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Abstract

The distance from self-intersection of a (smooth and either closed or infinite) curve q in

three dimensions can be characterised via the global radius of curvature at q(s), which

is defined as the smallest possible radius amongst all circles passing through the given

point and any two other points on the curve. The minimum value of the global radius

of curvature along the curve gives a convenient measure of curve thickness or normal

injectivity radius.

Given the utility of the construction inherent to global curvature, it is natural to

consider variants defined in related ways. The first part of the thesis considers all

possible circular and spherical distance functions and the associated, single argument,

global radius of curvature functions that are constructed by minimisation over all but

one argument. It is shown that among all possible global radius of curvature functions

there are only five independent ones. And amongst these five there are two particularly

useful ones for characterising thickness of a curve. We investigate the geometry of how

these two functions, ρpt and ρtp, can be achieved. Properties and interrelations of the

divers global radius of curvature functions are illustrated with the simple examples of

ellipses and helices.

It is known that any Lipschitz continuous curve with positive thickness actually has

C1,1-regularity. Accordingly, C1,1 is the natural space in which to carry out computations

involving self-avoiding curves. The second part of the thesis develops the mathematical

theory of biarcs, which are a geometrically elegant way of discretizing C1,1 space curves.

A biarc is a pair of circular arcs joined in a C1 fashion according to certain matching

rules. We establish a self-contained theory of the geometry of biarc interpolation of

point-tangent data sampled from an underlying base curve, and demonstrate that such

biarc curves have attractive convergence properties in both a pointwise and function-

space sense, e.g. the two arcs of the biarc interpolating a coalescent point-tangent data

pair on a C2-curve approach the osculating circle of the curve at the limit of the data

points, and for a C1,1-base curve and a sequence of (possibly non-uniform) meshes, the

interpolating biarc curves approach the base curve in the C1-norm. For smoother base

curves, stronger convergence can be obtained, e.g. interpolating biarc curves approach

a C2 base curve in the C1,1-norm.

The third part of the thesis concerns the practical utility of biarcs in computation.

It is shown that both the global radius of curvature function ρpt and thickness can be

evaluated efficiently (and to an arbitrarily small, prescribed precision) on biarc curves.

Moreover, both the notion of a contact set, i.e. the set of points realising thickness, and

an approximate contact set can be defined rigorously. The theory is then illustrated
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with an application to the computation of ideal shapes of knots. Informally ideal knot

shapes can be described as the configuration allowing a given knot to be tied with

the shortest possible piece of rope of prescribed thickness. The biarc discretization is

combined with a simulated annealing code to obtain approximate ideal shapes. These

shapes provide rigorous upper bounds for rope length of ideal knots. The approximate

contact set and the function ρpt evaluated on the computed shapes allow us to assess

closeness of the computations to ideality. The high accuracy of the computations reveal

various, previously unrecognized, features of ideal knot shapes.
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Résumé

La distance “d’auto-intersection” d’une courbe tridimensionnelle q (lisse, fermée ou

infinie) peut se caractériser par le rayon de courbure global au point q(s), à savoir le

plus petit de tous les rayons des cercles passant par le point q(s) et deux autres points

quelconques de la courbe. Le rayon de courbure global minimal de la courbe est ainsi

une mesure de l’épaisseur ou du rayon injectif normal de la courbe.

L’utilité d’une telle notion pour la caractérisation des courbes “non-intersectantes”

pousse à étendre la définition précédente du rayon de courbure global. La première

partie de la thèse envisage ainsi toutes les fonctions de distance circulaires et sphériques

et les fonctions de rayon de courbure global associées obtenues par minimisation de ces

fonctions de distance. Il est ainsi démontré que parmi toutes les fonctions de rayon

de courbure global seules cinq sont indépendantes, dont deux particulièrement utiles

pour caractériser l’épaisseur d’une courbe. Nous décrivons les géométries particulières

“réalisant” ces deux fonctions ρpt et ρtp. Les propriétés des fonctions de rayon global de

courbure et leurs rélations sont illustrées dans les cas simples des ellipses et des helices.

Il est connu qu’une courbe continue, lipschitzienne et d’épaisseur positive est au-

tomatiquement de régularité C1,1. C1,1 est par conséquent l’espace naturel pour les

calculs mettant en jeu des courbes non-intersectantes. La deuxième partie de la thèse

présente ainsi la théorie mathématique des bi-arcs, objets géométriques qui permettent

de discrétiser de façon élégante les courbes spatiales de régularité C1,1 : Un bi-arc est

une paire d’arcs de cercles joints de manière C1 et suivant certaines règles particulières.

Nous proposons une théorie autonome de l’interpolation par bi-arcs d’ensembles de cou-

ples point-tangente extraits d’une courbe de base. Nous démontrons en particulier que

les courbes de bi-arcs possèdent des propriétés de convergence ponctuelles et uniformes

intéressantes. Par exemple, dans la limite où deux point-tangentes d’une courbe C2 se

rejoignent, nous montrons que les deux arcs du bi-arc qui interpole cette paire point-

tangente approchent le cercle osculatoire au point limite consideré. Nous montrons

aussi que pour une courbe C1,1 et une séquence de discrétisation (éventuellement non-

uniforme) les courbes bi-arc d’interpolation convergent vers la courbe de base avec la

norme C1 et que pour des courbes de bases plus lisses des convergences plus fortes peu-

vent être obtenues : les courbes bi-arcs interpolant une courbe de base C2 convergent

vers la courbe de base avec la norme C1,1.

La troisième partie de la thèse concerne l’utilité pratique des bi-arcs dans les calculs.

Il est démontré que la fonction de rayon de courbure global ρpt et l’épaisseur des courbes

bi-arcs peuvent être évaluées de manière efficace et ce à la précision voulue. Nous

définissons de plus de façon rigoureuse la notion d’ensemble de contact, c’est-à-dire
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l’ensemble des paires de point qui “réalisent” l’épaisseur, ainsi que la notion d’ensemble

de contact “approximatif”. La théorie est illustrée par l’étude des nœuds idéaux : les

configurations des nœuds idéaux correspondent, pour nœud donné et une épaisseur

donnée, aux configurations de longueur de corde minimale. Une méthode numérique

de minimisation basée sur le principe du recuit-simulé et utilisant la discrétisation en

bi-arc permet alors d’obtenir des approximations des configurations de nœuds idéaux.

Ces configurations approchées fournissent ainsi des “limites supérieures” rigoureuses

de la longueur de corde des nœuds idéaux. L’ensemble de contact approximatif et la

fonction ρpt évalués à partir de ces configurations permettent alors d’estimer l’ “écart

à l’idéalité” de nos résultats. La grande précision des calculs permet par ailleurs de

mettre en lumière diverses propriétés non observées jusqu’à présent.
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Notation xi

1 Introduction 1

2 Local and global properties of a space curve - classic results & overview 5

2.1 Local circles and spheres - classic osculating objects . . . . . . . . . . . . 5

2.2 Thickness of closed or infinite curves . . . . . . . . . . . . . . . . . . . . 11

2.3 Ideal knot shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Local and global properties of a space curve 17

3.1 Global circles and spheres . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Coalescent functions . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 Explicit formulæ . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.4 Multi-point radius inequalities . . . . . . . . . . . . . . . . . . . . 21

3.2 Global radius of curvature functions . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Radius of curvature inequalities . . . . . . . . . . . . . . . . . . . 23

3.2.2 Distinct radius of curvature functions . . . . . . . . . . . . . . . . 24

3.3 The global radius of curvature functions ρpt and ρtp . . . . . . . . . . . . 27

3.4 Thickness of closed or infinite curves . . . . . . . . . . . . . . . . . . . . 31

3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.2 Helices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Biarcs 39

4.1 Construction and description . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Tangent indicatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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Notation

x · y euclidean inner product of x and y in R
n

|x| euclidean norm of x in R
n

∠a swept out angle of a circular arc a

x× y cross product of x and y in R
3

x⊗ y outer product of x and y in R
n

d, e given two points q0, q1 ∈ R
3 with q0 6= q1, we denote the chord by

d := q1 − q0, and unit vector along the chord by e := q1−q0

|q1−q0|
, we

use the same notation for two distinct points q0 = q(σ), q1 = q(s)

on a curve q

I identity matrix in R
n

∠(x,y) the angle in [0, π] between two non-zero vectors x and y in R
n

Sn unit sphere in R
n+1, i.e. Sn = {x ∈ R

n+1; |x| = 1}
c a constant (following common practice, the symbol c will always

denote a constant, but not necessarily always the same constant

during a proof)

Ck(I,Rn) space of k times continuously differentiable functions from I to R
n

C∞(I,Rn) space of functions from I to R
n continuously differentiable to any

order

Ck,1(I,Rn) space of k times differentiable functions from I to R
n, with the k-th

derivative Lipschitz continuous

Kq Lipschitz constant of the curve q

‖q‖C(I,Rn) maximum norm, i.e. ‖q‖C(I,Rn) := maxs∈I |q(s)|
‖q‖Ck(I,Rn) maximum norm in Ck(I,Rn) i.e. ‖q‖Ck(I,Rn) :=

∑k

i=0 ‖q(i)‖C(I,Rn),

where q(i) is the i-th derivative of q

λ(q) length of the curve q

ρ, coc radius and centre of the osculating circle

ρos, cos radius and centre of the osculating sphere

A polar axis, cf. Definition 2.6

We will consider various functions f defined on points q(s) on a curve Γ. If the curve

parameterisation is injective, for example for a simple curve parameterised by arc length,

we may identify points q(s) ∈ Γ on the curve and the arguments s ∈ I. For convenience

we may therefore unambiguously use f(s) to stand for f(q(s)), that is, we identify the

two functions f and f ◦q. We use the same identification for multi-argument functions.
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pp, ppp, tp, pt,

pppp, ppt, ptp,

tpp, tt, cp, pc

various multi-point radius functions for line segment, circles and

spheres, where the number of letter indicates, how many arguments

the function has, and p stands for point (contact order zero), t for

tangent (contact order one), and c for circle (contact of order two),

cf. section 3.1

ρpp, ρppp, ρtp, ρpt,

ρpppp, ρppt, ρptp,

ρtpp, ρtt, ρcp, ρpc

global radius of curvature functions of one argument, obtained from

the multi-point radius functions by minimising over all but the first

argument, cf. section 3.2

xii



Chapter 1

Introduction

This thesis concerns the analysis, numerical analysis, and computation of self-avoiding

curves in R
3. In particular we propose and justify an efficient space discretization that

can be exploited in computations involving self-avoiding space curves. Self-avoiding

curves arise in several different contexts; for example, what is the longest rope of pre-

scribed, uniform thickness that can be placed in a given container, or, in a more bio-

logical context, how is DNA packaged in phage heads? Such optimal packing problems

share an underlying and fundamental, mathematical question: for each point on a given

space curve Γ, what is the distance from self-intersection? We resolve this question

analytically using extensions of the idea of global radius of curvature to characterise

thickness of a given curve. We then consider the numerical analysis and convergence

properties of the biarc discretization of space curves, and demonstrate that global cur-

vature and thickness can be evaluated straightforwardly on biarc curves to a prescribed

tolerance. Finally we use the biarc discretization in the computation of approximate

solutions to the specific optimal packing problem of the ideal shapes of certain knots.

An overview of the classic, local, differential geometry of space curves is given in

chapter 2.1. The classic way to quantify a self-avoidance distance of curves is the idea

of normal injectivity radius. As is explained in section 2.2 the idea of normal injectivity

radius is completely rigorous, but is not so straightforward to exploit in either analysis

or computation. Recently an alternative characterisation of normal injectivity radius

has been introduced in terms of global radius of curvature [18]. The global radius of

curvature of a curve Γ involves the radii of circles passing through various sets of three

points on the curve. The approach has already proven to be analytically useful; for

example it has been exploited to demonstrate that, in a precise sense, any self-avoiding

curve has at least C1,1 regularity [20].

The primary motivation for this thesis was to develop ideas surrounding the notion

of global radius of curvature in the analytical and computational study of ideal knot

shapes. Informally, the ideal shape of a curve of prescribed length and knot type can

be described as the configuration that is as far as possible from self-intersection. In ad-

dition to their intrinsic mathematical interest, ideal knot shapes have been extensively

studied in physics and biology [57, 5]. For example there is an experimentally observed,

but as yet unexplained, linear relation between the migration speed of knotted DNA

molecules in gel-electrophoresis, and the writhe of computed ideal shapes of the corre-
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sponding knot type [55, 62]. The ideal shape problem is defined precisely in section 2.3,

and known results and prior computations are described. In the direction of analysis,

the idea of global radius of curvature has already been exploited to show that ideal knot

shapes exist in the space of C1,1-curves [20, 6, 17]. Global radius of curvature has also

been used in computations of ideal knot shapes [18] and other optimal packing problems

for self-avoiding curves [31] that were based on piece-wise linear space discretizations.

The primary contribution of this thesis is to demonstrate that the piece-wise linear

discretization adopted in such computations can be replaced in a rigorous, but never-

theless efficient, way by the higher-order biarc space discretization whose C1,1 regularity

matches the minimal possible regularity of the underlying self-avoiding curve.

The original part of the presentation starts in chapter 3, where, in a generalisa-

tion of the particular global radius of curvature function introduced in [18], we study

all thirteen possible multi-point circular and spherical distances defined on curves in

terms of the radii of a circle or sphere that intersects the curve, respectively, three

or four times, with appropriate account being taken of coalescent points and higher

order contacts. We also characterise all distinct radius of curvature functions, which

are defined through minimisation of a circular or spherical distance function over all

but one of its arguments. Our conclusion is that it suffices to study only two global

radius curvature functions ρpt(s) ≡ minσ pt(s, σ) and ρtp(s) ≡ minσ pt(σ, s) where the

single, two-argument function pt(s, σ) is in turn defined as the radius of the unique

circle passing through two points q(s) and q(σ) on the curve Γ and which shares the

common tangent q′(σ). The properties of ρpt(s) and ρtp(s), and in particular the special

properties of pairs of points q(s) and q(σ) at which either ρpt(s) or ρtp(s) are achieved,

are described in 3.3. In 3.4 it is shown that the thickness, or normal injectivity radius,

of the curve Γ can be characterised as the minimum of either of the global radius of

curvature functions ρpt and ρtp. Our results are illustrated by application to simple,

explicitly parametrised curves, specifically ellipses and helices which suffice to exhibit

the range of possible phenomena.

It is of course of more interest to apply the theory of global radius of curvature func-

tions to more complicated curves, and in particular to curves that are only known via

numerical computation. Accordingly, chapters 4-6 are devoted to a comprehensive de-

velopment of the theory of biarcs. Biarcs are special rational quadratic splines that can

be used for Hermite interpolation. Their use has been developed in the Computer-Aided

Design (CAD) literature [2, 54, 39, 35] with such pragmatic motivations as program-

ming cutting [2, 38, 32] and milling [23, 40] machines, or approximating B-splines [37]

and general NURBS [40], but we are unaware of a prior, comprehensive mathematical

treatment. As will be explained in chapter 4, a pair of point-tangent data (in arbitrary

dimension) can be interpolated by (a one parameter family of) two circular arcs assem-

bled in a C1 fashion. A biarc curve is made up of such pairs of circular arcs. Biarcs are

both a natural, higher-order extension of piece-wise linear Lagrange interpolation, and

a geometrically elementary, interpolant for Hermite point-tangent data. In particular

biarcs have attractive properties such as simple closed form expressions for arc length

and curvature.

We present a self-contained description of the geometrical construction of biarcs in
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chapter 4. This material unites and extends results from the CAD literature. Addi-

tionally the geometry of biarcs on the tangent indicatrix sphere is introduced. Chapter

5 describes associated local convergence results and approximations of arc length, cur-

vature, and torsion. And it is observed that biarcs have natural analogues of all the

classical osculating objects for a space curve, namely the tangent line, the osculating

circle and the osculating sphere.

Global convergence results are described in chapter 6, where the point-tangent data

pairs are assumed to be sampled from a mesh on curves of various prescribed regulari-

ties. Convergence results at divers rates are derived in different norms dependent upon

the differing assumed regularities of the underlying curve that is being approximated.

Neither the local nor global convergence results depend upon the biarcs being of equal

length, so that non uniform meshes are simply handled.

Chapter 7 demonstrates that biarc curves are a particularly attractive choice of space

discretization for computations involving evaluation of curve thickness and global ra-

dius of curvature functions. For a piece-wise linear curve the thickness always vanishes

because of the presence of corners at which the radius of curvature can be regarded as

zero. To bypass this problem, the case of thickness being achieved by local curvature

is usually ignored. This assumption is appropriate if thickness is known to be achieved

globally, but in many problems this is not evident, and indeed the computations of

chapter 8 suggest that local curvature is often active or extremely close to being ac-

tive. Chapter 7 is devoted to the development of concise and efficient methods for the

evaluation of thickness and the global radius of curvature function ρpt on arc curves,

i.e. on C1,1 curves assembled from circular arcs. (Biarc curves are therefore particular

arc curves where there is a certain pairing between adjacent arcs that is induced by the

underlying interpolation properties.) In particular we present an algorithm to compute

an upper and lower bound of thickness of an arc curve up to an arbitrary prescribed

precision.

In chapter 8 we turn to the specific problem of computation of ideal knot shapes.

First, in 8.1 necessary conditions for smooth ideal shapes are described, and rigorous

definitions of contact and µ-contact sets are given. Informally, the contact set is the set

of pairs of points that realise the thickness of the curve. For a general curve, and in

particular for a curve that is close to, but not precisely ideal, the contact set is likely

to be a single pair of points. However the necessary conditions for ideal knot shapes

imply that the contact set should be much larger, for example one or more curves

of pairs of points. The µ-contact set is a way to quantify closeness to ideality via a

construction of a set of pairs of points that are close to contact. The evaluation of

ρpt allows another estimate of closeness to ideality. The ideas developed in 8.1 are then

applied to biarc curve approximations of ideal shapes of 3.1 (trefoil) and 4.1 (figure eight)

knots that were obtained as output from a simulated annealing code that was developed

in collaboration with B. Laurie. The code implemented the biarc space discretization

described in chapter 4 and the thickness evaluation algorithm described in chapter

7.1 as modifications to an existing code [26] that was previously based on a piece-

wise linear space discretization. Because the biarc curves are, by inspection, of the

appropriate knot type, and lie in the C1,1 regularity class in which an ideal shape is
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known to exist, the computed shapes provide rigorous lower bounds for thickness of

the ideal shape, independent of how they were found, with the only error being in the

numerical evaluation of thickness and arc length. The values we find for thickness are

the best published, but are not greatly different from previous computations based on

piece-wise linear computations (improvements in the 4th digit). However, as already

remarked and in contrast to the piece-wise linear approximation, our computations

are true lower bounds independent of any discretization error. Moreover the improved

accuracy provided by our biarc computations appears to have resolved the contact set

of the trefoil, which has long been expected to have an extremely sensitive dependence

on the computed knot shape, and previously unobserved features of the ideal shapes

have been revealed.

The results of the thesis, possible generalisations, and suggestions for further work

are discussed in chapter 9.
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Chapter 2

Local and global properties of a

space curve - classic results &

overview

In this chapter we describe local properties of space curves that are well-known in the

literature of differential geometry, and provide an overview of the ideas of ideal knot

shapes and global radius of curvature. Using order of contact we define osculating

plane, osculating circle and osculating sphere and study their interrelations. Section 2.2

is devoted to the notion of normal injectivity radius and its various characterisations,

all of which are equivalent in the case of smooth curves. One motivation of this thesis is

the study of ideal shapes of knots and links, together with the difficulties in computing

them. Ideal knot shapes are explained in section 2.3.

2.1 Local circles and spheres - classic osculating ob-

jects

By a curve Γ we mean the image of a continuous three-dimensional vector function

q ∈ C(I,R3), where I ⊂ R is a closed interval, i.e. Γ = q(I). We also use the notion

of a curve to refer to the vector function q itself. We call a curve Γ a Ck-curve, when

q ∈ Ck(I,R3). A C1- curve Γ is parametrised by arc length when |q′(s)| = 1 for all

s ∈ I. In the C1- case we distinguish finite curves, when I = [0, L] is a closed finite

interval, semi-infinite curves, when I = [0,∞), and infinite curves, when I is the the

real axis I = R. A curve Γ is smooth if the function q is continuously differentiable to

any order and if the tangent vector q′(s) is nonzero for all s ∈ I. In the smooth case,

after reparametrisation if necessary, we interpret s as the arc length parameter. A finite

curve Γ is closed if q(L) = q(0). Moreover, if Γ is smoothly closed, the derivatives of

all orders of q(s) agree at s = 0 and s = L. Finally, a curve Γ is simple if it has no

self-intersection, that is q(s1) = q(s2) only when s1 = s2.

Definition 2.1 For an arc-length parametrised curve q ∈ C3(I,R3), and for s ∈ I with

|q′′(s)| 6= 0, the orthonormal Frenet frame of tangent, principal normal and binormal
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{t(s),n(s),b(s)} at s is given by

t(s) := q′(s),

n(s) :=
q′′(s)

|q′′(s)| ,

b(s) := t(s)× n(s).

We denote the standard local curvature and torsion of q at s by κ(s) and τ(s); they are

given by the relations

κ(s) := |q′′(s)|,
b′(s) = −τ(s)n(s).

The Frenet frame satisfies the Serret-Frenet formulæ:

t′(s) = κ(s)n(s),

n′(s) = −κ(s)t(s) + τ(s)b(s),

b′(s) = −τ(s)n(s).

The local behaviour of a curve Γ at a point q(s) can be described in terms of various

osculating or tangent objects [21, pp. 26, 28, 32, 72], [59, pp. 10, 14, 25]: the tangent line

L(s), osculating plane P(s), circle C(s), and sphere S(s), and the circumsphere Sc(s).

All but the last are standard objects in the differential geometry of curves. We first

define the notion of order of contact, cf. [59, p. 23][9, p. 171], in terms of which we will

define the osculating objects.

Definition 2.2 For a curve Γ given by q ∈ Ck(I,R3), with k ∈ N:

1. Let f(x) = 0 be the equation of a surface Σ, with f ∈ Ck(R3,R). Then the curve

Γ is said to have contact of order k with the surface Σ at q(s) if

di

dsi
(f ◦ q)(s) = 0, for i = 0, . . . , k. (2.1)

2. Let f1(x) = 0 and f2(x) = 0 be the equations defining a curve Υ. The curve Γ is

said to have contact of order k with the curve Υ at q(s) if

di

dsi
(fj ◦ q)(s) = 0, for i = 0, . . . , k, and for j = 1, 2. (2.2)

The Taylor expansion for f ◦q reveals that condition (2.1) is equivalent to f(q(s+h)) =

o(hk). Equivalently, a surface f(x) = 0 passing through k + 1 coalescent points on the

curve Γ has contact of order k (Rolle’s Theorem cf. [59, p. 10]).

Remark and Definition 2.3 For an arc-length parametrised curve q ∈ C3(I,R3) and

s ∈ I:
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q(s)s

q(s + h)s
6
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o(hk)

Figure 2.1: Illustration of order of contact k of a curve q with a surface Σ.

1. There exists a unique straight line L(s) that has contact of order one with Γ at

q(s). This line L(s) is called the tangent line at q(s); it is the line through q(s)

spanned by t(s).

2. When κ(s) 6= 0, there exists a unique plane P(s) that has contact of order two with

the curve Γ at q(s). This plane is called the osculating plane P(s) at q(s); it is

the plane through q(s) spanned by the tangent and principal normal {t(s),n(s)}.

3. When κ(s) 6= 0, there exists a unique circle C(s) that has contact of order two with

the curve Γ at q(s). This circle is called the osculating circle C(s) at q(s); it is

the circle contained in the osculating plane P(s) with centre

coc(s) = q(s) + ρ(s)n(s), (2.3)

and radius

ρ(s) =
1

κ(s)
, (2.4)

i.e. ρ(s) is the standard local radius of curvature.

4. When both κ(s) 6= 0 and τ(s) 6= 0, there exists a unique sphere that has contact of

order three with the curve Γ at q(s). This sphere is called the osculating sphere

S(s) at q(s); it is the sphere through four coalescent points [59, p. 25] and is

centred at

cos(s) = q(s) + ρ(s)n(s) +
ρ′(s)

τ(s)
b(s), (2.5)

with radius

ρos(s) =

√

ρ2(s) +

(
ρ′(s)

τ(s)

)2

. (2.6)

Proof

1. To find the line L(s) write the two equations f1(x) := x ·p1− a1 = 0 and f2(x) :=

x · p2 − a2 = 0 with p1 6= p2 and p1, p2 ∈ R
3 and a1, a2 ∈ R. Solving the

equations in (2.2) for i = 0, 1 and j = 1, 2 yields the result.

7



2. The general equation of a plane is f(x) := x · p − a = 0 for some p ∈ R
3

and a ∈ R. Solving equations (2.1) for i = 0, 1, 2 yields the equation f(x) =

x · b(s)− q(s) · b(s) = 0, that is, there is only one osculating plane and it is the

plane passing through q(s) perpendicular to b(s).

3. The general equation of a circle is f1(x) := x ·p−a = 0 and f2(x) := (x− c) · (x−
c)− r = 0 for some p, c ∈ R

3 and a, r ∈ R. Solving equations (2.2) for i = 0, 1, 2

and j = 1 yields that the circle lies in the osculating plane. Solving equations

(2.2) for i = 0, 1, 2 and j = 2 yields the equations (q(s)− c) · (q(s)− c)− r = 0,

t(s) · (q(s)− c) = 0 and 1 + κ(s)n(s) · (q(s)− c) = 0, and we find (2.3) and (2.4).

4. The osculating sphere must satisfy (2.1) for i = 0, 1, 2, 3 with f(x) := (x − c) ·
(x− c) − r = 0 for some c ∈ R

3 and r ∈ R. As in the previous cases, these four

equations have a unique solution given by (2.5) and (2.6).

�

We will also make use of another locally-defined sphere, which we call the osculating

circumsphere, denoted by Sc(s), that, for κ(s) 6= 0, is defined to be the unique sphere

of radius ρ(s) that contains the osculating circle C(s) as a great circle. The osculating

circle is always contained in the intersection of the osculating sphere and osculating

circumsphere, and, in general, it is all of the intersection because (2.6) reveals that typi-

cally ρos(s) > ρ(s). More precisely, at each point q(s) on a curve Γ the osculating plane

P(s), circle C(s), sphere S(s) and circumsphere Sc(s) enjoy the following relationships:

C(s) = P(s) ∩ S(s), κ(s) 6= 0, τ(s) 6= 0,

C(s) = P(s) ∩ Sc(s), κ(s) 6= 0,

C(s) = S(s) ∩ Sc(s), κ(s) 6= 0, κ′(s) 6= 0, τ(s) 6= 0.

The degenerate cases excluded above can be handled as follows.

Remark 2.4 For an arc-length parametrised curve q ∈ C3(I,R3) and s ∈ I:

1. When κ(s) = 0, the tangent line L(s) has order of contact two with the curve, we

may set ρ(s) = ∞, and identify the osculating circle with the tangent line,

C(s) = L(s), for κ(s) = 0.

The osculating plane, sphere and circumsphere may or may not be uniquely de-

fined dependent upon the limiting behaviour of κ and τ near s. In all cases it is

consistent to set ρos(s) = ∞, since any limit of (2.6) must be infinite, hence

ρ(s) ≤ ρos(s), for any κ(s) and τ(s).

2. When κ(s) 6= 0, τ(s) = 0 and κ′(s) 6= 0, the only osculating sphere is the osculating

plane, which then has contact of order three.

When κ(s) 6= 0, τ(s) = 0 and κ′(s) = 0, then every sphere passing through the

osculating circle is an osculating sphere, i.e. has order of contact three. The radii
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vary from ρ(s) to ∞, the osculating plane is then a special osculating sphere and

has contact of order three. One of these osculating spheres is the sphere with the

highest order of contact (in [21, p. 72] this is defined to be the osculating sphere).

Thus, when κ(s) 6= 0, but τ(s) = 0, the osculating sphere may or may not be

uniquely defined depending on the limiting behaviour of κ′ near s. Following the

contact-order arguments in [21, p. 72] we set

S(s) =





P(s), if limσ→s ρ
′(σ)/τ(σ) is infinite

limσ→s S(σ), if limσ→s ρ
′(σ)/τ(σ) is finite

Sc(s), if limσ→s ρ
′(σ)/τ(σ) is undefined.

The problematic last case occurs, for example, when Γ is itself a circle. It could be

handled differently; for example the osculating sphere of a circle is explicitly left

undefined in [21, p. 74].

Sc

S

Figure 2.2: Geometric interpretation of the Taylor expansions (2.7) and (2.8). The

spheres S and Sc intersect on the osculating circle C, and thereby define four spheri-

cal quadrants, corresponding to the intersections of the interiors and exteriors of the

two spheres. Locally and generically, a curve lies either outside (solid curve) or inside

(dashed curve) the (larger) osculating sphere S, whereas it crosses the (smaller) oscu-

lating circumsphere Sc, i.e. the curve passes between the four spherical quadrants in a

highly constrained way.

While Γ is tangent to both the osculating sphere S and circumsphere Sc, whenever

κ 6= 0 6= τ we find that, generically and locally, Γ pierces or crosses Sc, but lies on one

or other side of the sphere S, as illustrated in Figure 2.2. More precisely:

Remark 2.5 For an arc-length parametrised curve q ∈ C∞(I,R3) and s ∈ I with

κ(s) 6= 0:

1. When κ′(s) 6= 0, then the curve Γ locally pierces or crosses Sc(s). When κ′(s) = 0

and τ 2(s) < κ′′(s)
κ(s)

both sides are locally inside, and when κ′(s) = 0 and τ 2(s) > κ′′(s)
κ(s)

both sides are locally outside the circumsphere Sc(s).

2. When τ(s) 6= 0, both sides of the curve Γ are locally inside or outside the osculating

sphere S as τ2(s)
2
− κ′′(s)

2κ(s)
+ κ′2(s)

κ2(s)
+ κ′(s)τ ′(s)

2τ(s)κ(s)
is negative or positive.
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Proof For Sc(s) this conclusion follows from the h3 coefficient in the Taylor ex-

pansion

|q(s+ h)− coc(s)|2 =
1

κ2
−
( κ′

3κ

)
h3 +

( τ 2

12
− κ′′

12κ

)
h4 +O(h5), (2.7)

while the result for S(s) follows from the h4 coefficient in the Taylor expansion

|q(s+ h)− cos(s)|2 =
1

κ2
+

κ′2

τ 2κ4

+
( τ 2

12
− κ′′

12κ
+
κ′2

6κ2
+

κ′τ ′

12τκ

)
h4 +O(h5).

(2.8)

�

Definition 2.6 For an arc-length parametrised curve q ∈ C3(I,R3) and for s ∈ I with

κ(s) 6= 0, the polar axis A(s) at s [59, p. 25] is the line passing through the centre of

curvature coc(s) parallel to the binormal b(s):

A(s) = {q(s) + ρ(s)n(s) + λb(s); λ ∈ R}.

The polar axis is called the polar line in [21, p. 71].

The osculating circumsphere Sc(s) is not special in the sense that the curve Γ lo-

cally pierces or crosses Sc(s). In fact, generically, it is precisely all spheres, except for

the osculating sphere S(s), with centres on the polar axis at s that have this crossing

property.

Remark 2.7 For an arc-length parametrised curve q ∈ C3(I,R3) and for s ∈ I consider

all spheres passing through q(s), tangent to q′(s) at q(s), that are locally crossed by the

curve Γ at q(s).

1. When κ(s) 6= 0 and τ(s) 6= 0, the locus of centres of all such spheres is the polar

axis A(s) punctured at cos(s), the centre of the osculating sphere.

2. When κ(s) 6= 0, τ(s) = 0 and κ′(s) 6= 0, the locus of centres of all such spheres is

the polar axis A(s).

Proof The centre c of a sphere S passing through q(s) and tangent to q′(s) at

q(s) lies in the normal plane,

c = q(s) + µn(s) + λb(s),

for some µ, λ ∈ R. The Taylor expansion

|q(s+ h)− c|2 = µ2 + λ2 +
(
1− κ(s)µ

)
h2 − 1

3

(
κ(s)τ(s)λ+ κ′(s)µ

)
h3 + o(h3),

shows that the curve Γ locally crosses the sphere S at q(s) only when the h2 coefficient

is zero and actually will cross if further the h3 coefficient is non-zero, i.e. if κ(s) 6= 0 and

τ(s) 6= 0 whenever µ = ρ(s) and λ 6= −κ′(s)
κ2(s)τ(s)

, and if κ(s) 6= 0, τ(s) = 0 and κ′(s) 6= 0

whenever µ = ρ(s) and λ ∈ R. �
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2.2 Thickness of closed or infinite curves

A measure of the distance from self-intersection of a space curve Γ is given by the

normal injectivity radius, as treated for example in [10, p. 271] for complete Riemannian

manifolds. In the specific case of C1 curves, normal injectivity radius can be defined as

follows [29].

(a) (b)

Figure 2.3: Two curves surrounded by tubular surfaces with radius equal to the actual

thicknesses, cf. Proposition 7.2 and equality (2.12). Thickness can be achieved by either

(a) the smallest local radius of curvature, as in this planar C1,1 curve made up of three

circular arcs and three straight lines, or (b) half of the double critical distance as in this

C1,1 curve made up of six circular arcs.

Let q be a simple, closed or infinite, C1-curve parametrised by arc length. Define

the normal bundle E of the curve q by

E := {(q(s),v) ∈ q(I)× R
3;q′(s) · v = 0}, (2.9)

and the exponential map

exp : E → R
3, exp(x,v) := x + v.

Denote for r ≥ 0

Er := {(x,v) ∈ E; |v| ≤ r}.

Then the normal injectivity radius ∆[q] is defined by

∆[q] := sup{r ≥ 0; exp is injective on Er}. (2.10)

By this construction, for any two distinct points q(s) and q(σ), and for any 0 < r <

∆[q], the two disks of radius r centred at q(s) and q(σ) lying in the respective normal

planes do not intersect. Intuitively the normal injectivity radius ∆ is the radius of

the largest tube that can be put around the curve such that the surface of the tube is

smooth and such that it does not intersect itself, cf. figure 2.3. Due to this geometrical

construction the normal injectivity radius of a curve will here be called its thickness.
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In [29] it was shown that for q ∈ C2 the thickness of a curve is governed by two

numbers: the minimal radius of curvature and half of the minimal distance between

double critical points or points of stationary approach, i.e. pairs of distinct points q(s)

and q(σ) and associated curve tangents q′(s) and q′(σ) satisfying

q′(s) · (q(s)− q(σ)) = q′(σ) · (q(s)− q(σ)) = 0. (2.11)

More precisely, if we denote by dc the set of arguments (s, σ) ∈ I × I with s 6= σ that

satisfy (2.11), then [29]

∆[q] = min

{
min
s∈I

ρ(s), 1
2
min(s,t)∈dc |q(s)− q(t)|

}
. (2.12)

Furthermore, instead of considering only double critical points, the single critical points,

i.e. pairs of distinct points q(s) and q(σ) and associated curve tangents q′(s) and q′(σ)

satisfying

q′(s) · (q(s)− q(σ)) = 0, (2.13)

may be considered. Thickness may also be characterised using these single critical points

[29]

∆[q] = min

{
min
s∈I

ρ(s), 1
2
min(s,t)∈sc |q(s)− q(t)|

}
, (2.14)

where sc denotes the set of arguments (s, σ) ∈ I × I with s 6= σ that satisfy (2.13).

Another approach to characterise thickness was presented in [18] in terms of global

radius of curvature. The global radius of curvature of a continuous curve q at s ∈ I is

defined by

ρg(s) := inf
σ, t ∈ I

s 6= σ 6= t 6= s

ppp(s, σ, t), s ∈ I, (2.15)

where ppp(s, σ, t) denotes the radius of the circle passing through the three points q(s),

q(σ), and q(t). When the curve q is simple and smooth, the function ρg is continuous

and 0 ≤ ρg(s) ≤ ρ(s) for all s ∈ I. If a curve Γ has a point with ρg(s) = ∞, then it

is a straight line, in which case the global radius of curvature function is infinite at all

points. Moreover, the global radius of curvature function ρg(s) at s is achieved either by

the local radius of curvature ρ(s), or by a circle passing through q(s) and some distinct

point q(σ) at which the circle is tangent, so that to evaluate ρg(s) it suffices to consider

the minimisation (2.15) with the restriction σ = t [18].

For a continuous curve q the functional ∆g was defined [18] by

∆g[q] := inf
s∈I

ρg(s) = inf
s, σ, t ∈ I

s 6= σ 6= t 6= s

ppp(s, σ, t), (2.16)

and it was shown that for a simple, smooth curve q

∆g[q] = ∆[q]. (2.17)
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In the smooth case, the infima in (2.15) and (2.16) can be replaced by minima, and the

thickness is simply the smallest radius of a circle passing through three points on Γ,

where distinct points may be replaced by a higher order of contact at one point.

The description of ∆[q] using the global radius of curvature function is analytically

attractive because it is explicit and because it simultaneously captures both possibilities

manifested in (2.12) and (2.14): that the thickness is achieved by a local radius of

curvature or that it is achieved by half of a critical self-distance. This characterisation

also offers a way to extend the definition of thickness to continuous, simple curves.

In [20] the functional ∆g[q] was considered for arc-length parametrised, closed C0,1-

curves. It was shown that for such curves having an additional lower bound on thickness

∆g[q] ≥ θ > 0, the curve is differentiable and the tangent curve is Lipschitz continuous

with Lipschitz constant Kq′ ≤ θ−1. In other words, closed, arc-length parametrised, Lip-

schitz continuous curves with positive thickness, are actually C1,1-curves, and therefore

the curvature exists almost everywhere.

2.3 Ideal knot shapes

Ideal shapes of knots are certain configurations that maximise thickness in a sense to be

made precise below. First we need certain basic notions of knot theory. Further details

can be found in classic books such as [49, 4].

Definition 2.8 1. A knot or knot shape K ⊂ R
3 is the image of a closed, non-self-

intersecting, continuous curve q in R
3.

2. A link L ⊂ R
3 is the union of a finite number of pairwise disjoint knots, L =

K1 ∪ · · · ∪ Km. A knot is a special case of a link.

3. An ambient isotopy is a continuous map h : R
3 × [0, 1] → R

3 with h(·, 0) = idR3

and h(·, t) a homeomorphism for all t ∈ [0, 1].

4. Two knots K1 and K2 are ambient isotopic (notation: K1 ' K2) if an ambient

isotopy h : R
3 × [0, 1] → R

3 exists with h(K1, 1) = K2.

Two knots are ambient isotopic if one knot can be continuously transformed onto

the other. Being ambient isotopic is an equivalence relation which splits the set of all

knots into isotopy classes. We denote the isotopy class of a knot K by [K], i.e. K ∈ [K∗],

if K ' K∗.

Definition 2.9 An ideal shape K [3, 25, 57] of the isotopy class [K∗] is a knot shape

K that minimises the functional length/thickness within the isotopy class [K∗], i.e. an

ideal shape is a solution of

λ(K)

∆[K]
→ min!

subject to K ∈ C(S1,R3),K ' K∗. The positive number λ(K)
∆[K]

is called the rope length

(λ/∆)[K] of the knot K.
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The notion of isotopy class and ideal shape can be extended to links in a straight-

forward way. Note that rope length is a scale invariant number.

It has been proven [20, 6, 17] that ideal shapes exist in the space of C1,1-curves, and

that the global radius of curvature function ρg on an ideal shape is constant on smooth

curved segments [18, p. 4771]. For a point q(s) on an ideal shape, at which the local

curvature is not active, i.e. where ρg(s) is only achieved by a circle that is tangent at a

distinct point q(σ), the principal normal is in the cone of the contact chords [52]. The

investigation of the analytic properties of ideal shapes continues to be an active area

[51, 11, 12].

Although the problem is easy to state, the only known ideal knot shape is the

circle for the trivial knot. For links, several ideal shapes are analytically known with

generalisations to families of chain-like links [6] showing that, in general, ideal shapes

are not unique and have no better regularity than C1,1.

Several groups performed computations using either a sequence of points to approx-

imate a curve or a piece-wise linear curve discretization, divers definitions of thickness

and various minimisation methods both for closed knots and links [25, 56, 41, 26, 45,

48, 18, 31] and open knots [43, 8]. In [25] a Monte Carlo method was carried out on

a sequence of points, while [41] used a curve shortening on a sequence of points. The

step from a point to a continuous discretization was accomplished by [26] who per-

formed simulated annealing computations with a piece-wise linear curve discretization.

All these computations produce very satisfactory approximations of rope length to three

or four significant digits. However, with the notable exception of [45], no error estimate

between the discrete and the underlying continuous problem is given. This is mainly

for two reasons: First, the point or piece-wise linear discretization does not match the

known minimal C1,1 regularity of the solution. The other significant issue is that closed

piece-wise linear curves always have thickness zero because they have corners. Therefore

some number of neighbouring points or line segments must be ignored. But the number

of neighbours to be excluded is not clear. For instance, when computing the thickness

of the ideal unknot, i.e. the circle, the number of excluded neighbours dominates the

computation of thickness until all but the diametrically opposite point or line segment

is excluded. Rigorous error estimates of the rope length of a piece-wise linear curve were

given by Rawdon [45, 46, 47], who bypasses both problems by inscribing arcs of circles

to the corners of a piece-wise linear curve. Another approach to circumvent the problem

of the local case of thickness was introduced in [18] with the global radius of curvature

for smooth curves. It was also shown that there is a version of global radius of curvature

appropriate for a point discretization, which was later adopted in [31]. The earlier point

discretization ideal shape computations in [25, 55, 56] did not satisfy the necessary con-

dition of constancy of the discrete global radius of curvature function ρg to a reasonable

accuracy, essentially because of the difficulties with ruling out nearest neighbours, and

in [18] a local discretized curve shortening algorithm was applied to obtain improved

shapes which did satisfy the necessary condition of a constant global radius of curva-

ture function ρg. However, as we shall see in chapter 8, this approach in turn missed

features related to local curvature that appear to be robust in our computations using

the biarc discretization. The first consideration of a contact set for the ideal trefoil was
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introduced in [18] by visualising the diameters of all circles realising ∆g[q] to a rather

small tolerance. This computation indicated that the results are very sensitive to error

in shape. Subsequently, the series of three articles [41, 42, 44] concluded that the con-

tact set of the ideal trefoil is still unresolved. Our approach combines the idea of global

radius of curvature with a C1,1 space discretization, the biarcs. We therefore handle the

local case of thickness in a simple way and compute in the right class, but in contrast to

[45, 46, 47] where the data format is piece-wise linear, the biarc-discretization provides

higher convergence rates from the discretized to the underlying continuous problem.
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Chapter 3

Local and global properties of a

space curve

In the study of ideal knot shapes, as explained in sections 2.2 and 2.3, it has recently

proven useful to consider a global radius of curvature of the curve at q(s) defined as

the smallest possible radius amongst all circles passing through this point and any two

other points on the curve, coalescent or not. In particular, the minimum value of the

global radius of curvature gives a convenient measure of curve thickness. Given the

utility of the construction inherent to global curvature, it is also natural to consider

variants of global radii of curvature defined in related ways involving circles and spheres

intersecting the given curve. Then single argument, global radius of curvature functions

can be constructed by minimising over all but one argument. In sections 3.1 and 3.2

we describe the interrelations between all possible global radius of curvature functions

of this type, and show that there are two of particular interest. Properties of the divers

global radius of curvature functions are illustrated with the simple examples of ellipses

and helices, including certain critical helices that arise in the optimal shapes of compact

filaments, in α-helical proteins, and in B-form DNA.

3.1 Global circles and spheres

Just as the local behaviour of a curve can be described in terms of local osculating

lines, circles and spheres, aspects of the global behaviour of a curve can be described

by analogous multi-point objects: two-point line segments L(s, t), three-point circles

C(s, t, σ) and four-point spheres S(s, t, σ, τ). Here we study these objects and use them

to introduce various generalised global radius of curvature functions for curves.

Hypothesis 3.1 Throughout this chapter and unless explicit mention to the contrary

is made, all curves will be assumed to be parametrised by arc length, and to be simple,

smooth, and either (a) finite and closed, or (b) infinite with the property that |q(s)| → ∞
as |s| → ∞. For the sake of simplicity, in this chapter we shall give full consideration

only to generic sets of points (and coalescent limits thereof) on smooth curves, so that

sets of three points are assumed non-collinear sets of four points non-coplanar, and
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so on. We shall implicitly assume throughout that the infima of various functionals

considered in this chapter are attained at finite points q(s) on the curve.

3.1.1 Definitions

Let Γ be a simple curve. Then for any two distinct points q(s) and q(t) we define L(s, t)

to be the unique line segment between them with half-length

pp(s, t) =
1

2
|q(s)− q(t)|. (3.1)

For any three non-collinear points q(s), q(t) and q(σ) we define C(s, t, σ) to be the

unique circle (the circumcircle) that contains them, with radius (the circumradius) given

by any of the classic formulæ [7, p. 13]:

ppp(s, t, σ) =
2pp(s, t)pp(s, σ)pp(t, σ)

A(s, t, σ)
(3.2)

where A(s, t, σ) is the area of the triangle with vertices q(s), q(t) and q(σ), or

ppp(s, t, σ) =
pp(s, σ)

| sin θstσ|
=

pp(t, s)

| sin θtσs|
=

pp(σ, t)

| sin θσst|
(3.3)

where θstσ is the angle between the edge vectors q(s)−q(t) and q(σ)−q(t), and so on.

The three forms in (3.3) all coincide by the Sine Rule of elementary geometry. (Note

that typically these formulæ are written in terms of edge lengths, but for us the factor

of one half in the definition (3.1) of pp is convenient, so we work with half of the edge

lengths.) The circle radius can also be written as a ratio involving a Cayley-Menger

determinant [1, p. 241], namely

ppp2(s, t, σ) = −2
∆(3)

Γ(3)

, (3.4)

where

∆(3) =

∣∣∣∣∣∣

0 pp2(s, t) pp2(s, σ)

pp2(s, t) 0 pp2(t, σ)

pp2(s, σ) pp2(t, σ) 0

∣∣∣∣∣∣
, (3.5)

and

Γ(3) =

∣∣∣∣∣∣∣∣

0 pp2(s, t) pp2(s, σ) 1

pp2(s, t) 0 pp2(t, σ) 1

pp2(s, σ) pp2(t, σ) 0 1

1 1 1 0

∣∣∣∣∣∣∣∣
. (3.6)

It is the Cayley-Menger form of the circle radius formula that generalises to spheres

[1, p. 241]. For any four non-coplanar points q(s), q(t), q(σ) and q(τ) we define
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S(s, t, σ, τ) to be the unique sphere that contains them. The radius of this sphere,

denoted pppp(s, t, σ, τ), satisfies

pppp2(s, t, σ, τ) = −2
∆(4)

Γ(4)

, (3.7)

where the 4× 4 determinant ∆(4) and 5× 5 determinant Γ(4) are the natural generali-

sations of (3.5) and (3.6) written in terms of the six edge half-lengths.

Remark 3.2 1. At any distinct pair, non-collinear triple, or non-coplanar quadru-

ple of points, the functions pp, ppp and pppp are, respectively, continuous and

symmetric in their arguments.

2. When (s, t, σ) are distinct but collinear, we set ppp(s, t, σ) = ∞. Similarly, when

(s, t, σ, τ) are distinct but coplanar, we set pppp(s, t, σ, τ) = ∞, unless these points

are co-circular in which case we set pppp(s, t, σ, τ) = ppp(s, t, σ).

3. The sphere S(s, t, σ, τ) enjoys several equivalent geometric characterisations at any

quadruple of non-coplanar points. For example, it is the unique sphere defined by

the point q(s) and the circle C(t, σ, τ), but is also the unique sphere defined by the

point q(t) and the circle C(s, σ, τ) and so on. These equivalent characterisations

will be exploited below.

3.1.2 Coalescent functions

Various radius functions can be derived from ppp and pppp by considering (generic)

coalescent limits along the curve Γ. To that end we adopt a mnemonic notation where p

stands for point (contact order zero), t for tangent (contact order one), and c for circle

(contact of order two). For example, from the three-point function we obtain

ppp(s, t, σ)
σ→t→ pt(s, t)

t→s→ ρ(s), (s, t, σ non-collinear).

Here pt(s, t) is the radius of the unique circle that passes through q(s) and is tangent

to Γ at q(t). We denote this circle by C(s, t, t) and note that it is actually the limit of

C(s, t, σ) as q(σ) → q(t) along Γ. As before, ρ(s) is the radius of the standard osculating

circle C(s) at q(s). Thus we recover the classic result that the osculating circle may be

interpreted as C(s, s, s), namely the limit of C(s, t, σ) as q(σ),q(t) → q(s) along Γ.

By changing the order of the first limit we obtain a slightly different result, namely

ppp(s, t, σ)
t→s→ tp(s, σ)

σ→s→ ρ(s), (s, t, σ non-collinear).

Here tp(s, t) is the radius of the unique circle C(s, s, t) that passes through q(t) and is

tangent to Γ at q(s). In particular, we have tp(s, t) = pt(t, s), but tp(s, t) 6= tp(t, s) =

pt(s, t), because, in general, both of the two-point circular radius functions are non-

symmetric in their arguments.

Analogous limits may also be considered for the four-point function pppp. For ex-

ample,

pppp(s, t, σ, τ)
τ→σ→ ppt(s, t, σ)

σ→t→ pc(s, t)
t→s→ ρos(s), (s, t, σ, τ non-coplanar).
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Here ppt(s, t, σ) is the radius of the unique sphere defined by the point q(s) and the

circle C(t, σ, σ). Similarly, pc(s, t) is the radius of the unique sphere defined by the point

q(s) and the osculating circle C(t, t, t). As before, ρos(s) is the radius of the osculating

sphere at q(s).

By changing the order of the limits we obtain various different three-point functions

analogous to ppt, and various different two-point functions analogous to pc. The different

functions may be represented in the following way:

pppp
4pt→3pt→





ppt

ptp

tpp





3pt→2pt→





pc

cp

tt





2pt→1pt→ ρos.

For example, ptp(s, t, σ) is the radius of the unique sphere defined by the point q(s) and

the circle C(t, t, σ), or, equivalently, defined by the point q(σ) and the circle C(s, t, t).

The two-point function tt(s, t) is the radius of the unique sphere defined by the two

circles C(s, s, t) and C(s, t, t). In particular, tt(s, t) is the radius of the sphere that is

tangent to Γ at both q(s) and q(t).

3.1.3 Explicit formulæ

Explicit formulæ for the coalescent limit functions are available whenever the remaining

arguments are in generic position. For the two-point circular functions pt and tp we

have

pt(s, σ) = tp(σ, s) =
pp(s, σ)

| sin θsσ′ |
, (s 6= σ) (3.8)

where θsσ′ is the angle between q(s)− q(σ) and the tangent vector to C at q(σ). When

sin θsσ′ = 0 we set pt(s, σ) = ∞. Note that (3.8) is the limit of (3.3) as the triangle

closes.

For the two-point spherical function tt we find

tt2(s, σ) = pp2(s, σ)
1−

(
t(σ) ·R(e)t(s)

)2

|t(s)× t(σ) · e|2 , (s 6= σ) (3.9)

where t(s)× t(σ) · e is the standard scalar triple product,

e =
q(s)− q(σ)

|q(s)− q(σ)| (3.10)

is the unit vector along the chord, and

R(e) = 2e⊗ e− I (3.11)

with e⊗ e being the usual vector outer product so that R(e) is the (symmetric) proper

rotation matrix that maps the curve tangent t(σ) into the (compatibly oriented) tangent
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t?(s, σ) at q(s) of the circle C(σ, σ, s) (which was defined as the circle with tangent t(σ) at

q(σ) passing through the point q(s)). Formula (3.9) is valid whenever the two tangents

and the chord associated with (s, σ) are linearly independent. In the case when they

are linearly dependent we set tt(s, σ) = ∞, unless they are co-circular in the sense that

C(s, σ, σ) = C(s, s, σ), in which case we set tt(s, σ) = pt(s, σ) = tp(s, σ). By considering

a curve q lying on a sphere S of radius R, that has a part forming a non-great circle

of radius r < R we find that the two argument function tt is not continuous, because

tt(s, σ) = R, except for pairs of points where q(s)−q(σ),q′(s), and q′(σ) are co-planar,

in which case tt(s, σ) = r.

As t(s) and t(σ) are unit vectors and R(e) is a rotation matrix, t(σ) ·R(e)t(s) is

the cosine of the angle α(s, σ) between the unit vectors t(s) and t?(s, σ) and we may

rewrite (3.9) as

tt(s, σ) = pp(s, σ)
| sinα(s, σ)|

|t(s)× t(σ) · e| , (s 6= σ). (3.12)

The angle α has previously been considered in various knot energies [24, p. 318], [36,

p. 294].

Formulæ for the two-point spherical functions cp and pc are also available. In par-

ticular, let (α, β, γ) be the coordinates of q(σ) with respect to the Frenet frame at q(s)

in the sense that

q(σ) = q(s) + αt(s) + βn(s) + γb(s). (3.13)

Then we find

cp(s, σ) = pc(σ, s) =

√
ρ2(s) +

[α2 + β2 + γ2 − 2βρ(s)]2

4γ2
, (s 6= σ). (3.14)

This formula is valid whenever γ 6= 0, that is, q(σ) 6∈ P(s). When q(σ) ∈ P(s) we set

cp(s, σ) = ∞, unless q(σ) ∈ C(s) in which case we set cp(s, σ) = ρ(s).

For points s at which τ(s) 6= 0, formula (3.14) suggests the definition

cp(s, s) = lim
σ→s

cp(s, σ) = ρos(s). (3.15)

However, just as in Remarks 2.4, the most appropriate definition for cp(s, s) at points

with τ(s) = 0 is unclear.

3.1.4 Multi-point radius inequalities

The functions pp, ppp and pppp satisfy the basic inequalities:

0 ≤ pp(s, t) ≤ ppp(s, t, σ) ≤ pppp(s, t, σ, τ), (s, t, σ, τ distinct), (3.16)

which follow from the facts that the half-length of any chord on a circle is bounded

by the circle radius, and the radius of any circle on a sphere is bounded by the sphere

radius.
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By considering various coalescent limits in (3.16) we arrive at inequalities involving

the associated limit functions. For example, for the limit functions with three-point

arguments we find

ppp(s, t, σ) ≤





ppt(s, t, σ)

ptp(s, t, σ)

tpp(s, t, σ)

(s, t, σ distinct), (3.17)

and for the limit functions with two-point arguments we find

pp(s, t) ≤





pt(s, t) ≤
{

pc(s, t)

tt(s, t)

tp(s, t) ≤
{

tt(s, t)

cp(s, t)

(s, t distinct), (3.18)

where in (3.17) and (3.18) it is to be understood that the braces indicate alternatives.

Table 3.1 summarises all thirteen, distinct, multi-point distance functions which

arise as radii of line segments, circles and spheres that are defined by various orders of

contact to a given curve at one, two, three or four distinct points. The row in the table

indicates whether it is the radius of a line segment, circle, or sphere (which may be

interpreted as zero-, one- or two-dimensional spheres), while the column indicates the

number of distinct arguments in the corresponding function. In particular, we find that

while there is generally no ordering among the functions contained in any one block of

the table, within one column a function appearing in a higher row is bounded above

by any function appearing in a lower row. The only exceptions to this rule are the two

functions cp and pc that are marked with asterisks; there are only partial orderings

between these functions and those appearing above them.

1 2 3 4

line 0 pp

circle ρ
pt

tp
ppp

sphere ρos

cp?

pc?

tt

tpp

ptp

ppt

pppp

Table 3.1: All possible multi-point radius functions that are defined in terms of line

segments, circles and spheres. Rows correspond to the type of object, while columns

correspond to the number of arguments associated with each radius function. With the

exception of the two asterisked functions, the following inequalities hold: within a given

column, and when evaluated at the same arguments, any function appearing in a higher

of the three rows is smaller than any function appearing in a lower row.

There exist curves Γ with pairs of points (s, t) such that all of the inequalities (3.18)

are sharp. Contrariwise, pairs of points of stationary approach, i.e. pairs of distinct

points q(s) and q(t) and associated curve tangents t(s) and t(t) satisfying (2.11) are
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very special because at such pairs we always have equality between four of the two-point

radius functions

pp(s, t) = pt(s, t) = tp(s, t) = tt(s, t). (3.19)

As seen in section 2.2 thickness can be characterised using such pairs of points of sta-

tionary approach.

3.2 Global radius of curvature functions

To any simple curve Γ and any of the multi-point radius functions displayed in Table

3.1 we may associate a global radius of curvature function defined by minimising over

all but the first argument, namely

ρpppp(s) := inft,σ,τ pppp(s, t, σ, τ) (s, t, σ, τ distinct)

ρppp(s) := inft,σ ppp(s, t, σ) (s, t, σ distinct)

ρpt(s) := inft pt(s, t) (s, t distinct)
...

ρpp(s) := inft pp(s, t) = 0 (s, t distinct).

These functions may be viewed as generalisations of the standard local radius of curva-

ture functions ρ(s) and ρos(s). Here we study various properties of these global radius

of curvature functions, and discuss the non-local information that they contain about

Γ.

3.2.1 Radius of curvature inequalities

The radius of curvature functions are nested at each point q(s). In particular, for the

circular radius of curvature functions we have

ρ ≥
{
ρtp

ρpt

}
≥ ρppp. (3.20)

These inequalities follow from the observation that any circle which achieves any radius

function on the left is a competitor (or limit of competitors) for any function on the

right. Similarly, the spherical radius functions satisfy

ρos ≥





ρpc

ρtt

ρcp



 ≥ ρppt = ρptp

ρtt

ρcp

}
≥ ρtpp





≥ ρpppp. (3.21)

Because the minimisation of the two-point radius function pp yields the zero function

ρpp(s) ≡ 0, there remain twelve nontrivial global radius of curvature functions as shown

in Table 3.2. In addition to the column inequalities carried over from Table 3.1, there

are now also row inequalities. Specifically, (and for simplicity again ignoring the two

asterisked functions) it can be shown that along each row, any function dominates any

other function appearing in a column to its right.
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0 1 2 3

line 0 ρpp = 0

circle ρ
ρpt

ρtp

ρppp

sphere ρos

ρcp
?

ρpc
?

ρtt

ρtpp

ρptp

ρppt

ρpppp

Table 3.2: Global radius of curvature functions. Each function of a single variable is

defined by minimisation of the multi-point functions of Table 3.1 over all but their first

argument. Rows correspond to the type of object, while columns correspond to the

number of minimisations associated with the function. It can be shown that only five

of the twelve functions are distinct on smooth curves that are closed or infinite.

3.2.2 Distinct radius of curvature functions

When Γ is a simple, closed or infinite, curve we find that there are various identities

between the circular and spherical radius of curvature functions.

Proposition 3.3 Under hypothesis 3.1 the following equalities hold:

ρpt = ρppp = ρptp = ρppt = ρpppp, (3.22)

and

ρtt = ρtpp = ρtp. (3.23)

The first equality in (3.22) was derived in [18, p. 4770], and the further relations

in (3.22) and (3.23) are implied by similar arguments. The central idea in most of the

demonstrations is that a sphere realising the minimum in the definition of a global radius

of curvature function at the point s, cannot have only zero-order intersections at distinct

points, for otherwise the sphere could be shrunk, while retaining the same number

of intersections with the curve Γ, and the same order of contact at s, contradicting

optimality.

Proof

1. ρppt = ρptp:

By symmetry in the last two arguments, i.e. ppt(s, t, σ) = ptp(s, σ, t), the minimi-

sation is over the same set.

2. ρppp = ρpt:

By (3.20) we have ρppp ≤ ρpt. Now assume that there exist s, t, and σ such that

ppp(s, t, σ) = ρppp(s) < ρpt(s). If t 6= s 6= σ, then there must be a tangency at

either t or σ, because if not the curve crosses at t and σ and the circumsphere

of C(s, t, σ) could be shrunk to obtain ppp(s, t̃, σ̃) < ρppp(s), a contradiction of

the definition of ρppp(s). And if there is a tangency at say t, then pt(s, t) =
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ppp(s, t, t) < ρpt(s), another contradiction. The case t = s 6= σ is excluded by the

same two contradictions. And if t = s = σ, then pt(s, s) = ppp(s, s, s) < ρpt(s), a

contradiction.

3. ρpt = ρppt:

We know ρpt ≤ ρppt. Now assume ρpt(s) < ρppt(s) for some s ∈ I. Then, by

continuity of pt, there exists a σ 6= s such that pt(s, σ) < ρppt(s).

If the curve is tangent to the circumsphere of C(s, σ, σ) at s we get ρtt(s) ≤
pt(s, σ) < ρppt(s), contradicting (3.21). If the curve crosses the circumsphere of

C(s, σ, σ) at s it must re-cross it at a distinct point t 6= s. Then, for t 6= σ we

have ppt(s, t, σ) = pt(s, σ) < ρppt(s), a contradiction. For t = σ we have contact

of order two at σ (at least one, but the curve crosses, thus two). Therefore

ρppt(s) ≤ pc(s, t) = pt(s, t) < ρppt(s), a contradiction.

4. ρpppp = ρppt:

By (3.21) we have ρpppp ≤ ρppt. Now assume ρpppp(s) < ρppt(s) for some s ∈
I. Then there exist t, σ, τ such that pppp(s, t, σ, τ) < ρppt(s). In the case that

three or four points coincide with s, say s = t = σ, then a contradiction arises

from pppp(s, s, s, τ) = ptp(s, s, τ) < ρppt(s). If no or one point coincides with s

then there must be a tangency at one of the distinct arguments, else the sphere

S(s, t, σ, τ) can be shrunk maintaining intersections until we get a tangency say

at τ̃ to S(s, t, τ̃ , τ̃), contradicting ppt(s, t, τ̃) < pppp(s, t, σ, τ) < ρppt(s). And if

there is a tangency at τ 6= s say then a contradiction follows from ppt(s, t, τ) =

pppp(s, t, σ, τ) < ρppt(s).

5. ρtp = ρtt:

As a consequence of (3.18) we have ρtp ≤ ρtt. Assume ρtp(s) < ρtt(s) for some

s ∈ I. Then there exists a σ such that tp(s, σ) = ρtp(s). If σ 6= s we obtain,

analogously to before, a contradiction of tp(s, σ) = ρtp(s) unless the curve is

tangent at σ to the circumsphere of C(s, s, σ). If σ = s, then the curve either has

third order contact at s so that tt(s, s) = tp(s, s) = ρtp(s) < ρtt(s), a contradiction,

or the curve crosses the circumsphere of curvature at s. And if the curve crosses the

sphere at s, it must recross at a distinct point t. Then either the curve is tangent

at t to the circumsphere of C(s, s, t), contradicting tt(s, t) = tp(s, t) = tp(s, s) =

ρtp(s) < ρtt(s), or we get another contradiction by a shrinking argument.

6. ρtpp = ρtt:

By (3.21) we have ρtpp ≤ ρtt. On the other hand tp(s, t) ≤ tpp(s, t, σ) for all

(s, t, σ), thus ρtp(s) ≤ ρtpp(s) for all s ∈ I. Using part 5. we find ρtt = ρtp ≤
ρtpp ≤ ρtt.

�

Lemma 3.4 Under hypothesis 3.1 and at each point q(s) at which either κ′(s) 6= 0 or

τ(s) 6= 0 we have

ρ = ρ?
cp. (3.24)
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The equality (3.24) is of a different character than (3.22) and (3.23) as it relates the

entirely local object ρ with a global radius of curvature. Moreover here the asterisk

indicates that the equality only holds at points at which either κ′(s) 6= 0 or τ(s) 6= 0.

At points where κ′(s) = τ(s) = 0 the very definition of ρcp(s) is unclear.

Proof For the demonstration of the generic case, note first that cp(s, σ) ≥ ρ(s)

because any sphere with second-order contact at s contains the osculating circle at s.

Thus ρcp(s) ≥ ρ(s). If κ′(s) 6= 0 the opposite inequality (and therefore equality) follows

from the Taylor expansion (2.7). In particular, the curve locally crosses the osculating

circumsphere Sc near q(s). Since the curve Γ is simple and has no end-points (it is closed

or infinite) it must re-cross the sphere Sc at some distinct point q(σ), which leads to the

conclusion that cp(s, σ) = ρ(s), so that ρcp(s) ≤ ρ(s). When κ′(s) = 0 but τ(s) 6= 0, we

have by (3.15) and (2.6) that limσ→s cp(s, σ) = ρos(s) = ρ(s), so ρcp(s) ≤ ρ(s). �

Thus for simple, closed or infinite, curves we have the seven equalities (3.22)–(3.24)

which imply that of the possible twelve radius of curvature functions there are only

five distinct ones. The functions {ρpt, ρtp, ρpc, ρ, ρos} can be taken as an independent

set. Combining inequalities (3.20) and (3.21) with equalities (3.22)–(3.24), implies that

these five functions are nested in the sense

ρos ≥
{
ρ ≥ ρtp

ρpc

}
≥ ρpt ≥ 0. (3.25)

We can then address the question of identifying special points along the curve at

which equalities can occur between some or all of the five independent curvature func-

tions. For example, equalities between the two global radius of curvature functions ρpt

and ρtp can arise at points of stationary approach (cf. (2.11)) as described in Section

3.1.4. Equality between the local and a global radius of curvature functions can occur

only at certain special points along Γ.

Lemma 3.5 Under the hypothesis 3.1, equality between ρpt and ρ or between ρtp and ρ

can occur only at extremal points of the local curvature κ in the sense that

ρpt = ρ ⇒ κ′ = 0 and κ′′ ≤ κτ 2, (3.26)

ρtp = ρ ⇒ κ′ = 0 and κ′′ ≤ κτ 2. (3.27)

Notice that these extremal points must be maxima (to second order) of the local curvature

whenever the torsion is zero, as is the case for planar curves.

Proof First note, that ρpt(s) = ∞ for some s ∈ I if and only if the curve is a

straight, infinite line in which case the right hand side of both (3.26) and (3.27) are

fulfilled.

Now consider the case when Γ is not a straight, infinite line, that is assume ρpt(s) =

ρ(s) 6= ∞: The results follow then from the Taylor expansion (2.7). The proofs are

by contradiction: When κ(s) 6= 0 and κ′(s) 6= 0 then Γ locally pierces the osculating

circumsphere Sc(s) of radius ρ(s). Since Γ is simple and has no end-points (it is closed

or infinite) it must re-cross Sc(s) at a distinct point q(σ). Then we can shrink Sc(s) to

26



find a sphere of smaller radius than ρ(s) that is tangent at q(s) and which intersects Γ

near q(σ). In the case ρtp(s) = ρ(s) this is an immediate contradiction and therefore

κ′(s) = 0. In the case ρpt(s) = ρ(s) 6= ∞ consideration of circles on the shrunken

sphere implies that ρtp(s) < ρ(s) = ρpt(s), a contradiction of (3.25). Thus κ′(s) = 0 is

a necessary condition (in both cases). If the second condition κ′′ ≤ κτ 2 were violated

the expansion (2.7) reveals that the curve would locally lie inside the osculating circum-

sphere Sc(s), and a similar shrinking argument would lead to a contradiction as before. �

Notice that if ρpt = ρ, then all the circular radius of curvature functions (both local

and global) must be equal by virtue of (3.20) and (3.22). If moreover τ 6= 0, then all

the radius of curvature functions introduced thus far (both circular and spherical, local

and global) must be equal by virtue of (2.6), (3.21), (3.22) and (3.23).

3.3 The global radius of curvature functions ρpt and

ρtp

In this section we complement the results of Lemma 3.5 characterising the circumstances

in which ρpt and ρtp can be achieved locally, by a study of how the global radius of cur-

vature functions ρpt and ρtp can be achieved non-locally. We first consider the function

ρpt and ask: what is the geometry of the curve at distinct points s and σ that realise

the global radius of curvature pt(s, σ) = ρpt(s)?

To this end assume pt(s, σ) = ρpt(s) < ρ(s), i.e. ρpt(s) is not achieved locally. Denote

the circumsphere of the circle C(s, σ, σ) by S. Then, generically, three cases can occur:

either the curve q at σ lies locally inside S, locally outside S or it locally crosses the

sphere S. First assume that the curve q at σ lies locally inside S. Shrinking the sphere

(keeping the contact at q(s)) leads to a slightly smaller sphere that intersects the curve

at two distinct points q(t) 6= q(t′). Thus, ppp(s, t, t′) < ρpt(s), which contradicts (3.22),

and the first case cannot arise.

Now assume the curve q at σ lies locally outside S. If q′(σ) · (q(σ) − q(s)) 6= 0,

rotating the sphere around the axis q(σ) − q(s) (keeping the contact at q(s)) leads to

a sphere that intersects the curve at two distinct points q(t) 6= q(t′). Shrinking this

sphere then produces a sphere that still intersects at two distinct points q(u) 6= q(u′)

and ppp(s, u, u′) < ρpt(s), which contradicts (3.22). This yields that the second case can

only occur if q′(σ) · (q(σ)− q(s)) = 0.

Finally assume that the curve q at σ locally crosses S. Remark 2.7 implies that the

centre of the circle C(s, σ, σ) must lie on the polar axis A(σ) at σ.

We summarise the possible cases and provide more rigorous analytic proofs in:

Lemma 3.6 For a given curve q ∈ C3(I,R3), and for s ∈ I, only the following five

cases can occur:

1. Γ is a straight infinite line so that ρpt ≡ ρ ≡ ∞,

2. q(s) is a self-intersection point, i.e. q(s) = q(σ) for some σ 6= s in which case

ρpt(s) = 0,
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3. 0 < ρpt(s) = ρ(s) <∞, i.e. ρpt(s) is achieved locally, in which case ρ′(s) = 0,

4. 0 < ρpt(s) = pt(s, σ) <∞ with s 6= σ and q′(σ) · (q(σ)− q(s)) = 0 , i.e. ρpt(s) is

achieved by half of the distance between a pair of single critical points (cf. (2.13)),

5. 0 < ρpt(s) = pt(s, σ) <∞ with s 6= σ, and κ(σ) 6= 0 and the centre c of the circle

C(s, σ, σ) lies on the polar axis A(σ) at σ.

Proof Both cases 1 and 2 can arise. By Lemma 3.5 we know that ρpt(s) = ρ(s)

implies ρ′(s) = 0. Now assume ρpt(s) < ρ(s), i.e. ρpt(s) is achieved non-locally. Then

ρpt(s) = pt(s, σ) with s 6= σ. Recall the formula (3.8)

pt(s, σ) =
pp(s, σ)

| sin θsσ′ |
=

|q(s)− q(σ)|2
2|(q(s)− q(σ))× q′(σ)| , (s 6= σ).

We study the non-local critical points of ρpt or roots of ∂σpt(s, σ) = 0:

∂σ

(
pt(s, σ)2

)
=
|q(s)− q(σ)|2 q′(σ) · (q(s)− q(σ))

2|(q(s)− q(σ))× q′(σ)|4
[
|q(s)− q(σ)|2q′′(σ) · (q(s)− q(σ))

− 2|(q(s)− q(σ))× q′(σ)|2
]

We find that ∂σpt(s, σ) = 0 when

q′(σ) · (q(s)− q(σ)) = 0,

which is case 4, or when

|q(s)− q(σ)|2q′′(σ) · (q(s)− q(σ))− 2|(q(s)− q(σ))× q′(σ)|2 = 0,

which, whenever κ(σ) 6= 0, may be rewritten using the notation

d = q(s)− q(σ) (3.28)

for the chord between q(σ) and q(s), and the notation (3.10) as

κ(σ)n(σ) · d− 2|e× q′(σ)|2 = 0, (3.29)

and which reduces in the case κ(σ) = 0 to

|e× q′(σ)| = 0. (3.30)

In the case κ(σ) = 0 condition (3.30) yields that e and q′(σ) are colinear and therefore

ρpt(s) = pt(s, σ) = ∞, in which case the curve is a straight line. This case is already

covered by case 1.

It remains to show that in the case κ(σ) 6= 0 condition (3.29) is equivalent to case

5. First consider the projection q̂(s) of q(s) onto the n(σ)-b(σ)-plane, cf. Figure 3.1

q̂(s) = q(σ) + d− d · q′(σ)q′(σ).
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Figure 3.1: The n(σ)-b(σ)-plane containing the centre c of the circle C(s, σ, σ) and the

projection q̂(s) of q(s).

The centre c of the circle C(s, σ, σ) lies in the intersection of the n(σ)-b(σ)-plane with

the t(σ)-d-plane, that is on the straight line passing through q(σ) and q̂(s) and is given

by

c = q(σ) + pt(s, σ)
q̂(s)− q(σ)

|q̂(s)− q(σ)| = q(σ) +
d− d · q′(σ)q′(σ)

2|e× q′(σ)|2 .

The projection of the centre c onto the line through q(σ) parallel to n(σ) is given by

ĉ = q(σ) + (c− q(σ)) · n(σ)n(σ) = q(σ) +
d · n(σ)

2|e× q′(σ)|2n(σ).

Thus

|ĉ− q(σ)| = d · n(σ)

2|e× q′(σ)|2 ,

and the centre c of the circle C(s, σ, σ) lies on the polar axis A(σ) at σ, i.e. |ĉ−q(σ)| =
1

κ(σ)
, if and only if equation (3.29) is true. �

Lemma 3.7 For a given curve q ∈ C3(I,R3), and for s ∈ I, only the four following

cases can occur:

1. Γ is a straight infinite line so that ρpt ≡ ρ ≡ ∞,

2. q(s) is a self-intersection point, i.e. q(s) = q(σ) for some σ 6= s in which case

ρpt(s) = 0,

3. 0 < ρtp(s) = ρ(s) <∞, i.e. ρtp(s) is achieved locally, in which case ρ′(s) = 0,

4. 0 < ρtp(s) = tp(s, σ) < ∞ with s 6= σ, and the tangent q′(σ) lies in the tangent

plane of the circumsphere S of the circle C(s, s, σ) at q(σ).

Proof Both cases 1 and 2 can arise. By Lemma 3.5 we know that ρtp(s) = ρ(s)

implies ρ′(s) = 0. Now assume ρtp(s) < ρ(s), i.e. ρtp(s) is not achieved locally. Then
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ρtp(s) = tp(s, σ) with s 6= σ. We differentiate the formula (3.8) (where the roles of s

and σ are interchanged)

∂σ

(
tp(s, σ)2

)
=

|q(σ)− q(s)|2
2|(q(σ)− q(s))× q′(s)|4

[
2q′(σ) · (q(σ)− q(s)) |(q(σ)− q(s))× q′(s)|2

− |q(σ)− q(s)|2 (q′(σ) · (q(σ)− q(s))− q′(s) · (q(σ)− q(s))q′(s) · q′(σ))
]
.

We use the notation (3.10) and (3.28), then the non-local critical points ∂σtp(s, σ) = 0

are achieved when

−2q′(σ) · d |d× q′(s)|2 − |d|2 (q′(s) · d q′(s) · q′(σ)− q′(σ) · d) = 0,

that is, when

q′(σ) ·
[
−2d |d× q′(s)|2 − |d|2 (q′(s) · d q′(s)− d)

]
= 0. (3.31)

Consider the circumsphere S of the circle C(s, s, σ). The tangent plane at q(σ) is spanned

by the vectors

R(e)q′(s), and e× q′(s),

where R(e) is the proper rotation matrix given by (3.11). Therefore the tangent q′(σ)

lies in the tangent plane of the circumsphere S of the circle C(s, s, σ) at q(σ) when

q′(σ) · [R(e)q′(s)× (e× q′(s))] = 0. (3.32)

It remains to show that this condition is equivalent to equation (3.31). Dividing equation

(3.31) by |d|3 yields

0 = q′(σ) ·
[
−2e |e× q′(s)|2 − (q′(s) · e q′(s)− e)

]
.

We continue with algebra to find

0 = q′(σ) ·
[
−2e (1− (e · q′(s))2)− (q′(s) · e q′(s)− e)

]

= q′(σ) · [2e⊗ e− I] (q′(s) · e q′(s)− e)

= q′(σ) ·R(e) (q′(s) · e q′(s)− e)

= R(e) q′(σ) · (q′(s) · e q′(s)− e)

= R(e) q′(σ) · ((e× q′(s))× q′(s))

= R(e) q′(σ) · (R(e)(−(e× q′(s)))× q′(s))

= q′(σ) · ((−(e× q′(s)))×R(e)q′(s))

= q′(σ) · (R(e)q′(s)× (e× q′(s))),

so that equation (3.31) is indeed equivalent to (3.32). �

As a consequence of Lemma 3.7 we find, that if ρtp(s) is achieved non-locally, then

ρtp(s) = ρtt(s). Moreover, if ρtp(s) is achieved locally, then, in the generic case τ(s) 6= 0,

Lemma 3.5 yields ρ(s) = ρos(s), so that ρtp(s) = ρtt(s). This confirms that the two

global radius of curvature functions ρtp and ρtt are identical (cf. (3.23)).
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3.4 Thickness of closed or infinite curves

Let Γ be a simple, closed or infinite, curve. Then to each of the five distinct radius

of curvature functions {ρpt, ρtp, ρpc, ρ, ρos} we may associate a functional (or number)

corresponding to its infimum:

∆pt[Γ] = inf
s
ρpt(s), ∆tp[Γ] = inf

s
ρtp(s),

and so on.

Lemma 3.8 Under the hypothesis 3.1 we have the ordering

∆ρos [Γ] ≥ ∆?
pc[Γ] = ∆ρ[Γ] ≥ ∆tp[Γ] = ∆pt[Γ], (3.33)

with the exception indicated by the asterisk, that the relations involving ∆pc[Γ] are only

valid for curves with non-vanishing torsion, i.e. if τ(s) 6= 0 for all s ∈ I.

In the case of zero torsion τ(s) = 0, pc(s, s) is left undefined, which forces us to exclude

this case.

Proof By (3.25) we have immediately

∆ρos ≥
{

∆ρ ≥ ∆tp

∆?
pc

}
≥ ∆pt ≥ 0,

and it remains to show: ∆tp[Γ] = ∆pt[Γ] and ∆?
pc[Γ] = ∆ρ[Γ]. We have,

∆pt[Γ] = inf
s
ρpt(s) = inf

(s,σ)
pt(s, σ) = inf

(s,σ)
tp(σ, s) = inf

σ
ρtp(σ) = ∆tp[Γ],

which gives the first equality. To prove the second equality, first note that trivially

∆?
pc[Γ] ≥ ∆ρ[Γ]. Assume ∆?

pc[Γ] > ∆ρ[Γ] = ρ(s), for some s ∈ I. Then, κ achieves a

maximum at s, thus κ′(s) = 0 and κ′′(s) ≤ 0. If τ(s) 6= 0, then ρ(s) = ρos(s) = pc(s, s)

and we find a contradiction. �

Thus for simple, closed or infinite, curves we have only three distinct functionals of

this type, namely ∆pt, ∆ρ and ∆ρos . The number ∆ρ is just the minimal value of the

local osculating circle radius of curvature ρ along the curve, while ∆ρos is the minimal

value of the local osculating sphere radius of curvature ρos. For smooth curves with

non-vanishing torsion, formula (2.6) reveals that ρos(s) = ρ(s) whenever ρ′(s) = 0.

Consequently ∆ρos [Γ] = ∆ρ[Γ] for closed curves with τ(s) 6= 0 at the minimum of ρ.

However in general the two numbers are different, as can be seen, for example, by

consideration of smooth, non-circular closed curves lying on a given sphere.

The number ∆pt is more interesting. As mentioned in section 2.2, it was first intro-

duced in [18] within the context of the study of ideal or tight knots, where it was shown

that ∆pt = ∆ppp gives an explicit characterisation of the normal injectivity radius or

thickness of the curve Γ. With the last equality in (3.33), we see that the thickness could

also be computed via a numerical evaluation of ∆tp[Γ]. Consideration of smooth, simple
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curves that are close to a figure eight, demonstrates that strict inequality between ∆ρ

and ∆pt is possible.

In the whole present chapter we excluded curves with end-points, whose presence

may cause several identities to fail. For example, the last equality of (3.33) relies on

the fact that a simple, closed or infinite, curve has no end-point. In particular, this

equality is violated for the curve with end-points that is sketched in Figure 3.2. Here

ρtp(s) = R = 2r > r = ρpt(s). And, by taking r as small as necessary, we see that

∆tp[Γ] = ρtp(s) while ∆pt[Γ] = ρpt(s), so that the last equality in (3.33) fails. Moreover

ρtp(σ) = r < ρtt(σ), which shows that the identity (3.23) can also fail in the presence of

end-points.

R

r

σ

s

Figure 3.2: A curve Γ that illustrates possible effects of end-points on global radius of

curvature functions and curve thickness. The curve is drawn such that ∆tp[Γ] = ρtp(s) =

R = 2r > r = ρpt(s) = ∆pt[Γ].

3.5 Examples

3.5.1 Ellipses

Here we illustrate various properties of the standard local radius of curvature function ρ,

and the global radius of curvature functions ρpt and ρtp for the case when Γ is an ellipse.

See section 7.2.1 for the corresponding plots on an ellipse discretized with biarcs.

Figure 3.3 displays the two dimensional plot of pt for an ellipse with principal axes

of length 1.0 and 0.6. The minimum of a horizontal cut pt(s, ·) is ρpt(s) whereas the

minimum of a vertical cut pt(·, σ) is ρtp(σ).

Figure 3.4 shows plots of ρ, ρpt and ρtp along the same ellipse. Nestedness between

all three functions is in agreement with (3.25). Moreover, equality between all three

functions occurs only at local minima of ρ (equivalently, local maxima of κ), which is

in accordance with (3.26) and (3.27) in the case of zero torsion. The two global radius

of curvature functions also coincide at the ends of the minor axes, which are a pair of

points of stationary approach as defined in (2.11). While ρtp is smooth, ρpt has corners

near each of its local maxima. As discussed below, these corners are associated with

a discontinuity in the family of minimising circles for ρpt corresponding to a switch

between case 4 and case 5 in Lemma 3.6 that describes how ρpt is achieved.

Figure 3.5 illustrates various properties of the osculating and minimising circles

associated with the functions ρ, ρpt and ρtp on an ellipse. Panel (a) shows the locus

of centres of all osculating circles, and the loci of the centres of all minimising circles
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Figure 3.3: Plot of pt(s, σ) for an ellipse with principal axes of length 1.0 and 0.6. The

vertical axis is for the point argument s, and the horizontal axis is for the tangent

argument σ. Colour indicates the height of the function pt: from blue for low to red for

high.

associated with ρtp and ρpt. The osculating and ρpt loci actually coincide on the two

arrow-head portions, which fact is explained later. Panel (b) illustrates the classic

result that for planar curves the osculating circles are nested between extremal points,

or vertices, of the local radius of curvature ρ (see, e.g. [22, Theorem 3-12, p. 48], [61,

p. 403]). In panel (c) we plot the minimising circles associated with ρtp for various

points along the ellipse. These circles are actually osculating circles at the two local

minima of ρ, i.e. at the left and right end-points of the line segment, but minimising

circles with centres at interior points are instead doubly tangent at distinct points of

the ellipse. Panels (d)–(f) illustrate the minimising circles for ρpt. Panel (d) depicts the

continuous, nested, family of minimising circles with centres on the arrow-head portion

of the locus of centres. The minimising circles are non-unique at the point illustrated

in panel (e), and then the (non-nested) family of minimising circles smoothly evolves,

as shown in panel (f). It is this transition between two smooth families of minimising

circles that explains the corner in the graph of ρpt(s) that can be seen in Figure 3.4 (b).

It remains to discuss the nestedness of the circles appearing in Figure 3.5 (d). The

numerics indicate that the minimising circle at s has zeroth-order contact with the ellipse

at s. The minimising circle for ρpt must, by definition, have a first-order intersection

or tangency to the ellipse at some point σ. For all but one of the circles in part (d)

the point σ is distinct from s, and, moreover, there is no other intersection between

each minimising circle and the ellipse. By a crossing argument this means that the

order of contact between the ellipse and circle (i.e. two closed planar curves) at σ must

be at least of second-order. Thus the circle realising the minimum in ρpt(s) is in fact

the osculating circle to the ellipse at σ, so that ρpt(s) = ρ(σ). Therefore the loci of

centres of minimising circles for ρpt and the osculating circles coincide locally, and local

nestedness follows from the known nestedness of osculating circles. Thus, the circles

appearing in Figure 3.5 (d) correspond to the case 5 of Lemma 3.6. Contrariwise, the

circles appearing in Figure 3.5 (f) correspond to the case 4 of Lemma 3.6 as will become

evident for the discretized ellipse with biarcs in Figure 7.11.
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Figure 3.4: Plots of local and global radius of curvature functions for an ellipse with

principal axes of length 1.0 and 0.6: (a) ρ, ρpt and ρtp versus the polar angular coordinate

around the ellipse (with θ = 0 corresponding to a vertex of minimal radius of curvature),

(b) magnified view of ρpt and ρtp near their common maxima at θ = π/2 (corresponding

to the inset of part a).

3.5.2 Helices

Helices are perhaps the simplest non-planar curves. Because helices are uniform, any

radius of curvature function must be constant. However for helices it is interesting

to consider how the various radius of curvature functions are realised as minima of the

linear pp, circular {pt, tp} and spherical {cp, pc, tt} two-point radius functions. Precisely

because helices are uniform, it suffices to fix an arbitrary point s on the helix and to

examine how the two-point radius functions vary with the second argument σ. It can

be shown that helices possess a discrete symmetry which implies pt(s, σ) = tp(s, σ) and

pc(s, σ) = cp(s, σ). Accordingly, we consider only one independent circular function pt

and two independent spherical functions {cp, tt}.
Figures 3.6 (a,b) show plots of pp, pt, cp and tt as functions of the difference in arc

length η = σ − s for a helix of pitch 1.2. (In all our examples the helices are scaled to

have radius one.) Nestedness between the linear, circular and spherical functions is in

agreement with (3.18), as is the non-nestedness of the spherical functions cp and tt. (For

helices the function tt tends to infinity near distinct points (s, σ) where the associated

tangents are parallel.) Notice that the circular function pt and the spherical function tt

enjoy the same global minimal value, as asserted by the last equality in (3.33), that the

global minimum of cp is strictly larger (i.e. the second inequality in (3.33) is actually

strict for this curve), and that, trivially, the global minimum of pp is zero.

Figure 3.6 (c) illustrates how the minima of various two-point functions depend

on the helix pitch. For the helices with pitches 4 and 2.8, pt(s, σ) achieves its global

minimum at η = σ− s = 0. For pitch 4 the global minimum is the only local minimum,

whereas for pitch 2.8 there are two other local minima. The fact that the global minimum

is achieved at η = 0 implies the thickness equality ∆ρ[Γ] = ∆pt[Γ] since the limit function

pt(s, s) is just the standard local radius of curvature ρ(s). For the helix with pitch 1.5, pt

achieves its global minimum for η 6= 0; moreover, this minimum value is strictly less than
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Figure 3.5: Osculating circles associated with ρ and minimising circles associated with

ρtp and ρpt for an ellipse: (a) three loci of the centres of i) the osculating circles (diamond-

shaped curve drawn in dashes), ii) the minimising circles realising ρtp (horizontal line

segment drawn in small dots), and iii) the minimising circles realising ρpt (thick curve

with discontinuities), (b) various osculating circles with centres and tangency points

marked in open dots, (c) various minimising circles for ρtp, (d)-(f) minimising circles for

ρpt with (d) centres on the arrow-head portion of the locus of centres, (e) two minimising

circles with the same radius, but different centres lying on either side of the discontinuity

in the locus, and (f) non-nested minimising circles with centres on the central portion

of the locus.
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Figure 3.6: Plots of linear, circular, and spherical, two-point radius functions for helices:

(a) pp, pt, cp, and tt versus η = σ − s for a helix of pitch 1.2, (b) magnification of the

inset shown in part (a), (c) plots of the single function pt for four helices with different

pitches 1.5, 2.5126, 2.8 and 4. The horizontal line segment emphasises the equality of

the three local minima for the critical pitch 2.5126 of Maritan et al [31], (d) plots of the

three functions pp, pt and tt on the single critical-pitch helix within the inset indicated

in part (c).

its value at the local minimum η = 0. Thus for pitch 1.5 we have the strict inequality

∆ρ[Γ] > ∆pt[Γ], and the thickness is achieved by a circle (or sphere) that intersects the

helix at two distinct points. For the helix with pitch 2.5126. . . , pt achieves its global

minimum both at η = 0 and at η 6= 0. Thus the thickness of a helix with this critical

pitch is determined simultaneous by local and global properties of the curve. Maritan

et al [31] originally identified this critical pitch in their work on the optimal packing of

filaments. They also observed that many crystal structures of helical proteins have the

same critical pitch. The critical helix is further illustrated in Figure 3.7.

In all of our discussions we are by no means restricted to consider only connected

curves. Curves made up of multiple helices with a common axis, diameter and pitch,

remain uniform (cf. Figure 3.8), and therefore have constant radius of curvature func-

tions. Accordingly, just as for single helices, we can plot linear, circular and spherical

two-point radius functions for various double helices. In Figure 3.9, panels (a) and (c)

show the symmetric case of diametrically opposed strands (an offset angle of π), and

in (b) and (d) an asymmetric case in which the strands are offset by an angle of 2
3
π.
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(a) (b)

(c) (d)

Figure 3.7: Visualisation of the pitch 2.5126 critical single helix: (a) the local osculating

circumsphere (which is also the osculating sphere) associated with ρ, (b) two doubly-

tangent spheres of radius ρ that achieve ρpt, (c) superposition of the local and global

spheres, (d) the tube formed as the envelope of all spheres with radius equal to the

thickness ∆pt[Γ] that are centred on the helix.

Panels (a) and (b) each plot the functions pp, pt and tt for one double-helical structure

(pitch = 2.5126), while panels (c) and (d) plot the single function pt for a range of

pitches. It can be shown that in all cases, ∆pt[Γ] = ∆tt[Γ] is achieved by a circle that

intersects both strands, or, equivalently, by a sphere that sits between the two strands

with tangencies at either side. Panel (c) shows that as the pitch is decreased, there

is a critical value at which a global minimum of pt, achieved across the diameter of

the helical structure, splits into two global minima, achieved by asymmetric leading

and trailing spheres (and a symmetric local maximum). Unlike the single helix, this

transition, or bifurcation, for the double helix is local and for this reason it is easy to

calculate analytically that the critical pitch is exactly 2π. In [58] it was observed that

this critical pitch value corresponds to the standard parameters for the B-form DNA

double helix. For asymmetrically offset double helices, as shown in panel (d), there is a

critical pitch below which there are multiple local minima of the function pt. However

for all pitch values there is always a unique global minimum that varies smoothly.
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Figure 3.8: Structure formed by two helices with common axis, diameter and pitch, and

constant offset angle (here 0.7π).
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Figure 3.9: Plots of linear, circular, and spherical, two-point radius functions on double

helices. The arc-length parameter η = σ − s now assumes all real values twice, once

corresponding to pairs of points on the same strand, and once with the pair on opposite

strands (with phasing chosen such that η = 0 corresponds to points on opposite strands

that lie in the same orthogonal cross-section of the double helical structure). Accord-

ingly, the plot of each function generates two curves (one for each strand): (a) pp, pt,

and tt for pitch 2.5126, and offset angle π (i.e. the diametrically opposed double helix),

(b) same as (a) but with offset angle 2
3
π, (c) pt for three different pitches, all with offset

angle π, (d) same as (c), but with offset angle 2
3
π.
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Chapter 4

Biarcs

The examples of chapter 3 involve evaluation of global radius of curvature functions and

thickness on analytically known curves. However we are also interested in computations

involving curves with thickness. To that end we need to consider a discretization of

space curves that allows an efficient thickness evaluation to a given accuracy, and that

has simple closed form expressions for arc length, curvature and torsion. Moreover we

want the discretization to live in the space of C1,1 curves, where minimisers are known

to exist. This allows us for example to give rigorous upper bounds for rope length in

the examples of ideal knot shapes described in chapter 2.3 and 8. The above mentioned

properties are all provided by curves assembled from biarcs in a C1 fashion.

In this chapter we give a self-contained description of the construction of biarcs in

three dimensional space. Local convergence results, and approximations of arc length,

curvature and torsion are described in chapter 5. In chapter 6, point-tangent data pairs

sampled from a (non-uniform) mesh on curves are interpolated with biarc curves and

convergence results in different norms are obtained.

4.1 Construction and description

The basic building block in our convergence results is a single biarc, that is a pair of

circular arcs used for Hermite interpolation. We first review, refine, and set notation

for the theory of single biarcs, cf. [2], [54], [64].

Definition 4.1 Point-tangent data is of the form (q, t) ∈ J := R
3×S2, where S2 ⊂ R

3

denotes the unit 2-sphere. A point-tangent data pair is of the form ((q0, t0), (q1, t1)) ∈
J × J with q0 6= q1.

Definition 4.2 A biarc (a, ā) is a pair of circular arcs in R
3, joined continuously and

with continuous tangents, that interpolate a point-tangent data pair. The common end

point m of the two arcs a and ā is the matching point of the biarc.

The notions from Definitions 4.1 and 4.2 are illustrated in Figure 4.1. Hereafter the

word arc will always mean a circular arc, and, for any arc a, ∠a will denote the angle

swept out by the arc. It is convenient to include straight line segments as being arcs,
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t0
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tm

q0

q1t0

t1

m

tm

Figure 4.1: A biarc is a pair of circular arcs, assembled with a common tangent tm at a

matching point m, that interpolates a given pair of point-tangent data ((q0, t0), (q1, t1)).

The biarc lies entirely on the (generically unique) sphere S defined by the data.

and planes as being spheres. Note that interpolation is taken to mean with orientation,

so that t0 points to the interior of the first arc, while −t1 points to the interior of the

second arc. The case q0 = q1 can be excluded in Definition 4.1 because there can be

no interpolating biarc except in the trivial case in which t0 = t1.

We now discuss existence and multiplicity of interpolating biarcs, but first we need

further notation. Given two points q0, q1 ∈ R
3 with q0 6= q1, we denote the chord, and

unit vector along the chord, by

d := q1 − q0, and e :=
q1 − q0

|q1 − q0|
, (4.1)

and recall the definition (3.11) of the symmetric, proper rotation matrix

R(e) := 2e⊗ e− I. (4.2)

The matrix R(e) maps a vector t ∈ S2 into the (compatibly oriented) tangent t? at q0

of the circle with tangent t at q1 passing through the point q0, cf. Figure 4.2. Note that

R(e) represents a reflexion in the unit vector e, and R−1(e) = RT (e) = R(e) = R(−e).

Given a point-tangent data pair ((q0, t0), (q1, t1)) ∈ J × J we denote

t?
0 := R(e)t0, t?

1 := R(e)t1. (4.3)

Definition 4.3 For a pair of point-tangent data ((q0, t0), (q1, t1)) ∈ J × J , the circle

with tangent t0 at q0 passing through q1 is denoted by C0, and the circle with tangent

t1 at q1 passing through q0 by C1. If t0 + t?
1 6= 0, the circle with tangent t0 + t?

1 at q0

passing through q1 is denoted by C+, while if t0− t?
1 6= 0, the circle with tangent t0− t?

1

at q0 passing through q1 is denoted C−.

For any circle C passing through q0 and q1 we denote by C′ the circle C punctured at

q0 and q1.

Definition 4.4 A pair of point-tangent data ((q0, t0), (q1, t1)) ∈ J ×J will be described

as cocircular if C0 = C1. A cocircular pair of point-tangent data can be classified as

either compatible or incompatible dependent upon the orientations they induce for their

common circle.
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q0 q1

t?

t

Figure 4.2: Given two distinct points q0 and q1 and a vector t, there is a unique circle

passing through q0 and q1 with tangent t at q1. The rotation matrix R(e) defined in

equation (4.2) maps the vector t into the compatibly oriented tangent t? at q0.

We remark that the case of compatible cocircular data is equivalent to t0 − t?
1 = 0,

so that in Definition 4.3 C− is not defined, while the incompatible cocircular case has

t0 + t?
1 = 0, so that C+ is not defined.

Elementary geometry demonstrates that any pair of point-tangent data that are

non-cocircular define a unique sphere S containing both points and with each tangent

contained in the corresponding tangent plane to the sphere (cf. Figure 4.1). We shall call

S the double tangent sphere generated by ((q0, t0), (q1, t1)). In the case |t0× t1 · e| = 0

with ((q0, t0), (q1, t1)) coplanar, but non-cocircular, the double tangent sphere is the

plane. When |t0 × t1 · e| 6= 0, the radius of S is given by

R =
|d|
2

| sinα|
|t0 × t1 · e|

=
|d|
2

√
1− (t?

1 · t0)2

|t0 × t1 · e|
,

where α is the angle between the unit vectors t0 and t?
1, and the centre c is given by

c = q0 +
|d|
2

t?
1 × t0

t0 × t1 · e
.

In the non-cocircular case all four circles introduced in Definition 4.3 exist, pass through

q0 and q1, and lie on the sphere S. The circles C+ and C− are mutually perpendicular

and bisect the angles between C0 and C1, see Figure 4.3.

For a compatible, cocircular pair of point-tangent data their common arc can be

considered as a family of biarcs. Incompatible pairs of point-tangent data are degenerate

in another way, but we first discuss the more typical case of non-cocircular pairs of point-

tangent data. Suppose therefore that ((q0, t0), (q1, t1)) ∈ J × J is a non-cocircular

point-tangent data pair. Do there exist one or more biarcs interpolating this data?

That is, can one draw a circle a passing through q0, tangent to t0 at q0, and a circle

ā passing through q1, tangent to t1 at q1, such that the two circles a and ā intersect

at some point m with a common tangent? This question was answered (for the three

dimensional case) in [53, pp. 52, 68, 70] and [54, pp. 396-401]. Their results can be

summarised in our notation as:

Proposition 4.5 (Sharrock) For a point-tangent data pair ((q0, t0), (q1, t1)) ∈ J × J
that is non-cocircular, there is a nonempty set of possible matching points m corre-

sponding to compatibly oriented arcs. For each matching point m the biarc is unique.

Moreover
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1. The set Σ+ ⊂ R
3 of all possible matching points is a circle (punctured at q0 and

q1).

2. All biarcs lie on the double tangent sphere generated by ((q0, t0), (q1, t1)).

3. There is a unique biarc through every point on the double tangent sphere punctured

at q0 and q1 (i.e. the set of all possible biarcs is a simple covering of the double

tangent sphere S).

q0

q1

t0

t1

C0

C1

C+

C
−

Σ++

Figure 4.3: A proper (cf. Definition 4.10) point-tangent data pair with the circles C0, C1,

C+, C− introduced in Definition 4.3, and three proper biarcs with matching points on

Σ++ (cf. Definition 4.8). Every biarc and every circle lie on the double tangent sphere

S.

We remark that a point-tangent data pair ((q0, t0), (q1, t1)) ∈ Jn×Jn, where Jn =

R
n × Sn−1 with n ≥ 3, naturally and generically defines a three dimensional affine

subspace V, with q0, q0 +t0, q1, and q1 +t1 ∈ V. Therefore the same biarc construction

is also possible for point-tangent data associated with R
n, n > 3. A treatment of this

case, along with a discussion of biarcs on the (n − 1) dimensional sphere Sn−1, can be

found in [64]. See also the discussion in section 9 below.

Two proofs of Proposition 4.5 can be found in [53, p. 194]. One approach uses the

fact that the biarc construction is invariant under inversions in spheres [7, p. 77] to

reduce to an equivalent planar problem. We re-use this approach in the proof of the

sharpened results described in Proposition 4.7, for which we need

Definition 4.6 (cf. [7, p. 85]) A tangent pencil P(q,C) of oriented coaxal circles is the

two parameter family of oriented circles that touch the oriented circle C at the point q

with common oriented tangent.

Proposition 4.7 For a given point-tangent data pair ((q0, t0), (q1, t1)) ∈ J ×J , con-

sider the circles C0, C1, C+, and C− defined in Definition 4.3, denote by Σ+ ⊂ R
3 the set

of matching points of all biarcs interpolating ((q0, t0), (q1, t1)), and by Σ− ⊂ R
3 the set

of matching points of all biarcs interpolating ((q0, t0), (q1,−t1)). Then:

1. If ((q0, t0), (q1, t1)) is non-cocircular, then Σ+ is the punctured circle C ′+, and Σ−

is the punctured circle C ′−.
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Figure 4.4: Geometry on the double tangent plane IS.

2. If ((q0, t0), (q1, t1)) is cocircular, then

(a) if the data is compatible, Σ+ is the common punctured circle C ′+ = C ′0 = C ′1,
and Σ− is the punctured sphere passing through q0 and q1 perpendicular to

the circle C+, while

(b) if the data is incompatible, Σ− is the common punctured circle C ′− = C ′0 = C ′1,
and Σ+ is the punctured sphere passing through q0 and q1 perpendicular to

the circle C−.

3. The locus Σ+ is a punctured straight line if and only if t0 = t1 with t0 · e 6= 0.

4. The locus Σ+ is a punctured plane if and only if t0 = t1 with t0 · e = 0.

Thus the matching locus Σ± is (respectively) the circle C± whenever it exists, and is

otherwise an associated sphere. The matching locus Σ+ has infinite radius if and only

if t0 = t1.

Proof

1. The inversion I in a sphere centred at the data point q1 and passing through q0,

sends q1 to infinity and therefore transforms the double tangent sphere S into

a plane IS. Similarly, the tangent pencil P(q1, C1) is transformed into a pencil

P(Iq1, IC1) of oriented straight lines, all parallel to the straight line IC1 passing

through Iq0. Because the data is non-cocircular, IC0 is another, non-parallel, line

also passing through q0, and so IC0 and IC1 span the plane IS.

To obtain the locus of possible matching points of a biarc (a, ā), we note that

the inversion I ā of the arc ā passing through q1 must be an oriented half-line

drawn from the pencil P(Iq1, IC1), while the inversion Ia of the arc a passing

through q0 must be drawn from a member IC of the pencil P(Iq0, IC0). To satisfy

the matching condition between sub-arcs, IC must be tangent to an element of

P(Iq1, IC1). But because IC0 and IC1 span the plane IS, this is only possible if

IC ⊂ IS. We therefore see that all biarcs (a, ā) lie on the double tangent sphere

S and it suffices to study the geometry within the double tangent plane IS, see

Figure 4.4.
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Each circle IC ∈ P(Iq0, IC0) contained in IS touches elements of the pencil

P(Iq1, IC1) at two diametrically opposed points Im+ and Im−, with the sign in-

duced by compatible or incompatible orientations. By construction the diameter

through Im+ and Im− is perpendicular to elements of P(Iq1, IC1), and the radius

of IC through Iq0 is perpendicular to IC0. We denote the angle between IC0 and

IC1 by α. It follows by elementary geometry that the angle ∠(Iq0, c, Im+) equals

α. Then the angle ∠(Iq0, Im+, c) = 1
2
(π−α). But the angle between the line IC1

and the line between Im+ and Iq0 is the complement 1
2
π− 1

2
(π− α) = 1

2
α. Thus

an arbitrary matching point Im+ respecting orientation lies on a line bisecting

the angle between IC0 and IC1.

Moreover the line through Im+ and Iq0 is perpendicular to the line through Im−

and Iq0 because they subtend a diameter of IC. Therefore Im− lies on the other

bisector of the angle between IC0 and IC1.

Consequently Σ+ is contained in one of the two perpendicular circles lying on S,

passing through q0 and q1, that bisect the angle between C0 and C1. But the

construction is reversible so that Σ+ equals one of these two (punctured) circles.

Examining all possible cases yields that t0 + t?
1 is the tangent to Σ+, so that

Σ+ = C ′+, and t0 − t?
1 is tangent to Σ−, so that Σ− = C ′−.

2. If the data is cocircular, we apply the same inversion I as above. This time IC0

is parallel or anti-parallel to the elements of the pencil P(Iq1, IC1). A member

IC of P(Iq0, IC0) can touch one of the straight parallel lines in P(Iq1, IC1) only

in the plane perpendicular to IC0 at Iq0, or on IC0 when IC = IC0. Depending

on whether the data is incompatible or compatible, the plane corresponds to the

matching points on Σ+, and any point on the line IC0 corresponds to the matching

points on Σ−, or vice versa.

3. By parts 1. and 2. when the locus Σ+ is a punctured straight line, then the

straight line is C+, and the data therefore can not be incompatible cocircular, i.e.

t0 + t?
1 6= 0. In particular the case t0 = t1 with t0 · e = t1 · e = 0 can not arise.

Because C+ is straight, its tangent t0 + t?
1 is parallel to e. Using (4.2) and (4.3)

we deduce that t0− t1 is parallel to e, i.e. t0− t1 = λe, for some λ ∈ R. Because

t0 and t1 are both unit vectors the case λ 6= 0 can only occur when the data is

incompatible cocircular, a contradiction. Hence λ = 0, and t0 = t1.

Contrariwise, if t0 = t1 and t0 · e 6= 0, the data is not incompatible cocircular, so

that C+ is defined, and Σ+ = C ′+. But by (4.3)

t0 + t?
1 = t0 + 2t1 · e e− t1 = t0 + 2t0 · e e− t0 = 2t0 · e e,

so that C+ is in fact the straight line through q0 and q1.

4. By parts 1. and 2. when the locus Σ+ is a punctured plane, then the data is

incompatible cocircular, i.e. 0 = t0 + t?
1 = t0 + 2(t1 · e)e − t1. It only remains

to show that t1 · e = 0, but, again by part 2., the punctured plane Σ+ passing

through q0 and q1 is perpendicular to the circle C1, thus t1 · e = 0.
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On the other hand, if t0 = t1 and t0 · e = 0, then t0 + t?
1 = t0 +2(t1 · e)e− t1 = 0,

so the data is incompatible cocircular. By part 2.(b), Σ+ is the punctured sphere

passing through q0 and q1 perpendicular to the circle C0. But C0 has tangent t0

at q0, and as t0 · e = 0, Σ+ is a (punctured) plane.

�

We emphasise that the matching set Σ+ is truly punctured at q0 and q1 in the

following sense. Given any matching point m on Σ+ the mutual tangent at the matching

point is given by the formulæ

tm = R(em)t0 = R(ēm)t1, (4.4)

where R(em) is the matrix defined in (4.2) applied to the unit chords

em :=
m− q0

|m− q0|
, and ēm :=

q1 −m

|q1 −m| . (4.5)

Then given a point-tangent data pair ((q0, t0), (q1, t1)) ∈ J ×J that is not compatible

cocircular, in the limit as m ∈ Σ+ approaches the point q0, tm = t?
1 6= t0, and the

limiting arc does not interpolate the data. In the same limit the radius of the arc a

tends to zero, while ∠a approaches the angle α between t0 and t?
1, and the radius of

the arc ā tends to the radius of C1. Similarly, as m approaches the point q1, the radius

of the arc a tends to the radius of C0, the radius of the arc ā tends to zero, and ∠ā

approaches the angle α between t?
0 and t1. Due to this puncturing it is useful to further

divide Σ+ according to:

Definition 4.8 Given a point-tangent data pair ((q0, t0), (q1, t1)) ∈ J × J that is not

incompatible cocircular, i.e. t0 + t?
1 6= 0, we denote by Σ++ the sub-arc of Σ+ from q0

to q1 with the orientation induced by the tangent t0 + t?
1.

4.2 Tangent indicatrix

Given a C1 curve q parametrised by arc length s we may study the tangent indicatrix,

i.e. the curve q′ of tangents on the unit sphere S2. Given a point-tangent data pair

((q0, t0), (q1, t1)) ∈ J × J , how does the construction described in Proposition 4.7

translate to the sphere? The tangent indicatrix of a circle is a great circle, so that the

tangent indicatrix of a biarc is two arcs of great circles that intersect, but which in

general form a corner.

Proposition 4.9 For a point-tangent data pair ((q0, t0), (q1, t1)) ∈ J × J , consider

t0, t1, e, and t?
0 and t?

1 defined in (4.3) as points on S2, cf. figure 4.5. Denote by Θ ⊂ S2

the set of matching tangents tm of all biarcs interpolating ((q0, t0), (q1, t1)), and when

the data is not incompatible cocircular denote by Θ++ ⊂ Θ the set of matching tangents

tm at matching points m ∈ Σ++. Then:
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Figure 4.5: The tangent indicatrix for a generic, non-cocircular case with t0 6= t1. The

unit chord e, tangents t0 and t1, rotated tangents t?
0 and t?

1, and points z0 =
t0+t?

1

|t0+t?
1 |

and

z1 =
t1+t?

0

|t1+t?
0 |

appear in both parts (a) and (b). Then part (a) depicts the punctured circle

Θ of matching tangents tm that is parallel to the tangent indicatrix of Σ+, while (b)

illustrates the tangent indicatrices of seven biarcs with matching tangents tm on Θ++,

corresponding to matching points m ∈ Σ++.

1. If ((q0, t0), (q1, t1)) is non-cocircular with t0 6= t1, then Θ is the circle punctured

at t?
0 and t?

1 that passes through t?
0, t?

1, −t0, and −t1, and so is a great circle if

and only if e · t0 × t1 = 0. The circle is always parallel to the tangent indicatrix

of the physical matching circle C+, i.e. to the great circle through e, z0 :=
t0+t?

1

|t0+t?
1|
,

and z1 :=
t1+t?

0

|t1+t?
0 |
.

2. If ((q0, t0), (q1, t1)) is cocircular with t0 6= t1, then

(a) if the data is compatible, the conclusions are as in case 1., except that Θ is

necessarily a (punctured) great circle, while

(b) if the data is incompatible, Θ is the whole sphere S2 punctured at t?
1 = −t0

and t?
0 = −t1.

3. If t0 = t1, then Θ = {t?
0} = {t?

1}, i.e. the only possible matching tangent is

tm = t?
0 = t?

1.

4. If t0 6= t1, and the data is not incompatible cocircular, then Θ++ is the open arc

of Θ between t?
1 and t?

0 with orientation induced by the parallel great circle passing

through, and oriented by, z0, e and z1.

Proof

1. For a given m ∈ Σ+ we use the notation (4.5) for the unit chord em, and by (4.4),

the matching tangent satisfies

tm = R(em)t0 = 2(em · t0)em − t0.
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Denote the binormal to the physical matching circle C+ by b = em× ēm, which is

well defined because t0 6= t1. Then

tm · b = 2(em · t0)(em · b)− t0 · b = −t0 · b,

a constant independent of m ∈ Σ+. This shows that all matching tangents tm lie

on the circle through −t0, with binormal b. Analogously we find tm · b = −t1 · b
for each matching tangent tm. From (t?

0 + t1) · b = 0 and (t?
1 + t0) · b = 0, we

obtain t?
0 · b = −t1 · b and t?

1 · b = −t0 · b. This shows that all four points t?
0,

t?
1, −t0, and −t1 lie on the circle of matching tangents tm. By construction the

circle is great if and only if e · t0 × t1 = 0.

On the other hand, given a point t on the circle of matching tangents, t?
1 6= t 6= t?

0,

and because t1 6= t0, at least one of the great circles through t and t0, or through

t and t1, is uniquely defined. Therefore at least one of the chords em and ēm is

well-defined as the intersection between the tangent indicatrix of C+ and one of

the great circles. Assuming em is so fixed, the corresponding matching point m

is the intersection of C+ and the straight line q0 + µem, µ ∈ R.

2. (a) In this case Σ+ is still the punctured circle C ′+, and the proof is identical with

that of part 1., except that necessarily e · t0 × t1 = 0 for cocircular data.

(b) If the data ((q0, t0), (q1, t1)) is incompatible cocircular then Σ+ is a sphere

punctured at q0 and q1 with either t0 and t1 or −t0 and −t1 pointing to the

centre. Arcs tangent at q0 to t0 intersect this sphere anywhere on its surface,

but always orthogonally. That is any direction except −t0 (at q0) and −t1

(at q1) is a possible matching tangent.

3. If t0 = t1, then by Proposition 4.7 the locus Σ+ is either a straight (punctured)

line, or the (punctured) plane perpendicular to t0 passing through q0, so that

each arc ā sweeps out an angle of π. In either case the result follows from the

elementary reflector formula (4.2).

4. Suppose t0 + t?
1 6= 0 and t0 6= t1. Then as m ∈ Σ++ moves from q0 to q1,

the chord em moves from z0 =
t0+t?

1

|t0+t?
1|

to e, and the chord ēm moves from e to

z1 =
t?
0+t1

|t?
0+t1|

, cf. Figure 4.5(b). By (4.4) the matching tangent tm is the reflection

of t0 on the chord em, and therefore moves from t?
1 to t?

0, following the orientation

of the indicatrix of the physical matching circle.

�

Definition 4.10 The point-tangent data pair ((q0, t0), (q1, t1)) ∈ J × J will be called

proper if

(q1 − q0) · t0 > 0,

and

(q1 − q0) · t1 > 0.

(4.6)
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q0

q1

t0

t0 + t?

1

Σ++

Figure 4.6: For proper point-tangent data pairs, the arc Σ++ lies entirely in the hemi-

sphere H (4.7) of the double tangent sphere S.

Recall that for any arc a, ∠a denotes the swept out angle.

Proposition 4.11 For a proper point-tangent data pair ((q0, t0), (q1, t1)) ∈ J × J ,

1. ∠Σ++ < π, and

2. for any biarc (a, ā) with matching point m ∈ Σ++, ∠a < π and ∠ā < π.

Proof

1. The data ((q0, t0), (q1, t1)) ∈ J × J is proper, therefore

(t0 + t?
1) · d = t0 · d + t?

1 · d = t0 · d + t1 · d > 0.

Thus, as t0 + t?
1 is the tangent to Σ++ at q0, and d is the chord subtending the

arc Σ++, ∠Σ++ < π.

2. Denote by H the hemisphere of the double tangent sphere S satisfying

H = {p ∈ S : (p− q0) · t0 > 0}, (4.7)

and remark thatH is the set of all points on S that are endpoints of an arc through

q0 with (oriented) tangent t0 at q0, and with swept out angle less than π. Then:

(a) q1 ∈ H, because d · t0 > 0.

(b) (t0 + t?
1) · t0 > 0, because (t0 + t?

1) · t0 = 1 + t?
1 · t0 > 0 unless t?

1 = −t0. And

if t?
1 = −t0, t1 ·d = t?

1 ·d = −t0 ·d, which contradicts the data being proper.

(c) Σ++ ⊂ H is a consequence of (a) and (b), see Figure 4.6.

(d) By (c) any m ∈ Σ++ lies in H, thus ∠a < π.

By a symmetry argument we deduce ∠ā < π.

�

Definition 4.12 We call a biarc proper if it interpolates a proper point-tangent data

pair ((q0, t0), (q1, t1)) ∈ J × J with a matching point m ∈ Σ++.

Our goal is to approximate a given curve by interpolation of sampled point-tangent

data. For sufficiently smooth curves, and a sufficiently fine sampling, the prescribed

data will be proper, and Proposition 4.11 shows that it suffices to consider only proper

biarcs.
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Figure 4.7: The isosceles Bézier control triangle of an arc.

4.3 Bézier points of Proper Biarcs

Dependent upon the situation, we regard a biarc either as a geometric subset of R
3, or

as a curve in R
3, which may, for example, be parametrised by arc length or by using

Bézier control points. Any conic section can be described by rational quadratic Bézier

splines. In particular a circular arc a with ∠a < π can be parametrised using a Bézier

control polygon that is a single isosceles triangle [15, p. 228],

a(τ) =
(1− τ)2b0 + 2ωτ(1− τ)b1 + τ 2b2

(1− τ)2 + 2ωτ(1− τ) + τ 2
, τ ∈ [0, 1], (4.8)

where ω is the cosine of the base angle δ of the isosceles control triangle, that is,

ω =
(b1 − b0) · (b2 − b0)

|b1 − b0| |b2 − b0|
> 0,

where b0,b1,b2 are the control points, i.e. the vertices of the control triangle, cf. figure

4.7. By base length we refer to the distance |b2−b0|, and by side length we understand

the distance |b1−b0|. Note that τ is not a uniform parameter in the sense that it is not

a constant scaling of arc length, unless the arc is a straight line segment, that is unless

b1 = 1
2
(b0 + b2).

Lemma 4.13 Given a proper point-tangent data pair ((q0, t0), (q1, t1)) ∈ J × J and

a proper biarc (a, ā), then:

1. The Bézier control points of the arc Σ++ are given by

b0 = q0, b1 =
(t0 · d)q0 + (t1 · d)q1

t0 · d + t1 · d
+

|d|2(t0 − t1)

2(t0 · d + t1 · d)
, b2 = q1.

2. The Bézier control points of the arc a are

b0 = q0, b1 = q0 + Λ
|d|2

2t0 · d
t0, b2 = m, (4.9)

and the Bézier control points of the arc ā are

b0 = m, b1 = q1 − Λ̄
|d|2

2t1 · d
t1, b2 = q1, (4.10)

where m ∈ Σ++ is the matching point given by the formula

m =
Λ̄(t0 · d)q0 + Λ(t1 · d)q1

Λt1 · d + Λ̄t0 · d
+

ΛΛ̄|d|2(t0 − t1)

2(Λt1 · d + Λ̄t0 · d)
, (4.11)
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and Λ and Λ̄ ∈ (0, 1) are two parameters that are roots of the equation

0 = ΛΛ̄(1− t0 · t1) + (Λ + Λ̄− 1) 2t0 · e t1 · e. (4.12)

If Λ is regarded as the independent variable, Λ̄ is given by

Λ̄ =
2(1− Λ) (t0 · e) (t1 · e)

Λ(1− t0 · t1) + 2(t0 · e) (t1 · e)
(4.13)

=
2(1− Λ) (t0 · d) (t1 · d)

Λ(1− t0 · t1)|d|2 + 2(t0 · d) (t1 · d)
.

Alternatively if a matching point m on Σ++ is given, the biarc parameters Λ and

Λ̄ are

Λ =
t0 · d |m− q0|2

t0 · (m− q0) |d|2
and Λ̄ =

t1 · d |q1 −m|2
t1 · (q1 −m) |d|2 . (4.14)

Proof

1. Consider the Bézier control triangle of Σ++. The control point b1 is given by

b1 = q0 + l
t0+t?

1

|t0+t?
1|

, where l is the side length of the Bézier control triangle. We

know that the base angle δ of the isosceles Bézier control triangle satisfies

(t0 + t?
1) · (q1 − q0)

|t0 + t?
1| |q1 − q0|

= cos δ =
1
2
|q1 − q0|

l
.

But from (4.1) and (4.3) we have t?
1 · d = t1 · d. Therefore

l =
|d|2|t0 + t?

1|
2(d · t0 + d · t1)

,

and

b1 = q0 +
|d|2

2(d · t0 + d · t1)
(t0 + t?

1)

=
t0 · d q0 + t1 · d q1

t0 · d + t1 · d
+

|d|2(t0 − t1)

2(t0 · d + t1 · d)
.

2. The side length of the Bézier triangle of the sub-arc of C0 from q0 to q1 following

the orientation induced by the tangent t0 is

|d|2
2t0 · d

,

and the side length of the Bézier triangle of the sub-arc of C1 from q1 to q0

following the orientation induced by the tangent −t1 is

|d|2
2t1 · d

.
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Figure 4.8: Two planar biarcs—with and without an inflection point—with the corre-

sponding Bézier triangles. The biarc parameters Λ and Λ̄ are the fraction of the maximal

possible side length of the Bézier triangle of the corresponding arcs a and ā.

Therefore for a proper biarc (a, ā), the Bézier control points of the arc a are

b0 = q0, b1 = q0 + Λ
|d|2

2t0 · d
t0, b2 = m,

for some Λ ∈ (0, 1), and the Bézier control points of the arc ā are

b0 = m, b1 = q1 − Λ̄
|d|2

2t1 · d
t1, b2 = q1,

for some Λ̄ ∈ (0, 1). The biarc parameters Λ and Λ̄ are the fraction of the maximal

possible side length of the associated Bézier triangle. The biarc parameters and

matching point m are dependent. By the triangle inequality the distance between

the Bézier control point b1 of a, and the Bézier control point b1 of ā is smaller

or equal to the sum of the side lengths of the Bézier triangles of a and of ā. The

condition that the unit tangents of the arcs a and ā at m are equal, implies the

equality (cf. Figure 4.8 for the planar case)

(
Λ
|d|2

2t0 · d
+ Λ̄

|d|2
2t1 · d

)2

=

∣∣∣∣
(
q1 − Λ̄

|d|2
2t1 · d

t1

)
−
(
q0 + Λ

|d|2
2t0 · d

t0

)∣∣∣∣
2

,

which is equivalent to (4.12), and (4.13) follows from algebra.

The matching point m is the weighted average of the control points b1 of the

corresponding triangles, that is

m =
Λ |d|2

2t0·d

(
q0 + Λ |d|2

2t0·d
t0

)
+ Λ̄ |d|2

2t1·d

(
q1 − Λ̄ |d|2

2t1·d
t1

)

Λ |d|2

2t0·d
+ Λ̄ |d|2

2t1·d

and (4.11) follows. The side length l of the Bézier triangle of a given in (4.9) is

l = Λ
|d|2

2t0 · d
. (4.15)
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Figure 4.9: The biarc parameters Λ and Λ̄ are coupled through equation (4.12) of a

hyperbola.

But, using trigonometry, the side length l can be written as

l =
1
2
|m− q0|
cos δ

=
1
2
|m− q0|

(m−q0)
|m−q0)|

· t0

, (4.16)

where δ is the base angle. Solving equations (4.15) and (4.16) for Λ yields the first

part of (4.14). The proof of the formula for Λ̄ is analogous.

�

We remark that equation (4.12) relating Λ and Λ̄ involves only angles so that the

condition is scale invariant. When t0 = t1 it reduces to Λ̄ = 1 − Λ. For t0 6= t1,

equation (4.12) is the equation of a hyperbola with orthogonal asymptotes parallel to

the coordinate axes, and centred at (−p,−p), where

p =
2t0 · e t1 · e
1− t0 · t1

,

cf. Figure 4.9. In other words, with the coordinate transformationX = Λ+p, X̄ = Λ̄+p,

equation (4.12) becomes

XX̄ = p2 + p.
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Chapter 5

Local convergence results for biarcs

In this chapter we consider biarcs (a, ā)h that interpolate point-tangent data pairs sam-

pled from a space curve q, i.e. point-tangent data pairs of the form ((q(s),q′(s)), (q(s+

h),q′(s + h))). We study the local behaviour of biarcs, i.e. the properties of the inter-

polating biarc (a, ā)h in the limit h→ 0.

As a curve with non-vanishing curvature is defined up to a rigid body displacement by

the curvature κ(s) > 0 and torsion τ(s) given as functions of the arc-length argument s,

we seek pointwise approximations of these quantities in terms of either the interpolating

biarcs (a, ā)h or directly in terms of the point-tangent data pairs ((q(s),q′(s)), (q(s +

h),q′(s + h))). A related question is to find natural osculating objects associated with

the biarc (a, ā)h and to study whether they converge in the limit h→ 0 to the osculating

objects of the curve q at q(s).

5.1 Biarcs and Taylor expansions

We will work with curves that have at least C1,1-regularity, i.e. differentiable curves

whose tangent field is Lipschitz continuous. Therefore we start by reviewing some

properties of such curves.

Definition 5.1 Let I ⊂ R be a closed interval of the form I = [l0, l1] or I = [l0,∞).

The curve q belongs to the space C0,1(I,R3) if there exists a constant Kq <∞ such that

|q(s)− q(σ)| ≤ Kq|s− σ|, ∀s, σ ∈ I.

The constant Kq is called the Lipschitz constant of q. The curve q belongs to the

space C1,1(I,R3) if q is differentiable and the curve q′ belongs to C0,1(I,R3). The space

C1,1(I,R3) is equipped with the norm

‖q‖C1,1(I,R3) = ‖q‖C1(I,R3) + sup
s,σ∈I

|q′(s)− q′(σ)|
|s− σ| . (5.1)

Hypothesis 5.2 I ⊂ R is a finite closed interval I = [l0, l1] or a semi-infinite closed

interval I = [l0,∞).
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Hypothesis 5.3 The curve q ∈ C1,1(I,R3) is parametrised by arc length, with Lipschitz

constant Kq′ for the tangent curve q′.

Let Hypotheses 5.2-5.3 hold. By Rademacher’s theorem [14, p. 81] a Lipschitz con-

tinuous function has a derivative a.e. equal to the weak derivative a.e., and we have

the isomorphism C1,1(I,R3) ≡ W 2,∞(I,R3) [14, pp. 81, 131, 235]. Accordingly we may

unambiguously use q′′ ∈ L∞ to stand for the weak second derivative of q, and

Kq′ ≤ ‖q′′‖L∞. (5.2)

We may write

q′(s) = q′(σ) +

∫ s

σ

q′′(τ)dτ. (5.3)

Integration of this equation yields

q(s) = q(σ) + q′(σ)(s− σ) +

∫ s

σ

∫ φ

σ

q′′(τ)dτdφ. (5.4)

We introduce the notation

w(s, σ) :=
q′(s)− q′(σ)

s− σ
=

1

s− σ

∫ s

σ

q′′(τ)dτ, (5.5)

w̃(s, σ) :=
q(s)− q(σ)− q′(σ)(s− σ)

(s− σ)2
=

1

(s− σ)2

∫ s

σ

∫ φ

σ

q′′(τ)dτdφ. (5.6)

Simple estimation of the integrals on the right hand sides of (5.5) and (5.6) implies the

bounds

|w(s, σ)| ≤ ‖q′′‖L∞, (5.7)

|w̃(s, σ)| ≤ (s− σ)(φ− σ)

(s− σ)2
‖q′′‖L∞ ≤ ‖q′′‖L∞. (5.8)

With (5.3)-(5.4) and (5.5)-(5.6) we may write

q(s) = q(σ) + q′(σ)(s− σ) + w̃(s, σ)(s− σ)2, (5.9)

q′(s) = q′(σ) + w(s, σ)(s− σ). (5.10)

If the curve q is parametrised by arc length so that |q′(s)| = 1, we can exploit

equation (5.10) to obtain

2q′(σ) ·w(s, σ) + |w(s, σ)|2|s− σ| = 0,

which implies

q′(σ) ·w(s, σ) = O(|s− σ|). (5.11)
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Using in turn the definition of w̃, the definition of w, and equality (5.11) we find

|q′(σ) · w̃(s, σ)| =

∣∣∣∣q
′(σ) ·

(
1

(s− σ)2

∫ s

σ

∫ φ

σ

q′′(τ)dτdφ

)∣∣∣∣

=

∣∣∣∣
∫ s

σ

(φ− σ)

(s− σ)2
q′(σ) ·

(
1

(φ− σ)

∫ φ

σ

q′′(τ)dτ

)
dφ

∣∣∣∣

=

∣∣∣∣
∫ s

σ

(φ− σ)

(s− σ)2
q′(σ) ·w(φ, σ)dφ

∣∣∣∣

≤
∫ s

σ

(φ− σ)2

(s− σ)2

∣∣∣∣
q′(σ) ·w(φ, σ)

(φ− σ)

∣∣∣∣ dφ ≤
∫ s

σ

c dφ,

where c denotes some constant, and

q′(σ) · w̃(s, σ) = O(|s− σ|). (5.12)

In other words, the sequences w(s, σ) and w̃(s, σ) approach the normal plane at q(σ), as

s→ σ. Note that for a C2-curve we have lims→σ w(s, σ) = q′′(σ), and lims→σ w̃(s, σ) =
1
2
q′′(σ).

Now we derive a number of Taylor expansions that will be used in the proofs of the

convergence results to be presented in Lemmas 5.8, 5.9, and 6.7. For convenience we

introduce

Notation 5.4 For a curve q ∈ C1,1(I,R3) parametrised by arc length and for s ∈ I

and h 6= 0 with s+ h ∈ I we denote

q0 = q(s), t0 = q′(s), qh = q(s+ h), th = q′(s+ h). (5.13)

Hypothesis 5.5 For s ∈ I and h 6= 0 with s + h ∈ I the point-tangent data ((q0, t0),

(qh, th)) is interpolated by a biarc (a, ā)h with matching point mh ∈ Σ++ that for h

sufficiently small corresponds to a biarc parameter Λh ∈ (0, 1) (cf. Lemma 4.13).

Lemma 5.6 (Taylor expansions) Let Hypotheses 5.2-5.3, and 5.5 hold, then

Λh + Λ̄h = 1 +O(h2), (5.14)

|mh − q0|
h

− Λh = O(h2), (5.15)

|mh − qh|
h

− Λ̄h = O(h2), (5.16)

1− mh − q0

|mh − q0|
· t0 = O(h2), (5.17)

and

1− qh −mh

|qh −mh|
· th = O(h2), (5.18)

where the constants depend only on Kq′, in particular they do not depend on s.
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Proof In the more compact notation (5.13), the expansions (5.9) and (5.10) trans-

late to

{
qh = q0 + t0h + w̃hh

2,

th = t0 + whh,
(5.19)

where w̃h := w̃(s+ h, s) and wh := w(s+ h, s). By (5.7) and (5.8) the vector functions

w̃h and wh are bounded by the same number ‖q′′‖L∞. Denote by

ηh = t0 ·wh, |ηh| ≤ Kq′,

νh = |wh|2, |νh| ≤ K2
q′,

µh = t0 · w̃h, |µh| ≤ Kq′ ,

λh = |w̃h|2, |λh| ≤ K2
q′,

τh = w̃h ·wh, |τh| ≤ K2
q′,

dh = qh − q0.





(5.20)

All of ηh, νh, µh, λh, and τh depend on h, but are bounded by a constant that depends

only on the constant Kq′ . With the approximations (5.19), notation (5.20) and the fact

that |q′(s)| = 1 we have

dh = t0h+ w̃hh
2,

|dh|2 = h2 + 2µhh
3 + λhh

4,

dh · t0 = h+ µhh
2,

dh · th = h+ µhh
2 + ηhh

2 + τhh
3,

t0 · th = 1 + ηhh.





(5.21)

In this notation, (5.11) and (5.12) become

ηh = O(h), (5.22)

µh = O(h). (5.23)

We use elementary algebra to rearrange equation (4.11) for the matching point mh,

mh = q0 +
Λhth · dh

Λhth · dh + Λ̄ht0 · dh

[
dh +

Λ̄h|dh|2
2th · dh

(t0 − th)

]
(5.24)

= qh +
Λ̄ht0 · dh

Λhth · dh + Λ̄ht0 · dh

[
Λh|dh|2
2t0 · dh

(t0 − th)− dh

]
. (5.25)

For convenience we drop the subscript h where it does not induce confusion. We now

indicate the computations yielding equations (5.14)-(5.18).

- Equation (5.14): Insert the expansions (5.21) into

Λ̄ =
(1− Λ) 2t0 · d th · d

Λ(1− t0 · th)|d|2 + 2t0 · d th · d
= 1− Λ +O(h2),

where equation (5.22) implies the simplification.
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- Equation (5.15): From equation (5.24), and the fact that the data is proper,

|mh − q0| =
Λth · d

Λth · d + Λ̄t0 · d

∣∣∣∣d +
Λ̄|d|2
2th · d

(t0 − th)

∣∣∣∣ . (5.26)

We insert the expansions (5.14) and (5.21) and equations (5.22) and (5.23) into

the first factor on the right hand side to find

Λth · d
Λth · d + Λ̄t0 · d

= Λ +O(h2), (5.27)

and, using expansions (5.19) and (5.21) and equations (5.22) and (5.23), compute

that
∣∣∣∣d +

Λ̄|d|2
2th · d

(t0 − th)

∣∣∣∣
2

=

∣∣∣∣d−
Λ̄|d|2
2th · d

wh

∣∣∣∣
2

= |d|2 − Λ̄|d|2
th · d

d ·wh+
Λ̄2|d|4

4(th · d)2
|w|2h2 (5.28)

= h2[1 + h(2µ− ηΛ̄) + h2(λ− τ Λ̄ + 1
4
νΛ̄2) +O(h3)]

= h2[1 +O(h2)].

Combining (5.27) and (5.28) yields

|mh − q0|2 = (Λ2 +O(h2))h2[1 +O(h2)] = Λ2h2[1 +O(h2)]

as required.

- Equation (5.16): From equation (5.25)

|mh − qh| =
Λ̄t0 · d

Λth · d + Λ̄t0 · d

∣∣∣∣
Λ|d|2
2t0 · d

(t0 − th)− d

∣∣∣∣ .

We insert the expansions (5.14) and (5.21) and equations (5.22) and (5.23) into

the first factor of the right hand side to get

Λ̄t0 · d
Λth · d + Λ̄t0 · d

= Λ̄ +O(h2), (5.29)

and, with the expansions (5.19) and (5.21) and equations (5.22) and (5.23), we

find
∣∣∣∣
Λ|d|2
2t0 · d

(t0 − th)− d

∣∣∣∣
2

=

∣∣∣∣
Λ|d|2
2t0 · d

wh+ d

∣∣∣∣
2

= |d|2 +
Λ|d|2
t0 · d

d ·wh+
Λ2|d|4

4(t0 · d)2
|w|2h2 (5.30)

= h2[1 + h(2µ+ Λη) + h2(λ+ Λτ + Λ2ν) +O(h3)]

= h2[1 +O(h2)].

Combining (5.29) and (5.30) yields

|mh − qh|2 = (Λ̄2 +O(h2))h2[1 +O(h2)] = Λ̄2h2(1 +O(h2))

as required.
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- Equation (5.17): Equation (5.24) and |t0| = 1 yield

mh − q0

|mh − q0|
· t0 =

t0 · d + Λ̄|d|2

2th·d
(1− t0 · th)∣∣∣d + Λ̄|d|2

2th·d
(t0 − th)

∣∣∣
. (5.31)

Expansion of the numerator in the right hand side of (5.31), use of the expansions

(5.21) and equations (5.22) and (5.23), imply

t0 · d +
Λ̄|d|2
2th · d

(1− t0 · th) = h+ µh2 + 1
2
Λ̄h(1 + (µ− η)h+O(h2))(−ηh)

= h[1 +O(h2)]. (5.32)

From (5.28) we deduce the expansion of the denominator in the right hand side

of (5.31), namely

mh − q0

|mh − q0|
· t0 =

t0 · d + Λ̄|d|2

2th·d
(1− t0 · th)∣∣∣d + Λ̄|d|2

2th·d
(t0 − th)

∣∣∣
=
h[1 +O(h2)]

h[1 +O(h2)]
= 1 +O(h2).

- Equation (5.18): Equation (5.25) and |th| = 1 yields

mh − qh

|mh − qh|
· th =

Λ|d|2

2t0·d
(t0 · th − 1)− d · th∣∣∣Λ|d|22t0·d

(t0 − th)− d
∣∣∣

. (5.33)

The expansion of the numerator in the right hand side of (5.33), use of the expan-

sions (5.21) and equations (5.22) and (5.23), imply

Λ|d|2
2t0 · d

(t0 · th − 1)− d · th = 1
2
Λh(1 +O(h2))(ηh)− [h+ µh2 + ηh2 + τh3]

= h[−1 +O(h2)].

The expansion of the denominator in the right hand side of (5.33) is given by

(5.30), thus

mh − qh

|mh − qh|
· th =

Λ|d|2

2t0·d
(t0 · th − 1)− d · th∣∣∣Λ|d|22t0·d

(t0 − th)− d
∣∣∣

=
h[−1 +O(h2)]

h[1 +O(h2)]
= −1 +O(h2).

�

5.2 Arc length

Notation 5.7 We denote the arc length of a curve q by λ(q). In particular, given a

biarc (a, ā), we denote the arc length of the biarc by λ((a, ā)).
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The length λ(a) of an arc a with end points q0 and q1 which is tangent to t0 at q0

is given by λ(a) = ∠a r(q0, t0,q1), where ∠a is the angle swept out by the arc a,

∠a = 2 arccos

(
q1 − q0

|q1 − q0|
· t0

)
, (5.34)

and r(q0, t0,q1) is the radius of the circle passing through q0 and q1, tangent at q0 to

t0 given by

r(q0, t0,q1) =
|q1 − q0|

2
∣∣∣ q1−q0

|q1−q0|
× t0

∣∣∣
=

|q1 − q0|

2

√
1−

(
q1−q0

|q1−q0|
· t0

)2
. (5.35)

From (5.35) and (5.34) we obtain the length of the arc a

λ(a) = ∠a r(q0, t0,q1) =
|q1 − q0| arccos

(
q1−q0

|q1−q0|
· t0

)

√
1−

(
q1−q0

|q1−q0|
· t0

)2
. (5.36)

Lemma 5.8 (Arc length of a biarc) Let Hypotheses 5.2-5.3 and 5.5 hold, then

λ((a, ā)h)− h = O(h3),

where the constant depends only on Kq′, in particular it is independent on s.

Proof We use the expansion

arccos(y)√
(1− y2)

= 1 +O((1− y)), (5.37)

and apply the expansions (5.14)-(5.18) of Lemma 5.6 to the formula (5.36), to find

λ((a, ā)h) =
|mh − q0| arccos( mh−q0

|mh−q0|
· t0)√

1− ( mh−q0

|mh−q0|
· t0)2

+
|mh − qh| arccos( mh−qh

|mh−qh|
· th)√

1− ( mh−qh

|mh−qh|
· th)2

= |mh − q0|
[
1 +O

(
1− mh − q0

|mh − q0|
· t0

)]

+|mh − qh|
[
1 +O

(
1− mh − qh

|mh − qh|
· th

)]

= |mh − q0|
[
1 +O(h2)

]
+ |mh − qh|

[
1 +O(h2)

]

= [Λh+O(h3)]
[
1 +O(h2)

]
+ [Λ̄h+O(h3)]

[
1 +O(h2)

]

= [Λh+O(h3)] + [Λ̄h+O(h3)] = (Λ + Λ̄)h+O(h3)

= (1 +O(h2))h+O(h3) = h+O(h3),

as was to be shown. �
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5.3 Curvature

By construction, the biarc (a, ā)h interpolating the point-tangent data ((q0, t0), (qh, th))

for some Λh ∈ (0, 1) has contact of order one with the curve q at q(s) = q0. We

next show that for a C2-curve, and in the limit h → 0, the arc a of the biarc (a, ā)h

approaches contact of order two at q0. For this we need the Taylor expansion for a

curve q ∈ C2(I,R3):

q(s+ h) = q(s) + hq′(s) + 1
2
h2q′′(s) + o(h2), (5.38)

q′(s+ h) = q′(s) + hq′′(s) + o(h), (5.39)

q′′(s+ h) = q′′(s) + o(1). (5.40)

Note that the estimates are uniform in s ∈ I when q′′ is uniformly continuous, in

particular when I is a finite interval.

Consider a circular arc a as a curve a(s) parametrised by arc length s. Then the

second derivative at s is given by

a′′(s) =
1

r(a(s), a′(s), a(σ))
n(s),

where a(σ) is some other point on the arc, r(a(s), a′(s), a(σ)) is the radius of the circle

passing through a(s) and a(σ), tangent at a(s) to a′(s) cf. (5.35), and n(s) is the normal

at s. The vector

a(σ)− a(s)

|a(σ)− a(s)| −
[a(σ)− a(s)] · t(s)
|a(σ)− a(s)| t(s)

points in the direction of the normal n(s), thus, from formula (5.35), we find

a′′(s) =
2[a(σ)− a(s)]

|a(σ)− a(s)|2 −
2[a(σ)− a(s)] · t(s)
|a(σ)− a(s)|2 t(s). (5.41)

Note that formula (5.41) remains valid for straight arcs, but reduces to a′′(s) = (0, 0, 0).

Proposition 5.9 Let Hypotheses 5.2-5.3 and 5.5 hold, and in addition assume that

q ∈ C2(I,R3) is parametrised by arc length, with Lipschitz constant Kq′ = ‖q′′‖C .

Moreover assume that the biarc parameters Λh are bounded from below by a positive

constant, that is there exists a constant Λmin such that

0 < Λmin ≤ Λh (5.42)

for all h > 0. Then the arc a of the biarc (a, ā)h approaches the osculating circle at the

data point q0, or equivalently,

∣∣∣q′′(s)− a′′h
+
∣∣∣ = o(1). (5.43)

The speed of convergence is independent of s if in addition q′′ is uniformly continuous.
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Proof Similarly to the formulation introduced in Notation 5.4 we denote

q0 = q(s),

qh = q(s+ h),

t0 = q′(s),

th = q′(s+ h),

κ0n0 = q′′(s),

κhnh = q′′(s+ h),
(5.44)

where κ0 and κh are the curvatures, and n0 and nh are the normalised second derivatives

(or principal normals). Then the expansions (5.38)-(5.40) translate to

qh = q0 + t0h + 1
2
κ0n0h

2 + o(h2), (5.45)

th = t0 + κ0n0h+ o(h), (5.46)

κhnh = κ0n0 + o(1). (5.47)

We use formula (5.41), notation (5.44), and equations (5.24), (5.26), and (5.31) to find

a′′h
+

=
2(mh − q0)

|mh − q0|2
− 2(mh − q0) · t0

|mh − q0|2
t0 (5.48)

= 2

(
d + Λ̄h|d|

2

2th·d
(t0 − th)

)
−
(
d · t0 + Λ̄h|d|

2

2th·d
(1− th · t0)

)
t0

Λhth·d
Λhth·d+Λ̄ht0·d

∣∣∣d + Λ̄h|d|2

2th·d
(t0 − th)

∣∣∣
2 .

Equations (5.22) and (5.23) and notation (5.21) imply

Λ̄h|d|2
2th · d

=
Λ̄h(h

2 + 2µh3 + λh4)

2(h+ µh2 + ηh2 + τh3)
= 1

2
Λ̄hh +O(h3).

Applying this result in formula (5.48), and using equations (5.32), (5.27), and (5.28),

we obtain

a′′h
+

= 2
d + [1

2
Λ̄hh+O(h3)](t0 − th)− (h+O(h3)) t0

[Λh +O(h2)] [h2 +O(h4)]
, (5.49)

which we transform with the help of the expansions (5.45)-(5.46) to get

a′′h
+

= 2
1
2
κ0n0h

2 + o(h2) + [1
2
Λ̄hh +O(h3)](−κ0n0h+ o(h))

Λhh2 +O(h4)

= 2
1
2
κ0n0 + o(1) + [1

2
Λ̄h +O(h2)](−κ0n0 + o(1))

Λh +O(h2)

=
(1− Λ̄h)κ0n0 + o(1)

Λh +O(h2)
.

With the expansion (5.14), condition (5.42), and notation (5.44) we find

a′′h
+

= κ0n0 + o(1) = q′′(s) + o(1).

�

Note that in the previous proof we used a combination of results for C1,1-curves with,

where necessary, expansions valid only for C2-curves.

We next consider another approximation of curvature at the point q(s) with the

same order of accuracy as (5.43) but now expressed in terms of the radii of the two

circles Ch
0 and Ch

1 defined in:
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Notation 5.10 (cf. Definition 4.3) For the point-tangent data pair of the form ((q(s),

q′(s)), (q(s+h),q′(s+h))) the circle with tangent q′(s) at q(s) passing through q(s+h)

is denoted by Ch
0 , and the circle with tangent q′(s+ h) at q(s+ h) passing through q(s)

by Ch
1 .

Proposition 5.11 Let Hypothesis 5.2 hold, and in addition assume that q ∈ C2(I,R3)

is parametrised by arc length. Then for s ∈ I, with κ(s) 6= 0,

ρ(s) = r(Ch
0 ) + o(1), and ρ(s) = r(Ch

1 ) + o(1).

If in addition q′′ is uniformly continuous the speed of convergence is independent on s.

We note that Proposition 5.11 provides approximations for ρ(s) purely in terms of the

data, independent of the biarc interpolation.

Proof We use the notation (5.44) and expansions (5.45)-(5.46) to compute

dh :=qh − q0 = ht0 + 1
2
h2κ0n0 + o(h2)

|dh|2 =h2 + o(h3),

th =t0 + hκ0n0 + o(h),

dh × t0 =− 1
2
h2κ0b0 + o(h2),

dh × th =1
2
h2κ0b0 + o(h2),

|dh × t0| = |dh × th| =1
2
h2κ0 + o(h2).

(5.50)

The radii r(Ch
0 ) and r(Ch

1 ) of the circles Ch
0 and Ch

1 are given by the formula (5.35) in

which we insert the expansions (5.50):

r(Ch
0 ) =

|dh|2
2|dh × t0|

=
h2 + o(h3)

2(1
2
h2κ0 + o(h2))

=
1

κ0
+ o(1).

The expansion for r(Ch
1 ) is analogous. �

We next establish a higher order approximation for curvature at the point q(s) in

terms of the radii of the two circles Ch
0 and Ch

1 assuming a higher regularity of the curve

q. For this we need the following expansions for a curve q ∈ C3(I,R3):

q(s+ h) = q(s) + hq′(s) + 1
2
h2q′′(s) + 1

6
h3q′′′(s) + o(h3), (5.51)

q′(s+ h) = q′(s) + hq′′(s) + 1
2
h2q′′′(s) + o(h2). (5.52)

Note that the estimates are uniform in s ∈ I when q′′′ is uniformly continuous, in

particular whenever I is a finite interval.

Proposition 5.12 Let Hypothesis 5.2 hold, and in addition assume that q ∈ C3(I,R3)

is parametrised by arc length. Then for s ∈ I with κ(s) 6= 0

r(Ch
0 ) =

1

κ(s)
− κ′(s)

3κ2(s)
h + o(h),

r(Ch
1 ) =

1

κ(s)
+

2κ′(s)

3κ2(s)
h+ o(h).
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In particular

ρ(s) =
2r(Ch

0 ) + r(Ch
1 )

3
+ o(h), (5.53)

ρ′(s) =
r(Ch

0 )− r(Ch
1 )

h
+ o(1). (5.54)

If in addition q′′′ is uniformly continuous the speed of convergence is independent on s.

Proof Similar to the formulation introduced in Notation 5.4 and Proposition 5.9

we denote

q0 = q(s),

qh = q(s+ h),

t0 = q′(s),

th = q′(s+ h),

κ0n0 = q′′(s),

b0 = t0 × n0,
(5.55)

where κ0 is the curvature, and n0 and nh are the principal normals, b0 is the binormal,

and we denote the torsion at s by τ0. Then the expansions (5.51)-(5.52) translate to

qh = q0 + ht0 + 1
2
h2κ0n0 + 1

6
h3(κ′0n0 − κ2

0t0 + κ0τ0b0) + o(h3), (5.56)

th = t0 + hκ0n0 + 1
2
h2(κ′0n0 − κ2

0t0 + κ0τ0b0) + o(h2). (5.57)

We write the chord dh and tangent th in the (t0,n0,b0) frame, and compute the squared

norm of dh:

dh :=qh − q0 = ht0 + 1
2
h2κ0n0 + 1

6
h3(κ′0n0 − κ2

0t0 + κ0τ0b0) + o(h3)

=t0(h− 1
6
h3κ2

0) + n0(
1
2
h2κ0 + 1

6
h3κ′0) + b0(

1
6
h3κ0τ0) + o(h3),

|dh|2 =h2 − 1

12
κ2

0h
4 + o(h4),

th =t0(1− 1
2
h2κ2

0) + n0(hκ0 + 1
2
h2κ′0) + b0(

1
2
h2κ0τ0) + o(h2).

(5.58)

We set vh
0 := t0 × dh and compute the norm |vh

0 |
vh

0 :=t0 × dh = −1
6
h3κ0τ0n0 + (1

2
h2κ0 + 1

6
h3κ′0)b0 + o(h3),

|vh
0 |2 =1

4
h4κ2

0 + 1
6
h5κ0κ

′
0 + o(h5),

|vh
0 | =1

2
κ0h

2 + 1
6
κ′0h

3 + o(h3).

(5.59)

We set vh
1 := dh × th and compute the norm |vh

1 |
vh

1 :=dh × th = −1
3
h3κ0τ0n0 + (1

2
h2κ0 + 1

3
h3κ′0)b0 + o(h3),

|vh
1 |2 =1

4
h4κ2

0 − 1
3
h5κ0κ

′
0 + o(h5),

|vh
1 | =1

2
κ0h

2 − 1
3
κ′0h

3 + o(h3).

(5.60)

The radii r(Ch
0 ) and r(Ch

1 ) of the circles Ch
0 and Ch

1 are given by the formula (5.35) in

which we insert the expansions (5.58) and (5.59) to find

r(Ch
0 ) =

|dh|2
2|dh × t0|

=
h2 − 1

12
κ2

0h
4 + o(h4)

2(1
2
κ0h

2 + 1
6
κ′0h

3 + o(h3))
=

1

κ0

− κ′0
3κ2

0

h+ o(h),

and insert the expansions (5.58) and (5.60) to get

r(Ch
1 ) =

|dh|2
2|dh × th|

=
h2 − 1

12
κ2

0h
4 + o(h4)

2(1
2
κ0h

2 − 1
3
κ′0h

3 + o(h3))
=

1

κ(s)
+

2κ′0
3κ2

0

h+ o(h),

and with ρ′(s) = −κ′(s)
κ2(s)

(5.53)-(5.54) follow. �
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5.4 Torsion

By construction the biarc (a, ā)h interpolating the point-tangent data ((q0, t0), (qh, th))

for some Λh ∈ (0, 1) has contact of order one with the curve q at q(s) = q0 and

q(s + h) = qh. If the underlying base curve q is a C3-curve, in the limit h → 0 the

sphere tangent to the curve at both q0 and qh approaches the osculating sphere at

q(s) = q0. This is true for any Hermite interpolation, but the biarc interpolation has

the special property that the biarcs lie entirely on the double tangent sphere.

We now establish an approximation of torsion at a data point q(s) in terms of the

angle between the planes of the two circles Ch
0 and Ch

1 .

Proposition 5.13 Let Hypotheses 5.2 hold, and assume q ∈ C3(I,R3) is parametrised

by arc length and s ∈ I with κ(s) 6= 0. Denote by 0 ≤ ψh ≤ π the angle between the

planes of the circle Ch
0 and Ch

1 , cf. Notation 5.10. Then

|τ(s)| = 3 sinψh

|h| + o(1).

If in addition q′′′ is uniformly continuous the speed of convergence is independent on s.

Proof We use the notation (5.55) and additionally denote the torsion at s by τ0.

We then exploit the expansions (5.56)-(5.57). The chord dh and the tangent th in the

(t0,n0,b0) coordinates are given in (5.58). Expansions related to the normal vectors vh
0

and vh
1 to the planes of Ch

0 and Ch
1 are provided in (5.59) and (5.60) respectively. The

angle 0 ≤ ψh ≤ π between the planes of the circles Ch
0 and Ch

1 is now defined by

sinψh :=
|vh

0 × vh
1 |

|vh
0 | |vh

1 |
. (5.61)

Therefore we compute

vh
0 × vh

1 =
1

12
h5κ2

0τ0t0 + o(h5), and |vh
0 × vh

1 |2 =
1

144
h10κ4

0τ
2
0 + o(h10). (5.62)

We now use expansions (5.59), (5.60) and (5.62) in (5.61) to obtain

sin2 ψh =
1

144
h10κ4

0τ
2
0 + o(h10)

(1
4
h4κ2

0 + 1
6
h5κ0κ

′
0 + o(h5)) (1

4
h4κ2

0 − 1
3
h5κ0κ

′
0 + o(h5))

=
1

144
h2κ4

0τ
2
0 + o(h2)

1
16
κ4

0 − 1
24
hκ3

0κ
′
0 + o(h)

=
1
9
h2κ4

0τ
2
0 + o(h2)

κ4
0 − 2

3
hκ3

0κ
′
0 + o(h)

=
1

9
h2τ 2

0 + o(h2),

or

sinψh = 1
3
|h||τ0|+ o(h),

as was to be shown. �
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Chapter 6

Biarc curves and global convergence

results

6.1 Interpolation with Biarc curves

We now consider interpolation by biarc curves of a set of point-tangent data sampled

from a base curve q, and study convergence of the curve assembled from individual

biarcs to the underlying base curve q. First we need:

Definition 6.1 A biarc curve β is a space curve assembled from biarcs in a C1 fashion,

where the biarcs interpolate a sequence {(qi, ti)} of point-tangent data (cf. Definition

4.1).

Notation 6.2 Given a finite closed interval I = [l0, l1] ⊂ R, a mesh M of mesh size

h > 0 on I will mean a sequence {si},

l0 = s0 < s1 < · · · < sm = l1,

for some m ∈ N, and h = maxi=1,...,m |si − si−1| <∞.

We will consider a sequence of meshes Mj, j ∈ N on I with mesh size hj → 0

(and wlog we assume that the mesh size hj is monotone decreasing). We denote by

N̄j := {0, . . . , m} the set of indices of the mesh Mj, and its members by sj,i, i ∈ N̄j.

For i ∈ Nj := {0, . . . , m − 1} we set hj,i := sj,i+1 − sj,i. We assume that for all j > k

there is a mapping ιk→j : N̄k → N̄j such that

sk,i = sj,ιk→j(i), i ∈ N̄k, (6.1)

i.e. the meshes are nested.

Notation 6.3 Let q ∈ C1,1(I,R3) be parametrised by arc length. For a given sequence

of meshes Mj as described in Notation 6.2, βhj
is a biarc curve interpolating the data

(q(sj,i),q
′(sj,i)) ∈ J with matching points on Σ++.

We denote by (a, ā)j,i the i-th biarc of the biarc curve βhj
, i.e. the biarc interpolating

((q(sj,i),q
′(sj,i)), (q(sj,i+1),q

′(sj,i+1))). We denote the arc-length parameter interval of
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the biarc curve βhj
by Ij. The arc-length parameter corresponding to the matching point

of the biarc (a, ā)j,i is denoted by mj,i ∈ Ij. The radii of the biarc (a, ā)j,i are denoted

by rj,i and r̄j,i, and the curvatures by κj,i and κ̄j,i.

Note that for each point-tangent data pair we may choose the matching points

independently. If the mesh size hj is small enough, each point-tangent data pair

((q(sj,i),q
′(sj,i)), (q(sj,i+1),q

′(sj,i+1))) and each biarc (a, ā)j,i will be proper in the sense

of Definitions 4.10 and 4.12, in which case the biarc matching points correspond to biarc

parameters Λj,i ∈ (0, 1) (cf. Lemma 4.13).

The question we address is in what sense do the biarc curves βhj
tend to the base

curve q as j →∞?

Hypothesis 6.4 I ⊂ R is a finite closed interval I = [l0, l1].

Hypothesis 6.5 A sequence of biarc curves βhj
is generated as in Notation 6.2 and

6.3.

Hypothesis 6.6 There exist two constants Λmin,Λmax with 0 < Λmin < Λmax < 1 such

that

Λmin ≤ Λj,i ≤ Λmax (6.2)

for the biarc parameter Λj,i of each biarc (a, ā)j,i of every biarc curve βhj
, j ∈ N.

Hypothesis 6.6 is needed to ensure finite curvature and C1 continuity of the biarc

curve βhj
, see remark on page 45. Hereafter, and following common practice, the symbol

c will always denote a constant, but not necessarily always the same constant.

Lemma 6.7 Let Hypotheses 6.4, 5.3, 6.5 and 6.6 hold. Then the radii of the arcs of

the biarc curves βhj
are bounded away from zero, that is, for all j ∈ N, i ∈ Nj there

exists a positive constant c = c(Kq′ ,Λmin) > 0 with

rj,i ≥ c and r̄j,i ≥ c.

Equivalently, the curvatures of the biarc curves βhj
are bounded from above,

κj,i ≤
1

c
<∞ and κ̄j,i ≤

1

c
<∞.

Proof The radius of the circle passing through q0 and q1, tangent at q0 to t0 is

given by (5.35). We use the Notation 5.4, where s is now a mesh point sj,i and where

s+h corresponds to sj,i+hj,i = sj,i+1. Combining the formula (5.35) with the expansions

(5.15) and (5.17) yields

r(q0, t0,mh)
2 =

|mh − q0|2

4

[
1−

(
mh−q0

|mh−q0|
· t0

)2
] =

h2
i (Λ

2 +O(h2
i ))

4[1− (1 +O(h2
i ))]

=
Λ2 +O(h2

i )

O(1)
≥ Λ2

min +O(h2
i )

c
≥ Λ2

min

2c
,
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for j sufficiently large, because the constants involved in the expansions (5.15) and

(5.17) are independent of s ∈ I, and so are independent of i ∈ Nj. Thus there exists a

constant c such that

rj,i ≥ c, ∀j ∈ N, i ∈ Nj.

By a symmetry argument we obtain r̄j,i ≥ c, for j ∈ N, i ∈ Nj. �

6.2 Convergence of arc length

Lemma 6.8 (Arc length of a biarc) Let Hypotheses 6.4,5.3 and 6.5 hold. Then

λ((a, ā)j,i)− hj,i = O(h3
j,i)

where the convergence is uniform in i ∈ Nj.

Proof This is the statement in Lemma 5.8 combined with the fact that the con-

stant involved depends only on Kq′ , and in particular does not depend on i ∈ Nj. �

Corollary 6.9 (Convergence of arc length) Let Hypotheses 6.4, 5.3 and 6.5 hold.

Then the arc length of the biarc curve βhj
converges to the arc length of the curve q

quadratically:

λ(βhj
)

λ(q)
− 1 = O(h2

j),

and the constant depends only on Kq′ .

Proof The length of the curves q and βhj
is the sum of the corresponding lengths

between the data points, hence

λ(βhj
)− λ(q) =

∑

i∈Nj

(λ((a, ā)j,i)− hj,i) =
∑

i∈Nj

h3
j,i

λ((a, ā)j,i)− hj,i

h3
j,i

≤
∑

i∈Nj

h3
j,i c ≤ h2

j c


∑

i∈Nj

hj,i


 = h2

j c λ(q),

as required. �

6.3 Parametrisation of the biarc curve

In general the two curves q : I → R
3 and βhj

: Ij → R
3 have different arc lengths so that

in order to compare them, and in particular to estimate an error bound between them, we

have to pick a reparametrisation of the biarc curve βhj
. We consider reparametrisations

ϕj : I → Ij

which satisfy the following seven conditions:
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(C1) ϕj ∈ C2,1(I, Ij), with ϕj ∈ C3 on the intervals [sj,i, mj,i] and [mj,i, sj,i+1] for all

i ∈ Nj, j ∈ N,

(C2) ϕj is monotone increasing for j sufficiently large,

(C3) q(sj,i) = βhj
(ϕj(sj,i)), for i ∈ Nj, j ∈ N,

(C4) ϕ′j(sj,i) =
λ(βhj

)

λ(q)
, for i ∈ Nj, j ∈ N,

(C5) ϕ′′j (sj,i) = 0, for i ∈ Nj, j ∈ N,

(C6) ‖ϕ′j − 1‖C(I,R) → 0, ‖ϕ′′j‖C(I,R) → 0 as j →∞,

and

(C7) ‖ϕ′′′j ‖L∞ ≤ c for all j ∈ N.

Condition (C1) imposes regularity, and condition (C2) implies that the function ϕj used

in the reparametrisation is a bijection for j sufficiently large. Condition (C3) constrains

the biarc curve to pass through the data points at the mesh points. Conditions (C4)-

(C7) are convenient for the proofs. For finite intervals, as assumed here, condition (C6)

implies ‖ϕj − id‖C(I,R) → 0, where id denotes the identity mapping. See Figure 6.1 for

an illustration of such a reparametrisation function ϕj.
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s s s s
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s
s

λ((a, ā)j,1)

λ((a, ā)j,2)

λ((a, ā)j,3)

λ((a, ā)j,4)

hj,1 hj,2 hj,3 hj,4

sj,1 sj,2 sj,3 sj,4

Figure 6.1: A reparametrisation function ϕj, which maps arc-length parameters of the

base curve q to arc-length parameters of the biarc curve βhj
.

We denote the reparametrised biarc curve by Bhj
, or explicitly

Bhj
:= βhj

◦ ϕj : I → Ij → R
3. (6.3)
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The arc-length parametrised, biarc curve βhj
is piecewise C∞, therefore the biarc curve

Bhj
is as smooth (piecewise) as the reparametrisation function ϕj, which we here assume

to be C2,1. The convergence results of section 5 are independent of the particular

reparametrisation chosen. However it is important to know that at least one choice

satisfying (C1)-(C7) exists. An explicit construction of one simple sequence {ϕj} is

given in Appendix A.

Hypothesis 6.10 The function ϕj is a reparametrisation function satisfying conditions

(C1)-(C7), for all j ∈ N and the reparametrised biarc curve Bhj
is given by (6.3).

6.4 C1-convergence for q ∈ C1,1(I,R3)

Notation 6.11 Let Hypotheses 6.4, 5.3, 6.5, and 6.10 hold. For j ∈ N we denote the

Lipschitz constant of the tangent of the difference curve q−Bhj
by

Kj := sup
s,σ∈I,s6=σ

|(q−Bhj
)′(s)− (q−Bhj

)′(σ)|
|s− σ| .

Lemma 6.12 Let Hypotheses 6.4, 5.3, 6.5, 6.6 and 6.10 hold. Then there exists a

constant c > 0, such that Kj ≤ c for all j ∈ N.

Proof Consider the following series of inequalities, whose derivation is explained

below.

Kj ≤ sup
s,σ

|q′(s)− q′(σ)|
|s− σ| + sup

s,σ

|B′
hj

(s)−B′
hj

(σ)|
|s− σ| (6.4)

= Kq′ + sup
s,σ

|β′
hj

(ϕj(s))ϕ
′
j(s)− β′

hj
(ϕj(σ))ϕ′j(σ)|

|s− σ| (6.5)

≤ Kq′ + sup
s,σ

|β′
hj

(ϕj(s))− β′
hj

(ϕj(σ))|
|s− σ| c1 + c2 (6.6)

≤ Kq′ + sup
s̃,σ̃∈Ij

|β′
hj

(s̃)− β′
hj

(σ̃)|
|s̃− σ̃| c3 + c2 (6.7)

≤ Kq′ + max
i∈Nj

{κj,i, κ̄j,i} c3 + c2 ≤ c. (6.8)

We use the triangle inequality in (6.4). Applying the definition of Kq′ and the chain

rule we transform the right hand side of (6.4) to (6.5). To obtain (6.6) from (6.5) follow
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the steps from (6.9) to (6.12) below:

sup
s,σ

|β′
hj

(ϕj(s))ϕ
′
j(s)− β′

hj
(ϕj(σ))ϕ′j(σ)|

|s− σ|

≤ sup
s,σ

|β′
hj

(ϕj(s))ϕ
′
j(s)− β′

hj
(ϕj(σ))ϕ′j(s)|

|s− σ|

+ sup
s,σ

|β′
hj

(ϕj(σ))ϕ′j(s)− β′
hj

(ϕj(σ))ϕ′j(σ)|
|s− σ| (6.9)

≤ sup
s,σ

|β′
hj

(ϕj(s))− β′
hj

(ϕj(σ))|
|s− σ| ‖ϕ′j‖C + sup

s,σ

|ϕ′j(s)− ϕ′j(σ)|
|s− σ| (6.10)

≤ sup
s,σ

|β′
hj

(ϕj(s))− β′
hj

(ϕj(σ))|
|s− σ| c1 + ‖ϕ′′j‖ (6.11)

≤ sup
s,σ

|β′
hj

(ϕj(s))− β′
hj

(ϕj(σ))|
|s− σ| c1 + c2. (6.12)

The estimate in (6.9) is a simple triangle inequality, and to get (6.10) we use the

facts that ‖ϕ′j‖C is finite by (C6) and ‖β′
hj
◦ ϕj‖C = 1. To go from (6.10) to (6.11) we

use ϕj ∈ C2 by (C1). To find (6.12) we reapply (C6).

To derive (6.7) from (6.6) consider (6.13) to (6.17). In the equality in (6.13) we

exploit the fact that ϕj is a bijection, which is a consequence of (C1)-(C3). To obtain

the right factor in (6.15) from the right factor in (6.14) we again use that ϕj is a bijection.

We may rewrite (6.15) as (6.16) because ‖ϕ′j‖C is finite. Finally with (C6) we obtain

(6.17).

sup
s,σ∈I

|β′
hj

(ϕj(s))− β′
hj

(ϕj(σ))|
|s− σ|

= sup
s̃,σ̃∈Ij

(
|β′

hj
(s̃)− β′

hj
(σ̃)|

|s̃− σ̃|
|s̃− σ̃|

|ϕ−1
j (s̃)− ϕ−1

j (σ̃)|

)
(6.13)

≤ sup
s̃,σ̃∈Ij

|β′
hj

(s̃)− β′
hj

(σ̃)|
|s̃− σ̃| sup

s̃,σ̃∈Ij

|s̃− σ̃|
|ϕ−1

j (s̃)− ϕ−1
j (σ̃)| (6.14)

= sup
s̃,σ̃∈Ij

|β′
hj

(s̃)− β′
hj

(σ̃)|
|s̃− σ̃| sup

s,σ∈I

|ϕj(s)− ϕj(σ)|
|s− σ| (6.15)

= sup
s̃,σ̃∈Ij

|β′
hj

(s̃)− β′
hj

(σ̃)|
|s̃− σ̃| ‖ϕ′j‖C (6.16)

≤ sup
s̃,σ̃∈Ij

|β′
hj

(s̃)− β′
hj

(σ̃)|
|s̃− σ̃| c. (6.17)

To bound (6.7) by (6.8) we used the following fact: Let α be a curve consisting of m

arcs of circles with a continuous tangent everywhere, parametrised by arc length. Then

sup
s6=σ

|α′(s)−α′(σ)|
|s− σ| ≤ max{κ1, · · · , κm},
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where the κi are the curvatures of the different arcs. Because βhj
is parametrised by

arc length with curvatures κj,i, κ̄j,i we may use this bound. The last inequality in (6.8)

is given by Lemma 6.7. �

Theorem 6.13 (C1-convergence) Let Hypotheses 6.4, 5.3, 6.5, 6.6 and 6.10 hold.

Then the biarc curves Bhj
converge to the curve q in the space C1(I,R3) as j → ∞.

More precisely, as j →∞

‖q−Bhj
‖C0 = O(h2

j), ‖q′ −B′
hj
‖C0 = O(hj).

Proof Both the curve q and the biarc curves Bhj
are C1,1-curves, thus we may use

the expansions (5.9) and (5.10) for q−Bhj
, simplify with the chain rule and conditions

(C3)-(C4) to get

(q−Bhj
)(s) = (q−Bhj

)(sj,i) + (q−Bhj
)′(sj,i)(s− sj,i)

+ω̃hj
(s, sj,i)

1
2
(s− sj,i)

2

= q′(sj,i)

(
1−

λ(βhj
)

λ(q)

)
(s− sj,i) + ω̃hj

(s, sj,i)
1
2
(s− sj,i)

2,

(q−Bhj
)′(s) = (q−Bhj

)′(sj,i) + ωhj
(s, sj,i)(s− sj,i)

= q′(sj,i)

(
1−

λ(βhj
)

λ(q)

)
+ ωhj

(s, sj,i)(s− sj,i).

The vector functions ωhj
and ω̃hj

are bounded by the Lipschitz constant Kj of q′−B′
hj

,

i.e. |ω̃hj
|, |ωhj

| ≤ Kj. The Lipschitz constant Kj is uniformly bounded by Lemma 6.12.

Then |q′(s)| = 1, and Corollary 6.9 yields the rest. �

6.5 C1,1-convergence for q ∈ C2(I,R3)

As the underlying curve q is at least C1,1 by assumption, and the biarc curves are C1,1

by construction, it is natural to seek convergence in the C1,1 norm. We next obtain C1,1

convergence, but only under an additional regularity assumption on q. Recall that for

any Lipschitz curve q the Lipschitz constant for that curve is denoted Kq.

Lemma 6.14 Let Hypotheses 6.4, 5.3, 6.5, 6.6 and 6.10 hold. Then

‖q−Bhj
‖C1,1 → 0, as j →∞,

if and only if

K{B′
hj
−B′

hk
} → 0, as j, k →∞.

Proof If {q − Bhj
} → 0 in C1,1, then {q − Bhj

} is a Cauchy sequence in C1,1.

This implies that {Bhj
} is a Cauchy sequence in C1,1, that is ‖Bhj

−Bhk
‖C1,1 → 0 as
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j, k → ∞. In particular K{B′
hj
−B′

hk
} → 0, as j, k → ∞, by the definition (5.1) of the

C1,1 norm.

On the other hand, let K{B′
hj
−B′

hk
} → 0, for j, k → ∞. All conditions of Theorem

6.13 are fulfilled, thus Bhj
→ q in C1, and therefore {Bhj

} is a Cauchy sequence in

C1. With definition (5.1) of the norm, it follows that {Bhj
} is a Cauchy sequence in

C1,1. But C1,1 is a Banach space, hence {Bhj
} converges in C1,1 to some B ∈ C1,1. In

particular {Bhj
} → B in C1. By uniqueness of limits, B = q which yields the result. �

Thus to obtain a sharp characterisation of how smooth q must be for C1,1 con-

vergence one could study the Lipschitz constants K{B′
hj
−B′

hk
} on sequences of biarc

curves. However we instead obtain a C1,1 convergence result assuming q ∈ C2. For

q ∈ C2(I,R3) we next review the result that the arcs of the biarc curves βhj
ap-

proach the osculating circles at the data points. This implies convergence in the space

C1,1(I,R3), and a faster rate of convergence in the space C1(I,R3) than was shown for

C1,1-curves, cf. Theorem 6.13.

The Taylor expansions for q ∈ C2(I,R3) are given in (5.38)-(5.40). Note that the

estimates are uniform in σ ∈ I, because I is a finite interval, thus q′′ is uniformly

continuous. We denote the right- and left-sided second derivatives of the biarc curve

βhj
by β′′

hj

±
.

Proposition 6.15 Let Hypotheses 6.4, 5.3, 6.5, 6.6 and 6.10 hold, and in addition

assume q ∈ C2(I,R3) is parametrised by arc length, with Lipschitz constant Kq′ =

‖q′′‖C . Then the arcs of the biarc curves βhj
approach the osculating circles at the data

points, or equivalently,

∣∣∣q′′(sj,i)− β′′
hj

±
(ϕj(sj,i))

∣∣∣ = o(1),

uniformly in i ∈ Nj as j →∞, i.e. for ε > 0 there exists N ∈ N s.t.

∣∣∣q′′(sj,i)− β′′
hj

±
(ϕj(sj,i))

∣∣∣ < ε,

for all i ∈ Nj and j > N .

Proof This is the fact that the speed of convergence in Proposition 5.9 is indepen-

dent of s ∈ I, a consequence of the uniform continuity of q′′. �

Lemma 6.16 Let Hypotheses 6.4, 5.3, 6.5, 6.6 and 6.10 hold, and in addition assume

q ∈ C2(I,R3) is parametrised by arc length, with Lipschitz constant Kq′ = ‖q′′‖C . For

all ε > 0 there exists δ > 0, and N ∈ N s.t. for all i ∈ Nj, j > N

|B′′
hj

(s)−B′′
hj

(σ)| ≤ ε

for all |s− σ| ≤ δ, with either s, σ ∈ [sj,i, mj,i] or s, σ ∈ [mj,i, sj,i+1].
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Figure 6.2: Cosine rule for (from left to right) difference of second derivatives, difference

of tangents, and distance between points along a circular arc.

In other words, the estimate of uniformness of the second derivative of the biarc

curve Bhj
restricted to the subintervals, is uniform in i ∈ Nj, j > N (where second

derivatives at ends of the intervals are always understood to be the one-sided second

derivatives).

Proof Using the chain rule on intervals of the form [sj,i, mj,i] or [mj,i, sj,i+1] we

find

B′′
hj

(s) = β′′
hj

(ϕj(s))ϕ
′
j

2
(s) + β′

hj
(ϕj(s))ϕ

′′
j (s). (6.18)

With the triangle inequality we get

|B′′
hj

(s)−B′′
hj

(σ)| = |β′′
hj

(ϕj(s))ϕ
′
j

2
(s) + β′

hj
(ϕj(s))ϕ

′′
j (s)

−β′′
hj

(ϕj(σ))ϕ′j
2
(σ)− β′

hj
(ϕj(σ))ϕ′′j (σ)|

≤ |β′′
hj

(ϕj(s))− β′′
hj

(ϕj(σ))| |ϕ′j2
(s)|

+|ϕ′j2
(s)− ϕ′j

2
(σ)| |β′′

hj
(ϕj(σ))|

+|β′
hj

(ϕj(s))− β′
hj

(ϕj(σ))| |ϕ′′j (s)|
+|ϕ′′j (s)− ϕ′′j (σ)| |β′

hj
(ϕj(σ))|.

With condition (C6), Lemma 6.7 and the arc-length parametrisation of βhj
we obtain

|B′′
hj

(s)−B′′
hj

(σ)| ≤ |β′′
hj

(ϕj(s))− β′′
hj

(ϕj(σ))| c + |ϕ′j2
(s)− ϕ′j

2
(σ)| c

+|β′
hj

(ϕj(s))− β′
hj

(ϕj(σ))| c + |ϕ′′j (s)− ϕ′′j (σ)|.

Using again condition (C6), it remains to show that for a given ε > 0 there exists δ > 0

and N ∈ N s.t.

|β′′
hj

(ϕj(s))− β′′
hj

(ϕj(σ))| ≤ ε, (6.19)

|β′
hj

(ϕj(s))− β′
hj

(ϕj(σ))| ≤ ε, (6.20)

for all |s − σ| ≤ δ, with either s, σ ∈ [sj,i, mj,i] or s, σ ∈ [mj,i, sj,i+1] and for all i ∈
Nj, j > N .

In order to prove the estimates (6.19) and (6.20), consider an arc a as a curve a(s)

parametrised by arc length s. We exploit the cosine rule three times as shown in Figure

6.2. First we apply it to the difference between the two second derivatives:

|a′′(s)− a′′(σ)|2 =
2

r2
(1− cos γ), (6.21)
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where γ is the angle between the second derivatives at s and σ, and r = 1
|a′′|

is the radius

of the arc a. By simple geometry we find that the angle between the tangents at s and

σ equals γ. Thus, with the cosine rule, and the fact that a(s) is parametrised by arc

length we get

|a′(s)− a′(σ)|2 = 2(1− cos γ). (6.22)

Applying the cosine rule again we find

|a(s)− a(σ)|2 = 2r2(1− cos γ). (6.23)

Using the arc-length parametrisation, and combining (6.21) and (6.23), and (6.22) and

(6.23), yields

|a′′(s)− a′′(σ)| =
1

r2
|a(s)− a(σ)| ≤ 1

r2
|s− σ|, (6.24)

and

|a′(s)− a′(σ)| =
1

r
|a(s)− a(σ)| ≤ 1

r
|s− σ|. (6.25)

Let ε > 0 be given. By Lemma 6.7 there is a constant c, such that 1
rj,i
, 1

r2
j,i

, 1
r̄j,i
, 1

r̄2
j,i

≤ c

for all i ∈ Nj, j ∈ N. Applying (6.24) and (6.25) we find

|β′′
hj

(ϕj(s))− β′′
hj

(ϕj(σ))| ≤ c|ϕj(s)− ϕj(σ)|,
|β′

hj
(ϕj(s))− β′

hj
(ϕj(σ))| ≤ c|ϕj(s)− ϕj(σ)|.

Condition (C6) implies that there exists N ∈ N such that ‖ϕj − id‖C ≤ ε
3c

, for j ≥ N ,

where id denotes the identity mapping. The triangle inequality then yields

c|ϕj(s)− ϕj(σ)| ≤ c(|ϕj(s)− s|+ |s− σ|+ |σ − ϕj(σ)|)
≤ c(

ε

3c
+ |s− σ|+ ε

3c
) ≤ ε,

for all |s − σ| ≤ δ := ε
3c

, with either s, σ ∈ [sj,i, mj,i] or s, σ ∈ [mj,i, sj,i+1] and for all

i ∈ Nj for all j ≥ N . This proves the estimates (6.19) and (6.20). �

Theorem 6.17 (C1,1-convergence) Let Hypotheses 6.4, 5.3, 6.5, 6.6 and 6.10 hold,

and assume q ∈ C2(I,R3) is parametrised by arc length, with Lipschitz constant Kq′ =

‖q′′‖C . Then as j → ∞ the biarc curves Bhj
converge to the curve q in C1,1(I,R3).

More precisely, as j →∞

‖q−Bhj
‖C0 = o(h2

j), ‖q′ −B′
hj
‖C0 = o(hj), Kj = o(1).

Proof The curve q −Bhj
restricted to the subintervals [sj,i, mj,i] and [mj,i, sj,i+1]

is C2, for all i ∈ Nj, j ∈ N. We now consider such an interval [sj,i, mj,i], then with the
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expansions (5.38)-(5.40), and conditions (C3) and (C4), we find

(q−Bhj
)(s) = (q−Bhj

)(sj,i) + (q−Bhj
)′(sj,i)(s− sj,i)

+1
2
(q−Bhj

)′′+(sj,i)(s− sj,i)
2 + o((s− sj,i)

2)

= q′(sj,i)

(
1− λ(Bhj

)

λ(q)

)
(s− sj,i) + 1

2
(q−Bhj

)′′+(sj,i)(s− sj,i)
2

+o((s− sj,i)
2), (6.26)

(q−Bhj
)′(s) = (q−Bhj

)′(sj,i) + (q−Bhj
)′′

+
(sj,i)(s− sj,i) + o((s− sj,i))

= q′(sj,i)

(
1− λ(Bhj

)

λ(q)

)
+ (q−Bhj

)′′
+
(sj,i)(s− sj,i)

+o((s− sj,i)), (6.27)

and

(q−Bhj
)′′(s) = (q−Bhj

)′′
+
(sj,i) + o(1), (6.28)

for s ∈ [sj,i, mj,i]. Analogous expansions at sj,i+1 are valid on the intervals of the

form [mj,i, sj,i+1], where right-sided second derivatives are replaced by left-sided second

derivatives. Note that by Lemma 6.16 all the estimates in equations (6.26)-(6.28) are

uniform in i ∈ Nj. We next use the chain rule (6.18) at sj,i with conditions (C4)

and (C5), followed by the triangle inequality, and finally Corollary 6.9, Lemma 6.7 and

Proposition 6.15 to find

∣∣∣q′′(sj,i)−B′′
hj

±
(sj,i)

∣∣∣ =

∣∣∣∣∣q
′′(sj,i)− β′′

hj

±
(ϕj(sj,i))

(
λ(βhj

)

λ(q)

)2
∣∣∣∣∣

≤
∣∣∣q′′(sj,i)− β′′

hj

±
(ϕj(sj,i))

∣∣∣ (6.29)

+
∣∣∣β′′

hj

±
(ϕj(sj,i))

∣∣∣
(

1−
(
λ(βhj

)

λ(q)

)2
)

= o(1),

uniformly in i ∈ Nj as j →∞.

We may apply Corollary 6.9, and the limit (6.29) in equations (6.26) and (6.27) to

obtain

‖q−Bhj
‖C0 = o(h2

j), ‖q′ −B′
hj
‖C0 = o(hj).

With equations (6.28) and (6.29) we find

(q−Bhj
)′′(s) = o(1),

uniformly on I. With the bound (5.2) we get

Kj ≤ ‖(q−Bhj
)′′‖L∞ = o(1).

�
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6.6 C1,1-convergence for q ∈ C2,1(I,R3)

If we know that the curve q that we interpolate is twice differentiable and moreover

that the second derivative is Lipschitz continuous, that is q ∈ C2,1(I,R3), then we can

slightly improve the results obtained for C2 curves, cf. Proposition 6.15 and Theorem

6.17. The proofs are analogous, but take advantage of a higher order Taylor expansion.

Lemma 6.19 assumes the role of Lemma 6.16.

In analogy to the expansions (5.9) and (5.10) we may establish

q(s) = q(σ) + q′(σ)(s− σ) + 1
2
q′′(σ)(s− σ)2 + ṽ(s, σ)(s− σ)3, (6.30)

q′(s) = q′(σ) + q′′(σ)(s− σ) + v(s, σ)(s− σ)2, (6.31)

q′′(s) = q′′(σ) + v̂(s, σ)(s− σ). (6.32)

where v, ṽ and v̂ are vector functions bounded by the Lipschitz constant Kq′′ of q′′, i.e.

|v(s, σ)|, |ṽ(s, σ)|, |v̂(s, σ)| ≤ Kq′′ for all s, σ ∈ I.

Proposition 6.18 Let Hypotheses 6.4, 5.3, 6.5, 6.6 and 6.10 hold, and in addition

assume q ∈ C2,1(I,R3) is parametrised by arc length, with Lipschitz constant Kq′ =

‖q′′‖C . Then the arcs of the biarc curves βhj
approach the osculating circles at the data

points, or equivalently,
∣∣∣q′′(sj,i)− β′′

hj

±
(ϕj(sj,i))

∣∣∣ = O(hj),

uniformly in i ∈ Nj as j →∞.

Proof This proof is analogous to that of Proposition 5.9. We use the notation

(5.44), where s is now a mesh point sj,i and where s+h corresponds to sj,i+hj,i = sj,i+1.

Then the expansions (6.30)-(6.32) translate to

qh = q0 + t0hj,i + 1
2
κ0n0h

2
j,i + ṽhj,i

h3
j,i, (6.33)

th = t0 + κ0n0hj,i + vhj,i
h2

j,i, (6.34)

κhnh = κ0n0 + v̂hj,i
hj,i. (6.35)

We insert the expansions (6.33) and (6.34) into (5.49):

β′′
hj

+
(ϕj(sj,i)) = 2

(
d + [1

2
Λ̄hj,i +O(h3

j,i)](t0 − th)
)
−
(
hj,i +O(h3

j,i)
)
t0

[Λ +O(h2
j,i)] [h2

j,i +O(h4
j,i)]

= 2
[1
2
κ0n0 + ṽhj,i

hj,i] + [1
2
Λ̄ +O(h2

j,i)](−κ0n0 − vhj,i
hj,i)− O(hj,i)t0

Λ +O(h2
j,i)

=
(1− Λ̄)κ0n0 +O(hj,i)

Λ +O(h2
j,i)

.

We obtain the same expression as for C2 curves, only the o(1) is replaced by O(h). With

the expansion (5.14) and notation (5.44) we find

β′′
hj

+
(ϕj(sj,i)) = κ0n0 +O(hj,i) = q′′(sj,i) +O(hj,i),
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and the estimate is uniform in i ∈ Nj. The result for β′′
hj

−
(ϕj(sj,i)) is derived similarly.

�

Lemma 6.19 Let Hypotheses 6.4, 5.3, 6.5, 6.6 and 6.10 hold. Then there exists a

constant c with

sup
i∈N(j)

‖B′′′
hj
‖C((sj,i,mj,i),R3) ≤ c, and sup

i∈N(j)

‖B′′′
hj
‖C((mj,i,sj,i+1),R3) ≤ c

for all j ∈ N.

Proof For s ∈ (sj,i, mj,i) we use the chain rule

B′′′
hj

(s) = β′′′
hj
◦ ϕj(s)ϕ

′
j(s)

3
+ 3β′′

hj
◦ ϕj(s)ϕ

′
j(s)ϕ

′′
j (s) + β′

hj
◦ ϕj(s)ϕ

′′′
j (s).

Note that the norm of the second derivative of an arc-length parametrised arc is 1
r
, while

the norm of the third derivative is 1
r2 , where r is the radius of the arc. With Lemma 6.7

we find

‖β′′
hj
‖C((sj,i,mj,i),R3) ≤ max

i∈Nj

{κj,i, κ̄j,i} ≤ c,

‖β′′′
hj
‖C((sj,i,mj,i),R3) ≤ max

i∈Nj

{κ2
j,i, κ̄

2
j,i} ≤ c,

for all j ∈ N. Conditions (C6) and (C7), and the fact that |β′
hj

(s)| = 1 imply

‖B′′′
hj
‖C((sj,i,mj,i),R3) ≤ c for all j ∈ N. The proof for intervals of the form (mj,i, sj,i+1) is

analogous. �

Theorem 6.20 (C1,1-convergence) Let Hypotheses 6.4, 5.3, 6.5, 6.6 and 6.10 hold,

and in addition assume q ∈ C2,1(I,R3) is parametrised by arc length, with Lipschitz

constant Kq′ = ‖q′′‖C . Then the biarc curves Bhj
converge to the curve q in the space

C1,1(I,R3) as j →∞, more precisely, as j →∞
‖q−Bhj

‖C0 = O(h3
j), ‖q′ −B′

hj
‖C0 = O(h2

j), Kj = O(hj).

Proof The curve q−Bhj
restricted to the subintervals (sj,i, mj,i) and (mj,i, sj,i+1)

is C2,1, for all i ∈ Nj, j ∈ N. For an interval (sj,i, mj,i), expansions (6.30)-(6.32) and

conditions (C3) and (C4) imply

(q−Bhj
)(s) = (q−Bhj

)(sj,i) + (q−Bhj
)′(sj,i)(s− sj,i)

+1
2
(q−Bhj

)′′+(sj,i)(s− sj,i)
2 + 1

6
ṽj,i(s)(s− sj,i)

3

= q′(sj,i)

(
1− λ(Bhj

)

λ(q)

)
(s− sj,i) + 1

2
(q−Bhj

)′′+(sj,i)(s− sj,i)
2

+1
6
ṽj,i(s)(s− sj,i)

3, (6.36)

(q−Bhj
)′(s) = (q−Bhj

)′(sj,i) + (q−Bhj
)′′

+
(sj,i)(s− sj,i)

+1
2
vj,i(s)(s− sj,i)

2

= q′(sj,i)

(
1− λ(Bhj

)

λ(q)

)
+ (q−Bhj

)′′
+
(sj,i)(s− sj,i)

+1
2
vj,i(s)(s− sj,i)

2, (6.37)
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and

(q−Bhj
)′′(s) = (q−Bhj

)′′
+
(sj,i) + v̂j,i(s)(s− sj,i), (6.38)

for s ∈ (sj,i, sj,i+1), where ṽj,i,vj,i, v̂j,i are vector functions bounded by the Lipschitz

constant of the restriction of (q − Bhj
)′′ on the subinterval (sj,i, mj,i). Moreover, with

Lemma 6.19 we find

|ṽj,i|, |vj,i|, |v̂j,i| ≤ K(q−Bhj
)′′|(sj,i,mj,i)

≤ Kq′′ +KB′′
hj
|(sj,i,mj,i)

≤ Kq′′ + ‖B′′′
hj
‖C(sj,i,mj,i) ≤ c, (6.39)

that is, the vector functions ṽj,i,vj,i, v̂j,i are each bounded by a constant independent

of i ∈ Nj, j ∈ N. Analogously to (6.29), but using Proposition 6.18, we derive the

uniform convergence
∣∣∣q′′(sj,i)−B′′

hj

±
(sj,i)

∣∣∣ = O(hj). (6.40)

Expansions (6.36) and (6.37), equation (6.40), the uniform bound (6.39) and Corollary

6.9 yield

‖q−Bhj
‖C0 = O(h3

j), ‖q′ −B′
hj
‖C0 = O(h2

j).

Applying (5.2) and using equation (6.38), the uniform convergence in (6.40) and the

uniform bound (6.39) we obtain

Kj ≤ ‖(q−Bhj
)′′‖L∞ ≤ sup

i∈Nj

(
|(q−Bhj

)′′
+
(sj,i)|+ ‖v̂j,i‖hj

)

≤ O(hj) + c hj = O(hj).

�

6.7 Infinite curves

In this section we consider semi-infinite curves, that is curves which are defined on an

interval of the form I = [l0,∞) ⊂ R. We outline how results similar to those of the

previous sections may be obtained. The basic idea is that the results are valid for any

finite subinterval of I, and that the constants involved do not depend on the choice of

the subintervals. Infinite curve, i.e. curves defined on the interval I = (−∞,∞) = R,

may be considered as a union of two semi-infinite curves, so that all the results obtained

in this section also apply immediately to this case.

For infinite and semi-infinite intervals I the isomorphism C1,1(I,R3) ≡ W 2,∞(I,R3)

that was exploited to obtain (5.2) is not a standard result. We accordingly justify the

Taylor expansions in a different way. For a curve q ∈ C1,1(I,R3) with Lipschitz constant

Kq′ we introduce the notation

w(s, σ) :=
q′(s)− q′(σ)

s− σ
, (6.41)

w̃(s, σ) :=

∫ s

σ

w(τ, σ)(τ − σ)

(s− σ)2
dτ. (6.42)
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Simple estimation of the right hand sides of (6.41) and (6.42) implies the bounds

|w(s, σ)| ≤ Kq′, (6.43)

|w̃(s, σ)| ≤ Kq′. (6.44)

We rearrange (6.41) to find the expansion

q′(s) = q′(σ) + w(s, σ)(s− σ). (6.45)

Integration of (6.45) yields

q(s) = q(σ) + q′(σ)(s− σ) + w̃(s, σ)(s− σ)2. (6.46)

Finally the expansions (6.45)-(6.46) are equivalent to the expansions (5.9) and (5.10)

for finite curves on which all the proofs are based .

Notation 6.21 Given a semi-infinite interval I = [l0,∞) ⊂ R, a mesh M of mesh size

h > 0 on I will mean a sequence {si}i∈N with

s0 = l0 and si < si+1 for i ∈ N,

and h = supi∈N |si+1 − si| <∞.

We will consider a sequence of meshes Mj, j ∈ N on I with mesh size hj → 0 (and

wlog we assume that the mesh size hj is monotone decreasing). For j ∈ N we denote

the members of the mesh Mj by sj,i, i ∈ N and set hj,i := sj,i+1 − sj,i. We assume that

for all j > k there is a mapping ιk→j : N → N such that

sk,i = sj,ιk→j(i), i ∈ N, (6.47)

i.e. the meshes are nested. For compatability we set Nj := N for j ∈ N.

In analogy to Notation 6.3 we note

Notation 6.22 Let q ∈ C1,1(I,R3) be parametrised by arc length. For a given sequence

of meshes Mj as described in Notation 6.21, βhj
is a biarc curve interpolating the data

(q(sj,i),q
′(sj,i)) ∈ J with matching points on Σ++.

We denote by (a, ā)j,i the i-th biarc of the biarc curve βhj
, i.e. the biarc interpolating

((q(sj,i),q
′(sj,i)), (q(sj,i+1),q

′(sj,i+1))). We denote the arc-length parameter interval of

the biarc curve βhj
by Ij. The arc-length parameter corresponding to the matching point

of the biarc (a, ā)j,i is denoted by mj,i ∈ Ij. The radii of the biarc (a, ā)j,i are denoted

by rj,i and r̄j,i, and the curvatures by κj,i and κ̄j,i.

Hypothesis 6.23 I ⊂ R is a semi-infinite closed interval I = [l0,∞).

Hypothesis 6.24 A sequence of biarc curves βhj
is generated as in Notation 6.21 and

6.22.

In the semi-infinite case the arc length λ(q) of the curve q is infinite and therefore

Corollary 6.9 has no sense. But it does have sense for any finite subinterval, and

moreover the constant involved is independent of the choice of the subinterval.
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Corollary 6.25 (Convergence of arc length) Let Hypotheses 6.23, 5.3 and 6.24 hold.

Then, for any subinterval of the form Ii,m = [sj,i, sj,i+m], the arc length λ(βhj
|Ii,m

) of

the biarc curve βhj
restricted to Ii,m converges quadratically to the arc length λ(q|Ii,m

)

of the curve q restricted to Ii,m:

λ(βhj
|Ii,m

)

λ(q|Ii,m
)
− 1 = O(h2

j),

and the convergence is uniform in i and m ∈ N. In other words, there exists a constant

c such that for all subintervals of the form Ii,m = [sj,i, sj,i+m] we have

λ(βhj
|Ii,m

)

λ(q|Ii,m
)
− 1 ≤ ch2

j .

Proof By Corollary 6.9 the constant depends only on Kq′. �

Now, condition (C4) (see p. 68) for the reparametrisation function ϕj which implies

that the tangent of the reparametrised biarc curve Bhj
has length

λ(βhj
)

λ(q)
has to be

replaced by the condition

(C4∗) ϕ′j(sj,i) = 1, for i, j ∈ N,

Hypothesis 6.26 The function ϕj is a reparametrisation function satisfying conditions

(C1)-(C3), (C4∗), and (C5)-(C7), for all j ∈ N and the reparametrised biarc curve Bhj

is given by (6.3).

Lemma 6.27 Let Hypotheses 6.23, 5.3, 6.24 and 6.6 hold. Then the radii of the arcs

of the biarc curves βhj
are bounded away from zero, that is, for all i, j ∈ N there exists

a positive constant c = c(Kq′,Λmin) > 0 with

rj,i ≥ c and r̄j,i ≥ c.

Proof The proof is analogous to the proof of Lemma 6.7 that is based on the ex-

pansions stated in Lemma 5.6 which remain valid in the semi-infinite case. �

Lemma 6.28 Let Hypotheses 6.23, 5.3, 6.24, 6.6 and 6.26 hold. Then there exists a

constant c > 0, such that Kj ≤ c for all j ∈ N.

Proof The proof is similar to the proof of Lemma 6.12, with Lemma 6.27 replacing

Lemma 6.7. �

Theorem 6.29 (C1-convergence) Let Hypotheses 6.23, 5.3, 6.24, 6.6 and 6.26 hold.

Then the biarc curves Bhj
converge to the curve q in the space C1(I,R3) as j → ∞.

More precisely, as j →∞
‖q−Bhj

‖C0 = O(h2
j), ‖q′ −B′

hj
‖C0 = O(hj).

Proof The proof is analogous to, but even simpler than, the proof of Theorem

6.13, because by Hypothesis 6.26 (q−Bhj
)′(sj,i) = 0 for all i, j ∈ N. �
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Chapter 7

Evaluation of curvature functions

and thickness on arc curves

Our goal in this chapter is to present algorithms that allow the efficient and accurate

evaluation of thickness and the global radius of curvature function ρpt on biarc curves.

Efficiency and accuracy in the evaluation of thickness is important, because the thickness

computation is repeated frequently during simulated annealing computations of the ideal

shapes described in chapter 8. Accuracy in the evaluation of ρpt is important because its

variations in s determine the intricate, approximate contact sets that will be described

in section 8.1. The algorithms presented in this chapter work for any arc curve, as

defined in Definition 7.1 below, that is they are not specific to biarc curves.

7.1 Evaluation of thickness on arc curves

In order to set the material of this chapter in context, we first make some remarks

concerning the evaluation of distance between circles. Evaluation of a distance between

two circular arcs (forming part of an arc curve) and the evaluation of a distance between

two complete circles are of different characters; in many cases the minimal distance

between two arcs does not correspond to a minimal distance between the whole circles,

but is instead achieved at end points. Nevertheless the two problems are related, and all

degeneracies for the complete circle case can also arise in the arc case. Computing the

euclidean distance between two circles is a classic problem of computational geometry

and computer graphics. The standard approach is to compute the roots of a certain

polynomial of degree eight [13, pp. 69–73], [34, 63], and as illustrated in Figure 7.1 the

distance function can have eight distinct critical points. In particular it is known that

there is no closed-form expression for the distance between two arbitrary circles in three

dimensional space [34].

It is also the case that two circles can be arranged to have a constant distance

between them. Consider a circle C with radius r1 and the surface of the torus with

second radius r2 around C. Trivially any plane parallel to C cutting the torus does so

in two parallel circles that are a constant distance from C. Equally trivially, any plane

passing through the centre of C and cutting C perpendicularly intersects the torus in
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two circles each of which is perpendicular to C and at a constant distance. What is

much less trivial is that through any point on the torus there are four circles lying on

the surface of the torus, all of which are at a constant distance from C. Two are the

perpendicular and parallel circles already described. The other two Villarceaux circles

lie in a common plane that is skew to C [33, pp. 63–72]. This construction reveals

that there may be non-trivial cases of arcs that have a constant distance between them,

which could pose problems in algorithms for evaluating the minimal distance.
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Figure 7.1: (a) Two co-centric circles of different radii lying in perpendicular planes, (b)

plot of pp showing eight critical points, specifically two maxima, two minima and four

saddle points.

Definition 7.1 An arc curve α is a space curve assembled in a C1 fashion from circular

arcs with swept out angles less than π .

A biarc curve is a special arc curve; on the other hand an arc curve is also a special

biarc curve, because every circular arc can be considered as a biarc interpolating the

end point data with any point on the arc, except the end points, as matching point. We

will use the notion of arc curve to emphasise that throughout this chapter the results do

not depend on the fact that the arcs interpolate point-tangent data, and in particular

are independent of any matching rule. An arc curve has only C1,1 regularity, therefore

we can not apply the definition (2.12) of thickness which is valid for C2 curves. Instead

we have to use the definition (2.10), which simplifies for arc curves to:

Proposition 7.2 For a given non-intersecting arc curve α ∈ C1,1(I,R3) composed of

n arcs ai with radii ri, 1 ≤ i ≤ n, the thickness is the minimum of the smallest radius

of the arcs and half of the minimal distance between double critical points:

∆[α] = min

{
min

1≤i≤n
ri,

1
2
min(s,t)∈dc |α(s)−α(t)|

}
,

where dc is the set of arguments (s, σ) ∈ I × I with s 6= σ that satisfy (2.11).

Proof The thickness ∆[q] of a C1,1 curve is given in (2.10). First define

δ := min

{
min

1≤i≤n
ri,

1
2
min(s,t)∈dc |α(s)− α(t)|

}
.

82



We will show that 1) ∆ < δ yields a contradiction, while 2) for r > δ, exp is not injective

on Er, so ∆ ≤ δ.

1) Assume ∆ < δ. For r > 0 denote by Tr the set

Tr := {α(s) + v ∈ R
3; (α(s),v) ∈ E and |v| = r},

where E is the normal bundle defined in (2.9). Because α is an arc curve, the set

Tr is a union of parts of tori with one radius equal to r. For 0 < r < ∆ the set Tr

is a non-intersecting surface. Moreover, because δ ≤ min1≤i≤n ri, for any 0 < r < δ

and for any pair of adjacent arcs (ai, ai+1) the part of Tr associated with the two arcs

is a C1 surface having no corner. We consider the continuous family Tr passing from

r = r1 to r = r2 with 0 < r1 < ∆ < r2 < δ. By definition of ∆ the exponential

map exp is not injective on Er for some r1 < r ≤ ∆. This must happen non-locally

by two part of tori associated with non-adjacent arcs ai and aj at a point p where the

tangent planes are equal. That is, p = α(si) + vi = α(sj) + vj. The vector vi is

perpendicular to the common tangent plane at p and perpendicular to α′(si), similarly

the vector vj is perpendicular to the common tangent plane at p and perpendicular

to α′(sj). Therefore we have α′(si) · (α(si) − α(sj)) = 0 = α′(sj) · (α(si) − α(sj)),

thus (si, sj) ∈ dc. By the definition of δ we have δ ≤ |α(si)−α(sj)|, which contradicts

|α(si)− α(sj)| = r ≤ ∆ < δ.

2) If r > δ = ri for some i, then two normal discs of radius r of the arc ai intersect,

while if r > δ = 1
2
|α(s)−α(t)| with (s, t) ∈ dc two normal disks from non-adjacent arcs

intersect. In either case exp is not injective on Er. �

The thickness evaluation algorithm uses the characterisation of thickness given in

Proposition 7.2. The three basic building blocks of the algorithm explained below are

a linear segment approximation, a bisection algorithm and a double critical test.

7.1.1 Linear segment approximation and bisection algorithm

We adopt the description of arcs using Bézier points that was introduced in section 4.3,

cf. figure 4.7. If the swept out angle of an arc is small, the arc is close to being straight.

Therefore in this case the distance between the two arcs a and b given by the Bézier

points a0, a1, a2 ∈ R
3 and b0,b1,b2 ∈ R

3 is close to the distance between the straight

line segments between a0 and a2, and b0 and b2, which is easy to compute. Lemma 7.3

makes this observation precise.

Lemma 7.3 For a pair of arcs a, b with ∠a < π and ∠b < π, given by the Bézier

points a0, a1, a2 ∈ R
3 and b0,b1,b2 ∈ R

3, denote by a02 and b02 the closed, straight line

segments between a0 and a2, and between b0 and b2. Then,
∣∣∣∣ min
(x1,x2)∈a02×b02

|x1 − x2| − min
(y1,y2)∈a×b

|y1 − y2|
∣∣∣∣ ≤ εa + εb, (7.1)

where

εa = ωa

√
1− ωa

1 + ωa

|a0 − a1|, and εb = ωb

√
1− ωb

1 + ωb

|b0 − b1|, (7.2)
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with ωa = cos δa and ωb = cos δb, and δa and δb are the base angles of the Bézier

triangles, cf. figure 4.7.

Note that the error bound given in (7.1) is optimal, in that it can be achieved.

Proof We define the non-negative numbers εa, εb by

εa :=
∣∣a(1

2
)− 1

2
(a0 + a2)

∣∣ , εb :=
∣∣b(1

2
)− 1

2
(b0 + b2)

∣∣ . (7.3)

Using the Bézier parametrisation (4.8) we find

∣∣a(1
2
)− 1

2
(a0 + a2)

∣∣ =

∣∣∣∣
a0 + 2ωaa1 + a2

2(1 + ωa)
− a0 + a2

2

∣∣∣∣ =
ωa

2(1 + ωa)
|a0 − 2a1 + a2|, (7.4)

where ωa = cos δa. Now we use planar vector geometry to obtain

|a0 − 2a1 + a2| = |(a0 − a1) + (a2 − a1)| = 2 sin δa|a0 − a1| = 2
√

1− ω2
a|a0 − a1|.

Combining this with equations (7.3) and (7.4) we find

εa =
ωa

√
1− ω2

a

(1 + ωa)
|a0 − a1| = ωa

√
1− ωa

1 + ωa

|a0 − a1|.

The analogous statement for εb is derived in a similar way, to yield (7.2).

For any subset U ⊂ R
3, and for any r > 0, define the closed r-neighbourhood of U

by

Nr(U) =
⋃

x∈U

Br(x).

Simple planar geometry shows a ⊂ Nεa(a02) and a02 ⊂ Nεa(a), and similarly b ⊂
Nεb(b02) and b02 ⊂ Nεb(b).

Assume that min(y1,y2)∈a×b |y1 − y2| is achieved by (p1,p2) ∈ a × b. There exist

points z1 ∈ a02 and z2 ∈ b02 with |p1 − z1| ≤ εa and |p2 − z2| ≤ εb. This and the

triangle inequality yield

min
(x1,x2)∈a02×b02

|x1 − x2| ≤ |z1 − z2| ≤ εa + |p1 − p2|+ εb

= min
(y1,y2)∈a×b

|y1 − y2|+ εa + εb.
(7.5)

With the same argument, but starting from the minimum over the straight line segments,

we find

min
(y1,y2)∈a×b

|y1 − y2| ≤ min
(x1,x2)∈a02×b02

|x1 − x2|+ εa + εb. (7.6)

Combining inequalities (7.5) and (7.6) we find the error estimate (7.1). �

Notation 7.4 For an arc a and m ∈ N denote by Vm(a) the set of 2m congruent arcs

derived by m successive bisections of a.

84



�
�

�
�

�
�

�
�

�
�

�
�Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Qsa0 = a∗0 sa2 = a∗∗2

sa1

sa∗2 = a∗∗0sa∗1 sa∗∗1

�
�

�
�

�
�

δ

δ
π − δ

Figure 7.2: Bisecting an arc a with base angle δ leads to two sub arcs a∗ ∈ V1(a) and

a∗∗ ∈ V1(a) with base angles 1
2
δ.

For an arc a and for fixed m ∈ N all elements a∗ ∈ Vm(a) are congruent arcs,

and therefore share the same base angle δ∗, base length, and side length. In order to

understand how these values for an arc a∗ ∈ Vm(a) are related to those for a, we first

study the relation between the base angle δ∗, its cosine ω∗, the base length |a∗2 − a∗0|,
and the side length |a∗1 − a∗0| of an arc a∗ ∈ V1(a), and the base angle δ, its cosine ω,

the base length |a2 − a0|, and the side length |a1 − a0| of the initial arc a.

Lemma 7.5 Given an arc a with ∠a < π, where δ is the base angle, ω its cosine, and

|a2 − a0| and |a1 − a0| are the base and side lengths of a, then for an arc a∗ ∈ V1(a)

the values of the base angle δ∗, its cosine ω∗, and the base and side length |a∗2− a∗0| and

|a∗1 − a∗0| are

δ∗ = 1
2
δ,

ω∗ =
√

1
2
(1 + ω),

|a∗2 − a∗0| =
1√

2(1 + ω)
|a2 − a0|,

|a∗1 − a∗0| =
ω

1 + ω
|a1 − a0|.

Proof Figure 7.2 illustrates the bisection of a into the arcs a∗ ∈ V1(a) and a∗∗ ∈
V1(a). Denote the base angle of a∗ by δ∗. The line through a∗1 and a∗∗1 is parallel to

the line through a0 and a2. Therefore the angle ∠(a0, a
∗
1, a

∗
2) = π − δ. Because interior

angles in a triangle sum up to π, 2δ∗ + (π − δ) = π, hence δ∗ = 1
2
δ.

Define ω∗ = cos δ∗. Then the fact that δ∗ = 1
2
δ and the cosine addition rule give

ω∗ = cos(1
2
δ) =

√
1
2
(cos(δ) + 1) =

√
1
2
(ω + 1).

Using trigonometry with the angle ∠(a∗2, a
∗
0, a2) = 1

2
δ we find

|a∗2 − a∗0| =
|a2 − a0|

2ω∗
=

|a2 − a0|√
2(ω + 1)

.

Using trigonometry with the angles ∠(a∗1, a
∗
0, a

∗
2) = 1

2
δ, ∠(a∗2, a

∗
0, a2) = 1

2
δ and ∠(a1, a0, a2) =

δ we have

|a∗1 − a∗0| =
|a∗2 − a∗0|

2ω∗
=
|a2 − a0|
2ω∗ 2ω∗

=
2ω|a1 − a0|

4ω∗2
,
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and with ω∗ =
√

1
2
(1 + ω) we find

|a∗1 − a∗0| =
2ω|a1 − a0|
41

2
(1 + ω)

=
ω

1 + ω
|a1 − a0|.

�

Lemma 7.6 For an arc a with ∠a < π, the error term defined in (7.2) of an arc

a∗ ∈ V1(a) is given by

εa∗ =
εa
fa
, where fa = 2 +

√
2(1 + ω), (7.7)

where ω is the cosine of the base angle, and εa is the error term of a.

By the term error factor we mean the denominator fa in the right hand side of equation

(7.7).

Proof We have by (7.2)

εa∗ = ω∗
√

1− ω∗

1 + ω∗
|a∗0 − a∗1| = ω∗

√
1− ω∗2

1 + ω∗
|a∗0 − a∗1|.

We use Lemma 7.5:

εa∗ =
√

1
2
(1 + ω)

√
1− 1

2
(1 + ω)

1 +
√

1
2
(1 + ω)

ω

1 + ω
|a1 − a0|,

and algebra to obtain

εa∗ =

√
1
2
(1 + ω)− 1

4
(1 + ω)2

1 +
√

1
2
(1 + ω)

ω

1 + ω
|a1 − a0|

=

√
1
4
− 1

4
ω2

1 +
√

1
2
(1 + ω)

ω

1 + ω
|a1 − a0| =

1

2 +
√

2(1 + ω))

√
1− ω2ω

1 + ω
|a1 − a0|

=
1

2 +
√

2(1 + ω))
εa,

as was to be shown. �

Proposition 7.7 For a pair of arcs a, b, and for m→∞, the minima of the minimal

euclidean distance between the base segments over all sub-arc pairs (a∗,b∗) ∈ Vm(a) ×
Vm(b) converges to the minimal euclidean distance between the two arcs:

min
(a∗,b∗)∈Vm(a)×Vm(b)

(
min

(x1,x2)∈a∗02×b∗02

|x1 − x2|
)
→ min

(y1,y2)∈a×b
|y1 − y2|, m→∞.

(7.8)
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Proof This result is a consequence of Lemmas 7.3 and 7.6. �

Note that on the left hand side of (7.8) the minimum is taken over 22m numbers. In

practice this would make evaluation of the distance between two arcs to a high tolerance

unacceptable slow. Both the double critical test and distance test described below help

to avoid this slow down by eliminating unnecessary computations of distance.

7.1.2 Single and double critical test

For two closed, differentiable curves q ∈ C1(I,R3) and r ∈ C1(J,R3) the euclidean

distance is the two-argument function

d(s, t) := |q(s)− r(t)|, (s, t) ∈ I × J. (7.9)

The euclidean distance d is said to have a single critical point with respect to s at

(s̄, t̄) ∈ I × J when

∂sd(s̄, t̄) = 0, (7.10)

and similarly the euclidean distance d has a single critical point with respect to t at

(s̄, t̄) ∈ I × J when

∂td(s̄, t̄) = 0. (7.11)

We say that the euclidean distance d has a (double) critical point at (s̄, t̄) ∈ I ×J when

∂sd(s̄, t̄) = 0 and ∂td(s̄, t̄) = 0. (7.12)

By extension we will also say that the euclidean distance has a single or double critical

point at (q(s̄), r(t̄)). An equivalent condition for (7.10) to be true is

q′(s̄) · (q(s̄)− r(t̄)) = 0, (7.13)

cf. (2.13), similarly equation (7.11) is true when

r′(t̄) · (q(s̄)− r(t̄)) = 0, (7.14)

hence, the euclidean distance d has a double critical point at (s̄, t̄) ∈ I × J only when

q′(s̄) · (q(s̄)− r(t̄)) = 0 = r′(t̄) · (q(s̄)− r(t̄)), (7.15)

cf. (2.11). It follows that two non-intersecting differentiable curves q and r achieve

minimal distance only at points where both tangents are perpendicular to the chord, cf.

figure 7.3.

In general the minimum euclidean distance between two circular arcs does not cor-

respond to a critical point of the euclidean distance between the corresponding circles,

but can instead be achieved at the end points of the arcs without the tangents being

perpendicular to the chord achieving the minimal distance. In order to evaluate the

thickness of a closed arc curve α, it is important to evaluate the distance only on the

set of double critical points. Lemma 7.9 below provides a necessary condition for double

critical points on pairs of circular arcs.
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Figure 7.3: Two non-intersecting differentiable curves q and r achieve minimal euclidean

distance only at points r(t̄) and q(s̄), where both tangents are perpendicular to the

chord. In particular the points (s̄, t̄) are double critical.

Lemma 7.8 For a pair of circular arcs a, b with ∠a < π and ∠b < π, given by the

Bézier points a0, a1, a2 ∈ R
3 and b0,b1,b2 ∈ R

3 and with the property

|(a0 + a2)− (b0 + b2)| > |a0 − a2|+ |b0 − b2|, (7.16)

denote by γ ∈ (0, 1
2
π) the angle satisfying

sin γ =
|a0 − a2|+ |b0 − b2|
|a0 + a2 − (b0 + b2)|

, (7.17)

and by w the unit vector

w =
a0 + a2 − (b0 + b2)

|a0 + a2 − (b0 + b2)|
. (7.18)

Denote the unit tangents at the endpoints of the arcs a by

t0 =
a1 − a0

|a1 − a0|
, and t1 =

a2 − a1

|a2 − a1|
.

If one of the two statements (7.19) and (7.20) is true,

w · t0 < − sin γ and w · t1 < − sin γ, (7.19)

w · t0 > sin γ and w · t1 > sin γ, (7.20)

then the euclidean distance d between the two arcs does not have a single critical point

with respect to the argument of a.

Proof We will show that if one of the two statements (7.19) and (7.20) is true,

then there is no chord between the two arcs that is perpendicular to any tangent of the

arc a, which is an equivalent condition for a single critical point with respect to the

argument of a of the euclidean distance d.

Consider the ball Ba centred at 1
2
(a0 + a2) with radius 1

2
|a2 − a0|, and the ball Bb

centred at 1
2
(b0 + b2) with radii 1

2
|b2 − b0|. Each ball contains an arc, i.e. a ⊂ Ba and

b ⊂ Bb, and by assumption (7.16), they do not intersect. The unit vector w given by

(7.18) is parallel to the line through the two centres of the spheres. Denote by γ the

maximum angle between w and a vector with endpoints in either sphere,

γ = max
z∈Ba, ẑ∈Bb

∠(w, z− ẑ).
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Figure 7.4: The two balls Ba and Bb contain the two arcs a and b. The angle γ is the

maximum angle between the vector w and any vector from a point in the ball Bb to a

point in the ball Ba.
w

D

C

Figure 7.5: The unit sphere S2 with vector w, the set of chords C and band D.

Consider Figure 7.4 to find that sin γ can be written as the ratio of the sum of the radii

of Ba and Bb and the distance between the centres of Ba and Bb, that is, (7.17) holds.

Now consider the unit sphere S2, cf. figure 7.5. Denote by C the set of normalised

vectors from a point in Bb to a point in Ba

C = {v ∈ S2 : v ·w ≥ cos γ}, (7.21)

and the set of unit vectors that are perpendicular to some v ∈ C by D

D = {v ∈ S2 : |v ·w| ≤ sin γ}. (7.22)

The tangent indicatrix of a circular arc a is an arc of a great circle on S2, and for

a circular arc a with swept out angle ∠a < π it is the smaller arc of the great circle

passing through the tangents at the endpoints of the arc. Therefore, it suffices to check

the tangents t0 and t1 at the end points of the the arc a. If both tangents t0 and t1

are in the same component of S2\D, i.e. if either (7.19) or (7.20) is true, then the

tangent indicatrix of a does not intersect D and therefore nowhere along the arc a can

the tangent be perpendicular to any vector v ∈ C, in particular, no tangent to the arc

a is perpendicular to any vector from a point on b to a point on a. �
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Corollary 7.9 For a pair of circular arcs a, b with ∠a < π and ∠b < π, given by the

Bézier points a0, a1, a2 ∈ R
3 and b0,b1,b2 ∈ R

3 with the property

|a0 + a2 − (b0 + b2)| > |a0 − a2|+ |b0 − b2|, (7.23)

denote by γ ∈ (0, 1
2
π) the angle satisfying

sin γ =
|a0 − a2|+ |b0 − b2|
|a0 + a2 − (b0 + b2)|

, (7.24)

and by w the unit vector

w =
a0 + a2 − (b0 + b2)

|a0 + a2 − (b0 + b2)|
. (7.25)

Denote the unit tangents at the endpoints of the arcs a and b by

t0 =
a1 − a0

|a1 − a0|
, t1 =

a2 − a1

|a2 − a1|
, t̂0 =

b1 − b0

|b1 − b0|
, and t̂1 =

b2 − b1

|b2 − b1|
.

If one of the four statements (7.26)-(7.29) is true,

w · t0 < − sin γ and w · t1 < − sin γ, (7.26)

w · t0 > sin γ and w · t1 > sin γ, (7.27)

w · t̂0 < − sin γ and w · t̂1 < − sin γ, (7.28)

w · t̂0 > sin γ and w · t̂1 > sin γ, (7.29)

then the euclidean distance between the two arcs does not have a double critical point.

Proof If one of the four statements (7.26)-(7.29) is true, then we may apply Lemma

7.8 to find that there is no single critical point of the euclidean distance with respect

to either the argument of a or the argument of b, in particular there can be no double

critical point of the euclidean distance.

�

Note that Corollary 7.9 is just a necessary condition for the presence of a double

critical point. But the double critical test becomes sharper when we bisect both arcs

and apply the test on the four pairs of sub arcs. The next proposition states that when

combined with the bisection iteration, the double critical test is sharp in the limit, i.e.

in the limit it becomes a sufficient condition. More precisely, given two arcs where

the euclidean distance does not have a double critical point, after a finite number of

bisection iterations the double critical test on every pair of sub arcs yields that there is

no double critical point on the sub arc pair (i.e. for every pair of sub arcs one of the

four statements (7.26)-(7.29) is true).

Proposition 7.10 For any pair of circular arcs a, b where the euclidean distance does

not have a double critical point there exists m ∈ N such that for all a∗ ∈ Vm(a) and for

all b∗ ∈ Vm(b) one of the four statements (7.26)-(7.29) is true.
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Proof For a pair of circular arcs a, b where the euclidean distance does not have

a critical point we have for some ε > 0
∣∣∣∣a
′(s) · a(s)− b(t)

|a(s)− b(t)|

∣∣∣∣ +
∣∣∣∣b

′(t) · a(s)− b(t)

|a(s)− b(t)|

∣∣∣∣ ≥ ε > 0. (7.30)

For a pair of sub-arcs (a∗,b∗) ∈ Vm(a) × Vm(b) we denote the unit vector given by

(7.25) by w(a∗,b∗), the angle given by (7.24) by γ(a∗,b∗), and the tangents at the end

points by t0,a∗, t1,a∗, t0,b∗, and t1,b∗.

The triangle inequality yields
∣∣∣∣w(a∗,b∗) −

a∗(s)− b∗(t)

|a∗(s)− b∗(t)|

∣∣∣∣ ≤
∣∣∣∣
a∗0 + a∗2

2
− a∗(s)

∣∣∣∣+
∣∣∣∣
b∗0 + b∗2

2
− b∗(t)

∣∣∣∣

≤
∣∣∣∣
a∗2 − a∗0

2

∣∣∣∣+
∣∣∣∣
b∗2 − b∗0

2

∣∣∣∣

for all s, t ∈ [0, 1]. Lemma 7.5 yields the uniform convergence

max
(a∗,b∗)∈Vm(a)×Vm(b)

(
max

s,t∈[0,1]

∣∣∣∣w(a∗,b∗) −
a∗(s)− b∗(t)

|a∗(s)− b∗(t)|

∣∣∣∣
)
→ 0, as m→∞. (7.31)

The convergence (7.31) has two implications. On the one hand, the angles γ(a∗,b∗)

converge uniformly to zero

γ(a∗,b∗) → 0, as m→∞, (7.32)

and by continuity of the sine function we have

max
(a∗,b∗)∈Vm(a)×Vm(b)

sin γ(a∗,b∗) → 0, as m→∞. (7.33)

On the other hand,
∣∣∣∣w(a∗,b∗) · t0,a∗ −

a∗(s)− b∗(t)

|a∗(s)− b∗(t)| · t0,a∗

∣∣∣∣ =

∣∣∣∣
(
w(a∗,b∗) −

a∗(s)− b∗(t)

|a∗(s)− b∗(t)|

)
· t0,a∗

∣∣∣∣

≤
∣∣∣∣w(a∗,b∗) −

a∗(s)− b∗(t)

|a∗(s)− b∗(t)|

∣∣∣∣ ,

so that, with (7.31) we find

max
(a∗,b∗)∈Vm(a)×Vm(b)

(
max

s,t∈[0,1]

∣∣∣∣w(a∗,b∗) · t0,a∗ −
a∗(s)− b∗(t)

|a∗(s)− b∗(t)| · t0,a∗

∣∣∣∣
)
→ 0, as m→∞.

(7.34)

The analogous statement is true for the tangents t1,a∗, t0,b∗, and t1,b∗. Note that for

any pair of sub-arcs (a∗,b∗) ∈ Vm(a) × Vm(b) the end tangents t0,a∗, t1,a∗, t0,b∗, and

t1,b∗ are the tangent a′(s), respectively b′(t), for some s, t ∈ [0, 1].

Combining the four uniform convergences of the type (7.34), the uniform conver-

gence (7.33), and the property (7.30) yields that there exists m ∈ N such that for all

a∗ ∈ Vm(a) and for all b∗ ∈ Vm(b) one of the four statements (7.26)-(7.29) is true. �
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7.1.3 Thickness algorithm

The algorithm built from the linear segment approximation, the bisection algorithm and

the double critical test leads to the correct result, but is slow. However, if we apply the

additional distance test, explained below, the thickness evaluation becomes much more

efficient. The idea of the distance test is simple: In the next iteration ignore the pair of

arcs (a,b), if

min
(y1,y2)∈a02×b02

|y1 − y2| − εa − εb ≥ min
a∗,b∗∈U

(
min

(y1,y2)∈a∗02×b∗02

|y1 − y2|+ εa∗ + εb∗

)
,

(7.35)

where U is the set of candidates, i.e. pairs of arcs to consider. By candidate we refer

to a pair of arcs that possibly achieves thickness together with some information about

this pair. At the beginning all pairs are candidates. Then, by the double critical test,

various candidates are excluded. At every bisection iteration the number of potential

candidates is quadrupled, but the distance test and double critical test can be applied

to decrease the number of actual candidates. In the code we use as a data format for

candidates a vector c ∈ R
23 where

c = [aT
0 , a

T
1 , a

T
2 ,b

T
0 ,b

T
1 ,b

T
2 , εa, fa, εb, fb, d(a,b)]

T ∈ R
23, (7.36)

where a0, a1, and a2 are the Bézier points of one arc a, b0, b1, and b2 are the Bézier

points of the arc b, εa and εb are the error terms given by (7.2), fa and fb are the

error factors defined in (7.7), and d(a,b) is the minimal euclidean distance between the

straight line segments a02 and b02.

A flowchart of the algorithm used to compute the thickness of an arc curve α con-

sisting of n arcs is given in figure 7.6. The different steps (boxes) are now explained in

more detail.

Input: An arc curve α assembled from n arcs, i.e. a list of triples (bi
0,b

i
1,b

i
2) of Bezier

points associated with the arcs ai, 1 ≤ i ≤ n, and a relative error bound ε̄rel > 0.

Local radii and length:

1. Compute radius r(ai) and length λ(ai) of the arc ai for all 1 ≤ i ≤ n.

2. Compute the length λ(α) =
∑n

i=1 λ(ai) of the arc curve α and the smallest radius

rmin = min1≤i≤n r(ai).

Initial double critical test:

1. Define Ccrit := ∅.

2. For (i, j) ∈ {(i, j) ∈ N×N; 1 ≤ i ≤ n, 1 ≤ j ≤ i−2}\{(n, 1)}, that is for pairs that

are not on the diagonal and not next neighbours, make the double critical test, cf.

Corollary 7.9, on (ai, aj) and denote the result by ci,j ∈ {0, 1}, i.e. ci,j := 1 if the

pair (ai, aj) passes the test and ci,j := 0 if it fails.
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Input

Local radii and length computation

Initial double critical test

Initial distance test

Initial thickness bounds

while εrel > ε̄rel and 2rmin > Dlb(k) Output

k=k+1

Bisection and double critical test

Distance test

Thickness bounds

�
�

�
�

-false

?

?

?

?

?

?
true

?

?

?

-

Figure 7.6: Flowchart of the thickness evaluation algorithm for arc curves using as basic

building blocks the linear segment approximation cf. Lemma 7.3, the bisection algorithm

cf. Proposition 7.7 and the double critical test cf. Corollary 7.9.
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3. If ci,j 6= 0, compute the initial errors given by (7.2), the error factors given by

(7.7), and the minimal euclidean distance between the base segments for the pair

(ai, aj), and append a column in the format (7.36) to the matrix Ccrit.

Initial distance test:

1. Define Cdist := ∅.

2. Compute db := mini{Ccrit(19, i) + Ccrit(21, i) + Ccrit(23, i)}.

3. If Ccrit(23, i)−Ccrit(19, i)−Ccrit(21, i) ≤ db, append a column in the format (7.36)

to the matrix Cdist.

Initial thickness bounds: Compute initial upper and lower bounds for the minimal

distance between double critical points Dlb and Dub, the thickness ∆lb and ∆ub, and the

rope length (λ/∆)lb and (λ/∆)ub

Dlb := min
i

(Cdist(23, i)− Cdist(19, i)− Cdist(21, i))

Dub := min
i

(Cdist(23, i) + Cdist(19, i) + Cdist(21, i))

∆lb := min{rmin,
1
2
Dlb}

∆ub := min{rmin,
1
2
Dub}

(λ/∆)ub :=
λ(α)

∆lb

(λ/∆)lb :=
λ(α)

∆ub

Compute the maximal and relative error, and set the number k of iterations to one.

εmax := max
i

(Cdist(19, i) + Cdist(21, i))

εrel :=
εmax

∆lb

k := 1

While iteration: while the relative error is bigger than the relative error bound and

the lower bound for the double critical self distance Dlb is smaller than the double of

the minimal radius, i.e. while

εrel > ε̄rel and 2rmin > Dlb(k)

k=k+1: Add one to the number k of iterations.
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Bisection and double critical test:

1. Set Ccrit := ∅.

2. For each column of Cdist, bisect both arcs and apply the double critical test, cf.

Corollary 7.9, to all four pairs, denote the result by c1, . . . , c4 ∈ {0, 1}, i.e. ci := 1

for passing the test and ci := 0 for failing.

3. If ci 6= 0, compute the minimal euclidean distance between the base segments for

the corresponding sub pair and add a column in the format (7.36) to the matrix

Ccrit according Lemma 7.6 as follows:

c = [aT
0 , a

T
1 , a

T
2 ,b

T
0 ,b

T
1 ,b

T
2 ,
εa
fa
, fa,

εb
fb
, fb, d(a,b)]

T ∈ R
21.

Distance test:

1. Define Cdist := ∅.

2. Compute db := mini{Ccrit(19, i) + Ccrit(21, i) + Ccrit(23, i)}.

3. If Ccrit(23, i) − Ccrit(19, i) − Ccrit(21, i) ≤ db, add a column in the format (7.36)

to the matrix Cdist.

Thickness bounds: Compute upper and lower bounds for the minimal distance be-

tween double critical points Dlb and Dub, the thickness ∆lb and ∆ub, and the rope length

(λ/∆)lb and (λ/∆)ub

Dlb = [Dlb; min
i

(Cdist(23, i)− Cdist(19, i)− Cdist(21, i))]

Dub = [Dub; min
i

(Cdist(23, i) + Cdist(19, i) + Cdist(21, i))]

∆lb = [∆lb; min{2rmin, min
i

(Cdist(23, i)− Cdist(19, i)− Cdist(21, i))}]
∆ub = [∆ub; min{2rmin, min

i
(Cdist(23, i) + Cdist(19, i) + Cdist(21, i))}]

(λ/∆)ub =

[
(λ/∆)ub;

λ(α)

min{2rmin, mini(Cdist(23, i)− Cdist(19, i)− Cdist(21, i))}

]

(λ/∆)lb =

[
(λ/∆)lb;

λ(α)

min{2rmin, mini(Cdist(23, i) + Cdist(19, i) + Cdist(21, i))}

]

Compute the maximal and relative error

εmax = [εmax; max
i

(Cdist(19, i) + Cdist(21, i))]

εrel =

[
εrel;

maxi(Cdist(19, i) + Cdist(21, i))

min{2rmin, mini(Cdist(23, i)− Cdist(19, i)− Cdist(21, i))}

]
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Figure 7.7: Projection of p onto the plane of the circle C with centre c that defines

the orthonormal coordinate system (x,b,y). The minima and maxima of pp(p, ·) are

achieved at Cmin and Cmax.

Output: The algorithm stops after a finite number k̄ of iterations with as output:

The radii r(ai) and lengths λ(ai) , the length λ(α) of the arc curve α, the smallest

radius rmin, upper and lower bounds for the minimal distance between double critical

points Dlb ∈ R
k̄ and Dub ∈ R

k̄, the thickness ∆lb ∈ R
k̄ and ∆ub ∈ R

k̄, and the rope

length (λ/∆)lb ∈ R
k̄ and (λ/∆)ub ∈ R

k̄, the maximal and relative error of each iteration

εmax ∈ R
k̄ and εrel ∈ R

k̄, the set of candidates passing the double critical test of the last

iteration Ccrit, the set of candidates passing the distance test of the last iteration Cdist,

and the number of candidates in Cdist and Ccrit at each iteration.

For a Matlab code implementing the thickness evaluation algorithm presented in

this section see Appendix B.

7.2 Evaluation of ρpt on arc curves

To evaluate ρpt on a given arc curve α ∈ C1(I,R3) we will exploit the necessary con-

ditions given in Lemma 3.6 and the simple geometry of circles. We start with an

elementary, classic result.

Lemma 7.11 For a circle C parametrised by a parameter s ∈ I, and a point p, consider

the euclidean distance function pp(p, ·) : s 7→ pp(p,C(s)), s ∈ I, where pp(p,C(s)) =
1
2
|p−C(s)|. Denote the unit binormal by b, the radius by r, and the centre of the circle

C by c. Then pp(p, ·) is either constant, whenever p ∈ A (cf. Definition 2.6), or it has

exactly one minimum and one maximum, which are achieved at

Cmin = c + r
p− c− b · (p− c)b

|p− c− b · (p− c)b| , Cmax = c− r
p− c− b · (p− c)b

|p− c− b · (p− c)b| . (7.37)

Proof If the point p lies on the polar axis A of the circle C, then the euclidean

distance function pp(p, ·) is constant. Assume now p /∈ A. Project p onto the plane of

C,

p̂ = p− b · (p− c)b.

Because p /∈ A, p̂ − c 6= 0. Set x := p̂−c

|p̂−c| and y := x × b, then (x,b,y) is an
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orthonormal coordinate system, cf. Figure 7.7. A parametrisation of the circle C is

given by

C(s) = c + r cos(s)x + r sin(s)y, s ∈ [0, 2π].

We differentiate the distance function to find

∂s

(
(2pp(p,C(s)))2

)
= ∂s

(
|p− C(s)|2

)
= 2r sin(s)(p− c) · x.

Because p /∈ A, we have (p − c) · x 6= 0. Therefore the only critical points are when

sin(s) = 0, i.e. for s = 0 and s = π, which correspond to the two points given in (7.37).

�

The analogous result for the circular distance function pt is less simple.

Lemma 7.12 For a circle C parametrised by a parameter s ∈ I, and a point p /∈ C,

consider the function pt(p, ·) : s 7→ pt(p,C(s)), s ∈ I, where pt(p,C(s)) is the radius of

the circle passing through p and C(s) with tangent C′(s). Denote by b the binormal to

the circle C, and by cS the centre of the sphere S containing both C and p. Then either

pt(p, ·) is constant or it assumes either two or four critical points. More precisely, if p

is not contained in the plane of the circle C, then only one of the following three cases

occurs:

1. When p ∈ A, that is when

∣∣∣∣
p− cS
|p− cS|

· b
∣∣∣∣ = 1,

then pt(p, ·) is constant,

2. when
∣∣∣∣

C(s)− cS
|C(s)− cS|

· b
∣∣∣∣ ≤

∣∣∣∣
p− cS
|p− cS|

· b
∣∣∣∣ < 1, s ∈ I, (7.38)

then pt(p, ·) has two critical points, one minimum and one maximum that are

achieved at the minimum and maximum of pp(p, ·) given in (7.37),

3. when

0 ≤
∣∣∣∣
p− cS
|p− cS|

· b
∣∣∣∣ <

∣∣∣∣
C(s)− cS
|C(s)− cS|

· b
∣∣∣∣ , s ∈ I, (7.39)

then pt(p, ·) has four critical points, two global maxima equal to the radius of the

sphere S and a global and a local minimum that are respectively the minimum and

maximum of pp(p, ·) given in (7.37).

If p is contained in the plane of the circle C, cf. Figure 7.8, then only one of the following

three cases can occur:
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(a) (b)

C

sc sp sCminsCmax

C

sc s psCminsCmax

Figure 7.8: When p is contained in the plane of the circle C, and (a) p is outside the

circle C, then pt(p, ·) has two infinities and two (a global and a local) minima that

are achieved at the minimum and maximum of the euclidean distance, Cmin and Cmax,

and (b) when p is inside the circle C with p 6= c, pt(p, ·) has two critical points, one

minimum and one maximum that are achieved at the minimum and maximum of the

euclidean distance, Cmin and Cmax.

1. When p = c, the centre of the circle C, then pt(p, ·) is constant,

2. when p is inside the circle C with p 6= c, then pt(p, ·) has two critical points,

one minimum and one maximum corresponding to the minimum and maximum of

pp(p, ·) achieved at the points given in (7.37),

3. when p is outside the circle C, then pt(p, ·) has two poles, or infinities, and two

critical points, namely one global and one local minimum that are achieved at

respectively the minimum and maximum of pp(p, ·) given in (7.37).

We remark that the inequalities (7.38) and (7.39) distinguish between the cases in

which the projection of the point p onto the plane of the circle C lies inside or outside the

circle. When p ∈ C then pt(p,C(s)) = r whenever p 6= C(s). However as p approaches

C the function pt(p,C(s)) as a function of p is discontinuous.

Proof If the point p lies on the polar axis A of the circle C, then pt(p, ·) is constant.

Assume now p /∈ A. The circle C and a point p /∈ C define a unique sphere S (or plane)

containing both C and p. Every circle C̄ passing through p and tangent to the circle

C at some point C(s) lies on the sphere S. By the proof of Lemma 3.6, a critical point

of pt(p, ·) is achieved only at either a point C(s) that assumes a single critical distance,

i.e. (C(s) − p) · C′(s) = 0, or when the centre of C̄ lies on the polar axis A of C. The

first case corresponds exactly to the minimum and maximum of the euclidean distance

described in (7.37).

We next demonstrate that in the present case of a circle and a point p /∈ C the

centre of C̄ intersects the polar axis of C if and only if C̄ is a great circle of the sphere S.

First note that for a given sphere and a tangent to the sphere at some point, the locus

of the centres of all circles lying on the sphere with the prescribed tangent is a circle of

half of the radius of the sphere passing through the point and the centre of the sphere
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Figure 7.9: (a) A cut through c and cS perpendicular to a tangent to C, showing the

circle that is the locus of the centres of all circles on S that are tangent to the given

tangent of C. (b) Illustration of S\(C ∪ C?) = Z1 ∪ Z2 ∪ Z3.

and which is contained in the plane perpendicular to the tangent, cf. Figure 7.9(a). In

particular this circle intersects the polar axis A in only two points: the centre c of C

and the centre cS of the sphere S. Therefore the centre of C̄ is either cS or c. But the

latter can not be true as p /∈ C. Thus, the circle C̄ is a great circle of S.

If S is a true sphere of finite radius, two cases can happen: (a) S is the circumsphere

of C, or (b) S is not the circumsphere of C. If S is the circumsphere of C, then any great

circle passing through a point p ∈ S\C intersects the circle C with an non-zero angle.

Thus, the only critical points of pt(p, ·) are the critical points of pp(p, ·) described in

(7.37).

If S is not the circumsphere of C, we denote by C? the circle on S in a plane parallel

to the plane of C and with the same radius as C. The two circles C and C
? split the

sphere S into three open components, say S\(C ∪ C?) = Z1 ∪ Z2 ∪ Z3, with Z1 and Z3

bounded by a circle, and Z2 bounded by both circles, cf. figure 7.9(b). When p ∈ C?,

in which case
∣∣∣ C(s)−cS
|C(s)−cS|

· b
∣∣∣ =

∣∣∣ p−cS
|p−cS|

· b
∣∣∣, there is only one great circle passing through

p and tangent to C at some point. This circle is the circle achieving the maximum of

pp(p, ·). That is, we have only two critical points of pt(p, ·) and they correspond to the

critical points of the euclidean distance pp(p, ·) given in (7.37). When p ∈ (Z1∪Z3)\A,

in which case
∣∣∣ C(s)−cS
|C(s)−cS|

· b
∣∣∣ <

∣∣∣ p−cS
|p−cS|

· b
∣∣∣ < 1, then every great circle passing through p

intersects the circle C with an non-zero angle. Thus, the only critical points of pt(p, ·)
are the critical points of pp(p, ·) given in (7.37). But when p ∈ Z2, in which case

0 ≤
∣∣∣ p−cS
|p−cS|

· b
∣∣∣ <

∣∣∣ C(s)−cS
|C(s)−cS|

· b
∣∣∣, there are two great circles passing through p that are

tangent to C at some point. Both circles that correspond to critical points of pp(p, ·)
have smaller radii than the great circles, that is they are two local minima of pt(p, ·),
and the global maxima of pp(p, ·) is achieved twice by the great circles.

If S is actually a plane, any circle C̄ passing through p and tangent to the circle C

at some point lies in this plane. Therefore the centre of C̄ lies also in this plane. The
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polar axis A intersects the plane only in the centre c of C (which can not be a centre

of a circle C̄ because p /∈ C), and at infinity, in which case C̄ is a straight line. When

p = c, then pt(p, ·) is constant. When p is inside the circle C with p 6= c, any straight

line intersects C, so that the only critical points of pt(p, ·) correspond to the two critical

points of pp(p, ·) and are achieved at the points given in (7.37). When p is outside the

circle C, then there are exactly two straight line passing through p and tangent to C

at some point. Therefore the critical points of pt(p, ·) are two maxima with the value

infinity and two minima that correspond to the two critical points of pp(p, ·). �

Corollary 7.13 For a circle C parametrised by a parameter s ∈ I, and a point p /∈ C,

the function pt(p, ·), s ∈ I, is either constant or has either one or two minima. The

global minimum of pt(p, ·) is the global minimum of pp(p, ·). If it has two minima, then

they are the critical points of pp(p, ·). That is the maximum of pp(p, ·) is either a local

minimum of pt(p, ·) or the global maximum of pt(p, ·) .

It is remarkable that on a circle the minimum of pt(p, ·) is never achieved by the

fifth case of Lemma 3.6, cf. section 7.2.1. Now consider an arc a instead an entire circle

C. To decide if a minimum of pt(p, ·) is achieved within the arc, we have to consider

derivatives at the end points.

Lemma 7.14 For an arc a with ∠a < π, given by the Bézier points a0, a1, a2 ∈ R
3,

denote by r the radius, and by c the centre of the arc a. Then for a point p /∈ a,

1. When (a1−a0) ·(a0−p) < 0 and (a2−a1) ·(a2−p) < 0, then there is no minimum

of pt(p, ·) achieved inside the arc, and the minimum is achieved at an end point,

2. When (a1−a0) · (a0−p) ≤ 0 and (a2−a1) · (a2−p) ≥ 0, then there is a minimum

of pt(p, ·) achieved inside the arc by the minimum of pp(p, ·),

3. When (a1 − a0) · (a0 − p) ≥ 0 and (a2 − a1) · (a2 − p) ≤ 0 and if p, a0, a1, and

a2 are not coplanar with additionally (7.39) being valid, or if p, a0, a1, and a2

are coplanar with additionally r < |p − c|, then there is a minimum of pt(p, ·)
achieved inside the arc by the maximum of pp(p, ·), otherwise there is no minimum

of pt(p, ·) achieved inside the arc,

4. When (a1−a0) ·(a0−p) > 0 and (a2−a1) ·(a2−p) > 0, then there is no minimum

of pt(p, ·) achieved inside the arc, and the minimum is achieved at an end point.

Proof Lemma 7.12 implies the results. �

For a Matlab code implementing the evaluation of ρpt based on Lemma 7.14 see

Appendix B.
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7.2.1 Example: Biarc approximation of an Ellipse

In order to verify the proposed algorithms we compare the standard local radius of cur-

vature function ρ, and the global radius of curvature function ρpt evaluated on an ellipse

and on a biarc approximation of the same ellipse. We consider the case of the ellipse

with principal axes of length 1.0 and 0.6 discussed in section 3.5.1. We use a biarc curve

obtained as an interpolation of 100 point-tangent data pairs non-uniformly distributed

in arc length, that were uniformly distributed in the (cos(t), 0.6 sin(t)) parametrisation.

The matching rule used here, and in the biarc curves described in chapter 8 is the

midpoint-matching rule, and we therefore refer to such biarcs as midpoint-biarcs.

Notation 7.15 For a proper point-tangent data pair ((q0, t0), (q1, t1)) ∈ J × J the

midpoint-biarc is the biarc that has the mid point of the circular arc of Σ++ as matching

point m.

By definition 4.12, midpoint-biarcs are proper biarcs. In [54] the midpoint-matching

rule is called Shippey’s bisector, it is a geometrically natural rule with simple associated

formulæ. For a short discussion on other possible matching rules see section 9.
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Figure 7.10: (cf. Figure 3.3) The pt function for a 100-midpoint-biarc approximation of

an ellipse with principal axes of length 1.0 and 0.6. The vertical index is that of the

midpoints mi of the arcs ai, i = 1, · · · , 200, the horizontal index is that of the arcs aj,

j = 1, · · · , 200. (a) The colours indicate how the minimum of pt(mi, ·) restricted to

the arc aj is achieved. Blue: a local minimum of pt(mi, ·)|aj
is achieved at an interior

minimum of pp(mi, ·), magenta: a local minimum of pt(mi, ·)|aj
is achieved at an interior

maximum of pp(mi, ·), red: a local minimum of pt(mi, ·)|aj
is achieved at an end point of

the arc aj which is a (local) minimum of pt(mi, ·), and green: the minimum is achieved

by the local radius. (b) the minimum of pt(mi, ·)|aj
, with a superposed blue dot when

the minimum pt(mi, ·)|aj
is a minimum of pt(mi, ·).
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Figure 7.11: (cf. Figure 3.5) (a) Plot of the height of the minimum of pt(mi, ·)|aj
for

(i, j) that achieve a minimum of pt(mi, ·), the horizontal axis is arc length. Magenta +:

the minimum of pt(mi, ·)|aj
is achieved at an interior maximum of pp(mi, ·), blue dot:

the minimum of pt(mi, ·)|aj
is achieved at an interior minimum of pp(mi, ·), red dot:

the minimum of pt(mi, ·)|aj
is achieved at an end point of the arcs aj and it is a (local)

minimum of pt(mi, ·), green dot: local radius of ai. For a fixed i, the minimum of the

values plotted is ρtp(mi) shown in figure 7.12, (b) is a zoom of the box in (a).
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Figure 7.12: (cf. Figure 3.4) (a) Plots of the local and global radius of curvature function

ρ and ρpt for a 100-midpoint-biarc approximation of an ellipse with principal axes of

length 1.0 and 0.6, (b) zoom of the box indicated in (a).
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We evaluate the global radius of curvature function ρtp at the mid point mi of every

one of the 200 arcs ai. In order to do that we have to study the minima of pt(mi, ·)
restricted to the arc aj, i.e. of pt(mi, ·)|aj

for every pair 1 ≤ i, j ≤ 200. In particular we

seek local minima of pt(mi, ·)|aj
that correspond to local minima of the pt(mi, ·). Using

Lemma 7.14 we classified all pairs (i, j) as shown in Figure 7.10 (a). Figure 7.10 (b)

displays those special pairs of arcs superposed with the height of the minimum value of

pt(mi, ·)|aj
.

In Figure 7.11 the heights of the minimum of pt(mi, ·)|aj
are plotted against the

parameter t ∈ [0, 2π) for pairs appearing in Figure 7.10 (a). Except for two small

regions where the minima are given by blue dots, that is by a minimum of pp(mi, ·),
the minima is given by red dots, that is they are achieved at an end point of the arc.

The switch in the way of achieving the minima of pt(mi, ·)|aj
corresponds exactly to the

switch observed in Figure 3.5 (d)-(f). Note that the blue line does not stop exactly on

the red line, but overlaps it slightly. In particular for a finer mesh one can observe a

local minimum of pt(mi, ·)|aj
achieved at an interior minimum of pp(mi, ·) that is higher

than the value of the local minimum of pt(mi, ·)|ak
achieved at an end point of an arc.

The minimal values (red) of the heights of the minimum of pt(mi, ·)|aj
for pairs

appearing in figure 7.10 (a) and the radii r(ai) of the arcs ai (blue) are plotted against

the parameter t ∈ [0, 2π) in Figure 7.12. This is the analogue of the ρ and ρpt plots in

Figure 3.4. The flat region of ρpt in Figure 7.12 corresponds to the region bounded by

the corners of the global radius of curvature function ρpt visible in figure 3.4.
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Chapter 8

Ideal Shapes - Global radius of

curvature functions and contact sets

We now consider the specific problem of computation of the ideal shapes that were

introduced in section 2.3. We address the two following, related questions: For a given

closed, non-intersecting curve, can we quantify how close the given configuration is to

being an ideal knot shape? Can we rigorously define a contact set? Both questions

require answers in a form that is robust for numerics. We then apply the proposed

definitions to shapes obtained by simulated annealing computations using the biarc

discretization implemented in a code developed in collaboration with B. Laurie. In

particular we test a necessary condition and determine the approximate contact sets of

computations of the ideal shapes of the 3.1 (or trefoil) and 4.1 (or figure-eight) knots.

8.1 Ideality test, contact set and µ-contact set

For an ideal shape, as mentioned in section 2.3, the global radius of curvature function ρpt

is constant on curved segments. In general we have the inequality ρpt ≤ ρtp (cf. (3.25)).

We next show that on ideal shapes these two global radius of curvature functions agree

on curved segments, and therefore the function ρtp is also constant on curved segments:

Lemma 8.1 Given a smooth ideal shape q, then

ρpt(s) = ρtp(s) = ∆[q] for {s ∈ I; κ(s) 6= 0}.

Proof We know from [18, p. 4771] that ρpt(s) = ∆[q] when κ(s) 6= 0. Assume

there exists an s ∈ I with ρpt(s) < ρtp(s) and κ(s) 6= 0. Because of the equalities (3.23)

and the inequalities (3.25), more precisely because ρ ≥ ρtp ≥ ρpt, the global radius of

curvature function ρpt(s) is achieved non-locally, that is, there exists a t ∈ I with t 6= s

and ρpt(s) = pt(s, t). Consider the circumsphere S of the circle C(s, t, t). The vector

q′(s) is tangent to the sphere S, because if not, then there exists a circle C(s′, t, t) with

pt(s′, t) < pt(s, t) = ρpt(s) = ∆[q]. Thus, the circle C(s, s, t) lies on the sphere S, and

therefore tp(s, t) ≤ pt(s, t) = ρpt(s) which contradicts ρpt(s) < ρtp(s). �
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The precise regularity necessary for Lemma 8.1 to remain valid is not clear. The

proof of constancy of ρpt given in [18] uses curve shortening arguments for which C2

regularity is sufficient, but a gap remains to the known C1,1 smoothness of ideal shapes.

Given Lemma 8.1 a comparison of the graphs of both ρpt and ρtp with ρ and the

thickness gives one indication of how close to ideal a given shape is. By the inequality

ρpt ≤ ρtp (cf. (3.25)) the graph of ρtp will be further from constant than that of ρpt but

because we do not have a rigorous algorithm for the computation of ρtp in hand, we

graph only ρpt.

Definition 8.2 For a closed, non-intersecting curve q ∈ C1(I,R3) we define

1. the contact set χ to be the set

χ := {(s, σ) ∈ I × I; pt(s, σ) = ∆[q]},

and the set of contact points in three dimensional space to be the set

C := {c ∈ R
3; c is the centre of C(s, σ, σ) & (s, σ) ∈ χ},

2. and for µ > 0 the µ-contact set χµ to be the set

χµ := {(s, σ) ∈ I × I; pt(s, σ) ≤ ∆[q](1 + µ) & pt(s, ·) has a local minimum in σ},

and the set of µ-contact points in three dimensional space to be the set

Cµ := {c ∈ R
3; c is the centre of C(s, σ, σ) & (s, σ) ∈ χµ}.

The ideas motivating Definition 8.2 are the following. For a generic curve Γ the contact

set χ will typically be a pair of elements (s, σ) and (σ, s) with χµ, for µ sufficiently

small, being a pair of short curve segments containing (s, σ) and (σ, s) respectively. For

an exactly ideal shape the constancy of ρpt implies that the contact set χ will contain

points of the form (s, I(s)) for each s, with, presumably, the set being made up of one

or more curves in the (s, σ) plane generated by the local minimiser of pt(s, ·) moving

with the parameter s. For an approximately ideal shape the contact set χ should again

be one, or a small number of, isolated points, but for µ small χµ should explode to a

much larger set, containing points of the form (s, I(s)) for all s. It is also reasonable to

anticipate ranges of µ for which χµ is invariant or changes very little. These expectations

are justified by the computations described below.

Trivially we have χ ⊂ χµ for any µ > 0, and χ ⊂ χµ1
⊂ χµ2

for µ2 > µ1 > 0.

Moreover, if (s, σ) /∈ χ, then there exists a µ > 0 such that (s, σ) /∈ χµ. Note that

both the exact contact set χ as well as any χµ can contain contact of the type (s, s).

With the definition of µ-contact we have another test in hand: If the shape obtained by

simulated annealing computation is close to being converged then we expect that there

exists a µ > 0 such that χ2µ\χµ is a small set relative to the number of arcs of the arc

curve. The sets of contact points C and Cµ in three dimensional space are useful to give

the right spatial picture, but they contain different information than the contact sets
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χ and χµ in two dimensions. For example the contact set C of the circle (namely the

ideal shape of the trivial knot) contains one single point, but this point is derived from

an infinite number of pairs in χ, more precisely one line for local curvature, one line for

diametrically opposite points.

An approximate µ-contact set could be defined in other related ways, for example

as

χ∗
µ := {(s, σ) ∈ I × I; pt(s, σ) ≤ ∆[q](1 + µ) & ∂σpt(s, σ) = 0},

which is perhaps more useful analytically. Similarly an approximate contact set could

instead be based on the function ρtp and be found via minima of tp(s, ·).

8.2 Computation of an ideal 3.1-knot

We now present the output of simulated annealing computations performed in collabora-

tion with B. Laurie who upgraded an existing code [26] that was based on a piece-wise

linear space discretization to the biarc discretization, and implemented the thickness

evaluation algorithm described in chapter 7. The basic data format is a list of point-

tangent data. The allowed moves are random changes in both points and tangents,

but the step sizes have different scales for points and tangents. Throughout we used

the midpoint matching rule, cf. Notation 7.15, which is a convenient and simple choice.

Nevertheless it is reasonable to believe that it may not be the optimal matching rule

to compute ideal shapes. Moreover we do not know the optimal values for parame-

ters such as temperature and cooling rate that need to be set during the simulation.

The knot shapes presented here were obtained by low temperature simulated annealing

starting from close-to-ideal shapes, in particular we did not attempt to globally search

the conformation space of the knot type in order to find all local minima.

The simulated annealing computation of the 3.1 knot was carried out by B. Laurie

and J. Smutny. Low temperature simulated annealing was performed starting from a

190-biarc interpolation of a piece-wise linear trefoil configuration obtained from a prior

simulated annealing computation of B. Laurie [26]. After some computation a curvature

plot seemed to suggest that the shape was close to converged, although three regions

corresponding to the inner parts of the knot remained unresolved. The curvature was not

very smooth in that region and it was not clear if local curvature was active. In order to

address these issues a local (and manual) mesh refinement was performed in these three

regions by splitting some biarcs to obtain a 264-biarc shape with a rather nonuniform

distribution of biarc lengths. Subsequent low temperature annealing provided the shape

α described below which has rope length λ(α)
∆[α]

= 32.74446. We denote the 528 arcs by

ai, the radii by ri and the mid point of each arc ai by mi, 1 ≤ i ≤ 528. The total time

for the simulated annealing computation was several months on a single CPU.

8.2.1 Computing the thickness

Figure 8.1 illustrates the thickness evaluation algorithm presented in section 7.1.3. The

horizontal line indicates the number of pairs of arcs of the arc curve, here (2 · 264)2 =
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278′784. The number of candidates in achieving thickness after the double critical test

(higher curve) and after the distance test (lower curve) of each of the 15 iterations is

plotted. With the bisection step the number of pairs of candidates is quadrupled, which

is why it is important to combine both tests to reduce computation time. It would

probably be worthwhile investigating additional tests to further improve the speed of

the thickness evaluation.
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Figure 8.1: The number of candidates in achieving thickness after the double critical test

(higher curve) and after the distance test (lower curve), cf. 7.1, for each of the fifteen

iteration steps. The horizontal line indicates the original total number (2 · 264)2 =

278′784 of pairs of arcs to be considered.
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Figure 8.2: (a) Upper and lower bound of rope length λ(α)
∆[α]

of the biarc curve after

each of the fifteen iteration steps, (b) is a zoom of Figure (a), the values for the last 8

iteration steps are displayed.

The evolution of upper and lower bounds of rope length λ(α)
∆[α]

during the thickness

evaluation algorithm is plotted in Figure 8.2. The lower bound of rope length is in-

creasing, but much less rapidly than the upper bound is decreasing. The final bounds

of rope length, the length λ(α) of the arc curve, the minimal radius mini ri, and upper
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and lower bounds for thickness ∆[α] are

λ(α) = 0.99999999997863,

mini ri = 0.03054053096312,

0.03053951779966 ≤ ∆[α] ≤ 0.03053951779968,

32.74445937679887 ≤ λ(α)
∆[α]

≤ 32.74445937682155.

The thickness was evaluated up to a relative error of 10−12, that is the maximal error

divided by the lower bound of thickness is smaller than 10−12. Note that mini ri is

slightly higher than the thickness ∆[α], this observation will be discussed later.

8.2.2 The shape

To display the shape of the knot the centre of mass and principal axes v1, v2, and v3

of inertia (ordered with eigenvalues λ1 = 3.1161 · 10−3 ≤ λ2 = 3.1347 · 10−3 ≤ λ3 =

5.2057 ·10−3) of the set of end points of all arcs were computed. Figure 8.3 (a) shows the

projection of the end points of all arcs onto the v1-v2 plane, whereas (b) is the projection

of the tangents at the end points of all arcs onto the v1-v2 plane. In Figure 8.3 the

polar coordinates of (c) the end points and (d) end point tangents along arc length are

plotted, with blue the v3 coordinate, green the radial coordinate r =
√
v2
1 + v2

2 and red

the angle φ in radians scaled by a factor to make variations visible on the same plot.

Note that the discontinuities of the scaled angle φ (red) in both Figures 8.3 (c) and (d)

are not a real feature, but are due to the fact that Matlab displays the angle φ ∈ [−π, π)

modulo 2π. Both the curve and the tangent curve appear to be very smooth, but the

derivative of the tangent, i.e. the curvature, is large in three small regions, as can be

observed in the Figures 8.3 (b) and (d). Figure 8.3 (a)-(d) suggests that the ideal shape

of the trefoil is close to having a period three, rotational symmetry about the v3 axis.

Rotational symmetry would imply double eigenvalues of the inertia matrix. Therefore

one measure of asymmetry is λ2−λ1

λ1+λ2+λ3
= 1.6233 · 10−3, thus the presented shape is only

close to being, but is not precisely, rotationally symmetric.

The tangent indicatrix of an arc curve is a continuous curve assembled from arcs

of great circles, cf. section 4.2. Figures 8.4 (a)-(f) show the tangent indicatrix of the

shape from six different directions corresponding to the principal axes ±v1, ±v2, and

±v3. The lengths of the 528 arcs are depicted in Figure 8.5. In the three regions where

mesh-refinement was performed the lengths are about three times shorter. Figure 8.6

depicts the radii of the 528 arcs scaled by the thickness ∆. There are three regions

with almost constant radii equal 2∆ and three regions with a high variation of the radii,

dropping from approximately 2∆ down to ∆ then up to 2.8∆, back down to ∆, and

finally back up to end again with 2∆. In section 8.2.3 we quantify how close the scaled

radii are to actually achieving thickness. The regions with constant curvature belong

to the large exterior loops visible in Figure 8.3 (a). As will also be seen from torsion

plots and in the two dimensional contact map, cf. Figure 8.13, these regions are close

to being, but are not precisely, circular arcs.

The angle between the planes of adjacent arcs is plotted in figure 8.7. There are

three regions with large angles that correspond to the regions with a high variation of
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Figure 8.3: Projection onto the plane of the v1-v2 inertia axes of (a) the end points of

all arcs, and (b) the unit tangents at the end points of all arcs. Plots of the cylindrical

polar coordinates v3, r =
√
v2
1 + v2

2 and the (scaled) angle φ in radians, of (c) the end

points of all arcs w.r.t. the axes of inertia, after translation to the centre of mass, and

(d) of the tangents at the end points of all arcs.

the radii, that is to the parts “inside the knot”. Note that the angle is given in radians,

that is, the maximal value of about 1.2 between adjacent arcs corresponds to an angle

of about 70 degrees.

In chapter 5 we derived various approximation results of radius of curvature, its

derivative, and torsion for biarcs interpolating an underlying C3-curve in terms of the

circles C0 and C1 associated with every point-tangent data pair, cf. Propositions 5.12 and

5.13. Figure 8.8 displays the quantities that approach the values of radius of curvature,

its derivative, and torsion for a finite h. But we stress that it is not clear that the ideal

shape is a C3-curve, and, moreover, we have no estimate of the constants involved in

the error terms. Both the approximation of the radius of curvature and its derivative

suggest that the curvature of the underlying ideal shape is very close to constant on

the large loops. The parts of the shape having large oscillations of the derivative of

curvature coincide with the parts of large torsion, which takes values up to 700.

The plots of quantities associated with the actual arc curve shape, cf. Figures 8.6
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(a) (b) (c)

(d) (e) (f)

Figure 8.4: Six projections of the tangent indicatrix along principal axes of inertia (a)

and (d) ±v1, (b) and (e) ±v2, and (c) and (f) ±v3.

and 8.7, are in agreement with the plots of the approximating finite difference quantities

for an assumed underlying curve, cf. Figures 8.8(a)-(b) and 8.8(e)-(f).
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Figure 8.5: The lengths of the 528 arcs in the simulation are non-uniform. A three-

periodicity can be observed, where mesh-refinement was performed to resolve the three

regions of high local curvature.
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Figure 8.6: (a) Plot of the radii of the arcs scaled by the thickness (non-dimensional),

(b) is a zoom of (a).
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Figure 8.7: Plots of (a) torsion angle, i.e. the angle between the planes of successive

arcs in radians and (b) zoom of (a).
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Figure 8.8: Plots of the finite difference approximation of radius of curvature, its deriva-

tive, and torsion for an underlying curve. (a) Plot of the approximation of the radius of

curvature in terms of the circles Ch
0 and Ch

1 , cf. Proposition 5.12, (b) zoom of (a) (units

of length). (c) Plot of the approximation of the derivative of the radius of curvature in

terms of the circles Ch
0 and Ch

1 , cf. Proposition 5.12, (d) zoom of (c) (non-dimensional).

(e) Plot of the approximation of the torsion in terms of the circles Ch
0 and Ch

1 , cf. Propo-

sition 5.13, (f) zoom of (d) (units reciprocal length).
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8.2.3 The contact set and ρpt

To find an appropriate µ > 0 for a µ-contact set χµ of Definition 8.2, we use Lemma 7.14

to compute the minimum of pt(mi, ·) restricted to the arc aj for all pairs 1 ≤ i, j ≤ 528.

We then classify the minima that correspond to minima of pt(mi, ·) along the whole

curve as follows, cf. Figure 8.9 and 8.10: The minimum of pt(mi, ·)|aj
is achieved by (a)

blue: a minimum of pp(mi, ·), (b) magenta: a maximum of pp(mi, ·), (c) red: an end

point of the arc aj, and (d) green: a local radius. The only difference between Figures

8.9 and 8.10 is that in the latter the non-uniform lengths of the arcs are taken into

account, whereas Figure 8.9 is a plot of index vs. index. Figure 8.10 is smoother and

more representative of the overall contact set, while Figure 8.9 provides a magnification

of regions where mesh refinement was made. Any pair plotted in figure 8.9 and 8.10 is a

priori a candidate to be an element of a µ-contact set χµ. If the value of the minimum

of pt(mi, ·)|aj
is smaller than ∆(1 + µ), then the arc-length values (s, σ) corresponding

to mi and the point on the arc aj where the minimal value is achieved belong to the

µ-contact set χµ.
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Figure 8.9: The vertical axis stands for the midpoints mi of the arcs ai, i = 1, · · · , 528,

the horizontal axis stands for the arcs aj, j = 1, · · · , 528. The colours indicate how the

minimum of pt(mi, ·) restricted to the arc aj is achieved. Blue: a local minimum of

pt(mi, ·)|aj
is achieved at an interior minimum of pp(mi, ·), magenta: a local minimum

of pt(mi, ·)|aj
is achieved at an interior maximum of pp(mi, ·), red: a local minimum of

pt(mi, ·)|aj
is achieved at an end point of the arc aj which is also a (local) minimum of

pt(mi, ·), and green: the minimum of pt(mi, ·)|aj
is achieved by the local radius. Note

that the figure axes represent indices which are a distortion of actual length because of

the non uniform mesh.
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Figure 8.10: As Figure 8.9, but not distorted; the differing lengths of the arcs are taken

into account. (Note: the vertical axis label is reversed, (0, 0) is at the top left.)

In Figure 8.11 the minimal value of pt(mi, ·)|aj
is plotted using a colour map with

blue for low and red for high, except for pairs that appear in figures 8.9 and 8.10. Note

that the minima form a very flat valley. Moreover at three places along the diagonal we

see double dips approaching very close to the global minimum.

We now have to select an appropriate value of µ. We plot the heights of all minima

of pt(mi, ·)|aj
that are candidates for a χµ, i.e. that appear in Figures 8.9 and 8.10,

against arc length in various zooms, cf. Figure 8.12 (a)-(d). The heights appearing in

Figure 8.12 (b) belong to the lowest line in (a) and correspond to the three “curves” in

the blue flat valley in Figure 8.11. The dots in figure 8.12 (c) correspond to the lowest

line with the lowest bits of the above structure in (b), and finally, (d) is an ever stronger

zoom showing only the lowest line in (b). In figure 8.12 (d) there is a gap above a layer

of candidates. We therefore set µ := 8.1861 · 10−6, which is about half of the height of

Figure 8.12 (d). Now the µ-contact set χµ is the set of pairs of arc lengths corresponding

to pairs plotted in Figures 8.9 and 8.10 for which the minima of pt(mi, ·)|aj
is smaller

or equal to ∆(1 + µ). And similarly for χ2µ.

Figure 8.13 displays the µ-contact set χµ with µ = 8.1861 · 10−6. The contact set

appears to be two smooth lines. Indeed, the µ-contact set χµ has 1058 elements so that

the average number of µ-contacts per arc is 1058
2·264

≈ 2.00. We expect the µ-contact set

χµ to be relatively invariant for small increasing µ, in fact, the number of elements of

the 2µ-contact set χ2µ is 1062, that is χ2µ\χµ contains only four additional contacts.

The change of elements relative to the number or arcs is 4
2·264

= 0.0076. Figure 8.14

visualises the elements of both contact sets χµ and χ2µ: As in Figure 8.12 the height of
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Figure 8.11: The minimum of pt(mi, ·)|aj
, a blue dot is drawn when the minimum

pt(mi, ·)|aj
is a minimum of pt(mi, ·). Note that the figure plots indices along a non

uniform mesh. The colour map uses blue for low and red for high values.

the minimum of pt(mi, ·)|aj
is plotted for elements in χ2µ, but with a different colour

coding, namely the lowest value is blue dots, second lowest is red dots, third lowest is

green dots, fourth lowest is a blue line. Moreover the vertical axis is now [∆,∆(1+2µ)]

and the dashed horizontal line indicates the height ∆(1 + µ). In the upper half plane

there are two green dots and two elements belonging to a blue line; these are the four

elements of χ2µ\χµ. As most of the figure 8.14 is only blue or red dots, this confirms

that the average number of contacts per arc is two.

The next goal is to understand the three dimensional picture. Figures 8.15 (a)-(c)

show three projections of the knot with the set of µ-contact points Cµ in three dimen-

sional space together with the associated contact chords. A contact chord associated

with an element (s, σ) of the contact set χµ is the straight line segment with end points

α(s) and α(σ). The mid points of all contact chords are exactly the set of µ-contact

points Cµ in three dimensional space, cf. Definition 8.2. The green balls in Figures 8.15

(a)-(c) are centred at the mid points mi of the arcs ai, µ-contact points Cµ are drawn

with red balls, and the contact chords are blue. At this resolution the set of µ-contact

points spheres form a tube whose centreline is another trefoil knot. The picture suggests

that the contact chords form a surface.

One necessary condition for a configuration to be ideal is constancy of ρpt on curved

segments. The discussed shape is curved everywhere, so for this shape to be ideal the

function ρpt has to be constant everywhere. The value of ρpt(mi) is the minimum of

pt(mi, ·) along the curve, that is it is the smallest value pt(mi, ·)|aj
corresponding to
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the dots plotted in Figures 8.9 and 8.10. Note that we evaluate ρpt at a discrete number

of points, specifically on the mid points of the arcs, but ρpt(mi) is exact and not an

approximation. Figure 8.16 (a)-(b) is a plot of ρ and ρpt along arc length. We compute

maxi ρpt(mi)−mini ρpt(mi) = 1.6992 ·10−8 to measure how far from constant the global

radius of curvature function ρpt is.

The µ used for the contact set χµ provides a useful scale to estimate how close certain

local radii are to being active in achieving thickness. Figure 8.16 (c) is a plot of ρ and

ρpt with vertical axis [∆,∆(1 + 700µ)], whereas in (d) the vertical axis [∆,∆(1 + 5µ)].

We can read from figure 8.16 (d) that local radii are not active in achieving thickness

for this µ, but are remarkably close.
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Figure 8.12: (a) Plot of the height of the minimum of pt(mi, ·)|aj
for (i, j) that achieve

a minimum of pt(mi, ·), the horizontal axis is arc length. Magenta +: the minimum

of pt(mi, ·)|aj
is achieved at an interior maximum of pp(mi, ·), blue dot: the minimum

of pt(mi, ·)|aj
is achieved at an interior minimum of pp(mi, ·), red dot: the minimum

of pt(mi, ·)|aj
is achieved at an end point of the arc aj and it is a (local) minimum of

pt(mi, ·), green dot: local radius is a minimum of pt(mi, ·). For a fixed i, the minimum

of the values plotted is ρtp(mi) shown in Figure 8.16, (b) zoom of (a) where the vertical

axis is [0.0305, 0.031], (c) zoom of (a) where the vertical axis is [0.0305395, 0.03055], (d)

zoom of (a) where the vertical axis is [0.0305395, 0.03054].
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Figure 8.13: The µ-contact set χµ with µ = 8.1861·10−6. (Note: the label of the vertical

axis is reversed, (0, 0) is at the top left.)
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Figure 8.14: The minimum of pt(mi, ·)|aj
of members of the 2µ-contact set χ2µ for

µ = 8.1861 · 10−6, the vertical axis is [∆,∆(1 + 2µ)]. The lowest value is blue dots,

second lowest is red dots, third lowest is green dots, fourth lowest is blue lines, fifth

lowest is red lines and sixth lowest is green lines. The horizontal dashed line is at the

height ∆(1 + µ).
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Figure 8.15: Three projections of the approximately ideal trefoil knot (the green balls

are centred at the mid points mi of the arcs ai), the set of contact points Cµ in three

dimensional space (red balls overlapping to form a tube) and associated contact chords

(blue line segments) that connect the pairs of points α(s) and α(σ) for (s, σ) ∈ χµ with

µ = 8.1861 · 10−6.

120



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0305

0.0306

0.0306

0.0306

0.0306

0.0306

0.0307

0.0307

0.0307

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.0305

0.0305

0.0305

0.0305

0.0305

0.0305

(c) (d)

Figure 8.16: (a) Plots of ρ and ρpt, (b) zoom of (a) with vertical axis [0.03, 0.065], (c)

zoom of (a) with vertical axis [∆,∆(1 + 700µ)] and (d) zoom of (a) with vertical axis

[∆,∆(1 + 5µ)], all with µ = 8.1861 · 10−6.
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8.3 Computation of an ideal 4.1-knot

The simulated annealing computation of the 4.1 knot was performed by M. Carlen

and J. Smutny. Simulated annealing was performed starting from a 208-biarc figure

eight knot obtained from biarc interpolation of a piece-wise linear approximately ideal

configuration [56, 41]1. To resolve the dips in radii of curvature that evolved, the number

of biarcs was then doubled and by subsequent simulated annealing the present shape α

of rope length λ(α)
∆[α]

= 42.11588 was obtained. We denote the 832 arcs by ai, the radii by

ri and the mid points of the arcs ai by mi, 1 ≤ i ≤ 832. The figures to be presented in

sections 8.3.1-8.3.3 are, up to different scales, the precise analogue of the figures shown

in sections 8.2.1-8.2.3 for the trefoil knot.

8.3.1 Computing the thickness

Figure 8.17 illustrates the thickness evaluation algorithm presented in section 7.1.3. The

horizontal line indicates the number of pairs of arcs of the arc curve, here (2 · 416)2 =

692′224. The number of candidates in achieving thickness after the double critical test

(higher curve) and after the distance test (lower curve) at each of the 15 iterations

is plotted. In contrast to the thickness evaluation of the 3.1 knot, cf. Figure 8.1, the

number of candidates is far below the horizontal line. Therefore the evaluation is faster.
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Figure 8.17: The number of candidates after the double critical test (higher curve) and

after the distance test (lower curve) cf. section 7.1.3 after each of the fifteen iteration

steps. The level of the straight line indicates the number (2 · 416)2 = 692′224 of pairs

of arcs to evaluate.

The evolution of upper and lower bounds of rope length λ(α)
∆[α]

during the thickness

evaluation algorithm is plotted in Figure 8.18. The lower bound of rope length is

increasing, but much less rapidly then the upper bound is decreasing. The final bounds

of rope length, the length λ(α) of the arc curve, the minimal radius mini ri, and upper

1It is a pleasure to thank P. Pieranski for providing this initial data.
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Figure 8.18: (a) Upper and lower bound of rope length after each of the fifteen iteration

steps, (b) is a zoom of Figure (a), the values for the last 8 iteration steps are displayed.

and lower bounds for thickness ∆[α] are

λ(α) = 0.99999999927731

mini ri = 0.02374402362244

0.02374401039630 ≤ ∆[α] ≤ 0.02374401039633

42.11588449404105 ≤ λ(α)
∆[α]

≤ 42.11588449409459

As for the 3.1 knot, thickness was evaluated up to a relative error of 10−12, that is the

maximal error divided by the lower bound of thickness is smaller than 10−12. Similarly

to the trefoil knot we can observe that mini ri is slightly higher than the thickness ∆[α];

in this case mini ri is much closer to the thickness ∆[α] than the respective values for

the trefoil knot.

8.3.2 The shape

To display the shape of the knot the centre of mass and principal axes v1, v2, and

v3 of inertia (ordered with eigenvalues λ1 = 2.3526 · 10−3 ≤ λ2 = 2.7632 · 10−3 ≤
λ3 = 2.8144 · 10−3) of the set of end points of all arcs were computed. Figure 8.19 (a)

shows the projection of the end points of all arcs onto the v2-v3 plane, whereas (b) is

the projection of the unit tangents at the end points of all arcs onto the v2-v3 plane.

In figure 8.19 the polar coordinates of (c) the end points, and (d) end point tangents

along arc length are plotted, with blue the v1 coordinate, green the radial coordinate

r =
√
v2

2 + v2
3 and red the angle φ in radians scaled by a factor to make variations

visible on the same plot. Note that the discontinuities of the scaled angle φ (red) in

both Figures 8.19 (c) and (d) are not a real feature, but are due to the fact that Matlab

displays the angle φ ∈ [−π, π) modulo 2π. Both the curve and the tangent curve appear

to be smooth, but the derivative of the tangent i.e. the curvature is large in four small

regions, as can be observed in the Figures 8.19 (b) and (d). The projections of both

the curve and the tangent curve onto the v2-v3 plane depicted in Figures 8.19 (a) and

(b) are close to period four symmetry. One necessary condition for exact symmetry is
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equality of eigenvalues λ2 and λ3. Here λ3−λ2

λ1+λ2+λ3
= 6.4567·10−3, thus the projections are

not precisely rotationally symmetric, and in this measure seem further from rotational

symmetric than the trefoil computations described in section 8.2.2. Note that in the 4.1

case the v1 component of both the curve and the tangent curve in Figures 8.19 (c) and

(d) seem close to being period two symmetric.
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Figure 8.19: Projection onto the plane of the v2-v3 inertia axes of (a) the end points of

all arcs, and (b) the unit tangents at the end points of all arcs. Plots of the cylindrical

polar coordinates v1, r =
√
v2
2 + v2

3 and the (scaled) angle φ in radians, of (c) the end

points of all arcs w.r.t. the axes of inertia, after translation to the centre of mass, and

(d) of the tangents at the end points of all arcs.

The tangent indicatrix of an arc curve is a continuous curve assembled from arcs

of great circles, cf. section 4.2. Figures 8.20 (a)-(f) show the tangent indicatrix of the

shape from six different directions corresponding to the principal axes ±v1, ±v2, and

±v3.

The lengths of the 832 arcs depicted in Figure 8.21 are rather uniform. Figure 8.22

depicts the radii of the 832 arcs scaled by the thickness ∆. Similarly to the 3.1 knot there

are (four) regions with almost constant radii equal 2∆ corresponding to the four loops

visible in figure 8.19 (a). But the radii of the 4.1 knot take values from ∆ to 55∆. More

precisely, there are four very short regions (approximately two to four arcs) which have
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(a) (b) (c)

(d) (e) (f)

Figure 8.20: Six projections of the tangent indicatrix along principal axes of inertia (a)

and (d)±v1, (b) and (e) ±v2, and (c) and (f) ±v3.

very large radii. On the other hand, there are four even shorter regions (approximately

two arcs) situated “inside the knot” where the radii are close to achieving the thickness

∆. As for the trefoil knot we quantify in the next section 8.3.3 how close the radii are

to actively achieving thickness.

The angle between the planes of adjacent arcs is plotted in figure 8.23. There are

four regions with large angles that correspond to the regions with a high variation of the

radii. Figure 8.24 provides a zoom of such a region. In fact in the region where the radii

are small, i.e. close to ∆, the torsion angles have a local maximum, and in the region

where the radii are very large the torsion angles have another higher maximum. Note

that the angle is given in radians, that is, the maximal value of about 3 corresponds to

an angle of almost 180 degrees. In other words, at this maximum the arcs are almost

straight, but the planes flip by approximately 180 degrees. It seems likely that the

underlying ideal shape has a discontinuous Frenet frame at this point.

In chapter 5 we derived various approximation results of radius of curvature, its

derivative, and torsion for biarcs interpolating an underlying C3-curve in terms of the

circles C0 and C1 associated with every point-tangent data pair, cf. Propositions 5.12 and

5.13. Figure 8.25 displays the quantities that approach the values of radius of curvature,

its derivative, and torsion for a finite h. But we stress that it is not clear that the ideal

shape is a C3-curve, and, moreover, we have no estimate of the constants involved in

the error terms. Both the approximation of the radius of curvature and its derivative
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Figure 8.21: The lengths of the 832 arcs are rather uniform.
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Figure 8.22: (a) Plot of the radii of the arcs scaled by the thickness (non-dimensional),

(b) is a zoom of (a).

suggest that the curvature of the underlying ideal shape is very close to constant on the

large four loops. The parts of the shape having large oscillations of the derivative of

curvature coincide with the parts of large torsion, which takes values up to 1200.

The plots of quantities associated with the actual arc curve shape, cf. figures 8.22

and 8.23 are in agreement with the plots of approximating finite difference quantities of

an assumed underlying curve, cf. Figures 8.25(a)-(b) and 8.25(e)-(f).
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Figure 8.23: Plots of (a) torsion angle, i.e. the angle between the planes of successive

arcs in radians, and (b) zoom of (a).
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Figure 8.24: Zoom of superposed plots of radii scaled by thickness (red) and torsion

angle, i.e. the angle between the planes of successive arcs in radians (blue).
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Figure 8.25: Plots of the finite difference approximation of radius of curvature, its

derivative, and torsion for an underlying curve. (a) Plot of the approximation of the

radius of curvature in terms of the circles Ch
0 and Ch

1 , cf. Proposition 5.12, (b) zoom

of (a) (units of length). (c) Plot of the approximation of the derivative of the radius

of curvature in terms of the circles Ch
0 and Ch

1 , cf. Proposition 5.12, (d) zoom of (c)

(non-dimensional). (e) Plot of the approximation of the torsion in terms of the circles

Ch
0 and Ch

1 , cf. Proposition 5.13, (f) zoom of (e) (units reciprocal length).
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8.3.3 The contact set and ρpt

To find an appropriate µ > 0 for a µ-contact set χµ of Definition 8.2, we use Lemma 7.14

to compute the minimum of pt(mi, ·) restricted to the arc aj for all pairs 1 ≤ i, j ≤ 832.

We then classify the minima that correspond to a minima of pt(mi, ·) along the whole

curve as follows, cf. Figure 8.26: The minimum of pt(mi, ·)|aj
is achieved by (a) blue: a

minimum of pp(mi, ·), (b) magenta: a maximum of pp(mi, ·), (c) red: an end point of

the arc aj, and (d) green: a local radius. Figure 8.26 is a plot of index vs. index. Any

pair plotted in Figure 8.26 is a priori a candidate to be an element of a µ-contact set χµ.

If the value of the minimum of pt(mi, ·)|aj
is smaller than ∆(1 + µ) then the arc-length

values (s, σ) corresponding to mi and the point on the arc aj where the minimal value

is achieved belong to the µ-contact set χµ.
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Figure 8.26: The vertical axis stands for the midpoints mi of the arcs ai, i = 1, · · · , 832,

the horizontal axis stands for the arcs aj, j = 1, · · · , 832 (a) the four colours indicate

if and how the minimum of pt(mi, ·) restricted to the arc aj is achieved. Blue: a local

minimum of pt(mi, ·)|aj
is achieved at an interior minimum of pp(mi, ·), magenta: a

local minimum of pt(mi, ·)|aj
is achieved at an iterior maximum of pp(mi, ·), red: a

local minimum of pt(mi, ·)|aj
is achieved by at an end point of the arc aj which is also

(local) minimum of pt(mi, ·), green: the minimum of pt(mi, ·)|aj
is achieved by the local

radius.

In Figure 8.27 the minimal value of pt(mi, ·)|aj
is plotted using a colour map with

blue for low and red for high, except for pairs that appear in the figure 8.26. Note that

the minima is a very flat valley or hollow. Moreover on the diagonal there is a variation

from dark red to blue indicating large differences in radii as we observed in Figure 8.22.
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Figure 8.27: The minimum of pt(mi, ·)|aj
, a blue dot is drawn when the minimum

pt(mi, ·)|aj
is a minimum of pt(mi, ·). The colour map uses blue for low and red for

high values.

We now have to determine an appropriate value of µ. We plot the heights of all

minima of pt(mi, ·)|aj
that are candidates for a χµ, i.e. that appear in figure 8.26 along

arc length in various zooms, cf. Figure 8.28 (a)-(c). The heights appearing in Figure

8.28 (b) belong to the lowest line in (a). The dots in the figure 8.28 (c) correspond to

the lowest line with the lowest bits of the higher structure in (b). In contrast to the

plots for the trefoil, cf. Figure 8.28 (d), the gap above a layer of candidates in Figure

8.28 (c) is less significant. Nevertheless we set µ := 4.2115 · 10−6, which is about half of

the height of Figure 8.28 (c). Now the µ-contact set χµ is the set of pairs of arc lengths

corresponding to pairs plotted in Figure 8.26 for which the minima of pt(mi, ·)|aj
is

smaller or equal to ∆(1 + µ). And similarly for χ2µ.

Figure 8.29 displays the µ-contact set χµ with µ = 4.2115 · 10−6. From this plot it

is hard to say conclusively if the set χµ is connected, but certainly is not one or two

curves, but at best bits of curves. The µ-contact set χµ has 1213 elements, so that

the average number of µ-contacts per arc is 1213
2·416 ≈ 1.46, which is much less than for

the trefoil knot. We expect the µ-contact set χµ to be relatively invariant for small

increasing µ, in fact, the number of elements of the 2µ-contact set χ2µ is 1238, that is

χ2µ\χµ contains 25 additional contacts. The change of elements relative to the number

or arcs is 25
2·416 = 0.03. Figure 8.30 visualises the elements of both contact sets χµ and

χ2µ: As in Figure 8.28 the height of the minimum of pt(mi, ·)|aj
is plotted for elements

in χ2µ but with a different colour coding, namely the lowest value is blue dots, second

lowest is red dots, third lowest is green dots, fourth lowest is a blue line. Moreover the
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vertical axis is now [∆,∆(1 + 2µ)] and the dashed horizontal line indicates the height

∆(1+µ). The 25 elements of χ2µ\χµ are in the upper half of the figure. We can observe

two regimes: there are four parts with almost only blue dots, and four parts with blue

and red dots, this confirms that the average number of µ-contact per arc is less than

two and, because both regimes are of about the same length, the average number of

contacts per arc is about 1
2
(1 + 2) ≈ 1.5.

The next goal is to understand the three dimensional picture. Figures 8.31 (a)-(c)

show three projections of the knot with the set of µ-contact points Cµ in three dimen-

sional space together with the associated contact chords. A contact chord associated

with an element (s, σ) of the contact set χµ is the straight line segment with end points

α(s) and α(σ). The mid points of all contact chords are exactly the set of µ-contact

points Cµ in three dimensional space, cf. Definition 8.2. The green balls in Figures 8.31

(a)-(c) are centred at the mid points mi of the arcs ai, µ-contact points Cµ are drawn

with red balls and the contact chords are blue. The behaviour of the set of µ-contact

points Cµ in three dimensional space is radically different from the trefoil, cf. Figures

8.15 (a)-(c). The picture suggests that the set Cµ is composed of a number of parts of

curves. Most of the (mid) points have one or two contact point associated, but there is

also small number of points having no contact. The arcs of such points have very large

radii.

One necessary condition for a configuration to be ideal is constancy of ρpt on curved

segments. The value of ρpt(mi) is the minimum of pt(mi, ·) along the curve, that is it is

the smallest value pt(mi, ·)|aj
corresponding to the dots plotted in Figures 8.26. Note

that we evaluate ρpt at a discrete number of points, specifically on the mid points of

the arcs, but ρpt(mi) is exact and not an approximation. Figure 8.32 (a)-(b) is a plot

of ρ and ρpt along arc length. We compute maxi ρpt(mi)−mini ρpt(mi) = 3.5178 · 10−5

to measure how far from constant the global radius of curvature function ρpt is. The

variation is three orders of magnitude larger than the corresponding value for the trefoil

knot. But, restricting the global radius function ρpt onto the parts where the radii are

not high, the value is of the order 10−7 − 10−6. This can be interpreted in two ways:

Either the biarcs approach straight line segments where the global radius of curvature

is not expected to be constant, or the shape did not resolve the contact set. Probably

both interpretations are correct, the maxima in Figure 8.32 (c) may be real, but not

the wiggles in Figure 8.32 (d).

The µ used for the contact set χµ provides a useful scale to estimate how close certain

local radii are to being active in achieving thickness. Figure 8.32 (c) is a plot of ρ and

ρpt with vertical axis [∆,∆(1 + 500µ)], whereas in (d) the vertical axis is [∆,∆(1 + µ)].

We can read from figure 8.32 (d) that local radii are active in achieving thickness for

this µ in two of the four dips.
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Figure 8.28: (a) Plot of the height of the minimum of pt(mi, ·)|aj
for (i, j) that achieve

a minimum of pt(mi, ·), the horizontal axis is arc length. Magenta +: the minimum

of pt(mi, ·)|aj
is achieved at an interior maximum of pp(mi, ·), blue dot: the minimum

of pt(mi, ·)|aj
is achieved at an interior minimum of pp(mi, ·), red dot: the minimum

of pt(mi, ·)|aj
is achieved by at an end point of the arcs aj and it is a (local) mini-

mum of pt(mi, ·), light green dot: local radii is a minimum of pt(mi, ·). For a fixed

i, the minimum of the values plotted is ρtp(mi) shown in Figure 8.32, (b) zoom of (a)

where the vertical axis is [0.0237, 0.0241], (c) zoom of (a) where the vertical axis is

[0.0237440, 0.0237443].
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Figure 8.29: The µ-contact set χµ with µ = 4.2115 · 10−6. The two green dots on the

diagonal indicate that two contacts of the type (s, s) are contained in χµ. (Note: the

label of the vertical axis is reversed, (0, 0) is at the top left.)
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Figure 8.30: The minimum of pt(mi, ·)|aj
of members of the 2µ-contact set χ2µ for

µ = 4.2115 ·10−6, the vertical axis is [∆,∆(1+2µ)] and the height ∆(1+µ) is indicated

by the dashed line. The lowest value is blue dots, second lowest is red dots, third lowest

is green dots, fourth lowest is blue lines, fifth lowest is red lines and sixth lowest is green

lines.
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Figure 8.31: Three pictures of the approximately ideal figure eight knot (the green balls

are centred at the mid points mi of the arcs ai), the set of contact points Cµ in three

dimensional space (red balls) and associated contact chords (blue line segments) that

connect the pairs of points α(s) and α(σ) for a (s, σ) ∈ χµ with µ = 4.2115 · 10−6.
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Figure 8.32: (a) Plots of ρ and ρpt, (b) zoom of (a) with vertical axis [0, 1], (c) zoom of

(a) with vertical axis [∆,∆(1+500µ)] and (d) zoom of (a) with vertical axis [∆,∆(1+µ)],

all with µ = 4.2115 · 10−6.
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8.4 Critique of the Computations

We believe that the shapes of the 3.1 and 4.1 knots described in section 8.2 and 8.3

are the closest known shapes to the ideal knot configurations. Nevertheless the com-

putations perhaps raise as many questions as they answer. The stochastic approach

of simulated annealing, which requires no derivative information, is largely dictated by

the fact that little is currently known analytically to be able to formulate and justify a

constrained gradient flow that would be guaranteed to converge, essentially because it

is far from simple to be able to write down the appropriate constrained derivatives. On

the other hand, the evaluation of thickness and the ρpt function on a given biarc curve,

whatever its source, is rigorous and accurate to a prescribed tolerance. In this way we

achieved the upper bounds on rope length for the trefoil (with 528 arcs) of 32.74446,

and for the figure eight (with 832 arcs) of 42.11588. The only bounds close to these,

known to us were achieved by Rawdon [47], using the method of inscribing arcs of circles

onto a piecewise linear shape, of 32.90 and 32.77 for the trefoil with respectively 160

and 1332 linear segments, and 42.38 for the figure eight knot with 208 linear segments.

In point of fact we believe that it is perhaps of more interest to understand the prop-

erties of the curve realising the optimal rope thickness rather than the value of thickness

itself, and it seems that rather significant changes in, for example, local curvature of

the configuration can be necessary to obtain extremely small improvements in rope

length. A striking and previously unobserved feature in our simulations of both the 3.1

and 4.1 knots is the rapid and large scale variations in local curvature in, respectively,

three and four narrow regions corresponding to the curve passing through the “centre”

of the knot. This was first observed in a 192-biarc, 3.1 computation, whereupon the

number of biarcs was doubled in the three regions of interest to obtain the 264-biarc

shapes described here. Upon continued simulated annealing the features persisted, and

indeed sharpened. For this reason, and the fact that the features have the appropriate

period three, respectively four, behaviour we believe them to be real, and not numerical

artifacts.

In both the 3.1 and 4.1 knots the same features are associated with both a) extremely

large torsion angles, suggesting a singularity in the second derivative, and b) small radii

of curvature that approach the lower bound provided by the thickness. It has been

generally assumed that for simple knots like the trefoil, local radius of curvature was

never close to achieving thickness. We now suspect that this belief has been based

upon limitations of previously adopted numerical schemes, either due to the general

exclusion of nearest neighbour effects as done by many authors using point or piecewise

linear discretizations, or due to the curve shortening algorithm that was used [18].

On the other hand, while our biarc computations seem decisive in suggesting that local

curvature is extremely close to being active in achieving thickness in both the 3.1 and 4.1

ideal shapes, they are not quite conclusive in whether or not thickness is truly achieved

locally. This question is of some consequence for the analysis of ideal shapes, because

exclusion of the possibility of local curvature being active simplifies various arguments.

It therefore seems worthwhile to pursue this issue further, either analytically or through

further computation.
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One additional piece of evidence concerning the achievement of thickness locally is

provided by a third simulation involving a 568-biarc discretization of the composite

+3.1#−3.1-knot. This simulation, currently with rope length 58.27448, is much less

converged than either the 3.1 or 4.1 computations described above, as can be seen both

from the large variations in the local curvature plot shown in figure 8.33, and the fact

that the variation max ρpt−min ρpt ≈ 2 · 10−4 in the global radius of curvature function

on curved segments is respectively one and four orders of magnitude higher than the

respective values for the 4.1 and 3.1 simulations. Although the local radius of curvature

function ρ is not at all smooth, the global radius of curvature function ρpt shown in

8.33 (a) is by comparison quite close to constant on curved segments. We include the

preliminary results from this simulation because of two features. First there are upward

spikes in ρpt on segments of the curve that are close to straight, which confirms for our

biarc simulations a phenomenon first observed in the point discretization simulations of

[18]. Second, as shown in 8.33 (b), in this simulation there are multiple arcs on which

ρpt is achieved by local curvature, and which achieve thickness to within a relative error

of 10−7. This strongly suggests that local curvature is active in realising thickness for

the ideal shape of the +3.1#−3.1-knot.
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Figure 8.33: Plots of radius of curvature ρ and global radius of curvature ρpt on a

568-biarc composite +3.1#−3.1-knot, (b) is a zoom of (a).

The resolution of our biarc simulation seems sufficient to conclude that, as shown

in Figure 8.15 the contact chords of the 3.1 knot span a surface and the contact points

themselves form a trefoil knot. In contrast, as shown in figure 8.31 the contact chords

associated with χµ of the figure eight knot are split into two disjoint components, with

the contact points in each component forming a loop with two tails.

Two further lines of investigation present themselves. First the tolerance to which

the necessary condition of [52], which requires that the principal normals to the curve

should lie in the convex hull of the contact chords, could be checked on our computed

shapes. Second, simulated annealing could be carried out for both 3.1 and 4.1 knots but

with period three, respectively two, rotational symmetry forced a priori. The results of

such computations should clarify whether or not the current simulations, which predict

shapes that are close to, but not exactly symmetric, are picking up real, but small
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deviations from symmetry, or whether the simulations are merely reflecting a very slow

elimination of asymmetry, perhaps due to the entirely local nature of the moves used in

the simulated annealing.
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Chapter 9

Conclusions and discussion

The main goal of this thesis is to present an analysis that justifies a new way to compute

with self-avoiding curves. We approached the problem from two sides: On the one

hand we explored functions related to thickness that are candidates for an analytically

attractive characterisation of thickness, on the other hand we introduced a higher-order

space curve discretization, namely biarcs, to be able to compute in the regularity class

where self-avoiding curves are known to lie. We then demonstrated that distance from

self-avoidance can be efficiently evaluated on this discretization. Finally we illustrated

all of the theory with computations of ideal knot shapes.

In chapter 3, following the idea of global radius of curvature [18] we introduced

all twelve possible non-trivial global radius of curvature functions to discover that for

either closed or infinite, smooth curves, the functions are nested, and many are in fact

identical, cf. inequalities (3.20)-(3.21), Proposition 3.3 and Lemma 3.4:

ρos ≥
{
ρ = ρ?

cp ≥ ρtp = ρtt = ρtpp

ρpc

}
≥ ρpt = ρppp = ρptp = ρppt = ρpppp ≥ 0.

The above inequalities are sharp in the sense that there exist curves for which each

inequality is strict at some points. On the other hand there is always a common minimal

value of

ρtp = ρtt = ρtpp and ρpt = ρppp = ρptp = ρppt = ρpppp, (9.1)

and this common minimum equals the curve thickness ∆[q], cf. Lemma 3.8.

Most of the explicit formulæ for circle and sphere radii given in chapter 3 are re-

stricted to generic sets of distinct points, but we are inevitably drawn to the consider-

ation of coalescent and nongeneric limits. Most of these limits offer no difficulty. This

fact is fortunate because we note that a priori exceptional cases, such as cocircular

points and tangents, appear to be more typical than might be thought in the realization

of global radius of curvature functions, at least on approximately ideal shapes. In most

circumstances it is convenient to define a spherical radius on cocircular data to be the

radius of the smallest compatible sphere. Consideration of smooth curves lying on a

single sphere then reveals that the choice of smallest possible radius makes it inevitable

that spherical radii can be discontinuous, even on a smooth curve, but this presents no
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real difficulty. The one limiting case which does remain problematic is that in which

the derivative of curvature κ′ and the torsion τ vanish at a common point. The inter-

pretation of the classic local osculating sphere is ambiguous at such points, and it is

therefore only natural that the global spherical functions can suffer the same ambiguity.

In fact our biarc prescription for a space discretization involves arcs of circles where κ′

and the torsion τ vanish a.e. and in particular wherever they are defined. But then the

fact that the curve is known to be assembled from exact arcs of circles allows a special

treatment.

Each of the two sets of equivalent global radius of curvature functions (9.1) involve

at least one derived from a circular distance function, and others derived from spherical

distance functions. For computations it is more convenient to work with a circular global

radius of curvature function from each class because of the possibility that a spherical

global radius of curvature function could be realised as the minimum of a discontinuous

spherical radius function. Accordingly, we focussed our attention on the two distinct

circular global radius of curvature functions ρtp and ρpt. Section 3.3 characterises the

ways that ρtp and ρpt can be achieved on smooth functions. It remains to investigate

the minimal regularity hypotheses on the curve q necessary for the results of chapter 3

to remain valid. Except for section 3.3 the results of chapter 3 have been published in

[19].

In chapter 4, we developed, in a wide generality, the geometry of biarcs that interpo-

late a given point-tangent data pair. We assembled results appearing in the Computer

Aided Design (or CAD) literature in a consistent notation and with rigorous mathemati-

cal proofs. We also described new results, in particular the tangent indicatrix properties

of biarcs presented in Proposition 4.9. We note that these tangent indicatrix properties

offer a route to an efficient and accurate numerical evaluation on biarc curves of the

Writhe [16] and Average Crossing Number, which are quantities of considerable interest

in the study of ideal shapes [5, 57]. We further remark that results in the flavour of

Lemma 4.13 can be obtained for non-proper biarcs cf. Definition 4.12, but we did not

stress this line of development because those cases have little interest for approximation

purposes.

In chapter 5 we assembled the local convergence results of biarcs needed later in

the derivation of the global convergence results that are presented in chapter 6. When

the point-tangent data to be interpolated is drawn from a nested family of meshes on

an underlying base curve q, and the number of interpolation points is sent to infinity,

various convergence properties follow. If q is a C1,1 arc length parametrised curve, then

the arc length of the biarc approximation βhj
approaches that of q quadratically, cf.

Corollary 6.9. Given convergence of arc lengths, various convergences of the curves

themselves can be obtained, as detailed in Table 9.1. We remark that in the case that q

is C2, Proposition 6.15 shows that each arc of the biarc curve approaches the osculating

circle of the base curve at the appropriate mesh point, and it follows that there is

convergence of the curvature a.e.

We conjecture that the convergence results summarised in Table 9.1 are close to being

sharp, but have proven no result in that direction. It would be of interest to consider

analogous approximation results along the lines of determining a maximal distance of
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‖q−Bhj
‖C ‖(q−Bhj

)′‖C K(q−Bhj
)′

q ∈ C1,1 O(h2
j) O(hj) -

q ∈ C2 o(h2
j) o(hj) o(1)

q ∈ C2,1 O(h3
j) O(h2

j) O(hj)

Table 9.1: Summary of rates of convergence of interpolating biarc curves Bhj
as es-

tablished in Theorems 6.13, 6.17, and 6.20 for various norms, and differing assumed

regularities of the base curve q.

any curve q of prescribed regularity and arc length from a given set of biarcs with a

fixed number of sub-arcs, but again we have not pursued such an investigation.

The convergence theorems of chapter 6 can all be appropriately extended to curves

parametrised on the half- or whole real line. The case for q ∈ C1,1 is described in

section 6.7. For an infinite domain and results with the assumption q ∈ C2, the second

derivative q′′ must additionally be assumed to be uniformly continuous on I.

Throughout the presentation we have focused on the case of curves embedded in R
3,

but all results carry over straightforwardly to curves in R
n. As previously remarked

in section 4.1 (cf. p. 42) any generic, proper, point-tangent data pair is contained in a

unique three-dimensional affine subspace V ∈ R
n, and a biarc interpolation of the data

lies on the unique, double tangent two-sphere S contained in V. Moreover the Bézier

parametrisation (4.8) of circular arcs is unaltered, except that now the control points

are themselves points in R
n. Accordingly, it is simple to see that the biarc parameters

Λ and Λ̄ can be defined just as in the R
3 case. Then all our convergence proofs carry

over because they rely only upon the biarc parameters and Taylor expansions, which

are both independent of dimension.

Because each biarc curve in R
n is locally low-dimensional, in the sense that each

component biarc lies in the appropriate three dimensional affine subspace V, it can be

argued that biarc curves are a rather natural, geometrically simple, way to generalise the

C0,1 Lagrange interpolation of points by piecewise linear functions, to the C1,1 Hermite

interpolation of point-tangent data. The more standard approach of cubic splines does

not have this property of local low-dimensionality. As is the case with cubic splines, biarc

curves could also be used for the C1,1 Lagrange interpolation of only point data, with the

freedom of the tangents at the node points being set by an additional criterion, such as

minimal arc length, minimal total square curvature, etc. Precisely because the geometry

of biarcs is so simple, the discrete approximation and subsequent minimisation of such

functionals seems to be straightforward, although we have again not, as yet, pursued

this avenue of investigation.

Ultimately a biarc curve is nothing other than an ordered sequence of circular arcs.

However in order to have locality it is important to focus on a biarc curve as being an

ordered sequence of pairs of circular arcs related through a matching condition. In this

interpretation when the point-tangent data at one mesh point is varied, the changes in
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the overall biarc curve propagate only to one upstream and one downstream biarc, i.e.

only four arcs change. In contrast, it is easy to see, using the n-dimensional generalisa-

tion of the rotation matrix R(e) defined in (4.2), that a sequence of single circular arcs

can be used to interpolate an ordered list of points, with the only freedom being the

tangent direction at a single point. In contrast to the biarc case, this interpolation is

entirely rigid; a change at any node point propagates globally.

We mention that the osculating arc splines of Leopoldseder [27], comprise another

spline made up of an ordered sequence of circular arcs. In an osculating arc spline

every other circular arc is by construction a sub-arc of an osculating circle to the curve,

with the intervening arcs yielding an overall C1 assembly. As explained in [28] this

construction can only be achieved by adjusting the choice of mesh along the base curve.

While there is no guarantee that any arc of a biarc curve is part of an osculating circle

for the base curve, we do know, from Proposition 6.15, that when the base curve is C2

all arcs of the biarc approach osculating arcs in the limit of mesh refinement.

While we believe that it is important to regard a biarc curve as a sequence of pairs

of arcs related by a matching rule, it is also important to observe that both our local

and global convergence results are largely independent of the specific choice of matching

rule. The matching condition for proper biarc curves is that the matching point m must

lie on the arc Σ++ defined in Definition 4.8, which is open in the sense that the end

points are not allowed. If an end point is taken as matching point, then the subsequent

biarc curve would not in general even be C1. For our convergence results we merely

require that the matching points are bounded away from the end points of Σ++ in the

non-dimensional way expressed in the bounds (5.42) or (6.2) on the biarc parameters Λ

and Λ̄.

The Taylor expansions derived in chapter 5 immediately yield various finite differ-

ence formulæ via suppression of the error term, some of which are exploited in the

examination of approximately ideal shapes that was presented in chapter 8. It is appar-

ent that the finite difference formulæ that are derived are not exhaustive. In particular

if a higher order regularity of the underlying curve were assumed, consideration of ap-

propriate linear combinations of the higher order versions of the expansions described

here would provide higher order discrete approximations to quantities such as curvature

and torsion in terms of the radii and angles between various circles.

While our primary interest is in the approximation properties of biarcs, we do note

that expansions, such as in Lemma 5.8, remain valid in the formal limit Λ → 1, in

which case they yield finite difference formulæ just in terms of the given point-tangent

data (qi, ti), independent of the chosen interpolant. Indeed while biarcs have good

approximation properties for curvature and the osculating circle, the only convergent

finite difference approximations of torsion that we describe are in terms of only the

data. While convergence of curvature of biarcs is certainly desirable, the situation is

not so clear for torsion, because we apply the biarc discretization to problems where the

solutions are only known to be C1,1, i.e. curvature exists a.e., but it is plausible that

the solution is no better than that.

Various authors have discussed which matching rules are best according to various

criteria, both in the planar [60], [32], [50] and 3D cases [54], [35]. For us there is no overall
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best choice yet apparent. It is, for example, plausible that faster convergences than those

proven here could perhaps be obtained for specific matching rules. It is perhaps also

the case that to obtain convergence of torsion for biarcs it would be necessary to specify

a particular matching rule. Alternatively, in the spirit of Lagrange interpolation using

higher order splines, the free matching parameters might be set via minimisation of an

auxiliary side function, subject to the bounds (6.2). In our computations of ideal knot

shapes we adopted the simplest, or mid-point, matching rule.

The fact that biarc curves have explicit, simple geometry and closed form expressions

for arc length and curvature make them attractive in a number of contexts, for example

as a replacement for the piecewise linear space discretization used in numerical simula-

tions of optimal packing problems involving curves with a prescribed minimal thickness

[31, 30]. The missing element before biarcs can be adopted in such computations is

the construction of an algorithm, as provided in chapter 7, that allows thickness to be

efficiently evaluated on an arc curve up to a prescribed accuracy. With the improved

understanding of how ρpt is achieved provided by Lemma 3.6, we further showed that

ρpt can be evaluated precisely on arc curves, cf. Lemma 7.14. Specifically all the pos-

sibilities described in Lemma 3.6, can be simply classified on arc curves because for a

given point p and arc a, all circles that pass through p and that are somewhere tangent

to a lie on the sphere defined by a and p, and a simple geometric picture arises. It

would be of interest to find an analogous simple and precise way to evaluate ρtp on arc

curves to have another test for closeness to ideality of computed knot shapes.

The convergence results of Theorems 6.13, 6.17, and 6.20 and the algorithm for

efficient thickness evaluation described in section 7.1 lay a foundation for rigorous com-

putations involving self-avoiding curves. The example we adopted to illustrate the use

of biarcs as a computational tool are the special self-avoiding curves that arise in the

optimal packing problem of finding ideal knot shapes [57, 5].

The computed approximations of ideal 3.1 and 4.1 knots described in sections 8.2-8.3

were obtained with a simulated annealing code developed in collaboration with B. Lau-

rie. The detailed evaluations of thickness, ρpt and various finite difference approxima-

tions, presented in chapter 8 were obtained from an independent post-processing on the

computed biarc curves using the Matlab scripts detailed in Appendix B. In particular

the all important length and thickness of the computed biarc approximation of ideal

configurations were each evaluated twice, using two independently written codes, with

complete agreement to the specified tolerance.

We do not believe the current version of the simulated annealing code to be par-

ticularly efficient. Specifically, and in the first instance, only the simplest possible

moves were used, namely random, small, independent, changes to an individual node

or tangent. It seems likely that significant gains in efficiency could be obtained by

the introduction of a set of more sophisticated moves. For example, because we now

know how to compute the contact set accurately, one could bias the moves of non-active

points to be arc length shortening. It also seems likely that the addition of some nonlo-

cal, cooperative moves could speed convergence. One potentially interesting choice for

global moves seems to be inversion in a sphere, which maps a biarc curve to another

biarc curve. Moreover arbitrary pairs of inversions leave the knot type unaltered, and
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pairs can be constructed either to give very large deformations, or to be close to the

identity. In addition to a more suitable choice of moves, a more suitable choice for the

matching rule, or indeed using the matching parameters as additional free variables in

the simulated annealing, could improve efficiency of computation. Similarly, while the

algorithm for computing thickness is robust and accurate to an arbitrary precision, it is

likely that still more efficient, and faster algorithms could be constructed. For example

one might compute thickness by deriving estimates of the error between the minimum

of ρpt(si) at a discrete set of points si and the continuous minimum over arc length,

combined with a bisection iteration.

As is typically the case for any stochastic algorithm, we have no rigorous stopping

or convergence criterion for the computation. Such stopping criteria would presum-

ably have to be based upon an analytical set of sufficient conditions for at least local

ideality of a knot shape. Such a set of sufficient conditions are not currently known.

Of course relative changes in the rope length could be taken as the stopping criterion,

but this appears to be a rather bad choice. Our computations indicate that the actual

configuration of a knot can change quite significantly, particularly its features involving

higher order quantities such as curvature, with extremely small associated changes in

rope length. Fortunately, the fact that the theory of chapter 7 allows the thickness and

ρpt functions of a biarc curve to be computed to an arbitrary accuracy means that we

can efficiently examine the degree to which the necessary condition of constancy of ρpt

on curved segments is satisfied. In particular max ρpt−min ρpt, where the max and min

are taken independently over curved segments, is one indication of how close to ideal

the shape is.

The definition 8.2 of the µ-contact set χµ provides a second approach to quantify

closeness to ideality via a construction of the set of pairs of points that are close to

contact, and the dependence of the set on the tolerance parameter µ, for example the

difference between the sets χµ and χ2µ. During the computations the form of the contact

set has proven to be very sensitive, so that an accurate evaluation of thickness during

the simulated annealing process seems to be necessary. We chose to compute with a

relative error bound of 10−12 on thickness. The sensitivity of the contact set means that

it provides a more rigorous test of closeness to ideality than a study of only the function

ρpt itself.

In summary we claim that biarc curves are an efficient choice of space discretization

for self avoiding curves, particularly so for optimal packing problems. For the specific

optimal packing problem of ideal knots, the biarc discretization kills two birds with one

stone: on the one hand, because of their simple geometry, biarcs allow evaluation of

thickness and the global radius of curvature function ρpt efficiently and to a prescribed

tolerance, while on the other hand they lie in the right regularity class, so that all

biarc shapes that are obtained, by whatever means, provide rigorous lower bounds on

thickness, independent of any discretization error. As a consequence we have obtained

the best known upper bounds for rope length of the ideal 3.1 and 4.1 knots. Perhaps

more importantly, the biarc discretization allows a close and detailed inspection of the

approximately ideal shapes, and the contact and approximate contact sets can be re-

solved. Computation with biarcs has yielded an improved understanding of the rather
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complicated contact sets which give a measure of closeness to ideality. Accurate com-

putations permit the verification of known necessary conditions for optimality, such as

constancy of ρpt, and offer insights which may lead to the discovery of further necessary,

and perhaps sufficient, analytic conditions for optimality.
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Appendix A

Construction of a sequence of

reparametrisation functions

In this appendix we prove that the conditions (C1)-(C7) of section 6.3 can be satisfied

by giving an explicit construction of a sequence of reparametrisation functions {ϕj}.
Basically, we take straight lines with gradient

λ(βhj
)

λ(q)
, and add correction terms using

weighted cosine functions in order to satisfy condition (C3).

Let hypotheses (H0)-(H2) hold. Define ψ and ψh ∈ C∞(R,R) by

ψ(τ) = 1
2

+ 1
2
cos(2πτ + π) = 1

2
− 1

2
cos(2πτ), ψh(τ) = hψ

(
τ
h

)
, (A.1)

for τ ∈ R and for 0 < h < 1. Then

∫ 1

0

ψ(τ)dτ =

(
t

2
− 1

4π
sin(2πt)

) ∣∣∣∣
1

0

= 1
2
,

∫ h

0

ψh(τ)dτ = h

∫ h

0

ψ(
τ

h
)dτ = h

∫ 1

0

ψ(τ)hdτ =
h2

2
.

Now define the reparametrisation function ϕj by

ϕj(s) =
λ(βhj

)

λ(q)
s+

m(s)−1∑

i=1

(
aj,i

∫ hj,i

0

ψhj,i
(τ)dτ

)

+ aj,m(s)

∫ s−sj,m(s)−1

0

ψhj,m(s)
(τ)dτ, (A.2)

=
λ(βhj

)

λ(q)
s+ 1

2

∑m(s)−1
i=1 aj,ih

2
j,i

+ aj,m(s)h
2
j,m(s)

(
s− sj,m(s)−1

2hj,m(s)

− 1

4π
sin

(
2π(s− sj,m(s)−1)

hj,m(s)

))
,

where m(s) ∈ N (j) is such that s ∈ (sj,m(s)−1, sj,m(s)] and where aj,i is such that

λ((a, ā)j,i) =
λ(βhj

)

λ(q)
hj,i + aj,i

∫ hj,i

0

ψhj,i
(τ)dτ =

λ(βhj
)

λ(q)
hj,i + aj,i

h2
j,i

2
.
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In other words, the factor aj,i is given by

aj,i =
2

h2
j,i

[
λ((a, ā)j,i)−

λ(βhj
)

λ(q)
hj,i

]
∈ R, (A.3)

which can be estimated as

|aj,i|
hj,i

≤ 2


 |λ((a, ā)j,i)− hj,i|

h3
j,i

+
|hj,i −

λ(βhj
)

λ(q)
hj,i|

h3
j,i


 .

Both terms on the right hand side are uniformly bounded in i ∈ N (j) by Lemma 6.8

and Corollary 6.9, hence

aj,i = O(hj,i) (A.4)

with the constant being uniform.

The sequence of reparametrisation functions {ϕj} given by (A.1), (A.2) and (A.3)

can now be shown to satisfy each condition (C1)-(C7):

Condition (C1): By the definition we have immediately ϕj ∈ C∞((sj,i−1, sj,i),R) for

all i ∈ N (j), j ∈ N. More precisely, for s ∈ (sj,i−1, sj,i) we have

ϕ′j(s) =
λ(βhj

)

λ(q)
+ aj,i

hj,i

2

[
1− cos

(
2π(s− sj,i−1)

hj,i

)]
, (A.5)

ϕ′′j (s) = aj,iπ sin

(
2π(s− sj,i−1)

hj,i

)
, (A.6)

ϕ′′′j (s) = aj,i

2π2

hj,i

cos

(
2π(s− sj,i−1)

hj,i

)
. (A.7)

At the points sj,i one computes the left and right limits.

ϕ′j(sj,i) =
λ(βhj

)

λ(q)
,

ϕ′′j (sj,i) = 0,

and

ϕ′′′hj−
(sj,i) = aj,iπ

2π

hj,i

, ϕ′′′hj+
(sj,i) = aj,i+1π

2π

hj,i+1
.

Thus, the functions ϕj, ϕ
′
j, ϕ

′′
j are continuous and ϕj ∈ C2(I, Ij). But ϕ′′j is in general

only piecewise differentiable, so that ϕj ∈ C2,1\C3.

Condition (C2): This follows from (C6), i.e. from the fact that ϕ′hj
converges uni-

formly to one as j →∞.

Conditions (C3)-(C5): By construction, i.e. by (A.3), we have q(sj,i) = βhj
(ϕj(sj,i))

for i ∈ N (j), j ∈ N. In the proof of (C1) we find (C4)-(C5).
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Condition (C6): Convergence in C1: We use equation (A.5), Corollary 6.9 and equa-

tion (A.4) to obtain

|ϕ′j(s)− 1| ≤
∣∣∣∣
λ(βhj

)

λ(q)
− 1

∣∣∣∣ + |aj,i|
hj,i

2

∣∣∣∣1− cos

(
2π(s− sj,i−1)

hj,i

)∣∣∣∣

≤
∣∣∣∣
λ(βhj

)

λ(q)
− 1

∣∣∣∣ + |aj,i|hj,i = O(h2
j),

uniformly in s.

Convergence in C2: With equations (A.6) and (A.4) we conclude the uniform con-

vergence

|ϕ′′j (s)| ≤ |aj,i|π
∣∣∣∣sin

(
2π(s− sj,i−1)

hj,i

)∣∣∣∣ ≤ |aj,i|π = O(hj).

Condition (C7): Equations (A.7) and (A.4) imply

‖ϕ′′′j ‖L∞ ≤ sup
i∈N (j)

aj,i

2π2

hj,i

cos

(
2π(s− sj,i−1)

hj,i

)
≤ c,

for all j ∈ N.
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Appendix B

Listing of MATLAB codes

We list five Matlab scripts. The three scripts crit test.m, min dist segment.m, and

ropelength.m are used for the thickness evaluation algorithm as described in section

7.1.3, the script frho pt.m computes ρpt and candidates for a µ-contact set χµ following

Lemma 7.14, and finally, for a given µ the χµ and χ2µ are computed in the script

fcontact.m.

function [c]=crit_test(a0,a1,a2,b0,b1,b2);

% if c=2, then nothing can be said, balls intersect,

% if c=1, then nothing can be said,

% if c=0, then no critical point (of euclidean distance) inside arcs.

%----------------------------------------

% the tangents at the ends of the arcs

ta1=(a1-a0)/norm(a1-a0);

ta2=(a2-a1)/norm(a2-a1);

tb1=(b1-b0)/norm(b1-b0);

tb2=(b2-b1)/norm(b2-b1);

% check if the balls intersect, if c=2 balls intersect

if norm(a0+a2-b0-b2)<=norm(a0-a2)+norm(b0-b2)

c=2;

else

sin_alpha=(norm(a0-a2)+norm(b0-b2))/norm(a0+a2-b0-b2);

w=(a0+a2-b0-b2)/norm(a0+a2-b0-b2);

%----------------------------------------

if w’*ta1<-sin_alpha & w’*ta2<-sin_alpha

c=0;

elseif w’*ta1>sin_alpha & w’*ta2>sin_alpha

c=0;

elseif w’*tb1<-sin_alpha & w’*tb2<-sin_alpha

c=0;

elseif w’*tb1>sin_alpha & w’*tb2>sin_alpha

c=0;

else
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c=1;

end

%----------------------------------------

end

%----------------------------------------

function [minima]=min_dist_segment(b0,b1,d0,d1);

%----------------------------------------

% Given twice 2 points in 3d space (colums),

% Computes min distance minima between segments.

% The set candidates is:

% - min_corners=minimal distance between end of the segments.

% - inner_dist=minimal distance between the lines,

% set to inf if not attained inside the segment.

% - d0_dist=minimal distance of projection of end do onto the segment of b,

% set to inf if not attained inside the segment.

% Analogously for: d1_dist, b0_dist, b1_dist.

%----------------------------------------

min_corners=min([norm(b0-d0) norm(b0-d1) norm(b1-d0) norm(b1-d1)]);

%----------------------------------------

% distance between lines

lambda=1/(norm(b1-b0)^2*norm(d1-d0)^2-((b1-b0)’*(d1-d0))^2)*

[-(b1-b0)’*(b0-d0)*norm(d1-d0)^2+(b1-b0)’*(d1-d0)*(d1-d0)’*(b0-d0);

norm(b1-b0)^2*(d1-d0)’*(b0-d0)-(b1-b0)’*(b0-d0)*(b1-b0)’*(d1-d0)];

% check if minimal distance achieved inside segements

if lambda(1)<1 & lambda(2)<1 & lambda(1)>0 & lambda(2)>0

inner_dist=norm(b0+lambda(1).*(b1-b0)-d0-lambda(2).*(d1-d0));

else

inner_dist=inf;

end

%----------------------------------------

% project d0 onto b-segment:

p_d0=(d0-b0)’*(b1-b0)/norm(b1-b0)^2*(b1-b0)+b0;

% check if inside segment

if norm(p_d0-b0)+norm(p_d0-b1)-norm(b1-b0)<=0.00000001

d0_dist=norm(p_d0-d0);

else

d0_dist=inf;

end

%----------------------------------------

% project d1 onto b-segment:
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p_d1=(d1-b0)’*(b1-b0)/norm(b1-b0)^2*(b1-b0)+b0;

% check if inside segment

if norm(p_d1-b0)+norm(p_d1-b1)-norm(b1-b0)<=0.00000001

d1_dist=norm(p_d1-d1);

else

d1_dist=inf;

end

%----------------------------------------

% project b0 onto d-segment:

p_b0=(b0-d0)’*(d1-d0)/norm(d1-d0)^2*(d1-d0)+d0;

% check if inside segment

if norm(p_b0-d0)+norm(p_b0-d1)-norm(d1-d0)<=0.00000001

b0_dist=norm(p_b0-b0);

else

b0_dist=inf;

end

%----------------------------------------

% project b1 onto d-segment:

p_b1=(b1-d0)’*(d1-d0)/norm(d1-d0)^2*(d1-d0)+d0;

% check if inside segment

if norm(p_b1-d0)+norm(p_b1-d1)-norm(d1-d0)<=0.00000001

b1_dist=norm(p_b1-b1);

else

b1_dist=inf;

end

%----------------------------------------

minima=min([min_corners inner_dist d0_dist d1_dist b0_dist b1_dist]);

%----------------------------------------

function [length,total_length,length_added,min_r,r,sizecritC,sizedist

C,critC,distC,lb_dcsd,ub_dcsd,lb_thickness,ub_thickness,ub_ropelength,

lb_ropelength,max_error,rel_error]=ropelength(B0,B1,B2,rel_error_b

ound);

%----------------------------------------

% given a list of arcs by Bezier points (=n colums with 3 rows),

% computes the length and thickness of the arccurve

% with double critical test, with distance test

%----------------------------------------

[three,n]=size(B1);

% local: radii of arcs and lengths

for i=1:n
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T(:,i)=(B1(:,i)-B0(:,i))/norm(B1(:,i)-B0(:,i)); % normed tangent

E(:,i)=(B2(:,i)-B0(:,i))/norm(B2(:,i)-B0(:,i)); % normed chord

eta(i)=acos(E(:,i)’*T(:,i));

r(i)=norm(B2(:,i)-B0(:,i))/2/sqrt(1-(E(:,i)’*T(:,i))^2);

length(i)=2*r(i)*eta(i);

end

[min_r min_r_arc]=min(r);

total_length=0;

for i=1:n

total_length=total_length+length(i);

length_added(i)=total_length;

end

%----------------------------------------

% initial criticality test

critC=[];

for i=1:n

for j=1:i-2 %we do not evaluate next neighbours

if ~ (i==n & j==1) %(*) neighbours

[c_v4]=crit_test_v4(B0(:,i),B1(:,i),B2(:,i),B0(:,j),B1(:,j),B2(:,j));

if c_v4~=0

% compute initial error and factor

w_a=(B1(:,i)-B0(:,i))’*(B2(:,i)-B0(:,i))/(norm(B1(:,i)-B0(:,i))

*norm(B2(:,i)-B0(:,i)));

error_a=w_a*sqrt((1-w_a)/(1+w_a))*norm(B1(:,i)-B0(:,i));

w_b=(B1(:,j)-B0(:,j))’*(B2(:,j)-B0(:,j))/(norm(B1(:,j)-B0(:,j))

*norm(B2(:,j)-B0(:,j)));

error_b=w_b*sqrt((1-w_b)/(1+w_b))*norm(B1(:,j)-B0(:,j));

factor_a=2*(1+sqrt((1+w_a)/2));

factor_b=2*(1+sqrt((1+w_b)/2));

[min_dist_seg]=min_dist_segment(B0(:,i),B2(:,i),B0(:,j),B2(:,j));

critC=[critC [B0(:,i);B1(:,i);B2(:,i);B0(:,j);B1(:,j);B2(:,j);error_a;

factor_a;error_b;factor_b;min_dist_seg]];

end %from if

end %from if (*)

end %from for

end %from for

sizecritC=size(critC); % distC = initial intermediate set of candidates

%----------------------------------------
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% initial distance test:

distC=[];

dist_bound=min(critC(19,:)+critC(21,:)+critC(23,:));

[twentythree colncritC]=size(critC);

for i=1:colncritC

if critC(23,i)-critC(19,i)-critC(21,i)<=dist_bound

distC=[distC critC(:,i)];

end %from if

end %from for

sizedistC=size(distC); % distC = initial set of candidates

%----------------------------------------

% initial values:

lb_dcsd=min(distC(23,:)-distC(19,:)-distC(21,:));

ub_dcsd=min(distC(23,:)+distC(19,:)+distC(21,:));

lb_thickness=min([2*min_r lb_dcsd]);

ub_thickness=min([2*min_r ub_dcsd]);

ub_ropelength=total_length/lb_thickness;

lb_ropelength=total_length/ub_thickness;

max_error=max(distC(19,:)+distC(21,:));

rel_error=max_error/lb_thickness;

iteration=1;

%----------------------------------------

% Iteration:

%----------------------------------------

while rel_error(iteration)>rel_error_bound & 2*min_r>lb_dcsd(iteration)

iteration=iteration+1;

C=distC;

critC=[];

[twentythree colnC]=size(C);

for k=1:colnC

%----------------------------------------

% bisect the arcs

w1_a=(C(7:9,k)-C(1:3,k))’/norm(C(7:9,k)-C(1:3,k))*(C(4:6,k)-C(1:3,k))

/norm(C(4:6,k)-C(1:3,k));

midpt_a=((1/2)*(C(1:3,k)+C(7:9,k))+w1_a*C(4:6,k))/(1+w1_a);

w1_b=(C(16:18,k)-C(10:12,k))’/norm(C(16:18,k)-C(10:12,k))*(C(13:15,k)

-C(10:12,k))/norm(C(13:15,k)-C(10:12,k));
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midpt_b=((1/2)*(C(10:12,k)+C(16:18,k))+w1_b*C(13:15,k))/(1+w1_b);

A0=C(1:3,k);

A1=C(1:3,k)+((midpt_a-C(1:3,k))’*(midpt_a-C(1:3,k)))/2/((midpt_a-C(1:

3,k))’*(C(4:6,k)-C(1:3,k)))*(C(4:6,k)-C(1:3,k));

A2=midpt_a;

B0=midpt_a;

B1=C(7:9,k)+((midpt_a-C(1:3,k))’*(midpt_a-C(1:3,k)))/2/((midpt_a-C(1:

3,k))’*(C(4:6,k)-C(1:3,k)))*(C(4:6,k)-C(7:9,k));

B2=C(7:9,k);

C0=C(10:12,k);

C1=C(10:12,k)+((midpt_b-C(10:12,k))’*(midpt_b-C(10:12,k)))/2/((midpt_

b-C(10:12,k))’*(C(13:15,k)-C(10:12,k)))*(C(13:15,k)-C(10:12,k));

C2=midpt_b;

D0=midpt_b;

D1=C(16:18,k)+((midpt_b-C(10:12,k))’*(midpt_b-C(10:12,k)))/2/((midpt_

b-C(10:12,k))’*(C(13:15,k)-C(10:12,k)))*(C(13:15,k)-C(16:18,k));

D2=C(16:18,k);

%----------------------------------------

% criticality test

[c_v4_AC]=crit_test_v4(A0,A1,A2,C0,C1,C2);

[c_v4_AD]=crit_test_v4(A0,A1,A2,D0,D1,D2);

[c_v4_BC]=crit_test_v4(B0,B1,B2,C0,C1,C2);

[c_v4_BD]=crit_test_v4(B0,B1,B2,D0,D1,D2);

if c_v4_AC~=0

[min_dist_segAC]=min_dist_segment(A0,A2,C0,C2);

critC=[critC [A0;A1;A2;C0;C1;C2;C(19,k)/C(20,k);C(20,k);C(21,k)/C(22,

k);C(22,k);min_dist_segAC]];

end %from if

if c_v4_AD~=0

[min_dist_segAD]=min_dist_segment(A0,A2,D0,D2);

critC=[critC [A0;A1;A2;D0;D1;D2;C(19,k)/C(20,k);C(20,k);C(21,k)/C(22,

k);C(22,k);min_dist_segAD]];

end %from if

if c_v4_BC~=0

[min_dist_segBC]=min_dist_segment(B0,B2,C0,C2);

critC=[critC [B0;B1;B2;C0;C1;C2;C(19,k)/C(20,k);C(20,k);C(21,k)/C(22,
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k);C(22,k);min_dist_segBC]];

end %from if

if c_v4_BD~=0

[min_dist_segBD]=min_dist_segment(B0,B2,D0,D2);

critC=[critC [B0;B1;B2;D0;D1;D2;C(19,k)/C(20,k);C(20,k);C(21,k)/C(22,

k);C(22,k);min_dist_segBD]];

end %from if

%----------------------------------------

end %from for k=1:colnC

sizecritC=[sizecritC; size(critC)]; % critC=intermediate set of candidates

%----------------------------------------

% distance test:

distC=[];

dist_bound=min(critC(19,:)+critC(21,:)+critC(23,:));

[twentythree colncritC]=size(critC);

for i=1:colncritC

if critC(23,i)-critC(19,i)-critC(21,i)<=dist_bound

distC=[distC critC(:,i)];

end %from if

end %from for

sizedistC=[sizedistC; size(distC)]; % distC = set of candidates

%----------------------------------------

lb_dcsd=[lb_dcsd;min(distC(23,:)-distC(19,:)-distC(21,:))];

ub_dcsd=[ub_dcsd;min(distC(23,:)+distC(19,:)+distC(21,:))];

lb_thickness=[lb_thickness;min([2*min_r min(distC(23,:)-distC(19,:)-d

istC(21,:))])];

ub_thickness=[ub_thickness;min([2*min_r min(distC(23,:)+distC(19,:)+d

istC(21,:))])];

ub_ropelength=[ub_ropelength;total_length/(min([2*min_r min(distC(23,

:)-distC(19,:)-distC(21,:))]))];

lb_ropelength=[lb_ropelength;total_length/(min([2*min_r min(distC(23,

:)+distC(19,:)+distC(21,:))]))];

max_error=[max_error;max(distC(19,:)+distC(21,:))];

rel_error=[rel_error;max(distC(19,:)+distC(21,:))/(min([2*min_r min(d

istC(23,:)-distC(19,:)-distC(21,:))]))];

%----------------------------------------

end %from while

%----------------------------------------
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function [rho_pt,pt_A,pt_V,pt_CV,pt_C]=frho_pt(small,M,B0,B1,B2,r,len

gth_added);

%----------------------------------------

% Check if rho_pt is achieved inside arc or not.

% If not achieved inside arc pt_V=minima of pt on end point.

% If achieved inside arc, single critical test and pt_V=pp.

%----------------------------------------

% pt_A(i,j)=0 if local i.e. i==j

% pt_A(i,j)=1 if minimum achieved inside and by pp-min

% (or at endpoints with the necessary cond satisfied).

% pt_A(i,j)=2 if minimum achieved inside and by pp-max

% (or at endpoints with the necessary cond satisfied).

% pt_A(i,j)=4 if minimum achieved at endpoints.

%

% pt_C(i,j)=0 if pt_A(i,j)=0 and if local radius is minimum

% pt_C(i,j)=4 if pt_A(i,j)=0 and if local radius is not minimum

% pt_C(i,j)=pt_A(i,j) if pt_A(i,j)=1,2

% pt_C(i,j)=3 if the endpoint is minima

% pt_C(i,j)=4 if the endpoint is not minima

%

% pt_CV(i,j)=0 if pt_C(i,j)=0,1,2,3 and

% pt_CV(i,j)=pt_V(i,j) if pt_C(i,j)=4.

%

% pt_V(i,j)=minimal value of pt(midpoint,arc) on that pair

%----------------------------------------

[three n]=size(B0);

for i=1:n

for j=1:n

%------------------%------------------

if i==j

pt_A(i,j)=0;

pt_V(i,j)=r(j);

elseif i~=j

f0=(B0(:,j)-M(:,i))’*(B1(:,j)-B0(:,j));

f2=(B2(:,j)-M(:,i))’*(B2(:,j)-B1(:,j));

%------------------%------------------%------------------

if f0<0 & f2<0

pt_A(i,j)=4;

T=(B1(:,j)-B0(:,j))/norm(B1(:,j)-B0(:,j));

cos_phi=(1/norm(M(:,i)-B0(:,j)))*(M(:,i)-B0(:,j))’*T;

r_quad=norm(M(:,i)-B0(:,j))^2/(4*(1-cos_phi^2));
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pt0=sqrt(r_quad);

T=(B1(:,j)-B2(:,j))/norm(B1(:,j)-B2(:,j));

cos_phi=(1/norm(M(:,i)-B2(:,j)))*(M(:,i)-B2(:,j))’*T;

r_quad=norm(M(:,i)-B2(:,j))^2/(4*(1-cos_phi^2));

pt2=sqrt(r_quad);

pt_Vij=min([pt0 pt2]);

pt_V(i,j)=pt_Vij;

%------------------%------------------%------------------

elseif f0>0 & f2>0

pt_A(i,j)=4;

T=(B1(:,j)-B0(:,j))/norm(B1(:,j)-B0(:,j));

cos_phi=(1/norm(M(:,i)-B0(:,j)))*(M(:,i)-B0(:,j))’*T;

r_quad=norm(M(:,i)-B0(:,j))^2/(4*(1-cos_phi^2));

pt0=sqrt(r_quad);

T=(B1(:,j)-B2(:,j))/norm(B1(:,j)-B2(:,j));

cos_phi=(1/norm(M(:,i)-B2(:,j)))*(M(:,i)-B2(:,j))’*T;

r_quad=norm(M(:,i)-B2(:,j))^2/(4*(1-cos_phi^2));

pt2=sqrt(r_quad);

pt_Vij=min([pt0 pt2]);

pt_V(i,j)=pt_Vij;

%------------------%------------------%------------------

elseif f0<=0 & f2>=0

pt_A(i,j)=1;

%---------%---------

Bino=cross((B0(:,j)-B1(:,j)),(B2(:,j)-B1(:,j)))/norm(cross((B0(:,j)-B

1(:,j)),(B2(:,j)-B1(:,j))));

%---------

T0=(B1(:,j)-B0(:,j))/norm((B1(:,j)-B0(:,j)));

Chord=(B2(:,j)-B0(:,j))/norm((B2(:,j)-B0(:,j)));

cos_phi=Chord’*T0;

center=B0(:,j)+(r(j)/sqrt(1-cos_phi^2))*Chord-(r(j)*cos_phi/sqrt(1-co

s_phi^2))*T0;

%---------

% point on whole circle, where pp-min is achieved:

ppmin=center+r(j)*(M(:,i)-center-Bino’*(M(:,i)-center)*Bino)/norm(M(:

,i)-center-Bino’*(M(:,i)-center)*Bino);

pt_V(i,j)=.5*norm(ppmin-M(:,i));

%------------------%------------------%------------------

elseif f0>=0 & f2<=0
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%---------%---------%---------

% check if coplanar

if det([(B0(:,j)-B1(:,j)) (B2(:,j)-B1(:,j)) (M(:,i)-B1(:,j))])==0

% compute center of arc:

T2=(B1(:,j)-B0(:,j))/norm(B1(:,j)-B0(:,j));

Chord=(B2(:,j)-B0(:,j))/norm(B2(:,j)-B0(:,j));

cos_phi=Chord’*T2;

center=B0(:,j)+(r(j)/sqrt(1-cos_phi^2))*Chord-(r(j)*cos_phi/sqrt(1-co

s_phi^2))*T2;

%---------%---------

if r(j)<norm(M(:,i)-center)

pt_A(i,j)=2;

Bino=cross((B0(:,j)-B1(:,j)),(B2(:,j)-B1(:,j)))/norm(cross((B0(:,j)-B

1(:,j)),(B2(:,j)-B1(:,j))));

%---------

T0=(B1(:,j)-B0(:,j))/norm((B1(:,j)-B0(:,j)));

Chord=(B2(:,j)-B0(:,j))/norm((B2(:,j)-B0(:,j)));

cos_phi=Chord’*T0;

center=B0(:,j)+(r(j)/sqrt(1-cos_phi^2))*Chord-(r(j)*cos_phi/sqrt(1-co

s_phi^2))*T0;

%---------

% point on whole circle, where pp-max is achieved:

ppmax=center-r(j)*(M(:,i)-center-Bino’*(M(:,i)-center)*Bino)/norm(M(:

,i)-center-Bino’*(M(:,i)-center)*Bino);

pt_V(i,j)=.5*norm(ppmax-M(:,i));

%---------%---------

else

pt_A(i,j)=4;

T=(B1(:,j)-B0(:,j))/norm(B1(:,j)-B0(:,j));

cos_phi=(1/norm(M(:,i)-B0(:,j)))*(M(:,i)-B0(:,j))’*T;

r_quad=norm(M(:,i)-B0(:,j))^2/(4*(1-cos_phi^2));

pt0=sqrt(r_quad);

T=(B1(:,j)-B2(:,j))/norm(B1(:,j)-B2(:,j));

cos_phi=(1/norm(M(:,i)-B2(:,j)))*(M(:,i)-B2(:,j))’*T;

r_quad=norm(M(:,i)-B2(:,j))^2/(4*(1-cos_phi^2));

pt2=sqrt(r_quad);

pt_Vij=min([pt0 pt2]);

pt_V(i,j)=pt_Vij;
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end %from if r(j)<norm etc.

%---------%---------

%---------%---------%---------

else %from if det==0

% compute center of arc:

T2=(B1(:,j)-B0(:,j))/norm(B1(:,j)-B0(:,j));

Chord=(B2(:,j)-B0(:,j))/norm(B2(:,j)-B0(:,j));

cos_phi=Chord’*T2;

center=B0(:,j)+(r(j)/sqrt(1-cos_phi^2))*Chord-(r(j)*cos_phi/sqrt(1-co

s_phi^2))*T2;

% compute binormal of arc:

Bino=cross((B0(:,j)-B1(:,j)),(B2(:,j)-B1(:,j)))/norm(cross((B0(:,j)-B

1(:,j)),(B2(:,j)-B1(:,j))));

% compute center of arc-point-sphere

centersph=center+(Bino’*(M(:,i)-center))*Bino;

circ_cos=norm((B0(:,j)-centersph)’*Bino)/norm(B0(:,j)-centersph);

point_cos=norm((M(:,i)-centersph)’*Bino)/norm(M(:,i)-centersph);

%---------%---------

if point_cos<circ_cos %condition (7.43)

pt_A(i,j)=2;

Bino=cross((B0(:,j)-B1(:,j)),(B2(:,j)-B1(:,j)))/norm(cross((B0(:,j)-B

1(:,j)),(B2(:,j)-B1(:,j))));

%---------

T0=(B1(:,j)-B0(:,j))/norm((B1(:,j)-B0(:,j)));

Chord=(B2(:,j)-B0(:,j))/norm((B2(:,j)-B0(:,j)));

cos_phi=Chord’*T0;

center=B0(:,j)+(r(j)/sqrt(1-cos_phi^2))*Chord-(r(j)*cos_phi/sqrt(1-co

s_phi^2))*T0;

%---------

% point on whole circle, where pp-max is achieved:

ppmax=center-r(j)*(M(:,i)-center-Bino’*(M(:,i)-center)*Bino)/norm(M(:

,i)-center-Bino’*(M(:,i)-center)*Bino);

pt_V(i,j)=.5*norm(ppmax-M(:,i));

%---------%---------

else

pt_A(i,j)=4;

T=(B1(:,j)-B0(:,j))/norm(B1(:,j)-B0(:,j));
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cos_phi=(1/norm(M(:,i)-B0(:,j)))*(M(:,i)-B0(:,j))’*T;

r_quad=norm(M(:,i)-B0(:,j))^2/(4*(1-cos_phi^2));

pt0=sqrt(r_quad);

T=(B1(:,j)-B2(:,j))/norm(B1(:,j)-B2(:,j));

cos_phi=(1/norm(M(:,i)-B2(:,j)))*(M(:,i)-B2(:,j))’*T;

r_quad=norm(M(:,i)-B2(:,j))^2/(4*(1-cos_phi^2));

pt2=sqrt(r_quad);

pt_Vij=min([pt0 pt2]);

pt_V(i,j)=pt_Vij;

end

%---------%---------

end %from if det==0

%---------%---------%---------

%---------%---------

end %if f0<0 & f2<0 etc.

end %from if i~=j

%------------------%------------------

end %from for

end %from for

%----------------------------------------

%----------------------------------------

% compute rho_pt:

for k=1:n

rho_pt(k)=min(pt_V(k,:));

end

%----------------------------------------

% compute pt_C:

% find corner-min where pt_A(i,j)=4:

for i=1:n

for j=2:n-1

%----%----%----%----

if pt_A(i,j)~=4

% local

if i==j

pt_C(i,j)=0;

pt_CV(i,j)=0;

elseif i~=j

pt_C(i,j)=pt_A(i,j);

pt_CV(i,j)=0;

end

%-------------
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else

if norm(pt_V(i,j)-pt_V(i,j+1))<small & pt_A(i,j+1)==4

pt_C(i,j)=3;

pt_CV(i,j)=0;

else

pt_C(i,j)=4;

pt_CV(i,j)=pt_V(i,j);

end %from if

%----

end %from if

%----%----

end %from for j=2:n-1

%----%----%----%----

%----%----%----%----

% for j=1

if pt_A(i,1)~=4

% local

if i==1

pt_C(i,1)=0;

pt_CV(i,1)=0;

elseif i~=1

pt_C(i,1)=pt_A(i,1);

pt_CV(i,1)=0;

end

%-------------

else

if norm(pt_V(i,1)-pt_V(i,2))<small & pt_A(i,2)==4

pt_C(i,1)=3;

pt_CV(i,1)=0;

else

pt_C(i,1)=4;

pt_CV(i,1)=pt_V(i,1);

end %from if

%----

end %from if

%----%----%----%----

%----%----%----%----

% for j=n

if pt_A(i,n)~=4

% local

if i==n

pt_C(i,n)=0;

163



pt_CV(i,n)=0;

elseif i~=n

pt_C(i,n)=pt_A(i,n);

pt_CV(i,n)=0;

end

%-------------

else

if norm(pt_V(i,n)-pt_V(i,1))<small & pt_A(i,1)==4

pt_C(i,n)=3;

pt_CV(i,n)=0;

else

pt_C(i,n)=4;

pt_CV(i,n)=pt_V(i,n);

end %from if

%----

end %from if

%----%----

%----%----%----%----

end %from for i=1:n

% Plots:

figure(1)

stairs(length_added,rho_pt,’r’)

hold on

stairs(length_added,r,’b’)

hold off

figure(2)

image(pt_CV*34),axis(’square’),

figure(3)

imagesc(pt_C),axis(’square’)

colormap([0 .8 0;0 0 1;0.9 0.2 0.8; 1 0 0; 1 1 1])

%----------------------------------------

function [IC,IC2,ICcount,IC2count,Cr_index,Cr]=fcontact(thickness,muc

,M,B0,B1,B2,length_added,rho_pt,pt_V,pt_CV,pt_C);

%----------------------------------------

% note: do not use mu as a variable in matlab, it is taken!

%----------------------------------------

% IC(i,j)=0, when there is a muc-contact

% IC(i,j)=1, when there is no muc-contact

%----------------------------------------

[three n]=size(length_added);
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%----------------------------------------

ICcount=0;

IC2count=0;

for i=1:n

for j=1:n

if pt_C(i,j)~=4 & pt_V(i,j)<=thickness*(1+muc)

IC(i,j)=0;

ICcount=ICcount+1;

IC2(i,j)=0;

IC2count=IC2count+1;

elseif pt_C(i,j)~=4 & pt_V(i,j)<=thickness*(1+2*muc)

IC(i,j)=1;

IC2(i,j)=0;

IC2count=IC2count+1;

else

IC(i,j)=1;

IC2(i,j)=1;

end

end

end

% Plots:

figure(4)

imagesc(IC),,axis(’square’),colormap([0 0 0; 1 1 1])

figure(5)

imagesc(IC2),,axis(’square’),colormap([0 0 0; 1 1 1])

%----------------------------------------

%----------------------------------------

Cr=[];

Cr_index=[];

for i=1:n

vec=[];

i_index=[];

%-------%-------%

for j=1:n

if pt_C(i,j)~=4

vec=[vec pt_V(i,j)];

i_index=[i_index j];

end

end
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%-------%-------

[vec index]=sort(vec);

vec=vec(1:6);

index=index(1:6);

Cr=[Cr;vec];

Index=i_index(index);

Cr_index=[Cr_index; Index];

end

% for each i, (i.e. each Midpoint of an arc, usually)

% puts six lowest values of pt_V(i,:) where pt_C~=4,

% into a vector vec. Vectors are rows of matrix Cr.

% Plots:

figure(6)

plot(length_added,Cr(:,1),’.b’,length_added,Cr(:,2),’.r’,length_added

,Cr(:,3),’.g’,length_added,Cr(:,4),’b’,length_added,Cr(:,5),’r’,lengt

h_added,Cr(:,6),’g’),axis([0 1 thickness thickness*(1+muc)])

figure(7)

plot(length_added,Cr(:,1),’b.’,length_added,Cr(:,2),’r.’,length_added

,Cr(:,3),’g.’,length_added,Cr(:,4),’b’,length_added,Cr(:,5),’r’,lengt

h_added,Cr(:,6),’g’,[length_added(1) length_added(n)],[thickness*(1+m

uc) thickness*(1+muc)],’b--’),axis([0 1 thickness thickness*(1+2*muc)])

%----------------------------------------
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