear Case

Thanks to the Cauchy-Schwarz inequality and recalling that Λ† is continuously embedded in
L2(Γ), we have ∣∣∣∣∫

Γ
gηR1

fη · n
∣∣∣∣ ≤ C0g‖η‖Λ†‖R1

fη · n‖Λ† , C0 > 0. (2.105)

On the other hand, we can apply the Poincaré inequality to get

|af (R1
fη,R1

fη)| ≥ νmin
(

1
2CΩf

,
1
2

)
‖R1

fη‖21,f

≥ ν

Ctr
min

(
1

2CΩf

,
1
2

)
‖R1

fη · n‖2Λ† (2.106)

where we have applied the trace inequality for vector functions (see, e.g., [LM68]). Therefore,
from (2.105) and (2.106) we have

‖R1
fη · n‖Λ† ≤

C0Ctr

min
(

1
2CΩf

,
1
2

) · g
ν
‖η‖Λ† ∀η ∈ Λ† . (2.107)

Then, for all η, µ ∈ Λ† it holds

|〈Sfη, µ〉| ≤ C0n‖R1
fη · n‖Λ†‖µ‖Λ† ≤ β̃f‖η‖Λ†‖µ‖Λ†

where we have used (2.107) and we have defined

β̃f =
C2

0Ctr

min
(

1
2CΩf

,
1
2

) · ng
ν
, (2.108)

C0 > 0 being a positive constant.
Now, we consider the continuity of Sp. We observe that for every µ ∈ Λ† we can make the special
choice R2µ = Rpµ. Then, thanks to well-known estimates on the solution of elliptic problems
(see, e.g., [Neč67]) we have

|〈Spη, µ〉| ≤ max
j
‖Kj‖∞,p‖Rpη‖1,p‖Rpµ‖1,p ≤ β̃p‖η‖Λ†‖µ‖Λ†

where we have denoted by β̃p the positive continuity constant

β̃p = C1 max
j
‖Kj‖∞,p

C1 > 0 being a positive constant.

2. Sf is symmetric by definition. On the other hand, we can write

‖µ‖Λ′ = sup
η∈Λ

〈gµ, η〉
g‖η‖Λ

= sup
η∈Λ

∣∣∣∣∣〈
(
−ν

∂R1
fµ

∂n
+R2

fµn

)
· n, R1

fη · n〉
∣∣∣∣∣

g‖η‖Λ

= sup
η∈Λ

|af (R1
fµ,R

1
fη)|

g‖η‖Λ
≤ sup

η∈Λ

ν‖R1
fµ‖1,f‖R1

fη‖1,f

gC‖R1
fη‖1,f

,
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the last inequality follows from (2.89). Then, there exists a positive constant C2 > 0 such that

‖µ‖Λ′
† ≤ C2‖R1

fµ‖1,f .

We conclude that 〈Sfµ, µ〉 ≥ C2‖µ‖2Λ′
†
.

3. The operator Sp is obviously symmetric and using the Poincaré inequality and the trace
inequality (2.5) it can be easily seen that

〈Spη, η〉 = ap(Rpη,Rpη) ≥ α̃p‖η‖2Λ†

where α̃p is the positive coercivity constant

α̃p =
mK

2
min

(
1
CΩp

, 1
)
· 1
C3

tr,p

(2.109)

mK being defined in (2.44). ��

2.7 General Framework and Possible Iterative Procedures

In this section we summarize the results obtained in Sect. 2.5.1 and 2.6.1 giving a general formal
framework. Then, since we aim at solving the coupled Stokes/Darcy problem by appropriate
numerical schemes based on domain decomposition methods, we will set possible iterative sub-
structuring procedures at the differential level, that we shall replicate at the discrete stage.

We have seen that:

Weak coupled problem
(2.30), (2.31)

←→ Interface
equations

find λ0 ∈ Λ0 : Sλ0 = χ

or else
find σ ∈ Λ† : Sσ = ς

where the Steklov-Poincaré operators are such that:

1. Case of interface variable λ (see (2.56)): we have

1a. Sf : Λ0 → Λ′0 that maps

Sf : {normal velocities on Γ} → {normal stresses on Γ};

and there exists S−1
f : Λ′0 → Λ0;

1b. Sp : Λ0 → Λ′0 which maps

Sp : {fluxes of ϕ on Γ} → {traces of ϕ on Γ}.

1c. Sf is spectrally equivalent to S.
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2. Case of interface variable σ (see (2.57)): we have

2a. Sf : Λ† → Λ′† that maps

Sf : {normal stresses on Γ} → {normal velocities on Γ};

2b. Sp : Λ† → Λ′† which maps

Sp : {traces of ϕ on Γ} → {fluxes of ϕ on Γ}

and it admits the inverse S−1
p : Λ′† → Λ†;

2c. Sp is spectrally equivalent to S.

Therefore, we can devise two iterative methods to solve either one of the interface equations
using either Sf or Sp as preconditioner. In particular, we can propose the following Richardson
methods at the differential level:

1. to solve Sλ0 = χ we consider: let λ0
0 be given, for k ≥ 0 do

λk+1
0 = λk

0 + θS−1
f (χ− (Sf + Sp)λk

0) (2.110)

where θ > 0 is a suitable relaxation parameter;

2. to solve Sσ = ς, we consider: let σ0 be given, for k ≥ 0 do

σk+1 = σk + ϑS−1
p (ς − (Sf + Sp)σk)

where ϑ > 0 is a suitable acceleration parameter.

In chapter 3 we shall prove that these methods correspond to Dirichlet-Neumann type schemes
to solve the coupled Stokes/Darcy problem.

Finally, let us point out which differential problems correspond to the different Steklov-Poincaré
operators:

i) Operator Sf :
computing Sfλ0 involves solving a Stokes problem in Ωf with the boundary conditions

uf ·n = λ0 and uf ·τ j = 0 on Γ, and then to compute the normal stress (−ν∂uf/∂n + pfn)·n
on Γ.

ii) Operator S−1
f :

the application of S−1
f to a given µ ∈ Λ′0 corresponds to solve a Stokes problem with the

boundary conditions (−ν∂uf/∂n + pfn) · n = µ and uf · τ j = 0 on Γ, and to compute the
normal velocity uf · n on Γ.
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iii) Operator Sp:
computing Spλ0 corresponds to solve a Darcy problem in Ωp with the Neumann boundary

condition −(K/n)∂ϕ/∂n = λ0 on Γ and to recover ϕ on Γ.

On the other hand,

iv) Operator Sf :
the application of Sf to a given σ ∈ Λ† corresponds to solve the same type of Stokes

problem as in ii). However, notice that here σ ∈ Λ†, so that it has a higher regularity than
the datum µ ∈ Λ′0 used in ii). The Λ†-regularity is more than required to guarantee the
well-posedness of the Stokes problem with Neumann datum on Γ.

v) Operator Sp:
computing Spσ corresponds to solve a Darcy problem in Ωp with the Dirichlet boundary

condition ϕ = σ on Γ and to recover the flux −(K/n)∂ϕ/∂n on Γ.

vi) Operator S−1
p :

the application of S−1
p to a given η ∈ Λ′† implies the solution of a Darcy problem with

Neumann boundary condition −(K/n)∂ϕ/∂n = η on Γ to get ϕ on Γ, like in iii). Remark
that here η is less regular than the datum λ0 ∈ Λ0 taken in iii). However, this regularity is
enough to guarantee the well-posedness of the Darcy problem.





3. Substructuring Methods for the Finite Element

Approximation of the Stokes/Darcy Problem

In this chapter we consider a Galerkin finite element approximation of the

Stokes/Darcy problem and we propose iterative subdomain methods for its so-

lution, inspired to domain decomposition theory. The convergence analysis that

we develop is based on the properties of the discrete Steklov-Poincaré opera-

tors associated to the given coupled problem. Optimal preconditioners for Krylov

methods are proposed and analyzed.

The results presented in this chapter extend those published in [DQ04].

This chapter is rather technical; figure 3.1 resumes the key points and should

serve as a guide to the reader.

3.1 Introduction

We consider a triangulation Th of the domain Ωf ∪Ωp, depending on a positive parameter h > 0,
made up of triangles if d = 2, or tetrahedra in the 3-dimensional case. We assume that:

1. each triangle or thetrahedra, say T , is such that int(T ) �= ∅;
2. int(T1) ∩ int(T2) = ∅ for each pair of different T1, T2 ∈ Th, and if T1 ∩ T2 = F �= ∅, then F

is a common face or edge or vertex to T1 and T2;
3. diam(T ) ≤ h for all T ∈ Th;
4. Th is regular that is there exists a constant Creg ≥ 1 such that

max
T∈Th

diam(T )
ρT

≤ Creg ∀h > 0

with ρT = sup{diam(B)|B is a ball contained in T};
5. the triangulations Tfh and Tph induced on the subdomains Ωf and Ωp are compatible on Γ,

that is they share the same edges (if d = 2) or faces (if d = 3) therein;
6. the triangulation TΓh induced on Γ is quasi-uniform, that is it is regular and there exists a

constant τ > 0 such that minT∈TΓh
hT ≥ τh, for all h > 0.

We shall denote by Pr, with r a non negative integer, the usual space of algebraic polynomials
of degree less or equal to r.

Prior to the analysis, we briefly discuss some possible choices of finite element (FE) spaces that
may be adopted to compute the solution of the fluid and the porous media problems.
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3.1.1 Overview on the Classical FE Spaces for Stokes and Darcy Equations

The literature on FE methods for the (Navier-)Stokes equations is quite broad. The crucial issue
concerning the finite dimensional spaces, say Vh and Qh, approximating the spaces of velocity
and pressure, respectively, is that they must satisfy the discrete compatibility condition: there
exists a positive constant β∗ > 0, independent of h, such that

∀qh ∈ Qh, ∃vh ∈ Vh, vh �= 0 : bf (vh, qh) ≥ β∗‖vh‖1,f‖qh‖0,f . (3.1)

Several choices can be made in this direction featuring both discontinuous pressure FE (e.g.
the P2-P0 elements or the Crouzeix-Raviart elements defined using cubic bubble functions) and
continuous pressure FE among which we recall the Taylor-Hood (or P2-P1) elements and the
(P1isoP2)-P1 elements. See, e.g., [QV94] chapter 9, or [BF91] chapter VI.

Concerning the solution of the Darcy problem (1.10), (1.11), currently used numerical methods
are based on two different approaches.

The former is based on the primal, single field formulation (1.21) for the piezometric head: it
amounts to solving the Poisson problem in the unknown ϕ using classical FE spaces and then
to recover the velocity field by numerically computing the gradient of ϕ. This approach may
lead to a loss of accuracy, i.e. to lower-order approximations for fluxes than the primal variable;
besides, mass conservation is not guaranteed.
However, post-processing techniques for the velocity field based on gradient superconvergence
phenomena, like those studied by Zienkiewicz and Zhu, have been successfully used to improve
accuracy and enforce mass conservation. In [LRM95] the authors show that these methods and
their variants may provide higher rates of convergence if compared with the classical displace-
ment or mixed methods.

The latter and more popular approach is however based on the mixed formulation (1.10), (1.11),
since it permits to recover simultaneously both the primal unknown and its gradient with the
same order of convergence. Moreover, mass is locally conserved and the continuity of fluxes is
preserved.
This approach comprises the so-called mixed (MFE) and mixed-hybrid (MHFE) finite elements,
among which we recall the Raviart-Thomas (RT) elements, the Brezzi-Douglas-Marini (BDM)
and the Brezzi-Douglas-Fortin-Marini (BDFM) elements, only to quote the most classical ones
(see [BF91]). In this context we cite also the recent work [MH02] which presents a new stabi-
lized MFE method without mesh-dependent parameters, and the comparative study [HEM+02]
concerning the numerical reliability of MFE and MHFE methods applied to porous media flows
under the influence of mesh parameters and medium heterogeneity.
Other approaches are based on the Discontinuous Galerkin (DG) methods (see [ABCM02,
CK00]) which are attractive for porous media flow due to their high order convergence property,
local conservation of mass, flexibility with respect of meshing and hp-adaptive refinement, and
their robustness with respect to strongly discontinuous coefficients. A numerical comparison
between DG and MFE for porous media can be found in [Bas03].
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MFE and DG have been also adopted in the recent works [LSY03, Riv03, RY03] for the
Stokes/Darcy coupling.
In particular, in [LSY03] a coupling between LBB-stable FE for Stokes and MFE for Darcy
equations is realized using hanging nodes on the interface Γ. The analysis developed shows that
optimal error bounds can be obtained in both the fluid and the porous region.
DG methods based on Interior Penalty are considered in [Riv03] for both the fluid and the
groundwater problem, and all unknowns are approximated by totally discontinuous polynomials
of different orders.
The two approaches are used together in [RY03] where the fluid velocity and pressure are ob-
tained by MFE in the porous media region, while they are approximated by DG in the incom-
pressible flow region. Error estimates are derived for two-dimensional problems and the authors
point out that non-matching grids on the interface can be used, with the space of discrete normal
velocities on Γ playing the role of a mortar space.
Finally, the issue of adopting different meshes in the two subdomains has been considered also
in [BH02], where P1-P0 FE, stabilized through a generalization of the Brezzi-Pitkäranta penal-
ization, have been used for both the fluid and the porous medium, realizing the coupling via a
Nitsche method.

3.2 Galerkin FE Approximation of the Stokes/Darcy Problem

Our analysis will consider the single field formulation (1.21) for Darcy equation. This approach
will allow us to treat the interface conditions as natural conditions for both the fluid and the
porous media, as for the continuous case; moreover, this approach will perfectly serve our purpose
to characterize iterative substructuring methods to solve the coupled problem.
As a first step, we can approximate the velocity field in Ωp using one of the post-processing tech-
niques recalled above. Then, we shall indicate how Darcy’s mixed formulation can be accounted
for in our iterative methods and in chapter 4 we shall also present numerical results based on
this latter formulation.
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Fluid operator Sfh (3.44)

Darcy operator Sph (3.45)

Spectral equivalence:Spectral equivalence:

Sh ∼ Sfh Sh ∼ Sph

Fluid operator Sfh (3.87)

Darcy operator Sph (3.88)

(Lemma 3.5.1) (Lemma 3.6.1)

Σfh (3.61)

Σph (3.62)

Σ̃fh (3.97)

Σ̃ph (3.97)

χsp(Σ−1
fh Σh) ≤ C (3.64) χsp(Σ̃−1

ph Σ̃h) ≤ C (3.98)

Richardson for (3.48)
with precond. Sfh

(see (3.78))

Richardson for (3.92)
with precond. Sph

(see (3.109))

Richardson for (3.58)
with precond. Σfh

(see (3.65))

Richardson for (3.94)
with precond. Σ̃ph

(see (3.108))

Dirichlet-NeumannDirichlet-Neumann
method (I)method (I)

(Sect. 3.5.3)

method (II) method (II)

(Sect. 3.6.2)

Algebraic Algebraic

(Sect. 3.5.5) (Sect. 3.6.3)

(Sect. 3.2) (Sect. 3.3)

(Sect. 3.5) (Sect. 3.6)

(Sect. 3.6)

(Sect. 3.5.2)

(Sect. 3.5.2)

(Sect. 3.6.1)

(Sect. 3.6.1)
(Sect. 3.5.1)

Convergence analysis

Theorem 3.5.3 Theorem 3.6.2

Iterative DD methods

Interface variableInterface variable Interface unknownInterface unknownλh(3.33) σh(3.34) u0
Γ φΓ

Interface problem

Discrete Steklov-Poincaré
equation

� � ��

Analysis

Schur complement

system

Shλ0h = χh (3.48) Shσh = ςh (3.92) Σhu0
Γ = χh (3.58) Σ̃hφΓ = χ̃h (3.94)

Galerkin FE approximation

(3.17)-(3.18)

Algebraic form:

global stiffness matrix (3.26)

⇒

Stokes/Darcy coupling

⇓⇓⇓⇓

Fig. 3.1. Scheme of the content of chapter 3.



3.2 Galerkin FE Approximation of the Stokes/Darcy Problem 53

The setting of the coupled problem is the same as in Sect. 2.2.
What matters for the analysis we are going to develop, is only to guarantee that the compatibility
condition (3.1) holds. Therefore, in the following, for the sake of exposition, we will consider the
special choice of piecewise quadratic elements for the velocity components and piecewise linear
for the pressure in the fluid domain (P2-P1 FE), while we shall consider quadratic P2 elements
for the piezometric head in the porous media domain. For the sake of clarity let us show the
degrees of freedom we are considering and how they match across the interface Γ: in Fig. 3.2
we sketch two triangles of a conforming regular mesh and we indicate the degrees of freedom
corresponding to the velocity uf and the pressure pf in Ωf , and to the piezometric head ϕ in
Ωp.

*

* *

* Ωf

Ωp

nodes for uf

nodes for pf

nodes for ϕΓ

Fig. 3.2. Degrees of freedom of the FE used for approximating velocity, pressure and piezometric head.

We define the discrete spaces:

Hfh = (Vfh)d, d = 2, 3 , (3.2)

where
Vfh = {vh ∈ Xfh| vh = 0 on Γin

f } , (3.3)

Xfh = {vh ∈ C0(Ωf )| vh = 0 on Γf and vh|K ∈ P2(K), ∀K ∈ Tfh} , (3.4)

and
H̃fh = (Ṽfh)d, d = 2, 3, (3.5)

where
Ṽfh = {vh ∈ Xfh| vh = 0 on Γ} . (3.6)

Moreover, let
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H0
fh = {vh ∈ Hfh| vh · n = 0 on Γ} ; (3.7)

Qh = {qh ∈ C0(Ωf )| qh|K ∈ P1(K), ∀K ∈ Tfh} ; (3.8)

Xph = {ψh ∈ C0(Ωp)|ψh|K ∈ P2(K), ∀K ∈ Tph} ; (3.9)

Hph = {ψh ∈ Xph|ψh = 0 on Γb
p} ; (3.10)

H0
ph = {ψh ∈ Hph|ψh = 0 on Γ} ; (3.11)

Wh = Hfh ×Hph . (3.12)

Finally, we consider the spaces:

Λh = {vh|Γ| vh ∈ Vfh} and Λ†h = {ψh|Γ|ψh ∈ Xph} (3.13)

to approximate the trace spaces Λ and Λ† (see (2.15)) on Γ, respectively.

Now, let us consider the approximation of the boundary data. If we suppose that the Darcy
datum ϕp on Γb

p belongs to ϕp ∈ H1/2(Γb
p)∩C0(Γb

p) , we can take the quadratic interpolant ϕph

of its nodal values on Γb
p, and then the extension Ephϕph ∈ Xph, such that Ephϕph = ϕph at the

nodes lying on Γb
p and Ephϕph = 0 at the nodes of Ωp \ Γb

p.
We can proceed in the same way for the boundary datum uin for the Stokes problem, provided
it belongs to (H1/2(Γin

f ))d ∩ (C0(Γin
f ))d . We consider again its quadratic interpolant, say uinh,

and then its extension
Efhuinh ∈ H̃fh . (3.14)

Remark 3.2.1. The discrete extension operator Efh is the counterpart of the continuous operator
Ef defined in (2.16). Note that also in this case we could have considered a discrete divergence
free extension operator, say Ẽfh, corresponding to Ẽf that we have characterized in Remark
2.2.1. We point out that to define Ẽfh we should consider the discrete counterpart of problem
(2.17) whose solvability is now guaranteed thanks to (3.1). ��

Now, we proceed as in Sect. 2.2. Recalling the definitions (2.26), (2.27) and considering the
linear functionals

〈F∗, w〉 =
∫

Ωf

nf w − n af (Efhuinh,w)− g ap(Ephϕph, ψ) ∀w = (w, ψ) ∈W, (3.15)

〈G∗, q〉 = −nbf (Efhuinh, q) q ∈ Q, (3.16)

the Galerkin approximation of the coupled Stokes/Darcy problem reads:

find uh = (u0
fh, ϕ0h) ∈Wh and pfh ∈ Qh:

A(uh, vh) + B(vh, pfh) = 〈F∗, vh〉 ∀vh ∈Wh (3.17)

B(uh, qh) = 〈G∗, qh〉 ∀qh ∈ Qh . (3.18)

Notice that considering a divergence null discrete extension of Ẽfhuinh, the linear functional G∗
would be null.



3.2 Galerkin FE Approximation of the Stokes/Darcy Problem 55

The existence, uniqueness and stability of the discrete solution of (3.17), (3.18) can be proved
following the same steps of the continuous case, using in addition the discrete inf-sup condition
(see [Bre74]): there exists a positive constant β∗ > 0, independent of h, such that

∀qh ∈ Qh, ∃vh ∈ Hfh, vh �= 0 : bf (vh, qh) ≥ β∗‖vh‖1,f‖qh‖0,f . (3.19)

The following error estimates hold. Let u = (u0
f , ϕ0) ∈ W , pf ∈ Q be the solutions to (2.30),

(2.31). Then, (see [Bre74])

‖u− uh‖W ≤
(
1 +

γ

α

)
inf

vh∈X0
h

‖u− vh‖W +
1
α

inf
qh∈Qh

‖pf − qh‖0,f (3.20)

and
‖pf − pfh‖0,f ≤ γ

β∗

(
1 +

γ

α

)
inf

vh∈X0
h

‖u− vh‖W

+
(

1 +
1
β∗

+
γ

αβ∗

)
· ‖p− qh‖0,f ,

(3.21)

where β∗ is the positive h-independent constant in the inf-sup condition (3.19); γ and α are the
h-independent continuity and coercivity constants of the bilinear form A(., .) defined in (2.41)
and (2.43), respectively.
Finally X0

h is the discrete space

X0
h = {vh ∈Wh| B(vh, qh) = 0 ∀qh ∈ Qh} .

We remark that since constants α, γ and β∗ are all independent of the discretization parameter
h, (3.20) and (3.21) give optimal convergence estimates.

Remark 3.2.2. Notice that in addition to the discrete LBB condition (3.19), no further compat-
ibility condition is required for the discrete spaces Hfh and Hph. In fact, the mixed coupling
terms on the interface appearing in the definition of the bilinear form A(., .):∫

Γ
ngϕh(wh · n)−

∫
Γ
ngψh(vh · n) , (3.22)

give null contribution when we consider wh = vh and ψh = ϕh. ��

Finally, let us underline that in the FE approximation, the coupling condition (1.26), which
imposes the continuity of normal velocity across the interface, has to be intended in the sense
of the L2(Γ)-projection on the finite element space Hph on Γ. In fact, in (3.17) we are imposing∫

Γ

(
−K

n
∇ϕh · n− ufh · n

)
ψh|Γ = 0, (3.23)

for all ψh ∈ Hph. This is equivalent to require that

Π(ufh · n) = −K

n
∇ϕh · n , (3.24)

Π being the projection operator on Hph|Γ with respect to the scalar product of L2(Γ).
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3.3 Algebraic Formulation of the Coupled Problem

We introduce the following bases for the finite dimensional spaces Hfh, Qh and Hph, respectively.
Let Nf = dim(Hfh), Nq = dim(Qh) and Np = dim(Hph). Then,

a) {ωi}
Nf

i=1 is a basis for Hfh;

b) {πj}Nq

j=1 is a basis for Qh;

c) {φk}Np

k=1 is a basis for Hph.

Finally, let NΓ denote the number of nodes lying on the interface Γ.
We can express the unknowns u0

fh, pfh and ϕ0h as linear combinations with respect to these
bases. In particular,

u0
fh =

Nf∑
j=1

(u0
fh)jωj , pfh =

Nq∑
j=1

(pfh)jπj , ϕ0h =
Np∑
j=1

(ϕ0h)jφj , (3.25)

where (u0
fh)j , (pfh)j , (ϕ0h)j denote the coefficients of the linear expansions.

Remark that (pfh)j , (ϕ0h)j ∈ R, while, for any fixed 1 ≤ j ≤ Nf , (u0
fh)j is the d-uple of R

d:
((u0

fh)j1, . . . , (u
0
fh)jd)

T such that (u0
fh)jωj is the vector

((u0
fh)j1(ωj)1, . . . , (u0

fh)jd(ωj)d)T , (ωj)i being the i-th component of ωj.

Now, we consider equation (3.17) and choose as test functions the basis functions of Hfh asso-
ciated with the internal nodes of Ωf , say ωi for i = 1, . . . , Nf − NΓ. We also suppose to have
reordered these basis functions in such a way that the last NΓ are associated to the nodes on Γ,
and we distinguish them with the notation ωΓ

i . Therefore, thanks to (3.25), we have:

Nf−NΓ∑
j=1

naf (ωj,ωi)(u0
fh)j +

NΓ∑
j=1

d−1∑
k=1

naf ((ωΓ
j · τ k),ωi)(u0

fh · τ k)j

+
NΓ∑
j=1

naf ((ωΓ
j · n),ωi)(u0

fh · n)j +
Nq∑
j=1

nbf (ωi, πj)(pfh)j

=
∫

Ωf

nf ωi − naf (Efhuinh,ωi), i = 1, . . . , Nf −NΓ.

By uint we indicate the vector of the values of the unknown u0
fh at the nodes of Ωf \ Γ plus

those of (u0
fh · τ k) at the nodes lying on the interface Γ. Moreover, uΓ indicate the vector of

the values of (u0
fh · n) at the nodes of Γ. Finally, p is the vector of the values of the unknown

pressure pfh at the nodes of Ωf .
Then, we can write the following compact form (with obvious choice of notation for the matrices
and the right hand side):

Affuint + AfΓuΓ + BT p = f f .

We consider again equation (3.17), but we choose as test functions ωΓ
i , i = 1, . . . , NΓ, associated

to the nodes on Γ. Then, we obtain:
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Nf−NΓ∑
j=1

naf (ωj,ω
Γ
i )(u0

fh)j +
NΓ∑
j=1

d−1∑
k=1

naf ((ωΓ
j · τ k),ωΓ

i )(u0
fh · τ k)j

+
NΓ∑
j=1

∫
Γ
n

[
d−1∑
k=1

ν

ε
(ωΓ

i · τ k)(ωΓ
j · τ k)

]
(u0

fh)j

+
NΓ∑
j=1

naf (ωΓ
j · n,ωΓ

i )(u0
fh · n)j

+
Nq∑
j=1

n bf (ωΓ
i , πj)(pfh)j +

NΓ∑
j=1

(∫
Γ
ng φΓ

j (ωΓ
i · n)

)
(ϕ0h)j

=
∫

Ωf

nf ωΓ
i − naf (Efhuinh,ω

Γ
i ) ,

where φΓ
j denotes the functions of the basis of Hph associated to the interface nodes.

In compact form we get:

AΓfuint + Af
ΓΓuΓ + BT

fΓp + MΓΓφ = fΓ .

Now, we consider for (3.17) the test functions φi, i = 1, . . . , Np −NΓ, associated to the internal
nodes of domain Ωp. Again, we suppose the last NΓ functions {φΓ

i }
NΓ
i=1 to correspond to the

nodes on Γ. We find:
Np−NΓ∑

j=1

g ap(φj , φi) (ϕ0h)j +
NΓ∑
j=1

g ap(φΓ
j , φi) (ϕ0h)j = −g ap(Ephϕph, φi) .

Let φint indicate the vector of the values of the piezometric head ϕ0h at the nodes on Ωp \ Γ,
and φΓ those at the nodes on Γ. Therefore, we have the compact form:

Appφint + ApΓφΓ = fp .

If we consider the test functions φΓ
i , associated to the nodes on Γ, we have:

Np−NΓ∑
j=1

g ap(φj , φ
Γ
i )(ϕ0h)j +

NΓ∑
j=1

g ap(φΓ
j , φ

Γ
i )(ϕ0h)j

+
NΓ∑
j=1

(
−
∫

Γ
ng φΓ

i (ωΓ
j · n)

)
(u0

fh · n)j = −g ap(Ephϕph, φ
Γ
i ) ,

that in compact form becomes

AT
pΓφint + Ap

ΓΓφΓ −MT
ΓΓuΓ = fpΓ .

Finally, we consider equation (3.18). Choosing the test functions πi, i = 1, . . . , Nq, we have:

Nf−NΓ∑
j=1

n bf (ωj , πi)(u0
fh)j +

NΓ∑
j=1

d−1∑
k=1

n bf (ωΓ
j · τ k, πi)(u0

fh · τ k)j

+
NΓ∑
j=1

n bf (ωΓ
j · n, πi)(u0

fh · n)j = −n bf (Efhuinh, πi) ,
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or in compact form:
B1uint + BfΓuΓ = f in .

Using the notation introduced above, we can then reformulate problem (3.17), (3.18) in matrix
form ⎛⎜⎜⎜⎜⎜⎝

Aff BT AfΓ 0 0
B1 0 BfΓ 0 0
AΓf BT

fΓ Af
ΓΓ MΓΓ 0

0 0 −MT
ΓΓ Ap

ΓΓ AT
pΓ

0 0 0 ApΓ App

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
uint

p

uΓ

φΓ

φint

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
ff

f in

fΓ

fpΓ

fp

⎞⎟⎟⎟⎟⎟⎠ . (3.26)

The matrix of the linear system (3.26) is positive definite, and generally it is large and sparse.
To effectively solve this system using an iterative method, a preconditioning strategy is thus in
order. The characterization of suitable preconditioners will be the object of the next sections.
Remark that the coupling between Stokes and Darcy equations is realized at this algebraic
stage through the third and the fourth rows of the global matrix. In particular, the submatrices
MΓΓ and −MT

ΓΓ impose the algebraic counterpart of the coupling conditions (1.27) and (1.26),
respectively.

3.4 Discrete Multidomain Formulation

The theory developed at the differential level for the Steklov-Poincaré operators associated to the
Stokes/Darcy problem (see Sects. 2.5, 2.6) can be extended to the discrete operators associated
with the Galerkin FE approximation (3.17), (3.18).
The characterization of these discrete operators will be crucial to set up effective iterative
schemes to solve (3.26).
As already done for the continuous case, we shall consider the simplified condition

ufh · τ j = 0 on Γ. (3.27)

Therefore, our coupled problem (3.17), (3.18) may be rewritten in the following multidomain
formulation.

Proposition 3.4.1. Using the simplified condition (3.27), problem (3.17), (3.18) can be formu-
lated in an equivalent way as follows:

find u0
fh ∈ Hτ

fh, pfh ∈ Qh, ϕ0h ∈ Hph such that:
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af (u0
fh + Efhuinh,wh) + bf (wh, pfh) =

∫
Ωf

f wh ∀wh ∈ H̃0
fh (3.28)

bf (u0
fh + Efhuinh, qh) = 0 ∀qh ∈ Qh (3.29)

ap(ϕ0h +Ephϕph, ψh) = 0 ∀ψh ∈ H0
ph (3.30)∫

Γ
n(u0

fh · n)µh = ap(ϕ0h + Ephϕph, R2hµh) ∀µh ∈ Λh (3.31)∫
Γ
gϕ0hµh =

∫
Ωf

f (Rτ
1hµh)− af (u0

fh + Efhuinh, R
τ
1hµh)

−bf (Rτ
1hµh, pfh) ∀µh ∈ Λh , (3.32)

where we have introduced the FE spaces

Hτ
fh = {vh ∈ Hfh| vh · τ j = 0 on Γ}

and
H̃0

fh = {vh ∈ Hfh| vh = 0 on Γ} .

Moreover, Rτ
1h is any possible continuous extension operator from Λh to Hτ

fh such that Rτ
1hµh·n =

µh on Γ, for all µh ∈ Λh, and R2h is any possible continuous extension operator from Λ†h to
Hph such that R2hµh = µh on Γ, for all µh ∈ Λ†h.

Proof. The proof follows the same guidelines as in the continuous case, thus we refer the reader
to Proposition 2.4.1. ��

Now, let us analyze the discrete Steklov-Poincaré operators corresponding to the two possible
choices of the interface variable:

1. the interface variable is the trace λh of the normal velocity on Γ:

λh = ufh · n on Γ; (3.33)

2. the interface variable is the trace σh of the piezometric head

σh = ϕh on Γ . (3.34)

3.5 Interface Problem for the Discrete Normal Velocity

We consider the interface variable λh on Γ as in (3.33).
From (3.23) we obtain ∫

Γ

(
−K

n
∇ϕh · n− λh

)
ψh|Γ = 0 ∀ψh ∈ Hph ,

that is Πλh = −(K/n)∇ϕh · n, where Π is the projection operator introduced in (3.24).
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Now, if
∫
Γin

f
uinh · n �= 0, we introduce a function λ∗h ∈ Λh, λ∗h = c̃∗γh where γh is a piecewise

linear function on Γ such that γh(x) = 0 if x is a node on ∂Γ and γh(x) = 1 if x is a node on
Γ \ ∂Γ, while c̃∗ ∈ R is defined as

c̃∗ = −

∫
Γin

f

uinh · nf∫
Γ
γh .

Therefore ∫
Γ
λ∗h = −

∫
Γin

f

uinh · nf . (3.35)

Should the normal component of the datum uinh have zero mean value over Γin
f , the analysis

we are going to develop would still be valid by setting λ∗h = 0 and considering the whole trace
space Λh instead of the trace subspace Λ0h defined below.
We split λh as the sum of two components: λh = λ0h +λ∗h, where λ∗h is the function introduced
in (3.35), and λ0h ∈ Λ0h with

Λ0h =
{
µh ∈ Λh

∣∣∣∣∫
Γ
µh = 0

}
. (3.36)

We introduce the two auxiliary problems (counterparts of problems P1) and P2) of Sect. 2.5):

P1h) find ω∗0h ∈ H̃0
fh, π

∗
h ∈ Q0h such that for all vh ∈ H̃0

fh, qh ∈ Q0h

af (ω∗0h + Efhuinh + EΓhλ∗h,vh) + bf (vh, π
∗
h) =

∫
Ωf

f vh (3.37)

bf (ω∗0h + Efhuinh + EΓhλ∗h, qh) = 0 , (3.38)

where we have set Q0h = {qh ∈ Qh|
∫
Ωf
qh = 0} and EΓhλ∗h ∈ Hτ

fh denotes a suitable discrete
extension of λ∗h, such that EΓhλ∗h · n = λ∗h on Γ;

P2h) find ϕ∗0h ∈ Hph such that

ap(ϕ∗0h + Ephϕph, ψh) =
∫

Γ
nλ∗hψh , ∀ψh ∈ Hph (3.39)

Remark that P1h) is a Galerkin FE approximation of a Stokes problem where we impose the
boundary conditions (1.22), (1.23) and (3.27), while we set the normal velocity equal to λ∗h on
Γ.
On the other hand, P2h) is a Galerkin approximation of a Darcy problem in Ωp with the usual
boundary conditions (1.24) and (1.25), and we impose −(K/n)∇ϕ∗0h · n = λ∗h on Γ.
These problems thus depend on the data assigned to the global coupled problem.

Moreover, let us define the following extension operators:
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Rfh : Λ0h → Hτ
fh ×Q0h, ηh → Rfhηh = (R1

fhηh, R
2
fhηh)

such that (R1
fhηh) · n = ηh on Γ and

af (R1
fhηh,wh) + bf (wh, R

2
fhηh) = 0 ∀wh ∈ H0

fh (3.40)

bf (R1
fhηh, qh) = 0 ∀qh ∈ Q0h (3.41)

Rph : Λ0h → Hph, ηh → Rphηh

such that
ap(Rphηh, R2hµh) =

∫
Γ
nηhµh ∀µh ∈ Λ†h, (3.42)

where R2h is the extension operator introduced in Proposition 3.4.1.

Now we can define the discrete Steklov-Poincaré operator Sh : Λ0h → Λ′h as follows:

〈Shηh, µh〉 = af (R1
fhηh, R

τ
1hµh) + bf (Rτ

1hµh, R
2
fhηh) +

∫
Γ
g(Rphηh)µh (3.43)

∀ηh ∈ Λ0h, ∀µh ∈ Λh.
It can be split as sum of two suboperators Sh = Sfh +Sph, associated with the Stokes and Darcy
problems, respectively, and defined as

〈Sfhηh, µh〉 = af (R1
fhηh, R

τ
1hµh) + bf (Rτ

1hµh, R
2
fhηh) , (3.44)

〈Sphηh, µh〉 =
∫

Γ
g (Rphηh)µh , (3.45)

for all ηh ∈ Λ0h, µh ∈ Λh.
Finally, let χh be the linear functional:

〈χh, µh〉 =
∫

Ωf

f (Rτ
1hµh)− af (ω∗0h + Efhuinh + EΓhλ∗h, R

τ
1hµh)

−bf (Rτ
1hµh, π

∗
h)−

∫
Γ
g ϕ∗0hµh (3.46)

for all µh ∈ Λh.

A characterization of the solution of problem (3.28)-(3.32) in terms of the solution of a Steklov-
Poincaré discrete interface problem is given by the following result, which is the discrete coun-
terpart of Theorem 2.5.1.

Theorem 3.5.1. The solution to (3.28)-(3.32) can be characterized as follows:

u0
fh = ω∗0h +R1

fhλ0h + EΓhλ∗h, pfh = π∗h +R2
fhλ0h + p̂fh,

ϕ0h = ϕ∗0h +Rphλ0h ,
(3.47)
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where p̂fh = (meas(Ωf ))−1
∫
Ωf
ph, and λ0h ∈ Λ0h is the solution of the discrete Steklov-Poincaré

interface problem:
〈Shλ0h, µ0h〉 = 〈χh, µ0h〉 ∀µ0h ∈ Λ0h . (3.48)

Moreover, p̂fh can be obtained from λ0h by solving the algebraic equation

p̂fh =
1

meas(Γ)
〈Shλ0h − χh, ζh〉 , (3.49)

where ζh ∈ Λh is a given function that satisfies

1
meas(Γ)

∫
Γ
ζh = 1 . (3.50)

3.5.1 Analysis of the Discrete Steklov-Poincaré Operators Sfh and Sph

Let us investigate some properties of the discrete Steklov-Poincaré operators Sfh, Sph and Sh

that will allow us to prove existence and uniqueness for problem (3.48). Since their proofs are
similar to those of the continuous case, we shall only sketch them, referring to Lemma 2.5.1 for
more details.

Lemma 3.5.1. The discrete Steklov–Poincaré operators enjoy the following properties:

1. Sfh and Sph are linear continuous operators on Λ0h, i.e. Sfhηh ∈ Λ′0, Sphηh ∈ Λ′0, ∀ηh ∈
Λ0h ;

2. Sfh is symmetric and coercive;
3. Sph is symmetric and positive;
4. Sh and Sfh are uniformly spectrally equivalent, i.e. there exist two constants k̂1 and k̂2

independent of h, s.t. ∀ηh ∈ Λh,

k̂1〈Sfhηh, ηh〉 ≤ 〈Shηh, ηh〉 ≤ k̂2〈Sfhηh, ηh〉.

Proof. 1. Making the special choice Rτ
1h = R1

fh, the operator Sfh can be represented as follows

〈Sfhηh, µh〉 = af (R1
fhηh, R

1
fhµh) , (3.51)

for all ηh, µh ∈ Λ0h.
Now, proceeding as in 1. of Lemma 2.5.1, we can define the function zh(µh) = R1

fhµh−Hhµh ∈
H̃0

fh, Hh being the Galerkin approximation of the harmonic extension operator defined in (2.85).
Using the inf-sup condition (5.3.43) of [QV94] p. 173, we have for all µh ∈ Λ0h

‖R2
fhµh‖0,f ≤

ν

β∗
‖R1

fhµh‖1,f ,

and therefore

‖R1
fhµh‖1,f ≤ (1 + CΩf

)
(

1 +
1
β∗

)
‖Hhµh‖1,f , (3.52)
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CΩf
being a positive constant due to the Poincaré inequality. Now, thanks to the Uniform

Extension Theorem (see [QV94] Theorem 4.1.3; [MQ89]), there exists a positive constant C|Ωf | >

0, depending on the measure of the subdomain Ωf , but independent of the parameter h, such
that

‖Hhµh‖1,f ≤ C|Ωf |‖µh‖Λ ∀µh ∈ Λh .

Therefore, (3.52) gives ∀µh ∈ Λ0h

‖R1
fhµh‖1,f ≤ C|Ωf |(1 + CΩf

)
(

1 +
1
β∗

)
‖µh‖Λ . (3.53)

From (3.53) we deduce the continuity of Sfh:

|〈Sfhµh, ηh〉| ≤ β̂f‖µh‖Λ‖ηh‖Λ , (3.54)

where β̂f is the positive constant, independent of h,

β̂f = ν

[
C|Ωf |(1 +CΩf

)
(

1 +
1
β∗

)]2

. (3.55)

Proceeding as for the continuous case, we can prove that Sph is continuous with constant βp,
independent of h, defined in (2.91).

2. Sfh is symmetric thanks to (3.51) and the proof of its coercivity follows the one in the
continuous case, the coercivity constant αf being the same (see (2.92)).

3. This property follows from point 3. of the proof of Lemma 2.5.1. ��

Remark 3.5.1. Notice that the discrete operator Sph is actually coercive (see, e.g., [Cia78,
Ago88]); its coercivity constant, say αph > 0 depends on h and, in particular, it vanishes for
h→ 0. Since our aim is to characterize preconditioners optimal with respect to h for (3.48), we
omit to further investigate this property. ��

Remark 3.5.2. Thanks to Lax-Milgram Lemma (see, e.g., [QV94] p. 133), Lemma 3.5.1 guaran-
tees that the discrete Steklov-Poincaré equation (3.48) has a unique solution. ��

3.5.2 Algebraic Formulation of the Discrete Steklov-Poincaré Operator Sh

We consider the linear system (3.26) and we set uf = (uint,p)T and φ = (φΓ,φint)T . Then,
with obvious choice of notation, we can rewrite (3.26) in the following block form:⎛⎜⎝ F F1

Γ 0
F2

Γ Af
ΓΓ M1

0 M2 D

⎞⎟⎠
⎛⎜⎝ uf

uΓ

φ

⎞⎟⎠ =

⎛⎜⎝ f1

fΓ

f2

⎞⎟⎠ . (3.56)
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By writing uΓ = u0
Γ + λ∗, where λ∗ is the vector whose components are the (known) values of

λ∗h at the nodes on Γ, system (3.56) reduces to:⎛⎜⎝ F F1
Γ 0

F2
Γ Af

ΓΓ M1

0 M2 D

⎞⎟⎠
⎛⎜⎝ uf

u0
Γ

φ

⎞⎟⎠ =

⎛⎜⎝ f̂1

f̂Γ

f̂2

⎞⎟⎠ (3.57)

where f̂1 = f1 − F1
Γλ∗, f̂Γ = fΓ −Af

ΓΓλ∗ and f̂2 = f2 −M2λ∗.
Upon eliminating the unknowns uf and φ, we obtain the reduced Schur complement system:

Σhu0
Γ = χh (3.58)

where we have defined
Σh = (Af

ΓΓ − F2
ΓF−1F1

Γ) + (−M1D−1M2) (3.59)

and
χh = f̂Γ − F2

ΓF−1f̂1 −M1D−1f̂2 . (3.60)

In (3.59) the first term
Σfh = Af

ΓΓ − F2
ΓF−1F1

Γ (3.61)

arises from domain Ωf , whereas
Σph = −M1D−1M2 (3.62)

from Ωp.
The matrices Σfh and Σph are the algebraic counterparts of the operators Sfh and Sph, respec-
tively.

Remark 3.5.3. To be precise, notice that we are slightly abusing in notation, since for the alge-
braic system (3.26) we have considered the complete interface condition (1.28), while in order
to characterize the discrete Steklov-Poincaré operators we have used its simplified form (3.27).
Therefore, the exact algebraic counterpart of Sfh and Sph should be obtained considering a basis
of Hτ

fh instead of Hfh. ��

Thanks to Lemma 3.5.1, the matrices Σfh and Σh are symmetric and positive definite and
moreover

[Σfhµ,µ] ≤ [Σhµ,µ] ≤
(

1 +
βp

αf

)
[Σfhµ,µ] ∀µ ∈ R

NΓ , (3.63)

where [., .] is the Euclidean scalar product in R
NΓ and αf and βp are the constants defined in

(2.92) and (2.91), respectively.
Thus, the spectral condition number χsp of the matrix Σ−1

fhΣh is bounded independently of h:

χsp(Σ−1
fhΣh) ≤ 1 +

βp

αf
, (3.64)

and Σfh is an optimal preconditioner for Σh. Therefore, should we use Σfh as preconditioner to
solve the symmetric linear system (3.58) using the preconditioned Richardson method
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(u0
Γ)k+1 = (u0

Γ)k + Σ−1
fh (χh −Σh(u0

Γ)k), (3.65)

we would get convergence with a rate independent of h. Same conclusion if instead of (3.65) we
would use a Krylov type method (e.g., the conjugate gradient method).
In the next section, we shall interpret (3.65) as a Dirichlet-Neumann type substructuring scheme
and we shall prove its convergence.

3.5.3 An Iterative Method for the Numerical Solution of the Coupled

Problem

The iterative method we propose to compute the solution of the Stokes/Darcy problem (3.28)-
(3.32) consists in solving first Darcy problem in Ωp imposing the continuity of the normal
velocities across Γ. Then, we solve the Stokes problem in Ωf imposing the continuity of the
normal stresses across the interface, using the value of ϕh on Γ that we have just computed in
the porous media domain.
Precisely, the iterative scheme reads as follows:

given uinh, construct λ∗h as in (3.35);
then let λ0

h ∈ Λ0h be the initial guess; for k ≥ 0:

i) find ϕk+1
0h ∈ Hph:

ap(ϕk+1
0h , ψh)−

∫
Γ
nψh λ

k
0h = −ap(Ephϕph, ψh) +

∫
Γ
nψhλ∗h ∀ψh ∈ Hph ; (3.66)

ii) find (u0
fh)k+1 ∈ Hτ

fh, pk+1
fh ∈ Qh:

af ((u0
fh)k+1,wh) + bf (wh, p

k+1
fh ) +

∫
Γ
gϕk+1

h wh · n =
∫

Ωf

f wh

−af (Efhuinh,wh) ∀wh ∈ Hτ
fh, (3.67)

bf ((u0
fh)k+1, qh) = −bf (Efhuinh, qh) ∀qh ∈ Qh, (3.68)

with ϕk+1
h = ϕk+1

0h + Ephϕph ;

iii) update λk
0h:

λk+1
0h = θ(uk+1

fh · n− λ∗h)|Γ + (1− θ)λk
0h , (3.69)

θ being a positive relaxation parameter and uk+1
fh = (u0

fh)k+1 + Efhuinh.

Remark 3.5.4. Note that λk
0h ∈ Λ0h for all k ≥ 0. In fact, λ0h ∈ Λ0h given, suppose λk

0h ∈ Λ0.
Then ∫

Γ
λk+1

0h = θ

∫
Γ
(uk+1

fh · n|Γ − λ∗h) .

Now, since
∫
Ωf
∇ · uk+1

fh = 0, thanks to the divergence theorem we have
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∫
Γ
uk+1

fh · n = −
∫

Γin
f

uinh · n

and recalling (3.35) the thesis follows. ��

Following the general theory developed in [QV99], the above iterative method can be reinter-
preted as a preconditioned Richardson method for the Steklov–Poincaré problem (3.48).

Lemma 3.5.2. The iterative substructuring scheme (3.66)-(3.69) to compute the solution of the
FE approximation of the coupled problem Stokes/Darcy (3.28)-(3.32) is equivalent to a precon-
ditioned Richardson method for the discrete Steklov-Poincaré equation (3.48), the preconditioner
being the operator Sfh introduced in (3.44).

Proof. Since Efhuinh · n = 0 on Γ, (3.69) reduces to:

λk+1
0h = θ((u0

fh)k+1 · n− λ∗h)|Γ + (1 − θ)λk
0h . (3.70)

Let Rτ
1h : Λh → Hτ

fh be the extension operator introduced in Proposition 3.4.1. For all µh ∈ Λh,
we can rewrite (3.67) as:

af ((u0
fh)k+1, Rτ

1hµh) + bf (Rτ
1hµh, p

k+1
fh ) +

∫
Γ
gϕk+1

h µh

=
∫

Ωf

f (Rτ
1hµh)− af (Efhuinh, R

τ
1hµh) ∀µh ∈ Λh. (3.71)

Let us define p̂k+1
fh = (meas(Ωf ))−1

∫
Ωf
pk+1

fh ; then we set

pk+1
0h = pk+1

fh − p̂
k+1
fh , (3.72)

and we note that pk+1
0h ∈ Q0. Then (3.71) gives:

af ((u0
fh)k+1, Rτ

1hµh) + bf (Rτ
1hµh, p

k+1
0h ) +

∫
Γ
gϕk+1

h µh

=
∫

Ωf

f (Rτ
1hµh) + bf (Rτ

1hµh, p̂
k+1
fh )− af (Efhuinh, R

τ
1hµh) ∀µh ∈ Λh. (3.73)

Let ω∗0h, π∗h and ϕ∗0h be the solutions to problems (3.37), (3.38) and (3.39), respectively. Sub-
tracting from both members in (3.73) the following terms:

af (ω∗0h + EΓhλh∗, R
τ
1hµh) + bf (Rτ

1hµh, π
∗
h) +

∫
Γ
g ϕ∗0hµh ,

we have

af ((u0
fh)k+1 − ω∗0h − EΓhλh∗, R

τ
1hµh) + bf (Rτ

1hµh, p
k+1
0h − π

∗
h)

+
∫

Γ
g(ϕk+1

h − ϕ∗0h)µh =
∫

Ωf

f (Rτ
1hµh)− bf (Rτ

1hµh, π
∗
h) (3.74)

−af (ω∗0h + EΓhλh∗ + Efhuinh, R
τ
1hµh)−

∫
Γ
g ϕ∗0hµh + bf (Rτ

1hµh, p̂
k+1
fh )
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for all µh ∈ Λh.
Since ∫

Ωf

∇ · (ω∗0 + EΓhλ∗h + Efhuinh) = 0 and
∫

Ωf

∇ · ((u0
fh)k+1 + Efhuinh) = 0,

we obtain ∫
Ω
∇ · ((u0

fh)k+1 − ω∗0 − EΓhλ∗h) = 0.

Now, if we apply the divergence theorem and recall that (u0
fh)k+1 ∈ Hτ

fh, ω∗0h ∈ H̃0
fh and

EΓhλ∗h ∈ Hτ
fh, we can see that [(u0

fh)k+1 − EΓhλ∗h] · n|Γ ∈ Λ0h. Therefore

af ((u0
fh)k+1 − ω∗0h −EΓhλ∗h, R

τ
1hµh) + bf (Rτ

1hµh, p
k+1
0h − π

∗
h)

= 〈Sfh(((u0
fh)k+1 −EΓhλ∗h) · n)|Γ, µh〉 (3.75)

for all µh ∈ Λh.
Moreover, if we subtract (3.39) from (3.66), we obtain

ap(ϕk+1
0h − ϕ

∗
0h, ψh) =

∫
Γ
nλk

0hψh ∀ψh ∈ Hph ,

that is, thanks to (3.42), ϕk+1
0h − ϕ∗0h = Rphλ

k
0h. Therefore∫

Γ
g(ϕk+1

h − ϕ∗0h)µh = 〈Sphλ
k
0h, µh〉 ∀µh ∈ Λh.

Finally, if we apply the divergence theorem to the last right hand side term in (3.74) and we
recall the definition (3.46), we can rewrite the right hand side of (3.74) as

〈χh, µh〉+ p̂k+1
fh

∫
Γ
µh ∀µh ∈ Λh . (3.76)

Now, for all µh ∈ Λ0h, it follows:

〈Sfh(((u0
fh)k+1 − EΓhλ∗h) · n)|Γ, µh〉+ 〈Sphλ

k
0h, µh〉 = 〈χh, µh〉 . (3.77)

Therefore we can conclude that (3.66)-(3.69) is equivalent to the preconditioned Richardson
scheme: λ0

0h ∈ Λ0h given, for k ≥ 0, find λk+1
0h ∈ Λ0h s.t.

λk+1
0h = λk

0h + θhS
−1
fh (χh − Shλ

k
0h) , (3.78)

��

Remark 3.5.5. The algorithm (3.66)-(3.69) does not feature the classical structure of a Dirichlet-
Neumann method, which would require to solve one subproblem in the first subdomain with a
Dirichlet boundary condition on the interface, and one problem in the second subdomain with
a Neumann boundary condition on the interface. In fact, we are imposing natural boundary
conditions for both subproblems. However, in view of (3.78), we can still refer to it as to a
Dirichlet-Neumann method since the preconditioner is the Steklov-Poincaré operator associated
to the second subproblem. ��

The formulation (3.78) is useful to carry out the convergence analysis of scheme (3.66)-(3.69),
as illustrated in the following section.
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3.5.4 Convergence Analysis of the Iterative Method

Our aim is now to prove the convergence of the sequence {((u0
fh)k, pk

fh, ϕ
k
0h)}k generated by

the iterative method (3.66)-(3.69) to the exact solution (u0
fh, pfh, ϕ0h) of the coupled problem

(3.28)-(3.32).
To this end, we shall apply the following abstract convergence result (see [QV99] Theorem 4.2.2
and Remark 4.2.4).

Theorem 3.5.2. Let X be a (real) Hilbert space and X ′ its dual. We consider a linear invertible
continuous operator Q : X → X ′, which can be split as Q = Q1 +Q2, where both Q1 and Q2 are
linear operators. Taken Z ∈ X ′, let x ∈ X be the unknown solution to the equation

Qx = Z ,

and consider for its solution the preconditioned Richardson method

Q2(xk+1 − xk) = θ(Z −Qxk), k ≥ 0,

θ being a positive relaxation parameter. Suppose that the following conditions are satisfied:

1. Q2 is symmetric, continuous and coercive with constants β2 and α2, respectively;
2. Q1 is continuous with constant β1;
3. Q is coercive with constant αQ.

Then, for any given x0 ∈ X and for any 0 < θ < θmax, with

θmax =
2αQα2

2

β2(β1 + β2)2
,

the sequence
xk+1 = xk + θQ−1

2 (Z −Qxk)

converges in X to the solution of problem Qx = Z.

We can now prove the main result of this section.

Theorem 3.5.3. The iterative method (3.66)-(3.69) converges to the solution
(u0

fh, pfh, ϕ0h) ∈ Hτ
fh × Qh × Hph of the coupled Stokes/Darcy problem (3.28)-(3.32), for any

choice of the initial guess λ0
0h ∈ Λ0h, and for suitable values of the relaxation parameter θ.

Proof. Upon setting X = Λ0h, Q = Sh, Q1 = Sph, Q2 = Sfh and Z = χh, the proof follows
from Theorem 3.5.2, whose hypotheses are satisfied thanks to Lemma 3.5.1. In fact, for an initial
guess λ0

0h ∈ Λ0h, and any 0 < θ < θmax with

θmax =
2α3

f

β̂f (β̂f + βp)2
, (3.79)

the sequence defined in (3.78) converges to the solution of the Steklov–Poincaré equation
(3.48). Taking the limit k → ∞ in the iterative procedure (3.66)-(3.69), it follows that
{((u0

fh)k, pk
fh, ϕ

k
0h)}k → (u0

fh, pfh, ϕ0h).
The upper bound θmax is independent of h as such are the constants αf , β̂f and βp. ��
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3.5.5 Matrix Interpretation of the Substructuring Iterative Method

The iterative scheme (3.66)–(3.69) corresponds to the following steps.

Let λk
0 ∈ R

NΓ be the vector of the values of λk
0h at the k-th step at the nodes of Γ.

The following algebraic system corresponds to (3.66):(
Ap

ΓΓ AT
pΓ

ApΓ App

)(
φk+1

Γ

φk+1
int

)
=

(
fpΓ + MT

Γλk
0 + MT

Γλ∗
fp

)
. (3.80)

By eliminating φk+1
int from (3.80), we obtain

(Ap
ΓΓ −AT

pΓA−1
pp ApΓ)φk+1

Γ = fpΓ −AT
pΓA−1

pp fp + MT
Γλk + MT

Γλ∗ . (3.81)

Now use φk+1
Γ to compute the unknown vector uk+1

Γ by solving the following system, which
corresponds to the Stokes problem (3.67), (3.68):⎛⎜⎝ Aff BT AfΓ

B1 0 BfΓ

AfΓ BT
fΓ Af

ΓΓ

⎞⎟⎠
⎛⎜⎝ uk+1

int

pk+1

uk+1
Γ

⎞⎟⎠ =

⎛⎜⎝ f f

f in

fΓ −MΓφk+1
Γ

⎞⎟⎠ (3.82)

Finally, according to (3.69), we set

λk+1
0 = θ(uk+1

Γ − λ∗) + (1− θ)λk
0 , (3.83)

and we iterate restarting from (3.80) until the convergence test

‖λk+1
0 − λk

0‖RNΓ

‖λk+1
0 ‖

R
NΓ

≤ ε

is satisfied for a prescribed tolerance ε; ‖ · ‖
R

NΓ denotes the Euclidean norm in R
NΓ.

3.6 Interface Problem for the Piezometric Head

The approach based on the interface variable σ illustrated in Sect. 2.6 can be replicated at the
discrete level considering the discrete variable σh in (3.34).
In particular, we define the discrete extension operators:

Rfh : Λ†h → Hτ
fh ×Qh, ηh →Rfhηh = (R1

fhηh,R2
fhηh)

such that

af (R1
fhηh,vh) + bf (vh,R2

fhηh) +
∫

Γ
gηhvh · n = 0 ∀vh ∈ Hτ

fh (3.84)

bf (R1
fhηh, qh) = 0 ∀qh ∈ Qh; (3.85)
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Rph : Λ† → Hph, ηh →Rphηh

such that Rphηh = ηh on Γ and

ap(Rphηh, ψh) = 0 ∀ψh ∈ H0
ph. (3.86)

Then, we can characterize the local Steklov-Poincaré operators:

〈Sfhηh, µh〉 = −
∫

Γ
n(R1

fhηh · n)µh (3.87)

〈Sphηh, µh〉 = ap(Rphηh, R2hµh) (3.88)

for all ηh, µh ∈ Λ†h and the global operator Sh:

〈Shηh, µh〉 = 〈Sfhηh, µh〉+ 〈Sphηh, µh〉 ∀η, µ ∈ Λ†h. (3.89)

Finally, let ςh : Λ†h → R be the linear functional

〈ςh, µh〉 =
∫

Γ
n(�∗0h · n)µh − ap(φ∗0h + Ephϕph, R2hµh) ∀µh ∈ Λ†h (3.90)

where �∗0h ∈ Hτ
fh and φ∗0h ∈ H0

ph are the solutions to Galerkin approximations of problems
(2.93), (2.94) and (2.95), respectively.

The counterpart of Theorem 2.6.1 holds:

Theorem 3.6.1. The solution to (3.28)-(3.32) can be characterized as

u0
fh = �∗0h +R1

fhσh, pfh = π∗h +R2
fhσh, ϕ0h = φ∗0h +Rphσh (3.91)

where σh ∈ Λ†h is the solution of the Steklov-Poincaré equation

〈Shσh, µh〉 = 〈ςh, µh〉 ∀µh ∈ Λ†h . (3.92)

The existence and uniqueness of the solution σh of (3.92) is guaranteed by the analysis of the
discrete Steklov-Poincaré operators. In particular, we can state the following result, which is the
discrete counterpart of Lemma 2.6.1.

Lemma 3.6.1. The Steklov-Poincaré operators Sfh and Sph enjoy the following properties:

1. Sfh and Sph are linear continuous operators on Λ†h with continuity constants β̃f (see (2.108))
and β̄p = Ĉmaxj ‖K‖∞,f , respectively, Ĉ > 0 being a positive constant independent of h due
to the Uniform Extension Theorem;

2. Sfh is symmetric and positive;
3. Sph is symmetric and coercive with coercivity constant α̃p as in (2.109);
4. Sh and Sph are spectrally equivalent, i.e. there exist two positive constants k̄1 and k̄2, inde-

pendent of h, such that

k̄1〈Sphηh, ηh〉 ≤ 〈Shηh, ηh〉 ≤ k̄2〈Sphηh, ηh〉 ∀ηh ∈ Λ†h .
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3.6.1 Algebraic Formulation of the Discrete Steklov-Poincaré Operator Sh

Denoting u = (uint,p,uΓ)T , system (3.26) can be rewritten with obvious block matrix notation
as: ⎛⎜⎝ F̃ M̃1 0

M̃2 Ap
ΓΓ AT

pΓ

0 ApΓ App

⎞⎟⎠
⎛⎜⎝ u

φΓ

φint

⎞⎟⎠ =

⎛⎜⎝ f̃1

fpΓ

fp

⎞⎟⎠ . (3.93)

We take the Schur complement with respect to the unknown φΓ:

Σ̃hφΓ = χ̃h (3.94)

where
Σ̃h = (Ap

ΓΓ −AT
pΓA−1

pp ApΓ) + (−M̃2F̃
−1

M̃1) (3.95)

and
χ̃h = fpΓ −AT

pΓA−1
pp fpΓ − M̃2F̃

−1
f̃1. (3.96)

We can split Σ̃h = Σ̃ph + Σ̃fh, where

Σ̃ph = Ap
ΓΓ −AT

pΓA−1
pp ApΓ and Σ̃fh = −M̃2F̃

−1
M̃1 (3.97)

are the algebraic counterpart of the operators Sph and Sfh, respectively. The matrices Σ̃ph and
Σ̃h are symmetric and positive definite, and

[Σ̃phµ,µ] ≤ [Σ̃hµ,µ] ≤
(

1 +
β̃f

α̃p

)
[Σ̃phµ,µ] ∀µ ∈ R

NΓ,

so that the spectral condition number of the preconditioned matrix Σ̃−1
ph Σ̃h is bounded indepen-

dently of h:

χsp(Σ̃−1
ph Σ̃h) ≤ 1 +

β̃f

α̃p
. (3.98)

3.6.2 An Iterative Method for the Solution of the Coupled Problem (II)

We propose the following iterative method which exploits σh as interface variable.

Let σ0
h ∈ Λ†h be given; for k ≥ 0,

i) find (u0
fh)k+1 ∈ Hτ

fh, pk+1
fh ∈ Qh:

af ((u0
fh)k+1,wh) + bf (wh, p

k+1
fh ) +

∫
Γ
gσk+1

h wh · n =
∫

Ωf

f wh

−af (Efhuinh,wh) ∀wh ∈ Hτ
fh, (3.99)

bf ((u0
fh)k+1, qh) = −bf (Efhuinh, qh) ∀qh ∈ Qh; (3.100)
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ii) find ϕk+1
0h ∈ Hph:

ap(ϕk+1
0h , ψh)−

∫
Γ
nψh (uk+1

fh · n) = −ap(Ephϕph, ψh) ∀ψ ∈ Hph ; (3.101)

with uk+1
fh = (u0

fh)k+1 + Efhuinh;

iii) update σk
h:

σk+1
h = ϑϕk+1

h |Γ + (1− ϑ)σk
h , (3.102)

ϑ being a positive relaxation parameter and ϕk+1
h = ϕk+1

0h + Ephϕph.

3.6.3 Matrix Formulation

The matrix formulation of scheme (3.99)-(3.102) is as follows. Let σk
h ∈ R

NΓ be the vector of
the nodal values of σk

h on Γ at the k-th step. Then,

i) solve the system (corresponding to (3.99)-(3.100)):⎛⎜⎝ Aff BT AfΓ

B1 0 BfΓ

AfΓ BT
fΓ Af

ΓΓ

⎞⎟⎠
⎛⎜⎝ uk+1

int

pk+1

uk+1
Γ

⎞⎟⎠ =

⎛⎜⎝ f f

f in

fΓ −MΓσk
h

⎞⎟⎠ (3.103)

and obtain uk+1
Γ ;

ii) update the right hand side and solve the following system (which corresponds to (3.101)):(
Ap

ΓΓ AT
pΓ

ApΓ App

)(
φk+1

Γ

φk+1
int

)
=

(
fpΓ + MT

Γuk+1
Γ

fp

)
; (3.104)

iii) perform the relaxation:
σk+1

h = ϑφk+1
Γ + (1− ϑ)σk

h . (3.105)

The algorithm (3.103)-(3.105) (or (3.99)-(3.102)) corresponds to a preconditioned Richardson
scheme to solve the interface problem (3.94) (respectively, (3.92)) with preconditioner Σ̃ph (re-
spectively, Sph). In fact, using the notations introduced in (3.93), system (3.103) becomes

F̃uk+1 = f̃1 − M̃1σ
k
h (3.106)

and
MT

Γuk+1
Γ = −M̃2u

k+1 .

Eliminating φk+1
int in (3.103), we find

Σ̃phφk+1
Γ = χ̃h − Σ̃fhσk

h, (3.107)
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and substituting (3.107) in (3.105) we get

σk+1
h = σk

h + ϑΣ̃−1
ph (χ̃h − Σ̃hσk

h) . (3.108)

Finally, we can prove the following convergence result.

Theorem 3.6.2. The iterative method (3.99)-(3.102) converges to the solution of the coupled
problem (3.28)-(3.32) for any choice of the initial guess σ0

h ∈ Λ†h and for suitable values of the
relaxation parameter ϑ.

Proof. The thesis follows upon applying Theorem 3.5.2 to the counterpart of (3.108):

σk+1
h = σk

h + ϑS−1
ph (χ̃h − Shσ

k
h) (3.109)

and using Lemma 3.6.1. In particular, it must be ϑ ∈ (0, ϑmax) with

ϑmax =
2α̃3

p

β̃f (β̃f + βp)2
. (3.110)

��





4. Algorithms and Numerical Results

In this chapter we present some numerical results obtained applying the sub-

structuring methods introduced in chapter 3. In particular, the dependence of

the convergence rate on the grid parameter h and on the physical data gov-

erning the Stokes/Darcy coupling are discussed. Some difficulties encountered

when applying the algorithms are indicated together with possible improvement

strategies.

4.1 Introduction

In chapter 3, we have introduced and analyzed two possible substructuring methods to solve the
Stokes/Darcy problem, each one stemming from a particular choice of the governing variable
on the interface Γ. These algorithms, which strongly exploit the natural decoupled structure of
the problem at hand, are suited for parallel implementation and would permit to reuse existing
codes specifically devised for surface and groundwater flows simulation.
The aim of this chapter is to illustrate the convergence properties of the algorithms on several
test problems, with particular concern about the influence of grid and physical parameters.
Part of the results that we show have been previously published in [Dis04a].

For the sake of clarity, before presenting the numerical results, we give a schematic overview of the
numerical algorithms we shall adopt, and we discuss the implementation of the preconditioned
conjugate gradient (PCG) methods (see, e.g., [Saa03]) which exploit the preconditioners Σfh

and Σ̃ph that we have characterized in chapter 3.

4.1.1 Overview of Iterative Methods

The methods introduced in Sects. 3.5.3 and 3.6.2 can be written, respectively, in the following
pseudo-algorithmic form.
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Algorithm 4.1

0. choose an initial guess (uf )0 · n for the interface variable on Γ;

For k = 0, 1, . . . until convergence, Do

1. solve Darcy equation with boundary condition

−(K/n)∇ϕk+1 · n = (uf )k · n on Γ;

2. solve Stokes problem imposing −n · T((uf )k+ 1
2 , p

k+ 1
2

f ) · n = gϕk+1 on Γ;

3. Update: (uf )k+1 · n = θ (uf )k+ 1
2 · n + (1− θ) (uf )k · n on Γ, θ ∈ (0, 1);

End For

Algorithm 4.2

0. choose ϕ as interface variable and an initial guess ϕ0 on Γ;

For k = 0, 1, . . . until convergence, Do

1. solve Stokes problem imposing −n · T((uf )k+1, pk+1
f ) · n = gϕk on Γ;

2. solve Darcy equation with boundary condition

−(K/n)∇ϕk+ 1
2 · n = (uf )k+1 · n on Γ;

3. Update: ϕk+1 = ϑϕk+ 1
2 + (1− ϑ)ϕk on Γ, ϑ ∈ (0, 1);

End For

In practice, the two methods differ only in the order in which the Stokes and Darcy problems are
solved; however, we have shown that they correspond to two distinct preconditioning strategies
for the Schur complement systems (3.58) and (3.94), respectively.

Moreover, since these linear interface systems are symmetric and positive definite, the PCG
method can be applied, using Σfh and Σ̃ph as preconditioners for the first and the second
system, respectively.
In particular, for system (3.58) the PCG method reads as follows.
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Algorithm 4.3

Given an initial guess (u0
Γ)0, set r0 = χh − Σh(u0

Γ)0, w0 = z0 = Σ−1
fhr0.

Then, for k ≥ 0:

vk = Σhwk (4.1)

αk =
[wk, rk]
[wk,vk]

(4.2)

(u0
Γ)k+1 = (u0

Γ)k + αkw
k (4.3)

rk+1 = rk − αkv
k (4.4)

solve Σfhzk+1 = rk+1 (4.5)

βk =
[vk,zk+1]
[wk,vk]

(4.6)

wk+1 = zk+1 − βkw
k , (4.7)

where [·, ·] denotes the Euclidean scalar product in R
NΓ.

The most expensive steps in terms of computational effort are (4.1) and (4.5), which require
respectively:

Step (4.1):

– compute Σfhwk which amounts to solving a Stokes problem in Ωf with a Dirichlet boundary
condition on Γ (see the corresponding differential operator Sf in i), Sect. 2.7);

– compute Σphwk which amounts to solve a Darcy problem in Ωp with Neumann boundary
condition on Γ (see the definition of the corresponding differential operator Sp in iii), Sect.
2.7).

Step (4.5):
solve the linear system Σfhzk+1 = rk+1 ⇔ zk+1 = Σ−1

fhrk+1 which amounts to solve a Stokes
problem in Ωf with Neumann boundary condition on Γ (see also the definition of the differential
operator S−1

f in ii), Sect. 2.7).

Each step of the PCG method requires therefore to solve one Darcy problem in Ωp and two
Stokes problems in Ωf .
Similar considerations hold when PCG is applied to the Schur complement system (3.95). In
that case it is easy to see that at each step one should solve two Darcy problems in Ωp and one
fluid problem in Ωf . Precisely, the algorithm reads as follows.
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Algorithm 4.4

Given an initial guess φ0
Γ, set r0 = χ̃h − Σ̃hφ0

Γ, w0 = z0 = Σ̃−1
ph r0.

Then, for k ≥ 0:

vk = Σ̃hwk (4.8)

αk =
[wk, rk]
[wk,vk]

(4.9)

φk+1
Γ = φk

Γ + αkw
k (4.10)

rk+1 = rk − αkv
k (4.11)

solve Σ̃phzk+1 = rk+1 (4.12)

compute βk and update wk+1 as in (4.6), (4.7). (4.13)

4.2 Numerical Tests with Respect to the Grid Parameter

In this section we investigate the convergence properties of Algorithms 4.1-4.4 with respect to
the grid parameter h. Throughout the whole section we shall neglect the physical parameters ν,
K, g and n which shall be put all equal to 1.
We consider a test case in 2D. Let the computational domain be Ω ⊂ R

2 with Ωf = (0, 1)×(1, 2),
Ωp = (0, 1)× (0, 1) and the interface Γ = (0, 1)×{1}. We impose Dirichlet boundary conditions
on the velocity on ∂Ωf \ Γ, while we consider a Dirichlet boundary condition ϕ = ϕp on the
bottom boundary (0, 1) × {0} and Neumann boundary conditions on the lateral boundaries
{0, 1} × (0, 1) of the domain Ωp. The boundary conditions and the forcing terms are chosen in
such a way that the exact solution of the coupled Stokes/Darcy problem is

(uf )1 = − cos
(π

2
y
)

sin
(π

2
x
)

(4.14)

(uf )2 = sin
(π

2
y
)

cos
(π

2
x
)
− 1 + x (4.15)

pf = 1− x (4.16)

ϕ =
2
π

cos
(π

2
x
)

cos
(π

2
y
)
− y(x− 1), (4.17)

where (uf )1 and (uf )2 are the components of the velocity field uf . Note in particular that
uf · τ = (uf )1 = 0 on Γ according to (2.58). Finally, remark that in Darcy equation a non
null forcing term has been considered. This implies the presence of an additional term in the
definition of the functional F in (2.28), but it does not affect the theory we have developed.

In our computation, four different regular conforming meshes have been considered whose num-
ber of elements in Ω and of nodes on Γ are reported in table 4.1, together with the number of
iterations to convergence obtained using Algorithms 4.1-4.4. The P2-P1 Taylor-Hood FE have
been used for Stokes problem and P2 elements for Darcy equation.
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A tolerance tol =1.e−10 has been prescribed for the convergence tests based on the relative
residues. For Algorithms 4.1 and 4.2 we have chosen the relaxation parameters θ = ϑ = 0.7,
respectively.

Number of Number of Alg. 4.1 Alg. 4.3 Alg.4.2 Alg. 4.4

mesh elements nodes on Γ (θ = 0.7) (prec. Σ−1
fh ) (ϑ = 0.7) (prec. Σ̃−1

ph )

172 13 18 5 20 5
688 27 18 5 20 5
2752 55 18 5 20 5
11008 111 18 5 20 5

Table 4.1. Number of iterations obtained on different grids.

Figure 4.1 shows the computed residues for the adopted iterative methods when using the finest
mesh (logarithmic scale has been considered on the y-axis).
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Fig. 4.1. Computed relative residues for the interface variable λh (left) and σh (right) using Richardson and
PCG iterations.

Table 4.2 reports the spectral condition numbers of the preconditioned Schur complement ma-
trices Σ−1

hf Σh and Σ̃−1
ph Σ̃h illustrating the optimality of both preconditioners with respect to

h.

h|Γ approx. χsp(Σ−1
fh Σh) χsp(Σ̃−1

ph Σ̃h)

0.1429 1.083655 1.017733
0.0714 1.083670 1.017764
0.0357 1.083658 1.017768
0.0179 1.083656 1.017769

Table 4.2. Spectral condition numbers for the preconditioned Schur complements.
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Finally, figure 4.2 report the errors with respect to the exact solution for both choices of the
interface variables. Precisely, we have computed the errors

Eh
Stokes = ‖∇uf −∇ufh‖0,f + ‖pf − pfh‖0,f

Eh
Darcy = ‖ϕ− ϕh‖1,p

Eλh
= ‖λ− λh‖0,Γ and Eσh

= ‖σ − σh‖0,Γ .

We recall that the following theoretical estimates hold (see, e.g., [QV94]):

Eh
Darcy ≤ CDh

l+1‖ϕ‖l,p CD > 0,

with l = min(2, s − 1) if ϕ ∈ Hs(Ωp) (s ≥ 2), and

Eh
Stokes ≤ CSh

r(‖uf‖r+1,f + ‖pf‖r,f ) CS > 0,

with r = 1, 2, provided the solution (uf , pf ) is regular enough so that the norms at the right
hand side make sense. The numerical results show that these theoretical estimates are fulfilled.
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Fig. 4.2. Computed errors with respect to the exact solution versus h obtained using Algorithm 4.3 (left) and
4.4 (right).

The numerical tests we have presented show that according to the theory developed in chapter
3, the preconditioners Σfh and Σ̃ph are equally optimal with respect to the grid parameter h
since the corresponding preconditioned substructuring methods yield convergence in a number
of iterations independent of h.

4.3 Numerical Tests with Respect to the Physical Parameters

We consider now the influence of the physical parameters, which govern the coupled problem, on
the convergence of the given algorithms. We shall adopt the Algorithms 4.3 and 4.4 instead of
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Algorithms 4.1 and 4.2, as the PCG methods embed the choice of dynamic optimal acceleration
parameters. We take the same computational domain as in the test of Sect. 4.2 with the same
kind of boundary conditions, but here the boundary data and the forcing terms are chosen in
such a way that the exact solution of the coupled problem is

(uf )1 = y2 − 2y + 1 (4.18)

(uf )2 = x2 − x (4.19)

pf = 2ν(x+ y − 1) +
gn

3K
(4.20)

ϕ =
n

K

(
x(1− x)(y − 1) +

y3

3
− y2 + y

)
+

2ν
g
x. (4.21)

The most relevant physical quantities for the coupling are the fluid viscosity ν and the hydraulic
conductivity K. Therefore, we test our algorithms with respect to different values of ν and K,
and set g = n = 1. We consider a convergence test based on the relative residue with tolerance
tol = 1.e−10.
In table 4.3 we report the number of iterations obtained for several choices of ν and K (the
symbol # indicates that the method did not converge within maxit = 150 iterations), while in
Fig. 4.3 we show the spectral condition numbers χsp(Σ−1

fh Σh) (left) and χsp(Σ̃−1
ph Σ̃) (right) versus

h for the considered test cases.
We can see that both algorithms encounter some difficulties to deal with values of ν and K

different from 1. In particular, the convergence is troublesome when the values of ν and K

decrease. In fact, in that case the methods converge in a large number of iterations which
depends on h, losing their optimality properties that we have illustrated in Sect. 4.2.
The Dirichlet-Neumann type methods we have proposed are then effective only when the product
νK is sufficiently large, while dealing with small values causes severe difficulties.
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Fig. 4.3. Condition number χsp(Σ−1
fh Σh) (left) and χsp(Σ̃−1

ph Σ̃h) (right) versus h for the test cases reported in
table 4.3.

Remark that the latter are the very values of interest in real-life applications: see, for example, the
values of K reported in table 1.1 and recall that water has a kinematic viscosity ν = 1.e−06m2/s.
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Iter. using Alg. 4.3 (prec. Σ−1
fh )

ν K h = 0.1428 h = 0.0714 h = 0.0357 h = 0.0178
a) 1.e+00 1.e+00 5 5 5 5
b) 1.e−01 1.e−01 11 11 10 10
c) 1.e−02 1.e−01 15 19 18 17
d) 1.e−03 1.e−02 20 54 73 56
e) 1.e−04 1.e−03 20 59 # #
f) 1.e−06 1.e−04 20 59 148 #

Iter. using Alg. 4.4 (prec. Σ̃−1
ph )

ν K h = 0.1428 h = 0.0714 h = 0.0357 h = 0.0178
a) 1.e+00 1.e+00 6 6 6 6
b) 1.e−01 1.e−01 10 10 9 9
c) 1.e−02 1.e−01 15 15 14 14
d) 1.e−03 1.e−02 19 46 52 43
e) 1.e−04 1.e−03 22 55 82 88
f) 1.e−06 1.e−04 41 78 102 123

Table 4.3. Iterations using Algorithms 4.3 (above) and 4.4 (below) with respect to several values of ν and K.

Remark 4.3.1. Should we adopt Algorithm 4.1 (or 4.2), when the fluid viscosity and the hy-
draulic conductivity decrease, small relaxation parameters θ (or ϑ) must be adopted to guar-
antee convergence, in accordance with the theoretical estimate of the upper bound θmax (ϑmax,
respectively) given in (3.79) ((3.110), respectively). Unfortunately, in some cases θ should be so
small that in practice it prevents the numerical scheme from converging. To quote an example,
if ν = 1.e−03 and K = 1.e−02, then θ should be unreasonably small (smaller than 1.e−04 !) to
prevent divergence. ��

We introduce a formal argument for better understanding these results and to set up a more
effective numerical scheme.
Our conjecture is that the difficulties may come from the different structure of the Stokes equa-
tion (1.29) and of the Darcy law (1.10), which become even more dissimilar when ν � 1 and
K � 1. In fact, in that case, under the physically reasonable hypothesis that �uf and ∇ϕ are
sufficiently small, (1.29) reduces to

CfI +∇pf
∼= f ,

while (1.10) becomes
up + CpI ∼= 0,

where Cf and Cp denote two positive constants � 1. We rewrite (1.10) as

(K/n)−1up +∇ϕ = 0 in Ωp , (4.22)

and formally comparing (4.22) to (1.29), we are led to modify the latter by adding a mass term
like K−1up as follows:

γK−1uf − ν�uf +∇pf = f̃ , γ ∈ R
+ , (4.23)
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possibly with a consequent modification of the right hand side (see Sect. 4.4) that we have
denoted by f̃ . In this way we obtain a generalized Stokes momentum equation, and note that
now (4.23) has the same behaviour of (4.22) in the cases of our interest, that is when ν � 1 and
K� 1.
We expect that the mass term γK−1uf would help improving the positivity of the discrete
Steklov-Poincaré operator Σfh which acts as a preconditioner in Algorithm 4.1 (or equivalently,
Algorithm 4.3), thus enhancing the rate of convergence of the substructuring method. With
this aim, we have carried out some numerical tests using the PCG algorithm 4.3 to solve the
modified problem Stokes/Darcy where (4.23) is considered instead of (1.29). The convergence
results reported in table 4.4 and the corresponding spectral condition numbers in Fig. 4.4 show
that the numerical scheme has improved substantially.

ν K γ Iterations on the mesh with
h = 0.1428 h = 0.0714 h = 0.0357 h = 0.0178

0.1 15 24 28 28
1.e−03 1.e−02 1 12 14 16 14

10 8 9 9 8

0.1 15 23 28 33
1.e−06 1.e−04 1 13 14 17 18

10 8 9 9 9

Table 4.4. Number of iterations to solve problem the modified Stokes/Darcy problem using (4.23) for different
values of ν, K and γ.
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versus h for different values of γ.
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4.4 Dirichlet-Neumann for a Time-Dependent Problem

Equation (4.23) can be regarded as a discretization in time of the time-dependent Stokes mo-
mentum equation

∂uf

∂t
− ν�uf +∇pf = f in Ωf . (4.24)

Precisely, if we consider

γ K−1uf,n+1 − ν�uf,n+1 +∇pf,n+1 = f̃n+1 n ≥ 0

with
f̃n+1 = f(x, tn+1) + γ K−1uf,n,

we have a backward Euler discretization in time with γ K−1 playing the role of the inverse of a
time step.
From the physical viewpoint, since the fluid velocities in Ωf are much higher than the ones
through the porous medium (see the analysis in [ESP75] that we have briefly summarized in Sect.
1.2), a time-dependent model better represents the phenomena occurring during the filtration
process.

4.4.1 The tDN Algorithm

Let [0, T ] be a characteristic time interval; using for the sake of simplicity the first-order backward
Euler scheme, denoting by ∆t > 0 the time step and N = T/∆t, the iterative method that we
propose to solve the time-dependent coupled problem reads (the subscript n refers to the n-th
time level):

Algorithm 4.5 (tDN method)

For n = 0, . . . , N − 1, Do

0. choose an initial guess (uf )0n+1 · n for the normal velocity on Γ at the (n +
1)-th time level;

For k = 0, 1, . . . until convergence, Do

1. solve Darcy equation with boundary condition

−(K/n)∇ϕk+1
n+1 · n = (uf )kn+1 · n on Γ;

2. solve the Stokes problem

(∆t)−1u
k+ 1

2
f,n+1 − ν�u

k+ 1
2

f,n+1 +∇pk+ 1
2

f,n+1 = (∆t)−1uf,n + fn+1 in Ωf

∇ · uk+ 1
2

f,n+1 = 0 in Ωf

imposing −n · T(u
k+ 1

2
f,n+1, p

k+ 1
2

f,n+1) · n = gϕk+1
n+1 on Γ;
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3. Update: (uf )k+1
n+1 · n = θ (uf )

k+ 1
2

n+1 · n + (1− θ) (uf )kn+1 · n on Γ, θ ∈ (0, 1);

End For

End For

4.4.2 Numerical Tests

We consider the horizontal section of a channel 12m long and 8m wide which is partially
occupied by a porous medium with discontinuous conductivity, as represented in Fig. 4.5. A
parabolic inflow profile is imposed on the left hand side boundary with maximal velocity equal
to 0.1m/s. On the right an outflow condition is imposed. The time interval is t ∈ [0, 0.5] and
the time step ∆t = 1.e−03 s; for space discretization three different computational meshes have
been adopted.
In a first case we have considered ν = 1.e−05m2/s and a discontinuous coefficient K =
1.e−03m/s in Ω(1)

p , K = 1.e−07m/s in Ω(2)
p .

In Fig. 4.6 we have represented the computed solution at time t = 0.05 s, while in Fig. 4.7 a
zoom of the velocity field through the porous medium is shown; it can be seen that the velocity
is almost null in the less permeable areas of the porous medium. Finally, table 4.5 (left) reports
the number of iterations obtained for three computational grids at different time levels, showing
that the number of iterations is low and independent of h.

Inflow

Outflow

Outflow

12m

8mΓ

Ωf Ω
(2)
p

Ω
(1)
p

Fig. 4.5. Computational domain.

The same test has been performed considering different values of the parameters: ν = 1.e−02m2/s,
K = 1.e−01m/s in Ω(1)

p and K = 1.e−05m/s in the less permeable part Ω(2)
p of the porous

medium. The convergence results show that the number of iterations is essentially independent
of these parameters, as it can be seen comparing the previous convergence results with those
reported in table 4.5 (right).

Numerical results show that considering a time-dependent problem allows to set up a far more
efficient iterative method for problems with parameters in a range of physical interest. However,
as we have pointed out in the preliminary tests of Sect. 4.3 (see table 4.4), the value of ∆t
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Fig. 4.6. Computed velocity field at t = 0.05 s.
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Fig. 4.7. Zoom of the velocity field through the porous medium.

Time Iterations on the mesh with
level 232 el. 928 el. 3712 el.

0.001 21 21 21
0.003 20 19 19
0.006 12 11 11
0.009 10 10 10
0.01 10 10 10

Time Iterations on the mesh with
level 232 el. 928 el. 3712 el.

0.001 22 22 22
0.003 20 20 20
0.006 15 15 15
0.009 15 15 15
0.01 15 15 15

Table 4.5. Number of iterations on different grids with ν = 1.e−05 m2/s, K = 1.e−03 m/s and K = 1.e−07 m/s
(left); with ν = 1.e−02 m2/s, K = 1.e−01 m/s and K = 1.e−05 m/s (right).

generally depends on ν and K, and in some cases we could be forced to consider very small time
steps ∆t � 1. This could be quite annoying since one might be interested in considering long
time scales, for example in modeling the filtration of pollutants in groundwater.
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This limitation on ∆t drives us to reconsider the steady coupled model. In fact, should we find
an algorithm whose behaviour were as much as possible independent of the physical parameters,
then not only we would be able to solve the steady problem itself, but we could also use it in the
framework of the time-dependent model where ∆t would be chosen under the sole requirements
of stability and accuracy.

Remark 4.4.1. The results we have presented in this section have been obtained considering
the mixed formulation of the Darcy equation (1.10), (1.11). Problem 1. in Algorithm 4.5 thus
becomes (taking homogeneous boundary conditions for simplicity):

find (up, ϕ) ∈Wp such that ∫
Ωp

K−1(up)k+1
n+1v −

∫
Ωp

ϕk+1
n+1∇ · v = 0 (4.25)∫

Ωp

ψ∇ · (up)k+1
n+1 = 0 (4.26)

(up)k+1
n+1 · n = (uf )n+1

k+1 · n on Γ (4.27)

where Wp is a suitable subspace of H(div; Ωp)× L2(Ωp).
We have adopted P2 and P1 elements for the velocity and piezometric head, respectively. The
essential boundary condition (4.27) has been imposed via Lagrange multipliers. ��

4.5 The Steady Case

We consider the bounds (3.64) and (3.98) for the spectral condition number of the preconditioned
Schur complement matrices. In both cases these upper bounds involve the ratios of the continuity
and coercivity constants: βp/αf and β̃f/α̃p, respectively. Using the definitions of these constants
that we have given in chapter 3, we can see that the corresponding ratios reduce essentially to
the quantity

C
ng

mKν

where mK has been defined in (2.44) and C > 0 is a positive constant due to Poincaré and
trace inequalities. Focusing our attention on the parameters ν and K, we can therefore write the
following approximate estimates

χsp(Σ−1
fhΣh) 
 χsp(Σ̃−1

ph Σ̃h) � 1 +
1

mK ν
, (4.28)

which shows that when ν � 1 and K� 1 the spectral condition numbers deteriorates causing the
bad convergence behaviours we have presented (see table 4.3) and it justifies why the methods
were still quite effective when the product νK was not too small.
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4.5.1 Parameter Dependence in Homogeneous Domain Decomposition

In order to find an effective way to improve our iterative methods, let us briefly review the
strategies that are commonly adopted to overcome similar difficulties in homogeneous domain
decomposition.
We consider an open bounded domain Ω ⊂ R

2 and the elliptic model problem

Lu = −∇ · (�∇u) = f in Ω (4.29)

u = 0 on ∂Ω, (4.30)

� ∈ L∞(Ω) being a positive real valued function.
We assume that Ω is partitioned into two nonoverlapping subdomains Ω1 and Ω2, and we denote
their common interface by Γ := Ω1 ∩ Ω2 (see Fig. 4.8).

Ω1

Ω2
Γ

n

Fig. 4.8. Nonoverlapping partition of the computational domain Ω.

After introducing a suitable Galerkin approximation of (4.29), we can equivalently reformulate
the associated algebraic problem in terms of the Schur complement system

Σλ = χ (4.31)

with Σ = Σ1 + Σ2, Σi being the local Schur complement associated to the subdomain Ωi (a
precise characterization of system (4.31) will be introduced in chapter 5; we refer the reader also
to [QV99, TW04]).
The following estimate holds: there exist two positive constants ci, Ci > 0, independent of the
mesh parameter h, such that

ci�i‖µ‖2RNΓ
≤ [Σiµ,µ] ≤ Ci�i‖µ‖2RNΓ

∀µ ∈ R
NΓ ,

where �i = �|Ωi
, i = 1, 2. Then, we can see that

χsp(Σ−1
i Σ) ≤ 1 +

Cj

ci
· �j

�i
i = 1, 2, j �= i ,

so that the physical parameters enter in the estimate of the spectral condition number χsp(Σ−1
i Σ)

as their ratio.
Notice the difference with the heterogeneous Stokes/Darcy case (4.28) where the inverse of the
product of the physical parameters comes into play.
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Therefore, in the homogeneous case, if �1 and �2 are small, but with a not so small ratio, then
a Dirichlet-Neumann algorithm may yield anyway quite good convergence results.
We show a simple test taking Ω as the unit ball in R

2 with Ω1 = {x = (x1, x2) ∈ Ω|x1 > 0}
and Ω2 = {x ∈ Ω|x1 < 0} and we have set f = 1 in (4.29). We have considered P2 FE and
we have applied the PCG to the Schur complement system (4.31) with preconditioners Σ−1

2 .
Table 4.6 reports the number of iterations obtained for different values of �1, �2 and h. We
have indicated also the acceleration coefficients αk computed by the PCG method. Even for this
simple example, we can notice that the number of iterations depends on the parameters and
that αk becomes small if the coefficient �2 reduces.

�1 �2 h = 0.0833 h = 0.0417 h = 0.0208 αk (mean)

1 1.e+02 7 7 6 0.9901
1 1 11 11 11 0.5013
1 1.e−02 12 12 12 0.0098

Table 4.6. Number of iterations for the PCG method with preconditioner Σ−1
2 for several values of �i and h.

A well-known strategy to improve this behaviour is to use the Neumann-Neumann preconditioner

P−1
NN = θ1Σ−1

1 + θ2Σ−1
2

with a particular choice of the weights θ1 and θ2 (see, e.g., [MB96, TW04]).
Precisely, if

θi =
(

�i

�1 + �2

)2

i = 1, 2, (4.32)

it can be easily seen that

χsp(P−1
NNΣ) ≤

(
(C1C2)2

c1c2

)2

· (c2�1 + c1�2)2

(c1C2
2�1 + c2C2

1�2)
· C1�1 + C2�2

c1�1 + c2�2

so that the condition number is almost uniformly bounded with respect to �1 and �2 yielding
a number of iterations almost independent of the two parameters as shown in table 4.7. Notice
also that now the mean value of αk remains essentially the same with respect to �i.

�1 �2 h = 0.0833 h = 0.0417 h = 0.0208 αk (mean)

1 1.e+02 5 6 5 0.9999
1 1 7 7 7 0.9988
1 1.e−02 5 6 5 0.9999

Table 4.7. Iterations for PCG with the Neumann-Neumann preconditioner and mean values of αk.

Remark 4.5.1. The weighting coefficients θi might be computed dynamically according to a
suitable error minimization strategy; an example is provided by the k-dependent preconditioner
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(Pk
NN )−1 = θk

1Σ−1
1 + θk

2Σ−1
2

where θk
i (i = 1, 2) are computed automatically using the Aitken acceleration strategy (see, e.g.,

[DDQ04]), yielding a good control of the spectral condition number. ��

4.5.2 Application to the Stokes/Darcy Case

The results of Sect. 4.5.1 would suggest to set up a Neumann-Neumann method also for the
Stokes/Darcy coupling.
Should we consider the normal velocity as interface variable, the corresponding algorithm would
read as in Fig. 4.9.
However, such a method poses some additional difficulties. In fact, we cannot guarantee that the
regularity of the interface data is preserved: for example, in general we expect that ξk ∈ H−1/2(Γ)
which is not regular enough to assure the solvability of the homogeneous Darcy problem in (B)
and consequently that (uf )k ·n ∈ Λ for all k. Moreover, the associated preconditioning operator
would read (at the differential level)

P−1
NN = θ1 S

−1
f + θ2 S

−1
p , θ1, θ2 > 0

(or P−1
NN = θ1 Σ−1

fh + θ2 Σ−1
ph at the algebraic level); however, considering the analysis we have

developed in chapter 2, we cannot guarantee the existence of the inverse S−1
p .

On the other hand, using the trace σ|Γ of the piezometric head as interface variable, we would
encounter similar difficulties concerning the regularity of the interface data and the issue of
inverting the operator S−1

f .

A possible strategy to overcome the problem of invertibility would be to consider the Moore-
Penrose pseudo-inverse of the local Schur complements Σph and Σ̃fh (which is very expensive to
compute), or to modify them adding a positive matrix, say E ∈ R

NΓ×NΓ, and then to take the
inverses (E + Σph)−1 or (E + Σ̃fh)−1.
In that case we could foresee a modified Neumann-Neumann preconditioner like

P̃
−1

NN = θ1(γ̃E + Σfh)−1 + θ2(E + Σph)−1

with γ̃ possibly equal to zero.
This option seems quite advantageous in terms of computational effort with respect to computing
the Moore-Penrose pseudo-inverses, but it would be interesting to characterize the subdomain
problem associated to the modified inverses in order to be able to compute the products

(E + Σph)−1µ or (E + Σ̃fh)−1µ ∀µ ∈ R
NΓ

without explicitly constructing the inverse matrices.
This issue will be considered in the next chapter 5, where, considering a generic elliptic problem,
we shall prove the equivalence of the so-called Robin-Robin method with a preconditioning
strategy involving the modified inverses (γ1E + Σ1)−1 and (γ2E + Σ2)−1 (γi > 0, i = 1, 2), and
we shall investigate its convergence properties. Then, in chapter 6 we shall show how to apply
this study to the Stokes/Darcy case.
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λk

(given if k = 0)

solve

solve

in parallel

in parallel

Stokes problem in Ωf

Stokes problem in Ωf

(uf )k+1 · n = λk on Γ

imposingimposing

−(K/n)∇ϕk+1 · n = λk on Γ

Darcy problem in Ωp

Darcy problem in Ωp

compute

compute

ξk+1 = −n · T((uf )k+1, pk+1
f ) · n − gϕk+1 on Γ

with homogeneous datawith homogeneous data

(A)

(B)

−n · T((ũf )k+1, p̃k+1
f ) · n = ξk+1 gϕ̃k+1 = ξk+1

λk+1 = λk − θ(ω1(ũf )k+1 · nω1 + ω2(K/n)∇ϕ̃k+1 · nω2)

imposing on Γimposing on Γ

Fig. 4.9. Schematic representation of a possible Neumann-Neumann method; the problems in steps (A) and (B)
may be solved in parallel.





5. An Operator-Splitting Approach to

Nonoverlapping Domain Decomposition methods

The Robin-Robin method is an iterative substructuring method to solve

boundary-value problems on domains partitioned into nonoverlapping subdo-

mains. It involves mixed-type boundary conditions on the interface, which depend

on suitable weighting coefficients in order to maximize the convergence rate.

In this chapter we interpret this algorithm as an alternating direction iterative

method to compute the solution of the Steklov-Poincaré equation associated to

the given boundary value problem. This interpretation allows us to characterize

new preconditioners for the interface problem and provides a strategy to compute

optimal relaxation parameters. Finally, some numerical examples are presented.

The results of this chapter have been published in [Dis04b].

The analysis we present will allow us to characterize robust substructuring

schemes to solve the Stokes/Darcy problem also for small physical parameters,

as we will see in chapter 6.

5.1 Introduction

When solving elliptic boundary value problems using nonoverlapping domain decomposition
methods, the problem given on a global domain Ω can be rewritten in terms of an interface
equation, say,

S̃ λ̃ = χ̃ (5.1)

solely defined on the interface Γ separating the subdomains in which Ω has been split. These
methods are based on adopting suitable coupling conditions across Γ which impose the continuity
of the solution and of its flux.
As we have already mentioned, the so-called Dirichlet-Neumann and Neumann-Neumann meth-
ods (see, e.g., [QV99, TW04]) exploit Dirichlet and Neumann conditions on Γ and can be in-
terpreted as preconditioned Richardson methods to solve the interface equation (5.1), therefore
characterizing optimal preconditioners which can be used in the framework of Krylov type meth-
ods.
Proper combinations of Dirichlet and Neumann conditions across Γ can be considered as well,
giving rise to the so-called Robin-Robin methods. These methods, which were early introduced
and analyzed in [Lio90], are currently widely used in domain decomposition, especially to
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treat advection-diffusion-reaction problems (see, e.g., [NR95, ATV98, OL99, LMO00, Zun03,
GGTN04]), but also, to quote two more examples, Oseen equations (see [OL98]) and Helmholtz
equations (see, e.g., [BD97]).
Several convergence results for these methods have been proved, however, to our knowledge,
their interpretation in terms of preconditioners for the interface equation has not been given
yet. Moreover, a critical issue in the setting of these methods is the choice of suitable relaxation
parameters which appear in the definition of the mixed interface conditions and which strongly
influence the convergence rate.
In this chapter we apply an operator-splitting strategy (see [Yan71, Mar90] for a general setting
of operator-splitting methods) to solve the interface equation and we show that Robin-Robin
methods can be obtained as a particular case of an alternating direction iterative (ADI) algo-
rithm and may be seen as generalizations of the Dirichlet-Neumann and Neumann-Neumann
ones. This interpretation allows us to characterize suitable multiplicative and additive precondi-
tioners to solve the interface problem (5.1) and to devise a purely algebraic strategy to compute
optimal relaxation parameters. We present some numerical results for the Laplace operator and
for advection-diffusion problems. Finally, an extension of this approach to the case of many
subdomains is presented.

5.2 Problem Setting

We consider the elliptic model problem (4.29) in the domain Ω as in Fig. 4.8. We denote by ni the
normal direction on ∂Ωi ∩ Γ oriented outward, and for simplicity of notation we set throughout
this chapter n = n1.
We are interested in computing the solution of (4.29), (4.30) using iterative substructuring
methods. We consider the trace space Λ introduced in (2.15) and we define:

Vi = {vi ∈ H1(Ωi)| vi|∂Ω∩∂Ωi
= 0} i = 1, 2, (5.2)

V 0
i = H1

0 (Ωi), i = 1, 2. (5.3)

Moreover, let us set, for all wi, vi ∈ Vi, i = 1, 2,

ai(wi, vi) =
∫

Ωi

�|Ωi
∇wi · ∇vi . (5.4)

For i = 1, 2, we denote by R̃i any continuous extension operator from Λ to Vi such that R̃iη = η,
∀η ∈ Λ. Then, problem (4.29), (4.30) can be formulated in the multidomain form ([QV99]):

a1(u1, v1) =
∫

Ω1

f v1 ∀v1 ∈ V 0
1 (5.5)

u1 = u2 on Γ (5.6)

a2(u2, v2) =
∫

Ω2

f v2 ∀v2 ∈ V 0
2 (5.7)

2∑
i=1

ai(ui, R̃iη) =
2∑

i=1

∫
Ωi

f R̃iη ∀η ∈ Λ . (5.8)
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Moreover, upon setting λ̃ = u1|Γ = u2|Γ, the solution of (5.5)-(5.8) can be characterized in terms
of the solution of the Steklov-Poincaré interface equation

find λ̃ ∈ Λ : 〈S̃ λ̃, η〉 = 〈χ̃, η〉 ∀η ∈ Λ . (5.9)

S̃ is the pseudo-differential Steklov-Poincaré operator:

〈S̃µ, η〉 = 〈S̃1µ, η〉+ 〈S̃2µ, η〉 ∀µ, η ∈ Λ , (5.10)

with
〈S̃iµ, η〉 = ai(Hiµ,Hiη) ∀µ, η ∈ Λ, i = 1, 2. (5.11)

For any µ ∈ Λ, Hiµ is the harmonic extension of µ in Ωi (i = 1, 2), that is

Hiµ ∈ Vi, Hiµ|Γ = µ : ai(Hiµ, vi) = 0 ∀vi ∈ V 0
i . (5.12)

The operators S̃i acts between the space of trace functions Λ and its dual Λ′ and they are
symmetric, continuous and coercive, i.e. there exist two constants C0,i, c0,i > 0 such that

‖S̃iη‖Λ′ ≤ C0,i‖η‖Λ and 〈S̃iη, η〉 ≥ c20,i‖η‖2Λ . (5.13)

〈·, ·〉 denotes the duality pairing between Λ′ and Λ.

Finally,
〈χ̃, η〉 = 〈χ̃1, η〉+ 〈χ̃2, η〉 ∀η ∈ Λ , (5.14)

with
〈χ̃i, η〉 =

∫
Ωi

fiHiη − ai(wi,Hiη) ∀η ∈ Λ, i = 1, 2, (5.15)

where we denote by wi ∈ V 0
i the solution of the following problem:

ai(wi, vi) =
∫

Ωi

f vi ∀vi ∈ V 0
i . (5.16)

In the next section we introduce a general approach for solving the interface equation (5.9)
which includes and extends the classical Dirichlet-Neumann and Neumann-Neumann iterative
methods.

5.3 An Operator-Splitting Approach to Solve the Interface

Equation

To compute the solution λ̃ ∈ Λ of the interface equation (5.9), we adopt an operator-splitting
approach based on the splitting of the Steklov-Poincaré operator S̃ as sum of the local operators
S̃i (see (5.10)).
Our aim is to set up a method generating two sequences of traces {µk

1}, {µk
2} which approximate

u|Γ, say, from Ω1 and Ω2, respectively, and converge to the exact trace u|Γ for k →∞.
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This idea is quite similar to the one characterizing a Schwarz method where a decomposition of
Ω with overlapping is taken (see Fig. 5.1). In fact, in that case, the classical additive or multi-
plicative Schwarz methods generate two sequences of functions {ûk

i } in Ω′i (i = 1, 2) satisfying
the Dirichlet condition ûk

i = ûk−1
j|Γi

or ûk
i = ûk

j|Γi
on Γi (i = 1, 2, j �= i).

Obviously, in the Schwarz methods the traces û1|Γ1
, û2|Γ2

obtained at convergence do not nec-
essarily coincide, but we could intend our approach as a particular Schwarz algorithm with zero
overlap.

Ω′
1

Ω′
2

Γ1

Γ2

Fig. 5.1. Overlapping partition of the computational domain Ω.

We consider the Alternating Direction Iterative (ADI) method to generate two sequences of
functions {µk

1} and {µk
2} corresponding to approximations of the traces uk

1|Γ and uk
2|Γ on Γ,

respectively.

Consider an initial guess µ0
2 ∈ Λ; then, for k ≥ 0 we look for µk+1

1 ∈ Λ and then µk+1
2 ∈ Λ s.t.

for all η ∈ Λ

〈(γ1I + S̃1)µk+1
1 , η〉 = 〈χ̃1, η〉+ 〈χ̃2 + (γ1I − S̃2)µk

2 , η〉 (5.17)

〈(γ2I + S̃2)µk+1
2 , η〉 = 〈χ̃2, η〉+ 〈χ̃1 + (γ2I − S̃1)µk+1

1 , η〉 . (5.18)

We have denoted by γ1 and γ2 two non-negative real acceleration coefficients such that γ1 +γ2 >

0, which could be chosen dynamically according to a suitable error minimization strategy; we
shall investigate this option in Sect. 5.6.1.

Should the iterative method (5.17)-(5.18) converge to two limit functions, say µ1 and µ2, then
necessarily µ1 = µ2 = λ̃(= u|Γ), the solution of (5.9).

5.4 Differential Interpretation of the ADI Method

In this section we interpret the ADI method (5.17)-(5.18) in terms of a sequence of Poisson
problems in Ω1 and Ω2, respectively, with suitable boundary conditions on the interface Γ.
Precisely, we have the following result.

Proposition 5.4.1. The ADI method (5.17)-(5.18) is equivalent to a Robin-Robin method to
solve the Steklov-Poincaré equation (5.9).

Before proving this equivalence, let us recall the definition of the classical Robin-Robin method.
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5.4.1 The Robin-Robin Method

This method has been introduced and analyzed in [AL90a] and [Lio90]; in particular, Lions
addressed the general case of M ≥ 2 subdomains and proved a convergence result using a
technique based on energy estimates.

The Robin-Robin algorithm for problem (5.5)-(5.8) reads: for k ≥ 0, find uk+1
1 ∈ V1, then

uk+1
2 ∈ V2 s.t.

a1(uk+1
1 , R̃1η) +

∫
Γ
γ1u

k+1
1 η =

∫
Ω1

f R̃1η

− a2(uk
2 , R̃2η) +

∫
Γ
γ1u

k
2η +

∫
Ω2

f R̃2η ∀η ∈ Λ ; (5.19)

a2(uk+1
2 , R̃2η) +

∫
Γ
γ2u

k+1
2 η =

∫
Ω2

f R̃2η

− a1(uk+1
1 , R̃1η) +

∫
Γ
γ2u

k+1
1 η +

∫
Ω1

f R̃1η ∀η ∈ Λ , (5.20)

where γ1 and γ2 are non-negative acceleration parameters satisfying γ1 + γ2 > 0.
The following convergence result holds (see [Lio90] or [QV99] p. 135):

Theorem 5.4.1. If γ1 = γ2, then uk
i (i = 1, 2) converges weakly to u|Ω1

in Vi and, in partic-
ular, uk

i|Γ converges to u|Γ weakly in H1/2(Γ) as k goes to +∞. Moreover, if a finite element
approximation of (5.5)-(5.8) is considered, convergence is uniform in the mesh size.

Remark 5.4.1. Theorem 5.4.1 states that if γ1 = γ2, then the Robin-Robin method converges;
note that the converse is not true as it can be seen from this simple example.
Let Ω = (0, 1) with Ω1 = (0, 1/2), Ω2 = (1/2, 1) and Γ = {1/2}. We consider the following
problem: −u′′ = 0, 0 < x < 1, u(0) = u(1) = 0 (with null solution).
The Robin-Robin method with γ1 = 1 and γ2 = 10 generates the following sequences:

uk
1(x) = (−1)k+1 2k

32k−1
x, uk

2(x) = (−1)k
2k+1

32k
(x− 1), k ≥ 1

and for all x ∈ Ω, uk
i (x)→ 0, k →∞, i = 1, 2, so that we have uniform convergence to the exact

solution.
We shall see that suitably chosen different parameters γ1 and γ2 may increase the convergence
rate. ��

5.4.2 Proof of Proposition 5.4.1

If we assume for simplicity χ̃i = 0 (i = 1, 2), then the algorithm (5.17)-(5.18) corresponds to the
following steps.

1a) To a given µk
2 ∈ Λ apply the operator γ1I − S̃2, that is (see (5.11)), compute ζk such that
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〈ζk, η〉 =
∫

Γ
γ1µ

k
2 η − a2(H2µ

k
2 ,H2η) ∀η ∈ Λ (5.21)

1b) Find µk+1
1 ∈ Λ such that the linear problem

〈(γ1I + S̃1)µk+1
1 , η〉 = 〈ζk, η〉 ∀η ∈ Λ

is satisfied. In view of (5.11), this corresponds to solve:

a1(H1µ
k+1
1 ,H1η) +

∫
Γ
γ1µ

k+1
1 η = 〈ζk, η〉 ∀η ∈ Λ . (5.22)

Using (5.21), it follows that (5.22) is equivalent to the Robin problem (5.19), under the hypothesis
that fi = 0 (i = 1, 2) and provided µk

2 = uk
2|Γ is taken (in that case uk

2 = H2µ
k
2). Note that since

the solution of (5.19) is unique it holds µk+1
1 = uk+1

1|Γ and uk+1
1 = H1µ

k+1
1 in Ω1.

2a) We apply the operator γ2I − S̃1 to µk+1
1 ∈ Λ and we denote by ξk+1 the computed function

such that:
〈ξk+1, η〉 = 〈(γ2I − S̃1)µk+1

1 , η〉 ∀η ∈ Λ .

2b) Finally, we solve the linear problem: find µk+1
2 ∈ Λ s.t.

〈(γ2I + S̃2)µk+1
2 , η〉 = 〈ξk+1, η〉 ∀η ∈ Λ ,

that is:
a2(H2µ

k+1
2 ,H2η) +

∫
Γ
γ2µ

k+1
2 η = 〈ξk+1, η〉 ∀η ∈ Λ , (5.23)

which is equivalent to the Robin problem (5.20). Thanks to the uniqueness of the solution of
(5.20), we obtain that µk+1

2 = uk+1
2|Γ (and therefore H2µ

k+1
2 = uk+1

2 in Ω2), since the right hand
sides of (5.20) and (5.23) are the same.

5.4.3 Some Remarks Concerning the Robin-Robin Method

The ADI/Robin-Robin method can be represented by the following diagram, which also shows
that the algorithm preserves the regularity of the interface data. Given µ0

2 ∈ Λ, for k ≥ 0,

µk
2 ∈ Λ

γ1I−S̃2−−−−−→ ζk ∈ Λ′

(γ2I + S̃2)−1

�⏐⏐⏐⏐ k ← k + 1

⏐⏐⏐⏐!(γ1I + S̃1)−1

ξk+1 ∈ Λ′ ←−−−−−
γ2I−S̃1

µk+1
1 ∈ Λ

It is therefore a fixed-point iteration,

µk+1
2 = Tγ1,γ2µ

k
2 , k ≥ 0,

where the fixed point map Tγ1,γ2 : Λ→ Λ is given by
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Tγ1,γ2 = (γ2I + S̃2)−1(γ2I − S̃1)(γ1I + S̃1)−1(γ1I − S̃2) . (5.24)

Remark that the inverse operators (γiI + S̃i)−1 are well defined due to the continuity and
coercivity of the Steklov-Poincaré operators S̃i (see (5.13)).
We point out that a convergence result similar to Theorem 5.4.1 can be established simply
exploiting the properties of the operators S̃i. To this purpose, it will be useful to replace the
identity operator I : Λ → Λ in (5.24) by the linear continuous operator I : Λ → Λ′ which can
be defined as follows using the Riesz representation theorem: given any η ∈ Λ,

Iη ∈ Λ′ : (Iη, ξ)Λ′ = 〈ξ, η〉 ∀ξ ∈ Λ′ (5.25)

where (·, ·)Λ′ denotes the scalar product in Λ′ (for a rigorous definition of norms and scalar
products in Λ′ we refer to [LM68]). Then, we can prove the following result.

Theorem 5.4.2. If γ1 = γ2 = γ > 0, then the sequence {µk} generated by the operator Tγ :
Λ→ Λ, µk+1 = Tγµk, with

Tγ = (γI + S̃2)−1(γI − S̃1)(γI + S̃1)−1(γI − S̃2)

converges in Λ.

Proof. We define the auxiliary variable µ̃k = (γI + S̃2)µk and we rewrite µk+1 = Tγµk as
µ̃k+1 = T̃γµ̃k, k ≥ 0, with

T̃γ = (γI − S̃1)(γI + S̃1)−1(γI − S̃2)(γI + S̃2)−1.

Therefore, thanks to the continuity of (γI + S̃2), we need only to prove that µ̃k converges. To
this aim we show that T̃i,γ : Λ′ → Λ′, T̃i,γ = (γI − S̃i)(γI + S̃i)−1 is a contraction.
For any µ ∈ Λ′, µ �= 0, we consider the ratio:

‖T̃i,γµ‖2Λ′

‖µ‖2Λ′
=
‖(γI − S̃i)(γI + S̃i)−1µ‖2Λ′

‖µ‖2Λ′
=
‖(γI − S̃i)η‖2Λ′

‖(γI + S̃i)η‖2Λ′

where we have introduced the auxiliary variable η = (γI + S̃i)−1µ ∈ Λ (η �= 0). Therefore, we
have

‖T̃i,γµ‖2Λ′

‖µ‖2Λ′
=

γ2(Iη,Iη)Λ′ − 2γ(S̃iη,Iη)Λ′ + (S̃iη, S̃iη)Λ′

γ2(Iη,Iη)Λ′ + 2γ(S̃iη,Iη)Λ′ + (S̃iη, S̃iη)Λ′
. (5.26)

The Riesz representation theorem implies that (Iη,Iη)Λ′ = ‖Iη‖2Λ′ = ‖η‖2Λ, while, thanks to
(5.25), (S̃iη,Iη)Λ′ = 〈S̃iη, η〉, so that the right hand side in (5.26) becomes

γ2‖η‖2Λ − 2γ〈S̃iη, η〉 + ‖S̃iη‖2Λ′

γ2‖η‖2Λ + 2γ〈S̃iη, η〉 + ‖S̃iη‖2Λ′
.

Using the estimates (5.13) we can write:
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γ2‖η‖2Λ − 2γ〈S̃iη, η〉+ ‖S̃iη‖2Λ′

γ2‖η‖2Λ + 2γ〈S̃iη, η〉+ ‖S̃iη‖2Λ′
≤

γ2‖η‖2Λ − 2γc20,i‖η‖2Λ + ‖S̃iη‖2Λ′

γ2‖η‖2Λ + 2γc20,i‖η‖2Λ + ‖S̃iη‖2Λ′

=
γ2 − 2γc20,i +

‖S̃iη‖2Λ′

‖η‖2Λ

γ2 + 2γc20,i +
‖S̃iη‖2Λ′

‖η‖2Λ

= 1−
4γc20,i

γ2 + 2γc20,i +
‖S̃iη‖2Λ′

‖η‖2Λ

≤ 1−
4γc20,i

γ2 + 2γc20,i + C2
0,i

where the last inequality follows from noticing that the function

y → 1−
4γc20,i

γ2 + 2γc20,i + y

is increasing for y > 0.
Then,

‖T̃i,γµ‖ = sup
µ∈Λ′,µ
=0

‖T̃i,γµ‖Λ′

‖µ‖Λ′
< 1

which ends the proof. ��

Finally, we remark that, unlike the Dirichlet-Neumann method, the Robin-Robin approach to
solve the Stekov-Poincaré equation (5.9) allows a specular treatment of the subdomains, since
it considers the same kind of interface conditions, i.e. Robin-type conditions, for both problems
in Ω1 and Ω2. This resembles the classical Schwarz approach which consists in passing from one
subdomain to the neighboring one some “Dirichlet data” on the interfaces; in fact, one might also
pass “Neumann data” or convex combinations of both. In this sense the Robin-Robin method is
nothing but the illustration of this possibility when “the overlapping goes to zero” (see [Lio90]).

5.5 Relation with the Classical Schur Approach

As we have pointed out in Sect. 5.3, the ADI approach aims at computing the unique solution
λ̃ of (5.9) by generating two sequences {µk

1}, {µk
2} which, in the limit, approximate λ̃ as the

common trace of functions defined in Ω1 and Ω2. In principle, this allows us to have a non null
jump µk

1 − µk
2 �= 0 on Γ, for k ≥ 0. This approach is more general than the usual ones for

nonoverlapping domain decomposition, where a single sequence of traces λ̃k = µk
1 = µk

2 on Γ is
generated, such that λ̃k → λ̃ when k →∞.
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In what follows we show that the classical iterative substructuring methods, i.e. Dirichlet-
Neumann and Neumann-Neumann, can be obtained from (5.17)-(5.18) under the hypothesis

µk
1 = µk

2 on Γ. (5.27)

5.5.1 The Dirichlet-Neumann Method

Under the hypothesis (5.27), algorithm (5.17)-(5.18) seems redundant since we have two equa-
tions for only one unknown. Therefore, we keep only the equation (5.17) where we indicate
λ̃k = µk

2, λ̃
k+1/2 = µk+1

1 and we set γ1 = 0. Then we have

〈S̃1λ̃
k+1/2, η〉 = 〈χ̃, η〉 − 〈S̃2λ̃

k, η〉 ∀η ∈ Λ. (5.28)

On the other hand we drop (5.18) and introduce a relaxation depending on a positive acceleration
parameters θ > 0 in order to guarantee convergence and improve the convergence rate. In
particular, we consider

〈λ̃k+1, η〉 = θ〈λ̃k+1/2, η〉+ (1− θ)〈λ̃k, η〉 ∀η ∈ Λ. (5.29)

Now, thanks to (5.28) we have

〈λ̃k+1/2, η〉 = 〈S̃−1
1 (χ̃− S̃2λ̃

k), η〉 (5.30)

and if we replace (5.30) into (5.29), we obtain

〈λ̃k+1, η〉 = 〈λ̃k + θS̃−1
1 (χ̃− S̃λ̃k), η〉 ∀η ∈ Λ ,

which corresponds to a Neumann-Dirichlet method to solve (5.9).
We recall that in this case we characterize the following preconditioner for the Steklov-Poincaré
equation:

P−1
ND = S̃−1

1 . (5.31)

5.5.2 The Neumann-Neumann Method

We would like to apply a parallel strategy still considering the hypothesis (5.27). Given an initial
value λ̃k = µk

1 = µk
2 on Γ, we consider the following problems:

find µk+1
1 ∈ Λ, then µk+1

2 ∈ Λ s.t.

〈(γ1I + S̃1)µk+1
1 , η〉 = 〈χ̃, η〉 + 〈(γ1I − S̃2)λ̃k, η〉 ∀η ∈ Λ (5.32)

〈(γ2I + S̃2)µk+1
2 , η〉 = 〈χ̃, η〉 + 〈(γ2I − S̃1)λ̃k, η〉 ∀η ∈ Λ (5.33)

Notice that in general µk+1
1 �= µk+1

2 . We compute the new trace λ̃k+1 on Γ as a convex combi-
nation of µk+1

1 and µk+1
2 using averaging positive coefficients θ1, θ2 > 0 such that θ1 + θ2 = 1.

Therefore we set
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λ̃k+1 = θ(θ1µk+1
1 + θ2µ

k+1
2 ) + (1− θ)λ̃k 0 < θ < 1,

and thanks to (5.32), (5.33) we can write

〈λ̃k+1, η〉 = (1− θ)〈λ̃k, η〉 + θ〈[θ1(γ1I + S̃1)−1 + θ2(γ2I + S̃2)−1]χ̃, η〉
+θ〈[θ1(γ1I + S̃1)−1(γ1I − S̃2) + θ2(γ2I + S̃2)−1(γ2I − S̃1)]λ̃k, η〉 . (5.34)

Observe that for i = 1, 2, j �= i,

θi(γiI + S̃i)−1(γiI − S̃j) = θi(γiI + S̃i)−1(γiI + S̃i − S̃i − S̃j)

= θiI − θi(γiI + S̃i)−1S̃ (5.35)

so that (5.34) becomes

〈λ̃k+1, η〉 = 〈λ̃k, η〉+ θ〈P−1
RR (χ̃− S̃λ̃k), η〉 ∀η ∈ Λ. (5.36)

Equation (5.36) corresponds to a generalized Neumann-Neumann method to solve the Steklov-
Poincaré equation (5.9), where the preconditioner for the Steklov-Poincaré equation is given
by

P−1
RR = θ1(γ1I + S̃1)−1 + θ2(γ2I + S̃2)−1

and corresponds to solving at each iteration two Robin problems in Ω1 and Ω2, respectively.

The classical Neumann-Neuman preconditioner

P−1
NN = θ1S̃

−1
1 + θ2S̃

−1
2 (5.37)

is found for the particular choice γ1 = γ2 = 0.

5.6 Algebraic Aspects

In this section we focus on the algebraic counterpart of the methods based on the ADI approach
that we have presented in the previous sections. First of all, we recall the general setting of the
ADI method and some convergence results.

5.6.1 The ADI Method

The ADI method was first introduced in [PR55] to compute the finite difference approximation
of elliptic problems in a rectangular domain by splitting the matrix A into two submatrices A1

and A2.
The method has been extensively studied (see [Wac62, Wac63, Wac66, Var00]) if the submatrices
A1 and A2 commute; for elliptic partial differential equations this requirement implies that the
equation is separable on a rectangle. Widlund investigated also the noncommutative case for non-
separable equations in rectangular regions (see [Wid66]). However, a general complete theory
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for the method is still lacking. Moreover, numerical experiments have shown that the method
works efficiently in many cases in which the existing theory does not rigorously apply.
In what follows we recall the definition of the method and some convergence results.

We consider a linear system Ax = b, where A is a given real positive definite matrix A ∈ R
m×m.

As already mentioned, the ADI method is based on representing the matrix A as a sum

A = A1 + A2

where A1 and A2 are non-negative definite matrices and either A1 or A2 is positive definite. The
scheme is then defined as

(γ1I + A1)yk+1 = b + (γ1I−A2)xk (5.38)

(γ2I + A2)xk+1 = b + (γ2I−A1)yk+1 (5.39)

where γ1 and γ2 are suitably chosen real positive relaxation parameters. A convergence analysis
of this method can be found in [Kel63].
In a typical case involving a linear system arising from an elliptic partial differential equation,
A1 and A2 might be tridiagonal matrices or at least matrices with small bandwidths. For fi-
nite difference methods on rectangular mesh subdivisions, A1 is the matrix corresponding to
horizontal differences and A2 is the matrix corresponding to vertical differences.

Note that the identity matrix I used in (5.38) and (5.39) can be replaced by any suitable positive
matrix E, so that we obtain:

(γ1E + A1)yk+1 = b + (γ1E−A2)xk (5.40)

(γ2E + A2)xk+1 = b + (γ2E−A1)yk+1 . (5.41)

Defining x̃ = E
1
2 x and ỹ = E

1
2 y we can rewrite (5.40)-(5.41) as

(γ1I + Ã1)ỹk+1 = E−
1
2 b + (γ1I− Ã2)x̃k (5.42)

(γ2I + Ã2)x̃k+1 = E−
1
2 b + (γ2I− Ã1)ỹk+1 (5.43)

where
Ãi = E−

1
2 AiE−

1
2 , i = 1, 2 (5.44)

(see [WH60]).

5.6.1.1 The Preconditioner Associated to the ADI Method. The ADI method can be
written as

xk+1 = P−1Nxk + P−1b, k ≥ 0,

where
P =

1
γ1 + γ2

(γ1I + A1)(γ2I + A2) , N =
1

γ1 + γ2
(γ2I−A1)(γ1I−A2) , (5.45)

so that the iteration matrix is
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B = P−1N = (γ2I + A2)−1(γ1I + A1)−1(γ2I−A1)(γ1I−A2) . (5.46)

Note that if a positive matrix E is considered instead of I as in (5.40) and (5.41), the precondi-
tioner P can be characterized as follows:

P =
1

γ1 + γ2
(γ1E + A1)E−1(γ2E + A2) .

We consider now the issue of convergence and of the choice of the relaxation parameters.

Suppose that both A1 and A2 are positive definite and that their eigenvalues are bounded by
the same constants α̃ and β̃:

0 < α̃ ≤ δj
i ≤ β̃ j = 1, . . . ,m, i = 1, 2. (5.47)

The iteration matrix B is similar to

(γ2I−A1)(γ1I + A1)−1(γ1I−A2)(γ2I + A2)−1

and

ρ(B) ≤ |||B|||2 ≤ |||(γ2I−A1)(γ1I + A1)−1|||2|||(γ1I−A2)(γ2I + A2)−1|||2

≤ max
j=1,...,m

∣∣∣∣∣γ2 − δj
1

γ1 + δj
1

∣∣∣∣∣ · max
j=1,...,m

∣∣∣∣∣γ1 − δj
2

γ2 + δj
2

∣∣∣∣∣ , (5.48)

where ρ(B) denotes the spectral radius of B.
We note that if γ1 = γ2 = γ > 0, then ρ(B) < 1, which implies that the method converges for
any γ > 0.
Moreover (see, e.g., [Axe94] p. 297), an optimal choice of the relaxation coefficients is γ1 = γ2 =√
α̃β̃; correspondingly,

ρ(B) ≤

⎛⎝
√
β̃ −
√
α̃√

β̃ +
√
α̃

⎞⎠2

.

5.6.1.2 The Commutative Case. Suppose that A1 and A2 commute; we recall the following
result (see, e.g., [Var00] chapter 7).

Theorem 5.6.1. Let A1 and A2 be two m×m matrices, each of which is similar to a diagonal
matrix. Then A1A2 = A2A1 if and only if there exists a common basis of eigenvectors dj ,
j = 1, . . . ,m, with A1dj = δj

1dj and A2dj = δj
2dj.

In that case, using (5.38)-(5.39) with a set of relaxation parameters γn
1 = γn

2 = γn, n ≥ 1, the
error ek = xk − x can be represented as:

ek =
m∑

j=1

[
k∏

n=1

γn − δj
1

γn + δj
1

· γ
n − δj

2

γn + δj
2

]
ejdj
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where ej ∈ R are suitable real coefficients.
Under the hypothesis (5.47), choosing optimal relaxation parameters is equivalent to solve the
minimax problem:

find γopt : max
δj
i∈[α̃,β̃]

k∏
n=1

∣∣∣∣∣γopt − δj
i

γopt − δj
i

∣∣∣∣∣ ≤ min
γn

max
δj
i∈[α̃,β̃]

k∏
n=1

∣∣∣∣∣γn − δj
i

γn + δj
i

∣∣∣∣∣ .
By applying the Chebyshev minimax theory, Wachpress proved that this problem admits a
unique solution (see [Wac62]). Moreover, he extended his analysis to the more general case
where eigenvalues satisfy

α̃i ≤ δj
i ≤ β̃i, i = 1, 2, α̃1 + α̃2 > 0,

and he proposed an algorithm to compute two series of optimal parameters {γk
i }k≥1, i = 1, 2.

For all the details concerning this algorithm we refer the reader to [Wac63].

5.6.2 Multiplicative and Additive ADI Methods for the Schur Complement

System

Let us consider a discrete Galerkin approximation of the Steklov-Poincaré problem (5.9). In
particular, we consider a triangulation on Ω compatible on Γ and suitable finite element spaces.
We denote by Σi the algebraic counterpart of the local Steklov-Poincaré operators S̃i (i = 1, 2).
Then, (5.9) is approximated by a linear system

find λ ∈ R
NΓ : Σλ = χ (5.49)

where Σ = Σ1 + Σ2 and λ is the vector of the nodal values of λ̃ on Γ, NΓ being the number of
nodes lying on the interface.
The algebraic ADI method corresponding to (5.40)-(5.41) to solve (5.49) reads: for k ≥ 0,

(γ1E + Σ1)µk+1
1 = χ + (γ1E− Σ2)µk

2 (5.50)

(γ2E + Σ2)µk+1
2 = χ + (γ2E− Σ1)µk+1

1 , (5.51)

where µk
i is the vector of the nodal values of µk

i on Γ at the k-th iteration (i = 1, 2) and E is a
suitable positive matrix.

Remark 5.6.1. The method (5.50)-(5.51) is the algebraic counterpart of the differential Robin-
Robin method (5.17)-(5.18) if the particular choice E = M̃Γ is made, where M̃Γ is the mass
matrix

(M̃Γ)ij =
∫

Γ
ϕΓ

j ϕ
Γ
i (5.52)

ϕΓ
j (j = 1, . . . , NΓ) being the finite element basis functions associated to the nodes on Γ. ��

The method (5.50)-(5.51) requires at each step to solve two “generalized Robin problems”, one
in each subdomain Ω1 and Ω2, as illustrated in the following Algorithm 5.1.
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Algorithm 5.1 (Multiplicative ADI method)

Given an initial vector µ0
2, compute w0

2 = Σ2µ
0
2. Then, For k ≥ 0 Do:

rk = χ− (wk
2 − γ1Eµk

2)

(γ1E + Σ1)µk+1
1 = rk

wk+ 1
2 = rk − γ1Eµk+1

1

rk+1 = χ− (wk+ 1
2 − γ2Eµk+1

1 )

(γ2E + Σ2)µk+1
2 = rk+1

wk+1
2 = rk+1 − γ2Eµk+1

2

Applying (γiE + Σi)−1 to any vector q ∈ R
NΓ corresponds to

(γiE + Σi)−1q = (0, I)Ã
−1

i (0, I)T q (5.53)

where Ãi is the matrix associated to the Laplace operator on the local domain

Ωi defined as:

Ãi =

(
A(i)

II A(i)
IΓ

A(i)
ΓI A(i)

ΓΓ + γiE

)
; (5.54)

the subscripts I and Γ denote, respectively, the nodes internal to Ωi and those

of the interior of Γ.

With the help of a little algebra, we can rewrite (5.50)-(5.51) as:(
µk+1

1

µk+1
2

)
=

(
I 0

Cγ2 0

)
·
(

0 Cγ1

0 0

)(
µk

1

µk
2

)
+

(
χ̃γ1

Cγ2χ̃γ1
+ χ̃γ2

)
, (5.55)

where we have denoted

Cγi := (γiE + Σi)−1(γiE− Σj) i, j = 1, 2, j �= i

χ̃γi
:= (γiE + Σi)−1χ i = 1, 2.

The iterative method (5.55), or equivalently (5.50)-(5.51), corresponds to a block Gauss-Seidel
method to solve the linear system:

(I− Jγ1,γ2)µ = χ̃ , (5.56)

being

Jγ1,γ2 =

(
0 Cγ1

Cγ2 0

)
, χ̃ =

(
χ̃γ1

χ̃γ2

)
,

and µ = (µ1,µ2)T ∈ R
2NΓ .

Note that thanks to (5.55) we can characterize the iteration matrix
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(
0 0
0 Tγ1,γ2

)
=

(
0 0

Cγ2 0

)
·
(

0 Cγ1

0 0

)
,

such that Tγ1,γ2µ
k
2 → µk+1

2 , which corresponds to the discrete counterpart of (5.24).
Due to the multiplicative structure of Tγ1,γ2 we indicate (5.55) as the multiplicative ADI (MADI)
method.
Finally, we notice that the MADI method can be cast in the classical formulation:

µk+1
2 = µk

2 + P−1
MADI(χ− Σµk

2), k ≥ 0 ,

where we define the multiplicative preconditioner PMADI for the Schur complement system Σλ =
χ as:

PMADI =
1

γ1 + γ2
(γ1E + Σ1)E−1(γ2E + Σ2) . (5.57)

Now, we consider again system (5.56) and we apply a block Jacobi iterative method; then we
have:

µk+1 =

((
0 0

Cγ2 0

)
+

(
0 Cγ1

0 0

))
µk + χ̃ . (5.58)

It can be easily seen that this corresponds to the modified ADI method:

(γ1E + Σ1)µk+1
1 = χ + (γ1E− Σ2)µk

2 (5.59)

(γ2E + Σ2)µk+1
2 = χ + (γ2E− Σ1)µk

1 , (5.60)

where the two linear systems (5.59) and (5.60) are independent and can be solved in parallel.
We indicate (5.58), or equivalently (5.59)-(5.60), as additive or parallel ADI (PADI) method.

5.7 Numerical Results

We consider the model problem (4.29), (4.30) with f = 1 and we take Ω as the ball centered
in the origin with radius equal to 1/2. Moreover, let Ω1 = {x = (x1, x2) ∈ Ω|x1 > 0} and
Ω2 = {x ∈ Ω|x1 < 0}. We adopt lagrangian P2 elements.

We test the commutativity of the matrices Σ̃1 and Σ̃2, where Σ̃i = M̃
− 1

2
Γ ΣiM̃

− 1
2

Γ . In particular,
for some fixed values of h|Γ, we compute the error

Eh
M̃Γ

= max
j=1,...,NΓ

‖Σ̃1Σ̃2wj − Σ̃2Σ̃1wj‖RNΓ ,

where wj are the vectors of the canonical basis in R
NΓ. As we could expect, these matrices do

not commute (see table 5.1, left) and actually Eh
M̃Γ
∼ h−1.

However, if we consider the commutativity of Σ1 and Σ2, we can see that the error Eh
I is small and

bounded by a constant independent of h (see table 5.1, right). Therefore, we apply Wachspress’
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h|Γ Error Eh
M̃Γ

0.083 2.622080
0.0417 4.843364
0.0208 9.692528

h|Γ Error Eh
I

0.083 0.065414
0.0417 0.057908
0.0208 0.057765

Table 5.1. Computed errors Eh
M̃Γ

for different values of h|Γ on the left; commutativity error for Σ1 and Σ2 on
the right.

algorithm considering Σ1 and Σ2 to obtain some estimates of the coefficients γ1 and γ2, and we
use them to define the preconditioner PMADI.
Note that we need upper and lower bounds of the eigenvalues of Σi in order to apply Wachspress’
method. They can be obtained using, for example, the power method (see, e.g., [QSS00]) or
recalling that the following estimate holds (see [QV99] Proposition 2.2.1).

Proposition 5.7.1. Let S̃i,h be internal finite element Galerkin approximation of the opera-
tor S̃i defined in (5.11). The discrete Steklov-Poincaré operator S̃i,h has real positive definite
eigenvalues δj

i,h, j = 1, . . . , NΓ, which satisfy the following bounds

�
i
ci ≤ δj

i,h ≤
�iCi

h
j = 1, . . . , NΓ, i = 1, 2, (5.61)

where �
i
:= infx∈Ωi �i(x), �i := supx∈Ωi

�i(x), while ci and Ci are two positive constants inde-
pendent of h, but depending on the geometry of Ωi.

Let us compare these two approaches to compute the solution of the model problem with � = 1
on Ω; we have adopted different computational meshes imposing a tolerance tol = 1.e−06 on the
increment ‖µk+1

2 −µk
2‖RNΓ . The results reported in table 5.2 show that the coefficients computed

thanks to the estimates (5.61) result in few additional iterations with respect to the case where
the power method has been adopted. From now on we shall always use the estimates (5.61)
instead of those that could be obtained using the more expensive power method. In fact, the
latter is an iterative method which requires a matrix-vector product Σix at each iteration.

Iterations using
γ1 γ2 256 el. 1024 el. 4096 el.

Using the estimates (5.61) → 11.91 11.91 12 12 12
Using the power method → 3.39 3.39 8 8 8

Table 5.2. Iterations with respect to the parameters computed using the power method or (5.61).

We test the algorithm for small and discontinuous parameters �1 and �2; the results reported in
table 5.3 are for a tolerance tol = 1.e−10.
Our results show that if �1 = �2, then Wachspress’ algorithm gives γ1 = γ2 as one might expect.
Otherwise, it is able to account for the jump in the physical coefficients; in fact, if �1 < �2

(respectively, �1 > �2) it gives γ1 > γ2 (respectively, γ1 < γ2) so that a bigger contribution
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�1 �2 γ1 γ2 Iterations using
256 el. 1024 el. 4096 el.

1.e−02 1 2.393e+01 2.376e−01 9 9 12
1 1.e−04 2.312e−03 2.392e+01 5 5 6

1.e−06 1.e−02 2.392e−01 2.312e−05 5 5 5
1.e−04 1.e−07 2.377e−06 2.384e−03 9 9 11

Table 5.3. Number of iterations on different meshes for several values of �1 and �2.

γiM̃Γ is added to the term in PMADI involving the local Schur complement Σi which presents the
smallest positivity.
Finally, in table 5.4 we report the number of iterations to solve the same problems with discon-
tinuous viscosities but applying the PCG method with the Neumann-Neumann preconditioner
(5.37). We have set θi as in (4.32) recalling that this choice of the weighting coefficients assures
a convergence rate independent of the values of �i; we consider again a stopping test on the
increment with tol = 1.e−10. We can see that the number of iterations for the two methods are
comparable.

�1 �2 θ1 θ2 Iterations using
256 el. 1024 el. 4096 el.

1.e−02 1 9.901e−03 9.901e−01 8 7 7
1 1.e−04 9.999e−01 9.999e−05 8 7 7

1.e−06 1.e−02 9.999e−05 9.999e−01 8 8 8
1.e−04 1.e−07 9.990e−01 9.990e−04 9 9 8

Table 5.4. Number of iterations on different meshes for several values of �1 and �2 using PCG with PNN .

5.8 Extension to a General Diffusion-Advection-Reaction

Elliptic Operator

We consider now the more general second order elliptic operator

L� := −∇ · (�∇u) +∇ · (bu) + a0u

and the boundary value problem

L�u = f in Ω (5.62)

u = 0 on ∂Ω, (5.63)

where Ω is a bounded domain in R
2, � ∈ L∞(Ω) is a positive diffusion real valued function,

b ∈ (L∞(Ω))2 denotes the given flow velocity, ∇ · b ∈ L∞(Ω), and a0 ∈ L∞(Ω) is an absorption
(or reaction) term. Finally, f ∈ L2(Ω) represents a given force.
To guarantee existence and uniqueness of the solution of (5.62), (5.63), we assume that
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1
2
∇ · b(x) + a0(x) ≥ 0 for almost every x ∈ Ω

(see, e.g., [QV94] chapter 6).
We consider again the splitting Ω = Ω1 ∪Ω2 with nonoverlapping Ω1 and Ω2, and we introduce
the following local bilinear forms:

a
i(wi, vi) := ai(wi, vi) +

1
2

∫
Ωi

[vi(b · ∇wi)− wi(b · ∇vi)]

+
1
2

∫
Ωi

∇ · bwivi +
∫

Ωi

a0wivi ∀wi, vi ∈ H1(Ωi), i = 1, 2. (5.64)

Following [ATV98] and [LMO00], we consider the following substructuring method based on
Robin-type interface conditions:

L�1u
k+1
1 = f in Ω1 (5.65)

uk+1
1 = 0 on ∂Ω1 ∩ ∂Ω (5.66)

�1
∂uk+1

1

∂n
+
(
−1

2
b · n + γ1

)
uk+1

1 = �2
∂uk

2

∂n
+
(
−1

2
b · n + γ1

)
uk

2 on Γ (5.67)

L�2u
k+1
2 = f in Ω2 (5.68)

uk+1
2 = 0 on ∂Ω2 ∩ ∂Ω (5.69)

�2
∂uk+1

2

∂n
−
(

1
2
b · n + γ2

)
uk+1

2 = �1
∂uk+1

1

∂n
−
(

1
2
b · n + γ2

)
uk+1

1 on Γ , (5.70)

whose weak form is analogous to (5.19)-(5.20) with a
i(·, ·) instead of ai(·, ·).

We apply the ADI approach presented in Sect. 5.3 after introducing the continuous and coercive
local Steklov-Poincaré operators

〈S
iµ, η〉 = a

i(Hiµ,Hiη) ∀µ, η ∈ Λ,

Hi being the harmonic extension operators defined in (5.12). Then, the iterative method (5.62)-
(5.63) can be rewritten as: given an initial guess µ0

2 ∈ Λ, for k ≥ 0 find µk+1
1 ∈ Λ and then

µk+1
2 ∈ Λ s.t. for all η ∈ Λ

〈(γ1I + S
1)µ

k+1
1 , η〉 = 〈χ

1, η〉+ 〈χ
2 + (γ1I − S

2)µ
k
2 , η〉 (5.71)

〈(γ2I + S
2)µ

k+1
2 , η〉 = 〈χ

2, η〉+ 〈χ
1 + (γ2I − S

1)µ
k+1
1 , η〉 (5.72)

where we have indicated by χ
i the local right hand sides of the Steklov-Poincaré equation

associated to the advection-diffusion problem (5.62), (5.63). The related algebraic form reads,
with obvious choice of notation: for k ≥ 0,

(γ1M̃Γ + Σ
1)µ

k+1
1 = χ + (γ1M̃Γ −Σ

2)µ
k
2 (5.73)

(γ2M̃Γ + Σ
2)µ

k+1
2 = χ + (γ2M̃Γ −Σ

1)µ
k+1
1 . (5.74)
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5.8.1 Numerical Tests

We consider the computational domain Ω = (0, 1)2 with Ω1 = (0, 1/2) × (0, 1) and Ω2 =
(1/2, 1) × (0, 1), and the advection-diffusion problem (5.62), (5.63) with a0 = 0, b = (−1, 1)T

and diffusion coefficient � = 1.e−02 or � = 1.e−05 in Ω. We take three different structured
computational grids with h = 0.1, 0.05, 0.025, and we consider stabilized P1 finite elements with
the SUPG (Streamline Upwind/Petrov-Galerkin) method (see [BH82]). First of all, we test the
commutativity of the Schur complements Σ

i as done for the Laplace case; when E = I, we obtain
that for both values of � the error Eh,

I is uniformly bounded with respect to h: Eh,
I ≤ C with

C ∼ 1.e−04. Then, we apply Wachspress’ algorithm to compute the relaxation parameters γ1

and γ2. They are reported in table 5.5, together with the number of iterations obtained on the
three computational meshes and for different values of �; a tolerance tol = 1.e−10 on the relative
increment has been fixed. The numerical results show that the acceleration parameters yield a
number of iterations almost independent of both h and �.
Finally, figure 5.2 represents two computed solutions.

�1 �2 γ1 γ2 Iterations using
200 el. 800 el. 3200 el.

1.e−02 1.e−02 2.336699 2.019213 23 24 28
1.e−05 1.e−05 2.034835 1.728585 21 21 21
1.e−02 1.e−05 2.035217 2.018824 21 22 22

Table 5.5. Number of iterations on different meshes for different values of �.
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Fig. 5.2. Computed solution for the advection-diffusion problem in Ω with � = 1.e−02 (left); �1 = 1.e−02,
�2 = 1.e−05 (right).
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5.9 Generalization to the Case of Many Subdomains

In this section we present the guidelines to generalize the approach we have presented so far
when M ≥ 2 subdomains are taken.
We consider problem (4.29), (4.30) (problem (5.62), (5.63) could be considered as well) and we
suppose that Ω is partitioned into a family of nonoverlapping subdomains Ωi, i = 1, . . . ,M , with
Ω =

⋃M
i=1 Ωi, Ωi ∩Ωj = ∅ if i �= j. We denote by Γi = ∂Ωi \ ∂Ω, Γij = Ωi ∩Ωj for i �= j, and the

global interface Γ is defined as Γ =
⋃M

i=1 Γi.
The Robin-Robin algorithm consists of solving the following local problems in Ωi (i = 1, . . . ,M);
u0

i given, for k ≥ 0

−∇ · (�i∇uk+1
i ) = f in Ωi (5.75)

uk+1
i = 0 on ∂Ωi ∩ ∂Ω (5.76)

�i
∂uk+1

i

∂nij
+ γiju

k+1
i = �j

∂uk
j

∂nij
+ γiju

k
j on Γij ∀1 ≤ j ≤M, j �= i (5.77)

where nij is the unit outward normal to ∂Ωi directed from Ωi to Ωj, and γij > 0 are suitable
relaxation parameters.
For a convergence proof of this method we refer to [Lio90] (or [ATV98, LMO00] for the advection-
diffusion case).
Again, we can express the solution of a finite element Galerkin approximation of the global
problem (4.29), (4.30) in terms of the solution λ ∈ R

NΓ of the linear Schur complement system
Σλ = χ (see [QV99]).
Now, we assume that there is a black-white partition on the subdomains Ωi into two sets B and
W such that the intersection between the boundaries of two subdomains in the same group is
either empty or a vertex that we shall indicate as cross-point (see Fig. 5.3).

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

Γ12

Γ14

Γ23

Γ25 Γ36

Γ45 Γ56

Γ47 Γ58 Γ69

Γ78 Γ89

Fig. 5.3. Black and white partition of the subdomains Ωi.
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We define a family of restriction operators: given a vector of degrees of freedom xΓ on Γ, we
denote by RixΓ the vector of degrees of freedom of xΓ on Γi, i = 1, . . . ,M ; Ri is a rectangular
matrix of zeros and ones and its transpose RT

i is the extension operator by zero from R
NΓi to

R
NΓ . Then, we can decompose the Schur complement as

Σ =
∑
i∈B

RT
i ΣiRi +

∑
i∈W

RT
i ΣiRi .

The multidomain formulation of the multiplicative Robin-Robin algorithm (5.50)-(5.51) reads:
given x0 ∈ R

NΓ, for k ≥ 0,(∑
i∈B

RT
i (Mi + Σi)Ri

)
yk+1 = χ +

(∑
i∈W

RT
i (Mi − Σi)Ri

)
xk (5.78)(∑

i∈W
RT

i (Mi + Σi)Ri

)
xk+1 = χ +

(∑
i∈B

RT
i (Mi − Σi)Ri

)
yk+1 . (5.79)

Mi ∈ R
NΓi
×NΓi is the mass matrix obtained by assembling the local mass matrices MΓij ∈

R
NΓij

×NΓij (j �= i) associated to the interfaces Γij related to the subdomain Ωi, each of them
weighted with the corresponding coefficient γij . For example, with respect to Fig. 5.3, the mass
matrix M1 would be defined as represented in Fig. 5.4. Note that the additive version of the
algorithm would be obtained considering yk instead of yk+1 in (5.79).

M1 =

γ12MΓ12

γ14MΓ14

NΓ1

NΓ12

NΓ14

Fig. 5.4. The submatrices MΓ12 and MΓ14 of the stiffness matrix M1.

Solving (5.78) and (5.79) corresponds to compute the solution of two Robin problems defined
on the union of the black and white subdomains, respectively. In the case where there are no
cross-points, the corresponding matrices would be block diagonal so that the Robin problems
could be solved independently.
The coefficients γij and γji relative to the nodes on the interface Γij (i = 1, . . . ,M , j �= i) can be
computed using Wachspress’ algorithm starting from the eigenvalues bounds of the local Schur

complements Σ̃∗k = M
− 1

2
Γij

Σ∗kM
1
2
Γij

, k = i, j, where Σ∗k are obtained from Σk eliminating the nodes
which do not belong to the interface Γij considered.
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5.10 Conclusions

The interpretation of the Robin-Robin method in terms of an ADI algorithm to compute the
solution of the Schur complement system allows on one hand to characterize Robin-type precon-
ditioners for the interface problem itself, and, on the other hand, it indicates a possible strategy
to automatically compute the relaxation parameters, at least in the case of “nearly commuting”
submatrices.
Moreover, thanks to the presence of the positive matrices γiE, the ADI approach permits to
deal with non-negative Schur complements Σi without introducing suitable pseudo-inverses as
it would be required by Dirichlet-Neumann or Neumann-Neumann methods.
Finally, the characterization of an iteration operator Tγ1,γ2 and the study of its spectral radius
shows how the relaxation parameters influence the convergence rate of the algorithm; this may
lead to choose ad-hoc coefficients for problems where the commutativity constraint is not satisfied
at all and Wachspress’ approach would not work. This might be the case when dealing with the
coupling of heterogeneous models; in particular, in chapter 6 we shall illustrate how this approach
can help in setting up a robust iterative method to solve the linear coupled Stokes/Darcy problem
thus improving the Dirichlet-Neumann type methods discussed in chapters 3 and 4.



6. An Operator-Splitting Based Method for the

Stokes/Darcy Problem

We present an application of the ADI method to the Stokes/Darcy case. Pos-

sible iterative methods are illustrated at the algebraic stage together with their

differential interpretation. The choice of the relaxation parameters is addressed

for this particular noncommutative case. Some numerical tests are presented.

6.1 Introduction

In this chapter we apply the operator splitting approach investigated in chapter 5 to the
Stokes/Darcy coupling.
More precisely, the ADI method is applied at the algebraic Schur complement system associated
to the coupled problem. Both choices of the interface variables, the normal velocity on Γ and
the piezometric head on Γ, will be analyzed.
We show that at the differential level the ADI-based methods can be regarded as substructuring
scheme involving Robin type conditions at the interface. Most of the results we have presented
for the ADI method cannot be applied in this case since that the commutativity requirement (see
Sect. 5.6.1.2) is not fulfilled and Wachspress’ method cannot be applied. However, exploiting the
analysis carried out in chapter 5 and the characterization of the spectra of the Steklov-Poincaré
operators (see chapters 2 and 3), we can set up a possible strategy to choose the acceleration
parameters which allows us to obtain good convergence results.

6.2 Operator-Splitting Methods: Setting and Differential

Interpretation

Case of the Schur Complement System for the Normal Velocity on Γ. We consider
the Schur complement system (3.58). Using the natural splitting

Σh = Σfh + Σph

we can write the following ADI method.
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Algorithm 6.1

Given µ0
2 ∈ R

NΓ,

For k ≥ 0, until convergence Do

(γpM̃Γ + Σph)µk+1
1 = χh + (γpM̃Γ − Σfh)µk

2 (6.1)

(γfM̃Γ + Σfh)µk+1
2 = χh + (γfM̃Γ − Σph)µk+1

1 (6.2)

where M̃Γ is the mass matrix on Γ defined in (5.52).

γf and γp are two positive acceleration parameters that will be chosen in order

to maximize the rate of convergence.

Algorithm 6.1 requires to solve two linear systems with matrices (γpM̃Γ+Σph) and (γfM̃Γ+Σfh),
respectively.

Recalling the definition (3.61) of Σfh and following (5.53) and (5.54) we can see that applying
(γfM̃Γ + Σfh)−1 to any vector q ∈ R

NΓ yields

(γfM̃Γ + Σfh)−1q = (0, I)F̃
−1

∗ (0, I)T q

where F̃∗ is the matrix ⎛⎜⎝Aff BT AfΓ

B1 0 BfΓ

AΓf BT
fΓ Af

ΓΓ + γfM̃Γ

⎞⎟⎠ .

At the differential level, F̃
−1

∗ (0, I)T q corresponds to solve a Stokes problem in Ωf supplemented
with the mixed boundary condition:

n · T(uf , pf ) · n + γfuf · n = q on Γ,

where q is an assigned data function.

On the other hand, applying (γpM̃Γ + Σph)−1 to any vector q ∈ R
NΓ corresponds to

(γpM̃Γ + Σph)−1q = (0, I)D−1
∗ (0, I)T q (6.3)

where D∗ is the matrix ⎛⎜⎝App ApΓ 0
AT

pΓ Ap
ΓΓ −MT

ΓΓ

0 MΓΓ γpM̃Γ

⎞⎟⎠ . (6.4)

The differential interpretation of system (6.4) is not straightforward. Recalling the definition of
the matrix MΓΓ (see Sect. 3.5.2), we can interpret this system as a Darcy problem in Ωp, where
we impose via Lagrange multipliers the Robin condition:

gϕ− γp
K

n

∂ϕ

∂n
= q on Γ (6.5)
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for a given function q. Precisely, we consider the problem (using homogeneous boundary condi-
tions for the sake of simplicity):

find ϕ ∈ H1(Ωp), µ ∈ H1/2(Γ):

ap(ϕ,ψ) −
∫

Γ
µψ = 0 ∀ψ ∈ H1(Ωp)

〈ζ,
(
gϕ − γp

K

n

∂ϕ

∂n
− q

)
〉 = 0 ∀ζ ∈ H1/2(Γ)

(see [QV94] p. 226, 227), the Lagrange multiplier µ playing the role of the conormal derivative
of ϕ on Γ.

The use of Lagrange multipliers to impose the mixed conditions (6.5) allows us to compute
directly at each step k in (6.1) the vector µk

1 of the nodal values of the conormal derivative of
the piezometric head ϕ, which is required to update the right hand side in (6.2).

Therefore, each step k of Algorithm 6.1 requires to solve one Robin problem in each subdomain
Ωf and Ωp.

Case of the Schur Complement for the Trace of the Piezometric Head ϕ|Γ. We
consider now the Schur complement system (3.94) associated to the choice of the interface
variable ϕ on Γ.
In this case, our operator-splitting approach yields the following iterative method.

Algorithm 6.2

Given η0
2 ∈ R

NΓ,

For k ≥ 0, until convergence Do

(γpM̃Γ + Σ̃ph)ηk+1
1 = χ̃h + (γpM̃Γ − Σ̃fh)ηk

2 (6.6)

(γfM̃Γ + Σ̃fh)ηk+1
2 = χ̃h + (γfM̃Γ − Σ̃ph)ηk+1

1 . (6.7)

Here, we have to solve two linear systems with matrices (γpM̃Γ + Σ̃ph) and (γfM̃Γ + Σ̃fh).

Concerning the first one, we can see that applying (γpM̃Γ + Σ̃ph)−1 to any vector q ∈ R
NΓ

corresponds to
(γpM̃Γ + Σ̃ph)−1q = (0, I)D̃

−1
(0, I)T q

where D̃ is the matrix (
App ApΓ

AT
pΓ Ap

ΓΓ + γpM̃Γ

)
associated to the Darcy problem in Ωp with boundary condition on Γ:
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γpgϕ−
K

n

∂ϕ

∂n
= q (6.8)

for a given function q. Notice that, unlike (6.4), in this case the mixed boundary condition (6.8)
has been imposed in the usual natural way (see, e.g., [QV94] p. 162).

Finally, applying (γfM̃Γ + Σ̃fh)−1 to any vector q ∈ R
NΓ corresponds to

(γfM̃Γ + Σ̃fh)−1q = (0, I)F̄−1(0, I)T q

where F̄ is the matrix ⎛⎜⎜⎜⎝
Aff BT AfΓ 0
B1 0 BfΓ 0
AΓf BT

fΓ Af
ΓΓ MΓΓ

0 0 −MT
ΓΓ γfM̃Γ

⎞⎟⎟⎟⎠ . (6.9)

Similarly to what we have done for the Darcy problem (6.4), here we can recognize that (6.9)
is the matrix associated to a Stokes problem in Ωf supplemented with the mixed boundary
condition

−γfn · T(uf , pf ) · n− uf · n = q on Γ (6.10)

for an assigned function q, where the latter condition (6.10) is imposed via Lagrange multipliers.
In this case the Lagrange multiplier plays the role of the normal stress n · T(uf , pf ) · n on Γ.

Again, we can conclude that each step k of Algorithm 6.2 requires to solve two Robin problems
in Ωf and Ωp.

6.2.1 Differential Interpretation

Based on the above considerations and using the theory of chapter 5, we can associate to Algo-
rithms 6.1 and 6.2 the following differential substructuring Robin-Robin schemes.

For simplicity of notation we indicate by

Darcy (ϕ)

the Darcy problem in Ωp with boundary conditions (1.24), (1.25) and by

Stokes (uf , pf )

the Stokes problem in Ωf with boundary conditions (1.22), (1.23) and (2.58) on Γ.
Remark that both problems Darcy (ϕ) and Stokes (uf , pf ) must be supplemented with a
boundary condition on the interface Γ.

Using this notation, the ADI scheme (6.1)-(6.2) corresponds to:
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Algorithm 6.3

For k ≥ 0 until convergence,⎧⎪⎨⎪⎩
solve Darcy (ϕk+1) in Ωp with boundary condition

−gϕk+1 − γp

(
−K

n

∂ϕ

∂n

k+1
)

= n · T(uk
f , p

k
f ) · n− γpuk

f · n on Γ
(6.11)

⎧⎪⎨⎪⎩
solve Stokes(uk+1

f , pk+1
f ) in Ωf with boundary condition

n · T(uk+1
f , pk+1

f ) · n + γfuk+1
f · n = −gϕk+1 + γf

(
−K

n

∂ϕ

∂n

k+1
)

on Γ.
(6.12)

On the other hand scheme (6.6)-(6.7) corresponds to the following iterations.

Algorithm 6.4

For k ≥ 0 until convergence,⎧⎪⎨⎪⎩
solve Darcy(ϕk+1) in Ωp with boundary condition

−γpgϕ
k+1 −

(
−K

n

∂ϕ

∂n

k+1
)

= γpn · T(uk
f , p

k
f ) · n− uk

f · n on Γ
(6.13)

⎧⎪⎨⎪⎩
solve Stokes(uk+1

f , pk+1
f ) in Ωf with boundary condition

γfn · T(uk+1
f , pk+1

f ) · n + uk+1
f · n = −γfgϕ

k+1 +

(
−K

n

∂ϕ

∂n

k+1
)

on Γ.
(6.14)

Remark 6.2.1. Note that at the differential stage, these two schemes differ only in the role of the
relaxation parameters γf and γp for the Robin conditions on Γ: in fact, γp multiplies K∇ϕ·n on Γ
in (6.11) rather than ϕ|Γ in (6.13), while γf multiplies uf ·n in (6.12) rather than n ·T(uf , pf ) ·n
in (6.14). ��

The Robin-Robin methods (6.11)-(6.12) and (6.13)-(6.14) are both well-posed and they preserve
the regularity of the interface data at each step k. In fact, supposing that the boundary data
uin, ϕp and the normal n are sufficiently regular, if we take at the k-th step

ξk = εp2n · T(uk
f , p

k
f ) · n− εp1uk

f · n ∈ H−1/2(Γ)

(where εp1 and εp2 are positive parameters that can be put equal to 1 or γp to recover the right
hand sides in the interface conditions (6.11) or (6.13)), then Darcy problem (6.11) (or (6.13))
with the interface condition
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−εp2gϕk+1 − εp1(−(K/n)∇ϕk+1 · n) = ξk on Γ,

is well-posed (see, e.g., [QV94, Gri85]). In particular, we can compute

ηk+1 = −εf2gϕk+1 + εf1 (−(K/n)∇ϕk+1 · n) on Γ ,

(with εf1 and εf2 positive parameters that set equal to 1 or γf allows us to recover conditions
(6.12) or (6.14)) and we remark that ηk+1 ∈ H−1/2(Γ).
Then, we impose the interface condition

εf2n · T(uk+1
f , pk+1

f ) · n + εf1u
k+1
f · n = ηk+1 on Γ

to the Stokes problem (6.12) (or (6.14)), which is also well-posed and yields

ξk+1 = εp2n · T(uk+1
f , pk+1

f ) · n− εp1uf
k+1 · n ∈ H−1/2(Γ).

Therefore, we can conclude that the Robin-Robin algorithms 6.3 and 6.4 are well-posed and that
at each step k ≥ 0 the regularity of the interface data is preserved:

ξk ∈ H−1/2(Γ) −−−−−−−→ solve

Darcy (ϕk+1)

compute

�⏐⏐⏐⏐ k ← k + 1

⏐⏐⏐⏐! compute

solve

Stokes (uk+1
f , pk+1

f )
←−−−−−−− ηk+1 ∈ H−1/2(Γ)

6.3 Numerical Results

In this section we present some numerical results obtained using Algorithms 6.3 and 6.4. In
particular, we will show that we can improve the convergence results obtained in chapter 4
when applying the Dirichlet-Neumann methods to problems with small physical coefficients ν
and K. We consider first of all the issue of finding suitable acceleration parameters γf and γp.

As already pointed out, the strategy proposed by Wachspress to compute the relaxation param-
eters for the ADI method is applicable if the local Schur-complement matrices, say Σ1 and Σ2,
commute, and numerical tests have shown that it is successful also when the error in applying
Σ1Σ2 − Σ2Σ1 to any vector in R

NΓ is not too large (see Sects. 5.7 and 5.8).
However, this is not the case for the Stokes/Darcy coupling and an alternative strategy must be
investigated.
We would like to exploit the characterization (5.46) of the iteration matrix associated to the
ADI method and, in particular, we would like to study its spectral radius (5.48) at least for the
case of our interest, that is for ν,K� 1.
We need to study the behaviour of the eigenvalues of the local Steklov-Poincaré operators.
Thanks to the analysis developed in chapter 3, we can prove the following result.
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Proposition 6.3.1. 1. Let us denote by δj
f , δ

j
p (j = 1, . . . , NΓ) the eigenvalues of the discrete

operators Sfh and Sph, respectively. Then, there exist positive constants c1, C1 > 0, c2, C2 >

0, independent of h, such that
c1ν ≤ δj

f ≤ C1
ν

h
(6.15)

c2
maxj ‖Kj‖∞,p

≤ δj
p ≤

C2

hmK
(6.16)

(with mK defined in (2.44)).
2. Let us denote by δ̃j

f , δ̃
j
p (j = 1, . . . , NΓ) the eigenvalues of the discrete operators Sfh and

Sph, respectively. Then, there exist positive constants c̃1, C̃1 > 0, c̃2, C̃2 > 0, independent of
h, such that

c̃1
ν
≤ δ̃j

f ≤
C̃1

hν
(6.17)

c̃2mK ≤ δ̃j
p ≤ C̃2

maxj ‖Kj‖∞,p

h
. (6.18)

Proof. It follows from Lemmas 3.5.1 and 3.6.1 and from Proposition 2.2.1 in [QV99] p. 48. ��

Using the power method (see [QSS00]) we have computed the extreme eigenvalues of the discrete
Schur complement systems Σfh, Σph, Σ̃fh and Σ̃ph for the values of the parameters ν and K

adopted for the tests of table 4.3. As we can see from the results reported in Fig. 6.1, their trend
correspond to the theoretical bounds of Proposition 6.3.1.

We consider now the case of method (6.1)-(6.2). We can write the following bound for the
spectral radius of the iteration matrix, say Bh, associated to this algorithm:

ρ(Bh) ≤ max
j=1,...,NΓ

∣∣∣∣∣γp − δj
f

γf + δj
f

∣∣∣∣∣ · max
j=1,...,NΓ

∣∣∣∣∣γf − δj
p

γp + δj
p

∣∣∣∣∣ . (6.19)

Then, if we consider the limit ν → 0 and K→ 0 (for fixed h), thanks to the estimate (6.15) we
can see that

if ν → 0, then δj
f → 0 , (6.20)

while from (6.16) it follows that

if K→ 0, then δj
p →∞ . (6.21)

Therefore,

max
j=1,...,NΓ

lim
ν→0

∣∣∣∣∣γp − δj
f

γf + δj
f

∣∣∣∣∣ ∼ γp

γf
(6.22)

and, on the other hand,

max
j=1,...,NΓ

lim
K→0

∣∣∣∣∣γf − δj
p

γp + δj
p

∣∣∣∣∣ ∼ 1 . (6.23)



122 6. Operator-Splitting for Stokes/Darcy

10
−6

10
−4

10
−3

10
−2

10
−1

10
0

10
−8

10
−6

10
−4

10
−2

10
0

δmin
f

δmax
f

ν
10

−4
10

−3
10

−2
10

−1
10

0

10
−2

10
0

10
2

10
4

δmin
p

δmax
p

K

10
−6

10
−4

10
−3

10
−2

10
−1

10
0

10
−2

10
0

10
2

10
4

δ̃min
f

δ̃max
f

ν
10

−4
10

−3
10

−2
10

−1
10

0

10
−4

10
−2

10
0

10
2 δ̃min

p

δ̃max
p

K

Fig. 6.1. Extreme eigenvalues for Σfh (top left), Σph (top right), Σ̃fh (bottom left) and Σ̃ph (bottom right) with
respect to several values of ν and K.

Then, for small values of ν and K the spectral radius of the iteration matrix Bh behaves like

ρ(Bh) ∼ γp

γf
. (6.24)

A first indication for the choice of the relaxation parameters is thus γf > γp. Moreover, these
parameters cannot be equal to zero, or we would reduce the ADI method to one of the Dirichlet-
Neumann type algorithm illustrated in chapter 4.

Finally, if we implement the differential form (6.11)-(6.12) or the algorithm (instead of (6.1)-
(6.2)), to impose the Robin conditions on the interface we need to add to the stiffness matrices
F̃ (see (3.93)) and D (see (3.56)) of Stokes and Darcy problems, respectively, the mass matrix
M̃ΓΓ with weights γf and γ−1

p , respectively. Due to the different scaling of these matrices, this
would probably result in an increased condition number for the modified matrices F̃ and D.
Thus, to choose γf and γp we consider the constraint of keeping the condition numbers as low
as possible.

We consider again the exact solution (4.18)-(4.21) and we take the worst cases e) (i.e. ν =
1.e−04, K = 1.e−03) and f) (i.e. ν = 1.e−06, K = 1.e−04) of table 4.3, and the additional case
ν = 1.e−06, K = 1.e−07.
We compute for these three cases the condition numbers of the modified matrices F̃ and D with
respect to values of γi ranging from 1.e−03 to 10. As we can see from Fig. 6.2, for all these cases
the choice γi 
 0.1 seems to be a reasonable trade-off.
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Fig. 6.2. Condition numbers of the matrices D + γ−1
p M̃Γ and F̃ + γfM̃Γ as functions of γf and γp.

Thus, on the basis of these considerations we set γf = 0.3 and γp = 0.1. We fix tol = 1.e−09
and in table 6.1 we report the number of iterations obtained for the three test cases. We can see
that the convergence results have sensibly improved with respect to those obtained through the
Algorithm 4.3.

Parameters Iterations for
ν K h = 0.1428 h = 0.0714 h = 0.0357 h = 0.0178

1.e−04 1.e−03 19 19 19 19
1.e−06 1.e−04 20 20 20 20
1.e−06 1.e−07 20 20 20 20

Table 6.1. Number of iterations using Algorithm 6.3 with γf = 0.3, γp = 0.1, for several values of ν and K.

We can proceed in an analogous way considering now Algorithm 6.2 (or 6.4). In particular, in
this case the iteration matrix, say B̃h, is similar to

B̃h 
 (γfM̃Γ − Σ̃ph)(γpM̃Γ + Σ̃ph)−1(γpM̃Γ − Σ̃fh)(γfM̃Γ + Σ̃fh)−1

so that we can write the following bound for its spectral radius:

ρ(B̃h) ≤ max
j=1,...,NΓ

∣∣∣∣∣γf − δ̃j
p

γp + δ̃j
p

∣∣∣∣∣ · max
j=1,...,NΓ

∣∣∣∣∣γp − δ̃j
f

γp + δ̃j
f

∣∣∣∣∣ . (6.25)

Now, for h fixed, we can study the limit ν,K → 0 using the eigenvalues estimates (6.17) and
(6.18). We find

if ν → 0, then δ̃j
f →∞ , (6.26)

and
if K→ 0, then δ̃j

p → 0 . (6.27)

Therefore,

max
j=1,...,NΓ

lim
ν→0

∣∣∣∣∣γp − δ̃j
f

γf + δ̃j
f

∣∣∣∣∣ ∼ 1 (6.28)
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while

max
j=1,...,NΓ

lim
K→0

∣∣∣∣∣γf − δ̃j
p

γp + δ̃j
p

∣∣∣∣∣ ∼ γf

γp
, (6.29)

so that for ν, K small,
ρ(B̃h) ∼ γf

γp
, (6.30)

as we might have expected by comparing the different role played by the parameters in (6.13)-
(6.14) and in (6.11)-(6.12) (see Remark 6.2.1). Thus, in this case we have to set γp > γf .

Moreover, we apply the same considerations as above concerning the conditioning of the mass-
added matrices F̃ + γ−1

f M̃Γ and D + γpM̃Γ taking the test cases of table 6.1; in this case we
obtain the rough indication γi 
 10.
Then, we set γf = 10 and γp = 30 and we report in table 6.2 the number of iterations obtained
for the three test cases. The convergence results are comparable to those of table 6.1.

Parameters Iterations for
ν K h = 0.1428 h = 0.0714 h = 0.0357 h = 0.0178

1.e−04 1.e−03 18 18 18 19
1.e−06 1.e−04 20 20 20 20
1.e−06 1.e−07 20 20 20 20

Table 6.2. Iterations using Algorithm 6.4 with γf = 10, γp = 30, with respect to several values of ν and K.

Finally, we have considered the longitudinal section of a water channel 10m long with a water
depth of 1m. At the inlet of the channel (see Fig. 6.3) a parabolic inflow profile with maximal
velocity 0.1m/s is imposed, while on the other boundaries we impose uf = 0. The fluid is
thus forced to filtrate through an homogeneous porous medium 10m deep characterized by
an hydraulic conductivity K = 1.e−03m/s. The fluid has a density ν = 1.e−06m2/s. On the
bottom of the porous media domain we impose ϕ = 0 while on the lateral boundaries the
impermeability condition K∇ϕ · np = 0 is assumed.
To compute the solution of the global problem we have considered the Algorithm 6.1 setting
γf = 0.3 and γp = 0.1. The tolerance on the relative increment has been set tol = 1.e−05. We
have used three different computational meshes. The convergence results are reported in table
6.3, while Figs. 6.4, 6.5 represents the computed velocity field and piezometric head.

The numerical results we have presented show that the ADI method sensibly improves the
convergence behaviour of the more classical Dirichlet-Neumann methods, specifically in presence
of physically interesting parameters.
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Fig. 6.3. Computational domain for the channeled fluid-porous media test case

Mesh elements Iterations

1272 6
5088 6
20352 6

Table 6.3. Number of iterations obtained for three different computational meshes.
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Fig. 6.4. Computed velocity field.

However, this method may still be improved introducing for example a dynamic strategy to
choose the acceleration parameters. Morevoer, it would be interesting to apply the precondi-
tioners issued by the ADI approach in the framework of the GMRES method.
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7. Mathematical Analysis of a Nonlinear Coupled

Problem

In this chapter we present some results concerning the analysis of the coupled

Navier-Stokes/Darcy problem and the setting up of substructuring methods for

its numerical approximation. In particular, we present a well-posedness result and

set up a framework for the investigation of possible iterative solution strategies

for this problem.

7.1 Introduction

In the previous chapters we have focused on the mathematical and numerical investigation of
the coupled Stokes/Darcy model. Now, we would like to improve this basic model to account
for more general fluid flows and, possibly, more accurate porous media models. For example, we
could consider a nonlinear Navier-Stokes/Forchheimer model which would allow us to treat the
case of high Reynolds number flows in both the fluid and the porous media domain.
However, because of the wide practical applicability of Darcy’s law, we begin by considering the
Navier-Stokes/Darcy model (1.19)-(1.25).
The setting of the problem will be as in chapter 2; in particular, the coupling conditions will be
again (1.26), (1.27) and throughout the whole chapter we shall assume that uf · τ j = 0 on Γ
instead of (1.28), as we have already done in chapters 2 and 3.

This chapter is composed of two parts.
In the first one we express the coupled model as a nonlinear interface problem and we guarantee
its well-posedness.
The second part is devoted to the set up of a general framework to characterize possible iterative
methods to solve the interface equation.

7.2 The Interface Problem Associated to the

Navier-Stokes/Darcy Coupling

We consider the functional spaces (2.7)-(2.15) and the extension operators Ef , Ep and EΓ defined
in (2.16), (2.19) and (2.65), respectively. Moreover, we define the trilinear form:
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cf (w; z,v) =
∫

Ωf

[(w · ∇)z] · v =
d∑

i,j=1

∫
Ωf

wj
∂zi
∂xj

vi ∀v,w, z ∈ (H1(Ωf ))d. (7.1)

The coupled Navier-Stokes/Darcy problem can be formulated in the following multidomain weak
form:

find u0
f ∈ Hτ

f , pf ∈ Q, ϕ0 ∈ Hp such that

af (u0
f + Efuin,w) + cf (u0

f + Efuin;u0
f + Efuin,w) + bf (w, pf )

=
∫

Ωf

f w ∀w ∈ H1
0 (Ωf ) (7.2)

bf (u0
f + Efuin, q) = 0 ∀q ∈ Q (7.3)

ap(ϕ0 + Epϕp, ψ) = 0 ∀ψ ∈ H0
p (7.4)∫

Γ
n(u0

f · n)µ = ap(ϕ0 + Epϕp, R2µ) ∀µ ∈ Λ (7.5)∫
Γ
g ϕ0µ =

∫
Ωf

f (Rτ
1µ)− af (u0

f + Efuin, R
τ
1µ)

−cf (u0
f + Efuin;u0

f + Efuin, R
τ
1µ)− bf (Rτ

1µ, pf ) ∀µ ∈ Λ , (7.6)

whereRτ
1 and R2 are the continuous extension operators defined in Remark 2.5.1 and Proposition

2.4.1, respectively.

Now, we consider the interface variable λ = uf ·n on Γ and we split it as λ = λ0 +λ∗ as in Sect.
2.5.

(In this section we bound ourselves to this choice of the interface variable. The case of σ = ϕ|Γ
as interface variable will be treated in a future work [BDQ04]).

Let (ω∗0, π
∗) ∈ (H1

0 (Ωf ))d ×Q0 and ϕ∗0 ∈ Hp be the solutions to problems P1) and P2) of Sect.
2.5, and consider the linear extension operators Rf and Rp defined in (2.72)-(2.73) and (2.74),
respectively.

Finally, let us introduce the following nonlinear extension operator:

Rf,nl : Λ0 → Hτ
f ×Q0, η → Rf,nlη := (R1

f,nlη,R
2
f,nlη)

such that (R1
f,nlη) · n = η on Γ and

af (R1
f,nlη,v) + cf (u∗ +R1

f,nlη;u∗ +R1
f,nlη,v) + bf (v, R2

f,nlη) = 0 (7.7)

bf (R1
f,nlη, q) = 0 (7.8)

∀v ∈ (H1
0 (Ωf ))d, ∀q ∈ Q0, where we have denoted

u∗ ∈ H1(Ωf ), u∗ = ω∗0 + Efuin + EΓλ∗ (7.9)

ω∗0 being the solution to P1).
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Remark that problem (7.7)-(7.8) corresponds to a Navier-Stokes problem in Ωf where we impose
the usual boundary conditions (1.22), (1.23) and (2.58), and we require the normal velocity on
Γ to be equal to η + λ∗. Notice that, unlike the linear problem (2.72)-(2.73), here we cannot
split the dependence on the data (i.e. boundary conditions and forcing terms) from that on the
interface data η and λ∗ because of the nonlinearity of the problem.

In order to prove the existence and uniqueness of the operator Rf,nl we need some preliminary
results.

7.2.1 General Existence and Uniqueness Results

In this section we recall some existence and uniqueness results that we shall use in the following.
For a rigorous study of the solution of nonlinear equations in Banach spaces we refer, e.g., to
[BRR80, BRR81a, BRR81b, CR97] and also [GR86].

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two real normed Hilbert spaces and let us consider a bilinear
continuous form:

b(·, ·) : X × Y → R, (v, q)→ b(v, q)

and a trilinear form

a(·; ·, ·) : X ×X ×X → R, (w, u, v) → a(w;u, v)

where, for w ∈ X the mapping (u, v)→ a(w;u, v) is a bilinear continuous form on X ×X.
Then we consider the following problem:

Given l ∈ X ′, find a pair (u, p) ∈ X × Y satisfying

a(u;u, v) + b(v, p) = 〈l, v〉 ∀v ∈ X
b(u, q) = 0 ∀q ∈ Y.

(7.10)

Let us introduce the linear operators A(w) ∈ L(X;X ′) for w ∈ X, and B ∈ L(X;Y ′) defined
by:

〈A(w)u, v〉 = a(w;u, v) ∀u, v ∈ X,

〈Bv, q〉 = b(v, q) ∀v ∈ X, ∀q ∈ Y .

With these notations problem (7.10) becomes:

find (u, p) ∈ X × Y such that

A(u)u+BT p = l in X ′

Bu = 0 in Y ′.
(7.11)

We set V = Ker(B) and we associate to problem (7.10) the following one:

find u ∈ V such that
a(u;u, v) = 〈l, v〉 ∀v ∈ V . (7.12)
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Equivalently, we can write (7.12) as

ΠA(u)u = Π l in V ′ ,

where the linear operator Π ∈ L(X ′;V ′) is defined by 〈Π l, v〉 = 〈l, v〉, ∀v ∈ V .
Obviously, if (u, p) is a solution of problem (7.10), then u is a solution of (7.12). The converse
property may be easily established provided the inf-sup condition holds. Therefore, the real
difficulty lies in solving the nonlinear problem (7.12).
The following existence result holds for (7.12).

Theorem 7.2.1 (Existence). Assume that the following hypotheses hold:

1. there exists a constant α > 0 such that

a(v; v, v) ≥ α‖v‖2X ∀v ∈ V ; (7.13)

2. the space V is separable and, for all v ∈ V , the mapping u→ a(u;u, v) is sequentially weakly
continuous on V , i.e.

um ⇀ u in V ⇒ lim
m→∞

a(um;um, v) = a(u;u, v) ∀v ∈ V .

Then problem (7.12) has at least one solution u ∈ V .

Concerning the uniqueness of the solution we have the following result.

Theorem 7.2.2 (Uniqueness). Suppose that

1. the bilinear form a(w; ·, ·) is uniformly V -elliptic with respect to w, i.e. there exists a constant
α > 0 such that

a(w; v, v) ≥ α‖v‖2X ∀v,w ∈ V ;

2. the mapping w → ΠA(w) is locally Lipschitz-continuous in V , i.e. there exists a continuous
and monotonically increasing function L : R

+ → R
+ such that for all m > 0

|a(w1;u, v) − a(w2;u, v)| ≤ L(m)‖u‖X‖v‖X‖w1 −w2‖X (7.14)

∀u, v ∈ V , ∀w1, w2 ∈ Sm with Sm := {w ∈ V |‖w‖X ≤ m};
3. it holds

‖Π l‖V ′

α2
L

(
‖Π l‖V ′

α

)
< 1 . (7.15)

Then (7.12) has a unique solution u ∈ V .

We end this section by addressing problem (7.10):

Theorem 7.2.3. Assume that the bilinear form b(·, ·) satisfies the inf-sup condition

inf
q∈Y

sup
v∈X

b(v, q)
‖v‖X‖q‖Y

≥ β > 0 . (7.16)

Then for each solution u of (7.12) there exists a unique p ∈ Y such that the pair (u, p) is a
solution of problem (7.10).



7.2 The Nonlinear Interface Problem 131

7.2.2 Existence of the Extension Operator Rf,nl

We face now the issue of the existence and uniqueness of the extension operator Rf,nl. With this
purpose, we define the auxiliary (homogeneous) nonlinear operator

R : Λ0 → (H1
0 (Ωf ))d ×Q0, Rη = (R1η,R2η),

with Riη = Ri
f,nlη −Ri

fη, i = 1, 2,
(7.17)

such that R1η · n = 0 on Γ and which satisfies the following problem:

af (R1η,v) + cf (u∗ +R1
fη +R1η;u∗ +R1

fη +R1η,v) + bf (v, R2η) = 0 (7.18)

bf (R1η, q) = 0 (7.19)

for all v ∈ (H1
0 (Ωf ))d, q ∈ Q0.

Remark that problem (7.18)-(7.19) is analogous to (7.7)-(7.8), but here R1η ∈ (H1
0 (Ωf ))d while

we had R1
f,nlη ∈ Hτ

f .

We consider the functional space

V 0
f := {v ∈ (H1

0 (Ωf ))d|∇ · v = 0 in Ωf} (7.20)

and, given η ∈ Λ0, we define the form:

ã(w; z,v) := af (z,v) + cf (w; z,v)

+ cf (u∗ +R1
fη; z,v) + cf (z;u∗ +R1

fη,v) ∀w, z,v ∈ (H1(Ωf ))d, (7.21)

and the functional

〈�,v〉 := −cf (u∗ +R1
fη;u∗ +R1

fη,v) ∀v ∈ (H1(Ωf ))d . (7.22)

Therefore we can rewrite problem (7.18), (7.19) as:

given η ∈ Λ0, find R1η ∈ V 0
f such that

ã(R1η;R1η,v) = 〈�,v〉 ∀v ∈ V 0
f . (7.23)

We state the following result.

Proposition 7.2.1. There exists a positive constant C > 0, independent of η, such that if

η ∈ {ζ ∈ Λ0| |R1
f ζ|1,f < ν/C − |u∗|1,f} ⊂ Λ0, (7.24)

then there exists a unique nonlinear extension Rf,nlη = (R1
f,nlη,R

2
f,nlη) ∈ Hτ

f ×Q0.
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Remark 7.2.1. Notice that (7.24) imposes a constraint on η. In particular, recalling that the
norms |R1

fη|1,f and ‖η‖Λ are equivalent (see the proof of Lemma 2.5.1), this condition implies
that a unique extension Rf,nlη exists provided the norm of η is small enough.
In our specific case, this means that we would be able to consider an extension Rf,nlλ0 only if
the normal velocity λ0 across the interface Γ is sufficiently small. ��

Proof. The proof is composed of several steps.

1. Let w ∈ V 0
f . Then, we have

ã(w;v,v) = af (v,v) + cf (w;v,v) + cf (u∗ +R1
fη;v,v) + cf (v;u∗ +R1

fη,v). (7.25)

Integrating by parts and recalling that w ∈ V 0
f , then

cf (w;v,v) =
1
2

∫
∂Ωf

w · n|v|21,f −
1
2

∫
Ωf

∇ ·w|v|21,f = 0 .

Moreover, denoting by nj the components of the unit outward normal vector nf to ∂Ωf , we
have

cf (v;u∗ +R1
fη,v) =

∫
Ωf

d∑
i,j=1

vj

∂(u∗ +R1
fη)i

∂xj
vi

= −
d∑

i,j=1

∫
Ωf

∂

∂xj
(vivj)(u∗ +R1

fη)i +
d∑

i,j=1

∫
∂Ωf

(vivj)(u∗ +R1
fη)inj

= −
d∑

i,j=1

∫
Ωf

∂vi

∂xj
vj(u∗ +R1

fη)i −
d∑

i,j=1

∫
Ωf

∂vj

∂xj
vi(u∗ +R1

fη)i

+
d∑

i,j=1

∫
∂Ωf

vj nj(u∗ +R1
fη)ivi

= −cf (v;v,u∗ +R1
fη).

The last equality follows because v ∈ V 0
f .

Finally, by construction ∇ · (u∗ + R1
fη) = 0 and therefore cf (u∗ + R1

fη;v,v) = 0. Then (7.25)
becomes:

ã(w;v,v) = af (v,v) − cf (v;v,u∗ +R1
fη) , (7.26)

and using the Poincaré inequality we obtain:

ã(w;v,v) ≥ ν|v|21,f − CΩf
|v|21,f |u∗ +R1

fη|1,f

≥ |v|21,f

(
ν − 2CΩf

(|u∗|1,f + |R1
fη|1,f )

)
.

Setting C = 2CΩf
in (7.24), it follows that the bilinear form ã(w; ·, ·) is uniformly elliptic with

respect to w, with the constant αã (independent of w):
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αã = ν − 2CΩf
(|u∗|1,f + |R1

fη|1,f ).

2. Still using the Poincaré inequality we easily obtain:

|ã(w1; z,v) − ã(w2; z,v)| = |cf (w1 −w2; z,v)| ≤ CΩf
|w1 −w2|1,f |v|1,f |z|1,f .

3. We have

|||Π �|||(V 0
f )′ = sup

v∈V 0
f ,v 
=0

| − cf (u∗ +R1
fη;u∗ +R1

fη,v)|
|v|1,f

≤ sup
v∈V 0

f ,v 
=0

CΩf
|u∗ +R1

fη|21,f |v|1,f

|v|1,f

≤ CΩf
(|u∗|1,f + |R1

fη|1,f )2,

so that

CΩf

|||Π �|||(V 0
f )′

α2
ã

< 1

owing to (7.24).

4. Thanks to (7.24) and 1.-3., ã(·; ·, ·) and � satisfy the hypotheses of Theorem 7.2.2, which allows
us to conclude that there exists a unique solution R1η ∈ V 0

f to (7.23).

5. Since the inf-sup condition is satisfied, from Theorem 7.2.3 there exists a unique solution
(R1η,R2η) to (7.18), (7.19). Then, the thesis follows from the definition (7.17). ��

7.2.3 The Interface Equation: an Existence and Uniqueness Result

In this section we want to reformulate the global coupled problem (7.2)-(7.6) as an interface
equation depending solely on λ0.

We formally define the nonlinear pseudo-differential operator:

Snl : Λ0 → Λ′0,

〈Snlη, µ〉 = af (R1
f,nlη + u∗, R1µ) + cf (R1

f,nlη + u∗;R1
f,nlη + u∗, R1µ)

+bf (R1µ,R
2
f,nlη + π∗)−

∫
Ωf

f (R1µ)

+
∫

Γ
g(Rpη + ϕ∗0)µ ∀η ∈ Λ0,∀µ ∈ Λ . (7.27)

Then we have the following equivalence result.

Theorem 7.2.4. The solution to (7.2)-(7.6) can be characterized as follows:

u0
f + Efuin = R1

f,nlλ0 + u∗, pf = R2
f,nlλ0 + π∗ + p̂f , ϕ0 = Rpλ0 + ϕ∗0, (7.28)
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where p̂f = (meas(Ωf ))−1
∫
Ωf
pf , and λ0 ∈ Λ0 is the solution of the nonlinear interface problem:

〈Snlλ0, µ0〉 = 0 ∀µ0 ∈ Λ0 . (7.29)

Once λ0 is known, p̂f can be obtained solving the algebraic equation

p̂f = (meas(Γ))−1〈Snlλ0, ε〉,

where ε ∈ Λ is any function such that
∫
Γ ε = meas(Γ).

Proof. It can be obtained by following the same guidelines of Theorem 2.5.1. ��

Remark 7.2.2. With the special choice R1 = R1
f in (7.27), thanks to the definition (2.73) of Rf ,

we obtain
bf (R1

fµ,R
2
f,nlη + π∗) = 0 ∀η, µ ∈ Λ0 .

Moreover, owing to (7.17), we have

〈Snlη, µ〉 = af (R1η +R1
fη + u∗, R1

fµ)

+cf (R1η +R1
fη + u∗;R1η +R1

fη + u∗, R1
fµ)

−
∫

Ωf

f (R1
fµ) +

∫
Γ
g(Rpη + ϕ∗0)µ.

By taking R1η (∈ (H1
0 (Ωf ))d) as test function in the definition (2.72) of Rf we obtain:

af (R1
fµ,R

1η) + bf (R1η,R2
fµ) = 0 .

Finally, since R2
fµ ∈ Q0, owing to (7.19) it follows that af (R1

fµ,R
1η) = 0, so that, for all

η, µ ∈ Λ0, the operator Snl can be characterized as

〈Snlη, µ〉 = af (R1
fη + u∗, R1

fµ)

+cf (R1η +R1
fη + u∗;R1η +R1

fη + u∗, R1
fµ)

+
∫

Γ
g(Rpη + ϕ∗0)µ−

∫
Ωf

f (R1
fµ). (7.30)

��

Now, we want to study the existence and uniqueness of the solution of the nonlinear interface
problem (7.29) where Snl is characterized as in (7.30).

We consider the nonlinear interface equation

find λ0 ∈ Λ0 : 〈Snlλ0, µ〉 = 0 ∀µ ∈ Λ0 . (7.31)

Note that in view of (7.30), Snlλ0 is defined in terms of the operator R1λ0 which in its turn
satisfies the following problem:
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af (R1λ0, R
1µ) + cf (R1λ0 +R1

fλ0 + u∗;R1λ0 +R1
fλ0 + u∗, R1µ) = 0 ∀µ ∈ Λ0. (7.32)

We want to apply Theorem 7.2.2 to study the existence and uniqueness of the solution λ0. To
this aim, we indicate by V the product space V = Λ0 × V 0

f endowed with the following norm:

‖v‖V := (|R1
fµ|21,f + |v|21,f )1/2 ∀v = (µ,v) ∈ V. (7.33)

Then, for any fixed w = (η,w) ∈ V , we define the following operator depending on w:

A(η,w) : V → Λ′0 × (V 0
f )′,

A(η,w) : (λ,u)→ (A0(η,w)(λ,u), Af (η,w)(λ,u))

where for every test function µ ∈ Λ0:

〈A0(η,w)(λ,u), µ〉 = af (R1
fλ,R

1
fµ) + cf (w +R1

fη;u +R1
fλ,R

1
fµ)

+cf (u +R1
fλ;u∗, R1

fµ)

+cf (u∗;u +R1
fλ,R

1
fµ) +

∫
Γ
g(Rpλ)µ ,

whereas for any test function v ∈ V 0
f :

〈Af (η,w)(λ,u),v〉 = af (u,v) + cf (w +R1
fη;u +R1

fλ,v)

+cf (u∗;u +R1
fλ,v) + cf (u +R1

fλ;u∗,v) .

We indicate by ã the form associated to the operator A that is

ã(w;u, v) = 〈A0(η,w)(λ,u), µ〉 + 〈Af (η,w)(λ,u),v〉

for all w = (η,w), u = (λ,u), v = (µ,v) ∈ V .

Moreover, we define the functionals �0 : Λ0 → R:

〈�0, µ〉 =
∫

Ωf

f (R1
fµ)− af (u∗, R1

fµ)− cf (u∗;u∗, R1
fµ)−

∫
Γ
gϕ∗0µ ∀µ ∈ Λ0, (7.34)

and �f : V 0
f → R:

〈�f ,v〉 = −cf (u∗;u∗,v) ∀v ∈ V 0
f , (7.35)

and denote
〈L̃, v〉 = 〈�0, µ〉+ 〈�f ,v〉 ∀v = (µ,v) ∈ V .

Our problem (7.31)can be reformulated as:

find u = (λ0, R
1λ0) ∈ V such that

ã(u;u, v) = 〈L̃, v〉 ∀v = (µ,v) ∈ V . (7.36)

We shall prove the existence and uniqueness of the solution only in a closed convex subset of V .
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Let CΩf
be the Poincaré constant relative to domain Ωf , u∗ ∈ H1(Ωf ) the function defined in

(7.9) and ϕ∗0 ∈ Hp the solution to problem P2) (see Sect. 2.5). We introduce the constants

C1 = C1(ν,u∗) =
ν

2CΩf

− 2|u∗|1,f , (7.37)

C2 = C2(f ,u∗, ϕ∗0) =

⎛⎝C1/2
Ωf
‖f‖0,f + ν|u∗|21,f + CΩf

|u∗|21,f + C1
trC

1/2
Ωf
g‖ϕ∗0‖0,p

CΩf

⎞⎠1/2

, (7.38)

C1
tr > 0 being a constant from the trace inequality.

We can prove the main result of this section.

Theorem 7.2.5. Assume that

C1 >
2 +
√

2
2

C2 , (7.39)

and let r > 0 be such that

C1 −
√
C2

1 − 2
√

2C2
2

2
≤ r < C1 − C2 . (7.40)

If
Br = {w = (η,w) ∈ V | |R1

fη|1,f ≤ r} , (7.41)

then, there exists a unique solution u = (λ0, R
1λ0) ∈ Br to (7.36). In particular, it follows that

problem (7.31) has a unique solution λ0 in the ball Br ⊂ Λ0:

Br = {η ∈ Λ0| |R1
fη|1,f ≤ r}.

Proof. The proof is composed of several parts.

1. For each w = (η,w) ∈ Br the bilinear form ã(w; ·, ·) is uniformly coercive.

By definition, for all v = (µ,v) we have

ã(w; v, v) = ν|R1
fµ|21,f + ν|v|21,f +

∫
Γ
g(Rpµ)µ

+cf (w +R1
fη;v +R1

fµ,v +R1
fµ) (7.42)

+cf (v +R1
fµ;u∗,v +R1

fµ) (7.43)

+cf (u∗;v +R1
fµ,v +R1

fµ) (7.44)

Thanks to the definition (2.74) of Rp, we can see that
∫
Γ g(Rpµ)µ ≥ 0, and applying Poincaré

inequality to (7.42)-(7.44) we obtain

ã(w; v, v) ≥ ν(|R1
fµ|21,f + |v|21,f )− 2CΩf

|R1
fη|1,f (|R1

fµ|21,f + |v|21,f )

−4CΩf
|u∗|1,f (|R1

fµ|21,f + |v|21,f )

= αã(|R1
fµ|21,f + |v|21,f )
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having set

αã = ν − 2CΩf
|R1

fη|1,f − 4CΩf
|u∗|1,f = ν − 2CΩf

(|R1
fη|1,f + 2|u∗|1,f ) . (7.45)

Condition (7.40) implies in particular that C1 > r, and, since w ∈ Br, C1 > |R1
fη|1,f so that

αã > 0. Thus, the bilinear form ã(w; ·, ·) is uniformly coercive with respect to any w ∈ Br.

Thanks to Lax-Milgram lemma the operator A(w) ∈ L(V ;V ′) is invertible for each w ∈ Br.
Moreover, T (w) = (A(w))−1 belong to L(V ′;V ) and satisfies

‖T (w)‖L(V ′;V ) ≤
1
αã

.

With this notation, we shall prove that there exists a unique u ∈ Br s.t.

u = T (u)L̃,

i.e. problem (7.36) has a unique solution in Br.

2. v → T (v)L̃ maps Br into Br and is a strict contraction in Br.

For all v ∈ Br we have

‖T (v)L̃‖V ≤ ‖T (v)‖L(V ′;V )|||L̃|||V ′ ≤ |||L̃|||V ′

αã
. (7.46)

Moreover, using Poincaré and trace inequalities we obtain:

|||L̃|||V ′ = sup
v∈V,v 
=0

∣∣∣∣∣
∫

Ωf

f (R1
fµ)− af (u∗, R1

fµ)− cf (u∗;u∗,v +R1
fµ)−

∫
Γ
gϕ∗0µ

∣∣∣∣∣
‖v‖V

≤ sup
v∈V,v 
=0

C
1/2
Ωf
‖f‖0,f |R1

fµ|1,f + ν|u∗|1,f |R1
fµ|1,f + CΩf

|u∗|21,f |v +R1
fµ|1,f + gC1

trC
1/2
Ωf
‖ϕ∗0‖0|R1

fµ|1,f

‖v‖V

≤ sup
v∈V,v 
=0

(
C

1/2
Ωf
‖f‖0,f + ν|u∗|21,f + CΩf

|u∗|21,f + gC1
trC

1/2
Ωf
‖ϕ∗0‖0,p

)
(|R1

fµ|1,f + |v|1,f )

‖v‖V
.

Finally, since |R1
fµ|1,f + |v|1,f ≤

√
2(|R1

fµ|21,f + |v|21,f )1/2 =
√

2‖v‖V we conclude that

|||L̃|||V ′ ≤
√

2CΩf
C2

2 .

Now, thanks to (7.39) and (7.40) we can see that

|||L̃|||V ′

αã
≤ r

so that, owing to (7.46), T (v)L̃ belongs to Br.
Finally, to prove that the map v → T (v)L̃ is a strict contraction in Br, we should guarantee (see
[GR86] p. 282) that ∀w1, w2 ∈ Br
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‖T (w1)− T (w2)L̃‖V ≤
|||L̃|||V ′

α2
ã

L(r)‖w1 − w2‖V < ‖w1 − w2‖V , (7.47)

L(r) being the Lipschitz continuity constant associated to ã. But

|ã(w1;u, v)− ã(w2;u, v)|
= |cf (w1 +R1

fη1 − (w2 +R1
fη2);u +R1

fλ,v +R1
fµ)|

≤ CΩf
|w1 +R1

fη1 −w2 −R1
fη2|1,f |u +R1

fλ|1,f |v +R1
fµ|1,f

≤ 2
√

2CΩf
‖w1 − w2‖V ‖u‖V ‖v‖V

so that L(r) = 2
√

2CΩf
.

With the help of some algebra, thanks to (7.39) and (7.40), we can see that

|‖L̃|‖V ′

α2
ã

L(r) < 1.

Thus, (7.47) is satisfied.

3. The existence and uniqueness of the solution u = (λ0, R
1λ0) ∈ Br to (7.36) is now a simple

consequence of the Banach contraction theorem. ��

7.3 Iterative Methods for the Interface Problem

In this section we provide a general framework for devising iterative methods to solve the non-
linear interface problem. This approach has been applied also in the context of a nonlinear
fluid-structure interaction problem (see [DDQ04]). An analysis of convergence of our algorithms
will be the matter of a forthcoming work [BDQ04]. We shall always suppose that the hypotheses
of Theorem 7.2.5 are fulfilled so that the existence of a unique solution is guaranteed.

The interface problem may be formally written as

find λ0 s.t. Snl(λ0) = 0.

If we highlight the dependence on the fluid and the porous media problems, we can write

find λ0 s.t. Sf,nl(λ0) + Spλ0 = χp (7.48)

where Sf,nl is the nonlinear fluid operator and Sp is the linear operator (2.77) associated to the
groundwater problem (see also iii) Sect. 2.7).
Remark that computing Sf,nl(λ0) corresponds to solve a Navier-Stokes problem in Ωf with the
boundary conditions uf · n = λ0 and uf · τ j = 0 on Γ, and then to compute the normal stress
(−ν∂uf/∂n + pfn) · n on Γ.
Finally,

〈χp, µ〉 = −
∫

Γ
gϕ∗0µ ∀µ ∈ Λ.
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Note that the dependence on the Navier-Stokes problem data is hidden in the definition of the
operators Sf,nl; this is necessary since the problem at hand is nonlinear.

We consider two approaches to solve (7.48): the first is based on the Newton method, the second
one on a domain decomposition preconditioning strategy.

7.3.1 Newton Method

We denote by J(λ̄) the Jacobian of Sf,nl(λ̄) + Spλ̄− χp in λ̄:

J(λ̄) = S′f,nl(λ̄) + Spλ̄

where S′f,nl is the fluid tangent operator, i.e. the Fréchet derivative of Sf,nl:

〈S′f,nl(δλ)|λ̄, µ〉 = af (R1
f,nl(δλ), R1µ) + cf (R1

f,nl(δλ);R1
f,nl(λ̄) + u∗, R1µ)

+ cf (R1
f,nl(λ̄) + u∗;R1

f,nl(δλ), R1µ) + bf (R1µ,R
2
f,nl(δλ)).

The Newton algorithm reads:

Algorithm 7.1 (Newton)
Given λ0

0, For k ≥ 0, Do

1. compute σk
p = Spλ

k
0;

2. compute σk
f = Sf,nlλ

k
0;

3. rk = χp − (σk
f + σk

p);
4. solve J(λk

0)δλ
k
0 = rk;

5. set λk+1
0 = λk

0 + αk δλk
0.

End For

At each step k this algorithm requires to solve separately the fluid and the groundwater problems
(steps 1 and 2, respectively) and then to solve the linear system with matrix J(λk

0) (step 4).
The parameter αk is always set equal to 1.

Alternatively, we could adopt a suitable inexact Jacobian Jin(λ0) instead of J(λ0) and to com-
pute the acceleration parameter αk using a line search technique (see, e.g., [QSS00]).

7.3.2 Domain Decomposition Approach

We consider a preconditioned (nonlinear) Richardson method which, being the interface problem
(7.48) nonlinear, must be interpreted in a slightly different way than what is usually done in the
literature for the linear case. Precisely, the k-th step of the algorithm reads:
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Algorithm 7.2 (Richardson)
Given λ0

0, For k ≥ 0, Do

1. compute σk
p = Spλ

k
0;

2. compute σk
f = Sf,nlλ

k
0;

3. rk = χp − (σk
f + σk

p);
4. solve µk = P−1rk;

5. set λk+1
0 = λk

0 + ωk µk (with an appropriate choice of the scalar ωk).

End For

The preconditioner P maps the interface variable onto the space of normal stresses. It is also
possible to choose a preconditioner which depends on the iterate λk

0 or more generally on the
iteration step k. In these cases we will denote it by Pk.
At each step, this algorithm requires to solve independently the fluid and the porous media
problems (like the Newton method) and to apply a preconditioner.

Remark 7.3.1. If no preconditioner is used, then at the differential level P should be intended
as being the projection operator I from the space of the normal velocities Λ0 to the space of
stresses, so that

λk+1
0 = λk

0 + ωkI−1rk ∈ Λ0.

At the algebraic level, this remark can be omitted since in that case we are always dealing with
vectors of R

NΓ . ��

Remark 7.3.2. At the algebraic stage, a general strategy to compute the relaxation parameter
ωk is given by :

ωk = −
(
µk − µk−1

)
·
(
λk − λk−1

)
‖µk − µk−1‖2

R
NΓ

. (7.49)

This value of ωk is the one that minimizes the norm

‖(λk − λk−1) + ω(µk − µk−1)‖
R

NΓ

over all possible values of ω. This criterium generalizes to the vector case the Aitken extrapolation
technique (see [QSS00, Dep04, DDQ04]). ��

The crucial issue is how to set up a preconditioner (more precisely, a scaling operator) in order
for the iterative method to converge as quickly as possible.
In the following we discuss some classical choices of the preconditioner for the Richardson method
and we compare them to the Newton strategies that we have illustrated in Sect. 7.3.1.

We define a generic linear preconditioner (more precisely, its inverse):

P−1
k = αk

f (S′f,nl(λ
k))−1 + αk

p S
†
pλ

k, (7.50)
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for two scalars αk
f and αk

p, where S†p indicates a pseudo-inverse of Sp, since we cannot consider
the inverse S−1

p on Λ0 as already discussed in chapters 2 and 4.
Instead of S′f,nl we could take the homogeneous operator S̄ λ̄

f,nl:

S̄ λ̄
f,nl(δλ̄) = Sf,nl(λ̄+ δλ̄)− Sf,nl(λ̄) .

In that case the preconditioner becomes:

P−1
k = αk

f (S̄ λk

f,nl)
−1 + αk

p S
†
pλ

k (7.51)

and the nonlinear operator (7.51) can be considered as an approximation of (7.50) to be used in
order to avoid the solution of the linearized problem.

Remark 7.3.3. The nonlinear operator (S′f,nl)
−1 in (7.50) could also be replaced by its linear

counterpart S−1
f . However, we might expect that this would lead to the same difficulties con-

cerning the bad behaviour of this preconditioner in presence of small physical parameters as in
the full linear case. Therefore, although matematically acceptable, we do not advise considering
this strategy. ��

From (7.51) we retrieve the following special cases:

1. If αk
f = 1 and αk

p = 0, then

P−1
k = P−1

k,DN = (S̄ λk

f,nl)
−1. (7.52)

Pk,DN is called a Dirichlet-Neumann preconditioner and

P−1
k,DN(rk) = (S̄ λk

f,nl)
−1
(
χp − Sf,nl(λk)− Spλ

k
)

;

2. If αk
f + αk

p = 1, then

P−1
k = P−1

k,NN = αk
f (S̄ λk

f,nl)
−1 + αk

pS
†
p

that we call here a generalized Neumann-Neumann preconditioner.

Remark 7.3.4. We neglect the case αk
f = 0 and αk

p = 1 which would give P−1
k = S†p, since we

have already seen in the linear case (see chapter 2) that S†p is not an optimal preconditioner for
the interface problem associated to the interface variable λ = uf · n on Γ. ��

In the Dirichlet-Neumann case the computational effort of a Richardson step may be reduced
to the solution of only one Dirichlet problem in one subdomain and one Neumann problem in
the other.

Remark 7.3.5. For both cases (7.50), (7.51), it is possible to choose the parameters αk
f , αk

p and
ωk dynamically in the following way. We define ωk

f = ωkαk
f and ωk

p = ωkαk
p and we look for ωk

f

and ωk
p that minimize

‖(λk − λk−1) + ωf (µk
f − µk−1

f ) + ωp(µk
p − µk−1

p )‖
R

NΓ ,
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over all possible values of ωf and ωp. This corresponds to solving the linear system

AT A

(
ωk

f

ωk
p

)
= −AT (λk − λk−1), (7.53)

where A is the two column matrix

A =
(
(µk

f − µk−1
f ); (µk

p − µk−1
p )

)
.

Again, this can be regarded as a generalized Aitken criterium; in fact, this automatic choice
generalizes the one outlined in (7.49). ��

A further possibility is offered by the following preconditioner

Pk,RR =
1

γf + γp

(
γfI + S′f,nl(λ

k)
)
I
(
γpI + Spλ

k
)
, (7.54)

where I is the projection operator as in Remark 7.3.1, while γf and γp are positive parameters
which can be chosen according to a suitable error minimization strategy as illustrated in chapters
5 and 6. We call Pk,RR a Robin-Robin preconditioner.

Thanks to the theory of chapter 5, this preconditioning strategy may be associated to the
splitting scheme:

Algorithm 7.3 (Operator splitting)
Given µ0

2, For k ≥ 0, Do

1. solve γfIµk+1
1 + S′f,nl(µ

k+1
1 ) = χp + (γfIµk

2 − Spµ
k
2);

2. solve γpIµk+1
2 + Spµ

k+1
2 = χp + (γpIµk+1

1 − Sf,nl(µk+1
1 )).

End For

In this context one may think of replacing the tangent operator S′f,nl in 1 of Algorithm 7.3, (or
(7.54)) by the linear operator Sf (see (2.76)), thus considering the full linear preconditioner used
for the Stokes/Darcy coupling.

7.3.3 Comparison between the Newton and the DD Approaches

The Richardson algorithm 7.2 for the Steklov-Poincaré formulation (7.48) with preconditioner
given by (7.50) (with αk

f = αk
p = 1) is not equivalent to the Newton algorithm 7.1. In fact, the

latter could be regarded as a Richardson method, choosing however the nonlinear preconditioner

Pk(µ) = S′f,nl(µ) + Spµ. (7.55)

Note that to invert Pk one must use a (preconditioned) iterative method and may approximate
the tangent problem to accelerate the computations.
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Moreover, we would like to remark that the domain decomposition approach allows us to set up a
completely parallel solver. In fact, the fluid and the porous media subproblems can be computed
simultaneously (and independently) for both the computation of σk

f and σk
p (operators Sf,nl and

Sp) and the application of the preconditioner (operators S′f,nl and, eventually, S†p).

The operator splitting approach (Algorithm 7.3) presents a different structure with respect to
both the Newton and the Richardson ones and, in general, it is more expensive in terms of
computational cost than the Richardson method with the Dirichlet-Neumann preconditioner
Pk,DN (7.52). In fact, the operator splitting method requires at each step to solve two fluid
problems and two porous media problems.

A schematic representation and comparison of the three methods we have illustrated is given in
table 7.1.

Interface problem

Sf,nl(λ0) + Spλ0 = χp

Newton iter. Prec. Richardson iter. Operator splitting

σk
p = Spλk

0 σk
p = Spλk

0 σk
p = χp + (γfIµk

2 − Spµk
2)

σk
f = Sf,nl(λ

k
0) σk

f = Sf,nl(λ
k
0) γfIµk+1

1 + S′
f,nl(µ

k+1
1 ) = σk

p

rk = χp − (σk
f + σk

p ) rk = χp − (σk
f + σk

p ) σk+1
f = χp + (γpIµk+1

1 − Sf,nl(µ
k+1
1 ))

J(λk
0)δλk

0 = rk µk = P−1rk γpIµk+1
2 + Spµk+1

2 = σk+1
f

λk+1
0 = λk

0 + αkδλk
0 λk+1

0 = λk
0 + ωkµk

1 groundwater solve 1 groundwater solve 1 groundwater solve
1 flow solve 1 flow solve 1 (tangent) flow solve
1 Jacobian solve 1 precond. solve 1 flow solve

1 groundwater solve

Table 7.1. Comparison among Newton, Richardson and operator splitting approaches.





Conclusions

In this thesis we have investigated the mathematical and numerical analysis of coupled surface-
groundwater flow problems.

First, a linear Stokes/Darcy model was considered. Its well-posedness has been proved at both
the differential and the discrete level.

Then, domain decomposition methods have been applied to set up substructuring algorithms to
compute the finite element solution of the global problem. Precisely, the original problem has
been reformulated in terms of interface equations associated to the choice of the inteface variable
as the trace of the fluid normal velocity or of the piezometric head on Γ.
The analysis of the pseudo-differential Steklov-Poincaré operators has allowed us to characterize
optimal preconditioners, that have been replicated for the Schur complement system and used
in the framework of preconditioned conjugate gradient iterations. In particular, we have first
considered Dirichlet-Neumann type preconditioners which perform well with respect to grid
parameters yielding a convergence rate independent of h. However, they did not scale optimally
with respect to the physical parameters, which severely affect their convergence properties and
make them of little interest when dealing with real life applications.
This difficulty was overcome by setting up a more sophisticated algorithm based on alternating
direction iterations. In particular, a new class of multiplicative and additive preconditioners for
the Steklov-Poincaré equation (or the Schur complement system) involving local Robin problems
has been characterized. The convergence properties of these methods have been investigated, at
least in the case of two subdomains, for a generic advection-diffusion-reaction elliptic operator,
thus obtaining a general purpose algorithm which can be effectively applied also in contexts
others than the surface and groundwater flows.

Finally, the nonlinear Navier-Stokes/Darcy case was addressed within the framework of do-
main decomposition allowing us to set up a preconditioned nonlinear Richardson method which
extends the classical Newton approach. This setting may also be applied to other nonlinear
couplings, for example in the case of fluid-structure interaction problems.
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