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Résumé

Le point commun entre les différents chapitres de ce travail est la théorie des graphes. Certains

problémes abordés sont bien connus, d’autres moins et découlent plus directement d’applications.

Le premier chapitre traite du probleme du stable maximum, et on y propose de nouvelles classes
de graphes ou il se résout en temps polynomial. Chacune de ces classes est héréditaire, donc
caractérisée par une liste de graphes induits interdits. Les algorithmes proposés sont purement
combinatoires.

Le deuxiéme chapitre est consacré & I’étude d’un probleme lié & des questions de sécurité dans des
réseaux mobiles. La particularité est qu’il n’y a pas d’autorité centrale permettant de garantir
la sécurité, mais elle est gérée par les utilisateurs eux-mémes. Le réseau se modélise par un
graphe orienté, ou les sommets sont les utilisateurs, et les arcs représentent des certificats de
clé publiqgue. On associe a chaque sommet du graphe un sous-graphe, de maniére a respecter
certaines contraintes limitant la taille des sous-graphes, limitant le nombre de fois qu'un sommet
apparait dans le sous-graphe d’un autre sommet, et imposant qu’au moins un certain nombre de
paires de sommets soient mutuellement connectées quand on met leurs sous-graphes en commun.
Des heuristiques constructives sont proposées, des bornes aux solutions optimales sont données,
des cas particuliers sont étudiés et un algorithme tabou est adapté et testé.

Dans le troisieme chapitre, on aborde un probléme de reconstruction d’image & partir de ses
projections en termes de fréquence d’apparition de chaque couleur dans chaque ligne et chaque
colonne. Le cas & deux couleurs se résout & ’aide de techniques de flots, le cas & quatre couleurs
est N'P-complet, et la complexité du cas & trois couleurs est ouverte. Un cas intermédiaire entre
deux et trois couleurs est considéré et prouvé soluble en temps polynomial.

Les deux derniers chapitres sont consacrés a la coloration des sommets d’un graphe. Dans le
quatriéme, on prouve un résultat livrant toute une collection de cas particuliers N'P-difficiles,
sous la forme de classes héréditaires de graphes. Dans le chapitre 5 enfin, ¢’est une approche par
la programmation linéaire de la coloration de graphes qui est étudiée. Les liens entre différentes
formulations sont d’abord mis en évidence, puis certaines familles de facettes sont caractérisées.
Dans la derniére section on étudie un algorithme branch and price utilisant la relaxation linéaire
de 'une des formulations exposées pour le calcul de bornes inférieures au nombre chromatique.

Un preprocessing est proposé et son efficacité testée.






Abstract

The common point between the different chapters of the present work is graph theory. We
investigate some well known graph theory problems, and some which arise from more specific

applications.

In the first chapter, we deal with the maximum stable set problem, and provide some new
graph classes, where it can be solved in polynomial time. Those classes are hereditary, i.e.
characterized by a list of forbidden induced subgraphs. The algorithms proposed are purely
combinatorial.

The second chapter is devoted to the study of a problem linked to security purposes in mobile
telecommunication networks. The particularity is that there is no central authority guaranteeing
security, but it is actually managed by the users themselves. The network is modelled by
an oriented graph, whose vertices represent the users, and whose arcs represent public key
certificates. The problem is to associate to each vertex a subgraph with some requirements
on the size of the subgraphs, the number of times a vertex is taken in a subgraph and the
connectivity between any two users as they put their subgraphs together. Constructive heuristics
are proposed, bounds on the optimal solution and a tabu search are described and tested.

The third chapter is on the problem of reconstructing an image, given its projections in terms
of the number of occurrences of each color in each row and each column. The case of two colors
is known to be polynomially solvable, it is NP-complete with four or more colors, and the
complexity status of the problem with three colors is open. An intermediate case between two
and three colors is shown to be solvable in polynomial time.

The last two chapters are about graph (vertex-)coloring. In the fourth, we prove a result which
brings a large collection of N"P-hard subcases, characterized by forbidden induced subgraphs. In
the fifth chapter, we approach the problem with the use of linear programming. Links between
different formulations are pointed out, and some families of facets are characterized. In the last
section, we study a branch and bound algorithm, whose lower bounds are given by the optimal
value of the linear relaxation of one of the exposed formulations. A preprocessing procedure is

proposed and tested.
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Introduction

In combinatorial optimization, there are several problems (usually called easy problems) which
have been solved with efficient algorithms. On the other hand, there is a continuously growing
collection of problems (called hard problems) for which this task is notoriously difficult, maybe

impossible.

There are mainly three kinds of approaches to a hard problem. The first and obvious way is
simply to design an algorithm that, implicitly or not, scans all solutions and returns the best one.
Unfortunately, the limitations of such an algorithm appear in most cases even for medium-sized
instances; its execution time seems to be infinite. The second approach consists in searching
for a good solution, without warranty of optimality. The algorithms designed for this sake are
called heuristics, and have the advantage of running in a reasonable amount of time. The third
kind occurs when one wants to learn more about the difficulty of the problem, and explore the
world of its subproblems, i.e. find out which ones are easy, and which ones are still difficult
to solve. The goal is then to localize as precisely as possible the borderline between easy and

difficult cases.

The first of these approaches is used in Chapter 5, for the graph coloring problem, where a branch
and price algorithm is studied. Examples of the second approach can be found in Chapter 2
for a security problem in telecommunication networks. The third approach is taken in the three
remaining chapters: in Chapter 1 for the maximum stable set problem, in Chapter 3, for an

image reconstruction problem in discrete tomography and in Chapter 4 for graph coloring.

The set of hard problems itself has some subclasses of similar problems. Some are covering
problems and consist in covering a given ground set by a minimum number of its subsets verifying
some properties; another kind are packing problems, and roughly counsist in finding a subset of

maximum cardinality or weight of a given set, subject to some incompatibility constraints.

Based on this classification, the structure of the text is the following. A packing problem, namely
the maximum stable set problem, is investigated in Chapter 1. It consists in finding in a graph
a subset of vertices of maximum size, and containing no two adjacent vertices. Some new cases
are proven polynomially solvable. All these cases are expressed as hereditary classes of graphs;

the algorithms are combinatorial for these classes.



Covering type problems are studied in Chapters 3, 4, and 5. In Chapter 3, one wants to cover the
squares of a 2 dimensional grid with a set of colors, while having given numbers of occurrences
of each color in each row and in each column. The case of three colors is studied. In Chapters
4 and 5, the problem of interest is the graph coloring problem, whose aim is to cover the set of
vertices of a graph with a minimum number of stable sets. In Chapter 4, two polynomial problem
reductions are combined to provide a family of hard subproblems, Chapter 5 is devoted to linear
programming approaches and contains some links between different formulations, polyhedral
studies and the development of a branch and price algorithm permitting one to solve the problem

on medium sized instances.

Chapter 2 deals with a problem which can be classified as being “between” packing and covering:
it consists, given an oriented graph, in associating a subgraph to each vertex, subject to three
types of constraints. Two of them can be seen as packing constraints, since they impose some
limitations on the sizes and intersections of the subgraphs; constraints of the third type can
be seen as covering constraints since they express that some paths between two vertices must
be covered when they merge their respective subgraphs. Finally, the special case of complete

graphs is also investigated, a few constructive heuristics are proposed as well as a tabu search.



Preliminaries

We first define some basic notions which are common to most chapters of this work, and more
specific definitions will appear in concerned chapters. Definitions (or equivalent ones) about

graphs can also be found in [Ber70] and those about complexity can be found in [GJ99].

Graphs

A simple, undirected graph G is a pair (V, E), such that V is a set, and F is composed of distinct
unordered pairs of distinct elements of V. If those pairs are ordered, G is called a directed graph.
If they are not distinct, the graph is not simple anymore,
and may be called multigraph. In the sequel, if nothing is
specified the graph will be simple and undirected. V is called
the set of vertices of G and FE its set of edges, or arcs in
the directed case. If confusion is possible, V(G) will denote
the vertex set of the graph G, end E(G) its edge set. Two
vertices z and y such that (z,y) € E are called adjacent. The
set N(z) :={y € V : (z,y) € E} is called the neighborhood

of . The degree of a vertex is the number of its neighbours:

d(z) = |N(z)|, and the maximum degree among all vertices Figure 1: G = ({1,2,3,4,5,6.7,8},

{(1,2),(1,3),(1,4), (1,5), (2,4),(2,5),
(2,6),(3,4),(3,8),(4,6),(4,7), (5,6),
(5,7),(5,8),(6,7),(6,8),(7,8)})

of G is denoted A(G). A graph may be drawn as in Figure
1, where vertices are points and an edge (x,y) is represented
by a line between z and y. In the directed case, an arc (z,y)
is represented by an arrow going from z to y. A subgraph
G induced by the vertex set A is the graph G[A] := (A, {(z,y) € E |z € A,y € A}). A
partial subgraph of G is a graph G' = (V', E'), such that V' C V and E' C {(z,y) € E | z €
V',y € V'}. The complementary graph of G = (V, E) is the graph G := (V,{z € E,y € E,z #
y | (z,y) € E'}). Given any graph G = (V, E), its line graph is the graph L(G) = (E,{(v,w) :
v and w have a common vertex in G}). A set of non-adjacent vertices is called a stable set (or
independent set), and its complement, i.e. a set of pairwise adjacent vertices, is a clique. The
maximum size of a stable set in G is called the stability number of G and is denoted «(G), while

the maximum size of a clique in G, called the cligue number, is denoted w(G).



We define the following simple graphs which often appear in graph theory. In the sequel, all
graph definitions are given up to isomorphism, i.e. two graphs G; = (Vi1, E1) and Go = (Va, E»),
with |V1| = | V| are considered as equal, if G; can be obtained from G by renaming its vertices.
A graph on n vertices is complete and denoted K, if its set of vertices induce a clique. It is
empty and denoted O, if its vertex set is stable. A bipartite graph B = (S,T,E) is a graph
(SUT, E), with S and T being stable sets. A bipartite graph B = (S, T, F) is said complete if E =
{(z,y) | x € S,y € T}; K, , denotes a complete bipartite graph whose parts have respectively
r and s vertices. A path Py denotes the graph ({ay,...,ax}, {(a1,a2), (a2, a3),...,(ag—1,ar)}).
A cycle (or hole) Cy is the graph ({a1,...,ar}, {(a1,a2), (a2,as),..., (ag_1,0x), (ag,a1)}), and

a tree is a graph containing no cycle as a (induced or partial) subgraph.

Among problems related to graphs, the two following ones are of particular interest here. The
first one is called the Mazimum Stable set Problem (MSP), and consists in finding a stable set
of maximum size in a given graph. The second problem is the one of assigning a color to each
vertex of V, such that any two adjacent vertices have different colors, and the total number of
colors used is minimized. Of course, colors can be replaced by numbers or letters, or anything,
but the total number of different things used has to be minimized. This problem is called the
graph Minimum (vertez-)Coloring Problem (MCP) of G, and its optimal value is called the
chromatic number of G, and denoted x(G). Those two problems, without being equivalent, are
correlated. If we notice, for instance, that a set of same-colored vertices constitutes a stable set
of G, the graph coloring problem of G' can be viewed as the one of covering V with a minimum

number of stable sets. See Chapters 4 and 5 for relationships between both problems.

Complexity

Dealing with a combinatorial optimization problem usually means in fact dealing with a set
of questions, parametrized by an instance, which is a data of a certain type. In the sequel,
we will then speak of a “problem” to refer to the whole set, and of an “instance” if the data
is specified. For example, MSP is a class of problems, and an instance of them is a graph.
Solving a combinatorial optimization problem C consists then of giving an algorithm (sequence
of operations) which, for any instance of C, gives its solution in finite time. Of course, if the set
of solutions of C is finite or can be bounded (what is almost always the case), such an algorithm
exists, since the one consisting of scanning each solution and keeping the best one always runs
out in finite time. The difficulty is finding an algorithm which lasts not too long, even for large

Iinstances.

More formally, let A be an algorithm for solving the combinatorial optimization problem C,
for each instance m € II, the set of instances of C. Denote s(m), the size of © (s(m) may be
the number of vertices of the graph if C is MSP), and ¢(A,w), the number of operations of
algorithm A for solving C with the instance m; ¢(A,7) is called the complexity of A. For the

sake of completeness, we provide a formalism allowing to value the efficiency of algorithms, by



analysing their complexity, and then to value the difficulty of a problem.
Let f: IN — IN. The order of f(n), defined as
O(f(n)) :=={t:IN - IRy |Jce€ R}, andng € IN s.t. t(n) < cf(n) Vn >no}

is the set of functions which can be bounded by cf(n) (c € IR} ), if n is large enough. The set
of algorithms for solving combinatorial problems can be partitioned in two parts: those whose
complexity is in O(p(s(w))), where p(n) is a polynomial, and those for which such a polynomial
does not exist. For the first algorithms, we will say that they run in polynomial time. So
the primary task, when studying a combinatorial optimization problem, is to try to determine
whether it can be solved with a polynomial time algorithm. We next define four classes of

problems, roughly characterizing their difficulty.

A decision problem is just a problem whose answer is “yes” or “no”. Any minimization or
maximization problem has a version of type decision. For example, MSP’s decision version,
denoted MSPD is:

MSPD
Instance: A graph G and an integer k.

Question: Does there exist a stable set of size k in G 7

A necessary condition for a decision problem to admit a polynomial time algorithm, is the
existence of a polynomial time algorithm permitting one to check that an answer “yes” is correct,
given a certificate (of course an algorithm that solves the problem guarantees the correctness
of the answer). Denote NP this class of problems. MSPD is in NP, since there exists an
algorithm for verifying that a set of size k (certificate) is a stable set, and the function giving
the number of operations (depending on the instance, here G and k) of this algorithm belongs
to O(|V|?). More briefly, we will say that a solution of MSPD can be verified in O(|V'|?). By
P, we denote the class of problems admitting a polynomial time algorithm for solving it. From
the remark above, we have that P C N'P. There is an important collection of very difficult
decision problems in NP, which is called N'P-complete. It is defined as the set of problems
A in NP, such that any other problem in NP can be solved by calling a polynomial number
of times an algorithm solving A, and doing a polynomial number of elementary operations.
Consequently, if we would find a polynomial algorithm for a problem in N'P-complete, one
would have a polynomial algorithm for any problem in A/P, which would imply that P = N'P.
However, most researchers conjecture that such a polynomial algorithm does not exist, i.e. that
P # N'P. This open problem is one of the most famous in the field of mathematics. In the
sequel, we will deal with optimization problems, rather than decision problems. Such a problem
whose decision version is in N'P-complete is called N'P-hard'. MSP and MCP are examples of
NP-hard problems. Further, in this work the set P will also denote the optimization problems

whose decision version is in P.

!The terms “NP-complete” and “NP-hard” can usually be used for denoting a set of problems, or as an
adjective like here.






Chapter 1

Polynomial cases for the maximum

stable set problem

1.1 Introduction

Recall that a stable set S in a graph G is a set of pairwise non-adjacent vertices. S is mazimum
if its cardinality |S| is maximum, while it is mazimal if it is not contained in another stable set
of G. The maximum cardinality of a stable set in G is denoted a(G) and is called the stability
number of G. The problem of finding a maximum stable set in a graph is called the Mazimum
Stable set Problem (MSP), which is N'P-hard, as mentioned in the preliminaries. For A C V(G),
we denote Ny(x) = N(z) N A the neighbourhood of z in G[A]. For two subsets A and B of
vertices, we use the notation Na(B) = UpepNa(b) for the set of vertices in B which have a
neighbour in A. If a graph G contains a graph H as an induced subgraph, we simply say that
G contains H, and that H is a subgraph of G or is contained in G.

We define here some notations used to depict
some specific small graphs. By S; ;, we de-
note a tree composed of a central vertex from
which start at most three pending paths of /1\
respective lengths ¢,5 and k. In particular,
S1,11 is a claw, S11,2 is a fork, and S320 is
a P;. A banner is the graph with vertices
a,b,c,d, e and edges (a,b), (b,c), (¢,d), (d,e)

and (e, b). Some of those graphs are displayed Figure 1.1: (a) Claw (b) Fork (c) Banner
in Figure 1.1. A graph mG is the graph ob-

(a) (b) (c)

tained by copying G m times, without additional edge between different copies.



Chapter 1

1.1.1 Hereditary classes of graphs

In this chapter, we are interested in the complexity status of some special cases of MSP. A
convenient and common way of defining special cases is to restrict MSP to graphs verifying a
certain property. A class of graphs X is hereditary, if any subgraph of a graph in X is also in
X. We follow the notations and definitions of [Ale03], where further properties of hereditary

classes, related to MSP, can be found.

It is not difficult to see that for a hereditary class of graphs X, there is a unique minimal set
of graphs Y, such that X is exactly the set of graphs containing no graph from Y. We will
then write Y = Forb(X), to say that Y is the unique minimal set of graphs which have to be
forbidden in order to characterize X. Conversely, we will write X = Free(Y), to depict the
class of graphs containing no graph from Y. Alternatively, we will sometimes just call Y-free a
graph belonging to Free(Y). For instance, the class of stable sets is simply Free(P,) and the
class of bipartite graphs is Free({Cox11 | K > 1}). This characterization is found for lots of
hereditary classes of graphs, although it is not always a trivial task. A well-known example is
the class of perfect graphs. A graph G is perfect if w(G') = x(G') V G' contained in G. In 1961,
C. Berge announced the conjecture that a graph is perfect if (and only if) it contains neither
an odd cycle of at least size b nor the complement of such an odd cycle, i.e. that the set of
perfect graphs is Free({Coxi1,Cok11 | k > 2}). This conjecture has been proved in 2002 by M.
Chudnovsky, N. Robertson, P. Seymour and R. Thomas [CRST].

Notice finally that if G’ is a subgraph of G, then Free(G') C Free(G), and that if Y/ CY are
two sets of graphs, then Free(Y) C Free(Y'). Moreover, if a problem is NP-hard, any of its
generalizations which still belong to NP are as well. This implies that if MSP is N'P-hard in
Free(Y), it is N'P-hard in Free(Y'). Conversely, if it admits a polynomial time algorithm in
Free(Y'), this algorithm also works for Free(Y).

1.1.2 State of the art

The most useful fact in the study of subcases of MSP, is certainly the one resulting from
the following simple observation [Ale83]. Given a graph G = (V,FE) and a vertex z € V,
partition arbitrarily its neighborhood into three parts N(z) = N, U Ny U N, replace x by
a Py = ({z1,22,23},{(z1,22), (z2,23)}), and add edges so that N(z;) = N, U N, U {z2},
N(z2) = {x1,z3} and N(z3) = Ny U N U {x2}. This graph transformation, sometimes called
vertex splitting, is depicted in Figure 1.2. It is easy to show that after this transformation, the
stability number of a graph G increases by one. Notice that if a K3 is induced by x, a vertex in
N, and a vertex in V., it disappears after the transformation, and if IV, is empty no new Kj is
created. Thus, using this transformation at most as many times as the number of K3 in G, one
can remove all these structures, while increasing the size of G by a polynomial in |V|. Thus, if

we have a polynomial algorithm A for the class Free(K3), then we have a polynomial algorithm



Polynomial cases for the mazimum stable set problem

U
X 1 2 X3
Figure 1.2: Vertex splitting.
1+j+k ‘ Sijk ‘ Graph Class MSP Status ‘
2 P Union of disjoint cliques Polynomial
3 S0,0,3 Cographs Polynomial[CPS85]
Si1,1 | Free(claw) D line-graphs | Polynomial[Min80, Sbi80]
A Si,1,2 Free(fork) Polynomial[Ale04]
5072,2 F?“GG(P{,) 777

Table 1.1: Complexity status of MSP in Free(S; ), for i + 7 +k < 4.

for the set of all graphs, consisting first in removing all K3 from G (call the graph obtained G'),
then applying algorithm A for G' € Free(K3). The stability number «(G) is then obtained by
removing from «(G’) the number of times vertex splitting has been applied. This proves that
MSP is N'P-hard in Free(K3). By using the same transformation, one can remove from G each
cycle of a given size, reduce to 3 the degree of any vertex, and put a path of arbitrary length
between any two vertices of degree 3. Since those transformations can be made consecutively

without creating new structures which have been removed before, we obtain the following result.

Theorem 1.1 [Ale83] MSP is N'P-hard in Free(G1,G2,...,G,), where p is finite and no G;

has all its connected components of the form S; ;. ®

This result substantially restricts the set of graph classes for which the complexity status is
unknown. Among those classes, research has naturally focused on classes where only one con-
nected subgraph is forbidden. From what precedes, we know that such a graph has to be of the
form S; ;. Table 1.1 shows, for increasing values of 7 + j + k, the complexity status of MSP
in Free(S; ;). As can be seen, P5 is the only connected graph G on 5 vertices such that the
complexity of MSP is still unknown in the class F'ree(G). Moreover, Ps is contained in any S; ; x
with ¢ + j + k = 5, hence MSP in the class Free(S; ), for any such S; ; ., is a more general
problem than MSP in Free(Fs). Hence there is no hope of solving MSP in Free(S; ;) with
i + 7+ k > 5 before having solved it in Free(Ps). This is what makes this case an interesting

and central open problem. In Section 1.2.1 we shall report some partial results in this direction.

Among classes Free(G), where G is disconnected and has all its connected components of the
form S; j i, all cases are in P if |V (G)| < 4, the only non trivial case being Free(2K3), which
is a special case of Free(mKs) for which a polynomial algorithm has been found [Ale91]. The
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only open case with |V (G)| = 5 is Free(P @ P3), where G; @ G2 denotes the disjoint union
of G; and Gs. As for Free(Ps) and connected graphs, all classes with open complexity status
which are not superclasses of Free(Ps) and are characterized by a single disconnected forbidden

graph of 6 or more vertices contain Free(P, @ P3).

Furthermore, subcases of NP-hard cases can also be explored. For instance, Alekseev and Lozin
found polynomial algorithms for any class of the form Free(Cy,Cs,...,Ck_1, Py) (k > 4)[AL04],
while the cases Free(Cy,Cs,...,Ci_1) are all N'P-hard. Free(banner) constitute such a class,
and in Section 1.3, a new polynomial algorithm for a quite large subclass of Free(banner) is

proposed.

1.1.3 The augmenting graph technique

Numerous polynomial algorithms for special cases of MSP have been designed, and various
tehniques have been invented. However, most algorithms rely on two techniques. The first one
counsists in transforming the original graph in another graph, in such a way that the incidence
on its stablility number is known. For instance, removing an isolated vertex from G decreases
a(G) by one. If one can sufficiently transform G so that the final graph G’ belongs to a
class where a polynomial algorithm is known, then a(G’) may be computed and «(G) deduced
from the transformations made on G. An example [BLO1] of a successful application of this
technique uses the fact that in Free(Ps,banner), each non-extremal vertex of a P4 can be
removed from G, without modifying a(G). Consequently, a(G) can be computed in a graph in
Free(Ps, banner) by first removing the second vertex of each P;, which can be done in O(|V[*),
and then applying a polynomial algorithm valid for graphs in Free(Py). Graphs transformations
have been extensively studied, and even general methods to design such transformations have
been formulated, like the struction method, invented in 1984 and described in [EHdW84], which
permits to replace a vertex and its neighborhood by another subgraph, so that «(G) decreases
by exactly one. More generally, Alekseev and Lozin propose in [ALO4] a framework which
permits, for an arbitrary graph transformation, to find an hereditary class of graphs such that

the stability number of graphs in this class remains unchanged after the transformation.

Probably the technique which has been most successful is the following. A matching is a set
of edges, no two of which have a vertex in common. The problem of finding a matching of
maximum cardinality is a special case of MSP, when restricted to the hereditary class of line
graphs. The first polynomial time algorithm to find a maximum matching has been proposed
by Edmonds [Edm65]. The algorithm exploits the idea of Berge that a matching M in a graph
is maximum if and only if there are no augmenting (alternating) chains for M [Ber57]. Finding
augmenting chains is a special case of a more general approach to solve MSP, known as the

augmenting graph technique.

A bipartite graph H = (V1, Vo, E) with parts V} and V5 is called augmenting for S if |Va| > |V1],
Vi €8, Vo CV(G)\S, and N(b) NS C V; for each vertex b € V,. The increment of H is

10



Polynomial cases for the mazimum stable set problem

defined as A(H) =| Vo | — | V1 |. Clearly, if H is augmenting for S, then S is not of maximum
cardinality, since S’ = (S\V1) U V4 is a larger stable set. The converse is also true: if S is not a
maximum stable set, and S’ is a stable set with |S’'| > |S], then the subgraph of G induced by
the set (S\S') U (S’\S) is augmenting for S. Thus, MSP is polynomially equivalent to detecting

augmenting graphs. However, if for a certain class of graphs, we have

(a) a complete list of augmenting graphs,

(b) a polynomial time algorithm for detecting each augmenting graph in the list,

then MSP can be solved efficiently with this approach. Notice that it is even sufficient to
find augmenting graphs which are minimal under inclusion, i.e. connected augmenting graphs
which do not strictly contain another augmenting graph as an induced subgraph. Clearly those

augmenting graphs are connected and have an increment of one.

For instance, for the class of claw-free graphs, question (a) has a simple answer. Indeed, by
definition, augmenting graphs are bipartite, and each vertex in a claw-free bipartite graph clearly
has degree at most two. Hence, every connected claw-free bipartite graph is either an even cycle
or a chain. Cycles of even length and chains of odd length cannot be augmenting, since they
have equal number of vertices in both parts. Thus, every connected claw-free augmenting graph
is a chain of even length. However, finding augmenting chains is not a trivial task. In 1980,
Minty proposed a way to determine whether a claw-free graph contains an augmenting chain
by reducing the problem to the class of line graphs, i.e. to the maximum matching problem. In
1999, Alekseev extended the result of Minty to the class of fork-free graphs. This important
result has been translated in english and published in 2004 [Ale04]. He has shown that every
connected fork-free augmenting graph is either a chain or an almost complete bipartite graph
(i.e. a graph in which every vertex has at most one non-neighbor in the opposite part), and
has proven that both types of augmenting graphs can be found in polynomial time in fork-free
graphs. Many other classes have been recently studied for possible application of the augmenting
graph technique (see e.g., [AL03, BLO1, GHL03, GL03, GHS03, Loz00, Mos97, Mo0s99, Mos03]).

For many of them, polynomial algorithms have been designed.

In Section 1.2, the augmenting graph technique is applied for finding new subclasses of Ps-
free graphs where MSP has a polynomial time solution, and in Section 1.3 to find augmenting
chains in extensions of claw-free graphs, and provide polynomial algorithms for some of those

extensions, which are special cases of banner-free graphs.

1.2 Subclasses of Ps-free graphs

Our developments are based on a characterization of all connected bipartite Ps-free graphs. This

characterization allows us to detect new families of subclasses of Ps-free graphs where MSP has

11
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a polynomial time solution. These new families extend several previously studied classes.

As mentioned in last section, the class of Ps-free graphs is of special interest since it is the only
minimal class defined by a single connected forbidden induced subgraph where the complexity
status of MSP is unknown. Polynomial algorithms have been developed for several subclasses
of Ps-free graphs [BH99, BL0O1, GR97, L0200, Mos97].

We first give a characterization of all connected Ps-free augmenting graphs and then use it in
Sections 1.2.2 and 1.2.3 to determine subclasses of Ps-free graphs where MSP can be solved in

polynomial time. Most of what follows can also be found in [GHSO03].

1.2.1 Ps-free augmenting graphs

A bipartite graph H is said to be chain bipartite [Yan82] if either N(z) C N(y) or N(y) C N(x)
for any choice of two vertices  and y in the same part of H. It is easy to prove (see for
example [Mos97]) that every connected bipartite Ps-free graph is chain bipartite. To every
integer vector (dy,...,d,) such that d; > do > ... > d,, we associate the chain bipartite
graph denoted B,,(dy,...,d,) with parts V| = {a1,...,a,} and Vo = {by1,..., by, }, and in which
there is an edge linking a vertex a; € Vi to a vertex b; € V3 if and only if j < d;. Notice that a;
is adjacent to all b; (j = 1,...dy1), and b; is adjacent to all a; (¢ = 1,...,n). We say that the
pair (a1, b1) is a dominating pair in By,(dy,...,d,). In particular, B, (d,...,d) is the complete

bipartite graph K,, 4. We can now characterize connected augmenting Ps-free graphs.

Theorem 1.2 Let H be a connected augmenting graph for a stable set S in a graph G. Then
H is Ps-free if and only if it is isomorphic to a By(dy,...,dy) with n < di and d,, > 0.

Proof: It follows from the above definition that each B, (dy,...,d,) is Ps-free. So assume
that H is Ps-free, and let Vi = {a1,...,ap;} and Vo = {b1,...,b|} denote its S-part and
S-part, respectively. Notice that H is chain bipartite since it is a connected bipartite Ps-
free graph. Hence, we may assume that the vertices in V; and V5 are ordered in such a way
that N(a;) C N(a;) and N(bj) C N(b;) for all ¢ < j. In other words, G is isomorphic to
Bp(d1,...,dy) withn =| Vi | and d; =| N(a;) | (i = 1,...,n). We have n =| V] |<| V2 |= dy

since H is augmenting, and d,, > 0 else H is not connected. m

As an illustration of the above theorem, we now know that there are only three non-isomorphic
connected Ps-free augmenting graphs H = (V1,V2, F) with | Vi |= 2 and | V5 |= 3: By(3,1)
(also called a chair), Ba(3,2) (also called a banner) and By(3,3) (the complete bipartite graph
K> 3) (see Figure 1.3).

The following two lemmas provide additional useful information on connected augmenting

graphs.

12
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Bo(3,1) = a chair B, (3,2) = a banner B2(3,3) =aKy3

Figure 1.3: The three non-isomorphic connected Pj-free augmenting graphs with 2 vertices in
the S-part and 3 in the S-part.

Lemma 1.3 Let H be a minimal connected augmenting graph for a stable set S, with S-part
parts Vi and S-part Vo (V1| < |Va|). Then each vertez in Vi has at least two neighbours in V.

Proof: Notice first that each vertex in V; has at least one neighbour, else H is not connected.
Assume now that Vi contains a vertex x with a unique neighbour y in V5. Then the graph H'
obtained from H by removing vertices = and y is also augmenting with A(H') = A(H), which

contradicts the minimality of H. m

Lemma 1.4 Let S be a stable set in a Ps-free graph G, and let By, (dy,...,dy,) be an augmenting
graph for S. If G does not contain any augmenting Ki 2, then n > 1 and dz > di — 1.

Proof: Let Vi = {a1,...,a,} and Vo = {by1,..., by, } be the two parts of By, (d1,...,d,). Ifn =1,
then vertices aq,b; and by induce an augmenting K o for S in G, a contradiction. Similarly, if

dy < dy — 1, then aq,bq, and by, 1 induce an augmenting K7 for S in G, a contradiction. m

1.2.2 Stable sets in (P;, K33 — e)-free graphs

Let K33 — e denote the graph obtained by deleting an edge in the complete bipartite graph K3 3.

The next theorem characterizes connected (P, K33 — e)-free augmenting graphs.

Theorem 1.5 Let S be a mazimal stable set in a (Ps, K33 — e)-free graph G, and assume that
G does not contain any augmenting Ky o for S. Then each connected minimal augmenting graph
H for S is either a By(d,...,d) or a By(d,d —1,...,d —1) with 1 <n <d.

Proof: Consider any connected minimal augmenting graph H for S in G. By Theorem 1.2 and
Lemma 1.3, we know that H is isomorphic to a B, (d,,...,d,) with d,, > 1. If there exists an
index 7 > 2 such that 2 < d; < dy, then vertices a1, az,a;,b1,b2 and bg,41 induce a K33 — e
in G, a contradiction. Hence d; = do for each index ¢ > 2 such that d; > 1. It follows from
Lemma 1.4 that n» > 1 and dy — 1 < dy = ... = d,,. Hence, H is either a By,(d,...,d) or a
B,(d,d—1,...,d—1) withl<n<d m

13



Chapter 1

Notice that B,(d,...,d) is a K, 4 while B, (dd —1,...,d — 1) is the graph obtained by adding
a pending edge to one vertex of degree d — 1 in a K,, 4. The latter graph is denoted K:dfl'

The following result is a direct corollary of Theorem 1.5.

Corollary 1.6 Let S be a mazimal but non-mazimum stable set in o (Ps, K33 — €)-free graph
G, and assume that G does not contain any augmenting K12 for S. Then there exists an

augmenting graph H for S such that
A(H) =a(G)—| S|, and

each connected component of H is either a Ky 4 or a K:d—l with 1 < n < d.

In order to solve MSP in polynomial time in (Ps, K33 — e)-free graphs, it is sufficient to design
a polynomial algorithm that finds augmenting K, 4 and K:,d—l in (Ps, K33 — e)-free graphs.
Such an algorithm is not yet available. Brandstddt and Lozin [BLO1] have proposed a polynomial
algorithm that solves MSP in (Ps, K3 3 —e, T'H)-free graphs, where T'H (also called twin —house)
is a particular graph with 6 vertices. We show in this section that MSP has a polynomial time
solution in the class of (P5, K33 — e, Kﬁl,m)—free graphs, with fixed m. Such a result is already
known for m = 1 and m = 2. Indeed, Kf:l is a Kj 2 and K2+72 is a banner, and the stability
number of a K o-free graph G is its number of connected components, while Lozin [Loz00] has

designed a polynomial algorithm that solves MSP in (Ps, banner)-free graphs.

Let S be a maximal stable set in a (P5, K33 — ¢, K.} ,)-free graph G, with fixed m. Assume
there is no augmenting K;L , for § with » < m. Then there is no augmenting K;': s_; for S with
1 <r < sandr < m since by removing s — r — 1 vertices in the S-part one would get an
y for S with1 < r < s and

augmenting K, with r < m. Moreover, there is no augmenting K, +
r > m since G is K.}, -free. Hence, it follows from Corollary 1.6 that if S is not maximum, then

r,s—1
there exists an augmenting graph H for S such that A(H) = «(G)— | S |, and each connected

component of H is an augmenting complete bipartite graph.

Let S be a stable set in G and let x and y be two vertices outside S. Vertices z and y are
said similar if Ng(z) = Ng(y). Clearly, the similarity is an equivalence relation, and we denote
Q1,...,Qy the similarity classes. It follows from the definitions that if K, , (1 < r < s) is an
augmenting graph for a stable set S, then its S-part is a Ng(Q;) for some similarity class @; with
| Ns(Q;) |> 1, while its S-part is a stable set in G[Q;]. A similarity class Q; is said interesting if
| Ns(Qi) |[> 1 and a(G[Qi]) >| Ns(Qi) |. A vertex ¢; € Q; is said to be non-dominating in Q); if
there exists a vertex g; # ¢; in @Q; which is not adjacent to ¢; in G. Notice that every interesting

similarity class contains at least «(G[Q;]) > 1 non-dominating vertices.

Lemma 1.7 Let S be a stable set in a (Ps, K33 — e)-free graph G, and let Q; and Q; be two

interesting similarity classes such that G contains at least one edge linking a non-dominating

14
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vertex in Q; to a non-dominating vertex in QQj. Then either Ng(Q;) € Ns(Q;) or Ns(Qj) C
Ns(Qi)-

Proof: Assume G contains an edge between a non-dominating vertex ¢; € @; and a non-
dominating vertex ¢; € Q. If neither Ng(Q;) € Ng(Q;) nor Ng(Q;) C Ns(Q;), then there
exists a vertex z; € Ng(Q;) and a vertex z; € Ng(Q;) such that z; is not linked to ¢; and z; is
not linked to ¢; is G. Consider any vertex y; € (); which is not adjacent to ¢;, and any vertex
y; € (; which is not adjacent to g;. Vertex g; is adjacent to y; else vertices x;, q;, q;,z; and y;
induce a P5 in G, a contradiction. Similarly, g; is adjacent to y;. Hence, y; is adjacent to y; else
vertices w;,y;,q;, z; and y; induce a P in G, a contradiction. But now, vertices z;,y;, q;, 7, y;

and ¢; induce a K33 — e in G, a contradiction. m

Corollary 1.8 Let S be a stable set in a (Ps, K33 — e)-free graph G. Let Q; and Q; be two
interesting similarity classes such that Ng(Q;)NNs(Q;) = 0, and let S; and S; be two mazimum
stable sets in G[Q;] and G[Qj], respectively. Then S; U S; is a stable set in G.

Proof: Notice first that | S; |> 1 and | S; |> 1 since Q; and (); are interesting similarity classes.
Hence, all vertices in S; are non-dominating in (); and all vertices in S; are non-dominating in
Q;. Since Ng(Q;) N Ns(Q;) = 0, we know by Lemma 1.7, that there is no edge linking a vertex

in S; to a vertex in S;. m

Lemma 1.9 Let S be a stable set in a (Ps5, K33 — e)-free graph G, and let Q; and Q; be two
interesting similarity classes such that Ng(Q;) N Ns(Q;) # 0. Then either Ng(Q;) C Ns(Q;) or

Ns(Qj) C Ns(Qi)-

Proof: Consider any non-dominating vertices ¢; € (); and ¢; € (), and let = be any vertex in
Ns(Qi) N Ns(Qj). If neither Ng(Q;) € Ns(Qj) nor Ng(Qj) C Ns(Q;), then S contains two
vertices y; and y; such that y; is adjacent to ¢; but not to ¢;, and y; is adjacent to g; but not
to ¢; in G. Moreover, it follows from Lemma 1.7 that g; is not adjacent to ¢;. Hence, vertices

Yi» Qi, T, q; and y; induce a Ps in G, a contradiction. m

In summary, we have proved that if S is a stable set in a (Ps, K33 —e, Kﬁrz,m)—free graph G with
fixed m, and if there is no augmenting K;f , for S with r < m, then determining an augmenting
graph H for S in G with maximum increment A(H) = a(G)— | S | reduces to determining a
subset Q of interesting similarity classes such that Ng(Q;)NNg(Q;) = 0 for each pair (Q;, Q;) of
elements in Q and with > >4 o @(G[Qi])— | Ns(Q:) [= @(G)— | S |. This is done as in [Loz00].
More precisely, let Z denote the set of interesting similarity classes. We define a graph, denoted
F(S), with vertex set Z and in which two vertices @; and @); are linked by an edge if and
only if Ng(Q;) N Ns(Q;) # 0. With each vertex @Q; in F(S) we associate a weight equal to
a(G[Qi])— | Ns(Qi) |. The weight of a subset of vertices is the sum of weights of its elements. It
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is now sufficient to determine a stable set S with maximum weight in F'(S). We then associate
a connected augmenting graph H; for S with each vertex @; € S, the S-part of H; being equal
to Ng(Q;) while its S-part is any stable set of maximum size in G[Q;]. The disjoint union of all
these augmenting graphs H; is an augmenting graph H for S with maximum increment. The
proposed algorithm for the solution of MSP in the class of (P5, K33 —e, Kﬂ,‘lym)—free graphs, with

fixed m, is summarized below.

Procedure ALPHA(G)

Input: a (Ps, K33 — ¢, K.}, ,,,)-free graph G with fixed m.

Output: a maximum stable set S in G.

1. Find an arbitrary maximal stable set S in G.

2. If G contains an augmenting H = Kﬂ:r for S with r < m, then replace the S-part of H in
S by its S-part, and repeat Step 2.

3. Partition the vertices of V (G)\S into similarity classes Q1, ..., Qk, and remove the classes
Qi with | Ng(Q;) [< 2.

4. For each remaining class ();, determine a maximum stable set S; in G[Q;] by calling
ALPHA (G[Q;]).

Remove all similarity classes @; with | S; |<| Ns(Q;) |-
Construct graph F'(S) and find a stable set S of maximum weight in it.
Exchange Ng(Q;) with S; for each @; in S.

© N s«

Return S and stop.

In order to find a stable set of maximum weight in F'(S), it is sufficient to observe (as was done
in [ALO3]) that F(S) is (P4, Cy)-free (where a Py is a chordless chain on 4 vertices and a Cy is

a chordless cycle on 4 vertices).

Lemma 1.10 [AL03] Graph F(S) is (Py,Cy)-free.

Proof: Assume F(S) is not (Py, Cy)-free. Consider four vertices Q1,Q2, @3, Q4 in F(S) such
that Q)2 is adjacent to ()1 and Q)5 but not to (Q4, and @3 is adjacent to ()2 and ()4 but not to ()1
in F(S). Hence, vertices @1, Q2, Q3 and Q4 induce a Py (if Q); is not adjacent to ()4) or a Cy in
F(S). Since Ng(Q2) N Ng(Q3) # 0, we may assume by Lemma 1.9 that Ng(Q2) C Ng(Q3) in
G. Hence, Ng(Q1) N Ns(Q3) = 0 implies Ng(Q1) N Ng(Q2) = 0 which contradicts the fact that
there exists an edge between Q1 and Q2 in F(S). m
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The graphs containing no P and no Cy4 as induced subgraphs have been extensively studied
in the literature under different names, like trivially perfect graphs [Gol78] and quasi-threshold
graphs [CCY96]. The problem of finding a stable set of maximum weight can be solved in that

class in linear time using modular decomposition [MS99].

Theorem 1.11 The stability number of a (Ps, K33, — e,Kﬂ,’lym)—free graph with n vertices and
fized m > 1 can be determined in O(n™+?).

Proof: Correctness of algorithm ALPHA follows from the theorems proved in this section.
To estimate the time complexity, we note that Steps 1, 3, 5, 6, 7 and 8 take in the worst case
O(n?) time. An augmenting K, for S with » < m can be found in O(n™) time. Since Step 2
is repeated at most n times, the total time complexity of this step is O(n™*!). The graph G’
obtained by making the disjoint union of all G[Q;] with | Ng(Q;) |> 1 has strictly less vertices
than G since graphs G[Q1],. .., G[Qk] are vertex disjoint while G’ does not contain any vertex
from S. But Step 4 reduces to finding a maximum stable set in G'. Hence, the recursion in Step
4 results in the total time O(n™*2). m

Lozin [Loz00] and Mosca [Mos97] have proposed polynomial algorithms for the solution of MSP
in (Ps,banner)-free and (Ps, Ky 3)-free graphs, respectively. The above theorem extends both
results since K33 — e and K; 3 contain an induced banner and an induced K3 3. Notice also
that if p and ¢ are two fixed integers, then MSP has a polynomial solution in the class of
(P5, K33, — e, K, )-free graphs since these graphs do not contain any induced K}, with m >
max{p, q}.

1.2.3 An infinite family of subclasses of Ps-free graphs

In this section we illustrate the use of the characterization of all connected Ps-free augmenting
graphs by identifying an infinite family of subclasses of Ps-free graphs for which MSP has a
polynomial time solution. Given a graph H and an integer ¢t > 0, we denote A(¢, H) the graph
obtained by adding a clique K = {ki,...,k;} and a stable set L = {l1,...,l;} to H, by linking
each vertex of K to each vertex of H, and by linking a vertex k; to a vertex [; if and only if
i > j. As an illustration, graphs A(t, H) are depicted in Figure 1.4 for various graphs H and
for various values of t. We prove in this section that if MSP can be solved in polynomial time
in the class of (Ps, H)-free graphs, then MSP can also be solved in polynomial time in the class
of (Ps, A(t, H))-free graphs, for any fixed ¢.

Theorem 1.12 Let H be any graph. If one can solve MSP in a (Ps, H)-free graph G in time
O(| V(G) |P), then one can solve MSP in a (Ps, A(1, H))-free graphs G in time O(| V(G) P!
| E(G) |).
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Figure 1.4: Special graphs and illustration of the construction of A(¢, H) graphs.

Proof: Let G be a (Ps, A(1, H))-free graph. Consider any stable set S in G as well as two
adjacent vertices z € S and y ¢ S. Let R denote the subset of vertices z in V(G)\(S U {y})
which are adjacent to z but not to y, and such that Ng(z) C Ng(y). There exists an augmenting
B, (dy,...,d,) for S with dominating pair (z,y) if and only if R contains a stable set with d; —1
vertices. Hence, to determine whether (x,y) is a dominating pair in an augmenting graph for
S, it is sufficient to determine a maximum stable set S’ in G[R]: | S’ [>| Ng(y) | if and only if
Ns(y) U (8" U {y}) induces an augmenting By, (dy, . ..,d,) with n =| Ng(y) |, dy =| S" | +1, and
with dominating pair (z,y). But G[R] is H-free, else G[R U {z, y}] contains an A(1, H). Hence

a(G[R]) can be determined in polynomial time.

Now, one can determine whether G contains an augmenting graph for S by considering all pairs
(z,y) of adjacent vertices with z € S and y ¢ S, and by checking whether (z,y) is a dominating
pair in an augmenting graph for §. Since a maximum stable set in G is necessarily reached after
at most | V(G) | augmentations, one can solve MSP in G by running O(| V(G) | - | E(G) |)
times the polynomial algorithm which solves MSP in the class of (Ps, H)-free graphs. m

The following stronger result was proved independently by Mosca [Mos03]. Let WMSP denote
the problem of finding a stable set of maximum weight in a graph, and let H be any graph. If
one can solve the WMSP in a (Ps, H)-free graph G in time O(] V(G) |P), then one can solve the
WMSP in a (Ps, A(1, H))-free graph G in time O(] V(G) |P72).

Since A(t, H) = A(1, A(t — 1, H)), we can state the following corollary.

Corollary 1.13 Let H be any graph. If MSP has a polynomial time solution in the class of
(Ps, H)-free graphs, then it also has a polynomial time solution in the class of (Ps, A(t, H))-free
graphs G, for any positive integer t.
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As a first illustration of the above result, consider the graph H = K ; (i.e., H contains only two
vertices linked by an edge). MSP is particularly easy to solve in the class of K j-free graphs
since the stability number of such a graph G = (V, E) is equal to | V |. As a consequence, for
any fixed integer ¢, MSP has an O(| E |' - | V |'™!) time solution in the class of (Ps, A(t, K1,1))-
free graphs. But A(t, K; ) contains an induced clique with ¢ 4 2 vertices. Hence, if the size
of the largest clique in a Ps-free graph G = (V, E) is bounded by some fixed number m, then
the stability number of G can be determined in O(] E |™ ! - | V |™) time. Notice also that
A(2, K1) contains a diamond and a cricket (see Figure 1.4). It is proved in [AM99] and [Mos97],
respectively, that MSP has a polynomial time solution in the classes of (Ps, diamond)-free and

(Ps, cricket)-free graphs. Corollary 1.13 therefore generalizes these two results.

As a second illustration, consider H = P;. Obviously, a graph is (Ps, Py)-free if and only if it is
P,-free. Moreover, it is well known that MSP has a linear time solution in the class of Py-free
graphs [CPS85, MS99]. Hence, Theorem 1.12 and Corollary 1.13 show that MSP can be solved
inO( E ™|V |E+]|E| |V |7 time in the class of (P, A(t, P))-free graphs, for any
fixed t. Notice that A(1, Py) contains a diamond and a cricket (see Figure 1.4). We therefore

get a second generalization of the results contained in [AM99] and [Mos97].

As a third illustration, consider the class of (Ps, K1, )-free graphs with fixed m > 1. Mosca [Mos97]
has shown that MSP has an O(| V(G) |™!) time solution in this class of graphs. This result is
in fact a simple corollary of Theorem 1.12. Indeed, define H as the graph made of m — 1 isolated
vertices. MSP can obviously be solved in H-free graphs in O(] V(G) |™2) time. Since A(1, H)
is a K1, Theorem 1.12 shows that MSP has an O(] E(G) | - | V(G) [™!) time solution in
(Ps, K1 ,m,)-free graphs.

Finally, let mKs denote the graph made of m disjoint edges. Alekseev [Ale91] has proved that
the number of maximal stable sets in mKs-free graphs is bounded by a polynomial for any
fixed m. In combination with the algorithm of Tsukiyama et al. [AIST77] that generates all
maximal stable sets, this leads to a polynomial algorithm for MSP in mKos-free graphs with a
fixed m. It follows from Theorem 1.12 that MSP has a polynomial time solution in the class of
(Ps, A(1,mK3))-free graphs. But A(1, mK5) contains a cricket for m > 2. Hence, Theorem 1.12
provides a third generalization of Mosca’s result on (P, cricket)-free graphs. Now let D,,, denote
the graph obtained from m Ky by adding a vertex linked to all vertices in mK, (see Figure 1.4).
Notice that Dy,11 contains A(1, mKs) which contains D,,,. Gerber and Lozin [GLO3] have proved
recently that MSP has a polynomial solution in the class of (Ps, D,,)-free graphs, for any fixed

m. Theorem 1.12 provides another simple proof of this result.

1.2.4 Minimal augmenting Ps-free graphs
Theorem 1.2 gives a characterization of all connected Ps-free augmenting graphs. However, it

does not distinguish minimal augmenting graphs from not minimal ones. The following propo-

sition gives a necessary and sufficient condition on values dy,...,d, for B,(di,...,d,) to be
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minimal.

Proposition 1.14 A Ps-free augmenting graph By, (dy,...,d,) is minimal if and only if d; =
n+1landd; >n+2—1, forany 1 <i < n.

Proof: An augmenting graph (5,5, E) is minimal if and only if each proper subset S’ of S
verifies property P: |Ng(S")| > |S'|. Denote S = {ai,...,a,} and S = by,...,by,, like in
the proof of Theorem 1.2. Clearly, if d; > n + 1, then S\{b;} does not verify property P. If
di <n+1—1, then Ng({b1,...,b;}) C {a1,...,a;—1} and {by,...,b;} does not verify property
P. Thus both conditions are necessary.

For the sufficiency, we may assume w.l.o.g. that S’ is of the form {by,...,by}, since any sub-
set 8" = {bil,biQ,...,bil} of S with 11 < 19 < ... < 1 verifies NS(S”’) = NS({bzl}) =
Ngs({b1,b,...,b;}) and S” C {b1,bs,...,b;}. Solet S" = {by,...,b;}, and denote Ng(S') =
{a1,...,a,}. We need to prove that k < p. We have Ng(S\{ai,...,a,}) C (S\S'). Using this

and both hypothesis we have n +2 - (p+1) < dpt1 <di —k=n+1-k=>k<p =

Notice in particular that d, > 2. Another simple consequence is that minimal augmenting
(Ps, Ky )-free graphs have a size bounded by a fonction of m, but independent from |V|.
Indeed, B,(d1,...,d,) contains a K, ,, if and only if d,, < m. But from Proposition 1.14,
n+2—-m <d, <m,son < 2m — 2. In other words minimal augmenting (Ps, K, ,)-free
graphs have at most 2m — 3+ 2m — 2 = 4m — 5 vertices. Hence detecting whether a (Ps, Ky, m)-
free graph contains a minimal augmenting graph for a given stable set can roughly be achieved
in O(|[V|*™), which implies polynomial solvability of MSP in Free(Ps, Kpym). This is just an
alternative method for this class, since in [GLO3] Gerber and Lozin propose a completely different

algorithm whose complexity is in O(|V[*™).

1.3 Subclasses of banner-free graphs

We concentrate now on the class banner-free graphs, where MSP is itself an NP-hard problem.
This class contains the well-studied class of line graphs, since the claw is one among the 9
forbidden graphs characterizing them. As mentioned in Section 1.1, MSP in line graphs is
exactly the problem of finding a maximum sized matching in an arbitrary graph. This has
been solved by Edmonds in 1965, and then extended to the weighted MSP in claw-free graphs
[Min80, Sbi80, NTO01], and to MSP in chair-free graphs [Ale04]. We provide here another
generalization of this result. This may alternatively be read in [HLS03].

Since we use the augmenting graph technique, our development counsists, for a given class of
graphs, in first characterizing augmenting graphs and then designing a polynomial algorithm
for detecting them. For certain classes, partial information has already been obtained. For

instance, for the class of (S 24, banner)-free graphs (an extension of claw-free graphs) question
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(a) has been completely solved [GHLO03], while for (b), only partial solution is available: the
only open problem is how to find augmenting chains in polynomial time in that class of graphs.
In this section we settle this problem even for more general graphs by reducing it to the class of

claw-free graphs.

For S a stable set of a graph G, we call the vertices of S white and the remaining vertices of
the graph black. In order to determine whether S admits an augmenting chain, we consider two
black non-adjacent vertices, denoted z¢ and zj, each of which has exactly one white neighbor.
If G contains no such vertices, then obviously there is no augmenting chain for S. Having found
such a pair of vertices, we determine whether there exists an augmenting chain with ¢ and x

being the endpoints. Without loss of generality we assume that

(1) each white vertex has at least two black neighbors,
(2) each black vertex different from z¢ and zj has exactly two white neighbors,

(3) no black vertex is adjacent to x¢ or xk.

The vertices not satisfying these assumptions can be simply removed from the graph, since they

cannot occur in any augmenting chain connecting xy to zy.

1.3.1 Augmenting chains in (5 2;, banner)-free graphs

Let G = (V, E) be a (S1 2, banner)-free graph, and S a maximal stable set in G. We look for an
augmenting chain of the form P = (z¢,z1,%2,..., T, 1,%%) (k is even) where the even-indexed
vertices of P are black, and the odd-indexed vertices are white. To simplify the proof we start
with a preprocessing consisting in detecting augmenting chains with at most ¢ + 3 vertices. In
order to determine whether S admits an augmenting chain with at least i + 4 vertices (i.e.,
k > i+ 3), we first find two black non-adjacent vertices zy to xj, as suggested above, and then
two disjoint chordless alternating chains L = (¢, z1,22) and R = (Zg_ym, Tk—mt1s-- > Th_1,Tk)
such that no vertex of L is adjacent to any vertex of R, and where m = 2|_%J and each vertex x;
is black if and only if j is even. Such a pair (L, R) of alternating chains is said candidate. Our
purpose is to find an augmenting chain containing L and R as subchains. Evidently, if there are
no such chains, then there is no augmenting chain with at least 4+ 4 vertices between xy and xy.

Having found a candidate pair (L, R) of alternating chains, we may furthermore assume that
(4) no black vertex outside L and R has a neighbor in L or R.

Again, the vertices not satisfying the assumption can be removed from the graph, as the desired

chain cannot contain them.
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Lemma 1.15 Let G = (V,E) be a (S1,2,,banner)-free graph, and S a mazimal stable set
in G. Let (L,R) be a candidate pair of alternating chains with L = (xo,x1,%2) and R =
(Th—ms Th—mt1y - - - s Th—1, Tk ), and assume that the vertices of G satisfy (1)-(4). If S admits an

augmenting chain P = (xg,...,xx), then no vertex of P is the center of an induced claw.

Proof: By contradiction, assume that G' contains a claw C(a;b, ¢,d) whose center a is a vertex
xj on P. Notice that since each black vertex of P has all its white neighbors defined, each vertex
of C\P is black. We shall use the following convention: for a black vertex v € {b, ¢, d}, if only
one of the two white neighbors of v is defined explicitly, then the other is denoted w. Also, for
a vertex v belonging to C'\ P, we denote by r(v) the largest index in {3,4,...,k —m — 1} such
that v is adjacent to z,(,). We now analyze three cases: exactly one (C1), two (C2) or three
(C3) vertices in {b, c,d} do not belong to P.

Case (C1). We may assume b = ;1 and ¢ = zj41. Then d is adjacent neither to z;_» nor to
Tj42, else there is a Banner(c,a,b,xj_2,d) or a Banner(b,a,c,zj2,d), respectively. But then
we have either a S1 2 (7)1, - .., Tj_2,d) if r(d) = j, or a 1 2,i(Tp(@)4i2s - - Tr(a), d, @, 0,75 2,¢)

if r(d) > j, a contradiction.

Case (C2). Assume that b belongs to P while ¢ and d are outside P. Then vertex b is ei-
ther equal to z;_1 or to zj41. If b = z;_1, then x;;1 is adjacent both to ¢ and d to avoid
(C1), and z;_» is adjacent neither to ¢ nor to d, else there is a Banner(b,zj_s,¢,zj11,d), a
Banner(c,a,b,xj_3,d) or a Banner(d,a,b,z;_2,c). By symmetry, if b = x4, then z;_; is
adjacent both to ¢ and d, while z; 2 is adjacent neither to ¢ nor to d. In both cases we have

€ # d, else there is a Banner(b,a,c,¢,d). Moreover, r(c) # r(d), since otherwise there is either

a Banner(b,a, ¢, T, d) (if r(c) > j+1) or a S12:(%jtit1, - -+ Tjt+1,¢,¢,d). But we may then
assume r(c) > r(d), and we therefore have a 51 2i(Ty(c)4i—2 - - - Tr(c)s € @y d,d,b) (if d # Tr(e)—1)
or a S12,i(Tr(e)tir -+ - a:r(c),g, d,c), a contradiction.

Case (C3). Without loss of generality suppose that the claw C(a;b,c,d) with center a = z;
minimizes j. Notice first that r(b), r(c) and r(d) are three different integers, else we may
assume 7 (b) = r(c) and the claw C(z,(¢); Tr(c)+1,b; ¢) contradicts (C2). Moreover, by minimality
of j and by (C2), we know that z;_; has exactly two neighbors in {b,c,d}, say b and c¢. To
avoid (Cl1) and (C2) we conclude that x;,; is adjacent to d and has at least one neighbor
in {b,c}, say c¢. Then z;41 is not adjacent to b to avoid a Banner(d,z;i+1,b,x;_1,c). We
prove now that each white vertex w ¢ {z;_1,2j,zj41} is adjacent to at most one vertex in
{b,c,d}. If this is not the case, then such a white vertex w is adjacent to b,c and d, otherwise
a banner appears. Consequently, a is a white vertex, since otherwise ¢ would have three white
neighbors z; 1,11 and w; but we know by minimality of j that w # z;_», and therefore
there exists a claw C(xj_1;2;_2,b, ¢), which contradicts (C2). Now let v; and vy be the vertices
in {b,d} renamed in such a way that r(vi) > r(v2), and let U3 denote the white neighbor
of vp which is not in {z; 1,z;,z;41}. If r(c) > r(v1), then there is a Sy 2,(z,()ri=2; -

Ty(c)s G, @, V2,02, v1). Otherwise, there is a S12i(Zp(v,)4i—2> -+ Tr(vy), V1, @, V2,02, ¢) (if D2 #
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Tp(py)—1) OF & S1.2,i(Tr(v))4is « - Tr(vy)s V2, V2,01), @ contradiction. m

Theorem 1.16 Given a (S12;,banner)-free graph G, and a stable set S in G, one can deter-
mine whether S admits an augmenting chain in time O(n#)

Proof: Augmenting chains of small length & < i + 3 can be found in a trivial way in time
O(n#) by inspecting all subsets of black vertices of cardinality at most #. To detect a larger
augmenting chain, we first find a pair of black vertices ¢ and xj as described above, and then
remove from G all the black vertices not satisfying (2) and (3). For the given pair z¢ and z,

we do the following:

Find all candidate pairs (L, R) of alternating chains, and for each such pair, do steps (a)
through (d):

(a
(b
(c
(d

) remove all black vertices that have a neighbor in L or in R,

) remove the vertices of L and R except for zo and zj_,,

) remove all the vertices that are the center of a claw in the remaining graph,

) in the resulting claw-free graph, determine whether there exists an augmenting chain

between x5 and zg_,.

With an exhaustive search all candidate pairs (L, R) of alternating chains can be found in time

O(n#) For each such pair, steps (a) through (d) can be implemented in time O(n*). So, the
i+10
2

total time for finding an augmenting chain between zy and x; is O(n 2 ). In the worst case,

we have to check O(n?) pairs of black vertices as possible endpoints of an augmenting chain.

Hence the conclusion. m

1.3.2 Application to (S5) 24, banner)-free graphs

The complete description of minimal (inclusionwise) augmenting graphs in the class of (51 2,4, banner)-
free graphs has been found in [GHLO3].

Theorem 1.17 A minimal augmenting (S 24, banner)-free graph is one of the following graphs
(see Fig. 1)

e a complete bipartite graph,

e a chain,

e a simple augmenting tree,

e a plant,
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1 2 -1 r
Simple augmenting tree T, Plant D.
Fl F2
Fg Fq
Figure 1.5: Augmenting tree T,., plant D, and graphs Fi, ..., Fy.

e one of the graphs Fy,..., Fy.

Every graph in the list F1, ..., Fy has at most 7 black vertices. So, these graphs can be detected
in time O(n”). An O(n%) algorithm is described in [AL03] for finding simple augmenting trees
and plants in (S 24, banner)-free graphs. By Theorem 1.16, an augmenting chain in that class
can be determined in time O(n”). Thus, in at most O(n') steps we can find a stable set in a
(S1,24, banner)-free graph that admits no augmenting graph except possibly complete bipartite
graphs. Let C be a subclass of banner-free graphs. It is proved in [AL03] that if for every graph
in C' one can determine in time O(n*) a stable set that admits no augmenting graph except
possibly complete bipartite graphs, then one can solve the maximum stable set problem in C in

time O(n™®{4%+1}) Summarizing the above arguments, we conclude that

Theorem 1.18 Given a (Si 2.4, banner)-free graph G with n vertices, one can find a stable set

of mazimum cardinality in time O(n').

We hence have proved in this section, that augmenting chains can be found in polynomial
time in the class of (S) 2, banner)-free graphs, for any value of i. Together with the results
in [ALO3] and [GHLO3] this leads to the conclusion that the maximum stable set problem is
polynomially solvable in the class of (S} 2 4, banner)-free graphs, while it is N'P-hard for banner-
free graphs [Ale83, Mah90]. Our result generalizes polynomial time algorithms for claw-free
graphs [Min80, Sbi80], (Ps, C41)-free graphs [Mos99], and (Pr, banner)-free graphs [AL03].
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Optimization techniques for
self-organized public-key
management in mobile ad hoc

networks

2.1 Introduction

In this chapter, we are interested in a type of problem arising from a telecommunication appli-

cation. A part of it can be found as a technical report in [JSAWO03].

Mobile ad hoc networks, unlike conventional networks, do not rely on any fixed infrastructure and
do not provide access to a trusted authority; instead all networking functions are performed by
the users themselves in a self-organized manner. As the security system is based on public-keys,
the main problem is to make the public-key of each user available to others in such a way that its
authenticity can be verified. The most famous approach to the public-key management problem
is based on public-key certificates. Such a certificate is a data structure in which a public-key
is bound to an identity (and possibly to some other attributes) by the digital signature of the

issuer of the certificate.

A self-organized public-key management system was proposed by the Laboratory for Computer
Communications and Applications (LCA of EPFL) in [BCHO03], where public and private keys
of users are created by the users themselves (for simplicity, it is assumed that each honest user
owns a single vertex, so we will use the same identifier for the user and his representative vertex
in the network to be considered). In this system, certificates are mainly stored and distributed
by the vertices in an entirely self-organized process, and each certificate is issued with a limited

validity period.

25



Chapter 2

Key authentication is performed the following way. When a user u wants to obtain the public-key

of another user v, he acquires a sequence of valid public-key certificates such that:

1. The first certificate of the sequence can be directly verified by u, by using a key that u
holds and trusts (e.g. his own public-key).

2. Each remaining certificate can be verified using the public-key contained in the previous

certificate of the sequence.

3. The last certificate contains the public-key of the target user v.

Such sequences will be called certificate paths'. To find appropriate certificate paths linking
a vertex to other users, each vertex maintains in principle two local certificate repositories:
the nonupdated certificate repository and the updated certificate repository. The nonupdated
repository of a vertex contains expired certificates that the vertex does not keep updated, and
its updated certificate repository contains a subset of certificates that the vertex keeps updated.
The selection of certificates into the vertex’s updated repository is performed according to an

appropriate algorithm.

Several points have been studied by the LCA concerning this self-organized public-key manage-
ment system (see [BCH03, BBCT01, BCH01]). Our interest concentrates on the authentication
problem, i.e. finding an appropriate algorithm to construct the vertices’ updated repositories.
For simplicity purposes, we will consider only updated certificates in the graph formulation given

below.

2.2 Definitions and basic model

In this chapter, all graphs G = (V, E) are directed, which means that their edges are in fact
arcs. Let us introduce some definitions related to such graphs. We denote by d* (v) the number
of arcs starting from v and by d~ (v) the number of arcs ending at v. A path from vy to vy is a
sequence of arcs of the form (vy,vq), (ve,v3),..., (vk—1,vg). If there is a path from vertex u to
vertex v, we will say that v is reachable from u in G (denoted in the sequel by u —¢ v). A root
is a node from which each z € V is reachable; an anti-root is a node reachable from each x € V.
A graph is strongly connected, if any vertex is reachable from any other vertex. A chain is a
sequence ey, ...,e, of arcs such that for 1 < ¢ < k, ¢; shares exactly one vertex with e;_1, and
its other vertex with e;y1; a cycle is a chain such that the vertex not shared with es by e; is the
vertex not shared with ex_; by ex. The length of a path (chain) is the number of its arcs. An
out-tree is a directed connected graph without cycle, containing a root. An in-tree is a directed

connected graph without cycle, containing an anti-root. In an in-tree or an out-tree, a leaf is

!They were called certificate chains in [BCHO3], but the word “path” is more accurate according to standard
definitions in graph theory.
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a vertex with degree 1. A circuit is a path where the first vertex and the last one coincide. A
circuit is elementary if it passes at most once by each vertex of G, and it is called hamiltonian if
it passes exactly once by each vertex of G. A graph is hamiltonian if it contains a hamiltonian
circuit. A graph G' = (V', E') such that E' C {(u,v) € E|lu € V',v € V'} is a partial subgraph
of G. Notice that an induced subgraph is a partial subgraph, while the converse is not always
true. Unless the contrary is explicitly mentioned, all subgraphs in the sequel will be partial.

Finally, a graph is complete if for any pair {7, j} of vertices, either (i,75) € E or (j,1) € E.

In what follows, it will be useful to consider the scheme in terms of an abstract model. In this
model, the public-keys and the certificates of the system are represented as a directed graph
G = (V, E)?, called the certificate graph. Its vertex set V represents the set of public-keys® and
its arc set E represents the set of certificates. The authentication is performed the following way.
When a user u wants to verify the authenticity of the public-key of another user v, they merge
their certificate repositories and w tries to find a certificate path to v in the merged repository.

If u finds a path to v, then u authenticates the public-key of v.

A certificate path from the public-key of a vertex u to the public-key of another vertex v
is represented by a path from vertex w to vertex v in G, which means that the vertex v is
reachable from the vertex w in G. In the model proposed in [BCHO3] the updated and the
nonupdated certificate repositories of user u are represented by the updated and nonupdated
certificate graphs G, and G, respectively. Therefore, for any u, G is a subgraph of G, but G
is not necessarily a subgraph of G, as it may also contain some implicitly revoked certificates?.

As mentioned we will consider only graphs G,.

Denote by G; U Gy the graph G = (V, E) defined by V(G) = V(G1) UV (Gs) and E(G) =
E(G1) U E(G3). The authentication is then performed as follows: u tries to find a path from u
to v in G, UG, and uses the certificates on this path to authenticate the public-key of v. If such

a path exists, then u performs authentication, otherwise u fails to authenticate v’s public-key.

The problem is to associate a good repository to each user. A solution to our problem is thus
a collection F' = {G, : v € V}} of |V(G)| subgraphs G, associated to each vertex v € V. The
following three criteria are defined in [BCHO3] in order to quantify the quality of a solution and

to formulate different versions of our problem in terms of graphs.

We define the basic performance p(F,G) of a solution F' with the certificate graph G as the ratio
between the number of vertex pairs {u,v} for which there is a path from « to v in G, UG, and
the total number of pairs {u, v} for which there is a path from v to v in G. Formally, the basic

performance is defined as follows:

~ {w,v} € VXV 1 u—=g,ua, v
PEC) = S eV XV uoa o] 1)

*for simplicity, we assume that each user generates a single (public, private) key pair and, therefore, is repre-
sented by a single vertex in the graph

3we will denote by u the vertex corresponding to the public-key of u

Yimplicitly revoked certificates are certificates that the corresponding user did not update
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If the performance is close to one, the solution provides essentially the same service as if the

whole certificate graph were available to each user.

The size sp(u) of u’s certificate repository of a solution F' is defined as the number of arcs of
Gy: sp(u) = |E(Gy)|, where E(G,) denotes the set of arcs of the subgraph G,. Since it is a
measure of the amount of memory needed by u to store its certificate repository, a solution with
smaller sizes will be of better practical interest. In the model we consider, all users have the
same characteristics, so the maximum repository size

s(F) = max sp(u) (2.2)

should be as small as possible.
The usage Up(v) of a given vertex (i.e. of the public-key of a given vertex) v is defined as:
Up(u) ={v € V : u € V(Gy)}, (2.3)

where V(G,) denotes the set of vertices of the subgraph G,. This value indicates how many
times the key of w could, in the worst case, be used for authentication (i.e. could be in a
certificate path that is used for authentication). On account of robustness, a solution should
not contain vertices with high usage. Indeed, the security of the network would then rely on a
small set of users, what is undesirable. To avoid this, the maximum usage

U(F) = max Up(v)

should also be minimized.

Let G = (V, E) be a certificate graph, Uy € N and 0 < py < 1. Depending on the importance

attached to the above criteria, we formulate the five following variant formulation of problem.

min s(F) min s(F)
D { s.c. p(F,G) >po @) s 1()]((};;)61 ifo

(A) { max p(F,G)
s.c. s(F)<sg

min U (F) max p(F, G)
(B){ s.c. p(F,G) > po (C) 4 s.c. s(F)<sp
s(F) < s9 U(F) < U

The complexity status of those problems are unknown. A basic formulation of the decision

problem associated to problem (A) with pg = 1 could be the following:
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“ Given a strongly connected graph G = (V, E) and a positive integer sy, does there exist a
family of subsets F(v) C E associated to all vertices v € V' such that |E(u)| < sp and for each
pair u,v of vertices, the subgraph G,, U G, (as defined above) contains a path from u to v and

a path from v tou 7 ”

2.3 Some basic properties

In the remainder of the paper, we assume that the instance graph is strongly connected, so that
a solution with performance 1 always exists. Analysing problem (1), an upper bound on its

optimal value s, (G) for a given graph G' was given in [BCHO3]:

Sopt(G) < ;réi‘rflrglea‘i((d(x,v) +d(v,z)) (2.4)
where d(z,v) is the length of a shortest path between v and x in G. It is obtained by algorithm
Construction I. It consists in selecting for each vertex u a subgraph composed of the union of a
shortest path from x to u and from u to x, where x is the vertex that has the smallest maximal
distance to and from all other vertices in V' (i.e. the vertex that minimizes rglea‘ic(d(as, v)+d(v, ))).
It is easy to see that this solution has p(F,G) = 1, and hence Construction I provides an
admissible solution to problem (1) for any value py € [0,1]. Next we exhibit some cases where
this bound is not reached.

In Figure 2.1, an elementary circuit is displayed. We have géi‘r}r;lezg((d(:v,v) +d(v,x)) = |V
but for the set F' of subgraphs G;, with G; containing all arcs except the one entering i, we get
s(F) = |V| — 1. Since each arc (4,7 + 1) is missing in exactly one subgraph (namely subgraph
Gi+1), the whole circuit will be in any union G; U G; (¢ # j) and hence p(F,G) = 1. Therefore,

1

4 3

Figure 2.1: Elementary circuit

F' is also an admissible solution to problem (1) for any value of py. In [Jac03], it was shown that

this solution is actually optimal if py = 1.

Circuits provide a class of graphs for which the above bound is not tight. This class can
be extended in the following way: start with an elementary circuit (1,2),(2,3),...,(|V] —
L, |V]),(|]V],1), and for any vertex i, 1 < i < |V, add in an arbitrary way arcs (i,7), with
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1 < j < 4 In Figure 2.2, such a graph on 8 vertices is represented. On one hand by con-
struction this graph is hamiltonian, so the same solution as for the circuit is admissible (be-
cause p(F,G) = 1) and has value s(F) = |[V| — 1. On the other hand, since the only circuit

leading from any vertex 4, 1 < ¢ < |V] to 1 and from 1 to i passes by all vertices of G,

minma&c(d(:v,v) +d(v,z)) = QIUIéi‘I/l(d(LU, 1) +d(1,z)) =|V].

zeV ve

Figure 2.2: Hamiltonian graph s.t.min max(d(z,v) + d(v,z)) = |V|
zeV veV

Figure 2.3 shows a set of graphs where this bound is not attained, and where the slack between

the bound and the optimal solution is arbitrarily large. Indeed, we have

3k+1

3k
3k-1

Figure 2.3: Graph for which the bound is not sharp

win I&a@((d(:v, v) +d(v,x))

= min{6k + 2,6k, ..., 4k + 6,4k + 4, 4k, 4k, 4k, . .. | Ak, 4k, 4k, 6k + 2} = 4k
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but for the following set F' of subgraphs

[ {(1,2),(2,1),...,(k—1,k),(k,k — 1), (k,k +1),(k+ 1,k +2),
(3k +1,k)} 1<i<k
E(G;) =< {(k,k+1),...,(3k,3k +1)} E+1<i<3k+1
{(k+2,k+3),...,(3k,3k + 1), (3k + 1,3k + 2),
| (3k+2,k+1)} i=3k+2

we get s(F') = |E(Gsky2)| = 2k + 1. So the slack between the bound and s(F') is 2k — 1. Since

it depends on the value of k, this slack may be arbitrarily large.

In [BCHO3], another result points out that the requirement of an equal key usage is a severe
design criterion, in the sense that if it is respected, then the size of the updated certificate
repositories, and therefore the communication costs, must be high. Other properties can be
found in [Jac03]. Notice that the complexity of problems (1), (2), (A), (B), (C) has not been

determined yet.

2.4 The case of complete graphs

Let us consider the case where G is a (strongly connected) complete graph, i.e. such that there
is exactly one arc between each pair of vertices. In the next proposition, we provide an upper

bound on s(F') for such graphs, when a performance of 1 is required.

Proposition 2.1 If G = (V, E) is a strongly connected complete graph on n vertices, then there
is a set of subgraphs F, such that p(F,G) =1 and

S(F) < [Wrﬂ

2.5
: (25)
Proof: It is known (see [Ber70]) that a complete graph is strongly connected if and only if it has
a Hamiltonian circuit C'. Let 0,1,...,n — 1 be the vertices consecutively visited when following
the circuit C; so its arcs are (0,1,,)(1,2),...,(n —2,n —1),(n — 1,0). In the rest of the proof,
all numbers of vertices are taken modulo n. We distinguish the cases when n is even and when
n is odd.

n even: Let us call opposite two vertices of the form (i,i + %), and consecutive two pairs of
opposite vertices of the form (4,4 + §), (4 + 1,4 + § + 1). We show that there is always
a pair of consecutive opposite vertices (7,5) and (¢ + 1,7 + 1), such that (i,7) € E and
(j+1,i+1)€E, or (ji)€ Eand (i +1,j+1) € E.
Start with i = 0 and j = § and assume w.l.o.g that (0,%) € E. If (5 +1,1) € E, we are

done. Otherwise, consider the pair (2, + 2). By the same argument as before, we may
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assume that (2,5 +2) € £. Going on this way, we may assume that (§ —1,n — 1) € E.
But then the opposite pairs of vertices (§ —1,n —1) and (0, §) have the required property.
So let (i, + %) and (i + § + 1,7 + 1) be in £; the following set F' of subgraphs verifies
s(F) = 2 and p(F,G) = 1:

({G+2+1,i+1),(i+1,i+2),...,
(1+5,0+5+1)} i+1<k<i+5+1

{Gyi+2), (i 4+ 20+ 2+ 1), ...
(6 —2,6—1),(i — 1,9)} i+ 0 42<k<i+n

\

n odd: Counsider the (partial) subgraph G’ of G composed of all vertices of G, and only the
arcs between vertices ¢ and i + [ 5] for all 7. In G', all vertices have degree two and G’ is
an odd cycle. Now if we look at the orientations, at least one of its vertices has an ingoing
arc and an outgoing arc. Using this last property, a similar construction as in the even

case can be made, and the maximum repository size of the obtained solution F' is at most
s(F) = 3.

Notice that this bound is not valid in the general case, as we have seen with elementary circuits.
Moreover it is reached by at least one type of complete graphs, as for instance G = (V, E), with
n = |V| even.

V={12,...,n}

E={(Gi+1):i=1,...,n—=1}U{(j,7): 1 <i<j—1<n}
oy . . . . 2
Proposition 2.2 For G, any solution F with p(F,G) = 1 verifies s(F) > 2.

Proof: Assume to the contrary that there exists F' with s(F) < &, ie. |E(Gy)| < §VueV.
First notice that in G, the only way to go from vertex 1 to vertex n is through the path
(1,2),(2,3),...,(n — 1,n). Since a performance of 1 is required, this path must be in G; U G,
and hence F(G,) and E(Gy,) form a partition of {(1,2),(2,3),...,(n—1,n),(n,1)}.

Assume (n,1) € E(G1), thus [{(1,2),(2,3),...,(n—1,n)}NE(G1)| = 5 — 1. If (n — 1,n) is also
in E(Gy), then E(G,) € {(1,2),(2,3),...,(n—2,n—1)}. Since the path {(1,2),(2,3),...,(n—
2,n — 1)} has to be in E(G1) U E(Gp—1) and [{(1,2),(2,3),...,(n = 2,n — )}\E(G1)| = %,
then E(G,-1) C {(1,2),(2,3),...,(n — 2,n — 1)}, and no arc leaves n in G,, U Gy,_1, which is
impossible. So (n —1,n) ¢ E(G}), thus (n —1,n) € E(G,). Consider now G; U Gp,_1. It must
contain either {(1,2),(2,3),...,(n—1,n),(n,1)} or {(1,2),(2,3),...,(n—2,n—1),(n —1,1)}.
Since (n,1) € G1, we have in both cases |E(G,-1)\{(1,2),(2,3),...,(n —2,n—1)}| = 1. In the
first case, the remaining arc in £(G,_1) is (n — 1,n) and in the second case it is (n — 1,1). In

both cases, no arc leaves n in G, U G,,_1, which contradicts (n,1) € E(G1).
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The case (n,1) € E(G,,), is treated in a similar way, by replacing n — 1 by 2 and inverting 1 and

n. i

It seems that one can do much better in most strongly connected complete graphs, the best case
being when one can reach s(#) = 3. Counsider for instance the graph, on n vertices, whose arcs
are all (i,7) with ¢ < j, except for (n,1); the hamiltonian circuit being (1,2),(2,3),...,(n —
1,n),(n,1). Then the solution

{(1,2),(2,n),(n,1)} k=1lorn

B(G) :{ {(1,k), (kyn), (n, 1)} otherwise

is of the appropriate size. Next proposition shows that it is impossible, in complete graphs with
at least four vertices, to have s(F') = 2, and p(F,G) = 1.

Proposition 2.3 For a complete strongly connected graph G = (V,E) with n = |V| > 3, for
any solution F' such that p(F,G) = 1, we have s(F) > 3.

Proof: Assume s(F) < 2. We need to show that for at least one pair {u,v} of vertices,
u AG,uG, U or v Aa,ua, v. We may assume that |G| =2V u € V, since adding an arc to a
repository will not decrease the performance.

We will call self-ingoing an arc of G, of the form (z,u) and self-outgoing an arc of G, of the
form (u,x). Notice first that if G, has no self-ingoing arc, then any other repository G, must
contain an arc of the form (z,u), so that v —¢,uq, u. If two repositories G, and G, have no
self-ingoing arc, any other repository must be of the form {(z,u),(y,u’)}. But then for v, v’
different from v and ', v Aq,ua,, v

So there is at most one vertex u such that G, has no self-ingoing arc. Assume next that exactly
one such vertex exists. Then any repository G, (v # u) is composed of one arc of the form (z, u)
and one self-ingoing arc (y,v). Notice that z may be equal to v, or y may be equal to v, but
both can not happen since there is exactly one arc linking each pair of vertices in G. Hence for
any pair {v,v'} of vertices v # u # v', v Aq,uc, V', or v Aa,ua,, v

So each repository has a self-ingoing arc, and symmetrically a self-outgoing arc. Consider now

a a a

d b d b d b
c c c
ey (2) 3)

Figure 2.4: Repositories G, and G..

repositories G, and G.. In Figure 2.4 are displayed the three possible cases (where b and d can
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be any other vertices of G): if (¢,a) € G, we are in case (1), if (a,c) € G, we are in case (2)
(cases (c,a) € G and (a,c) € G, are symmetrical), if (¢,a) € G, UG, and (a,c) € G, UG, we
are in case (3). In case (1), in order to have ¢ —¢.uq, d and d —¢,uq, ¢, we must necessarily
have G4 = {(c,d),(d,b)}, but then ¢ Ag,ug, d. In case (2), in order to have b —g,uq. ¢
and ¢ —q,uq,. b, we must necessarily have Gy = {(d,b), (b,¢)}, but then b A, uq, a. In case
(3), to have ¢ —¢,uc. b, the self-ingoing arc of G}, must be (d,b), but then b A¢,uq, o (since
(bya) ¢ E). m

Finally, notice that in Section 2.3, all examples of graphs where Construction I fails to give an
optimal solution are not complete. Moreover, for all examples of graphs seen in this section, the
solution proposed minimizing s(F') could have been obtained with it. Although we conjectured
first that it is always the case, we found a complete graph where the solution provided by

Construction I is not optimal. It is displayed in Figure 2.5.

1

Figure 2.5: Complete graph where Construction I fails to give an optimal solution to Problem
(1), with py = 1.

For this graph, one can see that d(4,1) = d(2,5) = d(6,3) = 3, so the solution F' given by

Construction I verifies s(F') > 4, while solution F’

{(1,2),(2,6),(6,1)} k=1or2
E(Gr) =1{ {(2,3),(3,4),(4,2)} k=3or4
{(4,5),(5,6),(6,4)} k=5o0r6

has s(F") = 3, with performance still at 1.

2.5 Heuristic procedures

A general formulation of a combinatorial optimization problem could be the following: given
a (discrete) set of solutions S (also called solution space) and an objective function f (that
associates to each solution s € S a real number f(s)), find a solution s,y minimizing (or

maximizing) the value of f(s). In our case, a solution s is a set of subgraphs of G denoted by
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F. A heuristic is an algorithm which constructs a “good” solution, i.e. not necessarily optimal.
It is most often used to find such solutions in reasonable time when the problem is known or
suspected to be NP-hard. One distinguishes generally three basic types of heuristics: local

search heuristics, constructive heuristics, and evolutive heuristics [Cos95].

An evolutive heuristic involves a population of several solutions (or parts of solutions) that will
cooperate, combine and improve themselves. In our case, a solution is a set of subgraphs of G,
but since the graphs under consideration have more than 1000 vertices, dealing with a dozen
of such solutions would lead to a prohibitive use of memory. So we did not concentrate on this

kind of heuristics for our problem.

A constructive heuristic constructs a complete solution by increasing step by step a partial
solution. Several constructive heuristics have been developed. Construction I is an example of
such an algorithm. Another example described in [BCHO03] is the Mazimum Degree algorithm,
which constructs the repositories of the vertices such that each local repository has a predefined

size.

A local search algorithm starts from any solution and tries to improve it step by step. In
such heuristics, a set called neighbourhood of s, N(s) C S associated to each solution s € S is
used. The solutions in N (s) are called neighbour solutions of s, and are obtained applying local
modifications on s according to precise rules that depend on the problem considered. These
modifications are called movements. From an initial solution sy € S, a local search method
generates some solutions s, s9,... € S such that s;;; € N(s;). The difference between different
local search algorithms lies essentially in the way of defining the neighbourhood N (s) associated
to a solution s and the way of choosing a solution in N(s). As far as we know, local search

heuristics have not been used systematically for problems as considered here.

Construction I provides solutions with performance 1, such that each subgraph is composed of
two shortest paths. Those solutions are in most cases good for problems not involving U (F')
(especially for problem (A) with pg = 1). The main drawback of this algorithm lies in that it
produces the worst possible U(F'), and hence gives bad results for problem (B). Our goal is to
design a construction preserving the advantages of Construction I, while trying to distribute in

a better way the usage between the vertices.

We propose a variant, which we call Construction k among I. The idea is as follows: choose [
vertices (I << |V]) and set k = [H'Tl] For each vertex v € V(G), construct the subgraph G, as
a circuit passing by at least &k of the [ vertices and by v. Since two subsets of size k of a set of
size stricly lower than 2k have a non-empty intersection, it follows that for any pair of vertices
(u,v), Gy, and G, are two intersecting circuits. As a consequence, there is always a path from
u to v and from v to v in Gy, U Gy, so p(F,G) = 1.

This construction may be seen as a generalization of Construction I, which is obtained by

choosing [ = 1. In comparison with Construction I, performance will be maintained at 1, while
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the maximum repository size will increase and the maximum usage will decrease. More precisely,

the maximum usage may decrease a little, but will be at least %|V| = [%1% > %% = ‘21‘,
and when we pass from [ to [ + 2 (I odd), the bound decreases by at most
[Z-I-HM_ [l+31 \4 _ [l+11(m_ \4 ) \4
2 [ 2 1+2 2 l [+2 [+2
[+1 [VII+2)—|V]|l V| .
= — [ is odd
> ity ) i Uisedd
v
I(1+2)
Hence the gain is at most % if [ goes from 1 to 3, then it is at most H—‘g if [ goes from 3 to 5,

then % and so on. From this observation and for the sake of simplicity, we decided to focus on

construction 2 among 3.

Here is the sketch of the algorithm (details will follow):

Input: Graph G, integer number [
Output: F with p(F,G) =1, [Hle—‘l/‘ < U(F) < |V| and reasonable s(F').
1: Choose a triplet of vertices vy, vg, v3;
2: for each v € V do
3: Choose two vertices « and y among vy, ve and vs;
4: G, is either the circuits composed of the shortest paths from v to x then from z to y
and from y to v, or from v to y, from y to x and from x to v.

5. end for

In an analogous way to Construction I where the maximum usage is reached by the vertex
minimizing the total distance, in Construction 2 among 8 it is likely to be attained by a vertex
belonging to the triplet chosen in Step 1. Since we want a maximum usage as low as possible, the
triplet is chosen, if possible, among those such that no vertex, like v;, belongs to the® shortest
path from vy to vg or from w3 to vs. Among those triplets, the one chosen will minimize the
sum (over vy, ve and v3) of the total distance to and from all vertices. In Steps 3 and 4, both
vertices and the direction of the circuit are chosen such that the resulting subgraph is as small
as possible, but each vertex in {v1,v2,vs} has a selection quota of Z|V| (so that the usage is well

distributed among vy, ve and vs).

Table 2.1 summarizes the results of the tests comparing this new constructive heuristic with
Construction I. The graphs were provided by the LCA and correspond to certificate graphs of
mobile ad hoc networks (real or generated, with the good properties).

Those graphs are quite sparse, since the smallest one has 1345 vertices, and those vertices have
on average only about 10 ingoing and 10 outgoing arcs. With Construction I we always get
U(F) = |V| —1, and with both constructions we obtain p(F,G) = 1. As we can easily deduce
these data from |V, they are not in the table.

5Several shortest paths may exist, but only one is computed.
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| (V] (nb) | s(F1) | s(Fops) | UFys) |
2516 (9) 15.9 18.9 1717
4000 (7) 10.1 11.7 2693
4578(10) | 114 | 149 3583
5174(10) | 12.0 12.7 4027
5765(10) | 12.2 | 14.7 4687
6466(10) | 13.6 16.0 5092
7278(10) | 14.7 | 175 5490
7775(10) | 13.5 16.7 6140
8444(10) | 155 | 18.2 6779
9180(10) | 16.4 18.9 6962
9765(10) 17.6 21.5 7680

Table 2.1: Comparison between Construction I and Construction 2 among 3. All values are

averages on nb graphs.

In [BCHO3] it was observed that Construction I gives subgraphs with size ~ log |V, since each
repository consists of two shortest paths. Here we have the same property, since each repository
consists only of three such paths. The results show that both constructions provide values of
s(F') which are close to each other. Moreover, the maximum usage is significantly decreased

with Construction 2 among 3 and is not far from 2[V|.

The lower bound [‘21‘] on the maximum usage provided by this last construction can be further
improved, while keeping the performance value at one. The following construction is called

Construction IC (for intersecting circuits).

Input: Graph G, integer number [
Output: F with p(F,G) = 1, || + 1] < U(#) < |V| and reasonable s(F).
Set L = l(l_l);

L: 2

2: Choose L vertices and rename them vy 2,v13,...,01,V23,-..,02,...,V_17;

3: Forallk =1,...,1, let A be those [ — 1 vertices v; j, such that i = k or j = k;
4: Partition V into [ subsets Vi,..., V] of sizes L'—‘l/‘J and [%],

5. for each v € V do

6: Let k£ be such that v € Vj;

T: Set G, as a circuit passing by v and all vertices in Ag;

8: end for

To see that the lower bound on the maximum usage is now L‘lﬂj + [‘lﬂ], one just needs to

remark that each subgraph G, with v € V; U V; will contain a vertex of the form v; ;, and that
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at least one set V; has size [%] So we have

UF) z max([Vi| + Vi) 2 [ ] + [

To see that the performance of the solution obtained is
one, consider two vertices 4 and v in G. Notice first that
if a circuit passing by w and a circuit passing by v both
v pass by at least one common vertex w, there will be a path
from u to v and a path from v to w using only arcs from

the above circuits. In Figure 2.6, we have for instance

!
U G UG, W —7GuUG, U G UG, W —7@G,UG, U

Figure 2.6: Two circuits intersecting Now if u and v belong to the same subset of the partition

defined at Step 4, say Vi, both G, and G, will have all
vertices from Ay in common. If u and v belong to different sets, say Vi and Vi with & < &/,
then vy € V(Gy U GY).

For the choice of the vertices (Step 2), one should apply the same type of criterion as for

Construction I and 2 among 3.

For the construction of the circuits G, (Step 7), a way would be to first define a selection quota
of 2['—‘;'] for each vertex and to initialize the number of selections at 0 for the vertices which
have not been chosen in Step 2, and at |V;| 4+ |V}| for each vertex v; j, since it already belongs to
each subgraph in the set {G,,,m € A; U A;}. Then starting from v connect the vertices of the
corresponding set Ay in a greedy way (nearest first), constructing at each step a shortest path in
the graph in which the vertices having reached their quota are temporarily removed. If no vertex
can be connected, put back all removed vertices and increase the quota (by adding a constant

for instance). Each time a subgraph G, is constructed, update the number of selections.

This construction has not been tested in general, but we notice that Construction 2 among 3
may also be considered as Construction IC for | = 3, and the results (U(F) close to 2|V| and

relatively small s(F')) obtained for it are promising.

Finally, though it seems to provide larger values for s(F) than Construction I, we can see that
in the graph of Figure 2.7 Construction 2 among 3 provides arbitrarily smaller s(F'). Indeed,

|V‘] for such graphs,

in this example Construction I gives s(F) = 12, and more generally 2
while with Construction 2 among 3, one gets 2 [|—3|] in general. In the example of Figure 2.7, a

solution with s(F') = 8 would be

{(1,2),(2,1),(2,3), (3,2),-.-,(4,5),(5,4)} 1<k<5
E(Gy) = {(5,6),(6,5),(6,7),(7,6), ""(8’9)’(9’8)} 6<k<9
{(9,10),(10,9),...,(11,12),(12,11),(12,1),(1,12)} 10 <k <12
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Figure 2.7: Graph where Construction 2 among 3 provides a smaller s(F") value than Construc-

tion 1.

2.6 Tabu search

Although the above simple procedures seem to provide reasonably good solutions for the prob-
lems considered here, we will nevertheless describe an adaptation of the general technique of
tabu search to our context. This procedure may be useful for other situations where additional
requirements or different objectives may be present. Moreover the reliability of the procedure
(as shown by the many situations where it has been used successfully) makes it an easy tool for

evaluating the performance of other techniques, by comparison.

The tabu algorithm is a local search heuristic developed by Glover [Glo86] and Hansen [Han86],
which can be described as follows. In each step, a solution s;;; € N(s;) is chosen. When a
movement from s; to s;41 is made, the reverse movement is introduced in a finite list called tabu
list (T'L), and it is forbidden to perform this movement during t steps (¢ being a parameter fixed
by the user). The forbidden movements are called tabu movements. The stopping criterion may
be the total running time, the total number of steps or the number of steps without improving

the best solution encountered so far.

In order to allow comparison with Construction 2 among 3, we decided to apply tabu search to
problem (B). We define the solution space as the set of subgraphs F' such that each subgraph G,
is the union of an in-tree and an out-tree of root, respectively anti-root u. A neighbour solution
of F' is defined as a solution (i.e. a set of subgraphs of G with the above property) obtained
from F' by adding or removing one or several arcs in some of the subgraphs composing F. The

objective function is:

f(F)=cy-UF)+co- Y. (sp(v) —s0)4+cr-(po—p(F,G))y (2.6)
veV(G)
where ¢,, ¢y and ¢, are arbitrary constant coefficients (we choose ¢, = 1, ¢g = ¢1 = |V|),

and x4 stands for = if # > 0 and O otherwise. These values for the coefficients ensure that

any solution satisfying the constraints on the performance and the repository size will have a
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better (lower in our case) objective value than a solution violating one of them. We use three
different neighbourhoods, depending on the quality of the current solution (which constraints

are violated). They are given in pseudocode in Figure 2.8 and we give here some explanations.

If both constraints are satisfied, we are in Case 1, and the solution will be transformed so as
to have a lower maximum usage. This is achieved by randomly choosing a vertex among those
with usage equal to U(F'), and a graph G; containing an arc incident to 4, such that vertex j
is not tabu. If no such non tabu j exists, nothing is done during this iteration. Otherwise, the
current solution is modified by removing from G all arcs incident to ¢, and try to recover the
structure of a union of an in-tree and an out-tree of G; by adding some arcs not incident to i.
This can be done for instance by finding a path in G\{7} connecting each (ordered) pair {u,v}
of vertices such that v is not reachable by u anymore after the transformation. If no such path

exists, G is reconstructed by inserting a limited number of those arcs incident to i.

If the constraint on the repository size is violated but not the performance constraint, or if there
is no vertex 7 with sp(i) < sg, we are in Case 2. Neighbourhood solutions will be constructed
so as to have a lower maximum repository size, but about the same performance. They are
obtained by first randomly choosing a vertex 7 maximizing sp(7) among the non tabu vertices.
Then one arc e incident to a leaf is chosen in G, so that its removal from G; minimizes the size
of the set D\ D, of vertices v for which there is no path anymore to or from ¢ in G; U G,. Since
e is chosen incident to a leaf, G; \ {e} is still the union of an in-tree and an out-tree. At step
(iii) of Case 2, if there are some vertices v € D\D,, whose subgraph can be increased without

violating the corresponding constraint, e is inserted into each such G,.

If we are neither in Case 1 nor in Case 2, we are in Case 3: the performance constraint is
violated and there is at least one vertex 7 with sy (i) < sg. The neighbourhood will then consist
of solutions with possibly better performance. For their construction, choose first a non tabu
vertex ¢ such that sp(7) < sp. If no such vertex exists, nothing is done during this iteration. If
such an 7 exist, choose one for which few nodes v have a path from or to 7 in G, U G; (so an
augmentation of G; may easily increase p(F,G)), while |sg — sp(7)] is large (so that many arcs
can be added to G; without violating the constraint on the repository size). Then insert in G; as
many arcs as possible (but at most |sg — sp(7)]), so that G; remains the union of an in-tree and
an out-tree, and so that U(F') (the objective function) is not increased. Among the candidate

arcs, those with many connections outside G; will be preferred.

An important point is that at each iteration only a subset of the neighbourhood is considered,
since a complete exploration may be too time consuming. When the neighbourhood has been
chosen, the best neighbour (i.e. the one minimizing the objective function) is selected and the
current solution, and if necessary the best solution found, are updated. At the end of each
iteration, the tabu list is also updated by removing the eldest vertex from it and inserting a
new vertex into it: if we are in Cases 1 or 3, it is the only vertex whose subgraph has been

modified (if no modification has been made, no vertex is inserted in the list); in Case 2, and
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e Case 1: s(F) < spand p(F,G) > po:
(i) choose i € V(G) maximizing Uy (4)
(i

(i

)
) choose j € V(G) not tabu (if possible) s.t. ¢ € V(G})

) set G} = G;\ {e € E(Gj)]e incident to i},

(iv) add arcs not incident to i (if possible, otherwise limit the use of such arcs) to G’; so
astoget VueV(G)): (j—g u=3j —a u) and (v —g; j = u —a 7)

(v) set Gj = G
e Case 2: (p(F,G) > po and s(F) > sp) or (sp(i) > soVie V(Q)):

(i) choose ¢ € V(G) not tabu maximizing sp (%)
(ii) choose e € E(G;), e incident to a leaf, minimizing |D| — |D.| where:
D={veV|v—=gug iori—agug v}
D, = {veV|v—=guc\fe} i OF i 2G,uG\{e} V}
(iii) set G; =G\ {e} and G, =G, U{e} Vv € D\ D, and s.t. sp(v) < sp.

e Case 3 : p(F,G) < po and there is at least one vertex i s.t. s (i) < s

D]

(i) choose i € V(G) not tabu (if possible), s.t. sp(i) < sg, and minimizing po—
S — Sp\t

where D = {v € V(G) |v =¢,uq, @ or it =ag,ua, v}

(ii) choose k < sy — sp(i) arcs (z,y)® € B where B is:
B ={(z,y) € E(G)|(z € Gi, y ¢ G; and Ur(y) < U(F)),
or (y € Gy, ¢ Gy and Up(z) < U(F))},

(iii) insert the chosen arcs in G;.

“choose (z,y) € B maximizing d;(y) if i »¢, y, or maximizing dg(z) if * =g, i.

Figure 2.8: Neighbourhoods considered in the tabu method
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only if sp(7) < s¢ (otherwise no vertex is inserted), it is the one corresponding to the subgraph

from which some arcs were removed.

2.7 Computational experiments

We use the same set of graphs for our computational experiments as those used to compare
Construction I with Construction 2 among 3, but our simulations are done only on graphs with
up to 4000 vertices, for time and memory capacity reasons. Simulations are run on a machine

with a processor 2.8GHz, and 3GB of main memory.

The constraints are fixed in order to allow comparison with the Maximum Degree Algorithm
previously designed by the LCA: sy = 60, 80 and pg = 0.9, 0.95. Previous experiments made
us fix the neighbourhood size at 20 and the stopping criterion at 10’000 iterations without
improvement, but at most 100’000 iterations. Computations times are not written, but they
vary from half an hour to 35 hours for the graphs for which the limit of 100’000 was reached.
In order to point out the benefit of using a tabu method, two different lengths of the tabu list

1
are tested: 0 and 1 \4F

The initial solution is obtained in a constructive manner we fixed after several attempts. We
first tried the set of subgraphs G; consisting in the outgoing and ingoing arcs of the vertex i.
This solution is of course not admissible for sparse graphs if one wants a performance close to 1.
Results were not satisfying, since it appeared that the tabu method spent most of the time trying
to increase the performance (neighbourhood of Case 3), but could not reach py. The second
construction we tried was the set of subgraphs G; consisting of outgoing and ingoing paths (from
and to i) randomly chosen, but we had the same trouble as for the previous construction. Then
we tried to run our algorithm starting with Construction I. In that case the initial solution
satisfied the performance constraint, but the repository size constraint was not. So the first
iterations of the tabu search used the neighbourhood of Case 2, and a lot of time was spent to
repair the repository size constraint, before using the neighbourhood of Case 1. Finally we tried
Construction 2 among 8 for the initial solution, and this gave us even better results, since the
initial solution had already a good maximum usage. This can be due to the lack of symmetry
among the vertices in solutions provided by Construction I, as compared to Construction 2

among 3. We decided to use this last one for our simulations.

We point out that the experiments we made with py = 1 and Construction I or Construction 2
among 8 for the initial solution gave somewhat disappointing results. This can be explained by
observing that the removal of any arc from a repository in a solution obtained with Construction
I or Construction 2 among 3 will imply a big loss of performance, which will be difficult to repair
without just putting back in the repository the arc which was removed |T'L| iterations before,

even if |T'L| is large.
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[ VI@b) | o |50 | s(®) [UWF) [p(F.G) ]

60 | 60 1376 0.9

09 80 | 80 1373 0.9

2216 (7) 60 | 60 1429 0.95
0.95 80 | 80 1428 0.95

60 | 47 | 2520 0.9

09 80 | 61 2518 0.9

4000 (7) 60 | 53 2597 0.95
0.95 80| 71 2596 0.95

Table 2.2: |T'L| = 0 (values are averages over nb graphs)

[ Vi) [ po [ so [ s(F) [UF) [ p(F,G) |

60 | 953 1359 0.9

09 80 | 64 1350 0.9

2216 (7) 60 | 50 1422 0.95
0.95 80 | 60 1417 0.95

60 | 21 2498 0.9

09 80 | 21 2498 0.9

4000 (7) 60 | 21 2593 0.95
0-95 80 | 21 2593 0.95

Table 2.3: |TL| = %‘ (values are averages over nb graphs)
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The simulations show that tabu search (i.e. |T'L| > 0) gives on average better solutions than
a simple local search. It often occurs (especially for large graphs, and with the tabu search)
that the solution found has a maximum subgraph size s(F) much lower than sy, while such a
difference never occurs for the performance. This is not surprising, since minimizing s(F') and
minimizing U(F') both tend to decrease the overall size of the solution, while maximizing the

performance tends to increase it.

2.8 Conclusion

In this chapter, we provided various examples where the bound given by (2.4) is not sharp.
Indeed, in each graph class we studied, we could find an example where Construction I does not
give an optimal solution. We presented then the case of complete graphs with the constraint
po = 1, and proved that there is always a solution with maximum repository size of about the
half of the total number of vertices. We also showed that the maximum repository size has
a lower bound of three, which is attained for very specific complete graphs. We then focused
on problem (B), and proposed two ways of generalizing Construction I with several central
vertices, in order to diminish the maximum usage, while maintaining the performance at level 1.
Implementation of this construction with 3 central vertices provided satisfactory results. Next,
with the tabu search approach, we provided a general framework to solve problem (B), for any
values of py and sp. The flexibility of this approach permits an easy adaptation for solving the

four other problems or even some variations.

However, if we focus on the cases where the performance must be close to 1, the tabu search
seems less accurate than Construction I and Construction 2 among 8. Indeed, the maximum
usage has a little decreased with the tabu approach, but it is at the cost of a slightly decreased
performance, and much higher computation time. This shows that, although this approach
could most probably be reasonably improved, the above constructive heuristics seem to provide

solutions of reasonable quality, at least for problems (1), (A) and (B).

Finally it would be useful to establish the complexity status of the above problems, so that the
use of heuristic procedures could be justified. To end up, we formulate an alternative decision

problem, similar to problem (A), but where the subgraphs are not partial but induced subgraphs.

“ Given a strongly connected graph G = (V, E), does there exist a family of subsets V(u) C V
associated to all vertices u € V', such that |V (u)| < k for each vertex u, and for each pair u, v of
vertices, the subgraph induced by V(u) UV (v) contains a path from u to v and a path from v
towu 7 ¢

To our knowledge the complexity status of this problem is not known.
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A solvable case of image
reconstruction in discrete

tomography

In this chapter, we study a special case of the problem of reconstructing an image given the
number of occurrences of each color in each row or column. The formulation will be based on
graph theory concepts and this will allow us to show that this case can be solved in polynomial

time; it generalizes earlier known solvable cases.

3.1 Introduction

The aim of tomography is to reconstruct an object from its projections. Indeed, while the
projections of an object in given directions are uniquely defined, the converse is in general not
true. It is thus natural to ask whether, given such projections, it is possible to construct with

certainty the underlying object, and whether such an object even exists.

The most frequent application of tomography is in medical imagery. In this continuous case, a
projection of a 3-dimensional object in a given direction is a 2-dimensional function giving the
width with respect to a given direction. Given three (or more) of those projections, one wants
to reconstruct the whole object. Discrete tomography is when the object can be expressed with
a discrete set of data. An application in physics is the reconstruction of a picture taken by
an electron microscope, which measures the number of atoms in each line of some direction
[BLNP95, GG97, CDO1]. Discrete tomography also has many applications in computer science,
for instance in pattern recognition, image processing and data compression. The most theo-
retically studied discrete cases are when the objects are 2-dimensional, and two projections are

given. For instance one may ask how to (and whether it is possible to) reconstruct a binary
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matrix, given the number of occurrences of 1 in each line and in each column [Rys63]. Another
problem which has been investigated is the one of reconstructing a convex polyomino (object
drawn on a 2-dimensional grid), given its horizontal and vertical projections, where projections
represent the total length of its contour line on each (horizontal or vertical) coordinate [Pic02],

see Figure 3.1. A further problem consists in reconstructing a domino tiling of a rectangle, given

22132000221102411

|

Figure 3.1: A convex polyomino and its projections.

for each line (row or column) the number of domino covering at least one cell on that line. This
problem is open and in [Pic01], it is shown that it can be solved in polynomial time when some
convexity requirements on the given projections are added. For more theoretical and practical
aspects, see [HK99].

The object we aim at reconstructing in this chapter is an image, defined by a matrix containing
a color in each cell. The projections are the number of occurrences of each color in each row
and each column. We consider a special case and show that it can be solved in polynomial time.
The complexity status of a slight extension of this solvable case is still open; so our result is a

step towards the boundary between easy and difficult problems in image reconstruction. What
follows is based on [CPSdWO03].

3.2 Problem formulation

We shall define the general image reconstruction problem as follows: an image of (m x n) pixels
of p different colors has to be reconstructed. For convenience we consider that there is in addition
a color p+ 1 which is the ground color. We are given the number «(7, s) of pixels of each color s
in each row 7 and also the number (7, s) of pixels of each color s in each column j; is it possible
to reconstruct an image, i.e. can one assign a color s to each entry [4, j] of the image in such a
way that there are «(i,s) occurrences of color s in each row 7 and (4, s) occurrences of color s

in each column j, for all ¢, 7, s?
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For a solution to exist we must necessarily have

SPla(i,s) = n (i=1,...,m)
SEBGs) = m (G=1,...,m)

Yisialis) = 30 B0Gs) (s=1,...,p+1)

These conditions are necessary but not sufficient for the existence of a solution. The smallest

example where these conditions are not sufficient is displayed in Figure 3.1.

Table 3.1: An example where the conditions are not sufficient.

This simplified version of image reconstruction problems occurring in discrete tomography is
denoted by R(m,n,p); it is a combinatorial problem whose complexity status is unknown for
p = 2 colors (i.e. when we have p+ 1 = 3 colors including the ground color). It is N'P-complete
for p > 3 (see [CDO1, HK99]). In [CPdW03] some special cases solvable in polynomial time have
been presented. Notice that it is solvable if p + 1 = 2 (see [Rys63]).

3.3 Graph theoretical formulation

We associate with the problem a complete bipartite graph G = K, , on two sets of vertices R, S
with sizes m and n. Each edge (i,7) of K, corresponds to entry [i,j] in row ¢ and column j

of the (m x n) array.

The image reconstruction problem can be interpreted as follows: the entries of color s in the
array correspond to a subset By of edges (a partial subgraph of K,, ;) such that B, has «a(i, s)
edges adjacent to vertex 7 of R and [3(j,s) edges adjacent to vertex j of S. We have to find
a partition By, Bo,...,Bpy1 of the edge set of K,,, where each B, satisfies the above degree

requirements.

As mentioned above, for the case p+ 1 = 3, the complexity is unknown. The problem is solvable
in polynomial time with p + 1 = 4 colors (see [CPdWO03]) if p = 3 colors, say colors 1, 2 and 3,
are unary, i.e. «(i,j) < 1 and f(i,7) < 1 for all 4 and j < 3. In the same paper, it is shown

that it is solvable with p + 1 = 3 colors if two colors, say colors 1 and 2, are semi-unary, i.e.
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a(i,1) <1Vior f(i,1) <1Vi, and «(i,2) < 1Vior f(i,2) <1Vi. Our purpose is to consider
a case which lies between the general cases p+ 1 = 2 and p+ 1 = 3 colors, and to show that

this case is still solvable in polynomial time.

3.4 A special case of RP(m,n,p+ 1= 3)

RP3(m,n;q,r) will denote the problem with p + 1 = 3 colors without restrictions on colors 2
and 3, and where there is a fixed number ¢ of rows and columns in which color 1 may have

several occurrences but not more than r.

We shall consider the graph-theoretical formulation of the problem; so we have a complete
bipartite graph K, and we assume that the vertices ¢ in R (corresponding to the rows of
the array) are ordered according to mon increasing values of «(i,2) and the vertices j in S
(corresponding to the columns j of the array) are ordered according to non decreasing values of
B(7,2). If we merge colors 1 and 2, our problem amounts to finding in K, ,, a partial graph H
where each vertex ¢ in R has degree dy (i) = a(i,1) + «(¢,2) and each vertex j in S has degree
dy(7) = B(4,1) + B(4,2). Such an H will be called 12-feasible. In addition H must contain in
its edge set E(H) a partial graph M with degree «(i, 1) for each vertex ¢ in R and degree (7, 1)
for each vertex 7 in S. Such an M will be called 1-feasible. We shall write a < b if a comes
before b in the ordering of the vertices (in R or in S). We shall say that two edges (a,b), (¢, d)
of M form a crossing if a < ¢, d < b and «a(a,1) = a(c, 1) = B(d,1) = (b,1) = 1.

Lemma 3.1 If RP3(m,n;q,r) has a solution, then there is also a solution associated to a 1-

feasible M* which has no crossing.

Proof: Let us assume that there is a crossing (a,b),(c,d) in a 1-feasible M contained in a
12-feasible H.

Notice that if (a,d), (c,b) are both in H\M (they are not in M by definition of a crossing), then
we may replace (a,b), (¢,d) in M by (a,d), (c,b); we get a l-feasible M  (which is still contained
in H) and where the number of crossings has decreased. Also if (a,d), (c,b) are both out of H,
we may again replace (a,b),(c,d) in M and in H by (a,d),(c,b) and we get a new 12-feasible

H containing a 1-feasible M " where the number of crossings has decreased.

Let us consider now the case where exactly one of the edges (a,d), (¢,b) is in H\M; w.l.o.g we
may assume (a,d) € H\M and (c,b) ¢ H. Since the vertices j in S are ordered according to
the non decreasing values of (4,2) there must be a vertex e in R such that (e,b) € H\M and
(e,d) ¢ H\M. Notice that (e,d) cannot be in M since «a(d,1) = 1. So we have (e,d) ¢ H. We
replace (¢, d) and (e, b) in H by (c¢,b) and (e, d). Now we replace (a, b), (¢,d) in M by (a,d), (c,b)
and we get a 1-feasible M* countained in a 12-feasible H*; furthermore the number of crossings
in M* is smaller than in M. m
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We now define for each instance of a problem RP3(m,n;q,r) the class C of all 1-feasible partial
graphs M which have no crossings. C can be generated as follows: let @) be the set of lines
(rows and columns) which have more than one occurrence of color 1; assume m > n. We first

enumerate all partial graphs M’ which satisfy the following:

a) dy(i) = a(i,1) forall i€ QMR
< afi, 1) forall i€ R\Q
b) d,(j) = B(,1) forall jeQNS

IN

B(j,1) forall je S\Q
c) each edge of M " has at least one vertex in Q.

For each ¢ € Q N R we have at most n” ways of choosing the assignment of color 1 in row ¢
(i.e., the a(i,1) edges of color 1 adjacent to vertex 7); for each j € Q NS, we have at most m".
So globally we have at most (m”)? = m"? possible assignments of color 1 to edges adjacent to

vertices in Q).

We will enumerate all these partial assignments M ". For each such M, we have to determine
the remaining edges to be added in order to obtain a 1-feasible M. Let V,(M ') be the set
of vertices which are not saturated yet (i.e., where some edges of color 1 should be added).
We notice that each vertex in V'(M') has to receive exactly one edge of color 1. If the basic
conditions Y («(i,1) | i = 1,...,m) = > (B(4,1) | 7 = 1,...,n) are satisfied we will have
| RNV (M) | = | SOV (M) |. So there will exist an assignment of color 1 for edges between
ROV (M
two sets of vertices) and there is a unique way of choosing those edges without introducing

) and SNV (M') (because we still have a complete bipartite graph between these

crossings. So we can obtain a 1-feasible M from each M .

Observe furthermore that any 1-feasible M* which has no crossing is in C; this can be seen as
follows. We remove from M* all edges which are adjacent to some vertex i € R (with «(i,1) > 1)
or j € S (with 8(j,1) > 1). We also remove those vertices; this subset of edges removed has
been considered as an M in the enumeration process. Now the edges remaining in M* do not
have any crossing; so they are uniquely defined in the complete bipartite subgraph constructed

on the remaining vertices. Hence this set M* has been constructed in C.

We can now state:
Proposition 3.2 RP3(m,n;q,r) can be solved in polynomial time.

Proof: We construct each 1-feasible M* in C; there are at most "¢ such partial graphs. Each
one is constructed in O(m). Then for each M* we do the following: remove M* from K,, ,; in
the remaining graph G* examine if there exists a partial graph I with d;(i) = «(%,2) for each
i € Rand d;(j) = B(j,2) for each j € R. If there is such an I, it gives the assignment of color 2

while M* gives the assignment of color 1. So we have found a solution. If for every M* in C, no I

49



Chapter 3

can be found, the problem has no solution: according to Lemma 3.1, if there is a solution, there
is one where M™ has no crossing. Since C contains all 1-feasible M* which have no crossing, we
are done. The construction of I is a flow problem; so it can be performed in polynomial time
(O(m3) for instance); see [AMO93]. m

3.5 Concluding remarks

Removing the assumption on color 1 would give us the general case R(m,n,p + 1 = 3) whose
complexity status is open. In the case where a(i,1) < 1 and 5(j,1) < 1 for all 4, j, we have some

structure in M™* (no crossings) and an easy construction procedure can be derived.

Our algorithm is based on the fact that if the problem admits a solution, then there is one
without crossing. This property can not be generalized to the case where color 1 is semi-unary.
Figure 3.2 provides a counterexample. As can be seen, there is only one way (up to permutations
of the three similar vertices) of ordering the vertices on the left in non increasing values of «(i, 2),
and one way of ordering the vertices on the right in non decreasing values of (j,2). With this
ordering, no solution exists if color 1 is assigned without crossing, while three solutions exist if
crossings are allowed.

06(7;,3) /6(]78)
i | i~l|1 2 3
1 3 1 0
2 |1 2 1

R G S U S [ —

= W N =
O = = N
= o O OoO|lw

— Solutions:

110 110 1
110 110 310 1 310
110 110 121 1 121
101 101 1
color 1
—  color2
ffffffff color 3

Figure 3.2: An example where a generalized crossing cannot be avoided
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NP-hard hereditary classes for graph

coloring

4.1 Introduction

We shall consider here the two classical problems of minimum graph coloring (MCP) and maxi-
mum stable set (MSP), as defined in the Preliminaries. This chapter is devoted to a complexity
result for many subcases of MCP. It is obtained by combining two polynomial reductions. The
first one leads from MSP in general graphs to MSP in some specific hereditary graph classes,
and the second leads from MSP in such classes to MCP in hereditary classes of another kind.
What follows can also be found in [Sch04].

There are close links between MCP and MSP; Chvatal has shown in [Chv73] that deciding
whether the vertex set V of a graph G = (V, E) can be covered by k stable sets is equivalent
to finding whether an associated graph G’(k) has a stable set of size |V|; G'(k) is obtained by

taking k copies of G and forming cliques by joining the &k copies of the same vertex.

Conversely, S. Poljak has shown in [Pol74] that deciding whether a triangle-free graph G = (V, E)
has a stable set of size k is equivalent to finding whether the vertex set V" of an associated
graph G"” can be covered by a number f(k) of stable sets. In this paper we intend to exploit this
construction and combine it with some tranformations of graphs which increase the stability
number by one. This will allow us to derive some complexity results which strengthen some

properties related to the complexity of coloring problems.

We use the notations for graphs defined in the Preliminaries; further, a S; j ;. is a tree composed
of a central vertex from which start at most three pending paths of respective lengths 7,5 and
k. The graph A, j is just L(S; k), see Figure 4.1. Given graphs G and G’, we denote G @ G’
the one obtained by putting G side by side with G', without link between them, and kG is
Go(k-1)G.
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Figure 4.1: The graph A273,5 = L(5273,5).

A graph which contains no graph from a (possibly infinite) list {H,..., Hp} as an induced
subgraph is said to be {H1,..., H,}-free. Those classes C of graphs are called hereditary, in the

sense that any induced subgraph of a graph in C is also in C.

Graphs S ;1 are of particular interest with respect to MSP. Indeed, by using a simple graph
transformation increasing the stability number by one (see Section 1.1.2), Alekseev has obtained
the following.

Theorem 4.1 [Ale83] MSP is N'P-hard in {G1,Gs,...,Gp}-free graphs, where p is finite and

each G has at least one connected component which is not of the form S; ;.

In other words, for the class of {G1, G2, ..., Gp}-free graphs to have a chance (provided P # N'P)
to be a polynomial case of MSP, at least one graph among G, ..., G, must have all its connected
components of the form S; ; . In what follows, we combine this reduction with the one depicted

in [Pol74] to provide a similar result for MCP.

4.2 Toward some new N P-hard cases

The complexity status of MCP in hereditary classes has deserved only little interest, though it is
widely studied for MSP (see among other papers, [Ale83, Ale91, Ale04, BH99, GHL03, HLS03,
Mos99]). The most complete paper on this topic is probably [KKTWO01], written in 2001 by
Kral, Kratochvil, Tuza and Woeginger, where the complexity status of MCP is given, for any
class defined by a single forbidden induced subgraph.

Theorem 4.2 [KKTW01] MCP in H-free graphs is in P if H is an induced subgraph of Py or
P; ® Ky, and is in N'P-hard otherwise.

In the same paper, the authors study cases where two induced graphs are forbidden and char-
acterize many such cases. The reduction we propose next will permit to prove NP-hardness of

some additional cases, with two and more forbidden induced subgraphs.
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We first depict in more details the problem reduction mentioned in last Section, which leads
from MSP in triangle-free graphs (which is N'P-hard) to MCP in complements of line graphs
of triangle-free graphs [Pol74]. A wvertex cover denotes a set V' C V such that each edge has
at least one endpoint in V'. It follows that if V' is a vertex cover, then V\V' is a stable set.
By MVC we denote the problem of finding a vertex cover of minimum cardinality. Further, by
MCP we denote the problem of covering the set of vertices of a graph by a minimum number
of cliques, which may alternatively be viewed as the problem of finding a minimum coloring in

the complementary graph.

From Alekseev’s work described in Section 1.1.2, and leading to Theorem 4.1, we know that
MSP in general graphs can be reduced to MSP in triangle-free graphs. Let G = (V, E) be a
triangle-free graph and consider its line graph L(G). Of course the set of edges incident to a
vertex z of G form a clique in L(G). Three adjacent vertices in L(G) correspond either to a
triangle in G, or to three edges incident to some vertex of G. So if G is triangle-free, there will
be a one-to-one correspondence between maximal cliques in L(G) and bundles of edges in G.
Since MCP amounts to covering the vertices with a minimum number of maximal cliques, we

have the following reductions.

MSP o MSP in triangle-free graphs oc MVC in triangle-free graphs
o« MCP in line graphs of triangle-free graphs

o« MCP in complements of line graphs of triangle-free graphs

We now show that Alekseev’s result can be combined with this last one. Denote by L=!(H) the

set of graphs having no isolated vertex, and whose line graph is H.
L YH)={G=(V,E): L(G)=H,N(v) #0Vv eV}

For instance, L~ }(Py) = {P5}, L Y(K3) = {K13,K3} and L™1(K;3) = 0, since K; 3 is not a
line graph. We extend this definition to several graphs the following way: L= ({Hi,...,H,}) =
L7Y(Hy)U...UL (H,). Noticing that any partial subgraph G’ of a graph G gives rise to an
induced subgraph L(G') of L(G), the following fact is straightforward.

Fact 4.3 L(G) is H-free if and only if G contains no graph in L™'(H) as a partial subgraph.

We now define the closure C1(G) of G as the set of all graphs obtained from G by possibly adding
edges between non adjacent vertices of G. In Figure 4.2, graphs in Cl(P4) are displayed. We also
extend this definition to the closure of several graphs: CI({G1,...,G,}) = Cl(G1)U...UCI(G,).

Noticing that a graph does not contain G as a partial subgraph if and only if it is CI(G)-free,

we have

Fact 4.4 L(G) is H-free if and only if G is CI(L*(H))-free.
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Figure 4.2: Cl(P4)

We can now prove the following lemma.

Lemma 4.5 MCP is NP-hard in {H,,. .., Hy}-free graphs, where p is finite and no H; has all

its connected components of the form A; ;.

Proof: We first prove that the set of graphs CI(L™'({Hy,..., H,})) contains no graph with all
its connected components of the form S; ; ;. Since a partial subgraph of such a graph also has all
its connected components of the form S; j ., we need only consider graphs in L™ ({Hj, ..., Hp}).
Clearly, for any 4, the connected components of H; are the line graphs of the connected compo-
nents of any graph in L~ !(H;). Further, by the definition of L (H;), no graph in L~ !(H;) can
have all its connected components of the form S; ; &, otherwise H; would have all its connected
components of the form A; ;.

So if one can solve MCP in {Hj, ..., Hp}-free graphs with a polynomial time algorithm, one can
use it to solve MSP in {CI(L™Y({H},..., H,})), K3 }-free graphs, after having transformed the
instance graph G to L(G). Now L~ (H;) is a finite set (since it contains only graphs with |V (H;)|
edges and no isolated vertex), hence so are L™ ({Hy, ..., Hp}) and Cl(L ' ({Hy,...,Hp})). MSP
is therefore N'P-hard in {CI(L~'({Hy,...,H,})), Ks}-free graphs, which permits to conclude.
]

As we now have a result of the same form as Theorem 4.1 for MCP we only need to switch to

complementary graphs to express it in terms of MCP.

Theorem 4.6 MCP is N'P-hard in {H,,...,H,}-free graphs, where p is finite and each H; has

at least one connected components which is not of the form A; ;. m

For the case p = 2, most N'P-hard cases obtained from Theorem 4.6 are already obtained in

[KKTWO01]. However, the followings are new ones.

o {K3® K, H}-free graphs, where H is a forest of at least 5 vertices and of maximum degree
at least three (corresponds to Problem 2 in [KKTWOL));

e {Cy ® K1, H}-free graphs and {Cy, H }-free graphs (k > 6), where H contains a partial
subgraph of 2K5 as an induced subgraph (corresponds to Problem 3 in [KKTWOL1]);
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For larger values of p, any finite combination of graphs of the form described in Theorem 4.6 pro-
vides an N'P-hard case. If we list those which are minimal (with respect to induced subgraphs)
until 5 vertices, we find that MCP is N'P-hard in {4K;,2K; & K9,2Ko, K1 ® K3,C5,Cy & K1 }-
free graphs, which is a quite restrictive class. Indeed, the complement of each graph in the
above list has one connected component which is not of the form A; ; ;. For instance, 2K, & K,

is a K4 without an edge. Since it contains two triangles, it is not an A; ;;. Another interest-

E __
ing N'P-hard case is the class of {C5, P} |J(J C;)-free graphs: it is contained in the class of
=4

)

ko
(U C2i+1) U(U C2i41)-free graphs, where MCP is hence N'P-hard. Notice that the class of
i>2 i=2
perfect graphs, where MCP is polynomially solvable, is the class of (|J C2i41) (U Cait1)-free

i>2 i>2
graphs (see [Ber70],[CRST], [GLS88]).

4.2.1 Concluding remarks

Our theorem is of the same form as Theorem 4.1 for MSP, but while this last one covers most
NP-hard cases (defined by hereditary properties) of MSP, it is not the case for our result with
MCP. For instance we know by Theorem 4.2, that MCP is N'P-hard in K3-free graphs. This
case is not covered by Theorem 4.6, since each connected component of a K3 is an isolated
vertex, i.e. an Aj 0. It is nevertheless a strong result in the sense that any class defined by a
set {H1,...,Hp} of forbidden induced subgraphs none of which has all its connected components
of the form m can be further restricted by forbidding another graph Hj, . of that type.

As a final remark, if we now compare the state of the art in the investigation of polynomial
and N'P-hard hereditary classes for MCP and for MSP, we can see that MCP is slighty more
difficult than MSP in the sense that there are many classes C of graphs (for instance line graphs
or Oy-free graphs) where MSP is polynomially solvable in C, and where MCP is N'P-hard. In
fact, to our knowledge, there is no class of graphs where the converse happens. It would be

interesting to find out whether such classes exist.
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Column Generation for Graph

Coloring

In this last chapter, we are interested in the graph (vertex-)coloring problem (MCP) in general
graphs. Recall that this problem is NP-hard, even when restricted for instance to line graphs,
complements of line graphs, planar graphs (graphs which can be drawn on the plane without

edge crossings) or graphs G with «(G) < 3.

We study here a linear programming approach of MCP. We first review different integer pro-
gramming formulations of MCP and how they are related, then we give some properties of the
underlying polyhedra and finally propose an improvement to the original algorithm, which sub-
stantially increases the performance on some instances. We use the following definitions and
notations. For an integer linear program (P), Conv(P) is the convex hull of all (integer) so-
lutions of (P). The dimension Dim(P) of (P) is the number of linearly independent points in
Conv(P). The polyhedra Conv(P) is defined by a unique minimal set of inequalities, each of
which are called facets of Conv(P). A necessary and sufficient condition for an inequality to
define a facet is to be satisfied with equality by Dim(P) affinely independent solutions of (P).

For further concepts not defined here about linear programming, we refer to [Sch86].

5.1 Integer programming formulations of MCP and relation-

ships

We provide in this section four integer programming formulations of MCP, and show how they

are related.
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5.1.1 Standard formulation

As usual, let G = (V, E) be a graph, n = |V|, m = |E| and ¥ an upper bound on the chromatic
number x(G) of G. Consider the following integer linear programming formulation (E) (E stands

for ’edge constraints’) of the graph coloring problem.

X
min ) y; (5.1)
7=1
X
st. > xy = 1 VieV (5.2)
7=1
Tij + Tirj — Y < 0 V(i,i') ek jed{l,...,x} (5.3)
Tij, Y5 € {071} VZGK jE{l,...,Y} (54)

Table 5.1: (E)-formulation of the graph coloring problem

In this formulation, variable z;; has value one if vertex 7 has color j, and 0 otherwise; variable
y; has value 1 if color j is used to color the graph and 0 otherwise. The objective expresses that
a minimum number of colors has to be used while constraints (5.2) ensure that each vertex is

colored and contraints (5.3) force two adjacent vertices to get different used colors.

The linear relaxation (E') of this formulation, obtained by replacing the boolean constraints
(5.4) by non negativity constraints, permits to find a lower bound on the optimal value, which
rounded up is also a lower bound on the chromatic number of G. It may then be used to design
an exact algorithm, whose efficiency will essentially depend on this lower bound’s sharpness.

Consider the fractional solution of (E') given by

N[

.
Il
—
[\]

1 7=12
Yj = : _ and 1z = . _
0 7=3,...,% 0 7=3,...,%

It clearly satisfies constraints (5.2) and (5.3), and the corresponding objective function value is
equal to 2. But since the chromatic number of a graph may be arbitrarily large (it is equal to

n if G is a clique), the bound obtained with (E') is extremely bad.

The four authors of [CMaPZ02] have studied the polyhedral structure of the underlying polytope
and showed that one can substantially improve this bound by adding cutting planes to the
formulation. The branch-and-cut algorithm they designed is able to color, for instance, any
random graph (see Section 5.4.3) with up to 60 vertices in less than one minute, which is
much better than solving the boolean constrained formulation with a general mixed integer

programming (MIP) solver (for instance the one implemented in CPLEX).
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5.1.2 Dantzig-Wolfe decomposition

There is another type of linear programming formulations for MCP, which provide much better
lower bounds, but at the cost of a much larger problem size. Those formulations have a natural
interpretation, but they seem less known than formulation (£). This is probably due to the
fact that they do not have a number of variables and constraints polynomial in the size of the
instance graph. Further, despite the apparent dissimilarity of both types of formulations, there is
a succession of transformations which brings the (£)-formulation to those with larger size. The
main step in this problem translation is the Dantzig-Wolfe decomposition principle (see [Las70]),
which permits the replacement of a linear programming formulation with specific structure by
another equivalent one, with many more variables but less constraints. In [Joh89], it is used for
cutting stock, crew scheduling and clustering problems. As mentioned in [MT96], this principle
can be applied to (E), since it is of the appropriate form. In the remainder of this section, this

is done explicitly, since to our knowledge it has not been exposed in full details earlier.

A matrix is said (see [Las70]) to have a p-block angular structure, if one can permute its row
and column sets so that it becomes like in Table 5.2, with any element outside blocks A; and

B;i=1,...,p being zero.

Ay Ay - A
B
By

By

Table 5.2: A p-block angular matrix.

If we put the rows corresponding to constraints (5.2) on the top, and if we give the variables
the order

Y1, 11, 21, --+5 Tnly Y2, L12, ooy Lp2y <oy ooy Yy, L1x, -+ Loy,

the matrix obtained of formulation (E) appears in the same form as Table 5.2. Table 5.3 shows
this structure with the same notations as in Table 5.2 (where 1 denotes a vector of 1’s of the
appropriate size, 0 a vector of 0’s), and after having grouped the variables in  parts of the form
z; = (Y;, 14, T25, - -, Tnj)’ (j =1,...,%). In Table 5.4, we can see the detailed structure of the

whole matrix.

Problem (E) can be viewed as follows. Among all feasible solutions of (5.7) and (5.8), find those
which satisfy (5.6) and minimize (5.5). Let us define U; = {u}‘ :k=0,...,[Uj| -1 =: K;} (this
numbering will be justified later) the set of solutions of (5.7) and (5.8) for each j in {1,...,%},
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X
min ) y; (5.5)
j=1
X
s.t ZAij = 1 (56)
7j=1
Bjz; < 0 Vjiec{l,....,x} (5.7)
z; € {0,1}"*t vijie{l,...,x} (5.8)

Table 5.3: (E)-formulation of MCP.

Yr L1 X211 . Tpl Y2 Ti2 22 o Tp2 vt Yy Ty T2y o Tpy

0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0 1
0 : 0 0
0 O 0 1 0 0 0 1 0 0 0 1
-1 1 1
-1
(constraints (5.3)) O O
-1 1 1
-1 1 1
-1 _
O (constraints (5.3)) O
-1 1 1
e I 1
E A .
O : O . (constraints (5.3))
5_1 1 1

Table 5.4: Matrix of (E) in standard form.
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K;

and replace z; by >, Muk and add the constraints E,ﬁ 0 )\f = 1 to ensure that exactly one

=0""7"3
integer solution from each set U is used!. This leads to the formulation of Table 5.5, with set

of variables {)\"; tk=0,...,Kj and j =1,...,%} ((x); denotes the i*" component of vector x).

X K
min Y ) M(uf), (5.9)
j=1k=0
X K
st Y Y (AuH)N = 1 (5.10)
j=1k=0
K;
oM =1 vie{l,...,x} (5.11)
k=0
Af e {01} Vjie{l,...,x} ke{0,...,K} (5.12)

Table 5.5: Intermediate formulation.

We can simplify this formulation with the following observations. First, since for any j the sets of
constraints (5.7) in Table 5.3 correspond to the edges of the same graph, the B; matrices are all
equal and consequently so are the sets ¢;. We may then write uk instead of ull‘ = ulz‘ =...= u%,
and K instead of Kj.

The By = ... = By matrices are all of the form [-1,M], M being the edge-vertex incidence

matrix of G, so all u¥ except one are of the form , s being the incidence vector of

gk

a stable set of G. The only solution, called u®, which is not of this form is the zero vector.
Hence )\2 appears neither in the objective (5.9), nor in constraints (5.10). So we may remove
constraints (5.11) from the formulation by replacing )\? with 1 — Zle )\f. Since )\2 only occurs

in constraints (5.11) and (5.12), we only need to add the constraints

K K

Y0 e S
k=1 k=1
for j € {1,...,X} to ensure that )\f € {0,1} for j € {1,...,x}. Matrices A; are all of the
form [0, I], I being the identity matrix, so we can replace Ajuk by sk. The new formulation is
displayed in Table 5.6.

Let now ) be an optimal solution of the problem obtained from Table 5.6, by removing con-
straints (5.15). Since the resulting problem is a relaxation of the previous one, the optimal
objective value is at most ¥. In other words, in an optimal solution, there are at most Y com-
ponents of A\’ which have value 1, while the others have value 0. If \' violates some constraints

(5.15), the corresponding “coloring” will have two stable sets with the same color. Since there

!Those constraints correspond to the convexity constraints in the continuous case.
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K X
min )Y A (5.13)

k=1j=1
K X
st Y sKY A =1 (5.14)
k=1 j=1
K
YoM <1 vied{l...,x} (5.15)
k=1
k . —
A e fo,1} Vie{l,...,x}ke{l,...,K} (5.16)

Table 5.6: Intermediate formulation.

are sufficiently available colors, we can always replace them by other colors, which amounts to
changing the components with value one, so that constraints (5.15) become satisfied, and the
objective remains unchanged. We conclude that those constraints are redundant and can be
removed from the formulation.

Replace ZJXZI )\é? by a single variable A*. Similarly as above, we can restrict this variable to
{0,1}, since in a coloring each stable set appears at most once. We finally obtain the (Part)-
formulation (“Part” stands for partitioning, constraints (5.18) being equalities) depicted in Table

5.7. The lower bound obtained by solving the linear relaxation of this last formulation is much

K
min Y AF (5.17)
k=1
K
s.t. Z)\ksk =1 (5.18)
k=1
e {o,1} Vke{l,...,K} (5.19)

Table 5.7: (Part)-formulation.

sharper than the one provided by the (E)-formulation. The main drawback is that the (Part)-
formulation has a number of variables equal to the number of stable sets in GG, which in general
grows exponentially with the size of G. However, as will be seen in the sequel, the set of stable
sets has some structure which can be exploited in the column generation, in order to drastically

speed up the resolution of the linear relaxation.
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5.1.3 Large size formulations and comparisons

We start here with the last formulation of MCP found in previous section and express it in terms

of graphs the following way.

min > zs (5.20)
Ses
st. Y xsg=1 YoveV (MCP(Part)) (5.21)
S3v
zs € {0,1} VSeS (5.22)

Here S is the set of all stable sets of G, and zg = 1 if the stable set S corresponds to a color class.
Notice that by summing up all equalities, we have the simple relation ) ¢ s |S|zs = |V|, which
also holds for the linear relaxation. Denote So = {S € S : |S]| > 2}. One can make the convex
hull of feasible solutions to this formulation full-dimensional by replacing variables xg with
S| =[{v} =1, by 1 = > (ses,wesy s This substitution ensures the satisfaction of constraints
(5.21), but the fact that 1 — > g5 T5 = 7y > 0V v brings the inequalities ) ¢c g, 75 < 1.

After having transformed the objective function accordingly, we get the following formulation.

max », (|S] —1)zg (5.23)
SeSy
s.t. > zs<1l YweV (MCP(P)) (5.24)
S5v,5€8>
zs €{0,1} VSeS (5.25)

Another formulation can be obtained by observing that one does not need to partition V', but
only to cover it with a minimum number of stable sets. Moreover, stable sets which are not
inclusionwise maximal can be removed from the formulation, since in a covering they can always
be replaced by maximal sets. Let Sp,q; denote the set of maximal stable sets; we have the

following set covering formulation.

min >, g (5.26)
st. Y xg>1 YveV (MCP(C)) (5.27)
S>3v
zs € {0,1} VS € Snax (5.28)

5.1.4 Equivalence of the linear relaxations of the large size formulations

Consider the linear relaxations M C P!(Part), MCP!(P) and MCP'(C) of the above formula-

*Part = xP and z*¢ their optimal solutions and z*F%t z*F and 2*¢ their

tions, denote by =z
optimal values, respectively. The following proposition shows that the bounds obtained by the

three linear relaxations are equivalent.
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Proposition 5.1 2*¢ = z*Part = || — 2P,

Proof: The following equalities can be deduced from the above development leading from
MCP(Part) to MCP(P).

Z*Part — Z ngart — Z ngart + (|V| _ Z |S|xx§Pa1"t)

Ses Ses Ses
= [VI=> (8 - Dag™t = V| = > (18| - D = V| - 2*7.
Ses SeSs

It remains to show that z*¢ = z*P%"*, From a feasible solution z%* of MCP'(Part), one can
always construct a feasible solution of same value 2¢ of MCP!(C) by applying the following
steps.

1. set :L"g =0V S € Snuz;

2. for each S € S such that xISD‘”t > 0, choose a set S’ € Sz containing S, and set

c

TG = xg, + xg‘”"t.

Since the coefficients in the objective function are all equal to one in both formulations, z*¢ <
Z*Part‘

Now given a solution ¢ of MCP!(C), apply the following steps to obtain a solution 2% of

MCPY(Part), with objective value equal to the value of z*.

1. set zhort = xg if S € Simaz and 259 =0 if S € (S\Smaz);

2. for each v € V define Cov(v) = ) x?‘”"t;
S>Sv

3. for each S € S,,4; such that xg > 0, do:
(a) partition S into classes C1,...,Cy, where vy and vy belong to the same class C; if
Cov(vy) = Cov(ve) =: Cov(C;), and order them in decreasing order of Cov;
(b) set ' =S8
(c) fori=1 to g, do:

i. set § = min(Cov(C;) — ]_,xISDIart);

ii. set :L"g,‘"t = :L"g,‘"t —0;
iii. set S = S"\Cy;
iv. set :L"g,‘"t =J.

At the beginning, 27%* has the same value as z¢, but may be an unfeasible solution of
MCP'(Part), since some inequalities of MCP'(C) may not be satisfied with equality. Each
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Part

time z is modified (steps 3(c)ii and 3(c)iv) the values of Cov change, and the specific choices

for ¢ ensure that they finally all become equal to one. Further, the objective value ) ¢ g xISD art
is the same at the beginning and at the end of each loop in 3c. Hence we obtain a feasible

solution 279"t of MCP'(Part) with same value as £¢, which shows that z*¢ > z*Fet, m

The optimal solutions z*¢, z*F%* and 2*F correspond to colorings of G with fractional colors,

such that each pair of adjacent vertices are colored with disjoint sets of colors, and the sum of the
fractions of colors assigned to a given vertex is at least 1. The values z*¢ = z*P@rt = || — 2*F
give a lower bound of good quality on x(G), better known as the fractional chromatic number
Xfrac(G) of G. See [Sch97, LPU95] for some of its properties.

Proposition 5.1 can be somewhat generalized. Define C(P, @), where P is a collection of subsets
of a ground set (), as the problem of covering () with a minimum number of sets taken in P.
With this notation, we may write MCP(C) = C(Snaz, V). An independence system P on a
ground set () is a set of subsets of () such that S; C Sy and Sy € P imply S; € P. Since a subset
of a stable set is also a stable set, S is an independence system on the ground set V. The proof
of Proposition 5.1 only uses the fact that S is the independence system whose inclusionwise

maximal elements are Sy,4., S0 we have the following.

Corollary 5.2 Let P be an independence system on the ground set Q, Ppaz its set of mazimal
sets, z* and 2*™%% the optimal values of the linear relazations of C(P,Q) and C(Ppaz,Q),

respectively. Then z*F = z*mee,

5.2 Polyhedral results on the set covering formulation

In this section, we consider formulation C(Sy4z,V). The dimension of Conv(C(Spesz,V)) is
|Simaz| if and only if S0, \{S} is a cover of V, for any S € S,4,. This amounts to saying that
each vertex v of V' belongs to at least two maximal stable sets of GG, which is achieved if and
only if V\N(v) is not a stable set. In the opposite case, we can remove S = V\N(v) from G
and solve C(Spaz\{S}, N(v)). The optimal coloring of G would then be obtained by adding S
with a new color to the optimal coloring obtained for N(v). We will thus assume in this section
that each vertex belongs to at least two maximal stable sets, and hence that Conv(C(Spez, V))

is full-dimensional.

In [CS89, Sas89], G. Cornuejols and A. Sassano define the useful concept of bipartite incidence
graph for the study of set covering polytopes. In the special case of MCP, the bipartite incidence
graph B(Syaz, V, E) is the bipartite graph with node sets Syuz, V and with edge set £ =
{(S,v) € Spaw XV :v € S}. A subset S’ of S0, such that each node of V' has at least one
neighbor in S’ will be called a cover of V. It is easy to see that the covers of V are exactly the
solutions of C'(Syaz, V). The cardinality of a minimum cover of V' is called the covering number
of V and is denoted by (V).
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The following result was proved in [CS89] for the general set covering polytope. For the ease of
exposition, we present it in terms of the bipartite graph B(Sy,qz, V, E) associated to formulation
C(Smaz, V).

Proposition 5.3 Let St C Sy and VI = {v € V : Ng(v) C S'}. Assume that Y 5est TS >
B(VY) defines a facet of Conv(C(SY,V1Y)). Then it defines a facet of Conv(C(Smaz,V)) if and
only if for every S & S,

BVIuUVIUV?) =pViuv?)
where V2 ={v €V : Ng(v)NS' # 0 and S € Ng(v)}
and V3 ={v € V: Ng(v) = {S}}.

In the next section this result is used to give a necessary and sufficient condition for an inequality
of the form ) ¢ g 25 > 1 (S" C Snaz) to define a facet.

5.2.1 All facets with right hand side equal to 1

In this section, to avoid confusion, we denote by N¢(v) the neighborhood of a vertex v if we
refer to the graph G and Ng(v) if we refer to the bipartite incidence graph B. For a pair v € V
and w € V of vertices, we say that v dominates w if Ng(w) C Ng(v) (it follows that v and w
are not adjacent). Notice that in this case, Np(v) C Np(w). We also denote by S, the set of

all maximal (inclusionwise) stable sets containing v.

Proposition 5.4 Let v be a vertex of V.. Then the inequality

defines a facet of Conv(C(S,V)) if and only if vertez v is not dominated.

Proof: Let S be a maximal stable set not containing vertex v and consider the bipartite incidence
subgraph B'(S, U{S},V',E') where V! = {w € V : Ng(w) C S, U{S}} and (S",u) € E" iff
u € S'. Since v is not dominated, for every w € V', Ng/(w) = Ng/(v) =S, or S € Ng(w) (i.e.
Np/(w) cannot be strictly included in Np/(v)). We can thus partition V' into three subsets:
Vi={w e V': Ng(w) = Ng(v)}, V? = {w € V' : Ng(w) C S, and S € Np/(w)} and
V3 ={weV': Ng(w) ={S}}, see Figure 5.1. Note that v € V1.

Clearly, > 55, #s > 1 defines a facet of Conv(C(Sy, V1)). In order to apply Proposition 5.3,
we have to show that S(VIUVZ2UV3) = B(VIUV?3). Consider w € V2. Since Ny (w) NS, # 0,
v and w occur in a common stable set and hence are not adjacent in G. Moreover, w cannot
be adjacent to another vertex u of V2, since both v and w belong to the stable set S. Thus

V2 U {v} is stable in G and there must be a stable set in S, containing V2 U {v}, which proves
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that B({v} U V?) = 1. Further, since Ng(w) = Ng (v) for all w € V!, we also have that
BVIUV?) = 1. Now if V3 = (), then S(VIUV2UV3) = B(VIUV?) =1, and if V3 # 0,
BVIUVZUV?3) =B(VIUV?3) =2. In both cases, the condition of Proposition 5.3 is fullfilled.
[

Figure 5.1: The bipartite incidence graph of the proof of Proposition 5.4.

A dominated vertex v in G is irrelevant for x(G), since in any optimal coloring, it can have the
same color as the dominating vertex. So one can remove all dominated vertices from G without
decreasing x(G). If those reductions are done, all inequalities (5.27) are facet defining. In Section
5.4.3 are shown some computational results obtained by applying this rule as a preprocessing in

an exact algorithm.

Moreover, if no vertex of G is dominated, those facets, which will be called vertex cover facets,
are the only facet-defining inequalities with right hand side equal to 1. Indeed, consider such
an inequality > .o €5 > 1 with 8’ # S,,v € V. To have a chance to define a facet, S’ can not
have any set S, = {§ € §: § 5 v} as a subset, since the inequality ) g.s s > 1 would be
stronger. But then the solution
{ 0 if Sed
Tg =

1 otherwise

covers all vertices of V', but violates the inequality ) ¢ o x5 > 1.

5.2.2 Facet defining inequalities with right hand side larger than 1

A graph G is called x-critical if, for any v € V, x(G[V\{v}]) = x(G) — 1. We use the auxiliary
graph G* = (Spagz, B*), where E* = {(S,5") : p(V\(SNS")) = (V) — 1} [Sas89]. Notice that
B(V\(SNS")) is either B(V) or (V) — 1, the last case occurring only when S NS’ intersects all
x-critical subgraphs of G. We first provide another set of inequalities with all coefficients equal

to one.

In [Sas89], graph G* is used to give a sufficient condition for a class of such inequalities to be
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facet defining. We translate it here in our terms.

Lemma 5.5 If Conv(Smaz, V) is full dimensional and if G* is connected, then inequality

> s > x(G)

SeSmaz

is facet defining.

Since the first hypothesis is fulfilled (see beginning of Section 5.2), we only need to show that

G* is connected to prove that a condition is sufficient for the inequality to be facet defining.

Proposition 5.6 Let G be a x-critical graph. Then inequality

> s >x(G)

SESmaz

is facet defining if and only if G is connected.

Proof:

Necessity. Assume G is not connected. Denote by V' a subset of V such that G[V'] is not
connected to G[V\V’]. Since no stable set in G can intersect both V' and V\V', we can
partition Syqe in two parts S’ and Spez\S’. Then both inequalities Y ¢ o 5 > x(G[V']) and
>SS mar\S' TS 2 x(G[V\V']) are valid, and their sum is precisely > g5 x5 > x(G), which
is thus not facet defining.

Sufficiency. Saying that G is connected amounts to saying that there is a path from any vertex
v to w in G, which is equivalent to saying that there is a sequence of cliques Cy,Cy,...,Cy
in G, such that C; N Cij11 # 0 for all 4 € {1,...,k — 1}, v € C; and w € Cg. This is also
equivalent to the existence of a sequence of stable sets in G with the same property, which
holds also if we restrict to maximal stable sets. Moreover, from the above remark and since G
is critical, x(G[V'\(S1 N S2)]) = x(G) — 1, for any Si,S2 € S;ap such that S; NSy # (. So
E* = {(51,52) : SN Sy # 0} and G* is connected. We can now apply Lemma 5.5, which

permits to conclude. m

Facets with right hand side larger than 1 may be obtained using Chvatal’s well-known procedure
(see [ChvT73)):

1. Sum up a subset Q' C Q of inequalities from the initial set (5.27);
2. Divide the resulting inequality by a positive number k;

3. Round up all coefficients and the right hand side to the nearest integer.
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Chvétal called the elementary closure of a set of inequalities () the set of inequalities which can

be obtained from @) with one iteration of this procedure.

Applying this to the problem (C(S,V)) gives for any V! C V and k > 0 a valid inequality
for Conv(C(S,V)). But specific choices of V' and k may lead to inequalities which are not
dominated by the initial ones or even facets of Conv(C(S,V)). We will see that inequalities

belonging to the elementary closure of the set (5.27) have a natural interpretation.

Example: Consider the graph G displayed in Figure 5.2 with chromatic number 4 and clique

number 3. The set of all maximal stable sets of G is:
(1)
By
B
(7) (8)

Figure 5.2: A graph G such that x(G) =4 and w(G) = 3.

Smaa: = {{L 5}a {1a 6}a {17 7a S}a {27 37 4}a {2a 37 8}7 {2, 6}7 {37 47 7}a {37 77 8}a {4a 5}}
The inequality
2(1,7,8) +x(2,3,4) +(2,3,8) + x(3,4,7) + 2x(3,7,8) > 2

defines a facet of Conv(C(Smaz,V')) which can be obtained using the rounding procedure with

the set of inequalities

x(2,3,4) +x(2,3,8) +x(347) +x(3,78 > 1
x(1,7,8) +x(347) +x@378) = 1
x(1,7,8) + x(2,3,8) +x(378) > 1

and k = 2. It can also be obtained by the following argument: the set {3,7,8} must be covered
by the set {3,7,8} or at least two sets among {1,7,8}, {2,3,4}, {2,3,8} and {3,4,7}. m

Such an interpretation holds for any inequality obtained with one iteration of Chvatal’s rounding

procedure with set V/ C V and number k:

> aszs > P‘;l'] (5.29)
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with ag = ['V’QS‘] , VS € Spaz. In the following such an inequality will be denoted by

Chv(V',k). Next proposition gives a necessary condition for such an inequality to define a facet
of Conv(C(Smaz,V))-

Proposition 5.7 If Chu(V'k) defines a facet, then ["%1 > w(GV']).

Proof: Assume ["%1 < w(G[V']), let C C V' be a maximum clique in G[V'], and let v € C
and w € C, v # w. Notice that v and w are adjacent since they both belong to the same clique
C. Consider S, = {S € Spaz|S 2 v} and Sy = {5 € Spaz|S 2 w}. A set that would be
simultaneously in &, and S, would contain vertices v and w, which is impossible since it must

be stable, hence S, NS, = (). This holds for any pair of vertices from C, so
YD ws= > s >|Cl=w(GV) (5.30)
veC S3v SNCH#D

is the sum of the cover inequalities of the vertices in C' and hence is valid. But since all coefficients
are 1, since ag > 1V S such that SN C # 0 and since w(G[V']) > ["%1, inequality (5.30)
dominates inequality Chv(V'.k). m

In our example, this condition s fulfilled: [{2221] =2 > 1 = w(G[{3,7,8})).

5.3 Polyhedral results on the set packing formulation

We focus now on formulation M CP(P) and study the corresponding polytope. Recall that we
work with Ss, the set of stable sets of size at least 2. With this formulation, all solutions con-
sisting of only one stable set from Sy satisfy all constraints. There are as many such solutions as

there are variables, and since they are affinely independent, Conv(M C P(P)) is full-dimensional.

The conflict graph of the set of stable sets Sy is G = (S2,{(S,5") : SN S’ # 0}). A clique in
G is then a set of stable sets of Sy, having pairwise nonempty intersections. We will say that
a clique is maximal if it is maximal under inclusion, i.e. for a maximal clique C C S3, and for
each S in S3\C there is a S’ € C such that SN .S’ = (). The following result is proved in [Pad73]
for general set packing polyhedra, and we adapt it here to M CP(P).

Proposition 5.8 [Pad73] An inequality of the form
> <

is a facet of Conv(MCP(P)) if and only if C is a mazimal clique in G.

In the next section, we define and characterize in terms of graphs a class of such inequalities

which correspond to maximal cliques in G.
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5.3.1 Majority set cliques

Given a set of vertices X C V, we call majority set clique the subset Cx = {S € Sy: [SNX]| >
#} Obviously, Cx is a clique. If |[X| = 1, the majority set clique Cx = Cy, is a single
vertex clique. In what follows, we first characterize the maximal single vertex cliques, then the
maximal cliques with |X| = 2 and finally those with | X| > 3. For v € V, the anti-neighborhood
of v is defined as AN(v) =V — {N(v) Uv}. We assume that |[AN(v)| > 0: a vertex v with
AN (v) = () belongs to no stable set of Sz, and can be removed from G without changing the
MCP(P) formulation; x(G) is then just decreased by one.

Proposition 5.9 Assume AN (v) = {w}. Then Cyyy is a mazimal clique (in fact the isolated
vertex {v,w} of G) if and only if N(w) = N(v) = V\{v,w}.

Proof: Notice first that Cy,) = {v,w} and N(w) C N(v), otherwise |[AN(v)| > 1. If N(w) =
N (v), then any set B C V, with B # {v,w} and |B| > 2 intersecting {v,w} must contain at
least one edge of G and hence B ¢ S, 50 Cyyy is maximal. If N(w) C N(v), then {z,w} € So
for any z € AN(w) — {v} and Cy,) is not maximal. m

Proposition 5.10 Assume |[AN(v)| > 2. Then Cy,y is a mazimal clique in G if and only if
AN (v) is not a stable set in G.

Proof: If AN (v) is a stable set of G, then AN (v) € Sy and AN(v) NS # DV S € Cyyy, ice. Cpyy
is not maximal. If there is an edge (z,y) in the subgraph induced by AN (v), then any stable
set S & Cyy) contains at most one vertex in the set {z,y}, and hence can not intersect both

{v,z} € Cyyy and {v,y} € Cy,y. Thus Cy,y is maximal. m

In the case where AN(v) is a stable set (possibly of size one), the unique maximal clique
containing Cy,y is Cq,) U{S € S2: AN(v) C S}.

As mentioned in last section, if a graph G contains two non-adjacent vertices z and y such
that N(z) € N(y) (y dominates z), « can be removed from G without changing x(G). In
particular, if all such vertices are removed, no anti-neighborhood of a vertex can be a stable set.

Consequently, in the resulting graph, all inequalities (5.24) are facets.

Assume X = {v,w}, and that v and w are not adjacent (otherwise Cx is empty). Since % =

1.5, Cx = {S € Sy : {v,w} C S}, Cx C Cyyy and Cx C Cyypy. As a consequence of Proposition
5.9, if N(v) = N(w) = V\{v,w}, then Cx = Cy,)} = C{} is a maximal single vertex clique. This
is the only case where Cx is maximal. Indeed, if at least one vertex in X, say v, has another
non-neighbor, say u, then {u,v} € Cy,y, and Cx C Cyyy-

Assume now that | X| > 3. Next proposition gives a necessary and sufficient condition for Cx to

define a maximal clique in G.
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Proposition 5.11 Let X € V be a set of at least 3 vertices. Then the majority set clique Cx

is mazimal if and only if

1. |X| is odd and

2. X 1s stable.

Proof: If X satisfies 1 and 2, then for any S € Sy — Cx, we have | X N S| < ‘X|271. Hence
1X\S| > EEL > 2 which means that X\S € Cx, while § N (X\S) = 0. Thus Cx is maximal.

If X does not contain a stable set of cardinality larger than or equal to % then Cyx is empty.
| X|+1
Rt

Now, if Cx is nonempty, let S € Cx s.t. |S| =
If X is not stable, let u and v be two vertices in X such that (u,v) € E. Let X' = X\{u,v} and

S be any stable set of Cx. Since S is stable, it contains either u or v, or none of them. Hence,

_XI=1 X1

SNX'I>SNnX|-1
SNX|>|SNX|-1> 5 ;

1

> XI+T
2

which means that S € Cys. Consequently, Cx C Cxs. Further, removing any vertex w € S from
that set yields a stable set belonging to Cx/, but not to Cx, hence Cx C Cx, and Cx is not
maximal.

Assume now that X is a stable set with even cardinality. Let v be any vertex of X and S be a
stable set of Cx. Then

SRl 2 fsnx] - 1> By FEEL A

which is not integer. So |S N (X\{v})| > m, which means that S € Cx\y,) and Cx C

Cx\{v}- Further, let S" be a stable set of Cx with cardinality % +1 such that v ¢ S" and w € S'.
Then S\{w} belongs to Cx\(,} but not to Cx which implies that Cx C Cx\{»} and Cx is not

maximal. m

It follows that if one wants to find all majority set cliques which are not in the initial formulation,

one needs only to scan the stable sets S with |S| > 3 and odd.

5.3.2 Other cliques

There are lots of other maximal cliques in G. Here are some illustrating examples.
Proposition 5.12 Let X be a stable set of odd size at least 5, and S C X such that |S| = |X‘2+1,
A={T S :TNX =S} and B={T € Sy: TNX =X\S}. Then (Cx\A)UB is a mazimal

clique in G.

Proof: Since Cy is a clique, so is Cx\.A. Further, each stable set in Cx\A intersects X\S. So
(Cx\\A) UB is a clique. To prove that it is maximal, consider a stable set S" € (Cx\A) U B. If
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S" € A, then obviously S’ N (X\S) = 0, while (X\S) € B (notice that |X\S| > 2). Assume now
that S’ ¢ (Cx U B), and consider the stable set (X\S’), which has empty intersection with S’.
Since |S' N X| < ‘X|2_1, | X\S'| > % which means that (X\S’) € Cx. Further, since S’ ¢ B,
(X\9') ¢ A. So (X\S') € Cx\A, which permits to conclude. m

Starting from a clique as defined in Proposition 5.12, one can do the same replacement with
another set S’ of size % instead of S, provided that (X\S")N(X\S) # 0. For doing the same
a third time with S” such that |S”| = %, one should ensure that (X\S”)N(X\S) # 0 and that
(X\S")N(X\S’) # 0, and so on. Noticing that there are many possible choices for S, then for S’

and so on, can give an idea of the huge number of maximal cliques in G. Furthermore, there are

Figure 5.3: A graph with a clique facet which is not derived from a majority set clique.

other cliques which are neither majority set cliques, nor obtainable with the above construction.
For the graph displayed in Figure 5.3, the set C = {{2,3,4},{2,6,7},{3,5,7},{4,5,6}} is a
maximal clique of G which is in no previous case. Notice that this graph has no dominated

vertex, so all single vertex cliques induce facets.

5.4 An improvement on a branch and price algorithm

In this section, we present an exact algorithm for solving MCP. Of course, this algorithm does
not run in polynomial time, MCP being an N P-hard problem. Our algorithm uses the branch
and price methodology, and is based on a previous algorithm proposed by A. Mehrotra and
M. Trick [MT96]. We first depict the working of the original approach, then we propose a
preprocessing improving somewhat our implementation, and illustrate this improvement with

some computational results.

5.4.1 Original algorithm
In order to allow comparison with Mehrotra and Trick’s algorithm, we tried to follow the descrip-

tion in [MT96] as closely as possible. There are however some parts that were not implemented

in our code; so our code is somewhat slower (if we take into account the progresses made in
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computer speed during the past eight years). We describe in this subsection the most important

points of our algorithm, and the choices we made to enhance the global performance.

A branch and price is a branch and bound algorithm, where the bound is obtained by solving
a linear program, whose number of variables is so large that column generation is needed for
solving it. The first step of a branch and bound for a minimization problem consists in computing
an upper bound ¥ on the chromatic number. This can simply be achieved by finding a feasible
solution heuristically. In [MT96], the initial solution is found in a greedy way. The upper
bound is then updated each time a new better solution is found. We use for the initial coloring a
somewhat more sophisticated approach, namely a local search on the partial colorations set, with
a look-ahead neighborhood and penalty evaporation in order to avoid cycling, by L. Blochliger
[BI601]. The use of a more performant algorithm permits a quick finding of a good coloring; it is
however not crucial in the global performance of the branch and bound. Indeed, when starting
with a bad solution (e.g. found greedily) other solutions of better quality are usually found in

the first nodes of the enumeration tree.

The linear program is in our case the linear relaxation of MCP!(C) (see Section 5.1.3), so the
variables correspond to the maximal stable sets and the n = |V| constraints express that each
vertex must be covered by at least one such set. The pricing problem associated is easily shown
to be a maximum weight stable set problem. More precisely, given dual values Aq,...,\,, a

variable g may enter the basis if . ¢ A; > 1. If no such variable exists, i.e. if no stable set

1€S
has a weight larger than one, the optimal value of the linear program has been reached. The
lower bound obtained this way has been introduced in Section 5.1.4 as the fractional chromatic
number and is in a large majority of cases a sharp bound. For instance, it is exact in the set of

graphs G such that x(G) = w(G).

Branching methodology

The branching rule is as follows. Take two non adjacent vertices a and b and create two branches.
In one branch, they get the same color, and in the other they get different colors. To create a
subproblem where they have the same color (branch SAME(a, b)), construct a new graph from the
original one by identifying vertices a and b; to simulate that they have different colors (branch

DIFFER(a, b)), create another graph by adding an edge between a an b (see Figure 5.4).

The main advantage is that both subproblems are of the same type as the original one, i.e.
MCP, and can hence be solved recursively. If the rule would have been to fix a variable to 1 or
0, which is standard in integer programming, this would not have been the case. In Figure 5.5

the whole algorithm is represented.

For the choice of the nodes a and b, A. Mehrotra and M. Trick use the fractional coloring found

for the current graph. Their criterion is the following.

74



Column Generation for Graph Coloring

—

> s

SAME@%

wFER(a,b)

Figure 5.4: Branching rule.

Initialization:
Set Branch = root”

Initial coloring (heuristical) —> %(G)

| Integer solution ? |
no yes
Branch to SAME ¢ [(J}Odt;t szgf;:c%raph
Set Branch="same” Set %(G)z Xfrac P
5 * yes no
no | — ) es 9
< xG) < X(G) Y4H Branchl ‘same” L» Branch = “root”
ges
STOP
X(G) = X(G)

!

Computation of X(G) = |_X frac—l

. + Branch to DIFFER
(Column generation)

Go to parent graph

Set Branch = “differ”

Figure 5.5: Branch and price algorithm for MCP(C).
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1. Choose a stable set S such that xg is as close as possible to %;

2. Choose a € S;

w

. Choose S’ # S, such that a € §" and zg > 0;

4. Choose b € (S\S") U (S'\S5).

The aim of this choice is to forbid, in each branch, that at least one of both x¢ and xg is used
fractionally. In this way, an integer coloring is likely to be found faster. In our comparisons, we

use this criterion for the choices of ¢ and b.

We tried some other criteria, especially in order to produce a better balance between both
subproblems. Indeed, in most colorings, vertex a has a color different from the color of vertex
b, so forcing them to have the same color is more restrictive than forcing them to have different
colors, and the subproblem SAME(a,b) is in most cases somewhat easier than DIFFER(a,b). To
counter this difference, we tried to branch by choosing the vertices ¢ and b so as to maximize
|N(a) N N(b)|; the argument is that vertices that have a large common neighbourhood are likely
to get the same color. Simulations showed that this did not improve the algorithm in most
graphs tested, both in terms of the number of nodes visited as in running time. However, there
are some structured graphs, where lot of time could be saved by combining this criterion with

a preprocessing procedure, see Sections 5.4.2, 5.4.3 and 5.4.3.

Accelerating the pricing

As mentioned above, the pricing problem is a maximum weight stable set problem, the weights
being given by the dual values. To prove that a basis is optimal, one has to solve this problem
exactly at least once. But if one wants to prove that some variable may enter the basis, one
needs only to find a solution of weight larger than one. This can be done heuristically, as in
[MT96]: first they run a greedy algorithm for MSP; if it returns a solution, the corresponding
variable enters the basis, and otherwise an exact algorithm is started in order to find a solution
with certainty if it exists, or to prove that it does not exist. An improvement they also proposed

was to generate several stable sets at a time, by running the greedy algorithm repeatedly.

We tried to apply this reasoning a step further, i.e. if the greedy algorithm does not provide a
satisfactory solution, first try a more sophisticated heuristic, and run the exact algorithm only
if this last heuristic also fails. The heuristic chosen was a variable neighborhood search (VNS)
[HMO1, HMUO1], which is described in Figure 5.6.

Here Ny,...,Ng,,.. denote a sequence of neighborhood types. They are usually defined in such
a way that s and any solution in Ng(s) become more different as &k increases. In our case the

local search algorithm used was tabu search (see Section 2.6 for a description).
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1: Construct an initial solution sp;

2: repeat

3 Set k= 1;

4 repeat

5 Generate a solution s’ randomly in Nj(s);
6 Improve s’ by a local search; denote s” the new solution;
7 if s” is better than s then

8 Set s = s" and k = 1;

9 else
10: Set k =k +1;
11: end if
12: until £ = kpqz

13: until the stopping condition is met

Figure 5.6: Variable neighborhood search

In our experiments, adding the VNS step did not systematically decrease the total running
time. Of course, the VNS could many times find entering variables where the greedy algorithm
failed, but our implementation was too time consuming and the results showed that it was worth
skipping the VNS and directly run the exact procedure. However, those numerical results do not
allow us to reject the strategy of applying more sophisticated heuristics for the pricing problem.
First, our implementation could be improved. Second, the instances we ran were not very large,
and the exact algorithm rarely took more than one second; if this had been the case, it is likely

that applying VNS would have lead to appreciable savings in time.

In Mehrotra and Trick’s implementation, the greedy algorithm is called once, so at most one
stable set is generated at each iteration. We tested our algorithm with 1, 5, 10, 50 and 200 calls
to the greedy algorithm. The best results were obtained with 5 calls, so we used this value in

our tests.

5.4.2 Preprocessing

As mentioned in the beginning of this section, our implementation is not as performant as the one
of Mehrotra and Trick. The main drawback in our code seems to lie in the way we implemented
the exact procedure for solving the weighted independent set problem; we invested indeed less
effort than is suggested in [MT96]. This can also explain the fact that calling several times the
greedy algorithm brought in our case some savings in execution time (which is not the case in
[MT96]), since it permitted to call fewer times the exact algorithm.

The preprocessing we propose next depends only on the structure of the graphs encountered in

the enumeration tree. Since our branching rule is exactly the same as the one used by Mehrotra
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and Trick, the differences between the two implementations should not invalidate the positive

results given at the end of the section.

We see here how by applying two simple vertex deletion rules at each node of the branch and
bound tree can sometimes slightly speed up the algorithm. The first rule is built on the notion of
domination defined in section 5.2. Recall that a vertex v dominates a vertex w if N(w) C N(v),
and a dominated vertex can always be removed from the graph without decreasing the chromatic
number. The second rule requires the knowledge of a lower bound x on the chromatic number.
A vertex v such that d(v) < x — 1 can also be removed from the graph, since there is always a
color in the set {1,...,x — 1}, available for vertex v, after having optimally colored G[V\{v}].

Further, this last reduction is worth being applied, as we have a good lower bound on x(G).

Hence the following simple procedure sometimes permits to reduce the graph G, without chang-
ing x(G).
Input: Graph G, lower bound x on x(G)
Output: Possibly reduced graph G’
1: repeat
2 Remove each dominated vertex from G|
3 Remove each vertex v such that d(v) < x — 1;
4

: until no more vertex can been removed this way.

Since at each node of the branch and bound tree the problem is a graph coloring one, this
preprocessing can be called each time a new subproblem has been created. The complexity
of checking if a node is dominated being roughly in O(|V|?), each loop is in O(|V'|?). This is
small as compared to the time necessary to solve M CP!(G), which requires to solve at least one
weighted MSP on G to optimality.

5.4.3 Computational results

The next tables show the performance of the algorithm, in terms of CPU time and number
of nodes visited in the enumeration tree. To show its contribution to the global performance,
results are displayed with and without preprocessing. An additional column shows the number
of vertices which have been removed at each node, using the procedure. Sometimes, when the
alternative criterion for the choice of vertices a and b (see Section 5.4.1) permits the preprocessing
to produce substantially better results than the first one (what is the case for some structured
graphs), those results are displayed in an extra table. The tests have been run on machines with
a processor of 2 GHz, and the sizes of graphs have been chosen so that the algorithm finishes
most of the times within an hour. Linear programs are solved using the CPLEX 9.0 callable

library from a program written in C++-. All times are given in seconds.
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Random graphs

The graphs of type Rand n_p are randomly generated on n vertices, such that for each pair of
vertices, there is an edge connecting them with probability p.

If p is near to 0 or 1, the lower bound [Xre(q)] i very often equal to x(G), and its quality
decreases as p approaches % This makes Rand n_p with p ~ % the most difficult type of random
graphs to color.

For this reason, our tests have only been run with values p = 0.3,0.5 0.7, and n = 70,80 90,
which is about the limit size beyond which actual exact algorithms do not finish in reasonable
time. Table 5.8 shows those results for random graphs with 70, 80 and 90 vertices. Values are
averages on five instances, and between brackets is the number of problems solved within an

hour, if it is lower than five.

Without preprocessing With preprocessing
G X(G) | Xfrac(G) | Time Nodes Time | Nodes | Elim./Node

Rand_70.0.3 | 7.75 6.76 701(4) 1561 667(4) | 1496 0.001
Rand 70.0.5 | 11.8 10.78 40.3 270.6 41.1 271.4 0.002
Rand 70.0.7 | 17.2 16.31 8.68 150.6 5.98 94.6 0.052
Rand 80.0.3 8 7.31 18.5(4) 6.5 18.8(4) 6.5 0
Rand 80.0.5 | 13 11.69 822(4) 2862 515(4) | 2548 0.0003
Rand 800.7 | 19 18 10.8 90.2 8.83 93.4 0.032
Rand 90 0.3 9 7.89 241(2) 113 229(2) 113 0
Rand 90.0.5 | 14 12.73 389(2) 953 241(2) 953 0
Rand 90.0.7 | 20.6 19.36 88.6 705.4 74 627.4 0.024

Table 5.8: Results on random graphs

These results give evidence that it is worth running the preprocessing. Indeed, even if the
number of deleted vertices is small in comparison with the number of nodes in the enumeration

tree, it often permits to save a substantial amount of time.

Flat graphs

The following graphs were created using the generator available at J. Culberson’s “Graph Col-
oring Page”[Cul96]. The graphs of the form Flat n k_p consist of n vertices partitioned into k
stable sets of sizes [ %] and [£], with the vertices belonging to different parts being linked with
probability p, and in such a way that all vertices have almost (+1) the same degree.

Flat graphs with small but strictly positive p are the most difficult to color: indeed, if p is near
1, there will probably be a clique of size k, if p is near 0, this will not be the case and there may
exist a better partition.

The flat graphs we used for our experiments have sizes of 80, 90 and 100 vertices, and probabil-
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ities 0.1 and 0.2. All values are averages on five graphs, and as for random graphs, the number

of graphs colored are indicated in brackets, if it is lower than five.

Without preprocessing With preprocessing
G X(G) | Xfrac(G) | Time Nodes Time | Nodes | Elim./Node

Flat 8090.1 4 3.75 67.1 1 68.7 1 0.2
Flat 809.0.2 6 5.09 72.0 1 74.9 1 0

Flat 90 9 0.1 4 3.13 1410(3) 1 1269(3) 1 0.33
Flat_90_9.0.2 6 543 | 192(4) 1 189(4) 1 0
Flat_100.10.0.1 | 5 402 | 1651(1) 1 819(1) 1 1
Flat_100.10.0.2 - - - - - - -

Table 5.9: Results on flat graphs

From the results in Table 5.9, the only graphs G for which the algorithm takes less than one
hour have x(G) = [xfrac(G)]. For those graphs, the computation of x f,q.(G) may take several
minutes; however, it is interesting to point out that half the total time has been saved, thanks
to the removal of a unique vertex in Flat_100_10_0.1. For graphs of the form Flat_100_10.0.2,

the time limit was reached for all instances.

Geometric graphs

A geometric graph of type Gn_d is constructed by uniformly generating n points in a square
of side 1, and linking two vertices if their points are at a distance of at most d. The reverse
geometric graph RG_.n_d is obtained the same way, but by linking the vertices which are sepa-
rated by a distance of at least d. Notice that if the set of points and a distance d are given, the
corresponding geometric and reverse geometric graphs are complements of each other.

We tested our algorithm first on geometric graphs with 100, 150, 200, 250, 300 vertices, d =
0.1,0.5,0.9, then on reverse geometric graphs with the same sizes and distances. The perfor-
mances are reported in Table 5.10, where again values are averages on five distinct graphs. As
appears from the results, these graphs are not difficult to color. For almost the whole set of
geometric graphs tested, xfrqc(G) = x(G), and the enumeration tree has only one node. The
only graphs for which several nodes are visited, are of the form Geom n 0.5; this happens only
when the initial heuristic fails to find an optimal coloring. Notice the large number of vertices
removed by the preprocessing, which is a direct consequence of the structure of the graph: ver-
tices near of a corner have a good chance of having a small degree, or of being dominated. For
reverse geometric graphs the effect is even stronger: in most cases, more than half of the graph

1s removed.
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Without preprocessing

With preprocessing

G X(G) | Xfrac(G) | Time Nodes Time | Nodes | Elim./Node
G_100.0.1 4.8 4.8 0.45 1 0.35 1 32.4
G_100.0.5 | 31.8 31.8 2.04 6.6 1.60 3.4 3.94
G_100.0.9 | 71.8 71.8 3.08 1 2.65 1 8.4
G_150.0.1 6.8 6.8 0.66 1 0.61 1 28.2
G_150.0.5 42 42 7.89 17 6.04 14.2 1.59154
G_150.0.9 | 103.8 103.8 9.51 1 7.3 1 7.8
G_200.0.1 7.4 7.4 0.99 1 1.06 1 19
G_200.0.5 | 54.4 54.4 39.4 48.2 31.6 34.2 0.53
G_200.0.9 | 137.8 137.8 16.6 1 16.3 1 8.2
G_2500.1 8.8 8.7 2.11 1 2.21 1 20.2
G_250.0.5 | 66.2 66 106 101 72.7 78.6 0.44529
G_250.0.9 | 174.4 174.4 28.9 1 25.2 1 9.8
G_3000.1 10.2 10.2 2.39 1 2.71 1 12
G_300.0.5 | 80.4 80.3 277 90.2 175 o7.4 0.70731
G_300.0.9 207 207 72.7 1 50.5 1 18.4
RG_100.0.1 | 44.8 44.7 1.63 1 0.73 1 55.2
RG_100.0.5 6 5.53 1.33 1 0.12 1 85.8
RG_100.0.9 | 3.2 3.2 1.04 1 0.04 1 95
RG_150.0.1 | 55.4 55.4 3.31 1 1.11 1 93.6
RG_150.0.5 | 6.8 6.8 2.35 1 0.17 1 131
RG_150.0.9 | 3.6 3.6 1.68 1 0.07 1 146
RG_200.0.1 | 61.6 61.6 0.88 1 1.5 1 138
RG_200.0.5 7 6.48 3.33 1 0.29 1.8 98.9
RG_200.0.9 | 3.4 3.3 3.20 1 0.11 1 195
RG_250.0.1 67 66.8 10.7 1 2.55 1 168
RG_250.0.5 7 6.65 4.97 1 0.42 1 225
RG_250.0.9 4 3.7 2.78 1 0.2 1 244
RG_300.0.1 | 72.6 72.2 19.6 8.2 6.13 3.8 47
RG_300.0.5 7 6.75 7.32 1 0.64 1 266
RG_300.0.9 | 3.8 3.7 4.37 1 0.3 1 296

Table 5.10: Results on geometric graphs
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Chapter 5

Queen graphs

The queen graph Queen n m is obtained by associating a vertex to each square of an n x m
chessboard, and linking two vertices a and b if a queen could move in one step from the square
of vertex a to the square of vertex b. It is clear that x(Queen.n_m) > max(n,m), since the vertex
set corresponding to a row or column is a clique of size n or m. It is known that if n = m is
not a multiple of 2 or 3, then x(Queen_n_m) = n. Recently, the converse has been shown not to
be true. Indeed, on each Queen n n graph, with 12 <n <24, n mod 2 =0 or n mod 3 = 0,
a coloring with n colors has been found [Chv03]. However, the most difficult Queen n_n graphs

for our algorithm are still those with n multiple of 2 or 3.

Tests have been run on 7 queen graphs having from 36 to 100 vertices. Results on Table 5.11

show that the preprocessing brings no improvement. This is not surprising, as vertices have all

Without preprocessing With preprocessing
G X(G) | Xfrac(G) | Time Nodes Time | Nodes | Elim./Node
Queen_6_6 7 7 0.45 1 0.64 1 0
Queen_7_7 7 7 1.12 1 1.63 1 0
Queen 8.8 9 8.44 1.82 1 2.78 1 0
Queen_8_9 9 9 - - - - -
Queen 9.9 10 9 109 57 108 57 0
Queen_9_10 10 10 - - - - -
Queen_10_10 11 10 - - - - -

Table 5.11: Results on queen graphs

about the same degree and symmetrical characteristics.

There is however a way of solving those problems more quickly. In Section 5.4.1, we describe
the branching strategy consisting in choosing the pair of vertices a and b maximizing |N(a) N
N (b)|. In Table 5.12, results show how it can improve the performance on queen graphs. Those
improvements can be explained by the ability of our branching strategy to create high degree

vertices, which are likely to dominate some other vertices.

Mycielski graphs

In [Mycb5], J. Mycielski proposes the following graph transformation. Given a graph G =
({z1,...,2zn}, E), construct a new graph M (G) with vertex set {y1,...,yn,21,...,2n, w}, and
edge set so that {z1,...,2,} is a stable set, y; is linked to y; if and only if z; is linked to z;,
y; is linked to z; if and only if z; is linked to x; and w is linked to all z;. It is not a difficult
task to prove that x(M(G)) = x(G) + 1, while w(M(G)) = w(G). Hence this transformation
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Column Generation for Graph Coloring

G Time | Nodes | Elim./Node
Queen_6_6 0.49 1 0
Queen_ 7.7 1.13 1 0
Queen_8_8 2.04 1 0
Queen_8_9 757.88 2221 0.1
Queen_ 9.9 103.33 37 0

Queen 910 81.46 99 0.1
Queen_ 1010 | 1895.89 | 297 0.08

Table 5.12: Results on queen graphs with preprocessing and another branching strategy.

permits one to obtain graphs with arbitrarily large gaps between chromatic and clique numbers.
The graph Myciel_1 is the Ko, so Myciel 2=M(K3) = C5, Myciel 3 is a graph with chromatic
number 4 and clique number 2, and more generally x(Myciel k) =k + 1.

It is shown in [LPU95] that

1
X frac(Myciel k-1)

X frac(Myciel k) = X frqc(Myciel k-1) +

SO X frac(Myciel 2) = 2.5, X frac(Myciel 3) = 2.9, X frqc(Myciel 4) ~ 3.24, xfrac(Myciel 5) ~
3.55, and so on. The gap x(Myciel k) — [Xfrac(Myciel k)| thus becomes arbitrarily large as &
increases. This makes Mycielski graphs the most difficult graphs to color of our whole instance

set. We see on Table 5.13 how inefficient our algorithm becomes when applied on Mycielski

Without preprocessing With preprocessing
G V1| x(G) | Xfrac(G) | Time Nodes Time | Nodes | Elim./Node
Myciel 4 | 23 3.24 1.35 659 1.13 517 1.34
Myciel 5 | 47 3.55 - - - - -

Table 5.13: Results on Mycielski graphs

graphs. This is clearly due to the large gap between x(G) and X frq.(G), which produces a large
enumeration tree. Nevertheless, applying again the alternative branching of Section 5.4.1 with

the preprocessing brings better results, as can be seen in Table 5.14. In average, more than one

G Time | Nodes | Elim./Node
Myciel 4 | 0.43 167 2.23
Myciel5 | 117 | 42903 1.5

Table 5.14: Results on Mycielski graphs with preprocessing and another branching strategy.

vertex is deleted from the graph, which is very large if we take into account the huge number

of nodes visited. This is likely due to the tendency of our branching strategy of creating high
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degree vertices, which have great probability of dominating the numerous low degree vertices of

Mycielski graphs.

5.5 Concluding remarks

Throughout this section, we have seen several linear programming approaches of MCP, and some
relationships. We have begun the study of the polyhedral structure of MCP(C) and MCP(P)
by characterizing the simplest facets. Finally, we followed the column generation approach first
described in [MT96], and were able to somewhat improve it by adding a vertex deletion rule at
each node of the branch and bound tree.

As one may have noticed, the polyhedral results found in Section 5.2 were not explicitly ap-
plied in last Section. In fact, we tried to add majority set cliques inequalities to formulation
MCP(P) for some small graphs. Unfortunately, we found no example where the optimal value
could be improved this way, so we decided not to implement a separation procedure for them.
We also tried to add inequalities corresponding to holes on five vertices to our algorithm, but this
also gave only disappointing results: it permitted only after significant computational efforts to
slightly increase the optimal value of the linear program. This was rarely sufficient to improve
the lower bound by 1. We further tried to add cutting planes to the branch and price algorithm
with the M CP(P) formulation, corresponding to odd holes in the conflict graph of stable sets
(see Section 5.3 for the conflict graph and [GLS88] for the odd holes separation procedure). This
also gave bad results. More generally, we observed lots of symmetry in MCP(C) and MCP(P)
formulations, in the sense that sometimes many fractional colorings exist with the same (or
almost the same) objective value. This can explain the failure of the separation methods we
tested: a solution which may have been cut off by an inequality can most times be replaced by
another solution of about the same value.

We did not try further cutting plane generation. One of the main drawbacks with this approach
applied to a column generation framework is that the pricing problem looses his MSP structure
after having added some cutting planes, and has some additional requirements on the vertices
involved in a cut. This complicates the implementation and slows down the execution. Never-
theless, these observations should not prevent us from trying further cutting plane approaches,

and this direction shall deserve further investigations.
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Conclusion

During this research, several goals have been pursued, like proving the solvability or N7P-
hardness of a problem, characterizing a class of facets, or improving some algorithm. Some
of those goals have been reached, some have not. In addition, there are some results which have

been obtained as byproducts of the main research directions.

In Chapter 1, the - a posteriori - ambitious goal was to prove solvability or NP-hardness of the
maximum stable set problem (MSP) in the class of Ps-free graphs. Although we did not succeed
in our initial goal, we nevertheless came across some new interesting classes of graphs, while
trying to find a characterization of Ps-free augmenting graphs. To the contrary, the polynomial
subcase of MSP in banner-free graphs (Section 1.3) was found after succeeding in the research
of an efficient algorithm to detect augmenting chains in (S; 2, banner)-free graphs. The results
found in this Chapter are a contribution to the structural knowledge of the bound between
solvable and N'P-hard subcases of MSP, which is probably one of the NP-hard problems for
which this bound is the most precisely known. The most attractive open case remains the Ps-free

graphs.

In Chapter 2, we have started the study of a new kind of graph optimization problem motivated
by security purposes in mobile ad hoc networks. Our first steps consisted in evaluating the
quality of a constructive heuristic and detecting some cases where it produces a suboptimal
solution. We proposed alternative constructions inspired by the first method and applied tabu
search which is a framework suitable for each variant of the problem. We also examined the
case of complete graphs, and obtained some bounds on the optimal solution of a variant of
the problem. The most important objective we could not attain was the characterization of
the complexity of the problems in consideration. The principal reason was the lack of similar
NP-hard problems: unlike many other optimization problems, a solution is here a collection of
partial subgraphs, so it is of size in O(|V||E]), while the sizes of solutions for most N P-hard
problems are in O(|V]) or O(|E|) . In our opinion, the problem is so general that N'P-hardness

should hold and be proved for some simplified version.

Chapter 3 was devoted to the exposition of a concise result at the border between easy and
difficult problems in discrete tomography. There is hope for the existence of more sophisticated

algorithms for generalizing the present procedure. Recall that the case of four or more colors is
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NP-hard, while the case of three colors is still open.

The main Theorem of Chapter 4 is also a byproduct of the research on coloring problems. By
combining several ideas, we could obtain new families of NP-hard subcases, and somewhat enrich
the knowledge of the boundary between hard and easy cases for MCP. Ouly little systematic
research has been made in this area, and this boundary is not as well-known as for MSP.
Nevertheless, as lots of NP-hard cases have been found, we now have precise directions to

search for polynomial cases.

In the last Chapter, the aim was to characterize some facets in the polyhedra of M CP(C) and
MCP(P). After computer-aided polyhedra calculations for small graphs, we quickly realized
that a complete characterization would be difficult, if not out of reach. However, we were able
to characterize in simple graph theoretical terms the facets associated to inequalities with small
coefficients. Though we could not apply directly those results in separation procedures, it gave
us the idea of trying the preprocessing which could appreciably improve the branch and price
algorithm. Adding cutting planes is a direction which has not been sufficiently explored, partly

on account of the difficulty in implementing, and should be further investigated.

This research has shown how fruitful it can be to deal at the same time with several different
topics. Putting together ideas from different fields has lead to substantial progresses and has

provided a collection of nontrivial byproducts.

Another aspect which is worth being pointed out is the contribution of computational assistance.
Beyond permitting comparison of two algorithms in an objective manner, computers can be used
to perform enumerative tasks not achievable by hand. Output obtained this way can often give
evidence of some fact, provide counterexamples, or suggest new research directions. A regular
use of such approaches convinced us to go further in our investigations, or sometimes helped us

to realize that some direction was indeed a deadlock.

Finally it is implicit that besides working with computers, working with people is the most
important and efficient way to progress in research. During my thesis, I had the chance to
collaborate with researchers in various fields of combinatorial optimization; they could reveal to

me interesting unexplored areas, and provide me with the tools necessary to their study.
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