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Abstract

Synthetic boron-doped diamond thin film is a new promising anode material.

Because of its properties (high anodic stability under drastic conditions and wide potential

window), it is widely investigated for numerous possible electrochemical applications

such as electrosynthesis, preparation of powerful oxidants and electroincineration. In the

first part of this work, simple charge transfer was investigated at boron-doped diamond

electrode through the study of an outer sphere system in the potential region of water

stability. In a second part of this work, the electrochemical oxygen transfer reaction

(EOTR) was studied in more details. Hydroxyl radicals are one of the most important

intermediates produced during EOTR. Their formation depends on the electrode material

as well as the potential and implies different mechanisms and reactivities. At low

potential, hydroxyl radicals are produced by the dissociative adsorption of water followed

by the hydrogen discharge. This reaction is assumed to take place at electrocatalytic

material like platinum. When the potential is higher than 1.23 V vs SHE (thermodynamic

potential of water decomposition in acidic medium), the water discharge occurs, leading

to the formation of hydroxyl radicals. From this, two classes of materials can be

distinguished: active and non active electrodes. It is well established that at active

electrodes, a strong interaction with hydroxyl radicals exists and the EOTR occurs via the

formation of an higher oxide. In contrast, at non active electrodes, the substrate does not

participate in the process and the oxidation is assisted by hydroxyl radicals that are weakly

adsorbed at the electrode surface. Assuming that hydroxyl radicals are the main

intermediates of the reaction, a model was developed to predict the organic compounds

oxidation (COD-ICE model). Another part of this work deals with the validation of the

theoretical models. 

In addition to the COD-ICE model, another model describing the oxidation reaction

in terms of flux of both hydroxyl radicals and organics (γ−ν model) was developed. Both

models permitted on the one hand to predict and describe the evolution of the oxidation

reaction, and on the other hand to confirm the role of hydroxyl radicals. Moreover, it was

possible to perform, depending on the conditions of applied current, either a partial

oxidation (into intermediates) or a total incineration (into CO2) of the organic compound.



The models, developed for a one-compartment electrochemical flow cell, were also

validated in both a two-compartments cell and a new electrochemical cell, called turbine

cell. In addition, the development of this cell allowed us to work with well established

hydrodynamic conditions.

The wide potential window that exists at boron-doped diamond electrode (BDD)

theoretically allows the formation of free hydroxyl radicals, whose redox potential is

estimated at about 2.6 V (vs SHE). The principal aim of this work was to highlight the

presence of hydroxyl radicals at BDD electrode and to study their reactivity. First, we

have investigated the production of hydrogen peroxide and the competitive reaction of

carboxylic acids, both of which indicated the presence of hydroxyl radicals. Then, spin

trapping was performed to detect hydroxyl radicals. This method consists in trapping the

radical with an appropriate scavenger to produce a stable adduct, which can be analyzed

by different techniques such as electron spin resonance (ESR), UV-visible and liquid

chromatography (HPLC) measurements. The spin trapping at BDD electrode was

performed through three experiments, viz., the electrolysis of a solution of 5,5-dimethyl-

1-pyrroline-N-oxide (DMPO) or 4-nitroso-N,N-dimethylaniline (p-nitrosoaniline or

RNO) and the hydroxylation of salicylic acid using ESR, UV and HPLC analysis,

respectively. These results have confirmed the presence and the key role of hydroxyl

radicals during oxidative processes at BDD electrode. The hydroxylation of salicylic acid,

whose oxidation mechanism is well established and yields to two dihydroxylated isomers

(2,3- and 2,5-DHBA), was investigated in more details to study the reactivity of hydroxyl

radicals. The results were compared to the reactivity of hydroxyl radicals chemically

produced by Fenton reaction and UV-photolysis. The comparison was based on the

investigation of the isomer distribution. On the basis of our results and by analogy with

chemical and biological results, a mechanism for salicylic acid hydroxylation was

proposed. 



Version Abrégée

Les fines couches synthétiques de diamant dopé au bore représentent un nouveau

matériau d’électrode prometteur. Grâce à ses propriétés (stabilité anodique élevée sous

des conditions drastiques et grande fenêtre de potentiel), ce type d’électrode est largement

étudié pour de nombreuses applications électrochimiques telles que l’électrosynthèse, la

préparation d’oxydants puissants et l’électroincinération. La première partie de ce travail

traite du transfert de charge sur les électrodes de diamant dopé au bore, illustré par l’étude

d’un système sphère externe dans la région de potentiel de stabilité de l’eau. Dans la

seconde partie de ce travail, les réactions de transfert d’oxygène (EOTR) ont été étudiées

en détail. Les radicaux hydroxyles sont un des intermédiaires les plus importants formés

lors de ces réactions. Leur formation dépend non seulement du matériel de l’électrode

mais aussi du potentiel impliquant différents mécanismes et réactivités. A bas potentiel,

les radicaux hydroxyles sont produits par l’adsorption dissociative de l’eau, suivie de la

décharge de l’hydrogène. Ce type de réaction a lieu sur des matériaux électrocatalytiques

comme le platine. Lorsque le potentiel dépasse 1.23 V vs SHE (potentiel

thermodynamique de la décomposition de l’eau en milieu acide), la décharge de l’eau se

produit, formant des radicaux hydroxyles. Ainsi, deux classes de matériau d’électrode

peuvent être distinguées: les électrodes actives et non actives. Sur une électrode active,

une forte interaction avec les radicaux hydroxyles existe et le processus d’oxydation a lieu

par la formation d’un oxyde supérieur. Dans le cas d’une électrode non active, le substrat

ne participe pas au processus et l’oxydation est assistée par les radicaux hydroxyles qui

sont faiblement adsorbés à la surface de l’électrode. En considérant que les radicaux

hydroxyles sont les principaux intermédiaires de la réaction, un modèle a été développé

afin de prédire l’oxydation de composés organiques (modèle COD-ICE). Une autre partie

de ce travail concerne la validation des modèles théoriques. 

Un autre modèle (modèle γ−ν) a aussi été développé. Celui-ci décrit la réaction

d’oxydation en termes de flux des radicaux hydroxyles et des composés organiques. Les

deux modèles ont permis d’une part de prédire et de décrire l’évolution de la réaction

d’oxydation et d’autre part de confirmer le rôle des radicaux hydroxyles. De plus, il a été

possible d’obtenir, selon le courant appliqué, soit une oxydation partielle (produisant de



nombreux intermédiaires), soit l’incinération complète en CO2. Les modèles, développés

pour une cellule électrochimique à un compartiment, ont aussi été validés pour une cellule

à double compartiment ainsi que pour une nouvelle cellule électrochimique, appelée

«turbine cell». Le développement de cette cellule nous a permis de travailler avec des

conditions hydrodynamiques très bien établies.

La grande fenêtre de potentiel, présente sur les électrodes en diamant dopé au bore

(BDD), permet théoriquement la formation de radicaux hydroxyles libres, dont le

potentiel redox est estimé à environ 2.6 V (vs SHE). Le but principal de ce travail a été de

mettre en évidence la présence des radicaux hydroxyles sur les électrodes BDD ainsi que

d’étudier leur réactivité. Dans un premier temps, nous avons étudié la production du

peroxyde d’hydrogène ainsi que les réactions compétitives. Ces deux expériences ont

indiqué la présence des radicaux hydroxyles. Ensuite, le spin trapping a été réalisé pour

détecter les radicaux hydroxyles. Cette méthode consiste à piéger le radical afin de

produire un adduit stable, qui peut ensuite être analysé par différentes techniques comme

la résonance paramagnétique électronique, les mesures par UV-visible ou

chromatographie liquide. Le spin trapping des radicaux hydroxyles a été réalisé sur les

BDD électrodes au moyen de trois expériences: par l’électrolyse d’une solution de 5,5-

dimethyl-1-pyrroline-N-oxyde (DMPO) ou de 4-nitroso-N,N-dimethylaniline (p-

nitrosoaniline ou RNO) et aussi par la réaction d’hydroxylation de l’acide salicylique en

utilisant respectivement la RPE, l’UV and l’HPLC comme méthodes d’analyse. Ces

résultats ont confirmé la présence et le rôle clé des radicaux hydroxyles. L’hydroxylation

de l’acide salicylique, dont le mécanisme d’oxydation est bien connu et conduit à la

formation de deux isomères dihydroxylés (2,3 et 2,5-DHBA), a été étudié en détail afin

de comprendre la réactivité des radicaux en la comparant à celle des radicaux hydroxyles

produits chimiquement par la réaction de Fenton et par UV-photolyse. La comparaison a

été faite en étudiant la distribution des deux isomères. Sur la base de nos résultats et par

analogie avec des résultats chimiques et biologiques, un mécanisme d’hydroxylation de

l’acide salicylique (et plus généralement de composés organiques) a été proposé.
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1. ROMAN SYMBOLS

A Surface electrode m2

aN, aH Hyperfine coupling G

COD Chemical oxygen demand mol (O2) m-3

COD0 Initial value of chemical oxygen demand mol (O2) m-3

dh Hydraulic diameter m

D Diffusion coefficient cm2 s-1

E Potential of an electrode vs a reference V

E0 Standard potential V

E0’ Apparent potential V

Eeq Equilibrium potential V

Ep Peak potential V

Ep/2 Half peak potential V

e Thickness m

e- Electron none

f Frequency rad s-1

F Faraday’s constant C mol-1

h Width m

Hydroxyl radicals none

i Current intensity A

HO
•



i0 Exchange current A

ip Peak current A

ip/2 Half peak current A

ICE Instantaneous current efficiency none

J Flux of species mol m2 s-1

j Current density A m-2

j0 Exchange current density A m-2

jlim Limiting current density A m-2

k Chemical rate constant M-1 s-1

k0 Standard rate constant m s-1

kf Rate constant m s-1

km Mass transport coefficient m s-1

L Length m

n Number of exchanged electrons none

O Oxidized species none

Q Specific charge A s m-3

r Rate of reaction mol m2 s-1

R Reduced species none

R Gas constant J mol-1 K-1

RCT Charge transfer resistance Ω

Re Reynolds number none

S Selectivity none

Sc Schmidt number none

Sh Sherwood number none

SHE Standard hydrogen electrode none

T Temperature K

t Time s

TOC Total organic carbon mol (C) m-3

v Scan rate V s-1

V Volume m3

Flow rate m3 s-1

X Conversion none

V·



Greek symbols

2. GREEK SYMBOLS

α Anodic transfer coefficient none

α Dimensionless current density none

β Cathodic transfer coefficient none

γ Kinetics parameter none

δ Diffusion boundary layer none

δv Viscosity boundary layer none

ε Molar extinction coefficient L mol-1 cm-1

η Overpotential V

λ Wavelength nm

Λ Parameter in cyclic voltammetry none

ν Stoechiometric factor none

ν Kinematic viscosity m2 s-1

ρ Resistivity Ω cm

Ψ Rate parameter in cyclic voltammetry none

ω Angular velocity s-1

3. SUPERSCRIPT

0 Initial

s Relative to the surface electrode

* Relative to the bulk

® Registered trade mark

4. SUBSCRIPT

lim Limiting value

i Initial

p Relative to a peak

a Relative to an anodic process

c Relative to a cathodic process

app Applied
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Chapter 1. Introduction

One of the main preoccupation of the research in electrochemistry is the continuous

development of high-quality and wear resistant electrode materials. This type of materials

must fulfill specific characteristics such as long-term chemical and electrochemical

stability, good electric conductivity, resistance to electrode deactivation and fouling,

sufficient mechanical stability, technical feasibility of fabrication and acceptable cost [1].

One of the essential components of the electrochemical oxygen transfer reaction (EOTR)

process is the anode, whose efficiency is primordial and depends strongly on the material

used. In the recent past, the electrochemical research focused a lot on anode development

in order to improve the electrochemical efficiency of the process. At the beginning,

electrocatalytic anodes made of platinum or palladium were developed [2-4]. This kind

of material implies adsorption steps and has a high efficiency, but the poisoning of the

surface and the wear of the electrode render them less efficient. 

The dimensional stable anode (DSA®) technology was developed later, originally for

the chlorine/alkali process. These electrodes are made of metallic oxides deposited on a

titanium substrate. The EOTR takes place via the formation of a higher oxide [5-7]. These
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anodes have high anodic stability and have widely replaced the classical graphite

electrode in some processes. Discoveries concerning the deposition and the

electrochemical properties of synthetic thin film of diamond have open a new branch of

electrochemistry. Using doped synthetic diamond films at high potentials, it is possible to

perform oxidation processes with a high current efficiency without any loss of activity,

thus leading to partial oxidation or complete combustion of organic compounds. Boron-

doped diamond anodes are called non active electrodes because the electrode surface does

not participate directly in the reaction. On the contrary of DSA® anodes, the oxidation

process at BDD is not assisted by the formation of an higher oxide but occurs via the

electrogenerated hydroxyl radicals. 

The principal aim of this work was to confirm the key role of hydroxyl radicals at

BDD electrode by detecting them and understanding their reactivity. 

In the theoretical part (Chapter 3), three models were developed. The first one deals

with the concept of active and non active electrodes, illustrating either the formation of

higher oxide or the mediation of hydroxyl radicals without participation of the electrode

surface. Then, the COD-ICE model will describe the oxidation process in terms of

chemical oxygen demand and instantaneous current efficiency evolutions allowing the

prediction of the combustion of organics at BDD electrode. Finally, the last model will

focus on the reaction between hydroxyl radicals and organic compounds in the reaction

cage (region very close to the electrode).

 

The electrochemical properties of BDD electrode (Chapter 5) compared to glassy

carbon, a more classic material electrode, was studied with the concept of outer sphere

system (violuric acid). The investigation by classical electrochemical techniques such as

cyclic voltammetry, low field approximation and rotating disk electrode, whose basic

concepts are different (transitory, stationary or mixed control), allowed the

characterization of the system by determining key parameters such as the diffusion

coefficient, the standard reaction rate constant and the anodic coefficient transfer.

 

Because hydroxyl radicals play a preponderant role during EOTR process at BDD

anode, their presence was investigated (Chapter 6). Because of the difficulty to study

radicals by a direct method, spin trapping represents a good alternative. Two spin traps
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(5,5-dimethyl-1-pyrroline-N-oxide, DMPO and N-tert-butyl-α-phenylnitrone, PBN)

were used to test by electron spin resonance the presence of electrogenerated OH radicals.

Another spin trap experiment was performed with p-nitroso-dimethyl-aniline using UV

measurement. To further prove the presence of OH radicals, the hydroxylation of salicylic

acid, as the formation of H2O2 at BDD electrode and the investigation of competitive

reactions (competition between hydroxyl radicals and organic compounds) were also

performed.

 

In Chapter 7, the predicting models were validated with the oxidation at BDD

electrode of a pesticide, 4-chlorophenoxyacetic acid (4-CPA).

Then, salicylic acid was used as a model for oxidation at BDD electrode. In order to

validate the models in a two-compartments electrochemical flow cell and to investigate

the reactivity of hydroxyl radicals during the oxidation process, the hydroxylation of

salicylic acid was investigated (Chapter 8). This organic compound is often used as

reference compound in biology, and is known to undergo a selective hydroxylation

leading to the formation of two main dihydroxylated intermediates, 2,3- and 2,5-

dihydroxylated benzoic acids (DHBA). The comparison between the electrochemical

hydroxylation at BDD electrode and the chemical one (by Fenton reaction and UV-H2O2)

led us to a possible mechanism for hydroxyl radicals attack at BDD electrode.

 Finally, a new type of electrochemical cell (turbine cell) was developed (Chapter 9).

This turbine cell allowed us to establish good hydrodynamic conditions (very useful for

electrolysis) and study the oxidation of salicylic acid.
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Chapter 2. Bibliography

1. INTRODUCTION

The electrochemistry of diamond is a relatively new branch, which is widely studied

because of its numerous possible applications. This bibliography will give the state of art

of this field and develop some crucial points. The first point concerns the synthesis of

boron-doped diamond electrode, where parameters such as the crystallographic structure,

the surface functional groups, the boron doping level and the carbon hybridation (sp2 and

sp3) at the surface influence the electrochemical behavior of BDD electrodes. 

This chapter will then recapitulate the principal electrochemical properties of

synthetic diamond and applications such as the production of strong oxidants and waste

water treatment. Some basic electrochemical theories such as the classification of the

electrochemical reactions and the most used electrochemical characterization techniques

(voltammetry, steady-state polarization, rotating disk electrode) will be reminded in order

to understand the behavior of synthetic diamond films. 

Finally, this chapter will greatly emphasize on hydroxyl radicals, their production,

their reactivity, their role and their detection. 
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2. SYNTHESIS OF THIN-FILM DIAMOND BY HF-CVD

Diamond is known as the hardest substance [1]. It is a metastable form of carbon at

ambient temperature and pressure. Among the four polymorphisms of carbon, diamond is

the most compact and strongly bonded structure. The interest for diamond arises from its

wide range of extreme properties such as high mechanical hardness, high value of thermal

conductivity (  W m-1 K-1 at room temperature), broad optical transparency,

biologically compatibility and low electron affinity. Diamond is also a good electrical

insulator but becomes a semiconductor when doped (band gap of 5.4 eV). Finally, it is

very resistive to chemical corrosion [2]. Two historical discoveries mark the start of

diamond research. In the first one, Lavoisier showed in 1772 that diamond and charcoal

have the same composition. The second observation was that the density of diamond is

higher than charcoal. In 1797, Tennant concluded that «diamond is made up of charcoal

and just the crystalline form changes». Late, the phase diagram of carbon was established

by G. N. Lewis and M. Randall. The first article about the diamond synthesis at high

pressure was published by General Electrics in 1955 (Figure 2.1). Since the beginning of

the fifties, the research in the domain of diamond synthesis made progress in optimizing

parameters such as the substrate, the seeding and the doping level.

At the same period, researches were made to produce diamond in metastable

conditions (Union Carbide). From then on, the importance of hydrogen was emphasized

 Figure 2.1 Phase diagram of carbon [3].

2 10
3–⋅
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and the synthesis was focused on the chemical vapor deposition of diamond (CVD). In

1974, Matsumoto et al. [4] adjusted the first depositions in vapor phase from a gas

mixture of CH4/H2. The principle of the CVD method is to generate an important quantity

of monoatomic hydrogen in a gas containing a low concentration of hydrocarbon. The

diamond synthesis can be classified in accordance with the mode of gas activation:

- Thermic: hot filament, oxy-acetylene flame

- By plasma: DC arc, microwave

The boron-doped diamond electrodes used in this work are prepared by Hot Filament

Chemical Vapor Deposition (HF-CVD) at the Swiss Center for Electronic and

Microtechnology (CSEM). Therefore, only this method will be explained in detail. This

method allows the deposition of diamond on a large surface and on tridimensional objects.

The HF-CVD process has been improved considerably, with the substrate pretreatment,

which increases the nucleation density and consequently yields to the formation of a

continuous film. Diamond can also be deposited with increasing growth rates with

methane concentrations in hydrogen and filament temperatures. The CVD technique is

considered, compared to the other deposition types, as a «cheap» method that uses an

inexpensive equipment. This deposition technique involves a gas-phase chemical

reaction, which occurs above a solid surface. Basically, a large excess of hydrogen is

mixed with a hydrocarbon precursor, typically methane. Then, the mixture is passed

through a hot filament wire. The substrate temperature and the concentration of hydrogen

atoms play an important role in the deposition of diamond. 

2.1. Reactor

The reactor consists of a continuously pumped vacuum chamber (10-50 mbar)

(Figure 2.2). In order to keep the substrate to the desired temperature (700-925 °C,

measured by a thermocouple), the substrate is maintained at few millimeters below the

filament, heated at 2200-2600°C (temperature measured by an optical pyrometer). The

gas phase consists in a mixture of methane (0.5-2.5%) in hydrogen.

The principle of the HF-CVD technique is the thermal activation of the gas phase.

The role of the filament is to produce gaseous species and its choice must fulfill some

conditions. First, the melting point of the filament material has to be high (in order to

provide the melting with carbon). From this point of view, tungsten and tantalum are

commonly used. Moreover, compared to other suitable materials, its cost is relatively low.
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The use of multifilament arrays allows to improve a large-area deposition.

The reactivity of the filament metal toward carbon is also important because the

carburisation of the filament is a consequence of gaseous species activation and modifies

the physical properties of the filament material. Nevertheless, the role of the filament

material is not very clear. It can be concluded that the filament plays the role of either

energy supplier or catalyst in the dissociation of H2.

2.2. Substrate

The substrate is also an important parameter for the preparation of the electrode. Its

preparation determine the porosity, the adhesion and the quality of the diamond layer. 

The substrate must fulfill some conditions such as chemical, electrochemical and

mechanical stability under the strong conditions of deposition, a low thermal expansion

coefficient and a good electrical and thermal conductivity. Moreover, the substrate must

be able to form a diffusion barrier (to avoid the hydrogen embrittlement) and a conductive

layer at the substrate/diamond interface. At the interface, a good chemical bonding has to

be created (covalent σ bonding) to give a good adhesion and ohmic contact. Actually, the

real interface between the diamond and the substrate is the carbide layer, which is

produced at the beginning of the synthesis. The candidate substrates can be classified in

two categories:

- Metallic substrates: Ti, W, Zr, Nb, Ta and some of their alloys

- Ceramic conductive substrates: carbon allotropes, silicon, mosaic shape supports 

 Figure 2.2 Scheme of the reactor for HF-CVD technique.
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The advantages of metallic substrates are, on the one hand, the low cost, the low

thermal expansion and the large choice of forms (plates, disks, grids, rods...). On the other

hand, the main problem of the metallic substrates is their tendency to undergo hydrogen

embrittlement, especially titanium. The choice of the substrate also depends on the

electrochemical application (as anode, cathode or bipolar electrode). Silicon remains the

only anodic substrate for diamond electrodes. In our work, diamond electrodes were

deposited on p-Si substrate.

2.3. Nucleation and diamond growth

The main question is how diamond is able to grow on non-diamond substrate. The

carbon atoms have to nucleate onto the substrate surface to allow the initiation and the

construction of a tetrahedrally coordinated sp3 network. The nucleation seems to start on

substrate surface defects. Therefore, it is necessary to pretreat the surface by abrasion, by

mechanical polishing with a diamond powder or by ultrasonication in diamond powder

suspensions. The nucleation can only start on saturated carbon surface. The precursor

gases (usually hydrogen and methane) are dissociated by thermal energy from the hot

filament, resulting in the formation and the diffusion of the reactive species (mainly

methyl radical) toward the substrate surface. Then, a carbon film is formed by absorption

and coalescence (Figure 2.3). 

The pathway for the growth of diamond is not well understood. One suggests that

atomic hydrogen abstracts a hydrogen atom from the surface of diamond, leaving a

 Figure 2.3 Growth processes during diamond
deposition by CVD [2].

 Figure 2.4 Mechanism of diamond growth [2].
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surface radical. Then, a methyl radical adds to the «dangling bond». These two steps are

repeated until the formation of the lattice is completed (Figure 2.4). At the end, the surface

is formed mainly by a tertiary carbon atom with just a single C-H bond [5, 6].

2.4. Doping of diamond

Intrinsically, diamond is an insulator. To make it conductor, it is necessary to dope it

with boron, fluorine or nitrogen. With increased concentration of the doping, the insulator

behavior of diamond changes into semi-conductor and finally into metallic behavior. For

electrochemistry, the doping level has to be sufficient to generate a low ohmic drop within

the diamond layer (quasi-metallic conduction) and sufficiently low not to disturb the

crystalline structure and induce a graphitic phase during the synthesis. Two types of

doping are possible: positive and negative. The positive doping consists of substituting

some carbons by an atom having a similar size, a slightly higher energy level than the

valence band of diamond, and where an electron is missing in the electronic layer

compared to diamond (e.g boron). On the contrary, in the case of a negative doping, the

atom will have an extra electron and a slightly lower energy level (e.g nitrogen). The

diamond electrodes used in this work were doped with boron. Therefore, only this type of

doping will be studied in detail. Energetically, the boron dopant atoms, which are electron

acceptors, form a band located at about 0.35 eV above the valence band edge. At room

temperature, some of the valence band electrons are thermally promoted to the boron

acceptors, leaving free electrons in the dopant band and holes or vacancies, in the valence

band to support the flow of current [7]. The morphology of boron-doped diamond is

polycrystalline and rough with grain boundaries and small volume of non-diamond

carbon impurities leading to the change of the electrical conductivity with the doping

level. The electrical resistivity of BDD films also depends on the doping level in the

diamond coating (Figure 2.5).

Typical boron concentrations range from 500 to 8000 ppm. For electrochemical

applications, lower concentrations result in an excessive electrical resistivity and higher

levels lead to the anodic consumption of the electrode, probably because of a secondary

nucleation of diamond and the formation of sp2 carbon species.
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The synthesis of diamond by HF-CVD produces a columnar, randomly textured,

polycrystalline film on a conductive substrate (Figure 2.6). A typical Raman spectrum is

presented in Figure 2.7. The first broad peak (A) is attributed to the boron doping, the well

defined peak B at 1330 cm-1 corresponds to diamond (sp3 species), and the peak C, at

about 1560 cm-1, is assigned to the sp2 impurities. When comparing the peak intensities

of both sp3 (diamond) and sp2 (non diamond) carbon, it is necessary to consider that the

magnitude of the Raman signal is 50 times more sensitive toward the non diamond carbon

form than to the diamond one [8].

 Figure 2.5 Resistivity of diamond films as function of the boron level in
the diamond coating.

 Figure 2.6 SEM image of a polycrystalline
boron-doped diamond (as-grown).

 Figure 2.7 Raman spectrum of as-grown
diamond electrode (0.5 ppm of boron in the
gas phase). 
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3. ELECTROCHEMICAL PROPERTIES AND APPLICATIONS OF 
SYNTHETIC DIAMOND FILMS

3.1. Properties

Thin diamond films exhibit properties that are interesting for electrochemistry. These

properties are currently investigated in many laboratories and many electrochemical

applications are studied. The first studies were started fifteen years ago [9-11]. The

behavior was then investigated extensively by different electrochemical techniques such

as impedance [8, 12-14], cyclic voltammetry [15, 16] or steady state polarization [17, 18].

Compared to graphite or glassy carbon electrodes, the inertness of diamond yields to

a very good resistance toward corrosive conditions, which is very useful in

electrochemistry (molten salts, batteries, fuel cells). The electrochemical characterization

of BDD electrodes is generally confirmed by surface analysis methods such as ESCA,

Raman spectroscopy, diffraction or microscopy. 

Diamond thin films exhibit a very large potential window with respect to hydrogen

and oxygen evolution (Figure 2.8). It is established that a good quality film exhibits a

window of about 4 V and a low voltammetric background current.

 

The low background current (and the low capacitance) was investigated by Xu et al.

[7]. They proposed three factors; the first is the relative absence of electroactive carbon-

oxygen functionalities on the hydrogen-terminated diamond electrode surface. The

second parameter is the lower density of surface electronic states near the Fermi level

 Figure 2.8 Cyclic voltammogram for BDD and platinum electrodes.
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caused by the semi-conductor nature of BDD. Finally, the structure of diamond, which

can be schematized as a series of microelectrodes, could explain the low background

current. Indeed, one can assume that the diamond surface has electrochemically active

sites separated by more insulating regions.

The wide potential window of diamond allows the study of electrochemical reactions

that occur at high overpotentials. The redox couple ( ), ferri-

ferrocyanide, classified as an outer sphere system, was largely studied at BDD electrode.

This redox system can also be used to determine the properties of the electrode material,

and it has been shown that the presence of sp2 impurities (non diamond) can have a strong

influence on the electrochemical response of the electrode [19].

3.2. Applications

The properties of BDD such as high anodic stability in strongly acidic medium, high

oxygen evolution overpotential and formation of hydroxyl radicals during water

discharge allow to produce powerful oxidants with high redox potential for waste water

treatment and electroorganic synthesis via EOTR.

Electroorganic synthesis 

The feasibility of electroorganic synthesis was investigated in our laboratory with

different organic compounds. The oxidation of 3-methylpyridine (3-MP) to nicotinic acid

is a typical example [20, 21]. Bulk electrolysis of 3-MP in 0.5 M HClO4 in a one-

compartment DiaCell® cell at low current density (2.5 mA cm-2) and for low 3-MP

conversion have shown that partial oxidation of 3-MP to nicotinic acid can be achieved at

BDD electrode. 

In case of partial oxidation, experimental results have shown that the TOC (total

organic carbon) of the electrolyte remains almost constant during electrolysis while the

concentration of 3-MP decreases. Hydroxyl radicals formed by water discharge on BDD

anode certainly participate in the oxidation of 3-MP to nicotinic acid as shown at Figure

2.9:

Fe CN[ ]6
3–

Fe CN[ ]6
4 –⁄
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Furthermore there is no indication of electrode deactivation during 3-MP oxidation

under these experimental conditions.

Preparation of powerful oxidants

The production of oxidants can be performed either by a fast and direct reaction

involving one electron transfer or by an indirect mechanism assisted by electrogenerated

intermediates (hydroxyl radicals). The first type of reaction can lead to the formation of

powerful oxidants. Redox couples like Ag(II)/Ag(I), Ce(IV)/Ce(III) or Co(III)/Co(II)

were used with a high current efficiency that is not observed with other electrodes such

as Pt, Au or Sb-SnO2. The oxidation of Ag(I) to Ag(II) at BDD anode was studied in our

laboratory [22]. The electrogeneration of Ag(II) was performed in concentrated nitric acid

and the formation of an anodic peak, whose intensity was proportional to concentration

of Ag(I), was observed by cyclic voltammetry. Besides the high current efficiency, the

high anodic stability of BDD in acidic medium represents an important advantage

compared to Pt or Au electrodes.

The indirect process can be illustrated by the formation of peroxodisulfate, the

strongest oxidizing agent known. The oxidation requires a high overpotential in order to

minimize the reaction of oxygen evolution. Since the production of peroxodisulfate is

usually performed at platinum anodes, this process encounters some problems because of

the high corrosion rate, the cleaning of the corrosion products and additives (thiocyanates)

on Pt surface. The reaction has been investigated in our laboratory [23]. The optimal

conditions of temperature and sulfuric acid concentration were determined and the

production of peroxodisulfate was performed with a high current efficiency. This reaction

is assumed to be indirect, assisted by hydroxyl radicals (Equation 2.1):

 Figure 2.9 Scheme of 3-methylpyridine oxidation.

N N

+ 6 .OH

OH

CH3
O

- 4H2O
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 2.1

Waste water treatment

Although the biological treatment is the most economic process for waste water

treatment, it is not applicable to refractory organic pollutants, and electrochemical

oxidation becomes a very attractive alternative. The oxidation of some model organic

pollutants has been investigated at boron-doped diamond electrode in our laboratory. The

organic compounds can be classified in two main classes: simple carboxylic acids and

phenolic compounds. The oxidation of carboxylic acids was performed in the region of

water stability. No electrochemical activity was observed and the only difference caused

by the presence of organics was a decrease in the starting potential of water discharge.

This phenomenon can be explained by the presence and the mediation of electrogenerated

hydroxyl radicals, confirming the indirect mechanism [24]. 

Concerning the oxidation of phenolic compounds in the region of water

decomposition, the behavior was different. An anodic peak that corresponds to the

formation of phenoxy radical was observed [25] but the polymerization resulted in the

formation of a polymeric film and in the deactivation of the surface. Only an anodic

polarization at high potential has permitted the reactivation of the diamond surface.

In summary, electrochemical oxidation of organics at BDD electrode in the region of

water discharge has been performed with a large number of compounds (carboxylic acids,

alcohols, ketones, phenolic compounds, aromatic acids and soluble polymer). All the

oxidations can be achieved with high current efficiency. 

4. CLASSIFICATION OF ELECTROCHEMICAL REACTIONS

A general electrochemical process can be summarized in five steps (Figure 2.10).

Firstly, the mass transfer from the bulk solution to the electrode surface takes place. Then,

homogeneous or heterogeneous chemical reactions occur in the electrode surface region

associated to surface phenomena (adsorption, crystallization). These reactions are

followed by the electronic transfer at the electrode surface. Finally, the mass transfer from

the electrode surface to the bulk solution occurs.

2HSO4
–

2HO
•

+ S2O8
2 –

2H2O+→
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The electron transfer reaction is influenced by the nature and the structure of the

reacting species, the potential, the solvent, the electrode material and the adsorbed layers

on the electrode. In order to understand these influences (interactions between reactant

and electrode surface), microscopic theories have been developed based on two main

concepts, which are known as inner sphere and outer sphere electron transfer reactions.

4.1. Outer sphere electron transfer reaction

The term outer sphere is used to describe a reaction, in which the activated complex

maintains the coordination sphere originally present in the reactant species (Figure 2.11).

During outer sphere reactions, weak interactions between the electrode and the reactant

take place. The interaction maintains a distance of at least one solvent layer between the

reactant and the electrode surface. In this case, the kinetics of the reaction is not much

dependent on the electrode material. 

Nevertheless, the electrode material could influence the kinetics, even in the case of

outer sphere charge transfer, by affecting the electrical double layer and the Helmotz

layer structure. Since outer sphere reactions can be treated in a more general way than

inner sphere processes, for which specific chemistry and interactions are important, the

theory of outer sphere electron transfer is much more developed. Among the large outer

 Figure 2.10 Pathway of a general electrode reaction [26].
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sphere systems, Fe(CN)6
3-/Fe(CN)6

4- and IrCl6
2-/IrCl6

3- reactions are the most

frequently used. 

4.2. Inner sphere electron transfer reaction

A reaction is described in terms of inner sphere when the reactants share a ligand in

the activated complex (Figure 2.12). Therefore, both the reactant and the product species,

as well as the activated complex, are involved in very strong interactions with the

electrode surface (specific adsorption). This kind of reaction implies multistep electron-

transfer reactions [27]. Benzoquinone/hydroquinone reaction is known as a typical inner

sphere reaction that involves complex electron and proton transfer mechanisms.

5. ELECTROCHEMICAL CHARACTERIZATION TECHNIQUES 

The electrochemical behavior of a given electrode material as well as of a redox

system can be studied by different electrochemical techniques. 

5.1. Linear sweep voltammetry and cyclic voltammetry 

The voltammetry techniques, including linear sweep voltammetry (LSV) and cyclic

voltammetry (CV), are often used in electrochemistry [26]. The principle of these

methods is the linear variation of the potential with time. In LSV, the potential is swept

from an initial value Ei (Equation 2.2). 

 2.2

Cyclic voltammetry is known as a reversal technique, where the potential sweep

 Figure 2.11 Outer sphere reaction. M
represents the metal ion surrounded by
ligands.

 Figure 2.12 Inner sphere reaction. M
represents the metal ion surrounded by
ligands.

E t( ) Ei v– t=
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occurs between the limits Ei and Eλ (Equation  and Equation 2.4).

for the reduction sweep  2.3

for the oxidation sweep  2.4

where Ei and Eλ are the limits of potential (V), v the scan rate (V s-1) and t the time (s).

 Three cases have to be considered. The first one concerns reversible or Nernstian

systems, where the rate of electron transfer is high at the electrode surface so that the

species immediately adjust to the ratio predicted by the Nernst equation. The second case

is known as the irreversible systems, for which the rate of electron transfer is slow.

However, an alternative system exists, where the control is made simultaneously by the

electron transfer and the diffusion rate. This system is called quasi-irreversible, or mixed.

Reversible systems (Nernstian systems) [26]

We consider the reaction O + ne- R and assume a semi-linear diffusion. The

solution contains only species O and the electrode is initially at a potential of Ei, where

no reaction takes place. 

At the electrode surface, the rate of electron transfer is rapid. Therefore, the

concentrations of the species O and R are dependent on the time. From the resolution of

the Fick’s law and the Randles-Sevcik equation, the peak current, ip can be obtained, and

defined, at 25°C, as:

 2.5

where ip is the peak current (A), n the number of exchanged electrons, A the electrode

surface (cm2), DO the diffusion coefficient (cm2 s-1), CO
* the bulk concentration (mol cm-

3) and v the scan rate (V s-1).

The peak potential, Ep, is defined at 25°C as:

mV  2.6

where Ep is the peak potential (mV), n the number of electron exchanged, F the Faraday’s

E t( ) Ei v– t=

E t( ) Eλ vt+=

→

ip 2.69 10
5×( )n

3 2⁄
ADO

1 2⁄
CO

∗
v

1 2⁄
=

Ep E1 2⁄ 1.109
RT
nF
-------–

28.5
n

----------= =
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constant (96485 C mol-1), R the gas constant (8.314 J mol-1 K-1) and T the temperature

(298.15 K).

Sometimes, the peak is difficult to well define and it is easier to consider the half-

peak potential Ep/2 that is the potential corresponding to the half peak current, ip/2.

mV  2.7

E1/2 is located just about midway between Ep and Ep/2, and that a convenient

diagnostic for Nernstian wave is:

 mV  2.8

Ep is independent of the scan rate and ip is proportional to v1/2. All equations are valid

for linear sweep voltammetry. Two parameters are important in cyclic voltammetry and

give a lot of information about the system. These are the ratio of the peak currents (ipa /

ipc) and the separation of the peak potentials (Epa - Epc). In case of a Nernstian behavior,

the ratio ipa / ipc is equal to 1 and Epa - Epc is always close to 59/n mV at 25°C.

Irreversible systems [26]

Considering the reaction O + ne- R for a one-step reaction, the peak current, ip, is

given by the following equation:

 2.9

where α is the transfer coefficient and the other units are similar to that of Equation 2.5.

For the irreversible system, the peak potential, Ep, is defined as:

 2.10

where E0 is the apparent potential (V) and k0 is the standard electrochemical rate constant

(cm s-1).

Ep 2⁄ E1 2⁄ 1.09
RT
nF
-------+ E1 2⁄

28
n

------+= =

EP EP 2⁄– 2.2
RT
nF
------- 56.5

n
----------= =

→

ip 2.99 10
5×( )nα1 2⁄

ACO
∗
DO

1 2⁄
v

1 2⁄
=

Ep E
0′ RT

αF
------- 0.78

DO
1 2⁄

k
0

------------
 
 
  αFv

RT
---------- 

  1 2⁄
ln+ln+–=
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As shown in the reversible system, it is sometimes easier to consider the half peak

potential Ep/2, the following relation is obtained:

mV at 25°C  2.11

Quasi-irreversible system [26]

In this system, one can consider that the separation between the peak potential

increases with the scan rate and is higher than 59/n mV. The peak current is no

proportional to v1/2 anymore. The shape of the peak and its parameters are function of the

parameter Λ [26]. 

 2.12

If the diffusion coefficients are equal, Equation 2.12 becomes:

 2.13

The wave shape is function of k0, ν and Eλ. If Eλ is at least 90/n mV beyond the

cathodic peak, the effect of Eλ is small, the shape wave depends on the parameter Ψ:

 2.14

Considering that  and , Equation 2.14 becomes the

Nicholson-Shain equation:

 2.15

When 0.3 < α < 0.7, the separation of peak potential Ep is independent of α and

depends only on Ψ. Nicholson and Shain [28] have calculated this dependence, whose

results are summarized in the Table 2.1.

Ep Ep 2⁄– 1.857
RT
αF
------- 47.7

α
----------= =

Λ k
0

DO
1 α–( ) DR

α( )nF
RT
-------v

1 2⁄
-------------------------------------------------------=

Λ k
0

DO( )nF
RT
-------v

1 2⁄
------------------------------------=

Ψ
DO DR⁄( )α 2⁄

k
0

πDO
nF
RT
-------v 

  1 2⁄
-------------------------------------=

DO DR⁄( )1 2⁄ γ= a
nF
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-------v=
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 Table 2.1 Values of Ep as a function of Ψ. T = 25°C, α = 0.5, n = 1.

5.2. Steady-state polarization [26]

This technique consists to apply a potential difference between the reference

electrode and the working electrode. The current response is recorded when the steady

state is reached. 

The kinetics of the process is strongly affected by the potential of the electrode. The

relation between the reaction rate and the applied potential is expressed by the terms of

standard rate constant k0, the exchange current i0 and the transfer coefficient α. The one-

step process can be written as:

 2.16

where kc and ka represent the heterogeneous rate constants of the reduction and oxidation

reactions, respectively, and n is the number of exchanged electrons. When the rates are

equal, the system is at equilibrium. The total current density j is composed of both
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cathodic jc and anodic ja part:

 2.17

 2.18

where  and  are the concentrations (mol m-3) of the oxidized and the reduced forms

at the electrode surface at time t, respectively and F the Faraday’s constant (A s mol-1).

The total current density j is the sum of the two components:

 2.19

A reaction can be represented in terms of progress along a reaction coordinate as

shown in Figure 2.13. 

The configurations of the reactant and the product intersect at the transition state

 Figure 2.13 Simple representation of standard free energy changes during
a faradaic process. (a) At a potential corresponding to the equilibrium, (b)
At a potential higher than the equilibrium value, (c) at a potential lower
than the equilibrium value. O/R = redox couple [26].
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(where the electron transfer occurs). The relative rates are represented by the height of the

energy barriers. When the oxidation rate is equal to the reduction rate (Figure 2.13a), the

potential is equal to Eeq and the system is at equilibrium. If the potential becomes more

positive (Figure 2.13b), the energy of the reactant electron is lower. Therefore, the curve

corresponding to O drops and the oxidation reaction is favored. On the contrary, at lower

potential (Figure 2.13c), the oxidation barrier is raised and the reduction reaction is

favored.

The influence of the potential on the rate of an electrode process is described by the

following equations:

 2.20

 2.21

where E is the potential (V) and 0 < α < 1.

Combining the two previous equations with Equation 2.19, we obtain:

 2.22

At the standard redox potential E0, the reduction and oxidation rate constants kc and

ka have the same value, equal to the standard rate constant k0, which is defined by:

 2.23

A large value of k0 (in the range of 10-2 to 10-1 m s-1) describes a system that can

reach  the equilibrium quickly, which is typical of outer sphere reactions. On the contrary,

a small value means a very slow process. 

Combination of Equation 2.22 and Equation 2.23 yields to:

 2.24

From the definition of the overpotential (Equation 2.24):

   2.25
and the Nernst equation (Equation 2.26):
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 2.26

when , j can be written as (Equation 2.27):

 2.27

From Equation 2.24, Equation 2.25 and Equation 2.26, we obtain

 2.28

where j0 is the exchange current density, defined by:

 2.29

When , 

 2.30

If the solution is well stirred or the current very low, the surface concentration is

almost the same than the bulk value. Therefore, Equation 2.28 becomes the Butler-Volmer

equation:

 2.31

Two different limit cases can be distinguished:

 Figure 2.14 Representation of the Butler Volmer equation as a function of α.
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Low overpotential (η < 10 mV)

In this case,  and the Butler-Volmer equation can be simplified:

 2.32

The graphical representation of j as a function of overpotential allows to define the

the exchange current j0 (Figure 2.15).

The charge transfer resistance Rct, is equal to the ratio η/j and can be written as:

 2.33

Large overpotential (η >120 mV)

This represents an important limiting case of the Butler-Volmer equation. In this

case, high potentials are encountered, the reaction becomes irreversible, and one of the

exponential term becomes negligible. 

For a high anodic overpotential:

 2.34
and

 Figure 2.15 j-η  relation for low overpotential, n = 1.
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 2.35

The i-η relation is called Tafel relation and is useful to determine kinetic parameters.

Two branches are defined corresponding to both anodic and cathodic slopes.

The slope of the Tafel line gives the transfer coefficient α and the intercept

determines the exchange current density j0 (Figure 2.16).

5.3. Rotating disk electrode [26]

The term of hydrodynamic method concerns the methods involving convective mass

transport of reactants and products. The main advantage is that a steady state is quickly

reached, resulting in a high precision of the measurements. The method to obtain well-

defined diffusion conditions was developed by Levich, who first introduced and

described the rotating-disk electrode (RDE). A further development by Frumkin and

Levich is the rotating ring disk electrode (RRDE). 

The rotating disk electrode (RDE) consists of a disk of the electrode material

embedded in a rod of insulating material, typically made of Teflon, epoxy resin or another

plastic. The rod is attached to a motor directly by a chuck or by a flexible rotating shaft

and rotates at a certain angular velocity ω (s-1), where ω = 2πf (f is the frequency in rad

s-1). The electrical connection is made by a brush contact. The motion of the electroactive

species is due to the rotation of the electrode (Figure 2.17 and Figure 2.18).

 Figure 2.16 Tafel plot for anodic and cathodic parts of the current-
overpotential curve. α = 0.5, T = 25°C, j0 = 10-6 A cm-2.
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From the solution of the convective-diffusion equation, the steady-state limiting

current density can be written as:

 2.36

where jlim is the limiting current density (A cm-2), n the number of exchanged electrons,

D the diffusion coefficient (cm2 s-1), ω the angular velocity (s-1), v the scan rate (V s-1)

and the bulk concentration (mol cm-3).

This equation is called the Levich relation. From the Nernst diffusion layer model

and the first Fick’s law, one can define δ, the distance from the electrode at which the

convection maintains the concentrations of all species uniform and equal to the bulk

values (Equation 2.37). Below this value, no solution movement takes place and the mass

transfer occurs by diffusion.

 2.37

Considering a nernstian reaction and coupling the Nernst equation with the equation

for a voltammetric wave, one obtains:

 Figure 2.17 Vector representation of fluid
velocities near a RDE. 

 Figure 2.18  Schematic resultant streamlines.
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 2.38

where

 2.39

For a irreversible one-step reaction, the current is:

 2.40

From the Fick’s law, one obtains:

 2.41

Defining iK as the current in absence of any mass-transfer effects (when the

concentration at the electrode surface is equal to the one in the bulk):

 2.42

one obtains the Koutecky-Levich equation:

 2.43

6. HYDROXYL RADICALS

In biology and medicine, free radicals are now of intense interest because they are

involved in many different aspects of metabolism, ranging from oxygen consumption to

xenobiotic metabolism. Basically, free radicals are molecules containing an odd electron

that is associated with the molecular system. Hydroxyl radicals are known to be highly

reactive, chemically aggressive and, therefore, short-lived species. 

In a first place, we will list several pathways that lead to the formation of hydroxyl

radicals. Then, the methods of hydroxyl radicals detection will be explained. 
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6.1. Production of hydroxyl radicals

  6.1.1. Electrochemical production and reactivity

The electrochemical production of hydroxyl radicals and their role in electrochemical

oxygen transfer reactions depend on the electrode material used. The mechanism of

hydroxyl radicals formation depends also on the potential. These radicals are then more

or less strongly adsorbed at the surface. The aim of this part is to recapitulate the behavior

of platinum and boron-doped diamond electrodes toward OH radicals.

The mechanism of the water activation reaction implies to deal with two different

mechanisms depending on the potential; via either the dissociative adsorption of water or

the electrochemical water discharge. 

Formation of OH radicals via the dissociative adsorption of water

Platinum is a typical electrocatalytic material. This type of material implies the

formation and the breaking of bonds between species and adsorption sites. On this

electrode material, the electrochemical oxygen transfer reaction occurs as follow

(Equation 2.44):

 2.44

At a potential lower than the thermodynamic one for water discharge to O2, the water

activation is described by the Equation 2.45, followed by Equation 2.46. These reactions

take place at a low potential (about 0.4 V vs SHE) and lead to the strong adsorption of

hydroxyl radicals on the platinum surface.

• dissociative adsorption of water:

  2.45

• hydrogen discharge:

  2.46

Once the hydroxyl radicals are produced, the reaction with an organic compound RH

can occur via two possible mechanisms: Eley-Rideal (Equation 2.47) or Langmuir-

RH H2O+ RO 3H
+

3e
–

+ +→

H2O( )ads H
•( )ads HO

•( )ads+→

H
•( )ads H

+
e

–
+→
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Hinshelwood (Equation 2.48):

  2.47

  2.48

In the first mechanism (Eley-Rideal), only hydroxyl radicals are strongly adsorbed, while

for Langmuir-Hinshelwood, both hydroxyl radicals and organic compounds are strongly

adsorbed at the electrode surface. The adsorption of the organic compound is performed

by the first step of the inner sphere electron transfer anodic reaction (RH (RH)ads).

As example, we will illustrate the mechanistic aspects of methanol oxidation on

platinum-based electrode with the study of different steps (adsorption steps and involved

intermediates). This mechanism is not well known but is fully investigated because of the

importance of methanol in fuel cells applications. The determination of the

electrocatalytic reaction steps requires information not only on the activity of the

electrode, but also on the nature of the different species involved, including adsorbed

species, intermediates and final products. 

From a thermodynamic point of view, methanol can be oxidized at a very low

potential (0.046 V vs SHE). However, it is well known that methanol can only be oxidized

at potentials greater than 0.5 V, in acidic medium on a platinum electrode. This behavior

can be explained by the slow electrooxidation kinetics, which leads to high overpotentials. 

The first step of the reaction is the adsorption of methanol, immediately followed by

its dissociation into several adsorbed species [29].

 2.49

 2.50

or     2.51

 2.52

or  2.53

 2.54

RH HO •( )ads+ RO 2H
+ 2e

–+ +→

RH( )ads HO
•( )ads+ RO 2H

+
2e

–
+ +→

→

Pt CH3OH( )sol+ Pt CH3OH( )ads–→

Pt CH3OH( )ads– Pt CH2OH
•( )ads– Haq

+
e

–
+ +→

Pt CH3OH( )ads– Pt CH3O
•( )ads– Haq

+
e
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+ +→
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•( )ads– Pt CHOH
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e
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+

+–→ e
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+
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–
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or  2.55

Reactions 2.54 and 2.55 lead to the formation of formyl-like species ( CHO)ads,

which are spontaneously dissociated on pure platinum:

  2.56

The strongly adsorbed CO species are responsible for the poisoning of the electrode

active sites.  intermediates can be considered either as active intermediates

that lead to the final oxidation product or precursors of the poisoning species. The

oxidation of these species requires the presence of OH species, which are formed by the

dissociative adsorption and the hydrogen discharge (Equation 2.45 and Equation 2.46)

arising from the dissociation of water according to the global reaction:

 2.57

Pt-(OH)ads reacts then with Pt-( CHO)ads to form CO2 either directly (2.58) or via

Pt-( COOH)ads (2.59, 2.60):

 2.58

 2.59

 2.60

At higher potential, the poisoning CO can be oxidized:

 2.61

or  2.62

The previous reaction (2.62) is followed by reaction 2.60. The rapidity of reaction

2.56 is the main reason for the fast poisoning phenomenon observed on pure platinum. To

improve the kinetics of the overall reaction, the adsorption properties of Pt have to be

modified. One alternative is to increase the adsorbed OH coverage at low potentials by

adding a second metal, on which water is more easily dissociated at lower potential.

Pt CH2O
•( )ads Pt CHO

•( )ads H+– aq
+

e
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+→–

•
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+

e
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+
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•
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+ + +→

Pt COOH
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+
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Ruthenium is known to be an efficient second component to enhance the electrooxidation

of methanol at platinum. Indeed, its presence increases the number of adsorbed OH

species on the electrode surface at low potentials. Moreover, Ru minimizes the formation

of CO poisoning species. The mechanism described above is thus modified by the

promoting effect of Ru and becomes bifunctional. In this case, adsorbed OH are produced

according to reaction 2.57 at platinum but also at ruthenium according to the following

reaction:

 2.63

The oxidation of formyl (Equation 2.58) is also performed by Ru:

 2.64

The removal of adsorbed CO by oxidation with adsorbed OH may occur at

platinum sites (reaction 2.61 or reaction 2.62 followed by 2.60) or at Ru sites:

 2.65

or  2.66

The reaction 2.66 is followed by the reaction 2.60. Some CO species migrate from

platinum sites and are adsorbed at ruthenium sites. Therefore, it is also possible to

consider the similar reactions between Ru-( CO)ads and Ru-(OH)ads. 

In summary, in the case of methanol oxidation, three points have to be fulfilled: the

dissociation of MeOH, the production of a sufficient concentration of adsorbed

oxygenated species at low potential, and the easy removal of the poisoning species (or

their limitation). Platinum and ruthenium fulfill the two first conditions but the third could

be further improved by a third metal (e.g. molybdenum).

The oxidation of methanol at Pt electrode and Pt-Ru electrode can be illustrated by

Figure 2.19 and Figure 2.20 [30]. 

Ru H2O+ Ru OH( )ads– Haq
+

e
–

+ +→

Pt CHO
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+
2e

–
+ + + +→

•
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+
e

–+ + + +→

Pt CO
•( )ads– Ru OH( )ads–+ Ru Pt COOH

•( )ads–+→

•
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Electrochemical formation of OH radicals via water discharge

When the potential is higher than the thermodynamic one for water decomposition,

the formation of hydroxyl radicals is performed in one step via the electrochemical water

discharge. 

 2.67

The strength of the electrode - OH interaction depends on the nature of the electrode

material. The relation between the electrode - OH interaction and the reactivity of these

hydroxyl radicals will be discussed in detail in Chapter 3.

Redox potential of OH radicals

The formation of free hydroxyl radicals in aqueous solution necessitates a high

anodic potential. Even if the measure of this potential is difficult because of the high

reactivity of OH radicals, some calculated values were determined. The values are based

on gas-phase measurements of standard Gibbs energy, and assumptions about the free

energy in solution. Schwarz et al. [31, 32] have investigated the generation of free radicals

 Figure 2.19 Reaction scheme of the possible
methanol electrooxidation process at Pt
electrode.

 Figure 2.20 Reaction scheme of the possible
methanol electrooxidation process at Pt-Ru
electrode.

H2O HO
•
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e
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•
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by radiolysis of aqueous solutions. Free energies and heats of solution have been

estimated from the gas phase values to determine the half-cell potentials. OH radicals

appear as the strongest oxidant with a potential of 2.65 V vs SHE in acidic medium [33,

34]. Other references estimated the OH redox potential between 2.6 and 2.8 V [34-37]. 

OH radicals are highly oxidizing and widely used for water treatment. Table 2.2

summarizes the redox potential of some chemical systems known to treat water. 

 Table 2.2 Redox potential of some chemical systems used for water treatment [38].

In neutral solution, its potential was found to be equal to 1.8 V. The high overvoltage

for oxygen evolution on BDD electrode allows this reaction. The crucial point in this

work is to define if, in the case of BDD electrodes, hydroxyl radicals can be considered

as free hydroxyl radicals. In that case, their reactivity should be similar to the hydroxyl

radicals produced chemically.

Electrochemical Fenton process [39]

The Fenton reaction, which is well known to chemically produce hydroxyl radicals

will be explained in detail in the next paragraph. This reaction involving both ferrous iron

and hydrogen peroxide can be used electrochemically according to two processes:

cathodic and anodic Fenton processes. In cathodic process, Fe(II) can be directly added

or produced by the reduction of Fe(III) at the cathode:

 2.68

Oxidant Redox potential (V vs SHE)

F2 3.03

HO 2.80

O 2.42

O3 2.07

H2O2 1.78

Cl2 1.36

•

•

•

Fe
3 +

e
–

+ Fe
2 +→
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H2O2 may be also either added or formed by the reduction of O2 at the cathode:

 2.69

The cathodic process takes place at neutral pH. The main advantage of this technique

is the continuous production of Fe(II) and hydrogen peroxide.

In the anodic Fenton process, an iron electrode is used as anode and plays the role of

source of ferrous ions. The reaction occurs under acidic pH conditions and with a high

current efficiency.

  6.1.2. Chemical production [40]

Fenton reaction

This method is probably the oldest and the most used technique to produce hydroxyl

radicals. In 1894, H. J. H. Fenton [41] reported that ferrous ions strongly promote the

oxidation of malic acid by hydrogen peroxide. Subsequent works have shown that the

combination of ferrous salt and H2O2 produces an effective oxidant of a wide variety of

organic substances such as phenols and herbicides. This mixture was called «Fenton’s

reagent». The Fenton reaction is, compared to other methods, inexpensive and requires no

special devices. However, this method has some disadvantages such as the addition and

the consumption of ferrous salts and the requirement of an aqueous medium, in which the

solubility of most organics is not satisfactory. Hydrogen peroxide is not a strong oxygen

transfer agent, but the oxidation of organics is improved in the presence of Fe2+ ions

because the reaction leads to the formation of highly oxidizing OH radicals according to

Fenton’s mechanism [42]. The first step is the initiation reaction, in which the ferrous ions

are oxidized by H2O2: 

 2.70
 

The radical chain reactions lead to the oxidation of the organic compounds, either by

hydrogen abstraction reaction, redox reaction or electrophilic addition. The parameters of

the reaction are optimized in order to favor the addition of OH group and the abstraction

of hydrogen. An excess of H2O2 or Fe2+ might be detrimental because theses species can

react with some of the intermediates like OH radicals:

O2 2H
+ 2e

–+ + H2O2→

Fe
2 +

H2O2+ Fe
3 +→ OH

–
HO

•+ +
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 2.71

 2.72

Therefore, it is necessary to optimize the ratios [H2O2]/[Fe(II)] and [Fe(II)]/[R] in

order to minimize these reactions. The pH is also a very important parameter. Generally,

the pH of the solution is adjusted to a value between 3 and 5, where the degree of

oxidation of organics with Fenton is maximum [43]. When the pH is too high, the iron

precipitates in Fe(OH)3 and decomposes the hydrogen peroxide in oxygen. It has been

found that the addition of some organic ligands (biodegradable and generally partially

consumed in the process) enables the process to be carried out at higher pH by

complexing ferric ions [39]. The mechanism of Fenton process includes a lot of reactions.

Among the numerous intermediates, ferryl ion (FeIVO2+) was found and is supposed to

defavor the formation of hydroxyl radical [39].

H2O2 photolysis

UV-oxidation processes generally involve the generation of OH radicals through UV-

photolysis of hydrogen peroxide [44]. The reaction between hydrogen peroxide and UV

light leads to the formation of two hydroxyl radicals by homolytic cleavage of H2O2

(Equation 2.73)

 2.73

Practically, this technique consists in illuminating an hydrogen peroxide solution

with a light source in presence of an organic compound. The reaction yield depends on

the wavelength that has to be lower than 280 nm. It is assumed that the yield is equal to

two radicals formed per photon absorbed by 254 nm. The rate of H2O2 photolysis

increases with pH. Hydroxyl radicals are very unstable and tend to react with the

neighboring chemical species (especially hydrogen peroxide), making the process less

effective. 

The production of hydroxyl radicals can be also performed by both photolysis and

Fenton reaction in a process called photoassisted Fenton. In this case, the wavelength (λ

Fe
2 +

HO
•

Fe3 + OH
–

+→+

H2O2 HO
•

+ H2O→ HOO
•

+

H2O2 hν 2HO
•→+
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> 300 nm) is adapted to carry out the transformation of Fe(III) complexes to Fe(II) rather

than direct dissociation of H2O2:

 2.74

The system can also be improved by addition of ferrioxalate. The irradiation of

ferrioxalate in acidic medium produces carbon dioxide and ferrous ions (free or

complexed) that provide a source of Fe2+ to continue the Fenton reaction. This method is

very efficient for the treatment of compounds difficult to oxidize such as pesticide,

chlorophenols and nitrophenols [45].

Photocatalysis

In this process, a catalyst (generally TiO2) produces electron-hole pairs by

irradiation:

 2.75

Since electrons are able to produce a superoxide radical ion, the holes oxidize

adsorbed water or adsorbed hydroxyl ions to produce OH radicals (Equation 2.76,

Equation 2.77):

 2.76

 2.77

Water radiolysis

The water radiolysis consists in irradiating an air-saturated aqueous solution.

Generally, the most used source is 60Co(γ) but electron beam can be also used. The

irradiation results in the formation of electronically excited states and free radicals.

Hydroxyl radicals are produced during the first 30 seconds. After this time, other

intermediates are produced and may interfere with OH radicals.

Fe OH( )2 +
hν+ Fe

2 +
HO

•
+→

TiO2 hv+ e
–

h
+

+→

TiO2 h
+( ) H2Oads+ TiO2 HOads

•
H

+
+ +→

TiO2 h
+( ) HOads

–
+ TiO2 HOads

•
+→
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Ozone water system

Ozone is firstly produced by electric discharge of water and is decomposed in basic

medium according to a chain reaction:

 2.78

 2.79

 2.80

 2.81

 2.82

 2.83

 2.84

Sonolysis [46]

Ultrasound is known to produce cavitation in liquid media. Cavitation bubbles are

generated during the rarefaction cycle of the acoustic wave. The sonolytical cleavage of

water molecules produces very reactive OH radicals [47]:

 2.85

The direct confirmation of the production of radicals was reported for the first time

in 1983 by Makino et al. using electron spin resonance and DMPO as spin trap [48]. The

free radicals may further proceed some secondary reactions to produce hydrogen peroxide

or water.

6.2. Detection of hydroxyl radicals 

Hydroxyl radicals are considered as a one of the numerous reactive oxygen species

(ROS). OH radicals are quite reactive and readily damage biological molecules, including

DNA. Therefore, their presence in biological systems is widely investigated. Several

HO
–

O3+ O2 HO2
–

+→

HO2
–

O3+ HO2
•

O3
•–

+→

HO2
•

H
+

O2
•–

+

O2
•–

O3+ O2 O3
•–

+→

O3
•–

H
+

+ HO3
•→

HO3
•

HO
•

O2+→

HO
•

O3+ HO2
•

O2+→

H2O HO
•

H
•

+→



Hydroxyl radicals

39

methods have been developed to detect them, including ESR methods, which measure the

electron paramagnetic resonance spectrum of a spin adduct derivative after spin trapping,

or chromatographic methods, which determine the trapping products after the reaction

with specific scavengers. Chromatographic methods are more used because of their ease

of use. The specific markers currently used are all based on the ability of hydroxyl radicals

to react with aromatic compounds (e.g salicylic acid) to produce hydroxylated

compounds.

  6.2.1. Direct detection

The direct detection and identification of short-lived free radicals by electron spin

resonance (ESR) is theoretically possible. However, this technique is valid only if the

radicals are produced in relatively high concentrations. The ESR technique is considered

as the grade method for detection of free radicals. The ESR, also known as Electron

Paramagnetic Resonance (EPR), is a technique used for the detection and the

identification of compounds containing an odd number of electrons (transition metal

species, radicals...). The sensitivity of this method allows the detection of concentrations

as low as 10-8 M. Basically, the ESR measurement is based on the adsorption of the

radiation of frequency, v, by paramagnetic species contained in a magnetic field H. This

field creates a splitting of the unpaired electron energy levels equal to gµBH, where g is

the spectroscopic splitting (also known as g factor) and µB is the Bohr magneton

(5.788 10-5 eV T-1). The transitions are observed by adsorption of the incident radiation

when the following relation is satisfied:

 2.86

The ESR spectrum is recorded by measuring the adsorption as a function of H while

the magnetic field strength is scanned. The additional splitting of the energy levels by

neighboring protons and other nuclei having magnetic moments and interacting with the

unpaired electron leads to the hyperfine structure of the ESR spectrum.

⋅

E∆ hv gµBH= =
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The hyperfine splitting contains the information about the radical. These values are

strongly influenced by the solvent. Buettner [49] has reviewed some spin adduct

parameters for different solvents and different methods of radical production. In addition

to the detection limit, some radicals, even if present at «high» concentrations, are not

observable at room temperature as their spin relaxation times are very short, making their

line width too broad to be observed by this technique. Spin trapping method allows to

overcome these problems.

  6.2.2. Indirect detection by spin trapping

Spin trapping is the most used method to detect hydroxyl radicals. This method was

firstly investigated by Janzen [50] with the reaction of dehydrogenation of

hydroaromatics with hot-benzene and thermal decomposition of nitro aromatics. Spin

trapping consists in adding a spin trap to the short-lived radical, leading to the formation

of a detectable radical called «spin adduct»:

 Figure 2.21 Principles of the ESR analysis. (a) Energy-level
diagram of a free electron in a magnetic field, (b) ESR adsorption
vs magnetic field, (c) Derivative ESR signal obtained after phase-
sensitive detection [26].
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 2.87

Spin traps are considered as specific markers and they are all based on the ability of

hydroxyl radical to attack an aromatic compound. 

The choice of the spin trap is dictated by the method of analysis of the spin adduct

(electron spin resonance, UV-visible, chromatography) and its sensibility. Spin traps

commonly used are nitrones or nitroso compounds that can form conjugates with some

highly reactive free radicals to give rise nitroxide radicals (spin adduct). Nitroxides are

relatively stable because the unpaired electron is stabilized by resonance. In this work,

three spin traps were used:

5,5-dimethyl-1-pyrroline-N-oxide

5,5-dimethyl-1-pyrroline-N-oxide, called DMPO, is a diamagnetic nitroso

compound, able to form long-lived nitroxide radicals that are detectable by ESR at room

temperature. DMPO is thus widely used and some examples can be found in the literature

[51, 52].

N-tert-butyl-α-phenylnitrone

N-tert-butyl-α-phenylnitrone (PBN) is also a common spin trap that presents some

advantages. It is a stable compound, not so sensitive to light or oxygen. It is also soluble

in a large number of solvents [50]. Its reaction with hydroxyl radicals is given below:

 Figure 2.22 Reaction scheme of spin trapping between hydroxyl
radicals and DMPO.
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p-nitrosodimethylaniline

Some works have been made with p-nitrosoaniline (RNO) as spin trap. Nitroso

compounds undergo radicalar addition reactions, where the electrophilic radical (e.g OH

radical) attacks the nitroso group by electron transfer to form a - NOOH radical group. 

The resulting adduct is very stable and incolore (while the RNO solution is yellow).

RNO is often used as a standard substance in competition kinetics studies to determine

the rate constant for the reaction of OH radicals with RNO. Neta et al. have firstly

determined the rate constant between ethanol and OH radical, and concluded that k =

1.25 1010 M-1 s-1 for the reaction of OH radicals and RNO [53]. For spin trapping studies,

it is necessary to be sure that only the concerning radical reacts with the spin trap. Kraljic

et al. [54] have demonstrated that, in alkaline medium, RNO can not be attacked by

peroxo intermediates or peroxide anion. Therefore, RNO seems to be a good candidate to

investigate spin trapping.

Because of the high dipolar moment of its chromophore group, RNO can absorb in

the visible with a maximum of 440 nm in neutral or basic medium and the analysis is

generally done by UV-Visible measurements. 

 Figure 2.23 Reaction scheme of spin trapping between hydroxyl 
radicals and PBN.

 Figure 2.24 Reaction scheme of spin trapping between hydroxyl 
radicals and RNO.
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7. HYDROXYLATION OF AROMATIC COMPOUNDS

 Firstly, we will deal with the hydroxylation of phenol. This reaction is well

investigated, and can serve as a model to understand the hydroxylation of salicylic acid

(because of the structure similarities).

7.1.  Hydroxylation of phenol

Hydroxyl radicals can react via hydrogen abstraction or electrophilic attack. The

mechanism of OH addition on aromatic compounds is complex.

  7.1.1. Chemical hydroxylation

As seen previously, hydroxyl radicals can be produced by several methods such as

Fenton reaction, UV-photolysis, sonolysis... Various ortho:meta:para isomer ratios of

hydroxyphenol have been reported by hydroxylation of phenol with hydroxyl radicals

produced by chemical methods. 

The first step of this reaction is a very fast electrophilic attack of the hydroxyl radical

on the aromatic ring, which leads to the formation of a hydroxycyclohexadienyl radical

as intermediate. Afterwards, the radical undergoes different reactions, depending on the

conditions. In absence of an oxidizing reagent, dimerization and/or dismutation occurs. In

the presence of oxidizing agents, the radical is oxidized in hydroxylated compounds. In

the case of phenol, the first step could produced four dihydroxycyclohexadienyl radicals

(in ipso, ortho, meta and para positions). The OH radical exhibits a strong preference for

the addition at the positions activated by the OH group (electron rich ortho and para sites).

The complex addition of hydroxyl radical on aromatic compounds has been widely

investigated on several derivatives (phenol, benzoic acid, salicylic acid, benzene,

toluene...). In all experiments of phenol hydroxylation, the major product is catechol,

meaning a preferential attack in ortho position [55-58]. Several investigations were

focused on the possible explanation of this preferential attack.

Raghavan et al. [56] studied in detail the hydroxylation reaction of phenol (Figure

2.25). They considered that, theoretically, the reaction between OH and phenol may

produce three hydroxylated isomers (ortho, meta and para isomers) (the ipso-isomer was

not considered because its oxidation reaction does not form a dihydroxylated compound).

They assumed that each oxidation is performed with a rate constant k(ox)o, k(ox)m and

•

•
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k(ox)p, respectively. These oxidation reactions are in competition with reactions that

produce a phenoxyl radical (Figure 2.25). 

The hydroxylation products depend on at least two factors: 

i) the nature of the directing group 

ii) the nature of oxidant 

The rate constants depend on the nature of oxidant and also on the isomer structure

of the dihydroxycyclohexadienyl radical. The yields of catechol (ortho isomer),

resorcinol (meta isomer) and hydroquinone (para isomer) were investigated and the rate

constants were determined at pH 6. The following relation was established: k(ox)m/

k(deh)m < k(ox)p/k(deh)p< k(ox)o/k(deh)o. On the basis of their investigations, the

fractions of OH attacks at the ortho, meta and para positions of phenol are 0.48, 0.08 and

0.36, respectively, corresponding to a majority of catechol. These results show the strong

preference of the electrophilic OH radical for the ring position activated by the phenolic

OH group.

Santos et al. have reported the catalytic oxidation of phenol in aqueous phase [57]

and have compared the oxidation mechanism of several experiments, with or without

catalysts. Irrespective of the assay, the first reaction is the hydroxylation in ortho or para

positions leading to the formation of catechol or hydroquinone, respectively. Scheck et al.

[58] have studied the degradation of phenol by UV radiation and obtained a majority of

1,2-dihydroxybenzene (catechol) as well as 1,4-dihydroxybenzene (hydroquinone), as

expected by the various mechanisms.

 Figure 2.25 Hydroxylation and dehydratation reactions of phenol [56].
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Liu et al. [59] have investigated the influence of pH (from 2 to 12), the solvent effect

(acetone, acetonitrile and water) and the molar ratio (phenol/H2O2) effect on the phenol

hydroxylation by iron(II) phenanthroline. In all conditions, catechol was the major

product (the ratio hydroquinone/catechol was equal to about 0.45).

The preferential attack in ortho position can be explained by the resonance forms of

phenol:

Indeed, as regards on the resonance forms of phenol (Figure 2.26), an electrophilic

attack is more likely to occur at ortho and para positions. However, there are two ortho

positions for one para position, explaining the majority of catechol compared to

hydroquinone.

  7.1.2. Electrochemical hydroxylation

The oxidation of phenol using different electrode materials has been widely

investigated in the last two decades. The interesting feature of this product is that it is

considered to be an intermediate product in the oxidation pathway of higher molecular

weight aromatic hydrocarbons. Thus, it is usually taken as a model compound for

advanced waste water treatment. 

In our laboratory, the electrochemical oxidation of phenol at boron-doped diamond

has been investigated [60, 61]. The detected intermediates were hydroquinone (and

benzoquinone) and catechol. In this case, the ortho- and para- selectivity is reversed.

Indeed, on the contrary of the chemical hydroxylation (as shown before), the attack of

hydroxyl radicals leads to a majority of the para-isomer. 

Comninellis et al. [60] have compared the electrochemical oxidation of phenol with

the chemical oxidation performed by H2O2 with acid catalyzed (HClO4, H3PO4), Fenton

reaction (Fe2+) and the zeolite catalyst TS-1 [62]. In terms of  ratio  between

hydroquinone and catechol, the following results were found:

 Figure 2.26 Resonance forms of phenol.
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 Table 2.3  Comparison between electrochemical and three types of phenol chemical oxidation.

According to the previous results, the product distribution for acid catalyzed and

Fenton reaction is a majority of catechol compared to the concentration of hydroquinone.

The third case, with the zeolite catalyst TS-1, gives a ratio of 1. 

In a similar system (TS-1/H2O2), the para-selectivity (forming hydroquinone and

benzoquinone) was enhanced with the coexistence of benzene or cyclohexane [63]. The

ratio varies, in this case, between 2 and 5. This behavior is attributed to the coexistent

bulky molecules imposing significant steric restriction on the transition state. The

restriction is enhanced by the presence of phenol and benzene within the medium pores

of TS-1. However, Chen et al. [64] have shown that a reversal of selectivity (between

catechol and hydroquinone) occurs depending on whether the medium is acidic or basic.

Concerning the phenol oxidation carried out on Ti/IrO2 anode, the ratio R (as defined

in the chemical oxidation part) was 5, meaning a higher selectivity for hydroquinone than

for catechol, as found with diamond electrode [60]. 

7.2. Hydroxylation of salicylic acid

Due to the ability of hydroxyl radicals to attack the benzene rings of aromatic

molecules, the oxidation of salicylic acid (SA) is also a good method to investigate the

presence of hydroxyl radicals. Salicylic acid is often used in biology because of its lack

of toxicity. Indeed, SA can be safely administered to humans in doses that are sufficient

to scavenge OH radicals. Moreover, the analysis of SA and its hydroxylation

intermediates are very easy using chromatography techniques. Figure 2.27 represents the

mechanism of SA hydroxylation. The attack of hydroxyl radicals on aromatic compounds

leads to the formation of dihydroxylated products [65]. In the case of salicylic acid, the

chemical hydroxylation results in the formation of 2,3- and 2,5-dihydroxylated benzoic

acid (2,3- and 2,5-DHBA), with a higher amount of 2,3-DHBA.

Acid catalyzed Fenton reaction
Zeolite catalyst 

TS-1
Electrochemical
Ti/IrO2 anode

0.71 0.4 1 5Hydroquinone
Catechol

--------------------------------------
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When the reaction of decarboxylation occurs, the production of catechol is also

observed. Salicylic acid contains both carboxyl and hydroxyl functional groups. From a

structural point of view, we have to consider the activation effect of both groups. In both

cases, resonance effects are more important than induction effects. Therefore, the

hydroxyl group (normally decreasing the electronic density by induction) is a strong

activator by resonance and increases the electronic density. The carboxyl group is a strong

deactivator and has a tendency to decrease the electronic density of the aromatic ring [66].

Since the influence of the activator substituent is dominating, the hydroxylation of

salicylic acid takes place in ortho and para positions compared with the hydroxyl group.

The concerted effect of the reaction of OH radicals with aromatics was investigated by

Schuler et al. [67] with the specific case of the radiolytic oxidation of salicylic acid. They

proposed that the electron population at the ortho position compared to that of para

position is enhanced as a result of the hydrogen bonding in SA. Therefore, considering

the strong electrophilic character of hydroxyl radical, the addition in ortho position is

favored over addition in para position.

The primary step is considered to be an electrophilic attack of the hydroxyl radical

on the ring to form a dihydroxycyclohexadienyl radical. After, depending on the nature

of the radical and the solution radicals or the presence of oxidants, it may decay by

elimination of water, dimerize or disproportionate or be oxidized, thus fixing the hydroxyl

 Figure 2.27 Mechanism of salicylic acid hydroxylation (a) 2,3-
DHBA, (b) 2,5-DHBA, (c) Catechol.
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moiety on the ring to give the stable hydroxylated product. 

Maskos et al. [68] pointed out that the presence of redox active compounds can

influence the distribution of salicylate hydroxylation. The reaction was investigated using

γ-radiation and Fenton reaction as source of hydroxyl radicals. Using irradiation, the ratio

of 2,3- to 2,5-DHBA is 5:1. This ratio increased with the irradiation time. Compared with

the γ-radiation, the Fenton reaction enhanced the formation of 2,5-DHBA. The ratio could

vary from 5 to 1.2 depending on the added oxidants, their concentrations and the pH used.

Anyway, the formation of 2,3-DHBA is always higher than the one of 2,5-DHBA.

Since the nature of the oxidant seems to influence the isomer ratio (even if the trend

does not change), we introduce in the following part, according to the literature, some

concepts that can influence the isomer distribution during the reaction of salicylic acid

hydroxylation.

  7.2.1. Intramolecular hydrogen bonding (IMBH) in SA

An hydrogen bond is a strong electrostatic attraction occurring between two atoms,

in which hydrogen is in covalent bond with highly electronegative elements (e.g F, O, N,

Cl). Hydrogen bonding plays a role in the properties of compounds (solubility, boiling

point) and also determines the shape of the molecule. The IMHB can sometimes be

responsible for the molecular geometry as well as the stability of a certain predominant

conformation. Because of the carboxyl and hydroxyl functional groups, salicylic acid

(SA) and its anions (SA-1) provide a good example to investigate the hydrogen bonding.

Three types of IMBH were found in SA and its anions: the 6S six-membered ring type

interfunctional groups, the weak 6W six-membered ring type interfunctional groups and

the 4M intra-COOH (Table 2.4).

 Table 2.4 Three types of IMBHs in conformers/isomers of SA.

The three types of hydrogen bondings could force the related structures into a planar

conformation. The computations performed by Chen et al. [69] conclude that salicylate
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may possess very strong IMHB. The 6S configuration, where the intramolecular

hydrogen bond is between the OH directly bonded to the benzene ring and the carbonyl

(C=O) group on the carboxyl group, locks the OH group into the plane of the molecule, a

geometry quite different from that of phenol.

  7.2.2. Influence of pH

Jen et al. [70] investigated the influence of the pH on the formation of derivatives of

salicylate in the trapping of OH radicals. They investigated the reaction of Fenton in water

at different pH adjusted with sulfuric acid (2, 2.5, 3, 3.5, 4, 4.5 and 5). They concluded

that the ratio of 2,3/2,5 decreases when pH increases, even if the concentration of 2,3-

DHBA is always higher than 2,5-DHBA.

 Table 2.5 2,3/2,5-DHBA ratio at various pH values [70].

  7.2.3. Enzymatic mechanism (cytochrome P450)

Some biological experiments [71] have compared the mechanisms of 2,3-DHBA or

2,5-DHBA formation. They all reported that the formation of 2,3-DHBA from salicylic

acid is a mean to monitor free OH radical production, while the formation of 2,5-DHBA

probably does not. 

2,5-DHBA has been reported to be an enzyme-produced metabolite of salicylate in

humans [72-74]. Ingelman-Sundberg et al. [75] have investigated the oxidation of SA

with liver microsomal mixed-function oxidase systems in order to monitor which isomer

is produced. Their results showed that the formation of 2,3-DHBA from salicylate may

represent a product of free radical attack while the production of 2,5-DHBA may arise by

enzymatic metabolism of salicylate. 

Cytochrome P450 is a prosthetic group (cofactor covalently linked to an enzyme). It

pH 2,5-/2,3-DHBA
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is found in all tissues (expect muscle, bones and red blood cells) in the endoplasmic

reticulum and the mitochondria. This kind of enzyme is implicated in several metabolisms

of oxidation. 

The general equation of the hydroxylation by cytochrome P450 is given below:

 2.88

This reaction is assisted by ferric ions. The hydroxylation reaction catalyzed by the

cytochrome P450 leads to the insertion of an oxygen atom in the substrate. The general

mechanism can be summarized as follow:

• Fixation of the substrate on the active site of the enzyme.

• Reduction of ferric ions in ferrous ions by electron transfer.

• Adsorption of oxygen.

• Proton transfer from the substrate to oxygen and formation of radical intermediates.

• Addition of hydroxyl radical on R
. and formation of the hydroxylated product.

• Regeneration of the enzyme

It is now possible to establish a correlation between the behavior of cytochrome P450

and the electrochemical hydroxylation of salicylic acid. Indeed, the reactions present

numerous similarities. 

  7.2.4. Singlet oxygen (1O2) reaction

Feix et al. [76] have investigated the reaction of salicylic acid with singlet oxygen
1O2. They have found that 2,5-DHBA was the only intermediate. In another work [77],

they tried to determine the stoechiometry between 1O2 consumption and 2,5-DHBA

production. They irradiated a solution of rose bengal and salicylic acid with visible light

under aerobic conditions. The chromatographic detection showed that 2,5-DHBA was the

major product of the reaction. When the same solution was irradiated under N2

atmosphere, 2,5-DHBA was still the major product, although its concentration was

smaller. In order to verify that the selective formation of 2,5-DHBA was not due to the

selective decomposition of 2,3-DHBA, its stability was studied under the same conditions

RH O2 H
+

NADPH+ + + ROH H2O NADP
+

+ +→
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in the presence or not of salicylic acid. They observed that the destruction of 2,3-DHBA

was minimal and could not explain the previous results.

If it seems well established that the hydroxyl radical addition to SA is mediated by a

cyclohexadienyl radical, the reaction between singlet oxygen and SA is presumably

mediated via an endoperoxide intermediate. They proposed a mechanism of chemical

quenching by 1O2:

 

If the formation of 2,5-DHBA is a proof of 1O2 involvement, it is interesting to note

that the reaction is enhanced in D2O (slower consumption of SA and similar chemical

yields [78]).

As shown by the previous figure, the 1,2-endoperoxide is very unstable and probably

undergoes a ring-cleavage reaction that leads to the formation of an open chain aldehyde.

According to these results, the reaction of singlet oxygen with salicylic acid leads to the

selective formation of 2,5-dihydroxylated benzoic acid. 
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Chapter 3. Theoretical Part

1. INTRODUCTION

In this chapter, we will present theoretical models that allow us to predict the

evolution of the electrochemical oxgen transfer reaction (EOTR) at boron-doped diamond

electrode. Firstly, it is necessary to properly define what are active and non active

electrodes. The knowledge of these two concepts permits to understand better the

electrochemical behavior of diamond (which is considered as a non active material). This

model highlights the role of hydroxyl radicals during oxidation processes at BDD anode.

The COD-ICE model allows the prediction of the evolution of two global parameters,

namely, the chemical oxygen demand (COD) and the instantaneous current efficiency

(ICE). From these evolutions, it is possible to construct a model for the oxidation reaction

of any organic compound at BDD electrode. Depending on the conditions of the oxidative

process (current density, concentration of organics), it is possible to observe either the

evolution of the partial oxidation of the organic or its total combustion into CO2.

Finally, the γ−ν model takes into consideration the rates of both hydroxyl radicals

production and organics transport at the electrode as well as their stoechiometry. This
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model is based on the fact that the oxidation reaction occurs close to the electrode, in a

reaction cage. The percentage of aromatic intermediates compared to carbon dioxide

indicates what reaction occurs (partial oxidation or combustion). 

2. ACTIVE AND NON ACTIVE ELECTRODES IN EOTR

EOTR promising versatility, environmental compatibility and cost effectiveness

have a continuously growing importance both in selective organic synthesis and in the

electrochemical incineration (ECI) of organic pollutants in aqueous media. For organic

electrosynthesis, the selectivity has to be enhanced. For ECI processes, the aim is the

mineralization of the toxic and non-biocompatible pollutants with high current efficiency

[1-10].

One can differentiate between direct and indirect oxidation. As seen in Chapter 2, in

direct electrochemical oxidation, electron exchange takes place between the organic

species and the electrocatalytic electrode surface. In indirect electrochemical oxidation,

the organic compounds exchange with the surface through intermediation of electroactive

species. The mediation may be performed by homogeneous mediators such as Ag+, Ce3+,

Mn3+, which are dissolved in the electrolyte and regenerated at the electrode surface after

chemical reaction with the organics or by heterogeneous mediators fixed at the electrode

surface. An indirect mechanism for the electrochemical oxidation of organics based on

intermediates of oxygen evolution reaction in aqueous media has been proposed by D. C.

Johnson [11-16].

In our laboratory, we have frequently found that the electrochemical oxidation of

some organics in aqueous media took place, without any loss in electrode activity, only at

high potentials with concomitant evolution of oxygen [1, 4-6, 9]. Furthermore, it has been

found that the nature of the electrode material influences strongly both the selectivity and

the efficiency of the process [2, 4, 17, 18]. To interpret these observations, a

comprehensive model for anodic oxidation of organics in acid medium, including the

competition with oxygen evolution has been proposed.

The model (Figure 3.1) permits to illustrate the difference between two limiting

cases, active and non active anodes.
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In both cases, the first reaction (Equation a) is the discharge of water molecules

leading to the formation of adsorbed hydroxyl radicals:

 a

The electrochemical and chemical reactivity of the adsorbed hydroxyl radicals

depends strongly on the nature of the electrode material used.

(i) At active electrode, there is a strong interaction between the electrode (M) and the

hydroxyl radicals . In this case, the adsorbed hydroxyl radicals may interact with

the anode with possible transition of the oxygen from the hydroxyl radical to the electrode

surface, forming a so-called higher oxide MO (Equation b). This may be the case when

higher oxidation states on the surface electrode are available above the thermodynamic

potential for oxygen evolution (1.23 V vs SHE).

b

We speculate that at active electrodes, the surface redox couple MO/M can act as a

mediator in the oxidation of organics (Equation c). This reaction is in competition with

the side reaction of oxygen evolution due to the chemical decomposition of the higher

 Figure 3.1 Scheme of the electrochemical oxidation of organic compounds on
active anodes (reactions a, b, c, d) and non active anodes (reactions a, e, f). M
designates an active site at the anode surface.

M H2O+ M HO •( ) H
+

e
–

+ +→

HO •( )

M HO •( ) MO H
+

e
–

+ +→
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oxide (Equation d):

c

d

The oxidation reaction via the surface redox couple MO/M (Equation c) may be

much more selective than the reaction involving hydroxyl radicals (Equation e).

(ii) At non active electrode, there is a weak interaction between the hydroxyl radicals

and the electrode surface. In this case, the oxidation of organics is mediated by hydroxyl

radicals (Equation e) and may result in fully oxidized reaction products such as CO2.

e

In this schematic equation, R is the fraction of an organic compound containing no

heteroatom, which needs one oxygen atom to be transformed to fully oxidized

compounds. This reaction is in competition with the side reaction of hydroxyl radicals

discharge (direct or indirect through the formation of hydrogen peroxide as intermediates)

to oxygen (Equation f) without any participation of the anode surface:

f

A non active electrode does not participate in the anodic reaction and does not

provide any catalytic active site for adsorption of reactants and/or products in aqueous

medium. In this case, the anode serves only as an inert substrate, which can act as a sink

for the removal of electrons. In principle, only outer sphere reactions and water discharge

are possible on this type of anode. The intermediates produced by the water

decomposition are involved in the oxidation of organics in aqueous medium, resulting in

the electrochemical incineration.

The electrochemical activity (overpotential for oxygen evolution) and chemical

reactivity (rate of organics oxidation with electrogenerated hydroxyl radicals) of adsorbed

 are strongly linked to the strength of the interaction. As general rule, the

weaker the interaction, the lower the anode reactivity toward oxygen evolution (high

overvoltage anodes) and the higher the anode reactivity for organics oxidation (fast

chemical reaction). Boron-doped diamond based anode (BDD) is a typical non active

electrode with high anodic stability and acceptable conductivity.

MO R M RO+→+

MO M
1
2
---O2+→

M HO
•( ) R+ M mCO2 nH2O H

+
e

–
+ + + +→

M HO
•( ) M

1
2
---O2 H

+
e

–
+ + +→

HO
•

M HO
•

–
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This model assumes that the electrochemical oxidation is mediated by hydroxyl

radicals, either adsorbed at the surface in the case of active surfaces or free in the case of

non active ones. 

This model was used in some papers for the electrochemical oxidation of organic

compounds at different electrodes. According to the model, Bock et al. [19] proposed that

the removal rate of organics (p-benzoquinone) depends on the nature of the anode

material. Saracco et al. studied the oxidation of coumaric acid at Pt-Ti electrode [20] and

identified two intermediates, namely, p-benzoquinone and spiro-lactone. They have

postulated that the benzoquinone is formed through reactions mostly occurring over the

electrode surface, whereas, spiro-lactone formation takes place principally in the bulk of

the solution. 

3. MODELING OF OXIDATION

3.1. COD-ICE model

The model of EOTR on BDD anodes was developed for a batch recirculation reactor

system under galvanostatic conditions, with the following assumptions [21]:

• the reaction is fast, under diffusion control,

• the oxidation of organics in the bulk with electrogenerated oxidants like hydrogen

peroxide or persulfate is not considered,

• the reservoir volume is much greater than that of the electrochemical reactor and

considered as perfectly mixed,

• the adsorption of the organics at the electrode surface is negligible.

Bulk oxidation reactions are often characterized through the study of global

parameters. These parameters allow following the evolution of the electrochemical

reaction and give a general idea of the advance of the oxidation (especially when all by-

products are not known). The first one is the Chemical Oxygen Demand (COD), which

represents a measure of the oxygen equivalent of the organic matter susceptible to be

oxidized by a strong chemical oxidant. The value of the COD is calculated from the
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following equation:

 3.1

The COD value is given in concentration of oxygen (molO2 m-3 or gO2 m-3). 

The instantaneous current efficiency (ICE) is an other parameter that can be defined

as the part of the current directly used for the oxidation reaction. The calculation can be

performed from the decrease of COD:

 3.2

where F is the Faraday’s constant (96485 C mol-1), V the volume of the solution (m-3),

 (molO2 m-3) the decrease of COD during  and I the current (A). 

A kinetic model has been developed for the electrochemical oxidation of organics in

acidic medium, including the competition with oxygen evolution [21]. The limiting

current density of the electrochemical oxidation is defined by Equation 3.3:       

 3.3

where jlim is the limiting current density for the incineration of organic compounds 

(A m-2), n is the number of exchanged electrons, F is the Faraday’s constant (A s mol-1),

km is the mass transport coefficient (m s-1) and C is the concentration of organics 

(mol m-3).

For a given organic compound, the number of electrons involved in the incineration

reaction can be calculated from the electrochemical reaction (Equation 3.4):

 3.4

Replacement of the value of n by (4x + y - 2z) in Equation 3.3 turns the limiting

current density into:

 3.5

The relation (Equation 3.7) between the concentration C and the chemical oxygen

demand COD can be obtained from the equation of the chemical incineration (Equation

CxHyOz x
y
4
--- z

2
---–+ 

  O2+ xCO2
y
2
--- 

  H2O+→

ICE
4FV ∆COD( )

I∆t
---------------------------------=

∆ COD( ) ∆t

jlim nFkmC=

CxHyOz 2x z–( )H2O+ xCO2 4x y 2z–+( )H
+

4x y 2z–+( )e
–

+ +→

jlim 4x y 2z–+( )FkmC=
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3.6):

 3.6

 3.7

From Equation 3.5 and Equation 3.7, we can define the limiting current density for

the electrochemical incineration of organic compounds, at a given time t, from the

chemical oxygen demand (Equation 3.8):

 3.8

At time t = 0, (at the beginning of the electrolysis), the initial limiting current density

is given by the following equation:

 3.9

where COD0 is the initial chemical oxygen demand (molO2 m-3).

Under galvanostatic conditions, two different operating regimes are defined: at japp < jlim,

the electrolysis is controlled by the charge transfer and at japp > jlim, it is controlled by the

mass transport.

Electrolysis under charge transfer control (japp < jlim)

Under this condition, the current efficiency is 100%. The rate r (molO2 m-2 s-1) of

COD removal is constant and is described by the following equation:

 3.10

where α is the dimensionless current density defined as:

 with 0 < α < 1  3.11

Using Equation 3.9, the rate constant r can be written as:

CxHyOz
4x y 2z–+

4
-------------------------- 

  O2+ xCO2
y
2
--- 

  H2O+→

C
4

4x y 2z–+( )
-------------------------------COD=

jlim 4FkmCOD t( )=

jlim
0

4= FkmCOD
0

r
αjlim

0

4F
------------=

α
japp

jlim
0

---------=
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 3.12

In order to describe the temporal evolution of COD in a batch recirculated reactor

system, the mass-balances over the electrochemical cell and the reservoir must be

considered.

Since the volume of the electrochemical reactor (VE) is much smaller than the

reservoir volume (VR), the mass-balance on COD for the electrochemical cell is obtained

with the following relation:

 3.13

where  is the flow rate (m3 s-1) through the electrochemical cell, CODin and CODout are

the chemical oxygen demands (molO2 m-3) at the inlet and the outlet of the

electrochemical cell, respectively and A is the anode area (m2).

For the well-mixed reservoir, the mass-balance on COD can be expressed as:

 3.14

Combining Equation 3.13 and Equation 3.14 and replacing CODin by the temporal

evolution of COD, one obtains:

 3.15

Considering the initial condition COD = COD0 at t = 0, the temporal evolution of

COD(t) is given by:

 3.16

This behavior persists until a critical time (tcr), corresponding to the time at which

the applied current density is equal to the limiting current density (japp = jlim). At the

critical time, a critical value of COD can be calculated as follows:

 3.17

r αkmCOD
0

=

V· CODout V· CODin αAkmCOD
0

–=

V·

V· CODout CODin–( ) VR

dCODin

dt
--------------------=

dCOD
dt

----------------
αAkmCOD

0

VR
------------------------------–=

COD t( ) COD
0

1
αAkm

VR
--------------t– 

 =

CODcr αCOD
0

=
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From Equation 3.16 and Equation 3.17, the critical time tcr is defined as:

 3.18

Electrolysis under mass transport control (j > jlim)

When the applied current density is higher than the limiting current density, side

reactions occur. This results in the decrease of the instantaneous current efficiency ICE,

which is defined by:

 3.19

This case corresponds to japp > jlim (α > 1), when the applied current density is higher

than the initial limiting current density. The COD mass-balances on the electrochemical

cell and on the reservoir can be expressed as follows:

 3.20

By integration of Equation 3.20 with the initial conditions (COD = COD0 at time 

t = 0), we obtain:

 3.21

From Equation 3.19 and Equation 3.21, the instantaneous current efficiency ICE is

defined by:

 3.22

Electrolysis under mixed control

The mixed control implies that the initial current is lower than the limiting current

and that the final current is higher than the limiting one. The first domain (A in Figure 3.2)

is the similar to the charge transfer control. After, the critical time (Equation 3.18), the

system is controlled by the mass transfer (B in Figure 3.2). 

tcr
1 α–( )

α
-----------------=

VR

Akm
----------

ICE
jlim

japp
--------- COD t( )

αCOD
0

--------------------= =

dCOD
dt

----------------
AkmCOD

VR
-----------------------–=

COD t( ) COD
0 Akm

VR
----------t– 

 exp=

ICE
1
α
---

Akm

VR
---------- t– 

 exp=
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By integration of Equation 3.20 with the initial conditions of COD = αCOD0 at time

t = tcr, we obtain:

 3.23

And the ICE is defined as:

 Figure 3.2 Evolution of COD and ICE. A represents the charge transfer control,
B represents the mass transfer control.
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 3.24

The Figure 3.2 illustrates graphically the evolution of the COD and ICE with the

passed charge. A and B domains correspond to the charge and mass transfer control,

respectively. The A domain shows a linear decrease of the chemical oxygen demand

while the corresponding instantaneous current efficiency remains constant at 100%.

Under these conditions, a partial oxidation occurs, leading to the formation of

intermediates. In the B domain, both COD and ICE decrease exponentially. This behavior

corresponds to a complete combustion of the organic compound into carbon dioxide.

This model gives predictions for ICE and COD as a function of time or charge during

oxidation processes. These predictions were confirmed experimentally with numerous

compounds classes such as carboxylic acids (acetic, formic, oxalic acid...), alcohols and

ketones (methanol, ethanol, isopropanol...), phenolic compounds (phenol, 4-

chlorophenol...) [22-24], aromatic acids (benzoic, salicylic, nicotinic acid...) [25] and

soluble polymers such as polyacrylic acid [26].

3.2. γ -ν model

This model allows to describe EOTR in terms of flux. The oxidation process of an

organic compound R is assisted by hydroxyl radicals produced by the water discharge and

takes place in a reaction cage (RC) as shown in Figure 3.3. The RC corresponds to a

reaction layer close to the electrode. Under galvanostatic conditions, the production rate

of hydroxyl radicals generated at the BDD electrode is expressed by:

 3.25

where  is the production rate of (mol m-2 s-1), japp is the applied current density

(A m-2) and F is the Faraday’s constant (A s mol-1).

The flux of organic from the bulk to the anode surface is given by:

 3.26

where rR is the flux of organics (mol m-2 s-1), km is the mass transport coefficient in the

electrochemical reactor (m s-1) and [R] is the concentrations of organics in the bulk (mol

m-3).

ICE
Akm

VR
---------- t–

1 α–
α

------------+ 
 exp=

r
HO•

japp

F
---------=

r
HO• HO

•

rR km R[ ]=
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The parameter γ is defined as the ratio between the production rate of hydroxyl

radicals and the flux of organics. Combining Equation 3.25 and Equation 3.26, one

obtains the equation for γ:

 3.27

The stoechiometric factor ν is defined as the ratio between the number of moles of

hydroxyl radicals (equal to the number of electrons exchanged) involved in the reaction

and the number of moles R (Equation 3.28):

 3.28

Depending on the values of ν and γ, it is possible to obtain either the partial oxidation

in aromatic compounds or the complete incineration into carbon dioxide. 

For example, in the case of salicylic acid oxidation both partial oxidation (where ν

equals 2, Equation 3.29) or complete incineration into CO2 (ν is equal to the total number

of electrons in the oxidation reaction, 28, Equation 3.30) can be considered:

 3.29

 3.30

 When the ratio γ is lower than the parameter ν, meaning that the flux of organics is

 Figure 3.3 Scheme of the reaction cage (RC) for organics oxidation.
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higher than the production of hydroxyl radicals, one can consider the reaction to be under

the control of charge transfer. Therefore, the partial oxidation of the organics takes place.

On the contrary, when γ becomes higher than ν, the reaction is under diffusion control

leading to the total combustion of R. In the latter case, because of the high production rate

of OH radicals, the intermediates can easily be oxidized in CO2.

Partial oxidation

The rate of organic conversion, as well as the one of intermediates production is

constant and defined by:

 3.31

From the mass-balance of the organic R and intermediates R’ over the

electrochemical reactor and the reservoir, one obtains:

 3.32

where [R] and [R’] are the concentrations of the organic and the intermediates (mol m-3),

respectively, japp is the applied current density (A m-2), A is the electrode surface (m2)

and V is the reservoir volume (m3).

Considering the initial conditions, at t = 0, [R] = [R]0 and [R’] = 0, the integration of

Equation 3.32 gives:

 3.33

 3.34

Incineration of organics R into CO2

During the electrolysis, the limiting current at a given time t is described in terms of

COD by Equation 3.35:

 3.35

where jlim is the limiting current density (A m-2), 4 is the number of exchanged electrons,

F is the Faraday’s constant (A s mol-1), km is the average mass transport coefficient in the

r
japp

2F
---------=

d R[ ]
dt

----------- d R′[ ]
dt

-------------–
jappA

2FV
-------------–= =

R[ ] R[ ]0

jappA

2FV
------------- t–=

R′[ ]
jappA

2FV
-------------t=

jlim t( ) 4FkmCOD=
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electrochemical cell (m s-1) and COD is the chemical oxygen demand (mol m-3). Under

these conditions of high current density, only a fraction of the applied current is used for

the combustion, which is equal to the limiting current and the rest is used for the side

reaction (oxygen evolution). Consequently, the rate of R removal (mol m-2 s-1) is written

as follows:

 3.36

From the mass-balance of R over the electrochemical reactor and the reservoir, one

obtains:

 3.37

where A is the electrode surface (m2) and V the volume of the electrolyte (m3).

By integration at the initial conditions ([R] = [R]0 at t = 0), we obtain the temporal

evolution of the COD (Equation 3.38):

 3.38

Another alternative to represent the partial oxidation or the combustion is to calculate

percentages of carbon dioxide and aromatics (corresponding to the intermediates of the

reaction). Indeed, we expect the total organic carbon (TOC) to remain constant during the

selective oxidation while it should decrease during the combustion as a consequence of

CO2 formation. Similarly, the concentration of aromatics is low during the combustion.

The percentage of the organic R converted into carbon dioxide is given by the

following relation:

%  3.39

where [TOC]0 and [TOC]t are the total organic carbon at times 0 and t (mol m-3), x is the

mole number of CO2 formed (see Equation 3.1), [R]0 and [R]t are the organic

concentrations at times 0 and t (mol m-3), respectively. 

The percentage of produced aromatics is defined by:

%  3.40

where [Aromatics] are the concentrations (mol m-3) of the aromatic intermediates.
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4. CONCLUSIONS

The definition of non active electrode material permits to emphasize the

preponderant role of hydroxyl radicals during EOTR at boron-doped diamond electrode.

The first model permits to distinguish between active substrates like IrO2, which are

completely involved in the reaction by the formation of a higher oxide and non active

materials like BDD that do not participate in the oxidation process. 

The COD-ICE model highlights the importance of global parameters, especially the

chemical oxygen demand, and the limiting current density for the prediction of the anodic

reaction. It has been showed that a good optimization of the experimental conditions

allows the prediction of either a partial oxidation or the incineration of organic pollutants. 

It is also possible to describe the anodic reaction in terms of flux. The reaction is

assumed to take place in the reaction cage, a layer very close to the electrode. Depending

on the ratio between the rate of hydroxyl radicals production and the rate of organic

transport, and depending on the stoechiometric ratio between the number of OH and

organic moles, either partial oxidation or incineration take place. Therefore, the reaction

is controlled by either charge transfer or diffusion, respectively.

These models will be applied in following chapters for 4-chlorophenoxyacetic acid

and salicylic acid. 
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Chapter 4. Experimental Part

1. INTRODUCTION

This chapter deals with the description of the material used during this work

(electrode, electrochemical cells) as well as analytical methods. First, we will give

informations concerning the preparation of boron-doped diamond electrodes (performed

by CSEM). Then, electrochemical cells will be described (electrochemical

characterization cell, both one and two-compartments, and turbine cell). Finally,

definitions of global parameters (COD, TOC, ICE) will be given as well as the details that

concern their measurements.

2. PREPARATION OF BDD FILM

Boron-doped diamond films were synthesized by hot-filament chemical vapor

deposition technique (HF-CVD, Chapter 2) on a conductive p-Si substrate (Siltronix).

Electrodes were prepared at CSEM (Swiss Center for Electronics and Microtechnology,

Neuchâtel). The distance between the filament and the silicon substrate was adjusted at
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20 mm. The temperature of the filament ranged from 2440 to 2560°C and that of the

substrate was kept at 830°C. 

The reactive gas was composed of 1% methane in hydrogen containing 1 ppm of

trimethylboron. The gas mixture was supplied in the reaction chamber at a flow rate of 5

L min-1 to obtain a growth rate of 0.24 µm h-1 for the diamond layer. The diamond film

thickness was about 1 µm (with grain size from 200 to 800 nm) and the resistivity of 10-

30 mΩ cm. The polycrystalline films were columnar, randomly textured. The boron/

carbon ratio in the diamond films was between 4500 and 5500 ppm.

In this work, the diamond surface electrode was anodically pretreated in acidic

medium (1M H2SO4) at 10 mA cm-2 for 30 minutes in order to eliminate the sp2 carbon

from the electrode surface. 

3. ELECTROCHEMICAL CELL

3.1. Electrochemical characterization cell

The electrochemical characterization (used for cyclic voltammetry (CV), steady state

polarization and rotating disk measurement) was carried out in a conventional three-

electrode cell (Figure 4.1) using a computer-controlled Autolab PGstat30. Diamond or

glassy carbon are used as working electrodes and are supported by a titanium plate, which

is put in a Teflon cage (Figure 4.2). This set-up provided a geometric area of 1 cm2. Hg/

Hg2SO4,K2SO4 (sat) electrode was used as a reference and the counter-electrode was

made of a Pt wire. The temperature was kept at 25°C.

 Figure 4.1  Schematic description of the
three-electrodes electrochemical cell: (a)
working electrode (BDD), (b) reference
electrode (Hg/Hg2SO4), (c) counter
electrode (Pt), (d) thermostat system [1].
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3.2. One-compartment cell

The one-compartment electrochemical flow cell is shown in Figure 4.3 and Figure

4.4. 

The anode and the cathode are disks made of BDD and zirconium, respectively. Both

electrodes have a geometric area of 50 cm2 with an inter-electrode gap of 10 mm. The

electrodes are put on an aluminium support (AlMgSi1, Metallica, Crissier, CH). The

electric contact is provided by a silver paste (EPO-TEK 410E, Polyscience AG, Cham,

CH). Silicon resin (Elastosil E41, Wachker-Chemie, Munich, Ge) is used to render the

cell watertight. The electrolyte is stored in a 500 mL thermo-regulated glass tank (B in

Figure 4.3) and circulated through the electrolytic cell by a centrifugal pump (P in Figure

4.3) with a flow rate of 200 dm3 h-1. The electrolyte comes into the electrochemical cell

through 5 mm orifices at both the inlet and outlet.

 Figure 4.2 System for housing and
mounting the working electrodes
(3), cage made of teflon (1 and 5),
gaskets of silicon material (4),
screws (6) and metal support (2) of
titanium [1].

 Figure 4.3  Schematic description of the
one-compartment electrochemical flow
cell. B: tank, C: electrochemical cell, P:
pump, W: heat exchanger, F: gas flow
controller [2]. 

 Figure 4.4  Tridimensional schematic
description of the one-compartment
electrochemical flow cell [2].
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3.3. Two-compartments cell

In the two-compartments electrochemical flow cell, the anode and the cathode are

separated by a Nafion® membrane N117/H+ (DuPont Polymers, Fayetteville, North

Carolina). The schematic description is similar to that of the one-compartment cell. BDD

was used as the anode and zirconium as the cathode. Both electrodes were disks with a

geometric area of 63.6 cm2. The volume of both anolyte and catholyte was 500 mL. They

were stored in two thermoregulated tanks (T = 25°C) and circulated through the

electrolytic cell by centrifugal pumps (Figure 4.5, Figure 4.6).

The membrane is pretreated by heating for 2 hours at 80°C in HNO3 2 M. Then it is

rinsed 3 times with demineralized water.

3.4. Turbine cell

The turbine cell operates with a rotating electrolyte. On the contrary of the classical

rotating electrode, the working electrode is fixed and the solution is kept in motion by a

turbine. The turbine cell is constituted of a copper conductor base and a titanium slab, on

which the diamond electrode is laid. The contact is provided by a silver paste (EPO-TEK

410E, Polyscience AG, Cham, CH). The geometric area is 0.8 cm2. This system can be

 Figure 4.5  Schematic description of the
two-compartments electrochemical flow
cell. B1, B2: tanks, P1, P2: pumps, C1:
electrochemical cell with membrane, W1,
W2: heat exchangers, F1, F2: gas flow
controllers.

 Figure 4.6  Tridimensional schematic
description of the two-compartments
electrochemical cell.
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used with two electrodes (counter and working electrodes) or three electrodes (counter,

reference and working electrodes). The cell volume is 50 mL. The agitation of the

electrolyte is provided by a turbine as shown in Figure 4.8. For the characterization of the

cell, the working electrode was a platinum foil. For the oxidation of salicylic acid, a

boron-doped diamond electrode was used as working electrode. In both cases, the

counter-electrode was a platinum wire.

4. GLOBAL PARAMETERS

4.1. Total organic carbon (TOC)

The total organic carbon (TOC) is the amount of organic carbon in the sample,

expressed in concentration of carbon (molC L-1 or gC L-1). The TOC test uses heat to

oxidize organic compounds to carbon dioxide and water. Then, the amount of CO2 is

determined using infrared spectroscopy. The total organic carbon is measured on a TOC-

5050 Shimadzu (Shimadzu Corporation, Tokyo, Japan). After acidification to eliminate

inorganic carbon, the organic compound is oxidized with a pure flux of oxygen in a

furnace at 680 °C containing Pt particles on Al2O3 catalyst. The resulting CO2 is

measured by infrared spectrometry. The obtained value is the average of three

measurements and is given directly in mg of carbon per liter. The calibration is made with

solutions of potassium hydrogenophtalate with different concentrations (20 up to 400

ppm). The precision of the analysis is 2%.

 Figure 4.7  Schematic description of the
turbine electrochemical cell. 

 Figure 4.8  Cross section of the turbine
electrochemical cell. (1) working
electrode, (2) turbine, (3) counter-
electrode. VR = 50 mL.
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4.2. Chemical oxygen demand (COD)

The chemical oxygen demand (COD) represents the measure of the oxygen

equivalent of organic matter contained in a sample susceptible to be oxidized by a strong

chemical oxidant. The COD value is given in concentration of oxygen (molO2 m-3 or 

gO2 m-3). The chemical oxygen demand is measured by the dichromate method COD

Hach (Hach company, Loveland, Colorado). The oxidation takes place in a vial

containing both silver compound as catalyst to oxidize resistant organics and mercuric

sulfate to reduce interference from the oxidation of chloride ions by dichromate. 2 mL of

solution are added in the vial and the mixture is allowed to react for 2 hours at 150°C at

closed reflux. After cooling at room temperature, COD is measured with a

spectrophotometer DR 2010 (Hach company). The value is directly given in ppm up to

1500 ppm. The precision of the measurement is about 2% but depends on the nature of

the compound. The calibration is made with a potassium hydrogen phtalate solution. 

4.3. Instantaneous current efficiency (ICE)

The instantaneous current efficiency (ICE) can be defined as the part of the current

directly used for the oxidation reaction. The instantaneous current density is calculated

from the variation of COD:

  4.1

where (COD)t and (COD)t+Dt are the CODs (in mol O2 m-3), I is the current (in A), F is

the Faraday’s constant (in A s mol-1), and V is the volume of electrolyte (in m-3).
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Chapter 5. Electrochemical characterization of
BDD electrodes

1.  INTRODUCTION

The knowledge of the electrochemical behavior of boron-doped diamond electrodes

is essential for a better understanding and interpretation of the results observed in the

oxidation process. The properties of diamond electrodes can be influenced by several

parameters that depend essentially of the fabrication steps such as the doping level, the

morphological structure (grain boundary, point defects), the crystallographic orientation,

or the surface groups (H, O, F and sp2 impurities) [1, 2]. 

As shown in the bibliographic part (Chapter 2), two kinds of charge transfer reactions

can be considered: outer sphere and inner sphere reactions. The redox couple VOH/VO.

(Figure 5.1) can be considered as an outer sphere system, which means that the kinetics

is little influenced by the electrode material. 
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Violuric acid (2,4,5,6(1H,3H)-pyrimidine-tetrone 5-oxime, VOH) is often employed

as analytical reagent for chromatographic separation and for cation oxidation. It is widely

used in the pulp bleaching techniques because the process is not very sensitive to

temperature and pH variations [3]. VOH can be also used as an efficient electron transfer

mediator in oxidation processes allowing the increase of the global rate of electron

transfer. The main advantage of using violuric acid is its non toxic properties and its

biodegradability. The oxidation of VOH leads to the formation of a radical (VOH/VO.

couple). As shown in Figure 5.1, the reaction of violuric acid implies one electron and can

be investigated in the potential region of water stability. 

Electrochemical techniques allow to characterize a redox couple at a given electrode

material. In this chapter, we have used three different techniques: cyclic voltammetry,

steady-state polarization and rotating disk electrode. The aim of this investigation is to

compare the key parameters measured by these methods. Indeed, while cyclic

voltammetry is a transitory method, steady-state polarization is a stationary technique for

which one can assume that only the charge transfer is considered. The use of rotating disk

electrode allows to deal with a mixed control (both mass and charge transfer).

All the experimental results were compared with those obtained with a glassy carbon

electrode (GC). It is well known that the main difference between boron-doped diamond

and glassy carbon electrodes is the carbon hybridation present at the surface. The diamond

surface contains mostly sp3 carbon and some sp2 impurities. On the contrary, glassy

carbon is fully composed of sp2 carbon. A lot of parameters can influence the properties

of BDD electrode. Indeed, it has been shown that the level and the doping type, as well as

the parameters previously quoted can play a role on the electrochemical behavior. The

latter point seems to be particularly interesting and was investigated by Duo et al. [18, 67].

  VOH                                               VO
.

 Figure 5.1 Scheme of the redox reaction of violuric acid. 
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It has been proposed that sp2 (non-diamond) states act as charge transfer mediators on

BDD; explaining why the electrochemical activity of as-grown diamond (meaning no

pretreatment) is higher than that of treated diamond (e.g. anodic polarization at 10 mA

cm-2 for 30 minutes). The polarization of BDD electrodes induces the stripping of sp2

states, which are oxidized to CO2. The comparison of graphite electrode (sp2 carbon) with

BDD anode (sp3 carbon) permits to confirm this model.

Some work has already been made with other outer sphere systems (one of which is

the VOH/VO. on glassy carbon [3, 4]) allowing a comparison of our results at BDD and

GC electrodes. This study allowed us to determine key parameters such as the diffusion

coefficient, D, the anodic transfer coefficient, α, and the standard electrochemical rate

constant of the reaction investigated, k0.

 Violuric acid was also tested as a mediator for the indirect oxidation of 2-

methoxyphenol, a recurrent function of lignin [5, 6].

2. EXPERIMENTAL

All the electrochemical measurements were performed in a 100 mL cell using

different VOH concentrations in 0.1M acetate buffer (CH3COONa/CH3COOH, pH 4.65).

Violuric and sulfuric acids were purchased in analytical grade from Fluka and the buffer

was purchased from Riedel-de Haën. MilliQwater was used for the preparation of

solutions. 

Cyclic voltammetry, steady state polarization and rotating disk measurements were

carried out in the conventional three-electrode cell described in Chapter 2. 

Diamond and glassy carbon were used as working electrodes, Hg/Hg2SO4,K2SO4

(sat) electrode as the reference and a Pt wire as the counter-electrode. The exposed

apparent area of both BDD and GC electrodes was 1 cm2. The temperature was kept at

25°C.

The glassy carbon electrode was pretreated for some experiments. The pretreatment

consisted in a polishing on a Grinder Polisher (Buehler Ltd, Coventry, UK) with emery

paper (3M 734) followed by a polishing with alumina paste (Acryglas paste, Burnus, Ge).
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3. RESULTS AND DISCUSSION

3.1. Electrochemical measurements for the redox couple 

VOH/VO.

The electrochemical behavior of the redox couple VOH/VO. was investigated by

three electrochemical techniques using both boron-doped diamond (BDD) and glassy

carbon (GC) electrodes.

  3.1.1. Cyclic voltammetry 

The first method used is the cyclic voltammetry (CV). CV is known as a transitory

technique where potential is swept with time. By means of this technique and considering

a quasi-reversible reaction (Equation 5.1), it is possible to investigate the dependence of

the peak current with both the concentration and the scan rate, and to calculate the

diffusion coefficient DVOH. In that case, one can consider that the reaction is solely

governed by the mass diffusion. From the same measurements, it is also possible to

consider the irreversible system case (Equation 5.2 and Equation 5.3) to determine the

anodic transfer coefficient α and the standard electrochemical rate constant k0. 

Boron doped diamond electrode

 Figure 5.2 shows cyclic voltammograms recorded for five VOH concentrations

(from 5 to 15 mM) at BDD electrode. The peak current increased with the violuric acid

concentration. The dependence between the current peak and the concentration is linear

as shown by the Figure 5.3.

Supposing a quasi-reversible system, the value of  2.8 10-6 cm2 s-1 was calculated for

the diffusion coefficient DVOH using the Equation 5.1 (Chapter 2):

 5.1

where ip is the current peak (A), n is the number of electrons (n = 1), A is the electrode

surface (m2), CVOH is the VOH concentration (mol m-3), DVOH is the diffusion coefficient

of VOH (m2 s-1) and ν is the scan rate (0.05 V s-1).

⋅

ip 2.69 10
5–×( )n

3 2⁄
ACVOHDVOH

1 2⁄
v

1 2⁄
=
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The dependence between the current peak and the scan rate was also investigated at

a fixed VOH concentration of 10 mM. Figure 5.4 represents the evolution of the cyclic

voltammogram as a function of the scan rate. Figure 5.5 shows the linear relation found

between the peak current and the square root of scan rate. 

The value of 2.7 10-6 cm2 s-1 was calculated for the diffusion coefficient DVOH using

Equation 5.1.

 Figure 5.2 Cyclic voltammogram of redox
couple VOH/VO. in 0.1 M acetate buffer
(pH 4.65) at BDD electrode for different
VOH concentrations: 5, 7, 10, 12, 15 mM.
ν  =  50 mV s-1, T = 25°C. 

 Figure 5.3 Dependence of the peak current
density with the VOH concentration: 5, 7,
10, 12, 15 mM. ν  =  50 mV s-1, T = 25°C. 

 Figure 5.4 Cyclic voltammogram of a 10
mM solution of the redox couple VOH/
VO. in 0.1 M acetate buffer (pH 4.65) at
BDD electrode for different scan rate. v =
5, 10, 20, 50, 80, 100, 150 mV s-1. T =
25°C. 

 Figure 5.5 Dependence of current density
with scan rate. v = 5, 10, 20, 50, 80, 100,
150 mV s-1. T = 25°C.
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The transfer coefficient α for the anodic reaction (Equation 5.2) and the reaction rate

constant k0 (Equation 5.3) were calculated with the following relations (Chapter 2):

 5.2

 5.3

where Ep is the potential peak (V), Ep/2 is the half-peak potential (V), R is the gas constant

(8.314 J mol-1 K-1), T is the temperature (298.15 K), α is the anodic coefficient transfer,

F is the Faraday’s constant (96485 C mol-1), n is the number of electron exchanged and

k0 is the standard electrochemical rate constant (m s-1).

A value of 0.26 was found for the anodic transfer coefficient α and a standard

electrochemical rate constant k0 of 2 10-7 m s-1 was calculated.

Glassy carbon electrode

For comparison, the same experiments were performed at GC electrode (dependence

of j with both concentration and scan rate). 

Figure 5.6 shows the cyclic voltammograms recorded at different VOH

concentrations (from 5 to 15 mM) at GC electrode.  

 Figure 5.6 Cyclic voltammogram of redox
couple VOH/VO. in 0.1 M acetate buffer
(pH 4.65) at GC electrode for different
VOH concentrations: 5, 7, 10, 12, 15 mM.
ν  = 50 mV s-1, T = 25°C. 

 Figure 5.7 Dependence of current density
with the VOH concentration: 5, 7, 10, 12,
15 mM. ν  = 50 mV s-1, T = 25°C.
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The peak current increased with the violuric acid concentration. Since the

dependence of the current peak with the concentration is linear, j is not directly

proportional with the concentration (meaning that the straight line does not pass through

the origin), as expected for a quasi-reversible system (Figure 5.7).

The dependence between the current peak and the scan rate was also investigated at

a fixed VOH concentration of 10 mM (Figure 5.8). As seen in the previous experiment, a

linear relation exists between the peak current and the square root of scan rate (Figure

5.9). However, the peak current is not directly dependent on the square root of the scan

rate. Indeed, the trendline does not come through the origin.

As regards to these surprising results, a pretreatment of the glassy carbon electrode

was performed in order to check if the surface had any influence on the reaction. The

problem of removal of impurities at GC surface is often encountered in the literature [7,

8]. We have chosen a mechanical treatment consisting in polishing the GC surface with

emery paper and alumina. Cyclic voltammograms were again recorded and the

dependence between the peak current and the scan rate was investigated.

Figure 5.10 exhibits an expected pattern for the VOH/VO. redox couple at GC

electrode (similar to the BDD response), meaning that the surface state has an important

influence on the oxidation process. The mathematical treatment with Equation 5.1 was

applied and a value of 1.91 10-6 cm2 s-1 was found for DVOH.

 Figure 5.8 Cyclic voltammogram of 10
mM redox couple VOH/VO. in 0.1 M
acetate buffer (pH 4.65) at GC electrode
for different scan rate. ν = 5, 10, 20, 50,
80, 100, 150 mV s-1. T = 25°C.  

 Figure 5.9 Dependence of current density
with the scan rate. ν = 5, 10, 20, 50, 80,
100, 150 mV s-1. T = 25°C. 
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From this experiment, the transfer coefficient α for the anodic reaction was

calculated with Equation 5.2 (α = 0.4) and the standard electrochemical rate constant k0

was calculated with Equation 5.3 (7.28 10-7 m s-1). 

Comparison and discussion

Table 5.1 summarizes the values obtained for the anodic transfer coefficient, the

reaction rate constant and the diffusion coefficient determined by cyclic voltammetry.

 Table 5.1 Diffusion and kinetics parameters of BDD and GC electrodes. 

* calculated from the scan rate-peak current dependence

** calculated from the concentration-peak current dependence

Concerning the diffusion coefficient of VOH, the literature gives a value of 2 10-6

cm2 s-1 [4]. The values determined for GC and BDD electrodes, as well by the variation

 Figure 5.10 Cyclic voltammogram of 10
mM redox couple VOH/VO. in 0.1 M
acetate buffer (pH 4.65) at polished GC
electrode for different scan rate. v = 5, 10,
20, 50, 80, 100, 150 mV s-1, T = 25°C. 

 Figure 5.11 Dependence of current
density with the scan rate. v = 5, 10, 20,
50, 80, 100, 150 mV s-1, T = 25°C.

α k0 [m s-1] DVOH [cm2 s-1]* DVOH [cm2 s-1]**

BDD 0.26 1.45 10-7 2.7 10-6 2.8 10-6

GC 0.4 7.28 10-7 1.91 10-6 -
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of the concentration as that of the scan rate, are in agreement with this reference. 

The transfer coefficient α is higher for BDD than for GC electrode. Generally, one

can consider that for a metal, α is theoretically equal to 0.5 (α + β =1) [9]. Consequently,

the value of 0.4 for glassy carbon is expected, since this material exhibits a metallic

character. The lower value for BDD (α = 0.26) can be explained if we consider the semi-

conductor character of diamond. 

The results concerning the reaction rate constants will be discussed in the following

paragraph by comparison with the values calculated by steady state polarization.

  3.1.2. Steady-state polarization curves

The second method used is the steady state polarization (low field approximation),

which is a stationary technique. The polarization at low overvoltage permits to eliminate

the mass transfer contribution. 

The kinetic parameter k0 of the electrochemical reaction was calculated by recording

the steady-state polarization curves at four concentrations of VOH (from 5 to 15 mM) at

0.1 mV s-1.

The same experiments were performed at both diamond and glassy carbon electrode.

Boron doped diamond electrode

The steady-state curves were fitted to straight lines, whose slopes increased with the

 Figure 5.12 Polarization curves of the redox couple VOH/VO. in acetate buffer
(pH 4.65) at BDD electrode for different VOH concentrations: 1) 5, 2) 7, 3) 12,
4) 15 mM. ν = 0.1 mV s-1, T = 25°C.
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violuric acid concentration. The standard reaction rate constant k0 was calculated from the

following relations (Equation 5.4 and Equation 5.5), corresponding to the low

overpotential approximation (η < 10mV) of the Butler-Volmer equation:

 5.4

 5.5

As explained in Chapter 2, equations are valid only if we consider that the sum of

both anodic (α) and cathodic (β) transfer coefficient α+β is equal to 1 and that the

concentrations of both reduced and oxidized species are equal. In the case of violuric acid,

only VOH is present in the solution and α+β is not equal to one. 

Still, these relations were used to estimate the standard electrochemical rate constant

and a value of 2.07 10-7 m s-1 was calculated for k0 at BDD electrode.

Glassy carbon electrode

The same measurements were also carried out for GC electrode as shown in Figure

5.13:

The steady-state curves were fitted to straight lines. As shown previously, the slopes

increased with the violuric acid concentration. A standard electrochemical rate constant

 Figure 5.13 Polarization curves of the redox couple VOH/VO. in acetate buffer
(pH  4.65) at GC electrode for different VOH concentrations: 1) 5, 2) 7, 3) 12, 4)
15 mM. ν = 0.1 mV s-1, T = 25°C. 
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k0 of 3.61 10-7 m s-1 was calculated from Equation 5.4 and Equation 5.5, corresponding

to the low field approximation (η < 10 mV) of the Butler-Volmer equation.

Comparison and discussion

Standard electrochemical rate constants have in both cases (diamond and glassy

carbon) the same order of magnitude (10-7 m s-1). Similar values for other outer sphere

redox couples using BDD were found [10], confirming the validity of the measurement.

A much higher value was expected for GC because of the increase of sp2 carbon at the

surface electrode. Our results can be explained by a different quality surface state leading

to a slow electron transfer process. Indeed, we have observed for cyclic voltammetry that

the surface can strongly influence the electrode process.

  3.1.3. Rotating disk electrode

The last electrochemical technique is an hydrodynamic one. This method deals with

both the mass transfer and the charge transfer (mixed kinetics). Rotating disk electrode

method (RDE) allows to reach quickly the stationary state and permits to determine the

diffusion coefficient of VOH (DVOH) using the Levich equation. By extrapolation, it is

also possible to calculate the standard reaction rate constant k0. The RDE theory was

developed in Chapter 2.

Boron doped diamond electrode

Figure 5.14 represents the polarization curves obtained for different rotation rates

(from 100 to 1000 rpm). From these measurements, it is possible to study the dependence

between the limiting current density (jlim) and the rotation rate (ω). The relation between

jlim and the square root of the rotation rate is linear as expected (Figure 5.15). A value for

the diffusion coefficient DVOH of 5.47 10-6 cm2 s-1 was calculated using the Levich

equation (Equation 5.6).

 5.6

where ω is the rotation rate (s-1) and the other units are the same as for Equation 5.1.

⋅

⋅

jlim 0.62nFDVOH
2 3⁄ ω1 2⁄ ν 1– 6⁄
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Considering the equilibrium potential, by extrapolation, it is possible to calculate k0

using Equation 5.7:

 5.7

According to Equation 5.7, the intercept of the trend line allows to calculate jk, which

is equal to 4.2 10-4 A cm-2. jk represents the current in absence of mass transfer. From this

 Figure 5.14 Scans using BDD rotating
disk electrode at different rotation rates
(from 100 to 1000 rpm) for a 10 mM VOH
solution in acetate buffer (pH 4.65). ν = 1
mV s-1, T = 25°C.

 Figure 5.15 Dependence of the limiting
current density with the square root of the
rotation rate (100 to 1000 rpm) for a 10
mM VOH solution in acetate buffer (pH
4.65). ν = 1 mV s-1, T = 25°C.

 Figure 5.16 Graphical representation of Equation 5.7 at BDD electrode
for the determination of 1/jk at 0.9 V vs SHE.
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value, it is possible to calculate the reaction rate constant for the charge transfer kf

according to the following relation:

 5.8

where kf is the heterogeneous rate constant (m s-1) at a given potential. 

This calculation was made at different potential (close to the equilibrium one): 0.95, 1.05

and 1.1 V vs SHE.

According to Equation 5.9:

 5.9

where E0’ is defined as the potential where reduction and oxidation rate constants are

equal and considering the graphical representation of ln kf as a function of (E - E0’), it is

possible to calculate k0 (Figure 5.17).

 The value of 5.5 10-6 m s-1 was found for k0 at BDD electrode.

Glassy carbon electrode

Figure 5.18 represents the scans obtained for different rotation rates (from 100 to

1000 rpm) for glassy carbon electrode.  

 Figure 5.17 Graphical representation of Equation 5.9 at BDD electrode
for the determination of k0.
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.

The dependence of the limiting current density with the square root of the rotation

rate is linear (Figure 5.19). A diffusion coefficient DVOH of 3.55 10-6 cm2 s-1 was

calculated using the Levich equation (Equation 5.6).

As seen previously, it is possible to calculate kf
 using Equation 5.7.

According to the intercept of the straight line of Figure 5.20 and Equation 5.7, jk is

calculated. According to Equation 5.8, kf was calculated at different potentials (0.87, 0.93

and 0.96 V vs SHE). According to Equation 5.9 and Figure 5.21, the calculation of k0 was

 Figure 5.18 Scans using GC rotating disk
electrode at different rotation rates (from
100 to 1000 rpm) for a 10 mM VOH
solution in acetate buffer (pH 4.65). v = 1
mV s-1, T = 25°C.

 Figure 5.19 Dependence of the limiting
current density with the square root of the
rotation rate (100 to 1000 rpm) for a 10
mM VOH solution in acetate buffer (pH
4.65). v = 1 mV s-1, T = 25°C.

 Figure 5.20 Graphical representation of Equation 5.7 at GC electrode for
the determination of 1/jk at 0.9 V vs SHE.
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made and a value of 1.25 10-5 m s-1 was found.

Comparison and discussion

The diffusion coefficient values calculated using rotating disk electrode are, in both

cases, in harmony with the results obtained by cyclic voltammetry and with the literature

values. However, the standard rate constant for both BDD and GC electrodes are higher

than the values determined by low field approximation. It is necessary to take in

consideration that the k0 values were determined by extrapolation that is less precise. 

3.2. Indirect in-cell electrochemical oxidation using VOH

The redox couple VOH/VO. was tested as mediator using BDD electrode. The aim is

to use the redox couple as a mediator (catalyst) between the diamond electrode and an

organic compound. The oxidized form is generated at the anode to allow the oxidation of

the organic. Then, the reduced form returns to the anode as shown in Figure 5.22.

 Figure 5.21 Graphical representation of Equation 5.9 at GC electrode for
the determination of k0.
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2-methoxyphenol (called guaiacol) was tested because it is a recurrent function of

lignin (compound involved in pulp). The cyclic voltammetry was performed with a

mixture of guaiacol and VOH (Figure 5.23).

 

The current density peak decreases with the number of cycles. This behavior is

characteristic of the deactivation of the electrode surface. This deactivation is due to the

formation of polymeric guaiacol forms deposed at the surface electrode as shown in

Figure 5.24:

 Figure 5.22 Scheme of the indirect oxidation via a mediator.

 Figure 5.23 Successive cyclic voltammograms of 10 mM VA solution in
0.1 M acetate buffer (pH 4.65) and 5 mM of guaiacol at BDD electrode.
ν = 50 mV s-1. T = 25°C.
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4. CONCLUSIONS

The following table summarizes all the results calculated by the three different

electrochemical techniques:

 Table 5.2 Summary of the electrochemical parameters calculated for BDD and GC electrodes.

The use of three techniques allowed us to compare the results and the validity of each

method for the system studied. In spite of the different electrochemical approaches

between the three techniques (stagnant solution for the cyclic voltammetry and forced

convection for the rotating disk electrode), the values obtained for the diffusion

coefficients are almost equal. The values obtained by cyclic voltammetry for both boron-

doped diamond and glassy carbon electrodes are closer to the literature than that

determined by rotating disk electrode. 

Transitory and stationary regimes were approached by cyclic voltammetry and

steady state polarization, respectively. These approaches gave similar values for the

reaction rate constant k0 in spite of the approximations made for the treatment of the

results (especially for the steady polarization, α+β = 1 and CVOH = CVO.). The reaction

at GC electrode is slightly more rapid than at BDD anode. However, the redox couple

does not seem to be very sensitive to the presence of a higher concentration of sp2 carbon.

 Figure 5.24 Mechanism of the oxidation of the 2-methoxyphenol.
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This observation is in agreement with the properties of an outer sphere system, which

implies weak interactions between the diamond electrode and the reactant. Usually, the

reaction kinetics do not depend on the electrode surface. Therefore, the determined values

are expected to be similar for both electrodes. However, differences can be explain even

in the case of an outer sphere system, by the influence of the electrode material on the

kinetics by affecting the electric layer and the Helmotz layer structure.

Compared to the widely investigated outer sphere reactions like ferri-ferro cyanide,

only the reduced form of violuric acid (VOH) is present in our system and no control is

possible on the concentration of the oxidized form (VO
.
). Then, some approximations

have been made for Equation 5.4 and Equation 5.5, as well as for the calculation of k0 by

steady state polarization. 

Finally, the values of the transfer coefficient α seem to be consistent with the theory.

Due to the metallic character of the GC electrode, a value close to 0.5 is indeed expected.

Concerning the diamond anode, a value of 0.26 was found. It is assumed that for an ideal

semi-conductor, the transfer coefficient should α should be equal to 0. But, this case is

rare and the value of 0.26 can be assigned to the partial localization of the interfacial

potential drop in the Helmotz layer upon the electrode polarization [10, 11].

The interesting point of this investigation is that we obtained similar parameters in

spite of the use of three different techniques that deal with different mode transport (mass

transport by diffusion for cyclic voltammetry, by convection for rotating disk electrode

and charge transfer for steady state polarization).

The use of violuric acid as a mediator seems to be difficult for an indirect in-cell

reaction occurring in the potential region of water stability. It will probably be more

interesting to test a compound that cannot polymerize in order to avoid the polymerization

of organics at the BDD surface.
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Chapter 6. Detection of electrogenerated
hydroxyl radicals at BDD anode

1. INTRODUCTION

BDD electrodes are known to be typical non active electrodes. This designation

means that the electrochemical oxygen transfer reaction is mediated by hydroxyl radicals

that are weakly adsorbed at the electrode surface. Consequently, the surface of the

electrode does not participate in the anodic process. In order to validate this hypothesis,

it is necessary to detect the presence of hydroxyl radicals during electrochemical reactions

at diamond electrode. 

Free hydroxyl radicals are very reactive species and have a short life time of about

10-9 s. These characteristics explain the difficulty to detect the radicals in situ (even if it

is theoretically possible with spin resonance measurements). Therefore, the spin trapping

represents an easier alternative to detect and identify this radical. The principle of spin

trapping method is to produce a stable adduct by allowing a specific scavenger to react

with a less stable radical. 

Since hydroxyl radicals are supposed to be the electrogenerated intermediates
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responsible for the oxidation process at boron-doped diamond, their presence was

investigated at BDD electrode. The detection was made by spin trapping to allow the

formation of a stable adduct, which is detectable by analytical methods. Two different

experiments were performed at boron-doped diamond electrode using two different spin

traps (5,5-dimethyl-1-pyrroline-N-oxide noted DMPO and 4-nitroso-N,N-

dimethylaniline called p-nitrosoaniline or RNO) and two different analysis techniques

(Electron Spin Resonance ESR and UV-visible measurement, respectively). In the case of

the ESR analysis, a comparison with hydroxyl radicals chemically produced by Fenton

reaction was also investigated to confirm the results. 

As an other proof of the presence of hydroxyl radicals, the formation of hydrogen

peroxide (electrogenerated intermediate) as well as the study of competitive reactions

between hydroxyl radicals and carboxylic acids (oxalic and formic acids), were also

investigated. 

Finally, the reactivity of hydroxyl radicals at BDD anode was investigated through

the hydroxylation reaction of salicylic acid. The hydroxylation of this organic is known

to produce three well identified hydroxylated products: 2,3- and 2,5-dihydroxylated

benzoic acid and catechol (with a concomitant decarboxylation). The electrochemical

hydroxylation was carried out at BDD anode. In order to compare the reaction and the

intermediates distribution, the chemical hydroxylation was also performed by Fenton

reaction and UV-photolysis.

2.  EXPERIMENTAL

2.1. Spin trapping 

  2.1.1. Electrolysis of DMPO and Electron Spin Resonance 
measurement

The electrolysis of an 8.8 mM DMPO solution in 1M perchloric acid was carried out

with the electrochemical cell described in Chapter 4. Diamond was used as the working

electrode and a Pt wire as counter electrode. 

ESR spectra were recorded on a Brucker ECS 080 X-band spectrometer (Brucker).

The measurements were performed at ambient temperature (298 K) with the following

conditions: 100 kHz modulation with 1.5 G application, 10 mW microwave power, 3350

G central magnetic field and 100 G scan width. The Fenton solution used for comparison
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was a mixture of 10 mM DMPO, 1M H2O2 and 10 mM (NH4)2Fe(SO4)2. All the products

were purchased from Fluka. 

  2.1.2. Electrolysis of RNO and UV-visible measurement

The electrolysis of a 3.12 mM p-nitrosoaniline (RNO) yellow solution was carried

out at pH 9.5 in 0.1 M borax solution (Na2B4O7) using the electrochemical

characterization cell as described for the electrochemical measurements (Chapter 4). A

sample was removed at steady time. The absorbance was recorded at ambient temperature

(298 K) on a Shimadzu spectrophotometer UV-160A between 340 and 550 nm. 

In the conditions of the experiment, the maximum of absorbance is found at 440 nm.

The molar extinction coefficient ε was calculated from the Beer-Lambert relation (A =

ε.l.c with l = 1 cm). The obtained value for ε was 3 104 L mol-1 cm-1 (reference value

3.35 104 L mol-1 cm-1 [1]). The total organic carbon (TOC) of the solution was measured

using a TOC-5050 Shimadzu (Shimadzu Corporation, Tokyo, Japan).

2.2. Formation of H2O2

The formation of hydrogen peroxide was investigated by electrolysis in the two-

compartments electrochemical flow cell. Anolyte and catholyte were 1M perchloric acid

solutions and were stored in two 500 mL thermoregulated tanks (T = 25°C). They were

circulated through the electrolytic cell by centrifugal pumps.

2.3. Competitive reaction

The electrolysis was performed in the two-compartments electrochemical flow cell

under galvanostatic conditions (Chapter 4). The anolyte was a 500 mL solution of 0.5 M

formic acid and 0.5 M oxalic acids in 1 M perchloric acid. The catholyte was a 500 mL

solution of 1M perchloric acid. The electrolysis was performed at 23.8 mA cm-2. The

concentrations of carboxylic acids were monitored by HPLC on a Shimadzu LC-6 Series

(Shimadzu Corporation, Tokyo, Japan) with a Supelcogel C610-H column. The mobile

phase was water-H3PO4 0.1% at a flow rate of 0.5 mL min-1 and the wavelength used was

210 nm. The retention time for formic and oxalic acids were 18.06 min and 8.67 min,

respectively. The total organic carbon of the solution was measured using a TOC-5050

Shimadzu.

⋅

⋅
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2.4. Hydroxylation of salicylic acid

Electrochemical hydroxylation

The electrochemical hydroxylation of salicylic acid (SA) was carried out using the

two-compartments electrochemical flow cell described in Chapter 4. The anolyte was a

solution of 7.25 mM SA in 1 M HClO4 and the catholyte was 500 mL of 1 M HClO4. The

temperature was kept at 15°C. The concentrations of salicylic and hydroxylated

intermediates were monitored on a Shimadzu LC-2010A (Shimadzu Corporation, Tokyo,

Japan), using an apolar reversed phase Nucleosil 7 C8 column with a mobile phase of

water-1% H3PO4 /acetonitrile 80/20. Retention times are given in Table 6.1. The isocratic

flow rate was 0.5 mL min-1. The detection was performed at a wavelength λ of 294 nm.

 

Table 6.1 Structure and retention times of detected intermediates.

Fenton reagent (H2O2-Fe2+)

Fenton reaction was performed by adding 0.1 mL of a 0.6 M Fe(II) solution to 100

mL of a 7.25 mM SA solution in 1M NaClO4 followed by the addition of a solution of 3%

H2O2. The pH of the solution was kept to 4.4 with acetate buffer (CH3COONa/

CH3COOH). The reaction was performed in a thermoregulated cell and the solution was

allowed to react with a medium stirring. The Fenton reaction started when H2O2 was

added. Each 20 minutes (corresponding to the HPLC analysis time), a sample of 1 mL was

taken and immediately cooled on ice to stop the reaction. 

According to the Fenton equation:

 6.1
 

Compounds Formula
C8 column

Retention time [min]

Salicylic acid C7H6O3 13.69

2,3-DHBA C7H6O4 7.18

2,5-DHBA C7H6O4 6.42

Fe
2 +

H2O2+ Fe
3 +

HO
•

HO
–

+ +→
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and considering that the total combustion of SA needs 14 mol of H2O2:

,  6.2

it is possible to control the production of hydroxyl radicals by changing the ratio (r)

between the moles of SA and hydrogen peroxide. Therefore, the volume of added

hydrogen peroxide depends on the ratio investigated. The analysis of samples were

monitored on a Shimadzu LC-2010A (Shimadzu Corporation, Tokyo, Japan), using a

Nucleosil 7 C8 column with a mobile phase of water-1% H3PO4 /acetonitrile 80/20. The

isocratic flow rate was 0.5 mL min-1. The detection was performed at a wavelength of 294

nm.

UV photolysis (H2O2-UV)

The experiments were conducted in a cylindrical cell of 100 mL containing a 7.25

mM SA solution in 1M NaClO4 and 10 mL of 3% H2O2. The pH was kept to 4.4 with

acetate buffer (CH3COONa/CH3COOH). The irradiation source was a 6 W

photochemical reactor with a 250 W mercury light (Photochemical reactor Ltd.). Samples

were taken at regular time and analyzed by HPLC with a Shimadzu LC-2010A (Shimadzu

Corporation, Tokyo, Japan), using a Nucleosil 7 C8 column with a mobile phase of water-

1% H3PO4 /acetonitrile 80/20. The isocratic flow rate was 0.5 mL min-1. Detection was

performed at a wavelength of 294 nm.

Selectivity and conversion

The selectivity of the hydroxylated intermediates (S) relative to the amount of

salicylic acid converted and the conversion (X) of salicylic acid, 2,3- or 2,5-

dihydroxylated benzoic acids have been defined as:

 6.3

 6.4

where [DHBA]0 and [DHBA]t are the concentrations of 2,3- or 2,5-dihydroxylated acids

C7H6O3 14H2O2+ 7CO2 17H2O+→

S
DHBA[ ]t DHBA[ ]0–

SA[ ]0 SA[ ]t–
----------------------------------------------------- 100×=

X
R[ ]0 R[ ]–

R[ ]0
------------------------- 100×=
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at time 0 and t, respectively (mol m-3) and [R]0 and [R]t are the concentrations of SA, 2,3-

or 2,5-DHBA at time 0 and t, respectively (mol m-3).

3. RESULTS AND DISCUSSION

3.1. ESR measurements with DMPO

The spin trap DMPO reacts with hydroxyl radicals to produce a stable adduct as

shown in Figure 6.1. The main advantage of using DMPO is that it exhibits different

spectra with hydroxyl radical and singlet oxygen. The rate constant between DMPO and

hydroxyl radicals is equal to 4.3 109 M-1 s-1 [2].

The electrolysis of an 8.8 mM DMPO solution in perchloric acid was performed at

BDD electrode at a current density of 0.1 mA cm-2 for 2 hours. 

Figure 6.2 shows the ESR spectrum obtained after 2 hours of electrolysis. The

 Figure 6.1 Reaction scheme of spin trapping between hydroxyl radicals and DMPO.

 Figure 6.2  ESR spectrum of the DMPO-
OH adduct obtained after electrolysis for 2
hours at BDD electrode. j = 0.1 mA cm-2,
T = 25°C.

 Figure 6.3 ESR spectrum of the DMPO-
OH adduct obtained by Fenton reaction.
T = 25°C.
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spectrum exhibits four non-equivalents peaks meaning the presence of two different

species. The interaction takes place between N (I = 1) and H (I = 1/2). The hyperfine

splitting couplings were calculated with a fitting program (Program NMRICMA). The

hyperfine couplings aN and aH were equal to 14.95 G. In order to compare the

electrochemical production of hydroxyl radicals with the chemical one, a typical Fenton

reaction was carried out. The solution was allowed to react for 60 minutes. The obtained

spectrum is shown in Figure 6.3 and is similar to the one obtained with the electrolysis,

showing 4 non-equivalents peaks. The fitting of the spectrum gave aN = aH = 15.20 G.

These values are typical of the spin-adduct DMPO-OH, (15 G [3, 4]). These results

indicate that hydroxyl radicals are produced at boron-doped diamond and by Fenton

reaction.

The same experiments were performed with an other spin trap, N-tert-butyl-α-

phenylnitrone (PBN). The reaction with hydroxyl radicals is shown in Figure 6.4 [5].

A Fenton reaction was performed in order to obtain the PBN-OH adduct. Figure 6.5

shows the recorded spectrum.

 Figure 6.4 Reaction scheme of spin trapping between hydroxyl radicals and PBN.

 Figure 6.5 ESR spectrum of the PBN-OH adduct obtained by Fenton reaction. 
T = 25°C.
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The spectrum exhibits three equivalents peaks assigned to N (I = 1). The hyperfine

splitting coupling was calculated by the software NMRICMA as aN = 15 G. This value is

in agreement with the typical value of PBN-OH adduct (15.3 G [3]). However, the

sensitivity of the device did not allow to detect the hydrogen coupling, which is generally

equal to 2.75 G. Unfortunately, when the electrochemical production of hydroxyl radicals

was carried out no clear signal was found by ESR. 

3.2. UV-Visible measurements with RNO

The reaction between hydroxyl radicals and p-nitroso-dimethylaniline (RNO) is

shown in Figure 6.6:

The use of p-nitrosoaniline as a spin trap is interesting because RNO is, under these

conditions of concentration and pH, electrochemically inactive. The reaction occurs at a

very high rate constant (1.3 1010 M-1 s-1 [6]) and, moreover, is very selective. 

The electrolysis of a RNO solution in borax medium was carried out at a current

density of 0.4 mA cm-2. Each 30 minutes, a sample was taken to record the absorbance

and the TOC of the solution.

 Figure 6.6 Reaction scheme of spin trapping between hydroxyl radicals and RNO.
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Figure 6.7 shows the evolution of the absorbance spectra during the electrolysis of

the RNO solution. The maximum of absorbance decreases linearly with the specific

charge (or time) as presented in Figure 6.8. This behavior indicates that a direct reaction

between hydroxyl radicals and the spin trap RNO takes place. In all cases, the maximum

absorbance is found at 440 nm as expected. In order to check the selectivity of the reaction

(if the decrease of the RNO can exclusively be assigned to the reaction between hydroxyl

radicals and spin trap), the TOC was measured. 

Figure 6.8 also represents the evolution of the total organic carbon during the

electrolysis. The TOC remains constant as a function of the passed charge, indicating that

no reaction other than the direct reaction between hydroxyl radicals and RNO occurs. The

removal of RNO is representative of the formation of hydroxyl radicals and not of the

RNO oxidation by an other oxidant. These results indicate that the formation of hydroxyl

radicals takes place, confirming the role of BDD electrode as non active anode.

3.3. Hydrogen peroxide formation

The investigation was focused on the formation of hydrogen peroxide. Hydrogen

peroxide is a strong oxidant (standard potential 1.8 V vs SHE at pH = 0 [7]). The

formation of H2O2 can be due to the water oxidation either by a direct mechanism

(Equation 6.5) or by an indirect mechanism (Equation 6.6). The latter case means that two

 Figure 6.7  Evolution of the absorbance of
a 3.1 10-3 M RNO solution in 0.1 M borax.
Curves were recorded each 30 minutes. 
j = 20 mA cm-2, T = 25°C.

 Figure 6.8  (�)Bleaching and (�)TOC
evolution of 3.1 10-3 M RNO solution in
0.1 M borax medium as a function of the
specific charge. j = 20 mA cm-2, T = 25°C.
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electrogenerated hydroxyl radicals react together. 

 6.5

 6.6

The production of H2O2 is not caused by the reaction between ozone and water

because of the slow kinetics of the reaction at very low pH. The oxidation of a 1 M

perchloric acid solution was carried out at different current densities (from 230 to 1600 A

m-2), at 25°C. The produced H2O2 was measured out by permanganate titration (Figure

6.9). 

 

The high concentrations of hydrogen peroxide observed allowed us to conclude that

a low adsorption of species at BDD (contrary to other electrode materials as Pt, SnO2,

PbO2) takes place and that the first steps of oxygen evolution are the formation of

hydroxyl radicals followed by their combination into H2O2. After approximately 4 hours,

the concentrations reached a saturation due to oxidation.

3.4. Competitive reaction

This study highlights the presence of hydroxyl radicals by the investigation of the

competition between hydroxyl radicals and carboxylic acids. When a mixture of organic

 Figure 6.9 Evolution of hydrogen peroxide concentration with time at different
current densities. 1 M HClO4  solution, T = 25°C. 
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compounds is present in solution, one can consider that they are competition with the

hydroxyl radicals produced during water discharge. In order to investigate this

competition, the electrolysis of a formic and oxalic acids mixture was carried out.

Figure 6.10 represents the effect of formic and oxalic acids on the oxygen evolution

curve in perchloric acid.

 

The shift of the water decomposition potential indicates that the oxidation pathway

involves electrogenerated hydroxyl radicals. An higher activity of BDD toward formic

acid than oxalic acid is observed. Indeed, at a given potential, the current density of formic

acid oxidation is higher than the one of oxalic acid. In order to understand better this

difference of reactivity, the electrolysis of a mixture of formic and oxalic acids in

perchloric acid was carried out at 238 A m-2. The concentrations were determined by

HPLC and their evolution are shown in Figure 6.11. The oxidation of formic acid started

at the beginning of the electrolysis while the concentration of oxalic acid remained

unchanged. After approximately 12 hours, the oxidation of formic acid was limited by the

mass transport and the oxidation of oxalic acid started. This behavior can be explained

taking into consideration that both formic and oxalic acids are in competition with

hydroxyl radicals. Moreover, the rate constants between hydroxyl radicals and formic

acid (k = 108 M-1 s-1) is higher by two orders of magnitude than the one of oxalic acid (k

= 1.4 106 M-1 s-1) [8, 9], explaining why the oxidation of formic acid occurs first.

 Figure 6.10 Shift of the oxygen evolution
curve of (c) perchloric acid 1 M solution in
presence of (a) 0.1 M formic acid and (b)
0.1 M oxalic acid, v = 20 m s-1, T = 25°C.

 Figure 6.11  Evolution of concentrations
with time during the oxidation of a
mixture of (a) formic and (b) oxalic acids
in perchloric acid medium. j = 238 A m-2, 
T = 25°C.
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3.5. Hydroxylation of SA 

  3.5.1. Electrochemical hydroxylation

The electrochemical hydroxylation of salicylic acid was investigated in order to

detect the presence of hydroxyl radicals during the electrochemical process on the one

hand, and, on the other hand, to determine the mechanism of hydroxyl radicals reactivity.

The salicylic acid was chosen for model because its hydroxylation reaction and the

intermediates are well known. Firstly, the electrochemical oxidation of SA was performed

using a BDD electrode in perchloric acid medium at a current density of 20 A m-2, a value

lower than the limiting current to ensure a partial oxidation of the SA. The study of the

reaction intermediates was performed by HPLC analysis allowing the identification of the

mechanism of SA oxidation at diamond. The mechanism of salicylic oxidation is shown

in Figure 6.12. 2,3- and 2,5-dihydroxylated benzoic acids (DHBA) are the main

intermediates and when decarboxylation occurs, catechol is produced.

 Figure 6.12 Mechanism of salicylic acid hydroxylation (a) 2,3-DHBA, (b) 2,5-
DHBA, (c) Catechol.

OH

CO OH

OH

O H

CO O H

OH

OH

CO OH

OH

O H

        b

      c

CO 2

a



Results and discussion

113

Figure 6.13 represents the evolution of concentrations of SA, 2,3- and 2,5-DHBA

during the electrolysis as well as the conversion of SA. These results show, as expected,

that the hydroxylation reaction takes place and leads to the formation of dihydroxylated

intermediates (2,3- and 2,5-DHBA). Under these conditions of hydroxylation, a majority

of 2,5-DHBA is produced. Figure 6.14 shows the average selectivity in dihydroxylated

intermediates obtained during the electrolysis of SA. The total average selectivity is equal

to 54%, for which 47% are due to 2,5-DHBA. 

  3.5.2. Chemical hydroxylation 

A comparison with chemical production of hydroxyl radicals was also carried out.

The hydroxyl radicals were produced by two chemical reactions using Fenton reaction

(SA, hydrogen peroxide and Fe2+) or H2O2 - UV (SA, H2O2 and UV light). The reactions

were followed by HPLC to characterize the formation of intermediates (Figure 6.15,

Figure 6.17). In harmony with the electrochemical results and according to the

mechanism of the reaction between salicylic acid and hydroxyl radicals, dihydroxylated

benzoic acids were produced. In these cases, a majority of 2,3-DHBA was formed

compared to 2,5-DHBA. Figure 6.16 and Figure 6.18 represent the average selectivity of

2,3- and 2,5-DHBA for Fenton and UV-H2O2 reactions, respectively. The total average

 Figure 6.13  Concentrations of (�) SA,
(�) 2,5-DHBA, (�) 2,3-DHBA as a
function of specific charge. Current
control regime, j = 20 A m-2, [SA]0 = 7.25
mM, Electrolyte 1 M HClO4, T = 25°C.
(�) X of SA.

 Figure 6.14  Average selectivity of
dihydroxylated intermediates. Electrolysis
of 7.25 mM SA solution, j = 20 A m-2,
Electrolyte 1M HClO4, T = 25°C.
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selectivity is equal to 25% for Fenton and 50% for photolysis. This difference of

selectivity (compared to the electrochemical experiment for which a majority of 2,5-

DHBA is produced) will be discussed in more details in Chapter 10.

As explained in Chapter 2, a majority of 2,3-DHBA is expected because of the

stabilization of SA by resonance. Salicylic acid contains a carboxyl and a hydroxyl group

in position 1 and 2, respectively. The carboxyl group is known to be a strong deactivator

 Figure 6.15  Concentrations of (�) SA,
(�) 2,5-DHBA, (�) 2,3-DHBA as a
function of time. [SA]0 = 7.25 mM, Fe2+

0.6M [H2O2] 3%. Electrolyte 1 M
NaClO4, pH 4.4. (�) X of SA.

 Figure 6.16  Average selectivity of
dihydroxylated intermediates. [SA]0 =
7.25 mM, Fe2+ 0.6M [H2O2] 3%.
Electrolyte 1 M NaClO4, pH 4.4, 
T = 25°C. [H2O2]/[SA] = 7.

 Figure 6.17  Concentrations of (�) SA,
(�) 2,5-DHBA, (�) 2,3-DHBA as a
function of time. [SA]in = 7.25 mM,
[H2O2] 3%. Electrolyte 1 M NaClO4, pH
4.4. (�) Conversion of SA.

 Figure 6.18  Average selectivity of
dihydroxylated intermediates. [SA]in =
7.25 mM, [H2O2] 3%. Electrolyte 1 M
NaClO4, pH 4.4.
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(by resonance), orientating in meta- position, and the hydroxyl group is a strong activator

(by resonance) in ortho- and para- positions. In this way, two hydroxylated intermediates

are expected in the same concentrations: 2,3-DHBA (ortho attack) and 2,5-DHBA (para

attack). However, hydrogen bonding is observed in salicylate, leading to the enhancement

of the electron population in the ortho position. Because hydroxyl radicals exhibit a strong

electrophilic character, the preferential attack takes place in the ortho position, producing

more 2,3-DHBA than 2,5-DHBA. 

  3.5.3. Influence of the pH 

We also note that in the electrochemical case, the ratio between 2,5- and 2,3-DHBA

is almost equal to 6 while in both chemical cases, the ratios are lower than 1 (Figure 6.19).

Some parameters could influence the selectivity for dihydroxylated intermediates. In

the first place, the influence of the pH can be considered, because, the change in pH can

modify the electronic density distribution. The electrochemical hydroxylation was

performed at pH 1, 4.65 and 8 to investigate the influence of the pH on the reaction. As

explained in the bibliographic part (Chapter 2), Fenton reaction is very sensitive to pH.

Indeed, the pH has normally to be between 3 and 5 to avoid the precipitation of Fe2+.

However, an assay was performed in perchloric acid to determine the selectivity for

dihydroxylated intermediates in acidic medium. Figure 6.20 shows the different ratios

obtained for the electrochemical oxidation and the chemical oxidation at various pH. 

The pH does not seem to influence significantly the distribution of the products.

 Figure 6.19 2,5-DHBA/2,3-DHBA ratio (1) electrochemical oxidation, (2)
Fenton reaction, (3) UV-photolysis, [SA]0 = 7.25 mM.
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Indeed, the trend of the 2,5-/2,3-DHBA ratio does not change with the pH (even if the

ratio decreases with the pH). In the electrochemical case, 2,5-DHBA remains the major

product while the chemical hydroxylation by Fenton reaction leads to the formation of a

majority of 2,3-DHBA.

  3.5.4. Stability of 2,3- and 2,5-DHBA 

The stabilities of 2,5- and 2,3-DHBA were also followed to verify if 2,3-DHBA was

degraded more quickly, explaining why its concentration was lower than the one of 2,5-

DHBA. The stability without applied potential was firstly studied and the concentration

of both DHBA did not change. The oxidation of each intermediates was also investigated.

The knowledge of the kinetics of each intermediates can provide information on the

mechanism of hydroxylation. Figure 6.21 and Figure 6.22 represent the evolution of the

concentration and the selectivity of DHBA intermediates during their electrolysis. The

evolution is quite similar and no characteristic difference in the rate of decomposition is

distinguishable. Altogether that means that both 2,3- and 2,5-DHBA are oxidized with

similar kinetics. 

 Figure 6.20 2,5-DHBA/2,3-DHBA ratio of electrochemical oxidation at different
pH (1, 4.65 and 8) and Fenton reaction, (pH 4.5 and 2), [SA]0 = 7.25 mM.
Electrochemical conditions: j = 20 A m-2, electrolyte 1M HClO4. Chemical
oxidation: [H2O2]/[SA] = 7.

0

2

4

6

8

10

12
2,

5-
D

H
B

A
/2

,3
-D

H
B

A

Electrochemical 
oxidation at BDD

H2O2 + Fe2+

pH < 1

pH ~ 8

pH ~ 4.5 pH ~ 1

pH ~ 4.65



Conclusions

117

Therefore, the stability of both 2,3- and 2,5-DHBA do not seem to influence on the

dihydroxylated products ratio.  

4. CONCLUSIONS

The spin trapping method permitted to highlight the presence of hydroxyl radicals.

Indeed, first experiments, which consisted in trapping hydroxyl radicals that were

produced either electrochemically or chemically with DMPO showed electron spin

resonance spectra that were typical of this spin-adduct. The spectrum recorded of the

experiment performed at boron-doped diamond gave the same hyperfine couplings than

those obtained for the Fenton reaction (chemical reaction of OH radical production) at

about 15 Gauss [3]. A lot of spin-trapping experiments were done with chemically

produced hydroxyl radicals (Fenton, photo-oxidation...) [4, 2, 10], but it does not exist

example of spin trapping recorded for an electrochemical production of hydroxyl radicals

at BDD electrode. 

ESR experiments were corroborated by UV studies of p-nitrosoaniline-adduct.

Indeed, the analysis of the adduct by UV absorbance confirmed the production of

hydroxyl radicals at BDD anode. The bleaching of the RNO solution was linear,

indicating that the reaction of spin-trapping had taken place. The maintenance of the TOC

concentration further indicated that the removal of RNO concentration was only due to

 Figure 6.21  Concentrations of (�) 2,3-
DHBA and (�) 2,5-DHBA as a function of
the specific charge. Electrolysis in HClO4
1M, T = 25°C, j = 20 A m-2.

 Figure 6.22  Conversion of (�) 2,3-
DHBA and (�) 2,5-DHBA as a function of
the specific charge. Electrolysis in HClO4
1M, T = 25°C, j = 20 A m-2.
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the reaction between hydroxyl radicals and p-nitrosoaniline.

During water decomposition, a lot of reactive intermediates are produced (hydroxyl

radical, ozone, hydrogen peroxide, singlet oxygen, peroxo compounds...). Some are

formed directly by the oxidation of water (like OH radicals) and others are obtained by

recombination. Hydrogen peroxide is a good example (Equation 6.6). The concentrations

of H2O2 measured during the electrolysis of a perchloric acid solution demonstrate the

production of hydroxyl radicals at diamond anode.

The competitive reaction between organic acids and hydroxyl radicals was

performed in order to study if the reactivity of each carboxylic acids was connected to the

presence of hydroxyl radicals. The first behavior observed was a discrepancy between

formic and oxalic acid oxidations, where the oxidation of formic acid took place before

that of oxalic acid. One explanation for this difference in reactivity is the different rate

constants between OH radicals and organic acids, which differ from 2 orders of

magnitude (106 for oxalic acid vs 108 M-1 s-1 for formic acid). It is thus possible to

establish a correlation between these rate constants and the fact that the oxidation of

formic acid at boron-doped diamond anodes occurs first. 

The previous experiments have emphasized the presence and the role of hydroxyl

radicals electrogenerated at BDD electrode, but it is also important to know the reactivity

of these radicals and their attack mechanism. The reaction of hydroxylation of salicylic

acid was chosen for model. Salicylic acid is hydroxylated by hydroxyl radicals into two

main dihydroxylated compounds (2,3- and 2,5-DHBA). As regards to the comparison

between electrochemical and chemical hydroxylation, opposite behaviors were observed.

Indeed, the chemical hydroxylation forms preferentially the ortho isomer (2,3-DHBA)

while the electrochemical oxidation leads to the preferential production of the para isomer

(2,5-DHBA). This difference of reactivity cannot be explained by the pH influence or by

the decomposition kinetics of these intermediates. This point will be discussed in more

details in the general discussion.
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Chapter 7. Electrochemical oxidation of
4-chlorophenoxyacetic acid

1. INTRODUCTION

The protection of the environment becomes a major issue for future technologies

progress. Electrochemical processes are an attractive method for waste water treatment

[1-4]. In this aim, several anode materials have been tested, but some of them exhibited a

rapid loss of activity due to surface fouling (glassy carbon, PbO2) or the short life time

(SnO2). Due to its exceptional properties (high anodic stability and wide potential

window), boron-doped diamond proved to be a promising material for the complete

combustion of organics [5, 6].

4-chlorophenoxyacetic acid (4-CPA) is known as a powerful pesticide, which was

first registered in the USA in 1969. It is used in the food industry as a plant regulator to

restrict root growth during seed germination of mung beans and as fruiting bloom set for

tomatoes. 
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In order to validate the theoretical models developed in Chapter 3 for a one-

compartment electrochemical flow cell, the electrochemical oxidation of 4-CPA was

investigated at BDD anode. 

4-CPA was firstly studied by cyclic voltammetry in the region of water stability as

well as at higher potential in order to characterize its behavior at BDD electrode and to

calculate its diffusion coefficient. 

Then, bulk electrolysis in the one-compartment electrochemical flow cell was carried

out to study the ability of 4-CPA to be oxidized at diamond anode. The experimental

results were compared with the theoretical model for organic oxidation at non active

anode.

2. EXPERIMENTAL

2.1. Electrochemical measurements

Cyclic voltammetry was performed in the electrochemical characterization cell

described in Chapter 4. The working electrode was a Si/BDD plate of 1 cm2 of geometric

area. The counter electrode was a platinum wire and the reference was a Hg/HgSO4/

K2SO4 (sat). All potentials are given relative to the standard hydrogen electrode (SHE).

The supporting electrolyte was 1 M HClO4. Fluka Chemie and Riedel-de Haën chemicals,

and Milli-Q water were used to prepare the solutions.

2.2. Bulk electrolysis

Bulk oxidation of 4-CPA was carried out using the one-compartment electrochemical

flow cell operating in galvanostatic mode (Chapter 4). The electrolyte was a 1 M HClO4

solution.

 Figure 7.1 Structure of 4-chlorophenoxyacetic acid (4-CPA).
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2.3. HPLC measurement

The concentrations of organic compounds were monitored by chromatography

HPLC on a Shimadzu series 6 (Shimadzu Corporation, Tokyo, Japan) with an UV

detection. Two columns were used for the identification of the oxidation products. The

aromatic products were detected with a Nucleosil C18 column (Supelco) with

acetonitrile/water (58/42) as mobile phase (the pH was adjusted to 2.1 using H3PO4 98%),

with a flow rate of 0.8 mL min-1 and a wavelength of 254 nm. The carboxylic acids were

monitored with a Supelcogel H column (Supelco) with water and 0.13% phosphoric acid

solution at a flow rate of 0.5 mL min-1 (λ = 210 nm). All retention times are given in

Table 7.1.

3. RESULTS AND DISCUSSION

The electrochemical behavior of 4-CPA was investigated by cyclic voltammetry at

BDD electrode in the potential region of electrolyte stability as well as in presence of

electrolyte decomposition. The theoretical model for 4-CPA oxidation at a non active

anode was used to predict the chemical oxygen demand and the instantaneous current

Compounds Formula
Nucleosil C18 

Retention time [min]
Supelcogel H

Retention time [min]

4-chlorophenoxyacetic acid C7H6O3 3.88 -

4-chlororesorcinol C7H6O2 2.96 -

4-chlorophenol C6H5ClO 4.74 -

Benzoquinone C6H4O2 3.2 -

Glycolic acid C2H4O3 - 14

Malic acid C4H6O5 - 13.5

Oxalic acid C2H2O4 - 8

Glyoxylic acid C2H2O3 - 11

Formic acid CH2O2 - 18

Maleic acid C4H4O4 - 10

 Table 7.1 Structure and retention time of detected intermediates.
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efficiency evolutions.

3.1. Cyclic voltammetry

The electrochemical oxidation of 4-CPA was investigated in a perchloric acid

solution at ambient temperature. 

Figure 7.2 shows consecutive cyclic voltammograms of 4.2 mM 4-CPA in 1 M

HClO4 at a scan rate of 50 mV s-1. The solution was stirred before each cycle. As the

number of cycles increased, the anodic current density peaks decreased markedly until a

steady state was reached (five cycles). This deactivation is due to the deposition of an

organic film on the electrode surface. Washing with an organic solvent like isopropanol

did not reactivate the electrode. However, the initial activity of the electrode surface could

be restored by anodic polarization in the same solution for 60 s at 2.6 V (vs SHE) as shown

in Figure 7.2, curve d. The potential chosen for the reactivation of the surface was in the

domain of water decomposition, a reaction that leads to the production of hydroxyl

radicals.

Then, the effect of the concentration of 4-CPA was studied. Figure 7.3 shows the first

cyclic voltammograms recorded at a scan rate of 50 mV s-1 for different concentrations

of 4-CPA in 1 M HClO4. An oxidation peak was observed at approximately 1.65 V vs

SHE. As shown in Figure 7.4, the oxidation peak current density increased linearly with

the 4-CPA concentration.

 Figure 7.2 Consecutive cyclic voltammograms of 4mM 4-CPA in 1 M HClO4:
(a) first cycle, (b) second cycle, (c) fifth cycle, (d) after pre-treatment at 2.6 V
vs for 60 s. SHE. ν = 50 mV s-1, T = 25°C.
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The increase of the peak current with the concentration of 4-CPA indicates that 4-

CPA oxidation was responsible for the response of the electrode.

The value of 7.56 10-5 cm2 s-1 for the diffusion coefficient DO was calculated from

Figure 7.3 using the following relation (Chapter 3):

 7.1

with A = 1 cm2 and ν = 50 mV s-1.

The dependence of the current peak on the scan rate at a fixed 4-CPA concentration

(4.16 mM) was also investigated. Figure 7.5 represents the cyclic voltammogram

obtained for the 4-CPA solution in HClO4 at different scan rates (from 10 to 100 mV s-

1). The peak potential shifted to higher potentials when the scan rate was increased,

corresponding to a linear dependence of the peak current density with the square root of

the scan rate (Figure 7.6).

 Figure 7.3  Cyclic voltammograms (1st

scan) for 4-CPA in 1 M HClO4 at BDD
electrode. [4-CPA] = 0.5, 2, 3, 4 mM. v =
50 mV s-1, T = 25°C. 

 Figure 7.4  Dependence of the peak
current density with the concentration of
4-CPA. [4-CPA] = 0.5, 2, 3, 4 mM. v = 50
mV s-1, T = 25°C. 
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The linear relation found between peak currents and the square root of the scan rate

is typical of a diffusion controlled process.

A value of DO = 7.63 10-5 cm2 s-1 was calculated from the Figure 7.6 using Equation

7.1. Both values of diffusion coefficient are similar and are consistent with typical values

of DO.

From the variation of the intensity of the peak potential (Ep) with the scan rate (ν)

(Figure 7.7), the transfer coefficient α was calculated from the following equation:

 7.2

Considering a one-electron transfer reaction, for which n = 1, a value of 0.36 was

calculated for the anodic transfer coefficient. For metal, this value was expected to be

equal to 0.5 (α + β = 1). The lower value of the transfer coefficient can be explained by

the partial semiconductor character of BDD electrodes [7].

 Figure 7.5  Cyclic voltammograms for a
4.6 mM 4-CPA solution in 1 M HClO4 at
BDD electrode at different scan rates: 10,
25, 50, 100 mV s-1, T = 25°C.

 Figure 7.6  Dependence of the peak
current density with the concentration of
4-CPA. 
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3.2. Bulk electrolysis

The anodic oxidation of 4-CPA was investigated using BDD anode in perchloric acid

at 35°C. 

The oxidation of 4-CPA is supposed to be a fast reaction under mass transport

control, assisted by the electrogenerated hydroxyl radicals produced by the water

decomposition (Equation 7.3):

 7.3

The limiting current density for the electrochemical oxidation is given by the

following equation:

 7.4

where  is the limiting current density (A m-2) at a given time t, 4 the number of

exchanged electrons, F the Faraday’s constant (C mol-1), km the mass transport coefficient

(m s-1) and COD0 the initial chemical oxygen demand (mol m-3).

The values of total organic carbon (TOC), chemical oxygen demand (COD),

instantaneous current efficiency (ICE) and 4-CPA and its by-products concentrations

were followed during the different experiments of bulk electrolysis. In order to study the

 Figure 7.7 Dependence of the peak potential with the scan rate. [4-CPA]0 = 4.6
mM in 1 M HClO4, T = 25°C.
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three different regimes (charge transfer, mass transport and mixed controls), the

electrolysis of a 4-CPA solution was performed at three different current densities (300,

80 and 20 A m-2). 

Figure 7.8 shows the evolution of the COD as a function of time during the

electrolysis. The experimental data were compared with the theoretical model (solid

lines). A limiting current density of 247 A m-2 was calculated. The curve (a),

corresponding to the mass-transport control, exhibited a rapid decrease, indicating a fast

and total combustion of the organic. The same behavior was observed for the ICE

evolution (Figure 7.9). 

Under these conditions, COD and ICE are described by the following equations:

 7.5

 7.6

where α is the ratio jappl / jlim, COD0 is the initial COD (molO2 m-3), A is the electrode

surface, km is the mass transfer coefficient (m s-1), VR is the cell volume (m3) and t is the

time (s). 

ICE value was under 1 and followed an exponential decrease as expected by the

theoretical model. 

The current controlled regime (case (c)) had a linear trend for both COD and ICE, as

predicted. In this case, the ICE remained constant and equal to 1, meaning a partial

oxidation into intermediates compounds. The evolution of COD is described by Equation

7.7:

 7.7

The third case (b) represents the mixed control, for which the two previous behaviors

are observed. In fact, a linear decrease of COD occurred first, corresponding to an ICE of

1. Then, after a critical time, both COD and ICE decreased exponentially. The evolution

of the global parameters are described by these equations:

 7.8
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 7.9

The formation of oxidation intermediates was monitored by HPLC. From the

intermediates identified, we proposed the following mechanism for complete incineration

of 4-CPA. 4-CPA is firstly hydroxylated in 4-chlorophenol and glycolic acid (1), then 4-

chlorophenol is hydroxylated in 4-chloro-resorcinol (2), which is then oxidized in 1,2,4-

benzenetriol (4). The cleavage of the benzenic ring leads to the formation of malic acid

and oxalic acid (5). Malic acid can produce either oxalic acid (7) or glycolic acid (6).

Glycolic acid, also formed in the first step, produces glyoxylic acid (3), which is

transformed into oxalic acid, formic acid and finally carbon dioxide and water. These

reactions are illustrated in the following reaction scheme (Figure 7.10). 

 Figure 7.8  Evolution of COD during the
electrochemical oxidation of a 4.6 mM 4-
CPA solution in 1M HClO4 at BDD anodes
at different current densities: (a) mass-
transfer control at 300 A m-2, (b) mixed
control at 80 A m-2, (c) current control at
20 A m-2. T = 35°C. Comparison between
experimental data (points) and theoretical
model (solid lines). COD0 = 32 molO2 m-3.

 Figure 7.9  Evolution of ICE during the
electrochemical oxidation of a 4.6 mM 4-
CPA solution in 1M HClO4 at BDD anodes
at different current densities: (a) mass-
transfer control at 300 A m-2, (b) mixed
control at 80 A m-2, (c) current control at
20 A m-2. T = 35°C. Comparison between
experimental data (points) and theoretical
model (solid lines). COD0 = 32 molO2 m-3.
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As described in the theoretical part (Chapter 3), the oxidative process can be

described in terms of flux by means of the parameters γ and ν, where γ is the ratio between

the rate of hydroxyl radicals production and the flux of organics and the ν is the ratio

between hydroxyl radicals moles and 4-CPA moles.

The electrolysis of 4-CPA was carried out at two different current densities (16 and

300 A m-2). The parameters ν and γ, as well as the percentage of CO2 and aromatics, were

calculated in both cases (Chapter 3). 

Figure 7.11 shows the results obtained for the electrolysis at high current density (300

A m-2). At this current density, the complete incineration of 4-CPA is assumed to require

32 hydroxyl radicals (or 32 electrons):

 7.10

In this case, according to the γ−ν model (Chapter 3), γ is equal to 37 and ν is equal to

32, respectively. The percentage of aromatics was almost nil while the percentage of CO2

was equal to 90% (Figure 7.11). These results confirm the rapid total oxidation of 4-CPA

into CO2. Indeed, a γ higher than ν means that the production of OH radicals is higher

than the flux of organics. Therefore, the process is under mass transport control. 

On the opposite case, at low potential, selective oxidation of 4-CPA takes place

implying 2 hydroxyl radicals (or 2 electrons) (ν is equal to 2):

 Figure 7.10 Possible mechanism for the complete oxidation of 4-CPA at BDD
electrode.
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 7.11

At this current density (16 A m-2), according to the model, γ is equal to 1.97 and ν to

2. γ is lower than ν, indicating that the production of OH radicals is less important

(compared to the previous case) and that the organics can slowly react with the radicals.

The electrolysis is under charge transfer control and leads to the selective oxidation of 4-

CPA in aromatics compounds, then carboxylic acids, and finally CO2. In confirmation of

that, Figure 7.12 shows the high percentage of aromatics (95%) and the low percentage

of CO2 (15%) obtained during this experiment.

4. CONCLUSIONS

The electrochemical oxidation of 4-chlorophenoxyacetic acid at boron-doped

diamond was studied in the potential region of water stability. A blocking phenomenon

was observed at the diamond surface, as a result of the formation of a polymeric film. The

electrochemical behavior was also performed and investigated by cyclic voltammetry in

the potential region of electrolyte decomposition (after reactivation of the electrode

surface by anodic polarization at high potential). These measurements have allowed to

calculate the diffusion coefficient DO of the 4-CPA and the anodic transfer coefficient α

of the BDD electrode. 

The bulk electrolysis of 4-CPA was also performed in order to characterize the

 Figure 7.11  Trend of the percentage of
(�) 4-CPA converted into CO2 and (�) 4-
CPA converted in aromatics during the
electrolysis of a 4.2 mM 4-CPA solution
in 1M HClO4 at 300 A m-2. T = 35°C.

 Figure 7.12  Trend of the percentage of
(�) 4-CPA converted into CO2 and (�) 4-
CPA converted in aromatics during the
electrolysis of a 4.2 mM 4-CPA solution
in 1M HClO4 at 20 A m-2. T = 35°C.
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oxidation process mechanism. We can conclude that it is possible to fully oxidize 4-

chlorophenoxyacetic acid at BDD electrode. It also appears, as regards of these results

and previous experiments made in our lab, that either partial oxidation or complete

combustion of a large range of organic compounds can be performed at diamond anode

[8, 9]. The theoretical model developed for the oxidation of organics at non active

electrode is consistent with the experimental data. A reaction pathway for the total

combustion of 4-CPA was also proposed.
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Chapter 8. Oxidation of salicylic acid using a
two-compartments electrochemical
flow cell

1. INTRODUCTION

This chapter deals with the electrochemical oxidation of salicylic acid using a two-

compartments electrochemical flow cell. This cell is similar to the one-compartment

electrochemical flow cell described in the previous chapter, but, as shown in Chapter 4,

cathode and anode are separated by a Nafion® membrane. Because of its configuration,

hydrodynamic conditions are not very well established and the prediction of the mass

transport coefficient is difficult due to the presence of local turbulences (inlet and outlet

zones). Indeed, the only way to obtain the average value of the mass transport coefficient

is to measure it with a ferri/ferro cyanide system. However, in spite of the fact that the

mass transport coefficient has to be measured and cannot be predicted by theory, this

electrochemical flow cell present some advantages. Indeed, the presence of two

compartments allows to separate the reactions occurring at both the cathode and the anode
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and eventually to measure the gas evolution of each part. Moreover, the high surface area

of the electrode (63.6 cm2) permits to treat a large volume of organics (500 mL). The

interest of this cell also resides in the possibility to work with a continuous stirred tank

reactor in order to investigate the reactions more precisely.

In this chapter, the electrochemical characterization of SA was performed by cyclic

voltammetry. Then, the oxidation of salicylic acid was investigated at different current

densities through the measure of global parameters (chemical oxygen demand and

instantaneous current efficiency). The oxidation reaction was also studied by the

characterization of the intermediates produced during the reaction, and a carbon balance

was established to propose a mechanism for SA oxidation. The effect of the supporting

electrolyte on the reaction was also studied by comparing HClO4 with H2SO4. 

Finally, the models developed in our laboratory for the one-compartment

electrochemical flow cell operating in a batch recirculation mode under galvanostatic

conditions (Chapter 3) were applied to the two-compartments electrochemical cell to

predict COD and ICE evolutions and compare these values with the experimental results

obtained during the oxidation process. 

2.  EXPERIMENTAL 

2.1. Electrochemical measurements

Cyclic voltammetry was performed in the electrochemical cell described in Chapter

4. The working electrode was a BDD plate. All values of potential are given relative to

the standard hydrogen electrode (SHE) and the current densities are calculated with

respect to a geometric area of 1 cm2. The supporting electrolyte was either 1 M HClO4 or

1 M H2SO4. Fluka Chemie and Riedel-de Haën chemicals and Milli-Q water were used

to prepare the solutions.

2.2. Bulk electrolysis

The bulk oxidation of salicylic acid was carried out using the two-compartments

electrochemical flow cell in galvanostatic mode (Chapter 4). The anolyte was a solution

of 7.25 mM salicylic acid in 1 M HClO4, and the catholyte a 1M HClO4 solution.
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Selectivity and conversion

The selectivity (S) toward hydroxylated intermediates, relative to the amount of

salicylic acid converted, and the conversion (X) of SA have been defined as:

 8.1

 8.2

where [DHBA]0 and [DHBA]t are the concentrations (mol m-3) of 2,3- or 2,5-

dihydroxylated acids at time 0 and t, respectively, and [SA]0 and [SA]t are the

concentrations (mol m-3) of salicylic acid at time 0 and t, respectively.

2.3. Determination of the mass transport coefficient km

The mass transfer coefficient km was determined with an equimolar mixture of the

redox couple ferri/ferro cyanide (0.02 to 0.08 M) in 1 M NaOH solution [1]. For the

measure, both the cathode and the anode were nickel disks. Considering the symmetry of

the electrochemical cell and supposing that the diffusion coefficients are the same for the

reduced and the oxidized species, it was possible to calculate km from the limiting current

according to the following relation:

 8.3

The limiting current was measured by linear sweep voltammetry for different

concentrations of Fe(CN)6 III/II at a flow of 200 L h-1. km of 1.97 10-5 m s-1 was

calculated. A second measure was performed by measuring the evolution of the limiting

current as a function of the flow rate (from 30 to 200 L h-1) at a given ferri/ferro

concentration (80 mol m-3). In the latter case, the following relation was established:

 8.4

In relation to Equation 8.4, it appears that experimental conditions influence a lot the

value of the mass transfer coefficient. 

S
DHBA[ ]t DHBA[ ]0–
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For a laminar flow, the Leveque’s relation [2] (Equation 8.5) allows to estimate km

for a laminar flow in a rectangular channel. The relation between Sherwood (Sh),

Reynolds (Re) and Schmidt (Sc) numbers is given by:

 8.5

with ,  and  8.6

where ν is the kinematic viscosity (m2 s-1), D the diffusion coefficient (m2 s-1), v the rate

(m s-1), L the length (m), and dh the hydraulic diameter (m).

km can thus be calculated by the following relation:

 8.7

Considering a flow rate of 200 L h-1:

 

The width h is calculated as cm 

and the section  cm2 

and  cm

Then, it is possible to calculate the Reynolds number:

According to Equation 8.5, Sh is equal to 161 and km is equal to 4.66 10-6 m s-1. For

this two-compartments electrochemical flow cell, if we compare the measured km (ferri/

ferro cyanide system) with the km calculated by Leveque’s relation (even if in this

calculation, the circular geometry of the electrode is reduced to a rectangular form), the

experimental mass transport coefficient is about 4.5 times higher than the calculated one.
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This result confirms the non homogeneity of the flow in the cell. This heterogeneity is due

to the turbulence zones. In this work, the value for km of 2 10-5 m s-1 was kept. 

2.4. Persulfate titration 

The titration methods are based on the reaction of either ferrous iron or iodine. The

first one consists to the oxidation of ferrous ions in ferric ions by persulfates:

 8.8

 8.9

However, persulfate concentrations cannot be determined directly by reduction with

iron (II) because the reaction is too slow. Therefore, an excess of iron (II) is added and the

excess is back-titrated with a standard cerium (IV) sulfate solution. The measure can be

distorted by the presence of organic compounds. Kolthoff et al. [3] have shown that the

organic can also react with the radical sulfate (Equation 8.8). Consequently, the

concentration of persulfate is underestimated. Even if it seems possible to avoid this

problem by using bromine, the iodometric titration, more specific and more adapted, was

used in this work. 

This method is based on the direct titration of iodine produced by oxidation of the

iodure:

 8.10

 8.11

In practice, the pH of the sample becomes acid by adding 3 ml of 20% sulfuric acid.

Then, some drops of a 1% ammonium molybdate tetrahydrate solution are added as

catalyst, followed by an excess of KI (4 g). The mixture is allowed to react for 15 minutes

while stirring. Then, the titration is performed with a 0.01 M solution of thiosulfate. When

the solution is almost clear, some drops of a starch solution is added giving to a blue

coloration. The titration with thiosulfate continued until the equivalent point.
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2.5. HPLC measurement

The concentrations of products were monitored by HPLC on a chromatograph LC-

2010A (Shimadzu Corporation, Kyoto, Japan) with UV detection. During this study, two

columns were used depending on the investigated products. The first analysis concerned

the detection of aromatic compounds: salicylic acid, 2,3-, 2,4-, 2,5-dihydroxylated

benzoic acid, catechol, benzoic acid, benzoquinone and hydroquinone. In this analysis, an

apolar reversed phase column (silica particles), Nucleosil 7 C8 25 cm x 4.6 mm (HPLC

Technology, Macherey Nagel, Macclesfiel Cheshire, UK) was used. 

The polar mobile phase was a mixture of 80/20 water-H3PO4 1%/acetonitrile. The

elution was performed at an isocratic flow rate of 0.5 mL min-1 and at ambient

temperature. The injection volume of the samples was 10 mL. The wavelength was equal

to 296 nm. The second analysis was used to detect aliphatic compound. Fumaric, maleic

and oxalic acids were monitored with an ion exclusion column (sulfonated polystyrene/

divinylbenzene copolymer, counter ion H+, Supelcogel C610-H, Supelco, Buchs, CH).

The retention is based on the electrostatic repulsion. The wavelength was equal to 210 nm.

The method consists in pH and flow gradients. The first step was an elution at 0.5 mL min-

Compounds Formula
C8 column

Retention time [min]
Supelcogel C610-H
Retention time [min]

Salicylic acid C7H6O3 13.69 -

Benzoic acid C7H6O2 11.09 -

2,4-DHBA C7H6O4 7.62 -

2,3-DHBA C7H6O4 7.18 -

2,5-DHBA C7H6O4 6.42 -

Catechol C6H6O2 5.49 -

Hydroquinone C6H6O2 4.26 -

Fumaric acid C4H4O4 - 21.94

Maleic acid C4H4O4 - 11.33

Oxalic acid C2H2O4 - 8.67

 Table 8.1 Structure and retention times of detected intermediates.
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1 with a mobile phase composed of water-H3PO4 0.1% (pH 2.1) allowing the detection of

the carboxylic acids. Then, the elution was performed with 100% ultrapure water (pH 6-

7) as mobile phase at a flow rate of 0.8 mL min-1 in order to purge the column of the

aromatic compounds.

2.6. COD correction

With sulfuric acid, it is necessary to correct the measured value of COD because of

the interference of persulfate with the hydrogen peroxide produced during the reaction. In

order to establish the calibration curve for the COD determination, the oxidation of a 1 M

sulfuric acid solution was carried out at 1 A. The titration of the samples was done

following the iodometric method.

This linear relation allowed us to establish the following correlation between the

measured COD value and the real value:

 8.12

 Figure 8.1 COD calibration curve for persulfate. 1 M
H2SO4 solution, j = 157 A m-2, T = 25°C.
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3. RESULTS AND DISCUSSION

3.1. Electrochemical characterization

The electrochemical behavior of salicylic acid and the influence of the supporting

electrolyte were investigated using cyclic voltammetry. 

  3.1.1. Cyclic voltammetry

Perchloric acid

Figure 8.2 represents the cyclic voltammetry of a SA solution in 1 M HClO4 recorded

at a scan rate of 20 mV s-1. As the number of cycles increased, the anodic current density

peak (1.75 V vs SHE) decreased markedly until a steady state was reached (cycles 3 and

4). This behavior reveals a deactivation of the electrode surface. This deactivation was

attributed to the deposition of an organic film on the electrode surface. Washing the

electrode surface with a solvent (e.g. isopropanol) did not reactivate the BDD anode.

However, the initial activity was restored by anodic polarization in the same solution for

60 s at 2.6 V vs. SHE. The curve (e) obtained after the reactivation was perfectly

superposed to the first one, meaning that the electrode activity was totally restored.

 Figure 8.2 Cyclic voltammogram of 7.5 mM SA in 1M HClO4, (a) cycle 1, (b)
cycle 2, (c) cycle 3, (d) cycle 4, (e) after-pretreatment at 2.6 V vs SHE for 60 s,
scan rate 20 mV s-1, T = 25°C.
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Sulfuric acid

The cyclic voltammetry was also performed in sulfuric acid medium. Firstly, the

voltammogramms were recorded in absence of organics (Figure 8.3). A cathodic peak at

-0.75 V vs SHE appears, which corresponds to the reduction of species formed during the

anodic polarization. Since this behavior is not observed with perchloric acid, these species

should be persulfate. Serrano et al. [4] have observed the same behavior; the addition of

commercial persulfate had for consequence to increase the cathodic peak, confirming the

persulfate reduction. 

Figure 8.4 shows the first cyclic voltammogramm recorded in presence of salicylic

acid. The anodic peak at about 1.75 V vs SHE corresponds to the salicylic acid oxidation

(as observed with perchloric acid).

3.2. Bulk electrolysis in perchloric acid

Bulk electrolysis in the two-compartments electrochemical flow cell was focused on

the identification and the quantification of all the intermediates of SA oxidation. This

investigation allowed us on the one hand to validate the models and on the other hand to

establish the carbon balance by identification of the by-products. Moreover, the effect of

the supporting electrolyte was studied comparing the reaction in perchloric or sulfuric

acid media.

 Figure 8.3 Cyclic voltammogram (2nd

scan) of 1M H2SO4 at BDD electrode. T =
25°C, ν = 20 mV s-1.

 Figure 8.4  Cyclic voltammogram (1st

scan) of 7.5 mM SA solution in 1 M
H2SO4 at BDD electrode, T = 25°C, ν = 20
mV s-1.
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Salicylic acid oxidation

For salicylic acid oxidation, the global equation of oxidation is:

 8.13

The limiting current density for the electrochemical oxidation of SA depends on the

mass transport coefficient km and on the COD :

 8.14

 8.15

where  is the limiting current density (A m-2) at a given time t, 4 the number of

exchanged electrons, F the Faraday’s constant (C mol-1), km the mass transport coefficient

(m s-1) and COD0 the initial chemical oxygen demand (mol m-3).

The experimental conditions were chosen in order to investigate the oxidation

reactions under both current control and mass transport control. All the experimental data

were compared with the theoretical COD-ICE model (Chapter 3).

Figure 8.5 and Figure 8.6 show the evolution of COD and ICE, respectively, during

the electrolysis of SA at two current densities (15.7 and 470 A m-2).

The COD values exhibited a linear decrease with time under low current density

condition (15.7 A m-2) while the ICE remained almost equal to 1, as predicted by the

theoretical model:

 8.16

where α is the ratio jappl / jlim, COD0 is the initial COD (molO2 m-3), A is the electrode

surface, km is the mass transfer coefficient (m s-1), VR is the cell volume (m3) and t is the

time (s). 

C7H6O3 11H2O+ 7CO2→ 28e
–

28H
+

+ +

C7H6O3 7O2+ 7CO2→ 3H2O+

jlim
0

4FkmCOD
0

=

jlim
0

COD t( ) COD
0

1
αAkm

VR
--------------t– 
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In the second case (470 A m-2), the reaction was controlled by mass transport. Both

COD and ICE exhibited the same trend; an exponential decrease with time as predicted

by the model (Equation 8.17, Equation 8.18): 

 8.17

 8.18

According to the theoretical model, we can expect that, during the electrolysis at low

current density, the oxidation reaction of SA is predominant against the side reactions

leading to the formation of a lot of intermediates. In the opposite case, at high current

density, the reaction is limited by the mass transport. Consequently, the direct combustion

takes place nearly without intermediates formation. 

In order to check these hypotheses and to validate the ν-γ model, the percentage of

carbon dioxide and aromatics (2,3- and 2,5-DHBA) were calculated. Figure 8.7 represents

the first step of SA oxidation into hydroxylated products: 2,3- and 2,5-dihydroxylated

benzoic acid and catechol.

 Figure 8.5  Evolution of COD as a
function of time.  SA oxidation at (�) 15.7
A m-2, (�) 470 A m-2 1M HClO4,T =
25°C. The solid lines represent the
theoretical model. COD0 = 50 mol O2 m-3.

 Figure 8.6  Evolution of ICE as a function
of time. SA oxidation at (�) 15.7 A m-2,
(�) 470 A m-2 1M HClO4,T = 25°C. The
solid lines represent the theoretical model.
COD0 = 50 mol O2 m-3.
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Typical results of HPLC analysis of the solution for the electrolysis carried out at low

current density (15.7 A m-2) are given in Figure 8.8. Under these conditions, it is assumed

that the reaction implies 2 hydroxyl radicals (or 2 electrons):

 8.19

In this case, according to the model (Chapter 3), γ is equal to 1.2 and ν is equal to 2.

Under these conditions, the concentration of SA decreased linearly (Equation 8.19) with

the specific charge, forming mainly 2,5- and 2,3-DHBA while the TOC remained

constant.

 8.20

Figure 8.9 confirms the selective oxidation of SA into dihydroxylated intermediates.

According to the model (Chapter 3), the percentage of aromatic intermediates formed was

calculated at 60%, while the percentage of CO2 formed was about 10%. Under these

conditions, a longer electrolysis leads to a higher SA conversion, where aliphatic

compounds and finally CO2 are produced.

 Figure 8.7 Scheme of salicylic acid hydroxylation (a) 2,3-DHBA, (b) 2,5-DHBA,
(c) Catechol.
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The results shown in Figure 8.10 were obtained during electrolysis at high current

density (470 A m-2).

Under these conditions, SA was totally incinerated. The reaction implies 28 hydroxyl

 Figure 8.8  Variation of the concentration
of (�) SA, (�) 2,5-DHBA, (�) 2,3-
DHBA and (�) TOC during SA
electrolysis. 1 M HClO4, [SA]0 = 6.56
mM, T = 25°C, γ  =1.2, ν  = 2, j = 15.7 A
m-2. Solid lines represents model
prediction for SA concentration.

 Figure 8.9  Trend of the percentage of (�)
SA converted into CO2 and (�) SA
converted to dihydroxylated compounds
during SA electrolysis. 1 M HClO4, [SA]0
= 6.56 mM, T = 25°C, j = 15.7 A m-2.

 Figure 8.10  Variation of the
concentration of (�) SA, (�) 2,5-DHBA,
(�) 2,3-DHBA and (�) TOC during SA
electrolysis. 1 M HClO4, [SA]0 = 7.17
mM, T = 25°C, γ  =34, ν  = 28, j = 470 A
m-2.

 Figure 8.11  Trend of the percentage of
(�) SA converted into CO2 and (�) SA
converted to dihydroxylated compounds
during SA electrolysis. 1 M HClO4, [SA]0
= 7.17 mM, T = 25°C, γ  =34, ν  = 28, j =
470 A m-2.
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radicals (or 28 electrons):

 8.21

where γ is equal to 34 and ν is equal to 28 (Chapter 3). The similar evolution of SA and

TOC concentrations confirms that complete combustion of SA occurred. The model for

SA removal is in good agreement with experimental data. Confirming the complete

combustion of SA to CO2, the percentage of aromatic intermediates formed was less than

1%, while the percentage of CO2 formed was about 100% (Figure 8.11). 

Figure 8.12 represents the selectivity of 2,3 and 2,5-DHBA. A majority of 2,5-DHBA

was produced. 

We have observed that a large amount of aromatics was produced as intermediates at

low current density. Therefore, the carbon molar balance was established at 15.7 A m-2.

Two main classes of products were expected: aromatic compounds having a similar

structure to salicylic acid and aliphatic compounds formed by the cleavage of the

benzenic ring. Figure 8.13 shows the evolution of the concentration of some aromatic

intermediates: 2,3-, 2,4-, 2,5-DHBA, catechol and hydroquinone due to the presence of

hydroquinone, benzoquinone was also detected during experiments. The major product

detected was 2,5-DHBA. 

Figure 8.14 exhibits the concentrations of aliphatic compounds. Four aliphatic

intermediates were identified: formic, maleic, oxalic and fumaric acids. The higher

 Figure 8.12  Selectivity of (�) 2,5-DHBA and (�) 2,3-
DHBA as a function of the specific charge Q. [SA]0 = 7.17
mM, T = 25°C, j = 470 A m-2.
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concentration was attributed to formic acid. This result is not surprising because formic

acid is the last intermediate of the oxidation chain, just before the formation of CO2 and

H2O. 

Figure 8.15 represents the carbon molar balance taking into consideration the

degradation of SA and the formation of aromatic intermediates, aliphatic compounds and

finally carbone dioxide. According to our results, it was possible to propose a putative

mechanism for SA oxidation (Figure 8.16). 

 Figure 8.13  Concentrations of (1) 2,5-
DHBA, (2) 2,3-DHBA, (3) catechol, (4)
hydroquinone, (5) benzoic acid and (6)
2,4-DHBA as a function of specific charge
Q. 1M HClO4 , T = 25°C, j= 15.7 A m-2.

 Figure 8.14  Concentrations of (1) formic
acid, (2) maleic acid, (3) oxalic acid and
(4) fumaric acid as a function of specific
charge Q. 1M HClO4, T = 25°C, j = 15.7
A m-2.

 Figure 8.15 Carbon balance of (1) SA, (2)
CO2, (3) aromatics (4) aliphatics and (5)
others as a function of specific charge Q.
1M HClO4, T = 25°C, j= 15.7 A m-2.

 Figure 8.16  Possible mechanism of SA
combustion.
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The first step (1) consists in the hydroxylation reaction of SA by hydroxyl radicals,

leading to the formation of dihydroxylated intermediates (2,3-, 2,4-DHBA and a majority

of 2,5-DHBA). When decarboxylation takes place (2), catechol, hydroquinone and

benzoquinone are mainly produced. The cleavage of the benzenic ring (3) forms aliphatic

carboxylic acids such as maleic, fumaric and oxalic acids. Then the oxidation of these

compounds leads to the formation of formic acid (4) and finally carbon dioxide and water

(5).

  3.2.1. Comparison with sulfuric acid 

To investigate the possible effect of persulfate in the hydroxylation reaction, the

electrolysis of salicylic acid was performed at three different temperatures (25, 60 and

70°C) in either 1 M HClO4 or 1M H2SO4.

Sulfuric acid cannot be considered as an inert supporting electrolyte like perchloric

acid. Indeed, in aqueous solution, sulfuric acid dissociates into hydrogen sulfate HSO4
-

and sulfate SO4
2-. It is assumed that the hydrogen sulfate anion reacts with the hydroxyl

radicals electrogenerated at BDD electrode to form a new sulfate radical:

 8.22

which then dimerize to form peroxodisulfate:

 8.23

Salicylic acid oxidation

The aim of this part was the investigation of the influence of the supporting

electrolyte on the rate of SA oxidation and, to a lesser extent, to verify if the same

selectivity in dihydroxylated product is observed. 

All the experiments were carried out at 1 A (157 A m-2) and at three different

temperatures (25, 60 and 70°C). The concentration evolution shown in Figure 8.17 was

recorded at 25°C. One can observe a slower decrease of the salicylic acid concentration

in perchloric acid compared to sulfuric acid. The trend of the COD is shown in Figure 8.18

At this current density, the oxidation is under mixed control, where the COD decreases

linearly and changes to an exponential time dependence, after a critical time. It is

HSO4
–

HO
•

+ SO4
– •

H2O+→

2SO4
– •

S2O8
2 –→
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interesting to correlate the production of persulfates from a sulfuric solution with the

oxidation rate. Indeed, according to Figure 8.19, the highest concentration of persulfate is

produced at the lowest temperature investigated (25°C). At this temperature, the oxidation

of salicylic acid can also be performed in the bulk by the persulfates, a phenomenon which

is not expected with perchloric acid.

A similar comparison between perchloric and sulfuric acid media was also made at

higher temperature. Figure 8.20 and Figure 8.21 represent both the SA and COD

 Figure 8.17  Evolution of SA
concentration as a function of the specific
charge during galvanostatic electrolysis in
(�) H2SO4, (�) HClO4, T = 25°C,  j = 157
A m-2, [SA]0 = 6 mM.

 Figure 8.18  Evolution of the COD as a
function of the specific charge. Electrolyte
(�) H2SO4, (�) HClO4, T = 25°C, j = 157
A m-2, [SA]0 = 6 mM. The solid line
represent the prediction of the theoretical
model.

 Figure 8.19 Persulfate production during galvanostatic
electrolysis as a function of temperature. (�) 25°C, (�)
60°C, (�) 70°C and (�) 80°C. j = 157 A m-2.
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evolutions at 60°C. On the one hand, the oxidation of salicylic acid occurred more rapidly

in both electrolytes compared to the previous experiment, and on the other hand, the

oxidation in perchloric acid was also slightly faster. The increase of the reaction rate can

only be assigned to the temperature increase, which  speeds up the reaction and favor the

formation of oxidizing intermediates. 

At 70°C (Figure 8.22 and Figure 8.23), the oxidation in sulfuric acid remained almost

 Figure 8.20  Evolution of the
concentration of SA as a function of the
specific charge. Electrolyte: (�) H2SO4,
(�) HClO4, T = 60°C, j = 157 A m-2.
[SA]0 = 6 mM.

 Figure 8.21  Evolution of the COD as a
function of the specific charge.
Electrolyte: (�) H2SO4, (�) HClO4, T =
60°C, j = 157 A m-2. The solid line
represent the prediction of the theoretical
model. [SA]0 = 6 mM.

 Figure 8.22 Evolution of the SA
concentration. Electrolyte: (�) H2SO4,
(�) HClO4, T = 70°C, j = 157 A m-2.
[SA]0 = 6 mM.

 Figure 8.23  Evolution of the COD.
Electrolyte: (�) H2SO4, (�) HClO4, T =
70°C, j = 157 A m-2. The solid line
represent the prediction of the theoretical
model. [SA]0 = 6 mM.
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the same, while the oxidation in perchloric acid was once again faster.

At high temperatures, the oxidation of salicylic acid does not seem to be influenced

by the presence of persulfates in solution. The decrease of persulfate with the increase of

temperature (Figure 8.19) can be explained by the persulfate decomposition. 

Figure 8.24 gives the result of the evolution of the concentrations of SA and 2,5-

DHBA. The current density was high (higher than the limiting current) and, consequently,

the conditions for the partial hydroxylation were not fulfilled. It was thus possible to

observe some  intermediates of the reaction. As seen in the previous experiments, 2,5-

DHBA was formed as a by-product while the presence of 2,3-DHBA was not observed.

The chemical oxidation of SA by addition of persulfate was performed step by step

(6.26 10-4 mol every 6 minutes) at 70°C as shown in Figure 8.25 and Figure 8.26. The

oxidation of salicylic acid resulted in the formation of a majority of 2,3-DHBA compared

to 2,5-DHBA. This behavior is reminiscent of that observed with the chemical

hydroxylation of salicylic acid in ortho position by both Fenton reaction and UV-

photolysis.

 Figure 8.24 Variation of the concentration of (�) SA and
(�) 2,5-DHBA during SA electrolysis. 1M H2SO4, [SA]0
= 6 mM, j = 157 A m-2, T = 25°C.
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4. CONCLUSIONS

In this chapter, we have investigated the oxidation of salicylic acid in a two-

compartments electrochemical flow cell. In spite of the difficulty to describe the

hydrodynamic conditions of the cell (because of the existence of turbulence zones), it was

possible to perform bulk electrolysis at BDD electrode and predict the evolution of the

reaction. 

From the measured value of the mass transfer coefficient, it was possible to compare

the experimental data with the two theoretical models developed for BDD electrode.

Salicylic acid oxidation occurred through an indirect reaction involving electrogenerated

hydroxyl radicals formed at the diamond anode by the water decomposition. As predicted

by the COD-ICE model, we observed different regimes (current, mass transport or mixed

controls) depending on the applied current density. Under current control, we observed

the production of a large quantity of intermediates while at high current density, only few

intermediates were formed. The γ−ν model, which takes into consideration both

stoechiometric and kinetics parameters confirmed the predictions of the COD-ICE model.

Indeed, when the reaction was under current control, a large percentage of aromatics were

detected. On the contrary, mass transport control resulted in a high percentage of carbon

dioxide as a result of the formation of a large amount of hydroxyl radicals relative to

organics.

 Figure 8.25 Evolution of (�) SA
concentration and (�) COD as a function
of time. Chemical oxidation of SA with
K2S2O8, T = 70°C. [SA]0 = 7.25 mM.

 Figure 8.26  Evolution of (�) 2,5-DHBA
and (�) 2,3-DHBA as a function of time.
Chemical oxidation of SA with K2S2O8, T
= 70°C. [SA]0 = 7.25 mM.
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Through HPLC and TOC measurements, the carbon mass balance could be

established and a mechanism for salicylic acid was proposed. This mechanism highlights

the role of hydroxyl radicals in the formation of dihydroxylated intermediates as first by-

intermediates. 

Finally, the influence of the supporting electrolyte on the oxidation process was

studied. It appeared that, except at ambient temperature, where the concentration of

produced persulfate was maximum, the oxidation of salicylic acid is not faster in sulfuric

acid than in perchloric acid. The intermediates during the oxidation process in sulfuric

acid were also the dihydroxylated compounds with the same isomer distribution, namely,

a majority of 2,5-DHBA. However, the chemical oxidation by persulfate gives a majority

of 2,3-DHBA relative to 2,5-DHBA.
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Chapter 9. Oxidation of salicylic acid using a
new type of electrochemical cell
(turbine cell)

1. INTRODUCTION

In this chapter, we will describe the electrochemical oxidation of salicylic acid using

a new type of electrochemical cell, where well defined hydrodynamic conditions are

established by stirring the electrolyte with a turbine. This enables us to control the mass

transfer of the species during bulk electrolysis. 

In a first step, a theory based on the resolution of the convective-diffusion equation

was developed to determine hydrodynamic parameters and predict the mass transfer

coefficient. Then, the optimization of the cell was made by determining the optimal

operating conditions such as the domain of the angular velocity, the organic concentration

and the position of the turbine according to the validity domain of Levich equation. After,

the mass transfer coefficient km of the electrochemical cell was measured with the ferri/

ferro system. 
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Finally, the oxidation of salicylic acid was studied by the measure of global

parameters (COD and ICE) and the comparison of experimental data with the theoretical

model. The mechanism of the reaction was investigated by the study of the intermediates

produced during the reaction and the isomer distribution. 

2. THEORETICAL PART

2.1. Turbine electrochemical cell

Hydrodynamic methods concern all the methods involving the convective mass

transport of reactants and products. The main advantage is that a steady state is quickly

reached, resulting in a high precision of the measurements.

The principal interest of the use of well defined hydrodynamic conditions in

electrochemical systems is the possibility to predict the performance of the system when

the mass transport is the rate determining step. There are mainly two types of

hydrodynamics methods: (1) the electrode induces a flow in the cell by its rotation

(classical RDE, vibrating electrode, streaming Hg electrode) and (2) the flow is forced

over the electrode surface whilst the electrode is stationary (channel, microjet or wall jet

electrode) [1, 2]. Rotating disk electrode has been widely used (to establish well defined

hydrodynamic conditions) but this system has some limitations namely blocking of the

surface due to bubble formation and electrode manufacturing. While they were studying,

Landolt et al. [3] developed a new cell for inverted rotating disk electrode in order to

avoid problems due to the bubbles but could not solved all the problems. Furthermore, in

our case, the manufacturing of a RDE based on diamond is not easy. These considerations

have motivated the development of the turbine cell.

In this work, we have developed the hydrodynamic theory for the turbine cell. In this

configuration, the electrode is stationary while the flow is induced over the electrode. The

turbine electrochemical cell is described in Chapter 4.

The treatment of the turbine cell is based on the diffusion layer approach. We made

the assumption that the convection maintains the concentrations of all species uniform

and equal to the bulk values beyond a distance δ (very thin layer) from the electrode.

Below this δ value, no solution movement takes place and mass transfer occurs by

diffusion. Then, the convection problem can be dealt with a diffusion approach. However,

it is more rigorous to consider a convective-diffusion approach and the velocity profiles
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in solution.

Mass balance [4]

Considering the species j, the general equation for the flux of species, Jj, can be

defined by the convective-diffusion equation (Equation 9.1):

  9.1

In this equation, the first term represents the diffusion, the second the migration and

the last the convection. The diffusion term is obtained by the first Fick’s law. The

concentration gradient in the electrolyte creates the flux. Close to the electrode, only the

molecular diffusion is considered. The migration term corresponds to the motion due to

the ionic conduction. The last term reveals the macroscopic movement of the species j,

where  represents the motion of the solution. When the solution contains an excess of

supporting electrolyte, the ionic migration term can be neglected and the relation can be

simplified as:

 9.2

Considering the total variation of the particles number and the mass conservation,

one can write:

 9.3

This relation can also be written as:

 9.4

Assuming a very small volume, the variation of Cj with time can thus be written as:

 9.5

Considering that the flux of the species Dj is not a function of the coordinates, we can

define, by combination of Equation 9.3 and Equation 9.5, the equation describing the

general convective-diffusion relation (Equation 9.6):

Jj Dj Cj

zjF

RT
-------DjCj φ∇–∇–= Cjv+

v

Jj Dj Cj∇–= Cjv+

∂Cj

∂t
--------

V

∫ dV JjdS

S

∫–=

∂Cj

∂t
--------

V

∫ dV divJj– Vd

S

∫–=

∂Cj

∂t
-------- -divJj ∇ v⋅–= =
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v  9.6

For symmetry reasons (because the symmetry axis passes through the turbine axis

and in the middle of the electrode), the cylindrical coordinates (Figure 9.1) are

appropriate. In these coordinates, the equation becomes the general diffusion convective

equation:

 9.7

Determination of the velocity profile [4]

Considering the Navier Stockes equation (Equation 9.8) and the continuity equation

(Equation 9.9), it is possible to develop the velocity profile, assuming that the

hydrodynamic equations are under steady state conditions. 

 9.8

The first term is the pressure force, the second the viscosity forces and the last

corresponds to the gravity force.

= 0  9.9

The resolution can be made through cylindrical coordinates because one can consider

a symmetry axis at the center of the electrode (Figure 9.1).

The regime is considered permanent and the gravity force is considered as negligible.

Therefore Equation 9.8 becomes:

= 0  9.10
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According to the system described in Figure 9.1, we can write the Navier Stockes

equation (Equation 9.8) according to the radial, tangential and axial directions:

 9.11

 9.12

 9.13

and the continuity equation (Equation 9.9) becomes:

 9.14

It is necessary to make some assumptions for boundary conditions:

• at the electrode surface, the solution has the same velocity than the turbine and is

driven with an angular velocity ω, vy = 0, vr = 0 and vϕ = ωr (where r is the electrode

radius).

• in the bulk, far from the electrode, the flow is directed toward the electrode direction

and is parallel to the symmetry axis with a limiting velocity U0 and vr = 0, vϕ = 0.

When y , vy = - U0 (Figure 9.2).

 Figure 9.1 System of cylindrical coordinates (y, r, ϕ).
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• the pressure is considered as constant

• for symmetry considerations, all derivatives compared to ϕ are neglected

Consequently, Navier Stockes can be simplified as:

 9.15

 9.16

 9.17

Therefore, according the boundary conditions previously described, we can establish

the relations for vr and vy by mathematical treatment of the Navier Stockes and continuity

equations:

 9.18

 Figure 9.2 Vector representation of fluid
velocities near the electrode.

 Figure 9.3 Schematic resultant streamlines.
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 9.19

From the adimensional number of Schmidt (Sc), it is possible to estimate the ratio

between the thickness of the diffusion boundary layer δ and the hydrodynamic boundary

layer δv, the ratio δv / δ being equal to Sc1/3. For liquids, one can consider that the Schmidt

number is higher than 103. Therefore, δ < (δv / 10) and δ is considered as a part of δv. 

According to the system of coordinates in the Figure 9.4:

the following profiles are obtained for vy and vr (Equation 9.20 and Equation 9.21.)

Taking into consideration that a gradient of concentration exists only in the diffusion layer

and that the hydrodynamic boundary layer is almost 10 times more sizeable than the

diffusion one, we can only consider a little part of the velocity profiles corresponding to

δ (Figure 9.5 and Figure 9.6).

Close to the electrode, only the first terms are considered and the velocities become:

 9.20

 9.21

 Figure 9.4 Half-turbine cell.
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Convective-diffusion equation

It is now possible to solve the convective-diffusion equation. We have already seen

the equation in cylindrical coordinates:

 9.22

Assuming that:

• close to the electrode, the concentration of the species is time-independent,  = 0

(the velocity profile becomes stable with the agitation influence)

• vy is independent of r, = 0

• Cj is independent of vϕ because of the symmetry, 

Equation 9.22 can be simplified as:

 9.23

By combination with Equation 9.21, one obtains

 Figure 9.5 Variation of the normal fluid
velocity vy as a function of y. δ is the
diffusion boundary layer.

 Figure 9.6 Variation of the radial fluid
velocity vr as a function of y. δ is the
diffusion boundary layer.

∂Cj

∂t
-------- Dj

∂2
Cj

∂y
2

-----------
∂2

Cj

∂r
2

----------- 1
r
---

∂2
Cj

∂r
2

----------- 1

r
2

----
∂2

Cj

∂ϕ2
-----------+ + + vr

∂Cj

∂r
--------

vϕ
r

-----
∂Cj

∂ϕ
-------- vy

∂Cj

∂y
--------+ +–=

∂Cj

∂t
--------

∂Cj

∂r
--------

∂Cj

∂ϕ
--------

∂2
Cj

∂ϕ2
----------- 0= =

vy

∂Cj

∂y
-------- 

  Dj

∂2
Cj

∂y
2

-----------=



Theoretical part

163

 9.24

which can be written as follows:

    (B = cst)  9.25

By integrating twice, this equation becomes:

 9.26

The limiting current is equal to the flux at the electrode surface as:

 9.27

Combining Equation 9.27 with Equation 9.26, the limiting current can be defined as:

 9.28

Diffusion boundary layer

The mass transport coefficient km can also be related to the diffusion boundary

thickness (δ) [5] using the diffusion layer approach. 

Indeed, km is directly related to δ:

  9.29

From the Equation 9.26, one can write:

 9.30
and therefore

 9.31

From the previous equations, it is possible to give the following relation describing δ:

 9.32
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3.  EXPERIMENTAL 

3.1. Determination of the mass transport coefficient km

The mass transfer coefficient km was determined with an equimolar mixture of the

redox couple ferri/ferro cyanide (10, 20, 60 and 100 mM) in 1 M NaOH. It is possible to

calculate km with the measurement of the limiting current according to the following

relation:

 9.33

The limiting current was measured by linear sweep voltammetry for different

equimolar concentrations of Fe(CN)6 III/II at an angular velocity of 400 rpm.

3.2. Selectivity and conversion

The selectivity for the hydroxylated intermediates (S), relative to the amount of

converted salicylic acid and the conversion of SA (X) have been defined as:

 9.34

 9.35

 9.36

where [DHBA]0 and [DHBA]t are the concentrations of 2,3- or 2,5-dihydroxylated acids

at time 0 and t, respectively (mol m-3) and [SA]0 and [SA]t the concentrations of salicylic

acid at time 0 and t, respectively (mol m-3).

3.3. HPLC measurement

The concentrations of products were monitored by HPLC on a chromatograph LC-

2010A (Shimadzu Corporation, Kyoto, Japan) with UV detection. An apolar reversed

phase column (silica particles) Nucleosil 7 C8 25 cm x 4.6 mm (HPLC Technology,

km

jlim

nFAC
---------------=

S2,3-DHBA

2,3-DHBA[ ]t 2,3-DHBA[ ]0–

SA[ ]0 SA[ ]t–
------------------------------------------------------------------------- 100×=

S2,5-DHBA

2,5-DHBA[ ]t 2,5-DHBA[ ]0–

SA[ ]0 SA[ ]t–
------------------------------------------------------------------------- 100×=

X
SA[ ]0 SA[ ]–

SA[ ]0
-------------------------------- 100×=
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Macherey Nagel, Macclesfiel Cheshire, UK) was used to detect the following aromatic

compounds: salicylic acid, 2,3-, 2,4- and 2,5-DHBA. Retention times are given in

Table 9.1. The mobile phase was a polar mixture of 80/20 water-H3PO4 1%/acetonitrile.

The elution was performed at an isocratic flow rate of 0.5 mL min-1 and at ambient

temperature. The injection volume of the samples was 10 µL. The wavelength used for

the detection was λ = 296 nm.

4. RESULTS AND DISCUSSION

4.1. Optimization of the turbine electrochemical cell

This study concerns the characterization of the turbine electrochemical cell. The

design of the cell is presented in Chapter 4. It order to establish the best hydrodynamic

conditions, it is necessary to take into consideration the agitation parameters. The aim of

this investigation was to validate the appropriate operating domain. The results were

compared with both RDE under similar conditions and the Equation 9.28. In order to

define the mass transport coefficient of the cell, three parameters were investigated: the

angular velocity, the electrolyte concentration and the position of the turbine.

  4.1.1. Influence of the angular velocity 

The limiting current of a Fe(CN)6 III/II 20 mM equimolar solution was measured

between 0 and 0.5 V for 13 angular velocities ω (from 200 to 800 rpm with 50 rpm steps).

Figure 9.7, presenting the I-E graph for all ω values, points out the increase of the limiting

current with ω. The same measurements (data not shown) performed with RDE gave

similar results. As determined in the theoretical part (Equation 9.28), and according to the

Levich relation, the variation of jlim with ω1/2 has to be linear [6] and is given by the

Compounds Formula
C8 column

Retention time [min]

Salicylic acid C7H6O3 13.69

2,3-DHBA C7H6O4 7.18

2,5-DHBA C7H6O4 6.42

 Table 9.1 Structure and retention times of detected intermediates.
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following relation:

 9.37

where n is the number of electrons (n = 1), F the Faraday’s constant (96485 C mol-1), D

the diffusion coefficient of the redox couple (5 10-6 cm2 s-1), ν the kinematic viscosity

of water (0.01 cm2 s-1) and C0 the concentration of Fe(CN)6 (mol cm-3).

This relation is showed in Figure 9.8. In order to validate the Levich equation for the

turbine electrochemical cell, results were compared to those of the rotating disk electrode.

Both exhibited a linear variation of jlim vs ω1/2. With regard to Figure 9.8, it is possible to

define precisely the validity domain of the Levich relation for rotating electrolyte (where

no deviation with the rotating electrode exists). In our case, this domain was situated

between 400 and 700 rpm (between 6.47 and 8.56 s-1/2).

  4.1.2. Influence of the electrolyte concentration

Equation 9.37 can be simplified, taking into consideration the mass transport

coefficient km into [6]:

 9.38

Measurements (Figure 9.9) of the limiting current as a function of the concentration

 Figure 9.7 I-E graph as function of the
angular velocity ω (200-800 rpm),
Fe(CN)6 III/II 20 mM in NaOH 1M, ν =
0.001 V s-1.

 Figure 9.8 Relation jlim vs ω1/2 (�)RDE,
(�) Turbine cell. Fe(CN)6 III/II 20 mM.
The solid line represents Equation 9.37.
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of the redox couple (from 0 to 100 mmol l-1) were performed at a given angular velocity

of 500 rpm (in the domain of validity of Equation 9.37). As for previous experiments,

RDE results were compared to those of the turbine, and the Levich relation was validated

on the entire concentration range (from 0 to 100 mM). 

I-E measurements are useful to determine the mass transfer coefficient of the cell.

The slope of the straight line (Figure 9.10) allowed us to calculate a mass transport

coefficient km of 3 10-5 m s-1. The same value was obtained for an angular velocity of 400

rpm.

 

  4.1.3. Influence of the turbine position

The reaction of the redox couple was also investigated for different turbine positions

(at the level of the extremity of the blade) relative to the working electrode (8, 13, 19, 27

and 31 mm). Figure 9.11 shows the relation between jlim and ω1/2 for two turbine

positions (8 and 31 mm). Positions 13 and 19 mm gave the same results than those of the

8 mm position. The pattern for the position 27 mm was similar to that of 31 mm position.

According to the angular velocity range chosen (from 400 to 700 rpm), the validity of the

model (Equation 9.37) is respected for distances lower than 27 mm. 

 Figure 9.9 I-E graph as function of
Fe(CN)6 III/II concentration (10, 20, 60,
100 mM in NaOH 1M, ω = 500 rpm, ν =
0.001 V s-1.

 Figure 9.10 Relation jlim vs C0 (�) RDE,
(�) Turbine cell. ω = 500 rpm. The solid
line represents Equation 9.37.
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With respect to previous optimizations, the use of the turbine electrochemical cell is

possible with well defined hydrodynamic conditions. Therefore, it seems appropriate to

use this setup to induce an hydrodynamic flow and to investigate the response. Kralj et al.

[2] investigated a rotating paddle cell, which can be compared to the turbine cell, and also

found a good correlation with the Levich theory for rotating disk confirming the validity

of this technique.

The following parameters were set up for the measurements with the turbine

electrochemical cell: an angular velocity between 400 and 700 rpm, a maximum organic

concentration of 100 mM, and a turbine position from 8 to 19 mm. 

The diffusion coefficient DFe(CN)6 II was calculated as 5.3 10-6 cm2 s-1 (5 10-6 cm2

s-1 in the RDE case). The mass transport coefficient km was defined as 3 10-5 m s-1 (8

mm and 400 rpm).

4.2. Bulk electrolysis 

The electrochemical oxidation of salicylic acid at boron-doped diamond is described

by Equation 9.39: 

 9.39

The values of total organic carbon (TOC), chemical oxygen demand (COD) and

organics concentrations were measured for each assay. According to the three regimes of

 Figure 9.11 Relation jlim vs ω1/2 for(�) 8 mm,(�) 31 mm. ω = 500 rpm. The
solid line represents Equation 9.37.
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oxidation: galvanostatic, mixed and diffusional, different currents were investigated (1, 5,

40 and 60 mA). The limiting current density, jlim, can be expressed from the COD value

(Equation 9.41). 

 9.40

 9.41

where  is the limiting current density (A m-2) at a given time t, 4 the number of

exchanged electrons, F the Faraday’s constant (C mol-1), km the mass transport coefficient

(m s-1) and COD0 the initial chemical oxygen demand (mol m-3). 

The study focused on the formation of the main hydroxylated intermediates (2,3- and

2,5-dihydroxybenzoic acids) even if a carbon balance was established. The reactions were

monitored by HPLC and COD measurements.

  4.2.1. Salicylic acid oxidation

The oxidation of a 7.25 mM SA solution in 1M perchloric acid medium was carried

out at four currents (from 1 to 60 mA). In the case of a 7.25 mM SA solution, the limiting

current was found to be equal to 47 mA. Every 30 minutes, a sample was taken and

analyzed. Figure 9.12 represents the decrease of salicylic acid concentrations during

electrolysis at different current.

 Figure 9.12. Concentrations of SA as a
function of specific charge Q. Electrolyte
HClO4 1M, T = 25°C, (�) 1 mA, (�) 5
mA, (�) 40 mA, (�) 60 mA. [SA]0 = 7.25
mM.

 Figure 9.13 Conversion of SA as a
function of specific charge Q. Electrolyte
HClO4 1M, T = 25°C, (�) 1 mA, (�) 5
mA, (�) 40 mA, (�) 60 mA. [SA]0 = 7.25
mM.
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 For all investigated currents, the oxidation was complete and reached a total

conversion. For the two lower currents (1 and 5 mA), the results of concentration and

conversion evolution were the same (Figure 9.13). The values were normalized to the

initial values to allow a correct comparison between all the experiments. Figure 9.14 and

Figure 9.15 show the evolution of the chemical oxygen demand (COD) and the

instantaneous current efficiency (ICE) for the oxidation of salicylic acid at 60 mA,

respectively. The experimental data (points) were compared with theoretical values from

the model (solid lines). 

In the case of mass transport control (jappl > jlim), both COD and ICE decreased

exponentially with Q as predicted by the model:

 9.42

 9.43

where α is the ratio jappl / jlim, A is the electrode surface (m2), km is the mass transfer

coefficient (m s-1), VR is the cell volume and t is the time (s).

In the case of current regime (5 mA), the applied current density is lower than the

 Figure 9.14 Evolution of the chemical
oxygen demand (COD) during SA
oxidation at 60 mA (mass transfer
control) in HClO4 1M at BDD anode.
Comparison between experimental data
(points) and the theoretical model (solid
lines). COD0 = 50 mol O2 m-3.

 Figure 9.15 Evolution of the instantaneous
current efficiency (ICE) during SA
oxidation at 60 mA (mass transfer control)
in HClO4 1M at BDD anode. Comparison
between experimental data (points) and
the theoretical model (solid lines). COD0

= 50 mol O2 m-3.
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limiting one and the evolution of COD is described by Equation 9.44:

 9.44

Figure 9.16 and Figure 9.17 show the evolution of the chemical oxygen demand

(COD) and the instantaneous current efficiency (ICE) for the oxidation of salicylic acid

at 5 mA, respectively. 

The experimental data (points) were compared with theoretical values from the

model (solid lines). 

COD decreased linearly with the specific charge whilst the ICE stayed almost equal

to 1, meaning that all current was used for the SA oxidation and that there is no side

reaction. 

  4.2.2. Intermediates formation (2,3- and 2,5-DHBA)

The reaction intermediates were monitored by HPLC in order to specify the reaction

mechanism by identification of the intermediates and to evaluate the quantity of

intermediates.

 Figure 9.16 Evolution of the chemical
oxygen demand (COD) during SA
oxidation at 5 mA (current control) in
HClO4 1M at BDD anode. Comparison
between experimental data (points) and
the theoretical model (solid lines). COD0

= 50 mol O2 m-3.

 Figure 9.17 Evolution of the instantaneous
current efficiency (ICE) during SA
oxidation at 5 mA (current control)in
HClO4 1M at BDD anode (turbine cell).
Comparison between experimental data
(points) and the theoretical model (solid
lines). COD0 = 50 mol O2 m-3.
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Figure 9.18 represents the first step of salicylic acid oxidation into hydroxylated

products 2,3- and 2,5-dihydroxylated benzoic acid and catechol.

 Depending on the imposed current, different concentrations of intermediates should

be observed: high in the case of the partial oxidation and low when SA combustion takes

place. The formation of the intermediates was evaluated in terms of concentration and

selectivity. Figure 9.19 and Figure 9.20 summarize the concentrations recorded during

bulk electrolysis at 1, 5, 40 and 60 mA. Only the main dihydroxylated intermediates were

detected. As expected, the lower the current density, the higher the concentrations of the

intermediates concentration. Indeed, the maximum concentrations were recorded at 1 mA

for both 2,3- and 2,5-DHBA. 

It is interesting to note that, irrespective of the current density, 2,5-dihydroxylated

benzoic acid was the principal intermediate produced. 

 Figure 9.18 Salicylic acid hydroxylation (a) 2,3-DHBA,
(b) 2,5-DHBA, (c) Catechol.
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. 

Figure 9.21 and Figure 9.22 represent the selectivity (compared to the quantity of SA

consumed) for each intermediates (2,3- and 2,5-DHBA) and for four currents. As

predicted by the theoretical model for electrochemical oxidation at BDD anode, it was

possible to define two regimes (current control when the current is lower than the limiting

current and mass transfer control in the opposite case) depending on the imposed current.

In the current control domain (1 and 5 mA), partial oxidation was observed, leading to the

 Figure 9.19 Concentrations of 2,3-DHBA
as a function of the specific charge.
Electrochemical oxidation of SA in
HClO4 1M, T = 25°C, (�) 1 mA, (�) 5
mA, (�) 40 mA, (�) 60 mA. [SA]0 = 7.25
mM.

 Figure 9.20 Concentrations of 2,5-DHBA
as a function of the specific charge.
Electrochemical oxidation of SA in
HClO4 1M, T = 25°C, (�) 1 mA, (�) 5
mA, (�) 40 mA, (�) 60 mA. [SA]0 = 7.25
mM.

 Figure 9.21 Selectivity of 2,3-DHBA
(compared to SA removal) as a function
of the specific charge Q. Electrochemical
oxidation of SA in HClO4 1M, T = 25°C,
(�) 1 mA, (�) 5 mA, (�) 40 mA, (�) 60
mA. [SA]0 = 7.25 mM.

 Figure 9.22 Selectivity of 2,5-DHBA
(compared to SA removal) as a function
of the specific charge Q. Electrochemical
oxidation of SA in HClO4 1M, T = 25°C,
(�) 1 mA, (�) 5 mA, (�) 40 mA, (�) 60
mA. [SA]0 = 7.25 mM
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formation of a high quantity of intermediates. At higher current, total combustion of

salicylic acid took place, forming only a few intermediates. These behaviors were

confirmed by the values for the selectivity. The maximum selectivity for dihydroxylated

acids was observed with the lower current, with a total percentage of 54% (42% for 2,5-

DHBA and 12% for 2,3-DHBA), while at high current the total selectivity was equal to

8.74%.

5. CONCLUSIONS

This chapter deals with the development and the use of a new electrochemical cell,

the turbine cell. In this set-up, the working electrode was fixed, while a turbine created

the solution motion. This configuration permitted to investigate electrochemical reactions

with well established hydrodynamic conditions. Indeed, this cell allowed a good control

on the mass transport coefficient. 

The theoretical development of the turbine cell was based on the diffusion layer

approach and on the resolution of the convective diffusion equation. The optimization of

the cell parameters was performed by comparison with the rotating disk electrode (using

the Levich equation) and, the range of angular velocity, as well as the range of

concentration, were defined. The position of the turbine with respect to the working

electrode was also been studied in order to measure the mass transport coefficient km of

the cell as well as the diffusion coefficient D for the ferri-ferro cyanide couple. 

The turbine electrochemical cell was then used as electrochemical reactor for the

salicylic acid oxidation at boron-doped diamond electrode. Bulk electrolysis were

performed at different current densities in order to compare the experimental data with the

theoretical model developed for the oxidation at BDD anode. The evolution of global

parameters (COD and ICE) were in good agreement with the predictions of the model.

The experimental data obtained with the turbine cell confirmed the validity of the

theoretical model that was developed for a two-compartments electrochemical flow cell

and for which a good mass transport is not always provided. 

The analysis of the by-products of the SA oxidation has confirmed that, depending

on the conditions of current, reactions of hydroxylation take place. Indeed, 2,3- and 2,5-

dihydroxylated benzoic acids were detected as main intermediates. It is interesting to note

that the second isomer (2,5-DHBA) is produced in majority during the reaction.
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Chapter 10. General Discussion

In this chapter, we will summarize the principal studies of this work. The first part

concerns the electrochemical characterization of BDD anode, which was studied by

different electrochemical techniques and compared with glasssy carbon electrode. Then,

we will discuss the advantages of the turbine cell, a new electrochemical cell with well

established hydrodynamic conditions. 

As the mechanism of electrogeneration of hydroxyl radicals depends on the electrode

material and the potential, it is primordial to distinguish between the region of water

stability and that of oxygen evolution. Then, we will discuss the results concerning the

detection of hydroxyl radicals at BDD anode, which was performed by investigating spin

trapping reactions, hydrogen peroxide formation, competitive reaction and, finally,

salicylic acid hydroxylation. The reactivity of hydroxyl radicals was underlined by

investigating both chemical (Fenton and UV-photolysis) and electrochemical (at BDD

electrode) hydroxylation of salicylic acid and with the study of the intermediates

distribution. Theoretical models (COD-ICE and γ−ν models) will also be given to

illustrate the role of hydroxyl radicals in the oxidation process at BDD electrode. Finally,
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some perspectives will be proposed. 

1. ELECTROCHEMICAL CHARACTERIZATION OF BBD ANODE

The electrochemical characterization of boron-doped diamond was performed

(Chapter 5) using different electrochemical techniques (cyclic voltammetry, steady state

polarization and rotating disk electrode). The redox couple investigated was violuric acid

(Figure 10.1), an outer-sphere system. 

The results were compared with a glassy carbon electrode in order to study the

influence of sp2 carbon. The experiments allowed to determine the key parameters

(diffusion coefficient, anodic transfer coefficient and standard electrochemical rate

constant) of the system. This investigation showed that, in spite of the use of techniques

with different electrochemical approaches, the results remained relatively comparable. As

regards to the results similar to those of glassy carbon, and considering the doping level

of BDD (3000-4000 ppm of boron), we can assumed that BDD exhibits a quasi metallic

character.

2. TURBINE CELL

In both one and two-compartments electrochemical cells (described in Chapter 4), we

have shown that it exists some uncertainty concerning the hydrodynamic conditions. It is

difficult to predict the mass transport coefficient because of the presence of local

turbulences. In Chapter 9, a new type of electrochemical cell, called turbine cell, which

presents some advantages, was developed. From the resolution of the convective

diffusion equation, it has been possible to establish the hydrodynamic parameters, and to

  VOH                                               VO
.

 Figure 10.1 Scheme of the redox reaction of violuric acid. 
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predict the mass transfer coefficient. We obtained a good correlation with the rotating disk

electrode, and consequently with the Levich equation. In this configuration, we can also

consider only a small region close to the electrode for the determination of the

hydrodynamic conditions. As explained in the theoretical part, the diffusion layer is lower

than the hydrodynamic one by a factor of 10. Therefore, the gradient of concentration can

be only considered in the diffusion layer, and a linear velocity profile can be considered

(Chapter 9). This electrochemical cell proved to be an efficient cell for bulk electrolysis.

The obtained selectivities in dihydroxylated intermediates were similar to those of two-

compartments electrochemical flow cell. The predictive COD-ICE model was also

validated for this reactor.

3. ELECTROGENERATION OF HYDROXYL RADICALS

Among the produced intermediates during anodic processes, hydroxyl radicals play

a major role. In order to well understand their function, it is firstly essential to know their

formation mechanism and reactivity, which depends on the electrode material. It is very

important to distinguish between electrocatalytic material like platinum, active electrode

like IrO2 and non active material like BDD.

3.1. Production of OH radicals at Pt in the potential 
region of water stability

At platinum, a typical electrocatalytic material, the electrochemical oxygen transfer

reaction (EOTR) is possible at very low potential. This reaction implies hydroxyl radicals,

which are produced by two consecutive reactions: dissociative adsorption of water

(Equation 10.1) followed by hydrogen discharge (Equation 10.2). 

  10.1

  10.2

Hydroxyl radicals, formed during the first reaction, are strongly adsorbed at the

platinum surface by strong chemical bonds. Then, the reaction with an organic takes place

via either Eley-Rideal mechanism or that of Langmuir-Hinshelwood. The oxidation of

H2O( )ads H
•( )ads HO

•( )ads+→

H
•( )ads H

+
e

–
+→
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organic compounds is a process widely investigated. Between all the studies, the example

of methanol is well described. The mechanism occurs via several steps of adsorption,

dissociation of various intermediates. Among these adsorbed species, CO is the most

problematic, which is responsible of the poisoning of the surface, phenomenon well

known in electrocatalysis. To avoid the poisoning, it is necessary to improve the kinetics

of the overall reactions. The addition of a second metal, on which water is more easily

dissociated at lower potential can allow on the one hand to increase the adsorbed OH

coverage and on the other hand to minimize the formation of CO species. The bifunctional

mechanism for methanol oxidation is illustrated by Figure 10.2.

The first step is the electrosorption of methanol at platinum surface:

(i)

 Then, dehydrogenations take place in a fast reaction leading to Pt(CO)ads:

 Figure 10.2 Reaction scheme of the possible methanol
electrooxidation process at Pt-Ru electrode.
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(ii) to (iv)

Adsorbed OH radicals are produced at rhutenium according to the following reaction:

(vi) to (vii)
 

Finally, the reaction between Pt(CO)ads and Ru(OH)ads takes place via a Langmuir-

Hinshelwood mechanism:

(viii)

3.2. Production of OH radicals in the potential region of 
O2 evolution

When the potential is higher than the thermodynamic potential of water

decomposition in acidic medium (1.23 V vs SHE), another mechanism of OH radicals

production has to be considered, where OH radicals are produced by water discharge

(Equation 10.3) forming intermediates (mainly hydroxyl radicals) of oxygen evolution: 

 10.3

The interaction between the surface electrode and hydroxyl radicals, which are

physisorbed, depends on the electrode material. Two classes of material can be defined:

active and non active electrodes. The differences between both mechanism are shown in

the model (Figure 10.3). The common step is the discharge of water molecules to OH

radicals (reaction a). At active electrodes, there is a strong interaction between the

electrode (M) and hydroxyl radicals. The radicals may interact with the anode, with a

possible oxygen transfer from hydroxyl radicals to the anode surface and the formation of

an higher oxide (reaction b). Then, the surface redox couple (MO/M) can act as a mediator

in the partial oxidation of organics (reaction c). This reaction is in competition with the

oxygen evolution due to the decomposition of the higher oxide (reaction d). 

At non active electrodes like diamond, there is a weak interaction between the

electrode and hydroxyl radicals. The oxidation is therefore mediated by the radicals

Pt3 CH3OH( )ads Pt CO( )ads 2Pt 4H
+

4e
–

+ + +→

Ru H2O+ Ru OH( )ads Haq
+

e
–

+ +→

Pt CO( )ads– Ru OH( )ads+ Pt Ru CO2 Haq
+

e
–
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(reaction e). The reaction is in competition with the concomitant oxygen evolution by

hydroxyl radical discharge that takes place without any participation of the electrode

surface.

4. DETECTION OF OH RADICALS AT BDD ELECTRODE

These three different mechanisms highlight the preponderant role of hydroxyl

radicals in EOTR. Their presence was thus investigated at boron-doped diamond

electrode and different experiments were performed in order to confirm the presence of

these radicals. 

4.1. Spin trapping

The direct detection of free hydroxyl radicals is difficult because of their short life

time and low concentrations. Spin trapping, which consists into trapping a radical with a

scavenger in order to produce a stable adduct, was performed at BDD electrode. The

trapping of OH radicals was carried out by electrolyzing a solution of 5,5-dimethyl-1-

pyrroline-N-oxide (DMPO). It was possible to record an electron spin resonance (ESR)

spectrum (Figure 10.4), whose characteristics were typical of a DMPO-OH adduct (aN =

aH equal to 15 G). The spectrum was compared with that obtained with chemically

produced hydroxyl radicals by Fenton reaction (Figure 10.5). Both spectra showed the

 Figure 10.3  Scheme of the electrochemical oxidation of organic
compounds on active anodes (reactions a, b, c, d) and on non
active anodes (reactions a, e, f). M designates an active site at the
anode surface.
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same hyperfine couplings. 

A second spin trapping experiment was performed at BDD anode by performing an

electrolysis of a solution of 4-nitroso-N,N-dimethylaniline (RNO) and measuring its UV

absorbance (Figure 10.6). 

We observed a decrease of the maximum of absorbance (at 440 nm), meaning that a

reaction between hydroxyl radicals and RNO took place. The concentration of the total

organic carbon remained constant, confirming that the bleaching of RNO could

 Figure 10.4 ESR spectrum of the DMPO-OH
adduct obtained after electrolysis for 2 hours
at BDD electrode. j = 0.1 mA cm-2, T = 25°C.

 Figure 10.5 ESR spectrum of the DMPO-OH
adduct obtained by Fenton reaction. T = 25°C.

 Figure 10.6 (�) Bleaching and (�) TOC evolution of a 3.1 10-3 M RNO
solution in 0.1 M borax medium as function of the specific charge. j = 20
mA cm-2, T = 25°C.
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exclusively be assigned to the reaction with hydroxyl radicals.

4.2. H2O2 formation and competitive reaction

The formation of hydrogen peroxide can be attributed to the combination of two

hydroxyl radicals produced by the water discharge. 

 10.4

This production was investigated by performing different electrolysis at several

current densities. The high concentrations of H2O2 produced increased with the current

density, confirming the involvement of hydroxyl radicals. 

From the observation of the oxygen evolution curves of formic and oxalic acids, we

concluded to a different activity of the BDD electrode toward both organics. The

electrolysis of a mixture of both compounds was thus performed, showing that formic

acid oxidation occurs at first. An explanation for this behavior is that both organic

compounds are in competition for hydroxyl radicals. The rate constant between OH

radicals and formic acid is higher by two orders of magnitude than that of oxalic acid

explaining the shift of potential oxidation and confirming the presence of hydroxyl

radicals. 

4.3. Salicylic acid hydroxylation

Aromatic hydroxylation, and especially salicylic acid hydroxylation, is often used to

measure the production of hydroxyl radical because the hydroxylated intermediates are

well defined [1-3]. The reaction between hydroxyl radicals and salicylic acid yields 2,3-

and 2,5-dihydroxylated benzoic acid (Figure 10.7), and when decarboxylation occurs,

catechol is produced. 

2HO
•

H2O2→
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The hydroxylation was performed at boron-doped diamond electrode in order to

identify the produced intermediates. The reaction was compared with chemical

hydroxylations of salicylic acid by Fenton reaction and UV-photolysis (Chapter 6). In all

cases, the expected intermediates (2,3- and 2,5-DHBA) were produced with a total

selectivity of 55%, 25% and 48%, respectively, confirming the presence of hydroxyl

radicals.

5. REACTIVITY OF HYDROXYL RADICALS

As seen in the previous part, the mechanism of electrogeneration of hydroxyl radicals

depends on the type of electrode material. Therefore, the reactivity of the radical is also

different. On electrocatalytic materials like platinum, both OH radicals and organics have

to be activated, resulting in a coadsorption. The chimisorption results in strong chemical

bondings. On active and non active electrodes, hydroxyl radicals are produced by water

discharge (Equation 10.3) and they are weakly adsorbed at the electrode surface. Zhi et

al. have followed the oxidation of phenol by chronoamperometry [4]. They assumed that

either direct electron transfer reaction at the surface electrode or indirect oxidation by

mediation of electrogenerated intermediate occurred. Considering that the concentration

of water is constant (and consequently that of hydroxyl radicals), the current should be

independent of the organic concentration. On the contrary, if one consider a direct

oxidation, the current should be dependent on the organic concentration. As regards to the

 Figure 10.7 Mechanism of salicylic acid hydroxylation (a)
2,3-DHBA, (b) 2,5-DHBA, (c) Catechol.
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current increase during phenol oxidation, they concluded that the process can partially be

attributed to a direct electrochemical oxidation at BDD surface.

It can be assumed that hydroxyl radicals react with organic compounds involving an

electrochemical step (Equation 10.5). The hydroxylation at BDD electrode can thus be

summarized by the following equation:

 10.5

The second step can also explain the shift of potential observed for the anodic

overpotential when an organic is oxidized with concomitant oxygen evolution reaction at

BDD anode. For example, the cases of formic and oxalic acids are presented in the

following figures. In both cases, the anodic current curves are affected upon the addition

of the organic. Indeed, the anodic potential decreases when the concentration of organics

increases. This behavior is due to an important change in the electrochemical activity of

BDD electrode. The direct reaction of OH radicals with organic compounds has for effect

to decrease the overvoltage and,consequently, to shift the potential.

5.1. Hydroxylation of salicylic acid at BDD electrode

Our previous results have shown that hydroxyl radicals were produced at boron-

doped diamond electrode, we investigated their reactivity by studying the hydroxylation

of salicylic acid (SA) and its hydroxylated intermediates (2,3- and 2,5-DHBA) (Figure

 Figure 10.8 Effect of formic acid on the
polarization curve for oxygen evolution at
BDD electrode for 0, 0.1, 0.25 and 0.5 mol L-

1. v = 50 mV s-1, T = 25°C.

 Figure 10.9 Effect of oxalic acid on the
polarization curve for oxygen evolution at
BDD electrode for 0, 0.1, 0.25 and 0.5 mol L-

1. v = 50 mV s-1, T = 25°C.

RH HO •+ ROH H
+

e
–+ +→

0

1

2

3

4

5

2.2 2.3 2.4 2.5
E [V vs SHE]

j 
[m

A
 c

m
-2

]

0

0.1

0.2
5

0.5

0

1

2

3

2.2 2.3 2.4 2.5
E [V vs SHE]

j 
[m

A
 c

m
-2

]

0

0.1

0.25

0.5



Reactivity of hydroxyl radicals

187

10.7). 

The hydroxylation of SA was carried out at BDD electrode and the intermediates

were quantified. The reaction was also performed with hydroxyl radicals produced

chemically by Fenton reaction (H2O2 and Fe2+) and UV-photolysis (H2O2 and UV). In all

experiments, both 2,3- and 2,5-DHBA were found, as expected. However, we obtained a

different isomer distribution depending on the production method of hydroxyl radicals

(chemical or electrochemical) (Figure 10.10). In the case of chemical production, 2,3-

DHBA (ortho isomer) was the majoritary product, while at BDD electrode, a majority of

2,5-DHBA (para isomer) was produced. 

This inversion of isomer distribution was also observed with phenol, where

hydroquinone was the main product of the electrochemical oxidation [5]. 

The mechanism of hydroxylation of phenol was widely studied. The OH radical

exhibits a strong preference for the addition at the positions activated by the OH group,

which is a strong activator in ortho and para positions. As regards to the resonance forms

of phenol (Chapter 2), the OH radical is more likely to attack in the ortho position,

because it exists two position ortho for one para. However, the hydroxylation reaction of

phenol can theoretically produce three hydroxylated isomeric radicals (ortho, meta and

para isomers, Figure 10.11) [6].

 Figure 10.10 2,5-DHBA/2,3-DHBA ratios (1)
electrochemical oxidation, (2) Fenton reaction, (3) UV-
photolysis, [SA]0 = 7.25 mM.
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The oxidation reaction (leading to the formation of catechol, resorcinol or

hydroquinone) is in competition with the dehydratation reaction (producing a phenoxyl

radical). They found that k(ox)m/k(deh)m < k(ox)p/k(deh)p< k(ox)o/k(deh)o. Consequently,

the fraction of OH attacks at the ortho, meta and para positions of phenol were found to

be equal to 48%, 8% and 36%, respectively. These results confirm the strong preference

of the electrophilic OH radical for the ring positions activated by the phenolic OH group.

It is possible to make an analogy between phenol and salicylic acid, in which a

concerted effect of OH (strong activator, orientating in ortho- and para-) and carboxyl

(weak desactivator, orientating in meta-) substitutions exists [7]. Moreover, the formation

of a intramolecular hydrogen bonding (between the hydroxyl group and the carbonyl)

implies a geometry similar to that of phenol [8]. Therefore, the hydroxylation of salicylic

acid should produce a majority of the ortho isomer (2,3-DHBA). This was confirmed by

the results obtained upon hydroxylation by chemically produced OH radicals (Fenton

reaction and UV-photolysis). In contrast, we showed that the isomer distribution is

inverted (more 2,5- than 2,3-) upon electrochemical hydroxylation at BDD electrode. In

the next part, we will propose some explanations concerning this inversion during

electrochemical hydroxylation. 

Influence of pH and stability of the hydroxylated products

The influence of pH has already been discussed (Chapter 3) [9]. The direction of the

 Figure 10.11 Hydroxylation and dehydratation reactions of phenol [6].
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OH attack could be modified by the pH, which could change the electronic density

population (because of the presence of both carboxyl and hydroxyl groups). However,

changing the pH did not have any impact on the isomer distribution. Irrespective of the

pH, 2,5-DHBA was the major product of salicylic acid hydroxylation. Another factor was

considered; the stability of each intermediates. No difference was observed in the stability

and the rate of oxidation of both dihydroxylated intermediates. The isomer distribution

can thus not be explained by the stability or by the decomposition kinetics of each

intermediate. 

Singlet oxygen 1O2

Studies of Feix et al. [10] have shown that the singlet oxygen reacts with salicylic

acid via the formation of an 1,2- or 2,5-endoperoxide. 1,2-endoperoxide is unstable and

yields to ring opening while the 2,5-endoperoxide leads to the formation of 2,5-DHBA.

Among the short-lived intermediates produced by water decomposition, singlet oxygen

has been detected [11]. Therefore, the reaction between salicylic acid and singlet oxygen

could occur at BDD electrode. However, it is likely that only a very low concentration of

singlet oxygen is produced and, consequently, this phenomenon cannot explain the high

concentrations of 2,5-DHBA observed. Moreover, the spin trap DMPO is known to give

different ESR spectra depending on whether it reacts with OH radical or singlet oxygen.

The ESR spectrum obtained with DMPO was relatively well defined. In conclusion, it is

not excluded that a reaction between SA and 1O2 exists, but this cannot explain the big

difference of isomer distribution obtained upon chemical or electrochemical

hydroxylation.

Steric effect

 It has been concluded from biological experiments that the formation of 2,3-DHBA

is a proof of the presence of free hydroxyl radicals while the formation of 2,5-DHBA

arises from an enzymatic reaction. The investigation was made with the cytochrome

P450, a coenzyme implicated in numerous metabolic oxidation mechanisms. Cytochrome

P450 catalyzes either hydroxylation or epoxidation, where the formed intermediates are

dictated by the direction of adsorption in the enzyme. It is possible to make an analogy

with boron-doped diamond electrode, for which the preferential attack can also be
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dictated by steric effect (in considering that the position 5 is the most accessible).

Mechanism of hydroxylation at BDD electrode

Hydroxyl radicals are electrochemically produced by the water discharge (Equation

10.3). The mechanism of hydroxylation can be described by the following global

equation, which takes place between salicylic acid and the hydroxyl radical:

 10.6

Omura et al. [12] have investigated the hydroxylation of phenols by the

photodecomposition of hydrogen peroxide and have proposed two possible mechanism

for this reaction. The first one consists in an abstraction of hydrogen atom from the

phenolic compound yielding a phenoxyl radical, followed by the addition of hydroxyl

radical giving the hydroxylated product. The second pathway involves firstly the attack

of the phenolic ring by OH radical forming a cyclohexadienyl radical, which is converted

further abstraction of a hydrogen atom to the hydroxylated product. The last pathway is

in agreement with the work of Raghavan et al. [6] (Figure 10.11). By analogy, we can

propose a mechanism for hydroxylation of salicylic acid at boron-doped diamond

electrode (Figure 10.12).

The first step is the water discharge at BDD electrode leading to the formation of

hydroxyl radicals (reaction a). These radicals add to salicylic acid forming a

cyclohexadienyl radical (reaction b). According to structural considerations, OH radicals

can attack the salicylic acid in position 3 and 5 (ortho an para positions toward the

hydroxyl group). Then, the abstraction of an hydrogen atom is performed by an

electrochemical step (reaction c), which yields to the formation of dihydroxylated

intermediates (2,3- and 2,5-dihydroxybenzoic acid).

RH HO
•

+ ROH H
+

e
–

+ +→
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The hydroxylation occurs in the reaction cage (a region very close to the diamond

surface electrode), where hydroxyl radicals are electrogenerated, and can then react with

salicylic acid. We can consider that, because of steric effect, the hydroxylation is easier

in position 5 (ortho-position), yielding a majority of 2,5-DHBA (Figure 10.12). It is also

possible to take into consideration the nature of the oxidant, which dictates the

distribution of isomer. During the chemical hydroxylation through Fenton reaction, the

reaction between hydrogen peroxide and ferrous ion produces ferric ions as oxidant, and

the major product is 2,3-DHBA. On the contrary, 2,5-DHBA is formed by the

electrochemical oxidation. 

A similar mechanism can be considered for the electrochemical hydroxylation of

phenol, where OH radicals can theoretically react in positions ortho forming resorcinol

and para producing hydroquinone. However, for steric considerations, a majority of

catechol is produced at BDD electrode.

It is now possible to generalize this mechanism. The first step is the water

decomposition:

 10.7

Then, the addition of OH radical takes place at the aromatic ring (R):

 Figure 10.12 Hydroxylation of salicylic acid.
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 10.8

Finally, the abstraction of an hydrogen atom leads to the hydroxylated product

formation:

 10.9

Generally, we can thus assumed that the intermediates of the hydroxylation depend

on three factors: the nature of the directing group, the steric effect and the nature of the

oxidant.

5.2. COD-ICE and γ−ν models

The COD-ICE model allowed to predict the evolution of the global parameters

during the EOTR of organic compounds. From the concept of the limiting current density,

it is possible to define two regimes (charge transfer or diffusional controls). Therefore,

depending on the conditions (applied current, conversion), it is possible to obtain either

partial oxidation or complete incineration of an organic compound. Both pathways can be

described by the evolution of COD and ICE. For the charge transfer control, since ICE is

equal to 1, COD follows a linear trend. In the case of mass transport control, both ICE and

COD decrease exponentially. All equations are summarized in the following table:

 Table 10.1 Equations for the theoretical model predicting the COD and ICE as a function of time in 
the electrochemical oxidation of organic compounds at BDD electrode (Chapter 3).

The oxidation of organic compound like 4-chlorophenoxyacetic acid (Chapter 7) and

salicylic acid (Chapters 6, 8 and 9) at boron-doped diamond electrode permitted to

Control COD [molO2 m-3] ICE [-]

Charge transfer 1

Mass transport

Mixed

HO
•

RH+ HO RH
•

–→

HO RH
•

– ROH H
+

e
–

+ +→
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validate the models. 

One of interesting aspect of this model is that it has been developed for a system

under galvanostatic conditions. In some processes, the oxidizing power is controlled by

the applied potential. In this case, the anodic process is controlled by the applied current,

which can be directly related to the flux of species. 

Therefore, as seen with the γ−ν model (Chapter 3), the oxidation process can be

described in terms of flux. Considering that the reaction takes place in the reaction cage,

region very close of the electrode surface, we have shown that it is possible to give a

model based on the production rate of hydroxyl radicals produced at the electrode

(dependent to the applied current) and on the flux of organic compound from the bulk

(which depends on the mass transport coefficient and the organic concentration).

Supposing that ICE is equal to 1, the parameter γ is defined as the ratio between the

production rate of hydroxyl radicals and the flux of organics:

 10.10

The stoechiometric factor ν is defined as the ratio between the number of moles of

hydroxyl radicals (equal to the number of electrons exchanged) involved in the reaction

and the number of moles R (Equation 10.11):

 10.11

On the basis of our model, Moraõ et al. [13, 14] validated them and proposed to

describe the multi component process of oxidation by defining the fractions of current and

consequently the variation of concentrations of each component. Cañizares et al. [15-18]

have developed another model. For the model, the electrochemical reactor is divided in

three interconnected zones (two electrochemical zones and one chemical) that allow the

simplification of concentration profiles of compounds. The model takes into

consideration the mass transfer and kinetics characteristics.

6. PERSPECTIVES

As regards of the electrochemical properties and the large applications, boron-doped

diamond electrode remains a promising material for electrochemistry. The highlight of

γ
r

HO•

rR
------------

japp

Fkm R[ ]
-------------------= =

ν mol HO
•

mol R
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the hydroxyl radical permitted to clarify the mechanism of oxidation process. The

different reactivity of hydroxyl radicals between chemistry and electrochemistry could be

applied for the synthesis of hydroxylated isomer, which cannot be produced by chemical

pathway (or produced in minority). 

Numerous points of BDD electrochemistry have to be yet investigated especially

concerning the surface properties of diamond. The knowledge of the exact role of the

diamond surface is essential to well understand and control oxidation processes. Among

the actual works concerning boron-doped diamond, the manufacturing (support,

technique of deposition...), the pretreatment of the surface, the use of BDD as substrate

with the dispersion of particles are widely investigated. 
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