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Riassunto

Gli obiettivi di questa tesi sono l’analisi numerica di flussi assialsimmetrici e la descrizione di
algoritmi adatti alla risoluzione di problemi di interazione fluido-struttura. Questo lavoro è
motivato dalla simulazione di flussi emodinamici, ma presenta carattere di generalità.

La prima parte di questo lavoro si concentra su un modello per flussi incomprimibili
tridimensionali basato sulla formulazione assialsimmetrica delle equazioni di Stokes o Navier–
Stokes; il dominio di calcolo e il campo vettoriale della velocità si riducono a due dimen-
sioni. In particolare si mostrano stime a priori ottimali per elementi finiti assialsimmetrici
P1isoP2/P1 per le equazioni di Stokes, ipotizzando che il dominio e i dati siano assialsim-
metrici e che i dati abbiano componente angolare nulla. Questa analisi utilizza spazi di
Sobolev pesati e un operatore di proiezione di tipo Clément.

In seguito si introducono una formulazione assialsimmetrica delle equazioni di Navier–
Stokes in domini mobili. Partendo da risultati esistenti in tre dimensioni, si deducono una
formulazione Lagrangiana-Euleriana arbitraria (ALE) e risultati di stabilità.

Nella seconda parte ci si occupa di algoritmi per la soluzione di problemi di interazione
fluido-struttura. Il problema è introdotto in una forma generale con equazioni di Navier–
Stokes incomprimibili per il fluido e un modello viscoelastico per la struttura. Si tiene conto
di deformazioni della struttura relativamente grandi e si mostra come estendere algoritmi
esistenti al fine di ridurre il tempo computazionale.

In primo luogo, si mostra come condizioni al contorno di traspirazione possano essere
utilizzate in una strategia di punto fisso. In secondo luogo, come ridurre il tempo di calcolo
utilizzando un algoritmo di Newton con approssimazioni della matrice jacobiana basate su
modelli fisici semplificati. Inoltre, per accelerare l’algoritmo di Newton vengono proposti
un precondizionatore dinamico per la risoluzione della matrice jacobiana e uno schema di
accelerazione; entrambi sono stati testati in simulazioni di flussi emodinamici in due e tre
dimensioni.
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Abstract

In this thesis we propose and analyze the numerical methods for the approximation of ax-
isymmetric flows as well as algorithms suitable for the solution of fluid-structure interaction
problems. Our investigation is aimed at, but are not restricted to, the simulation of the blood
flow dynamics.

The first part of this work deals with an axisymmetric fluid model based on three-
dimensional incompressible Stokes or Navier–Stokes equations which are solved on a two-
dimensional half-section of the domain under consideration. In particular we show optimal
a priori error estimates for P1isoP2/P1 axisymmetric finite elements for the steady Stokes
equations under the assumption that the domain and the data are axisymmetric and that the
data have no angular component. Our analysis is carried out in the framework of weighted
Sobolev spaces and takes advantage of a suitably defined Clément type projection operator.

We then introduce an axisymmetric formulation of the Navier–Stokes equations in mov-
ing domains and, starting from existing results in three-dimensions, we set up an Arbitrary
Lagrangian–Eulerian (ALE) formulation and prove some stability results.

In the second part, we deal with algorithms for the solution of fluid-structure interaction
problems. We introduce the problem in a generic form where the fluid is described by means
of incompressible Navier–Stokes equations and the structure by a viscoelastic model. We
account for large deformations of the structure and we show how existing algorithms may be
improved to reduce the computational time.

In particular we show how to use transpiration boundary conditions to approximate the
fluid-structure problem in a fixed point strategy. Moreover, in a quasi-Newton strategy we
reduce the cost by replacing the Jacobian with inexact Jacobians stemming from reduced
physical models for the problem at hand. To speed up the convergence of the Newton algo-
rithm, we also define a dynamic preconditioner and an acceleration scheme which have been
successfully tested in haemodynamics simulations in two and three dimensions.
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Introduction

The main interest which has driven our work is the mathematical modeling of the arterial
vascular system. Since the blood flow is pulsatile and arterial walls comply with the systolic-
diastolic heart beat, a mathematical model should account for the blood dynamics, the wall
dynamics and their interaction.

Modeling arterial wall mechanics is a very challenging task, due to the complex multi-
layered structure of arteries (see, e.g., Fung [Fun55] and Nichols and O’Rourke [NO98]). In
the past few years, simplified models have been proposed for reducing the complexity of
the numerical simulations (see, e.g., Le Tallec [LT94], Anicic and Léger [AL99], Quarteroni,
Tuveri and Veneziani [QTV00], Nobile [Nob01] or Anicic, Le Dret and Raoult [ALDR03]).

Despite the complexity of the physical nature of blood (composite of plasma, red blood
cells, etc., see, e.g., Nichols and O’Rourke [NO98] or, from a mathematical view point, Arada
and Sequeira [AS03] or Padula and Sequeira [PS98]), it is often useful to model blood as a
single phase, incompressible, homogeneous, linearly viscous fluid. However, in large arteries
(with radius larger than about 0.3 cm) blood’s behavior does not depart significantly from that
of a Newtonian fluid (see for example Quarteroni, Tuveri and Veneziani [QTV00]), therefore in
this work it will be modeled by three-dimensional unsteady Navier–Stokes equations. However
their approximation, even in a single artery, requires substantial computational resources.
This pushes forward the use of reduced models, i.e., mathematical models that feature a lower
computational complexity. In this respect, one approach consists of using one-dimensional
models (the flow being three-dimensional but the computational domain and the velocity flow
field are one-dimensional, see for example Sherwin, Formaggia and Peiró [SFP01], Formaggia,
Nobile and Quarteroni [FNQ02] or Sherwin et al. [SFPP03, SFPP03]); see also Robertson and
Sequeira [RS03] where a director theory derived from Cosserat theory for solid mechanics is
successfully employed. A different approach consists of using two-dimensional models which
are derived for the mean longitudinal section of the artery (see Formaggia et al. [FGNQ01]
or Nobile [Nob01]).

One case where the computational effort is reduced but not the dimension of the model,
is when the domain, the initial and the boundary conditions as well as the body forces can
be approximated as symmetric with respect to a straight axis. In such a case it is possible
to model the blood by three-dimensional axisymmetric Stokes or Navier–Stokes equations
which take advantage of the hypothesis of symmetry (cf. Bernardi, Dauge and Maday in
[BDM99]). Then the computational domain reduces to a two-dimensional one (see figure 1)
and if, in addition, the angular component of the data can be neglected, the velocity of the
fluid is characterized by its axial and radial components (the angular one being zero). This is
important since the size of the problem is reduced without losing three-dimensional features
and without any assumption on the velocity profile.
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Figure 1: An example of an axisymmetric domain Ω̆ and its half section Ω.

This reduction has several applications. For example, in view of a modeling of the complete
cardiovascular system, the coupling of different models has been considered in Quarteroni,
Tuveri and Veneziani [QTV00], Laganà et al. [LDM+02], Quarteroni [Qua02], Quarteroni and
Formaggia [QF02] and Formaggia and Veneziani [FV03]. The idea is to use a very simple
model for the global cardiovascular system (for example lumped models based on the electric
analogy) and the full model limitedly to those regions where one wants to accurately simulate
the local effects of the circulation. The axisymmetric model may be used as interface between
a simple model and a full three-dimensional one. In particular it can be easily coupled with an
axisymmetric one-dimensional model (see, e.g., [Lam04]). A coupling with a lumped model
is under consideration (see Vergara [Ver]).

Since the axisymmetric model can reproduce three-dimensional effects, it can also be
used as “fine model” in the region of interest. For example, when dealing with a stent on a
straight tract of artery, this model can replace a full three-dimensional one, since in a first
approximation we can consider the geometry and the data axisymmetric.

Part I of this thesis is devoted to the analysis of the axisymmetric model. In particular,
we propose a numerical approximation of the axisymmetric Stokes equations by the finite
element method. We consider the so-called P1isoP2/P1 elements (see, e.g., Brezzi and Fortin
[BF91] or Quarteroni and Valli[QV94]). We prove existence, stability and error estimate
for the steady Stokes equations (chapter 1) and stability properties for the time advancing
schemes in the case of unsteady Navier–Stokes equations (chapter 2). We build the algebraic
system associated to the discrete Navier–Stokes problem and recall some solution techniques
based on suitable splitting methods.

Another aspect which is very crucial in blood flow analysis is the dynamical coupling of
the blood flow and the arterial wall. Fluid-structure interaction is not an exclusive feature
of haemodynamics. Indeed it appears in many other applications in physics and engineering.
For instance, aeroelasticity problems or fluttering of wings and structures: the action of the
wind on a bridge induces the oscillations of the bridge, while on a sail it generates the lift
which moves a sailing boat.
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The solution of the mechanical coupling requires algorithms that correctly describe the
energy transfer between the blood flow and the vessel wall (see Farhat, Lesoinne and Le
Tallec [FLL98], Grandmont [Gra98], Desjardins and Esteban [DE99, DE00], Grandmont and
Maday [GM00, GM01], Desjardins et al. [DEGL01]). This aspect is particularly relevant in
large arteries, where the vessel wall radius may vary up to 10% between systolic and diastolic
pulses. A numerical simulation of fluid-structure interaction helps understanding the effects
of geometry or physical changes of the vessel, as in a coronary bypass or a partial replacement
of the aortic arc (cf. Migliavacca et al. [MPD+01] or Corno et al. [CSB+03]).

One numerical challenge when facing fluid-structure problems involving large displace-
ments, is the definition of fast and accurate coupling algorithms, that allow the prediction of
long-term time evolution maintaining the stability of the overall system. At each time step,
we have to solve a highly coupled non-linear system using efficient methods that preserve,
inside inner loops, the fluid-structure subsystem splitting.

Standard strategies to solve this non-linear system are fixed-point based methods such as
Block-Jacobi or Block-Gauss-Seidel (BGS) iterations (see, e.g., Codina and Cervera [CC96],
Le Tallec and Mouro [LM01], Nobile [Nob01]). A BGS iterations method with constant
relaxation parameter may be effective, provided this parameter is chosen judiciously. In fact,
if the parameter is too large it may lead to divergence of the algorithm, whereas if it is too
small, the convergence is slowed down considerably. As pointed out in the literature (e.g.
Nobile [Nob01]), this choice depends, among other factors, on the domain geometry, the
characteristics of the fluid and the structure, as well as the boundary data. A better strategy
proposed by Irons and Tuck [IT69] and Mok, Wall and Ramm [MWR01], consists of using
an Aitken-like method to choose the parameter dynamically, based solely on the computed
solutions of the two previous iterations.

Standard BGS iterations are very expensive. Indeed, besides slow convergence one has to
account, at each iteration, for the cost of updating the fluid mesh and the corresponding fluid
matrices.

More recent approaches make use of Block-Newton methods on the non-linear coupled
problem (see, e.g., Matthies and Steindorf [MS00], Gerbeau and Vidrascu [GV03], Heil [Hei03],
Fernández and Moubachir [FM03, FM04]). Since the computation of the full Jacobian of the
coupled system would be very expensive, the generalized minimal residual (GMRES) iterative
method (see [SS86]) is applied so that one only needs to compute the action of the Jacobian
on intermediate residuals (see Fernández and Moubachir [FM04]). Still, this can be a difficult
operation; for that reason an inexact Jacobian computation has been proposed by Gerbeau
and Vidrascu [GV03], which is derived by applying a reduced (much simpler) physical model.
The obvious advantage is the fast computation of the Jacobian, however the drawback is that,
in some cases, the time step must be smaller than the one allowed for the exact version.

In part II, we show how to modify existing algorithms for fluid-structure interaction prob-
lems in order to improve their efficiency. In the two considered cases, BGS and Newton al-
gorithms, the modifications do not change the structure of the algorithms, such that existing
codes may be easily adapted. For example, we propose the Aitken extrapolation method (sec-
tion 4.2) to compute the relaxation parameter, which requires only two additional variables;
besides, to apply the zeroth order transpiration condition (section 4.1), the BGS algorithm
just needs to be shortened during some iterations. Also, an existing Newton or quasi-Newton
algorithm may be completed in order to take into account the proposed preconditioner in the
GMRES procedure that inverts the Jacobian (chapter 5). A slightly bigger coding effort is

3
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needed in order to benefit from the acceleration step (section 5.5.1), since we need to store
some values of the residual history and to solve a linear minimization problem.

What follows is a short description of the main contributions of this work. We present
first some results concerning the numerical modeling of axisymmetric flows and then some
improvements of existing algorithms for the solution of fluid-structure interaction problems.

Numerical solution of axisymmetric flows

In part I, we focus on axisymmetric Stokes and Navier–Stokes equations. In [BDM99],
Bernardi, Dauge and Maday show the existence of axisymmetric solutions of the steady
equations and how to discretize them by spectral methods. We discretize the weak axisym-
metric Stokes problem with P1isoP2/P1 finite elements and we show existence and optimal
a priori error estimates. Let Ω be a two-dimensional half section of the axisymmetric three-
dimensional domain Ω̆ under consideration (see figure 1) and V and Q be suitable weighted
Sobolev spaces. Assume that the data are axisymmetric with zero angular component. The
axisymmetric Stokes problem reads:

P0.1 Find (u, p), u = (ur, uz), in V ×Q such that⎧⎪⎨⎪⎩
ν

∫
Ω

(∇u : ∇v) rdx + ν

∫
Ω
urvr

1
r
dx −

∫
Ω

(div v) p rdx −
∫

Ω
vrp dx =

∫
Ω

f · v rdx,

−
∫

Ω
(div u) q rdx −

∫
Ω
urq dx = 0,

for all (v, q) in V ×Q.

To recover the three-dimensional solution (ŭ, p̆) from (u, p), the three-dimensional domain Ω̆
is described in cylindrical coordinates (r, θ, z). Then

ŭ(r, θ, z) =

⎛⎝ŭx

ŭy

ŭz

⎞⎠ =

⎛⎝ur(r, z) cos θ
ur(r, z) sin θ
uz(r, z)

⎞⎠
and

p̆(r, θ, z) = p(r, z).

We make use of weighted Sobolev spaces and we define a projection operator of Clément
type which allows us to prove optimal a priori error estimates:

Theorem 0.0.1 The discretized axisymmetric Stokes problem has a unique axisymmetric
solution (ŭh, p̆h) without angular component. Furthermore, if ŭ is in H2(Ω̆)2 and p̆ in H1(Ω̆),
then there exists a constant C such that

‖ŭ − ŭh‖H1(Ω̆)2 + ‖p̆ − p̆h‖L2(Ω̆) � Ch
(
‖ŭ‖H2(Ω)2 + ‖p‖H1(Ω̆)

)
,

where h > 0 is the length of the longest side of the finite element triangulation.

When dealing with the steady Navier–Stokes equations, Bernardi, Dauge and Maday in
[BDM99] prove that under the same assumptions on the domain and the data, the Navier–
Stokes equations expressed in cylindrical coordinates can be split in two coupled problems,
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one for the pressure, the axial and radial components of the velocity and the other for the
angular component. We deduce that, under the additional assumptions that the data have
zero angular component, the problem can be reduced to the half section Ω with unknown
(u, p), u = (ur, uz).

We then formulate the unsteady axisymmetric Navier–Stokes equations in moving do-
mains using an Arbitrary Lagrangian–Eulerian (ALE) formulation, which derives from the
classical three-dimensional equations by a change of variable and integrating over the angular
coordinate. We propose a time discretization and a semi-implicit treatment of the convective
field, show stability results and write the corresponding linear system in matrix form.

We also perform a numerical test on a Womersley flow on a tube of fixed radius and
length. The computational domain is a moving domain inside the flow and we impose exact
Dirichlet boundary conditions on the immersed boundary. The rate of convergence of the
unsteady Navier–Stokes solution with respect to h obeys the theoretical estimate proved for
the steady Stokes case.

Fluid-structure interaction

In part II, we introduce a fluid-structure interaction problem, not restricted to the axisym-
metric case previously addressed, and propose two abstract frameworks that allow the devel-
opment of algorithms for the solution of the coupled problem. The first one concerns Newton
algorithms with an approximated Jacobian (see also Fernández and Moubachir [FM04], and
Gerbeau and Vidrascu [GV03]). The second one is a domain decomposition interpretation
for a class of algorithms for the solution of the fluid-structure interaction problem. This al-
lows to interpret existing sub-domain iterative methods (see for example Quarteroni and Valli
[QV94]), such as Dirichlet–Neumann or Neumann–Neumann, in the fluid-structure interaction
framework.

We then describe the coupled problem as a fixed-point problem on the interface displace-
ment and we propose a modified fixed-point algorithm which combines the BGS iterations
with transpiration boundary conditions on the interface.

During some BGS iterations we freeze the computational domain of the fluid and replace
the boundary conditions on the interface by transpiration conditions, which are derived by a
Taylor expansion of the fluid velocity on the frozen domain. This allows us to keep the matrices
associated with the flow discretization unchanged for some iterations. After convergence on
the modified problem, the fluid domain is updated and we follow up with the standard BGS-
algorithm. This brings considerable advantage in computational efficiency.

To solve the fully-coupled problem we analyze the Newton algorithm and discuss how to
accelerate its convergence. Gerbeau and Vidrascu [GV03] propose to approximate the Jaco-
bian by neglecting the non-linear and viscous terms in the linearized fluid problem and the
fluid domain is frozen about its current state. We propose to only freeze the fluid domain and
to apply boundary conditions stemming from transpiration techniques. With this approach,
the number of Newton iterations is smaller than with the previous one, but numerical exper-
iments show that for a fixed time step, the CPU time is smaller with the model in [GV03].
However, since our approximation is closer to the exact Jacobian, the proposed approach may
be more efficient and may allow a larger time step, depending on the situation.

We also propose an original preconditioner for the GMRES iterations to solve the Jacobian
system (or an approximation of it). We store the partial QR-decomposition of the Jacobian

5
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J as well as the Krylov space L computed during the GMRES iterations and we use them at
the following Newton iteration. In particular this decomposition yields

QR = J |L,

where J |L denotes the restriction of J to L. Then the preconditioner generated in the first
Newton iteration is defined as

P−1
1 = R−1

1 QT
1 ΠIm(J1|L1

) +
1
λ

(
Id− ΠIm(J1|L1

)

)
,

where λ is a scalar to be chosen and ΠIm(J1|L1
) is the orthogonal projection on Im(J1|L1). We

prove that this preconditioner is well defined provided that J1 is non-singular. In the second
Newton iteration we apply P1 as right preconditioner and we show that it is possible to nestle
the preconditioners in the next Newton iterations. As a result we have a sequence of nested
preconditioners which is cleared at each new time step.

We also propose an acceleration step based on the linearization of the residual near the
solution and on the replacement of the Jacobian by the preconditioner built with the previous
GMRES iterations.

We successfully apply this approach in the Newton algorithm with two approximations of
the Jacobian with a considerable gain in CPU time in two and three-dimensional experiments.
We also show in a two-dimensional experiment, that at a fixed time, we can switch from a
simplified model for the Jacobian approximation to another. In particular, it is possible to
build the first preconditioner with the simplest model (which is cheap) in the first Newton
iteration and then use a more sophisticated (which is expensive but more effective) in the
following Newton iterations.

6
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Numerical Solution of
Axisymmetric Flows





Chapter 1

Axisymmetric formulation, analysis
and approximation of Stokes
equations

Introduction

Numerical simulation of three-dimensional incompressible flows by finite elements may feature
a very high computational complexity. Reducing the dimension of the problem is sometimes of
paramount interest. A simple approach consists of using Stokes or Navier–Stokes equations
in two dimensions and solve them with finite elements. This significantly reduces the size
of the problem, but several three-dimensional features are not present in the model. If the
problem is set in a domain which is symmetric by rotation around an axis, it is proved in
[BDM99] that, when using a Fourier expansion with respect to the angular variable, the
three-dimensional Stokes problem is equivalent to a system of two-dimensional problems on
the meridian domain, each problem being satisfied by a Fourier coefficient of the solution. So
it is possible to reduce its size without losing three-dimensional features.

Here we are going to present an axisymmetric model which supposes data with angular
component equal to zero. The advantage is that its discretization results in a linear system
of the same size as a two-dimensional one. In this case, all the Fourier coefficients of the
solution but the one of order zero vanish. So the number of unknowns in its discretization
is the same as in the Cartesian two-dimensional one. The only further difficulty is that the
variational formulation requires weighted scalar product (and the analysis has to be carried
out in weighted Sobolev spaces).

For the discretization of the Stokes problem we have chosen to work with P1isoP2/P1
finite elements: The approximation of the pressure makes use of continuous piecewise affine
functions and the approximation of the velocity components relies also on continuous piecewise
affine functions but on a finer mesh. We refer to Ying in [Yin86] and Tabata [Tab96] for the
numerical analysis of the discretization by other types of finite elements in a similar framework.

As usual, the numerical analysis of the discrete problem relies on an inf-sup condition
(Brezzi [Bre74]). For the discretization by Taylor–Hood elements of the two-dimensional
Stokes problem in the Cartesian case, Bercovier and Pironneau in [BP79] prove an inf-sup
condition and Verfürth in [Ver84] refines the analysis of these elements. Our aim is to extend
these results to the axisymmetric case.



CHAPTER 1. AXISYMMETRIC FORMULATION, ANALYSIS AND
APPROXIMATION OF STOKES EQUATIONS

Γ̆

Γ

z

z

Γ0

Ω

Ω̆

r

r

Figure 1.1: An example of an axisymmetric domain Ω̆ and its half section Ω. There is an
obstacle on the axis, hence Γ0 is a union of two disjoint segments.

The proof of the inf-sup condition in [Ver84] needs a very accurate approximation property
of the discrete spaces, involving both the usual Lagrange interpolation operator and the
Clément projection operator (see [Clé75]). One of the main parts of this chapter is devoted
to the extension of the properties of these operators to the weighted Sobolev spaces. A first
work in this subject is due to Mercier and Raugel (see [MR82]). However the results therein
are not sufficient for our needs.

Once these results are established we prove an optimal inf-sup condition for the discrete
spaces and optimal a priori error estimates.

An extension of these results to Navier–Stokes equations may be found in the following
chapter.

The proofs and the results reported in this chapter have been already submitted in a
paper by Belhachmi, Bernardi and Deparis, Weighted Clément operator and application to
the finite element discretization of the axisymmetric Stokes problem [BBD].

1.1 Assumptions and definitions

We are interested in modeling a flow in a domain Ω̆ symmetric with respect to the z axis (see
figure 1.1). We use cylindrical coordinates (r, θ, z) and we note Ω the half section (r, 0, z).
On the boundary Γ̆ of the physical domain Ω̆ we impose a Dirichlet boundary condition. Γ
denotes the half section of Γ̆ and Γ0 the intersection of Ω̆ with the axis, such that ∂Ω is the
union of Γ and Γ0. All vector-fields on Ω̆ are expressed in cylindrical coordinates.

The fluid is modeled by Stokes equations in the domain Ω̆ and we suppose that the bound-
ary condition and the external forces are axisymmetric and that their angular component is
zero.

Scalar functions p̆ or vector-fields ŭ on Ω̆ are axisymmetric (with respect to the z-axis),
if for any rotation Rη around the z-axis of an arbitrary angle η in [−π, π), it holds

p̆ ◦ Rη = p̆,

R−η (ŭ ◦ Rη) = ŭ,

10
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ŭ

ŭ

(r, θ + η)
(r, θ)

uθ

ur

Figure 1.2: Axial section of an axisymmetric vector field.

or explicitly
p̆(r, θ + η, z) = p̆(r, θ, z),

and, denoting respectively by ŭr, ŭθ, ŭz the radial, angular and axial components of a vector-
field ŭ, and recalling that (ŭr, ŭθ) forms a local coordinate system on an axial section plane
(i.e., a plane orthogonal to the axis, see figure 1.2)

ŭr ◦ Rη = ŭr,

ŭθ ◦ Rη = ŭθ,

ŭz ◦ Rη = ŭz.

In particular each cylindrical component of ŭ is also axisymmetric.
An axisymmetric function p̆ on Ω̆ depends only on the radial and axial coordinates, there-

fore we can associate a function p on Ω such that p(r, z) = p̆(r, 0, z). An axisymmetric
vector-field ŭ depends on (r, z). If it has zero angular component (ŭθ = 0), we associate a
vector-field u = (ur, uz) on Ω such that ur = ŭr and uz = ŭz.

1.2 Axisymmetric formulation and analysis

In this section we introduce the model, the notation and we recall some results from [BDM99].
Suppose that the axisymmetric domain Ω̆ is bounded, has a Lipschitz–continuous bound-

ary, that Γ0 is a finite union of segments of positive length and that the external forces are
axisymmetric with zero angular component.

The stationary homogeneous three-dimensional Stokes problem reads⎧⎪⎨⎪⎩
−ν∆ŭ + ∇p̆ = f̆ in Ω̆,
div ŭ = 0 in Ω̆,
ŭ = 0 on ∂Ω̆,

(1.1)

where f̆ is in H−1(Ω̆)3 . For simplicity we have chosen zero boundary data, however our anal-
ysis extends without difficulty to axisymmetric boundary data ğ with zero angular component
and zero mean flux through ∂Ω̆. The weak form of differential equation (1.1) writes:

11
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P1.1 Find (ŭ, p̆) in H1
0 (Ω̆)3 × L2

0(Ω̆) such that for all (v̆, q̆) in H1
0 (Ω̆)3 × L2

0(Ω̆)⎧⎨⎩ă(ŭ, v̆) + b̆(v̆, p̆) =
∫

Ω̆
f̆ · v̆dx̆,

b̆(ŭ, q̆) = 0,
(1.2)

where the bilinear forms ă and b̆ are defined as

ă(ŭ, v̆) = ν

∫
Ω̆

(∇ŭ : ∇v̆) dx̆,

b̆(ŭ, q̆) = −
∫

Ω̆
div ŭ q̆ dx̆,

H1
0 (Ω̆) stands for the space of functions in H1(Ω̆) with zero trace and L2

0(Ω̆) for the space of
functions in L2(Ω̆) with integral equal to zero.

Bernardi, Dauge and Maday have shown in [BDM99, §IX.1] that, if f̆ is axisymmetric,
this problem has a unique axisymmetric solution and that it can be split in two separate
problems on Ω, one for the angular component ŭθ and the other for (ŭr, ŭz, p̆). If the data
have no rotation as supposed, i.e., the angular component f̆θ is equal to zero, then ŭθ is also
zero.

1.2.1 Weighted Sobolev spaces

In this section we introduce some weighted Sobolev spaces (see Kufner, [Kuf80] and [BDM99,
§II.1]) that we use for the weak formulation of the axisymmetric problem.

For any real number α and 1 � p <∞, the space Lp
α(Ω) is defined as the set of measurable

functions w such that

‖w‖Lp
α(Ω) =

(∫
Ω
|w|prαdx

) 1
p

<∞,

where r = r(x) is the radial coordinate of x, i.e., the distance of a point x in Ω from the
symmetry axis and dx = drdz. For p = ∞, L∞

α (Ω) is simply equal to L∞(Ω). The subspace
L2

1,0(Ω) of L2
1(Ω) denotes the functions q with weighted integral equal to zero:∫

Ω
q rdx = 0.

Let 	 be a positive integer. We define the weighted Sobolev space W �,p
1 (Ω) as the space of

functions in Lp
1(Ω) such that their partial derivatives of order less than or equal to 	 belong

to Lp
1(Ω). The space W �,p

1 (Ω) is a Hilbert space endowed with the following semi-norm and
norm

|w|
W �,p

1 (Ω)
=

(∑�
k=0 ‖∂k

r ∂
�−k
z w‖p

Lp
1(Ω)

) 1
p
,

‖w‖
W �,p

1 (Ω)
=

(∑�
k=0 |w|

p

W k,p
1 (Ω)

) 1
p

.

When p = 2, we note as in the standard case W �,2
1 (Ω) by H�

1(Ω). We also need another
weighted space V 1

1 (Ω), defined as

V 1
1 (Ω) = H1

1 (Ω) ∩ L2
−1(Ω)

12
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and endowed with the norm

‖w‖V 1
1 (Ω) =

(
|w|2H1

1 (Ω) + ‖w‖2
L2
−1(Ω)

) 1
2
.

It can be proved that all functions in V 1
1 (Ω) have a null trace on Γ0 (see Mercier and Raugel

[MR82]). The traces on Γ are defined in a nearly standard way, see Bernardi, Dauge and

Maday, [BDM, §I], Theorem a.5. Let H
1
2
1 (Γ) be the trace space of H1

1 (Ω) on Γ,

H
1
2
1 (Γ) =

{
w|Γ; w ∈ H1

1 (Ω)
}
.

1.2.2 Dimension reduction

In this section we state the correspondence of the standard three-dimensional and weighted
two-dimensional Sobolev spaces. See [BDM99, §II.4] for the proofs of the following statements.

The subspace of axisymmetric functions in H1(Ω̆) is isomorphic to H1
1 (Ω). In the original

three-dimensional problem, to take into account the boundary condition, the subspace H1
0 (Ω̆)

of zero trace functions is introduced. The counterpart for the axial component of the velocity
is the weighted subspace

H1
1�(Ω) =

{
w ∈ H1

1 (Ω); w = 0 on Γ
}
,

and the one for the radial component is

V 1
1�(Ω) =

{
w ∈ V 1

1 (Ω); w = 0 on Γ
}
.

We describe the axisymmetric domain Ω̆ with cylindrical coordinates (r, θ, z). It is possible
to define two isomorphisms, which map axisymmetric functions and vector-fields on Ω̆ to
functions and vector-fields on Ω. These isomorphisms are called reduction operators and are
defined in the scalar case as{

w̆ ∈ H1
0 (Ω̆) axisymmetric

}
−→ H1

1�(Ω),

w̆ �−→ w : w(r, z) = w̆(r, θ, z) ∀θ

and in the vector case as{
w̆ ∈ H1

0 (Ω̆)3 axisymmetric and w̆θ = 0
}

−→ V 1
1�(Ω) ×H1

1�(Ω),

w̆ �−→ w : wr = w̆r, wz = w̆z.

Proposition 1.2.1 The space of axisymmetric vector-fields in H1(Ω̆)3 with zero angular com-
ponent is isomorphic to V 1

1 (Ω) ×H1
1 (Ω). The space of axisymmetric vector-fields in H1

0 (Ω̆)3

with zero angular component is isomorphic to V 1
1�(Ω) ×H1

1�(Ω).

Proof To an axisymmetric vector-field v̆ inH1(Ω̆)3 with zero angular component (v̆θ = 0)
we associate a vector-field v = (vr, vz) on Ω, such that vr = v̆r, vz = v̆z and vice-versa. Firstly
recall that in cylindrical coordinates

∇v̆ =

⎛⎝∂rvr 0 ∂rvz

0 1
rvr 0

∂zvr 0 ∂zvz

⎞⎠ .

13
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Then

‖v̆‖2
H1(Ω̆)3

=
∫

Ω̆

(
|v̆|2 + |∇v̆|2

)
dxdydz = 2π

∫
Ω

(
|v̆|2 + |∇v̆|2

)
rdrdz

= 2π
∫

Ω

(
|v|2 + |∇v|2

)
rdx + 2π

∫
Ω
v2
r

1
r
dx = 2π‖v‖2

V 1
1 (Ω)×H1

1 (Ω)

where ∇v is equal to
(
∂rvr ∂rvz

∂zvr ∂zvz

)
. Hence v is in V 1

1 (Ω) ×H1
1 (Ω) and similarly for the

inverse direction.
�

1.2.3 The weak axisymmetric form

The Stokes problem P1.1 on Ω for (ŭr, ŭz, p) is equivalent to the following weak formulation
of the Stokes axisymmetric problem.

P1.2 Find (u, p) in V 1
1�(Ω)×H1

1�(Ω)×L2
1,0(Ω) such that, for all (v, q) in V 1

1�(Ω)×H1
1�(Ω)×

L2
1,0(Ω), ⎧⎨⎩a(u,v) + b(v, p) =

∫
Ω

f · v rdx,

b(u, q) = 0,
(1.3)

where the forms a and b are defined by

a(u,v) =
1
2π
ă(ŭ, v̆) =

1
2π
ν

∫
Ω̆

(∇ŭ : ∇v̆) dx̆ (1.4)

= ν

∫
Ω

(∇u : ∇v) rdx + ν

∫
Ω
urvr

1
r
dx,

b(u, q) =
1
2π
b̆(ŭ, q̆) = − 1

2π

∫
Ω̆

div ŭ q̆ dx̆

= −
∫

Ω
(div u) q rdx −

∫
Ω
urq dx,

where div u = ∂rur + ∂zuz and dx̆ = dxdydz. Indeed it can be checked that a(u,v) =
1
2π ă(ŭ, v̆) and b(u, q) = 1

2π b̆(ŭ, q̆).
In [BDM99, §IX.1] it is proved that this problem has a unique solution. In particular it

is easily derived from its analogue on Ω̆ by using the reduction operator that the following
inf-sup condition holds: There exists a positive constant β such that for all q in L2

1,0(Ω),

sup
�∈V 1

1�(Ω)×H1
1�(Ω)

b(v, q)
‖v‖V 1

1 (Ω)×H1
1 (Ω)

� β‖q‖L2
1(Ω). (1.5)

1.3 Finite element approximation

In this section we introduce our finite element approximation to solve the Stokes problem P1.2
based on P1isoP2/P1 two dimensional elements on the half section Ω of the three-dimensional
axisymmetric domain. We can interpret a mesh of Ω as a mesh of Ω̆ made of toroidal elements
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Γ0

Ω
Γ

Ω̆
Γ̆

Figure 1.3: The mesh on the half section Ω and its axisymmetric representation in Ω̆.

with triangular section (see figure 1.3). We then prove the inf-sup condition in a similar way
as [BP79] and [Ver84].

The half section Ω represents our computational domain (see figure 1.3). From now on
we suppose that Ω is polygonal and we introduce a regular family of triangulations (Th)h of
Ω with the following properties:

(i) The domain Ω̄ is the union of the elements of Th.

(ii) If Tk 	= Tj and their intersection is non empty, then Tk ∩ Tj is either a side or a node.

(iii) There exists a constant σ independent of h, such that for all T in Th, its diameter hT is
smaller than h and T contains a circle of radius σhT .

We also suppose that each triangle T in Th has at least one vertex inside Ω (not on Γ ∪ Γ0).
In all that follows, c, c′, . . ., denote generic constants that may depend on σ and vary from
one line to the next one but are always independent of h.

Each triangulation Th is used for P1 elements for the pressure. Moreover Th/2 denotes the
triangulation obtained from Th by dividing each triangle into four equal triangles by joining
the midpoints of the edges. Indeed Th/2 is used for P1 elements for the velocity and generates
the same degrees of freedom as P2 elements defined on Th.

Let Pk(T ) denote the set of restrictions to T of polynomials of degree less than or equal
to k; then the finite element spaces for the velocity and the pressure are

Vh/2 =
{
vh ∈ C0(Ω̄)2 : vh|Γ = 0, vh,r|Γ0 = 0; ∀T ∈ Th/2 vh|T ∈ P1(T )2

}
,

Qh =
{
qh ∈ C0(Ω̄) :

∫
Ω
qhrdx = 0 ; ∀T ∈ Th qh|T ∈ P1(T )

}
.

Lemma 1.3.1 The following inclusions hold

Vh/2 ⊂ V 1
1�(Ω) ×H1

1�(Ω) ,

Qh ⊂ L2
1,0(Ω) .
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Proof Qh is included in H1(Ω) and since Ω is bounded, H1(Ω) is included in H1
1 (Ω).

Then Qh is a subset of L2
1(Ω) and thanks to the boundary conditions imposed in Vh/2, this is

included in H1
1�(Ω)2.

Let vh be in Vh/2. Then ‖vh,r‖H1
1 (Ω) < ∞ and thanks to lemmas 1.4.1 and 1.4.3 in

section 1.4.1, for any T in Th/2

‖vh‖2
L2
−1(T ) � C(2σhT )−1‖vh‖2

L2
1(T ) <∞.

Hence ‖vh‖2
V 1
1 (Ω)×H1

1 (Ω)
<∞ and Vh/2 ⊂ V 1

1�(Ω) ×H1
1�(Ω).

�
The discrete formulation of Stokes problem P1.2 reads:

P1.3 Find (uh, ph) in Vh/2 ×Qh for all (vh, qh) in Vh/2 ×Qh⎧⎨⎩a(uh,vh) + b(vh, ph) =
∫

Ω
f · vh rdx,

b(uh, q) = 0.
(1.6)

1.4 Finite element analysis

1.4.1 Weighted inverse inequalities

Preliminary results

In this section we will prove inverse inequalities for vector-fields in Vh/2. We need the following
classification of the triangles. For any T in Th, let FT denote an affine mapping from a reference
triangle T̂ onto T . Then the vertices of T̂ , âi, i = 1, 2, 3, are mapped by FT onto the vertices
of T , ai, i = 1, 2, 3. Let λ̂i be the barycentric coordinate associated with âi. We also define
a scalar number rT which is the minimum of the radial coordinate of the vertices of T not
belonging to the axis.

Lemma 1.4.1 For any triangle T of Th, there exists a constant c, such that chT � rT .

Proof Since the family of triangulations is regular, the distance of a vertex (r, z) to the
opposite side of T is larger than or equal to 2σhT . Since rT is the distance of a vertex from
the axis and no triangle crosses the axis, rT � 2σhT . The only exception is when the vertex
is on a triangle which crosses the axis and has a side on Γ. In this case rT � ChT , where
C depends on the angles between Γ and Γ0. Since there is a finite number of intersections
between Γ and Γ0, the constant C is bounded from below by a positive constant.

�
The triangles T of Th/2 can be of three different types:

• Type 1. If T∩Γ0 is empty, the ratio max�∈T r(�)
min�∈T r(�) is smaller than a constant only depending

on the regularity parameter σ of the family of triangulations. Then there exist two
positive constants c and c′ depending only on σ such that

crT � r(x) � c′rT ∀x ∈ T.

We say that r is “equivalent to” rT .
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• Type 2. If T ∩Γ0 is an edge with endpoints a2 and a3, the function r is equal to αT
1 λ1,

with the constant αT
1 equal to rT , so that the ratio αT

1 /hT is bounded from above and
from below by positive constants only depending on σ.

• Type 3. If T ∩ Γ0 is a vertex, for instance a1, the function r is equal to αT
2 λ2 + αT

3 λ3,
with the constants αT

i equal to r(ai), so that the ratio αT
i /hT is bounded from above and

from below by positive constants only depending on σ. So, the function r is “equivalent
to” hT (λ2 + λ3), with equivalence constants only depending on σ.

Here we introduce some technical lemmas which will be used to establish the approximation
properties of the Lagrange interpolation operator and the Clément operator.

We fix an integer k � 1 and, with each T in Th, we associate its lattice of order k, i.e.,
the set of degrees of freedom for polynomial of degree k. Let Σh = {ai, 1 � i � Nh} be the
union of these lattices on all T in Th.

Lemma 1.4.2 Let ϕi denote the Lagrange function in Pk(T ) associated to the node ai =
(ri, zi) of Σh. Then there exists a constant c independent of hT , such that for all T in Th

containing ai the following inequalities hold

||ϕi||Lp
1(T ) � c

(
max

T
r

1
p

)
h

2
p

T , ||ϕi||W 1,p
1 (T )

� c

(
max

T
r

1
p

)
h

2
p
−1

T . (1.7)

Proof Since the proof is similar for both inequalities we only give it for the first one.
Indeed, it is readily checked by going to the reference element that

||ϕi||Lp
1(T ) �

(
max

T
r

1
p

)
h

2
p

T ‖ϕ̂i‖Lp(T̂ ).

�
Note that if T intersect Γ0, then rT and maxT r are of the same order as hT .

Inverse Inequalities

Firstly, inequalities are proved for the norm of Lp
−1(T ), then for the semi-norm of W �,p

1 (T )
and finally the proof is carried out in the norms of V 1

1 (Ω) ×H1
1 (Ω).

For a triangle T in Th, note its area by |T |. Let f be a polynomial defined in T , then
f̂ stands for f ◦ FT . In particular ρT = r ◦ FT is the affine function representing the radial
coordinate.

Lemma 1.4.3 Let 1 � p < ∞ and k be an integer. There exists a constant c, such that for
every triangle T in Th and any polynomial f in Pk(T ), vanishing on the axis if T is of type
2 or 3,

‖f‖Lp
−1(T ) � c r

−2/p
T ‖f‖Lp

1(T ). (1.8)

Proof If T is of type 1, then for any point in T , rT � r and∫
T
|f |p 1

r
dx � 1

r2T

∫
T
|f |prdx.

Let T be of type 2. On the reference triangle, the weighted norms

||f̂ λ̂−1/p
1 ||Lp(T̂ ) and ||f̂ λ̂1/p

1 ||Lp(T̂ ). (1.9)
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on the polynomials f̂ of degree k. Then

||f ||p
Lp
−1(T )

=
|T |
2

||f̂ (λ̂1rT )−1/p||p
Lp(T̂ )

(owing to the equivalence)

�c |T |
2

1
r2T

||f̂ (λ̂1rT )1/p||p
Lp(T̂ )

= c
1
r2T

||f ||p
Lp

1(T )
.

This proves (1.8).
If T is of type 3, from the equivalence of the norms in (1.9) with λ̂1 replaced by λ̂2 + λ̂3,

||f ||p
Lp
−1(T )

� c
|T |
2

||f̂ ((λ̂2 + λ̂3)rT )−1/p||p
Lp(T̂ )

� c′
|T |
2

1
r2T

||f̂ ((λ̂2 + λ̂3)rT )1/p||p
Lp(T̂ )

� c′
1
r2T

||f ||p
Lp

1(T )
.

�

Lemma 1.4.4 (Inverse inequality on weighted Lp-spaces) There exists a constant c,
such that for every triangle T in Th and any polynomial f in Pk(T ),

‖∇f‖Lp
1(T ) � c h−1

T ‖f‖Lp
1(T ). (1.10)

Proof If T is of type 1, the standard inverse inequality gives

‖∇f‖Lp
1(T ) � max

�∈T
r(x)

1
p ‖∇f‖Lp(T ) � c

(
max
�∈T

r(x)
) 1

p

h−1
T ‖f‖Lp(T )

� c

(
max�∈T r(x)
min�∈T r(x)

) 1
p

h−1
T ‖f‖Lp

1(T ),

and the boundedness of the quantity max�∈T r(�)
min�∈T r(�) leads to the desired inequality. If T is of

type 2, we have by using the transformation FT

‖∇f‖Lp
1(T ) ≤ c h

2
p
−1

T r
1
p

T ‖(∇f̂)λ̂
1
p

1 ‖Lp(T̂ ),

and, by using the equivalence of norms on a finite dimensional space, we obtain

‖∇f‖Lp
1(T ) ≤ c h

2
p
−1

T r
1
p

T , ‖f̂ λ̂
1
p

1 ‖Lp(T̂ )

Thus going back to T yields

‖∇f‖Lp
1(T ) ≤ c h−1

T ‖f‖Lp
1(T ),

which is the desired result. When T is of type 3, the inequality follows from the same argument
as previously, with λ̂1 replaced by λ̂2 + λ̂3.

�
Now we are ready to prove a weighted inverse inequality:
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Proposition 1.4.1 (Inverse inequality on weighted Sobolev spaces) There exists a con-
stant c such that for all vh in Vh/2,

‖vh‖2
V 1
1 (Ω)×H1

1 (Ω) � c
∑

T∈Th/2

h−2
T ‖vh‖2

L2
1(T )2 . (1.11)

Proof Let vh = (vr, vz) be in Vh/2. From lemmas 1.4.1 and 1.4.3, for any T in Th/2,

‖vr‖L2
−1(T ) � ch−1

T ‖vr‖L2
1(T )

and from lemma 1.4.4
‖∇vr‖L2

1(T ) � ch−1
T ‖vr‖L2

1(T ),

and this last inequality also holds for vz. Hence

|vh|2V 1
1 (Ω)×H1

1 (Ω) = c
∑

T∈Th/2

(
‖∇vr‖2

L2
1(T ) + ‖∇vz‖2

L2
1(T ) + ‖vr‖2

L2
−1(T )

)
� c

∑
T∈Th/2

h−2
T

(
‖vz‖2

L2
1(T ) + 2‖vr‖2

L2
1(T )

)
� c

∑
T∈Th/2

h−2
T ‖v‖2

L2
1(T )2 � c

4

∑
T ′∈Th

h−2
T ′ ‖v‖2

L2
1(T ′)2 .

�

1.4.2 Inf-Sup condition

Verfürth in [Ver84] has proved the inf-sup condition for the Stokes problem with P1isoP2/P1
elements in the Cartesian case. The proof of Verfürth is based on the following result (due
to [BP79]), which we write adapted to the axisymmetric problem and to (not necessarily
uniformly) regular families of triangulations.

There exists a positive constant c independent of h such that

∀qh ∈ Qh, sup
�h∈Vh/2

b(vh, qh)
‖vh‖V 1

1 (Ω)×H1
1 (Ω)

� c

⎛⎝∑
T∈Th

h2
T |qh|2H1

1 (T )

⎞⎠1/2

. (1.12)

We prove this statement at the end of the chapter in section 1.5.2.
The following result is an extension of the Clément operator introduced in [Clé75], see

also [BG98] and [BMR04, §IX.3].
There exist positive constants c and c′ and an operator Rh : V 1

1�(Ω) ×H1
1�(Ω) → Vh such

that for all functions v in V 1
1�(Ω) ×H1

1�(Ω) and for all triangles T in Th

‖v −Rhv‖L2
1(T ) � c hT ‖v‖V 1

1 (T )×H1
1 (T ) , (1.13)

‖v −Rhv‖V 1
1 (T )×H1

1 (T ) � c′‖v‖V 1
1 (T )×H1

1 (T ) , (1.14)

where ∆T is the union of the triangles sharing at least one common vertex with T . Its proof
will be given in section 1.5.1. Now we are going to state and prove the inf-sup theorem for
axisymmetric P1isoP2/P1 finite elements.
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Theorem 1.4.1 There exists a positive constant c independent of h such that

∀qh ∈ Qh, sup
�h∈Vh/2

b(vh, qh)
‖vh‖V 1

1 (Ω)×H1
1 (Ω)

� c‖qh‖L2
1(Ω). (1.15)

Proof Let qh be in Qh with ‖qh‖L2
1(Ω) = 1, and note

η =

⎛⎝∑
T∈Th

h2
T |qh|2H1

1 (T )

⎞⎠1/2

.

Inequality (1.12) implies

sup
�h∈Vh/2

b(vh, qh)
‖vh‖V 1

1 (Ω)×H1
1 (Ω)

� c1η. (1.16)

The proof of the inf-sup condition (1.5) at the continuous level is based on the existence of a
u satisfying

div u +
1
r
ur = −qh and ‖u‖V 1

1 (Ω)×H1
1 (Ω) � 2β−1‖qh‖L2

1(Ω) = 2β−1 (1.17)

(see [BDM99, §IX.1] or appendix A.2). This implies |b(u, qh)| = ‖qh‖2
L2

1(Ω)
= 1. On the other

hand, taking uh = Rhu and using (1.13) and (1.14) yields

∑
T∈Th

h−2
T ‖uh − u‖2

L2
1(T )

(1.13)

� c2
∑

T∈Th

‖u‖2
V 1
1 (∆T )×H1

1 (∆T ) � c′2‖u‖2
V 1
1 (Ω)×H1

1 (Ω)

(1.17)

� 4β−2c′2.

(1.18)
By integration by parts together with the Schwarz inequality, we derive that

|b(uh − u, qh)| =

∣∣∣∣∣∣
∑

T∈Th

∫
T
(uh − u)∇qh rdx

∣∣∣∣∣∣ �
∑

T∈Th

‖u − uh‖L2
1(T )h

−1
T hT ‖∇qh‖L2

1(T )

�

⎛⎝∑
T∈Th

h−2
T ‖u − uh‖2

L2
1(T )

⎞⎠1/2⎛⎝∑
T∈Th

h2
T ‖∇qh‖2

L2
1(T )

⎞⎠1/2
(1.18)

� c η. (1.19)

Using (1.17), (1.14) and (1.19) yields

sup
�∈Vh/2

b(vh, qh)
‖vh‖V 1

1 (Ω)×H1
1 (Ω)

� b(uh, qh)
‖uh‖V 1

1 (Ω)×H1
1 (Ω)

� b(u, qh) − |b(uh − u, qh)|
‖u‖V 1

1 (Ω)×H1
1 (Ω) + ‖uh − u‖V 1

1 (Ω)×H1
1 (Ω)

(1.17,1.14)

� c (b(u, qh) − |b(uh − u, qh)|)

(1.19)

� c
(
1 − c′ η

)
= c2 − c3η. (1.20)

Inequalities (1.16) and (1.20) imply

sup
�∈Vh/2

b(vh, qh)
‖vh‖V 1

1 (Ω)×H1
1 (Ω)

� max {c1η, c2 − c3η} � min
t�0

max {c1t, c2 − c3t} =
c1c2
c1 + c3

.
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This ends the proof in the case ‖qh‖L2
1(Ω) = 1. Otherwise, if qh is different from zero, take

q̃h = qh/‖qh‖L2
1(Ω), which concludes the proof.

�
It is also possible to replace Vh/2 by piecewise quadratic functions on Th, i.e.,

Ṽh =
{
vh ∈ C0(Ω)2 : vh|Γ = 0, vh,r|Γ0 = 0; ∀T ∈ Th vh|T ∈ P2(T )2

}
.

The degrees of freedom of this space are exactly the same as for Vh/2, so by the same arguments
as previously, the inf-sup condition (1.15) still holds with Vh/2 replaced by Ṽh. The proof of
proposition 1.5.2 on page 31 can also be adapted to Ṽh. We recall that the couple of finite
elements spaces (Ṽh, Qh) are called Taylor–Hood elements.

1.4.3 Existence, uniqueness and a priori error estimates

The spaces V 1
1�(Ω) × H1

1�(Ω) equipped with ‖ · ‖V 1
1 (Ω)×H1

1 (Ω) and L2
1,0(Ω) with ‖ · ‖L2

1(Ω) are
Hilbert spaces. In fact (see proposition 1.2.1 and [BDM99, §II.2]) they are isomorphic to
subspaces of H1(Ω̆)3 and L2(Ω̆) respectively. The bilinear form a(·, ·) is elliptic (property
derived from ă(·, ·)), and the bilinear form b(·, ·) satisfies by theorem 1.4.1 the inf-sup condi-
tion. Hence the abstract results of Babuška [Bab73], Brezzi [Bre74] (see also Brezzi–Fortin
[BF91, §II.2.2] and Girault–Raviart [GR86, §II.1]) yield the well-posedness of the discrete
Stokes problem (1.6).

Theorem 1.4.2 Problem (1.6) has a unique solution (uh, ph) in Vh/2 ×Qh. Furthermore, if
u is in H2

1 (Ω)2 and p in H1
1 (Ω), then there exists a constant C such that

‖u − uh‖V 1
1 (Ω)×H1

1 (Ω) + ‖p− ph‖L2
1(Ω) � Ch

(
‖u‖H2

1 (Ω)2 + ‖p‖H1
1 (Ω)

)
. (1.21)

Proof As pointed out in definition (1.4), the bilinear form a(·, ·) can be expressed by
the three-dimensional bilinear form ă(·, ·), which is coercive (see for example [BDM99, §II.2]).
In section 1.4.2 the inf-sup condition 1.4.1 is proved, hence from theorem 1.1 in [GR86, §II.1]
it follows that

‖u − uh‖V 1
1 (Ω)×H1

1 (Ω) + ‖p− ph‖L2
1(Ω)

� C

(
inf

�h∈Vh/2

‖u − vh‖V 1
1 (Ω)×H1

1 (Ω) + inf
qh∈Qh

‖p− qh‖L2
1(Ω)

)
.

Mercier and Raugel [MR82] in theorem 4.4 show that the space of functions inH2
1 (Ω) vanishing

on Γ0 is included in V 1
1 (Ω). Theorems 1.5.1 and 1.5.2 and corollary 1.5.3 in section 1.5.1 lead

to
inf

�h∈Vh

‖u − vh‖V 1
1 (Ω)×H1

1 (Ω) � C h‖u‖H2
1 (Ω)2

and
inf

qh∈Qh

‖p− qh‖L2
1(Ω) � C h‖p‖H1

1 (Ω),

which proves (1.21).
�

In particular, Bernardi, Dauge and Maday in [BDM99, §IX.1] show that if Ω is convex
and the angles between Γ and Γ0, are not too large (for example less than 3

4π suffices), and
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if f is in L2
1(Ω)2, then u is in H2

1 (Ω)2 and p is in H1
1 (Ω) (in fact they show that u is even

more regular than that). So the error behaves like c h at least when these conditions on the
geometry of Ω are satisfied.

1.5 Technical results

1.5.1 Weighted approximation properties

We now prove some properties of the Lagrange interpolation operator and also of some
Clément type operators. There are several possible constructions of the Clément operator,
we follow here the approach presented in [BMR04, §IX.3] in the Cartesian case. We begin by
some technical lemmas which are useful in what follows.

Preliminary results

The next lemma states a polynomial approximation property which is a weighted extension
of a more general result due to [DS80] which was however stated for the unweighted case.

For ai in Σh, ∆̃i denotes the union of two triangles containing ai and sharing a common
edge, and hi stands for the diameter of ∆̃i.

Lemma 1.5.1 For all p, 1 � p � +∞, there exists a constant c, independent of hi, such that
for all functions v in W 1,p

1 (∆̃i),

inf
q∈P0(�∆i)

(
‖v − q‖

Lp
1(�∆i)

+ hi|v − q|
W 1,p

1 (�∆i)

)
� c hi|v|W 1,p

1 (�∆i)
. (1.22)

Proof Let T and T ′ denote the two triangles which define ∆̃i, and e their common edge.
Let he denote the diameter of e and me its midpoint. There exists a constant λ depending
only on the regularity parameter σ (defined in section 1.3), such that ∆̃i is star shaped with
respect to the ball B centered on me and with radius λhe

2 . The function : x �→ x̂ = 2�−�e
λhe

,
from ∆̃i into a region ∆̂ maps the ball B into the unit ball B̂. Let ϕ̂ be in D(B̂), with∫
B̂ ϕ̂ dx̂ = 1, then the function ϕ defined by

ϕ(x) =
(
λhe

2

)−2

ϕ̂

(
2
x − me

λhe

)
,

belongs to D(B) and ∫
B
ϕdx = 1.

Define q as

q =
∫

B
ϕ(y) v(y) dy.

To evaluate the norm of v− q in Lp
1(∆̃i), we start with the following Taylor formula: For each

x ∈ ∆̃i, and y ∈ B,

v(x) = v(y) +
∫ 1

0
(x − y) · ∇v(x + s(y − x)) ds.
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Multiplying by ϕ(y) and integrating over B, we obtain

v(x) − q =
∫

B

∫ 1

0
ϕ(y)(x − y) · ∇v(x + s(y − x)) ds dy.

Setting z = x + s(y − x), yields

|v(x) − q| � C

∫
�∆i

∣∣∣∣∫ 1

0
ϕ
(
x + s−1(z − x)

)
s−1(x − z) · ∇v(z)s−2 ds

∣∣∣∣ dz,
whence, for any x in ∆̃i,

|v(x) − q| �
∫
�∆i

|k(x,z)(x − z) · (∇v)(z)| dz, (1.23)

where

k(x,z) =
∫ 1

0
ϕ
(
x + s−1(z − x)

)
s−3ds.

Since ϕ(x + s−1(z − x)) vanishes when |x + s−1(z − x) − me| � λhe
2 , and particularly for

s � (µhe)−1|z − x|, for a constant µ depending only on σ,

|k(x,z)| � ‖ϕ‖L∞(B)

∫ 1

(µhe)−1|�−�|
s−3 ds � c ‖ϕ‖L∞(B)(µhe)2

∣∣|x − z|−2 − (µhe)−2
∣∣ .

Using ‖ϕ‖L∞(B) = (λhe
2 )−2‖ϕ̂‖L∞(B̂), we deduce

|k(x,z)| � c
(
|x − z|−2 + (µhe)−2

)
. (1.24)

Let k̃ be the function
k̃(z) = (|z − me|−2 + (µhe)−2)|z − me|

and deduce from (1.23) and (1.24)

|(v − q)(x)| � c

∫
�∆i

k̃(x − z)|∇v(z)| dz.

We now check that, for a constant c only depending on the regularity parameter σ,

r(z) � c r(x). (1.25)

Indeed,

• either the intersection of ∆̃i with Γ0 is empty. Then, we have

r(z) �
min�∈∆̃i

r(t)
max�∈∆̃i

r(t)
r(x),

and the ratio min�∈∆̃i
r(t)/max�∈∆̃i

r(t) is bounded from below by a constant only
depending on σ;
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• or it is not empty. We note that

r(z) = (1 − s)r(x) + sr(y) � min{r(x), r(y)}.

Since r(y) � µhe, either r(x) � µhe, so that r(z) � r(x), or r(x) > µhe, so that
r(z) � µhe and, since r(x) � che for a constant c only depending on σ, r(z) � µ

c he.

Thus

|(v − q)(x)| r(x)
1
p � c

∫
�∆i

k̃(x − z) |∇v(z)| r(z)
1
p dz.

Applying Young’s inequality yields

‖v − q‖Lp
1(�∆i)

� ‖k̃‖L1(�∆i)
‖∇v‖Lp

1(�∆i)2
.

Noting that

‖k̃‖L1(�∆i)
=
∫
�∆i

(|z − me|−1 + |z − me|(µhe)−2) dz

� c

∫ c′he

0
(�−1 + (µhe)−2�)�d� = c

′′
he,

we derive the first part of the inequality (1.22).
The second part of (1.22), i.e., the inequality with the second term on the left-hand side,

is obvious.
�

The next lemma is an extension of the previous one and its proof is identical to that for the
unweighted case, see [BMR04, §IX], lemma 3.4.

Let ∆i denotes the union of all elements T in Th containing ai.

Lemma 1.5.2 For all p, 1 � p � +∞, there exists a constant c, independent of hi, such
that, for all functions v in W 1,p

1 (∆i),

inf
q∈P0(∆i)

(
‖v − q‖Lp

1(∆i) + hi|v − q|W 1,p
1 (∆i)

)
� c hi ‖v‖W 1,p

1 (∆i)
. (1.26)

The following lemma is obtained by the same construction as lemma 1.5.1 and lemma 1.5.2.
Since the proof is rather long and technical, we only state the result. We refer to Dupont-Scott
[DS80] for the analogue in the unweighted case

Lemma 1.5.3 For all p, 1 � p � +∞, there exists a constant c, independent of hi, such
that, for all functions v ∈W �+1,p

1 (∆i), the following inequality holds

inf
q∈P�(∆i)

(
‖v − q‖Lp

1(∆i) + hi|v − q|W 1,p
1 (∆i)

)
� c h�+1

i ‖v‖
W �+1,p

1 (∆i)
. (1.27)

Obviously the results of lemma 1.5.1 to lemma 1.5.3 still hold when replacing ∆i by an element
T of Th. If we denote by ∆T the union of all elements of Th sharing at least a common vertex
with T , then these results still hold also.
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Lagrange interpolation operator

We define the Lagrange interpolation operator Ih : C0(Ω̄) → Xh, where Xh denotes the space
of Lagrange finite elements of order k: Ihϕ coincides with ϕ on all nodes of Σh. For any T
in Th, we introduce a local interpolation operator iT : C0(T ) → Pk(T ), such that for all aj in
Σh ∩ T ,

(iTϕ)(aj) = ϕ(aj).

So, it holds
Ihϕ|T = iTϕ|T .

Moreover this operator maps the functions that vanish on Γ onto Xh ∩H1
1�(Ω).

The approximation properties of the Lagrange interpolation operator in the framework of
weighted Sobolev spaces are proved in [MR82] (lemmas 6.1 and 6.2) in the case p = 2 (with
some restrictions). However, this is not sufficient for our purpose, and we need the more
general results stated in the following proposition.

Proposition 1.5.1 For all 	, 1 � 	 � k + 1, and for all p, 1 � p � +∞, such that

	 >
3
p

or p = 1, 	 = 3, (1.28)

there exists a constant C, independent of h, such that, for all element T in Th, the following
inequalities hold for all functions v ∈W �,p

1 (Ω)

‖v − Ihv‖Lp
1(T ) � C h�

T |v|W �,p
1 (T )

, (1.29)

|v − Ihv|W 1,p
1 (T ) � C h�−1

T |v|
W �,p

1 (T )
. (1.30)

Proof For any T ∈ Th and for any polynomial p of degree 	− 1,

‖u− Ihu‖Lp
1(T ) � ‖u− p‖Lp

1(T ) + ‖Ih(u− p)‖Lp
1(T ).

We consider the second term of this inequality. By going to the reference element, we have

‖Ih(u− p)‖Lp
1(T ) � cδh

2/p
T ‖Î(û− p̂)χ

1
p ‖Lp(T̂ ),

where δ and χ depend on the triangle T as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ = (maxT r)

1
p , and χ = 1 if T is of type 1,

δ = h
1
p

T , and χ = λ̂1 if T is of type 2,

δ = h
1
p

T , and χ = λ̂2 + λ̂3 if T is of type 3.

Let W �,p
χ (T̂ ) be the weighted Sobolev space with weight χ (similarly as for W �,p

1 (T )). The

continuous embedding ofW �,p
χ (T̂ ) into C0(T̂ ), which in the first case, derives from the standard

Sobolev embedding and in the other two cases from the three-dimensional one, yields

δ‖Î(û− p̂)‖Lp
χ(T̂ ) � δ‖û − p̂‖

W �,p
χ (T̂ )

,

whence
‖u− Ihu‖Lp

1(T ) � cδh
2/p
T ‖û− p̂‖

W �,p
χ (T̂ )

.
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Using the weighted Bramble-Hilbert lemma which follows from the compactness of the em-
bedding W �,p

χ (T̂ ) ⊂ Lp
χ(T̂ ), we obtain (see [GR86, §I], lemma 2.1)

‖u− Ihu‖Lp
1(T ) � cδh

2/p
T |û− p̂|

W �,p
χ (T̂ )

.

Returning back to T leads to (1.29). Inequality (1.30) is obtained similarly.
�

Weighted Clément operator

In this section we define a regularization operator Πh which maps L2
1(Ω) into Xh (the space

of Lagrange finite elements of order k), and we establish its approximation properties. With
each ai in Σh, we associate an arbitrary triangle Ti of Th which contains ai. Note that Ti is
to be chosen among a finite number of elements (bounded independently of the discretization
parameter). Define πi as the L2

1(Ti) orthogonal projection operator onto Pk(Ti): For all v in
L1

1(Ti), πiv is in Pk(Ti) and satisfies

∀q ∈ Pk(Ti),
∫

Ti

(v − πiv)(x) q(x) r dx = 0. (1.31)

We define Πh as

Πhv =
Nh∑
i=1

(πiv)(ai)ϕi(x), (1.32)

where ϕi is the Lagrange function associated with ai, 1 � i � Nh. The following lemma
states the stability of πi.

Lemma 1.5.4 For all p, 1 � p � +∞, there exists a constant c such that, for 1 � i � Nh

and for all functions v ∈ Lp
1(Ti)

‖πiv‖Lp
1(Ti) � c‖v‖Lp

1(Ti). (1.33)

Proof On the reference element T̂ , we define the projection operator π̂ such that
π̂v̂ = π̂iv, namely π̂ satisfies (1.31) with Ti replaced by T̂ and the measure rdx replaced by
ρTi(ζ, η) dζdη with ρTi equal to r ◦ FTi .

With the notation introduced in the proof of proposition 1.5.1, the function ρTi is equiv-
alent to δpχ. So we derive from Hölder’s inequality that, for p′ such that 1

p + 1
p
′ = 1,

‖π̂v̂‖2
L2

χ(T̂ )
� c ‖v̂‖Lp

χ(T̂ )‖π̂v̂‖Lp′
χ (T̂ )

.

Next, we obtain from the equivalence of weighted norms on Pk(Ti) for the three weights
corresponding to the different values of χ that

‖π̂v̂‖Lp
χ(T̂ ) ≤ c ‖π̂v̂‖L2

χ(T̂ ), ‖π̂v̂‖
Lp′

χ (T̂ )
≤ c′ ‖π̂v̂‖L2

χ(T̂ ).

Combining all this gives
‖π̂v̂‖Lp

χ(T̂ ) ≤ c ‖v̂‖Lp
χ(T̂ ).

26



1.5. TECHNICAL RESULTS

By applying now the transformation FTi leads to

‖πiv‖Lp
1(Ti) ≤ c δ ‖π̂v̂‖Lp

χ(T̂ ) ≤ c′ δ ‖v̂‖Lp
χ(T̂ ) ≤ c′′ ‖πiv‖Lp

1(Ti),

which is the desired result.
�

The following theorem states the first approximation properties of Πh.

Theorem 1.5.1 For all integers 	, 0 � 	 � k + 1, and for all p, 1 � p � +∞, there exists a
constant C, independent of hT , such that, for all T ∈ Th and all functions v ∈W �,p

1 (∆T ), the
following inequalities hold

‖v − Πhv‖Lp
1(T ) � C h�

T |v|W �,p
1 (∆T )

(1.34)

and, when 	 � 1,
|v − Πhv|W 1,p

1 (T )
� C h�−1

T |v|
W �,p

1 (∆T )
. (1.35)

Proof The proof of (1.34) is divided into three cases: 	 = 0, 0 < 	 � 3
p and 	 > 3

p (or
	 = 3, p = 1).

Case 	 = 0. It holds

‖Πhv‖Lp
1(T ) �

Nh∑
i=1

αi‖πiv(ai)ϕi‖Lp
1(T ), (1.36)

where αi is equal to 1 if the intersection of the support of ϕi with T is not empty, and zero
otherwise.

For any fixed i, we can write

‖πiv(ai)ϕi‖Lp
1(T ) � ‖πiv‖L∞(Ti)‖ϕi‖Lp

1(T ).

If Ti is of type 1, then we obtain from lemma 1.4.2 and a standard inverse inequality

‖πiv(ai)ϕi‖Lp
1(T ) � ĉ(

maxT r

minTi r
)

1
p h

− 2
p

Ti
h

2
p

T ‖πiv‖Lp
1(Ti). (1.37)

If Ti is of type 2, it follows from lemma 1.4.2 and the fact that max�∈T r(x) � c hT that

‖ϕi‖Lp
1(T ) � c h

3
p

T . (1.38)

On the other hand, we have

‖πiv‖L∞(Ti) = ‖π̂iv‖L∞(T̂ ) � c ‖π̂iv(λ̂1)
1
p ‖Lp(T̂ ),

whence
‖πiv‖L∞(Ti) � c h

− 3
p

Ti
‖πiv‖Lp

1(Ti).

Combining this with (1.38) gives

‖(πiv)(ai)ϕi‖Lp
1(T ) � c ‖πiv‖Lp

1(Ti). (1.39)

If Ti is of type 3, the same arguments applies and this estimate still holds.
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Inserting (1.37), respectively (1.39), into (1.36), we obtain

‖Πhv‖Lp
1(T ) � ĉ

Nh∑
i=1

αi ‖πiv‖Lp
1(Ti),

Noting that the number of non zero αi is bounded only as a function of k, we deduce from
lemma 1.5.4 the inequality

‖Πhv‖Lp
1(T ) � c‖v‖Lp

1(∆T ). (1.40)

Combining this with a triangle inequality yield (1.34) when 	 = 0.
Case 	 � 3

p . We note that for any polynomial q ∈ Pk(∆T ), and for all nodes ai in T , πiq
is equal to q, therefore the restriction of Πhq to T is also equal to q. Hence

‖v − Πhv‖Lp
1(T ) = ‖v − q + Πh(v − q)‖Lp

1(T ) � ‖v − q‖Lp
1(T ) + ‖Πh(v − q)‖Lp

1(T ).

Using (1.40), we obtain
‖v − Πhv‖Lp

1(T ) � c‖v − q‖Lp
1(∆T ). (1.41)

Combining with the result of lemma 1.5.2, respectively lemma 1.5.3 yield (1.34) when 	 � 3
p .

Case 	 > 3
p (or 	 = 3, p = 1). The functions of W �,p

1 (∆T ) are continuous, therefore we
can use the Lagrange interpolation operator Ih. Noting that for all ai, πi(Ihv) is equal to
(Ihv)|Ti

, we have Πh(Ihv) which is equal to Ihv. Whence

‖v − Πhv‖Lp
1(T ) � ‖v − Ihv‖Lp

1(T ) + ‖Πh(v − Ihv)‖Lp
1(T ),

Using once again (1.40) leads to

‖v − Πhv‖Lp
1(T ) � c‖v − Ihv‖Lp

1(∆T ).

The result follows from proposition 1.5.1.

The proof of (1.35) is the same as the previous one with obvious modifications (see
lemma 1.4.2).

�
Following the same lines we deduce the following statement.

Corollary 1.5.1 For all 	, 1 � 	 � k+ 1, and for all p, 1 � p � +∞, there exists a constant
c, independent of h, such that, for all elements T in Th, and all edges e of T which are not
contained in Γ0, and for all functions v ∈W �,p

1 (∆T ), the following inequality holds

‖v − Πhv‖Lp
1(e) � ch

�− 1
p

T |v|
W �,p

1 (∆T )
. (1.42)

Summing over all elements T , we obtain the global result

Corollary 1.5.2 For all 	, 1 � 	 � k+ 1, and for all p, 1 � p � +∞, there exists a constant
c, independent of h, such that, for any function v ∈W �,p

1 (Ω),

‖v − Πhv‖Lp
1(Ω) � ch�|v|

W �,p
1 (Ω)

. (1.43)
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Other weighted Clément operators

To take into account boundary conditions, we introduce now a modified operator Π0
h which

preserves the null trace on the boundary Γ of Ω:

Π0
hv =

Nh∑
i=1,�i �∈Γ

(πiv)(ai)ϕi. (1.44)

The operator Πh has the same approximation properties given in theorem 1.5.1 and the proof
is similar to the unweighted case, see [BMR04], theorem 3.11.

Corollary 1.5.3 Estimates (1.34), (1.35) and (1.42) still holds with Πh replaced by Π0
h, for

all functions v in W �,p
1 (∆T ) vanishing on Γ ∩ ∆T .

We need also to introduce two other operators Π̃h, which maps V 1
1 (Ω) into Xh ∩ V 1

1 (Ω) (the
space of Lagrange finite elements of order k vanishing at Γ0), and Π̃0

h, which maps V 1
1�(Ω) into

Xh ∩V 1
1�(Ω) (the space of Lagrange finite elements of order k vanishing at Γ0 ∪Γ), defined as

follows:

Π̃hv =
Nh∑

i=1,�i �∈Γ0

(πiv)(ai)ϕi. (1.45)

Π̃0
hv =

Nh∑
i=1,�i �∈(Γ0∪Γ)

(πiv)(ai)ϕi. (1.46)

Since we do not have any application for the approximation properties of these operators for
all the spaces W �,p

1 (Ω), we restrict ourselves to the case p = 2. We state the main result in
the following theorem.

Theorem 1.5.2 For all 	, 1 � 	 � k + 1, there exists a constant c, independent of h, such
that, for all elements T in Th, and for all functions v ∈ H�

1(∆T ) ∩ V 1
1 (∆T ), the following

inequality holds(
h−1

T ‖v − Π̃hv‖L2
1(T ) + ‖v − Π̃hv‖V 1

1 (T )

)
� Ch�−1

T ‖v‖H�
1(∆T )∩V 1

1 (∆T ). (1.47)

The same estimate holds with Π̃h replaced by Π̃0
h and for all v in H�

1(∆T ) ∩ V 1
1�(∆T ).

Proof We consider two cases.
Case 	 = 1. We can write

‖Π̃hv‖V 1
1 (T ) �

Nh∑
i=1,�i /∈Γ0

‖πiv‖L∞(Ti)‖ϕi‖V 1
1 (T ).

Using (1.7) and (1.8) for evaluating ‖ϕi‖V 1
1 (T ) and the same arguments as previously for

bounding ‖πiv‖L∞(Ti) according to Ti being of type 1, 2 or 3, we derive

‖Π̃hv‖V 1
1 (T ) � c ‖v‖V 1

1 (T ),
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which yields one part of (1.47). On the other hand, we have

‖v − Π̃hv‖L2
1(T ) � ‖v − Πhv‖L2

1(T ) + ‖Πhv − Π̃hv‖L2
1(T ),

and the first term in the right-hand side satisfies the desired estimate, see (1.34). We also
note that the second term vanishes on triangles T of type 1. If T is of type 2 or 3, we derive
from (1.7) that

‖Πhv − Π̃hv‖L2
1(T ) =

∑
�i∈Γ0∩T

h
3
2
T ‖πiv‖L∞(Ti),

where Ti is also of type 2 or 3. If Ti is of type 2 for instance, we derive by the same arguments
as in the proof of lemma 1.5.4,

‖πiv‖L∞(Ti) = ‖π̂iv‖L∞(T̂ ) � c ‖π̂iv(λ̂1)
1
2 ‖L∞(T̂ ) � c ‖π̂iv(λ̂1)

1
2‖L2(T̂ ) � c ‖v̂(λ̂1)

1
2‖L2(T̂ ).

By applying the Poincaré–Friedrichs inequality to the function π̂iv(λ̂1)
1
2 which vanishes on

one edge of T̂ , we obtain

‖πiv‖L∞(Ti) � c
(
‖∇v̂(λ̂1)

1
2 ‖L2(T̂ )2 + ‖v̂(λ̂1)−

1
2 ‖L2(T̂ )

)
.

Going back to Ti thus gives

‖πiv‖L∞(Ti) � c h
1− 3

2
Ti

‖v‖V 1
1 (Ti)

.

The same estimate holds when Ti is of type 3, by using similar arguments and applying the
Poincaré–Friedrichs inequality to functions in the space

Ŵ =
{
ŵ(λ̂2 + λ̂3)

1
2 ; ŵ ∈ H1(T̂ )

}
,

see [GR86, chap. I], theorem 2.1. This concludes the proof of (1.47).
Case 	 � 2. Since H�

1(T ) ⊂ C0(T̄ ) and Π̃h(Ihv) is equal to Ihv for all functions v in
H�

1(∆T ) ∩ V 1
1 (∆T ), we derive from inequality (1.47) for 	 = 1

h−1
T ‖v − Π̃hv‖L2

1(T ) + ‖v − Π̃hv‖V 1
1 (T ) � c ‖v − Ihv‖V 1

1 (∆T ).

Estimate (1.47) follows by combining proposition 1.5.1 with a further result proved in [MR82],
lemma 6.1.

�
To end this section, we give a useful stability property, that we state in the following

theorem

Theorem 1.5.3 There exists a constant c, independent of h, such that, for all elements T
in Th, and for all functions v ∈ L2

−1(T ), the following inequality holds

‖Π̃hv‖L2
−1(T ) � c‖v‖L2

−1(∆T ). (1.48)
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Proof We have

‖Π̃hv‖L2
−1(T ) �

Nh∑
i=1,�i �∈Γ0

‖πiv‖L∞(Ti) ‖ϕi‖L2
−1(T ).

Combining inequalities (1.7), (1.8) and, when Ti is of type 2 or 3 for instance,

‖πiv‖L∞(Ti) � h
− 1

2
T ‖v‖L2

−1(Ti)

yields (1.48).
�

As a consequence of the previous results, we have

Corollary 1.5.4 Let us define the operator Rh : V 1
1�(Ω) ×H1

1�(Ω) → Vh/2,

Rh(ur, uz) =
(
Π̃0

hur,Π0
huz

)
.

Then there exist positive constants c and c′ such that for all triangles T in Th and all functions
v in V 1

1�(Ω) ×H1
1�(Ω)

‖v −Rhv‖L2
1(T )2 � c hT ‖v‖V 1

1 (∆T )×H1
1 (∆T ) ,

‖v −Rhv‖V 1
1 (T )×H1

1 (T ) � c′‖v‖V 1
1 (∆T )×H1

1 (∆T ) .

1.5.2 Axisymmetric Inf-Sup condition in (V 1
1 (Ω) × H1

1 (Ω)) × H1
1 (Ω)

The following proposition is the weighted version of a result due to Bercovier and Pironneau
in [BP79] about the Cartesian inf-sup condition for P1isoP2/P1 elements. We refer to [BF91,
§VI.6] for the idea of the extension to a regular family of triangulations.

Proposition 1.5.2 There exists a positive constant c independent of h such that

∀qh ∈ Qh, sup
�∈Vh/2

b(vh, qh)
‖vh‖V 1

1 (Ω)×H1
1 (Ω)

� c

⎛⎝∑
T∈Th

h2
T |qh|2H1

1 (T )

⎞⎠1/2

.

Proof Let qh be a given element of Qh. Let Tk and Tj be two triangles of Th with
a common side, two common vertices denoted by xk and xj and let xkj be their midpoint
1
2(xk + xj) (see figure 1.4). Each element Tk of Th being divided into four sub-triangles by
joining the midpoints of its edges, let Dk be the union of the three sub-triangles of Tk with
one vertex being xkj. Note dk the weighted measure of Dk:

dk =
∫

Dk

rdx.

Define Dj in the same way. To simplify the notation we neglect dx in the integrals.
We define an element vh of Vh/2, being equal to zero at each vertex of any T in Th and on

Γ0 ∪ Γ, and equal to arbitrary real vectors vkj at all midpoints xkj. We can also write vh as∑
(kj) ϕ

kjvkj, where ϕkj is a basis function of Vh/2 which is one at xkj and zero at the other
vertices of triangles of Th/2. The end of the proof is divided into five steps.
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Tk
xj

xk Dk

Tj

Dj

xkj

Figure 1.4: The two triangles Tk and Tj.

Step 1. The norm of ϕkjvkj is bounded by:

‖ϕkjvkj‖2
L2

1(Tk)2 �
∫

Dk

r |ϕkjvkj|2 � |vkj|2dk.

Then
‖vh‖2

L2
1(Ω)

2 �
∑
(kj)

‖ϕkjvkj‖2
L2

1(Ω)
2 �

∑
(kj)

|vkj|2(dk + dj).

By the inverse inequality (1.11) and noting hk the diameter hTk
,

‖vh‖2
V 1
1 (Ω)×H1

1 (Ω) � c
∑

Tk∈Th

h−2
k ‖vh‖2

L2
1(Tk)2 � c

∑
Tk∈Th

∑
Tj∩Tk=edge

h−2
k |vkj|2dk

� c
∑
(kj)

(
h−2

k dk + h−2
j dj

)
|vkj|2 � cσ−2

∑
(kj)

h−2
kj |vkj|2(dk + dj),

where hkj = max{hk, hj} and the last inequality holds since Tk and Tj have a common edge.
We have shown that

‖vh‖V 1
1 (Ω)×H1

1 (Ω) � c
∑
(kj)

h−2
kj |vkj|2(dk + dj). (1.49)

Step 2. The vector field ∇qh is constant on Tk and it is noted by ∇qk. Let χD be the
characteristic function of a set D, then by integration by parts

b(ϕkjvkj, qh) =
∫

Ω
rϕkjvkj · ∇qh =

∫
Ω
rϕkjvkj · (∇qkχDk

+ ∇qjχDj ).

Now by considering the cases where Tk is of type 1, 2 or 3 and using [BMR04, §VII], proposition
2.3, we check that there exist two positive constants α1 and α2 only depending on σ and a
scalar ρkj with α1 < ρkj < α2, such that∫

Dk

ϕkj rdx = dkρkj.

Explicit values for α1 and α2 may be found in lemma A.1.1 in appendix A. This implies that∫
Ω
rϕkjvkj · ∇qkχDk

=
∫

Dk

r (∇qk · ϕkjvkj) = (∇qk · vkj)dkρkj,
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1.5. TECHNICAL RESULTS

hence
b(vh, qh) =

∑
(kj)

(ρkjdk∇qk + ρjkdj∇qj) · vkj. (1.50)

Step 3. Equation (1.49) together with (1.50) gives

max
vh∈Vh/2

b(vh, qh)
‖vh‖V 1

1 (Ω)×H1
1 (Ω)

� c max
(�kj)(kj)

[∑
(kj) (ρkjdk∇qk + ρjkdj∇qj) · vkj∑

(kj) h
−2
kj |vkj|2(dk + dj)

]
. (1.51)

We now take vkj = h2
kj(ρkjdk∇qk + ρjkdj∇qj)/(dk + dj), so we are in the case where the

Cauchy–Schwarz inequality becomes an equality:

∑
(kj)

[
ρkjdk∇qk + ρjkdj∇qj

h−1
kj (dk + dj)

1
2

· h−1
kj vkj(dk + dj)

1
2

]

=

⎡⎣∑
(kj)

|ρkjdk∇qk + ρjkdj∇qj|2
h−2

kj (dk + dj)

⎤⎦ 1
2
⎡⎣∑

(kj)

h−2
kj |vkj|2(dk + dj)

⎤⎦ 1
2

. (1.52)

Therefore, from (1.51) and (1.52)

max
vh∈Vh/2

b(vh, qh)
‖vh‖0

� c

⎡⎣∑
(kj)

h2
kj

|ρkjdk∇qk + ρjkdj∇qj|2
dk + dj

⎤⎦ 1
2

. (1.53)

Step 4. Since in Tk the gradient ∇qh|Tk
= ∇qk is constant, setting qk = qh(xk) leads to

∇qk · xk − xj

|xk − xj| =
qk − qj
|xk − xj |

and the same holds in Tj . Then(
ρkjdk∇qk + ρjkdj∇qj

)
· xk − xj

|xk − xj | =
(ρkjdk + ρjkdj) (qk − qj)

|xk − xj | .

Note that the ρkj are larger than α1. For a vector a and a unit vector e, |a|2 � |a · e|2.
Taking e = �k−�j

|�k−�j | , the square of the previous inequality gives

(
ρkjdk∇qk + ρjkdj∇qj

)2 � c
(dk + dj)

2 (qk − qj)
2

|xk − xj |2 . (1.54)

Step 5. We note xl the third vertex of Tk. Lemmas A.1.2 and A.1.3 and equality ∇qk ·
xk−xj

|xk−xj | = qh(xk)−qh(xj)
|xk−xj | allow to write for m = k and l

|∇qk|2 � c

[
(qk − ql)2

|xk − xl|2 +
(qm − qj)2

|xm − xj |2
]
. (1.55)

Inequalities (1.53) and (1.54) yield

max
vh∈Vh/2

b(vh, qh)
‖vh‖0

� c

⎧⎨⎩∑
Tk∈Th

edges of Tk∑
(�k,�j)

h2
kj

(qk − qj)2

|xk − xj|2 dkjχ{�kj /∈Γ∪Γ0}

⎫⎬⎭
1
2

,
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where we have replaced dk by dkj, which is the weighted measure of the union of the three
sub-triangles of Tk which have a vertex on the edge (xk,xj) and xkj is the midpoint of the
edge. Since for each triangle T in Th there is at least one vertex inside Ω, in the previous
equation at least two midpoints of the edges are not in Γ ∪ Γ0.

Let tk denote the weighted measure of the triangle Tk. From lemma A.1.4 dkj � 3
8tk,

hence inequality (1.55) leads to

max
vh∈Vh/2

b(vh, qh)
‖vh‖0

� c

⎛⎝ ∑
Tk∈Th

h2
k tk |∇qk|2

⎞⎠ 1
2

= c

⎛⎝∑
T∈Th

h2
T ‖∇qh‖2

L2
1(T )

⎞⎠ 1
2

.

The last equality holds since

‖∇qh‖2
L2

1(Tk) =
∫

Tk

r |∇qh|2 = (∇qk)2
∫

Tk

r = (∇qk)2tk .

To prove the proposition it is now enough to show that (vh,∇qh) = −b(vh, qh). Since v̆h = 0
on Γ̆, integrating by parts yields

(vh,∇qh) =
∫

Ω̆
v̆h∇q̆h = −

∫
Ω̆

div v̆h qh = −b(vh, qh).

�
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Chapter 2

Axisymmetric Navier–Stokes
equations

Introduction

In this chapter we formulate the axisymmetric Navier–Stokes problem. The assumptions on
the boundary data, on the domain and on the mesh are the same as in chapter 1. In the first
section we report some theoretical results on the analytical solution of the weak Navier–Stokes
problem in the steady case. They are derived from existing results in [BDM99, §IX.2] and
even though we present them in the case of homogeneous boundary data, they still hold in
the non-homogeneous one.

The unsteady case with moving domains is the subject of the following section. We present
the weak problem in Arbitrary Lagrangian–Eulerian (ALE) form. This formulation may be
used when dealing with moving domains and consists in recasting the governing differential
equation and the related weak formulation in a frame of reference moving with the domain.

We use the definition of the ALE mapping and its discretization presented by Nobile
in his PhD thesis [Nob01], and we extend its use to the axisymmetric formulation of the
Navier–Stokes equations.

2.1 The steady case

Let Ω be defined as in the previous chapter, i.e., a half section of an axisymmetric three-
dimensional domain Ω̆. The stationary three-dimensional incompressible homogeneous Navier–
Stokes equations reads ⎧⎪⎨⎪⎩

−ν∆ŭ + (ŭ · ∇)ŭ + ∇p̆ = f̆ in Ω̆,
div ŭ = 0 in Ω̆,
ŭ = 0 on ∂Ω̆,

(2.1)

Where ŭ is a three-dimensional vector field representing the fluid velocity, p̆ the pressure
(divided by the fluid density) and f̆ the internal volumic forces. The scalar ν is the kinematic
viscosity.

We assume that f̆ is in L2(Ω̆) and that it is axisymmetric with angular component equal
to zero.
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We can write the weak problem as the coupling of the following problems on uθ, u =
(ur, uz) and p respectively. Recall that we describe Ω with Cartesian coordinates x = (r, z),
which represent the axial and radial coordinates. In particular dx = drdz.

P2.1 Find (u, p) in V 1
1�(Ω)×H1

1�(Ω)×L2
1,0(Ω), such that for all (v, q) in V 1

1�(Ω)×H1
1�(Ω)×

L2
1,0(Ω), ⎧⎨⎩a(u,v) + d(u,u,v) + duθ

(uθ, vr) + b(v, p) =
∫

Ω
fv rdx,

b(u, q) = 0.
(2.2)

P2.2 Find uθ in V 1
1�(Ω), such that for all vθ in V 1

1�(Ω),

a1(uθ, vθ) + d�(uθ, vθ) − duθ
(uθ, ur) = 0. (2.3)

The trilinear form d(·, ·, ·) and the bilinear forms a1(·, ·), duθ
(·, ·), d�(·, ·) are defined as

d(w,u,v) =
∫

Ω
((w · ∇) u) · v rdx,

a1(uθ, vθ) =
∫

Ω
∇uθ · ∇vθ rdx,

dwθ
(uθ, vr) = −

∫
Ω
wθuθvr dx,

d�(uθ, vθ) =
∫

Ω
(w · ∇uθ) vθ rdx,

while a(·, ·) and b(·, ·) are defined in the previous chapter.
Bernardi, Dauge and Maday in [BDM99, §IX.2] show that the coupled problem P2.1-P2.2

has a unique solution if ν is (almost everywhere) greater than a constant ν0 which depends
only on the geometry and on the data. Moreover, for an arbitrary uθ in V 1

1 (Ω) there is a
solution to problem P2.1. The constant function uθ = 0 is a solution of problem P2.2 for any
u in V 1

1 (Ω) ×H1
1 (Ω). Hence, the coupled problem P2.1-P2.2 reduces to

P2.3 Find (u, p) in V 1
1�(Ω)×H1

1�(Ω)×L2
1,0(Ω), such that for all (v, q) in V 1

1�(Ω)×H1
1�(Ω)×

L2
1,0(Ω), ⎧⎨⎩a(u,v) + d(u,u,v) + b(v, p) =

∫
Ω

f · v rdx,

b(u, q) = 0.
(2.4)

In this case a solution (unique if ν is large enough) of the weak three-dimensional Navier–
Stokes problem is the axisymmetric solution given by

ŭ(r, θ, z) = (ur(r, z), 0, uz(r, z)) and
p̆(r, θ, z) = p(r, z).
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2.2. THE UNSTEADY CASE OF A MOVING DOMAIN

2.2 The unsteady case of a moving domain

In this section we deal with the unsteady Navier–Stokes equations in a domain Ω̆t ⊂ R
3

moving with a prescribed law. We assume that for all time t in [0, T ] the domain remains
axisymmetric and bounded. As before, the problem can be reduced to a problem on half
sections Ωt ⊂ R+ × R.

The notation is the same used in the previous section but here u and p are also functions
of t and we denote the strain rate tensor as

ε(ŭ) =
∇ŭ + ∇ŭT

2
.

The equations in the three-dimensional domain read{
∂tŭ + (ŭ · ∇)ŭ − div (2ν ε(ŭ)) + ∇p̆ = f̆ ,

div ŭ = 0,
in Ω̆t, t > 0. (2.5)

with axisymmetric initial condition ŭ0 with zero angular component and boundary conditions{
ŭ = φ̆ on Γ̆D

t ,

−p̆n̆ + 2ν ε(ŭ) · n̆ = σ̆ on Γ̆N
t .

(2.6)

Since div ŭ = 0, the two expressions for the viscous forms

− div (ν∇ŭ) and − div (2ν ε(ŭ))

do coincide. However, the induced natural conditions on the boundary (surface stresses that
we need in our analysis from now on) are more appropriately expressed with the form in (2.5).

The boundary ∂Ω̆t has been split into two disjoint regions Γ̆D
t and Γ̆N

t . The function φ̆
describes the velocity of the fluid on the Dirichlet boundary and is supposed to be axisym-
metric with zero angular component. The typical situation is when it is equal to the velocity
of the wall in fluid structure interaction (see also chapter 3).

The imposed normal stress σ̆ is also supposed to be axisymmetric with zero angular
component, and the unit outward normal vector n̆ has the same property because the domain
is supposed to be axisymmetric at all times.

2.2.1 Conservative weak ALE formulation

When the computational domain changes, the so called ALE frame is normally adopted in view
of the numerical approximation. The ALE frame may be defined similarly to the Lagrangian
one, often used in continuum mechanics. See for example [Nob01] for a preliminary analysis
and description of its discretization.

We would like to solve the Navier–Stokes equations in a moving domain in a time interval
I = (0, T ). With this goal in mind, we define an ALE mapping on the half sections, we extend
it to the three-dimensional domain, we write the weak form of the problem in the three-
dimensional ALE framework and finally we bring it back to two dimensions using weighted
integrals.
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AxesAxes

Ωt

Γ0,t

Γt

Ω̂

Γ̂

Γ̂0

At

Figure 2.1: ALE mapping between the initial configuration and the configuration at time t.

Let Ω̂ be a reference two-dimensional configuration, for example the initial domain Ωt=0

and let (At)t be a family of mappings, such that for each t, At maps a point x̂ of Ω̂ to a point
x on Ωt:

A : Ω̂ × I → R
2

(x̂, t) �→ A(x̂, t) = At(x̂).

For simplicity, we note a function of (·, t) with the subscript t. We define Ω × I = {(x, t) ∈
R

2 × R, x ∈ Ωt}, with a little abuse of notation and the domain velocity w as

wt(x) =
dAt(x̂)
dt

, where x̂ = A−1
t (x).

For all t, we assume that At is an homeomorphism from Ω̂ onto Ωt, i.e., At is continuous
from the closure of Ω̂ onto the closure of Ωt with a continuous inverse. Furthermore, we also
assume that the application t �→ At(x̂) is differentiable almost everywhere in I for all x̂ in Ω̂.
Usually, x̂ is called ALE coordinate while x is the Eulerian coordinate.

Let Γ0,t be the intersection of ∂Ωt with the axis and Γt be ∂Ωt \ Γ0,t. We assume that
At restricted to Γ̂0 is an homeomorphism onto Γ0,t. We then can build an ALE mapping Ăt

from ˘̂Ω to Ω̆t with the same properties as At by simply adding the angular coordinate.
To derive the conservative weak ALE formulation of the Navier–Stokes equations on Ω,

we start from its three-dimensional equivalent, i.e.,

d

dt

∫
Ω̆t

ŭ · v̆ dx̆ +
∫

Ω̆t

[(ŭ − w̆) · ∇] ŭ · v̆ dx̆ +
∫

Ω̆t

div (ŭ − w̆) ŭ · v̆ dx̆

+ 2ν
∫

Ω̆t

ε(ŭ) : ε(v̆) dx̆ −
∫

Ω̆t

div v̆ p̆ dx̆ =
∫

Ω̆t

f̆ · v̆ dx̆ +
∫

Γ̆N
t

σ̆ · v̆ds̆, (2.7)

−
∫

Ω̆t

div ŭ q̆ dx̆ = 0, (2.8)

which has to hold for all test vector fields v̆ and all test functions q̆. We do not introduce the
test spaces explicitly at this stage, since we are only interested in their correspondent on Ωt,
which are defined as follows.
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For all t in [0, T ] we define

V (Ωt) =
{
v : Ωt → R

2, v = v̂ ◦ A−1
t , v̂ ∈ V 1

1 (Ω̂) ×H1
1 (Ω̂)

}
,

VΓD(Ωt) =
{
v ∈ V (Ωt), v = 0 on ΓD

t

}
,

Q(Ωt) =
{
q : Ωt → R, q = q̂ ◦ A−1

t , q̂ ∈ L2
1(Ω̂)

}
,

(2.9)

while

V (Ω) =
{
v : Ω × I → R

2, vt ∈ V (Ωt) for a.e. t
}
,

Q(Ω) = {q : Ω × I → R, qt ∈ Q(Ωt) for a.e. t} .
(2.10)

We recall that for an axisymmetric vector field on Ω̆t, we have

div v̆ = ∂rvr + ∂zvz +
1
r
vr and ε(ŭ) : ε(v̆) = ε(u) : ε(v) +

1
r
urvr,

where we have set

ε(u) =

(
∇u + (∇u)T

)
2

.

From now on we use the abridged notation div v = ∂rvr + ∂zvz. Remark that div is not the
conjugate of ∇ = (∂r, ∂z)T in the weighted Sobolev spaces.

Finally we can write the conservative formulation of the axisymmetric three-dimensional
Navier–Stokes equations in moving domain as

P2.4 Find (u, p) in V (Ω)×Q(Ω), with u(0) = u0 and u = φ on Γ× I, such that for almost
every t in I and for all (v, q) in VΓD(Ωt) ×Q(Ωt)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

∫
Ωt

u · v rdx +
∫

Ωt

[(u − w) · ∇] u · v rdx +
∫

Ωt

div(u − w)u · v rdx

+
∫

Ωt

(ur − wr) u · v dx + 2ν
∫

Ωt

ε(u) : ε(v) rdx + 2ν
∫

Ωt

urvr
1
r
dx

−
∫

Ωt

div v p rdx −
∫

Ωt

vrp dx =
∫

Ωt

f · v rdx +
∫

ΓN
t

σ · v r(s)ds,

−
∫

Ωt

div u q rdx −
∫

Ωt

urq dx = 0.

Similar arguments may be applied to obtain a non-conservative formulation.

Energy inequality

Here we consider homogeneous Dirichlet boundary conditions and we recall that (see [Cia88]),
as a consequence of the Korn inequality, for a given domain Ω̆t, there is a constant κ such
that for all t, and all ŭ vanishing on a subset of Γ̆D

t with positive measure,

2ν
∫

Ω̆t

ε(ŭ) : ε(ŭ) dx̆ � κ‖∇ŭ‖2
L2(Ω̆t)

.
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We assume that this constant is independent of t. We also assume that the Poincaré and
trace inequality hold uniformly with respect to t, i.e.,

‖ŭ‖L2(Ω̆t)
� CP ‖∇ŭ‖L2(Ω̆t)

,

‖ŭ‖L2(Γ̆N
t ) � γ‖ŭ‖H1(Ω̆t)

.

Nobile in [Nob01, §3.2] shows that under these assumptions the solution of equations (2.7)
and (2.8) satisfies the following energy inequality,

‖ŭt‖2
L2(Ω̆t)

+
∫

I

∫
Γ̆N (τ)

|ŭ|2(ŭ − ˙̆g) · n̆ds̆dτ + κ

∫
I
‖∇ŭτ‖2

L2(Ω̆τ )

� ‖ŭ0‖2

L2(
˘̂
Ω)

+
2(1 + CP

2)
κ

∫
I

[
‖f̆ τ‖2

H−1(Ωτ ) + γ2‖σ̆τ‖2
L2(Γ̆N

t )

]
dτ,

where ˙̆g is a three-dimensional extension of the velocity on the boundary of Ω̆t. On Ωt, the
above inequality yields

‖ut‖2
L2

1(Ωt)
+
∫

I

∫
ΓN (τ)

|u|2(u − ġ) · n r(s)dsdτ + κ

∫
I
|uτ |2V 1

1 (Ωτ )×H1
1 (Ωτ )dτ

� ‖u0‖2
L2

1(Ω̂)
+

2(1 + CP
2)

κ

∫
I

[
‖f τ‖2

(V 1
1 (Ωτ )×H1

1 (Ωτ ))′ + γ2‖στ‖2
L2

1(ΓN
t )

]
dτ, (2.11)

where ‖ · ‖2

(V 1
1 (Ωt)×H1

1 (Ωt))′
denotes the norm of the dual space of V 1

1 (Ωt) ×H1
1 (Ωt).

If ΓN is empty, the previous inequality provides an a-priori estimate for the solution of the
axisymmetric Navier–Stokes equations. In this case the convective term

∫
Ωt

[u · ∇]u · u rdx
does not contribute to the energy inequality since∫

Ωt

[u · ∇]u · u rdx =
1
2π

∫
Ω̆t

(ŭ · ∇) ŭ · ŭ dx̆ =
1
4π

∫
Ω̆

ŭ · ∇|ŭ|2 = − 1
4π

∫
Ω̆

div ŭ|ŭ|2

= −1
2

∫
Ωt

div u |u|2 rdx − 1
2

∫
Ωt

ur|u|2 dx. (2.12)

The second equation of problem P2.4 implies that the last term is equal to zero. To apply
P2.4 we verify that |ut|2 is in Q(Ωt). Indeed, thanks to the Sobolev embedding in R

3,

‖ |ut|2‖L2
1(Ωt) = ‖ut‖2

L4
1(Ωt)2

= ‖ŭt‖2
L4(Ω̆t)2

< c‖ŭt‖2
H1(Ω̆t)2

= c‖ut‖2
V 1
1 (Ωt)×H1

1 (Ωt)
.

On the contrary, if ΓN is not empty, the term
∫
I

∫
ΓN (τ) |u|2(u − ġ) ·ndsdτ does not have

a definite sign and does not allow us to obtain the desired result. However, this is not due
to the axisymmetric formulation, since it occurs also in the non-axisymmetric case and on a
fixed domain. We remark that if (u− ġ) ·n � 0 on ΓN

t for all t, the boundary term is positive
and a global stability is thus recovered. This occurs when ΓN

t is an outflow section; indeed,
u − ġ represents the relative fluid velocity with respect to the moving boundary.

2.2.2 Construction of the ALE mapping

In the literature several techniques have been proposed (see for example [FLL98] and [Nob01])
to construct an ALE mapping. The fundamental problem is
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P2.5 Given the evolution of the moving boundary

g : ∂Ω̂ × I → ∂Ωt,

find an ALE mapping At, such that

At(x̂) = g(x̂, t) ∀t ∈ I, ∀x̂ ∈ ∂Ω̂.

Nobile in [Nob01, §1.4] proposes to solve this problem by a harmonic extension, i.e.,

P2.6 For almost all t, find At : Ω̂ → Ωt, such that{
∆At = 0 x̂ ∈ Ω̂,
At(x̂) = gt(x̂) x̂ ∈ ∂Ω̂.

This approach is feasible as long as we can guarantee the invertibility of the mapping. Another
possible choice is to solve problem P2.6 on ˘̂Ω. In fact, the formulations differ only in the kind
of integrals which are used: In the former, standard unweighted integrals are used, while the
latter uses weighted ones.

The weighted version can be useful when one would like each element in the triangulation
to always have nearly the same proportion of weighted measure, i.e.,

∫
Tt
r /

∫
Ωt
r =

∫
T0
r /

∫
Ω0
r

for almost every t. The weak formulation of P2.6 with weighted integral is

P2.7 Find A : Ω̂ × I → Ωt, such that for almost all t in I, At in V 1
1 (Ω̂) ×H1

1 (Ω̂), At = gt

on ∂Ω̂ and for all y in V 1
1�(Ω̂) ×H1

1�(Ω̂) with y|∂Ω̂ = 0,∫
Ω̂

∇At : ∇y rdx +
∫

Ω̂
At,ryr

1
r
dx = 0.

Since in the discretization of the Navier–Stokes problem we will start with a uniformly
regular mesh, we will use the unweighted formulation to find the ALE mapping. The weak
formulation of P2.6 with unweighted integral is

P2.8 Find A : Ω̂ × I → Ωt, such that for almost all t in I, At in H1(Ω̂)2, At = gt on ∂Ω̂
and for all y in H1(Ω̂)2 with y|∂Ω̂ = 0,∫

Ω̂
∇At : ∇ydx = 0.

The weighted form would be with dx replaced by rdx, an extra term xt,ryr
1
rdx and with test

vector fields in V 1
1�(Ω̂) ×H1

1�(Ω̂).

2.2.3 Finite element discretization

A finite element approximation of problem P2.4 involves both Navier–Stokes and ALE’s
discretization. For the Navier–Stokes problem, we choose, as in the first chapter, P1isoP2/P1
elements for which we have proved the discrete inf-sup compatibility condition. In particular,
the finite element spaces depend on the discretization of the ALE mapping, which we choose
to discretize with linear finite elements:

Yh(Ω̂) =
{

yh ∈ C0(Ω̂,R2) : y|T ∈ P1(T )∀T ∈ Th

}
,
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where {Th}h is a regular family of triangulations of Ω̂. For simplicity we suppose that the
initial domain Ω̂ is polygonal and we note by gh a projection of the boundary movement to
the traces of vector fields in Yh(Ω̂). From now on, we abusively note by At the discrete ALE
mapping and by Ωt the computational domain at time t. Then for a fixed t in I, the discrete
ALE mapping, is the solution of

P2.9 Find At in Yh(Ω̂), with At(x̂) = gh(x̂, t) for all x̂ in ∂Ω̂ and such that for all yh in
Yh(Ω̂) with yh|∂Ω̂ = 0, ∫

Ω̂
∇At : ∇yhdx = 0.

The finite element formulation of the Navier–Stokes equations depend on the two spaces

Vh/2(Ω̂) =
{

vh : Ω̂ → R
2, vh ∈ C0(Ω̂), vr|Γ̂0

= 0, vh|T ∈ P1(T )2, ∀T ∈ Th/2

}
,

Qh(Ω̂) =
{
qh : Ω̂ → R, qh ∈ C0(Ω̂), qh|T ∈ P1(T ), ∀T ∈ Th

}
.

The finite element spaces on Ωt are defined as

Vh/2(Ωt) =
{
vh : Ω̂ → R

2, vh = v̂h ◦ A−1
t , v̂h ∈ Vh/2(Ω̂)

}
,

Qh(Ωt) =
{
qh : Ωt → R, qh = q̂h ◦ A−1

t , q̂h ∈ Qh(Ω̂)
}
.

Then VΓD,h/2(Ωt), Vh/2(Ω) and Qh(Ω) are defined in a similar way to the continuous case
in (2.9) and (2.10). Note that the choice of finite elements for the discretization of the ALE
mapping implies that vector fields in Vh/2(Ωt) and functions in Qh(Ωt) are piecewise linear,
such that they in fact define P1isoP2/P1 finite elements spaces on Ωt.

Let u0,h and fh be projections on the space Vh/2(Ω) of the initial condition u0 and the
internal forces f and φh that of the boundary condition on the trace of Vh/2(Ω). The semi-
discrete formulation of the axisymmetric Navier–Stokes equation reads

P2.10 Find (uh, ph) in Vh/2(Ω) × Qh(Ω), with uh(0) = u0,h and uh = φh on Γ × I, such
that for almost every t in I and for all (vh, qh) in VΓD,h/2(Ωt) ×Qh(Ωt)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

∫
Ωt

uh · vh rdx +
∫

Ωt

[(uh − wh) · ∇] uh · vh rdx +
∫

Ωt

div
(

1
2
uh − wh

)
uh · vh rdx

+
∫

Ωt

(
1
2
uhr − whr

)
uh · vh dx + 2ν

∫
Ωt

ε(uh) : ε(vh) rdx + 2ν
∫

Ωt

uhrvhr
1
r
dx

−
∫

Ωt

div vh ph rdx −
∫

Ωt

vhrph dx =
∫

Ωt

fh · vh rdx +
∫

ΓN
t

σh · vh r(s)ds,

−
∫

Ωt

div uh qh rdx −
∫

Ωt

uhrqh dx = 0,

where we have added a consistent stabilizing term

−1
2

∫
Ωt

div uh uh · vh rdx − 1
2

∫
Ωt

(uhr)uh · vh dx,

to recover the same energy inequality as in the differential case. In fact equality (2.12) is not
true in the discrete formulation, since |uh|2 may not belong to Qh(Ωt).
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2.2.4 Time discretization

Here we present an implicit Euler scheme applied to the conservative formulation given in
problem P2.10. Other possibilities are presented for the Cartesian case in [Nob01] (including
non-conservative formulation and second order scheme). We consider a scheme satisfying
the Geometric Conservation Laws (GCL) introduced by Farhat et al. in [FGG01, LF95] and
discussed in the case of Navier–Stokes equations in [NV99].

Geometric Conservation Laws have been originally investigated in the context of finite
difference and finite volume schemes for fluid dynamic problems. It stems from the basic
idea that the solution should be minimally affected by the domain movement law. Indeed, at
the continuous level, the ALE formulation is formally equivalent to the original problem; yet
this is not generally true when the fully discrete system is considered. It has been proposed
that some ’simple’ solution of the differential problem should be also solutions of the discrete
system. In particular, the attention has been concentrated on the capability of the discrete
system of representing a constant solution, which is clearly a solution of the differential
equation (in the absence of the source term and with the appropriate boundary and initial
conditions). Following this approach we can state that a numerical scheme satisfies the
Geometric Conservation Laws if it is able to reproduce a constant solution. It is therefore,
similar to the “patch test” often used by finite element practitioners. As we will see, the
GCL constraint involves only mesh geometrical quantities and the domain velocity field. The
significance of this condition is still not completely clear. Results are available for special type
of finite-volume schemes in [FGG01, LF95] where the GCL have been linked to convergence
properties of the proposed scheme.

Let ∆t be the time step, let u0
h be equal to the projection of the initial condition on the

discrete velocities space and let un
h be the approximation of the solution at time tn = n∆t.

The implicit Euler scheme reads:

P2.11 For any n = 0, ..., T
∆t − 1, find (un+1

h , pn+1) in Vh/2 ×Qh such that un+1
h = φh on ΓD

tn

and for all (vh, qh) in VΓD ,h/2 ×Qh,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
∆t

∫
Ωtn+1

un+1
h · vh rdx − 1

∆t

∫
Ωtn

un
h · vh rdx +

∫
Ω

tn+1/2

[
(u∗

h − w
n+1/2
h ) · ∇

]
un+1

h · vh rdx

+
∫

Ω
tn+1/2

div
(

1
2
u∗

h − w
n+1/2
h

)
un+1

h · vh rdx +
∫

Ω
tn+1/2

(
1
2
u∗hr − wh

n+1/2
r

)
un+1

h · vh dx

+ 2ν
∫

Ω
tn+1/2

ε(un+1
h ) : ε(vh) rdx + 2ν

∫
Ω

tn+1/2

un+1
h rvhr

1
r
dx

−
∫

Ω
tn+1/2

div vh p
n+1
h rdx −

∫
Ω

tn+1/2

vhrp
n+1
h dx

=
∫

Ω
tn+1/2

fh · vh rdx +
∫

ΓN

tn+1/2

σh · vh r(s)ds,

−
∫

Ω
tn+1/2

div uh
n+1 qh rdx −

∫
Ω

tn+1/2

uh
n+1
r qh dx = 0,

(2.13)

where Ωtn+1/2 is the middle configuration between times tn and tn+1 and u∗
h may be chosen

as un+1
h for a fully implicit scheme or as un

h for an explicit linearization. The latter choice
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leads to a truncation error of the same order as the implicit Euler scheme, yet the former
would produce a non-linear system of equations. Both choices leads to the following stability
results. This is a direct consequence of the stability of the same scheme in the Cartesian
three-dimensional case (see [Nob01], lemma 3.5.1).

Lemma 2.2.1 Scheme (2.13) applied to a fully homogeneous Dirichlet problem is uncondi-
tionally stable and the discrete solution satisfies

∥∥un+1
h

∥∥2

L2
1(Ωtn+1 )

+ ∆t κ
n∑

i=0

∣∣un+1
h

∣∣2
V 1
1 (Ωtn+1 )×H1

1 (Ωtn+1 )

�
∥∥u0

h

∥∥2

L2
1(Ω0)

+ ∆t
2(1 + CP

2)
κ

n∑
i=0

∥∥∥fh,ti+1/2

∥∥∥2

(V 1
1 (Ω

ti+1/2 )×H1
1 (Ω

ti+1/2 ))′
.

2.3 Algebraic aspects

In this section we build the algebraic system associated to problem P2.11 and propose some
solution techniques based on suitable splitting methods.

2.3.1 Algebraic formulation

In the following, we will denote as N the generic dimension of a finite element space (in our
application, N will take the value of NA when dealing with the ALE problem P2.8 and N�
and Np when dealing with the velocity and the pressure in problem P2.4). We order the finite
elements basis such that the last N� are the functions relative to the Dirichlet nodes. Then
N	 = N − N� denotes the number of degrees of freedom. We will also split a vector or a
matrix into their blocks corresponding to nodes on a Dirichlet boundary (subscript d) or not
(subscript f). Hence for a matrix A and a vector x we may write

Ax =
(
A		 A	�

A�	 A��

)(
x	
x�

)
=
(
A	x	 +A�x�

)
.

ALE mapping

Let {ϕ̂i}NA
i=1 be the Lagrange basis associated to the space Yh(Ω̂) (two basis-vectors for each

node). To find the discrete ALE mapping which solves problem P2.9, we need to compute
once and for all a matrix KA with components

(KA)ij =
∫

Ω̂
∇ϕi : ∇ϕjdx, 1 � i, j � NA

Let gn be a vector in R
N�

A , such that

gh(·, tn) =
N�

A∑
j=1

gn
j ϕ

j+N�
A

∣∣∣
∂Ω̂

and xn in R
NA such that

xn
� = gn

h and A		A xn
	 = −A	�A gn

h.
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Then the discrete ALE mapping at time tn is given by

Atn =
NA∑
j=1

xn
j ϕj .

Note that this system can be split into two independent systems of the same size, each
expressing one component of the ALE mapping.

Navier–Stokes equations

Let {ψi}Np

i=1 be the Lagrange basis associated to the space Qh(Ωt) and {ϕi}N�

i=1 the one associ-

ated to Vh/2(Ωt), such that {ϕi}N�
�

i=1 is a basis of VΓD ,h/2(Ωt). Recall that the radial component
of any vector-field in Vh/2(Ωt) vanishes on the axis. For simplicity we omit the dependence
on t and we recall that, since we discretize the ALE mapping by piecewise affine vector-fields
with triangulation Th on Ω̂, the elements of both basis are piecewise affine on At(Th) and
At(Th/2) respectively. In fact, if for example ψ0

i is a basis element of Qh(Ω̂), we could write
ψ0

i ◦ A−1
t instead of ψi.

We introduce some matrices and vectors with components, for 1 � i, j � N� and 1 � 	 �
Np, (here u∗

h is supposed to be known from previous iterations)

Mij(t) =
∫

Ωt

ϕi · ϕj rdx,

Bij(t;wh,u
∗
h) =

∫
Ωt

[(u∗
h − wh) · ∇] ϕi · ϕj rdx

+
∫

Ωt

div
(

1
2
u∗

h − wh

)
ϕi · ϕj rdx +

∫
Ωt

(
1
2
u∗hr − whr

)
ϕi · ϕj dx,

Kij(t) = 2ν
∫

Ωt

ε(ϕi) : ε(ϕj) rdx + 2ν
∫

Ωt

ϕirϕjr
1
r
dx,

D�j(t) = −
∫

Ω
tn+1/2

div ϕj ψ� rdx −
∫

Ω
tn+1/2

ϕjrψ� dx,

F i(t) =
∫

Ωt

fh · ϕi rdx +
∫

ΓN
t

σh · ϕi r(s)ds,

Let φn be a vector in R
N�
� , such that

φh,tn =
N�
�∑

j=1

φn
j ϕ

j+N�
�

∣∣∣
ΓD

tn

.

Then problem P2.11 is equivalent to

P2.12 For any n = 0, ..., T
∆t − 1, find (Un+1,P n+1) in R

N� × R
Np such that Un+1

� = φn+1

and ⎧⎪⎪⎨⎪⎪⎩
1

∆t
M		 (tn+1)Un+1

	 +B		 (tn+1;wn+1
h ;u∗

h)Un+1
	 +K		 (tn+1)Un+1

	

+(D	 (tn+1))T P n+1 = b1(tn+1),
D	 (tn+1)Un+1

	 = b2(tn+1),
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where b1 and b2 account for the volumic forces and the non-homogeneous Dirichlet boundary
condition:

b1(tn+1) =
1

∆t
M		 (tn)Un

	 + F (tn+1) − 1
∆t

(
M	�(tn+1)Un+1

� −M	�(tn)Un
�

)
−B	�(tn+1;wn+1

h ;u∗
h)Un+1

� −K	�(tn+1)Un+1
� ,

b2(tn+1) = −D�(tn+1)Un+1
� .

At each time step, the pressure and the velocity are given by

un+1
h =

N�∑
j=1

Un+1
j ϕj and pn+1

h =
Np∑
�=1

P n+1
� ψ�.

2.3.2 Quadrature formula

When the weight in the integral is either 1 or r, the integrands are polynomials and the matrix
computation can be done with standard quadrature formulas of appropriate degree.

In contrast, the second integrand in K is a rational function and must be treated conve-
niently. First of all, since there are edges on the axis, the quadrature points must be internal,
otherwise the quadrature is not defined for triangles with a vertex or a side on the axis.

An exact formula may be found but it is not numerically stable: In fact one could check
that if, for example, T is a triangle (and |T | its area) with vertices’ radial coordinates r1, r2
and r3 all strictly positive, and λ the barycentric coordinate of the first vertex, then∫

T
λ2 1
r
dx =

|T |
r3

∫ 1

0

∫ 1−ξ

0
ξ2
(
ξr1 + ηr2

r3
+ 1 − η − ξ

)−1

dηdξ.

If r1 	= r2, then this integral can be evaluated analytically, giving

|T |
6r3 (r2 − 1) (r1 − r2)

3 (r1 − 1)3
(
− r51 + 4r41 + 6 ln(r1)r21r2 − 6 ln(r1)r1r22 − 6 ln(r2)r32r1

+ 6 ln(r2)r32r
2
1 − 2 ln(r2)r32r

3
1 + 6 ln(r1)r1r32 − 6 ln(r1)r21r

3
2 + 2 ln(r1)r31r

3
2 − 3r31 − 2 ln(r1)r31

+ 8r21r2 − 5r1r22 + 2 ln(r2)r32 + 3r32r
3
1 + r51r2 − 4r41r

2
2 + 5r1r32 − 8r32r

2
1 + 9r31r

2
2 − 9r2r31

)
,

(2.14)

however if r1 = r2, then the integral turns out to be

−|T |
18

9 r21 − 2 r13 − 18 r1 + 6 ln(r1) + 11
(r1 − 1)4

. (2.15)

In fact the expression (2.14) converges to (2.15) when r2 → r1, but may lead to divergence in
floating point arithmetic, depending on the precision used in the computations (see figures 2.2
and 2.3). This means that if a triangle has an almost horizontal edge, formula (2.14) introduces
non-negligible error.

In fact we have tested this approach with a structured mesh. While moving the mesh, a
horizontal edge became not horizontal anymore because of rounding errors. Then the solution
blows up just on the two nodes on that edge.
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Figure 2.2: Function (2.14) evaluated with 10 precision’s digits and with r1 = 0.5, r3 = 0.55
and r2 ∈ [0.45, 0.495]. The function should converge to approximately 0.1633.

Figure 2.3: Function (2.14) evaluated with 15 precision’s digits and with r1 = 0.5, r3 = 0.55
and r2 ∈ [0.45, 0.4995]. The function should converge to approximately 0.1633.

Hence it is preferable to use a quadrature formula with internal nodes. For example one
can use for all the integrals a direct Hammer quadrature formula of order three (cf. [ZT89]),
which on a reference triangle {(ξ, η), 0 � ξ � 1, 0 � η � 1 − ξ} reads∫ 1

0

∫ 1−ξ

0
f(ξ, η)dηdξ 

4∑
i=1

wif(ξi, ηi),

where the weights are w1 = −27/96 and wi = 25/96 for i = 2, 3, 4 and the quadrature points
are respectively (1/3, 1/3), (1/5, 1/5), (3/5, 1/5), (1/5, 3/5). Then the integral with weight 1

r
of the product of two affine functions, is approximated by∫

K
fg

1
r
dx =

2|T |
96

⎛⎝−9
fσgσ

hσ
+ 5

3∑
j=1

(2fj + fσ)(2gj + gσ)
2hj + hσ

⎞⎠ ,

where fj, j = 1, 2, 3 is the value of the affine function f on the vertices of T and fσ =
∑3

j=1 fj

(and similarly for g and r).

2.3.3 Computational aspects

Residual’s norms

From classic a posteriori error estimates (see [ALT99] or [ALT01]), we expect that the L2-
norm of the residual of the Stokes equations in the case of P1isoP2/P1 finite elements should
have order h. Work in this direction in the axisymmetric case is under consideration.
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A posteriori error estimates motivate a precision of the order h in the resolution of the
linear system in P2.12. If this is carried out with an iterative method, then we have to choose
a norm and a tolerance to decide when to stop the iterations.

The choice of the norm (as the L2-norm or L2
1) is imposed by the a-posteriori analysis.

However, for computational reasons, it is sometimes necessary to use discrete norms, such as
the maximum norm or the vector-Euclidean norm ‖U‖2 =

√
UT U . This last choice is useful

in the Cartesian case of uniformly regular family of triangulations, since in that case we have
the uniform equivalence

h‖U‖2 ∼ ‖
N�∑
j=1

U jϕj‖L2(Ω). (2.16)

In this case, the tolerance to choose in the iterative method is independent from h. Note
that in the case of a left preconditioned BiCGStab, the norm is implicitly changed and the
tolerance must be adapted to the dependence on h of the norm (see[VdV03, §13.1]).

Another possibility in the Cartesian case is to use the unweighted mass matrix, such that
the equivalence in (2.16) is dependent neither on h nor on the uniformity of the triangulation.
In fact, if ‖U‖M =

√
UTMU , then

‖U‖M ∼ ‖
∑

U jϕj‖L2(Ω)

and in this case to recover the convergence rate with respect to h, the tolerance in the iterative
method must be proportional to h.

Sometimes, for programming purpose, it is preferable to use the maximum discrete norm
‖ · ‖∞. Then for all U in R

N� ,

‖U‖2 < c
1
h
‖U‖∞ and ‖U‖M < c‖U‖∞,

where c is constant independent of h and ∆t, and in particular

‖
∑

U jϕj‖L2(Ω) < c‖U‖∞.

Again, the tolerance must be proportional to h.
In the axisymmetric case the equivalence constants of the discrete Euclidean and the L2

1

norms depends also on the radial coordinates, it is therefore inappropriate to use the former
in the iterative method. In contrast the norm ‖ · ‖M , with M the weighted mass matrix, is
uniformly equivalent to the L2

1 norm,

‖U‖M ∼ ‖
∑

U jϕj‖L2
1(Ω),

which implies that the tolerance must be proportional to h to be consistent with the conver-
gence rate.

Similarly to the Cartesian case, it is possible to use the maximum norm with the remark
that also in the axisymmetric case

‖
∑

U jϕj‖L2
1(Ω) < c‖U‖∞

and again we choose the tolerance proportionally to h.
In conclusion, it is in general convenient to use one of these two norms to evaluate the

residual. An exception is when the mass matrix is used as left preconditioner of an iterative
method such as the conjugate gradient. In this case we suggest to use the Euclidean norm and
a tolerance proportional to h, since the Euclidean norm ‖ · ‖2 of the preconditioned problem
is equal to M -norm of the actual residual.
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Figure 2.4: Condition number of the stiffness matrix in the case of a 1cm square. Cartesian
and axisymmetric formulations compared with the preconditioned cases.

Mass lumping

The lumping of the mass, i.e., the reduction of the mass matrix to a diagonal matrix, is par-
ticularly interesting in the computation of the residuals M -norm and in the two factorization
schemes of the following section.

The lumping can be performed by summing up each line and replacing the diagonal
element by this sum. In the Cartesian case with P1isoP2/P1 elements, this is equivalent
to computing the mass matrix with a trapezoidal quadrature formula (see [QV94, §11.4]
and [Han94]). In the axisymmetric case this equivalence is no longer true. In fact the trape-
zoidal quadrature formula would lead to a singular mass matrix. Anyway, in the literature
the sum of the lines is proposed as an effective choice (see [Zie67, §11]).

Spectral properties of the stiffness matrix

Here we would like to present a numerical approximation of the condition number of the
stiffness matrix and to see the effect of the lumped mass as preconditioner.

In figure 2.4 we report an example of the condition number of K in a square in the
Cartesian and in the axisymmetric case and also when the respective lumped mass matrices
are used as preconditioners. The condition number is roughly equivalent in the four cases.

2.3.4 Inexact factorization schemes

Here we consider two factorization schemes for the solution of problem P2.12 which are widely
used in the solution of the incompressible Navier–Stokes equations (see for example [Qua93],
[Ven98], [QSV00] and [QSV99]).

Let U∗ and P ∗ be extrapolations of the velocity and pressure vectors at time tn+1. For
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example they can be taken equal to Un and P n or else to 2Un −Un−1 and 2P n −P n−1. In
this section we neglect the appendices 	 and 		 and the time dependence for sake of simplicity.
For a vector v =

∑
Vjϕj, we write B(V ) instead of B(wn+1

h ;v). Let

A =
1

∆t
M +B(U) +K,

A∗ =
1

∆t
M +B(U∗) +K.

Finally, let H be an approximation of the inverse of A∗, for example equal to ∆tM−1.

Incremental Yosida

This scheme was firstly presented in [QSV99] and its incremental variant is

1) A∗Ũ = b1 −DT P ∗,

2) DHDT δP = b2 +DŨ ,

3) P n+1 = P ∗ + δP ,

4) A∗Un+1 = b1 −DT P n+1.

In general, steps 1, 2 and 4 are solved by iterative methods, which are stopped whenever
the residuals are smaller than given tolerances. Let εi be the residual vector obtained at
convergence for the step i, i = 1, 2, 4 and let εi = ‖εi‖, where now the norm is ‖U‖ =
‖
∑

U jϕj‖L2
1(Ω).

The following remarks hold also for the Cartesian case.
The residual of problem P2.12 associated to the Yosida scheme can be computed as follows.

The first equation has residual

R1 = AUn+1 +DT P n+1 − b1 = (B(Un+1) −B(U∗))Un+1 + ε4,

then the residual’s norm depends on the tolerance used to solve step 4 and on the linearization
of the problem.

For a given V , the mapping U �→ B(U)V is continuous and linear, hence ‖(B(Un+1) −
B(U∗))V ‖ is smaller than β1‖Un+1−U∗‖ for a finite positive β1 dependent on the geometry,
on the velocity of the mesh and of the fluid, and possibly on the discretization parameter h.
However, we suppose that β1 is uniformly bounded independently from u, Ω, h and n and
we replace β1 by its bound. In practice, β1 is typically small in comparison with the norm of
AU . To summarize, setting δU = Un+1 − U ∗, the residual’s norm of the first equation is

‖R1‖ � β1‖δU‖ + ε4. (2.17)

The second equation of problem P2.12 has residual

R2 = DUn+1 − b2 = −b2 +D
[
A∗−1(b1 −DT P ∗)

]
−DA∗−1DT δP +DA∗−1ε4

= −b2 +DŨ −DA∗−1DT δP +DA∗−1 [ε1 + ε4]

= ε2 +D
[
H −A∗−1

]
DT δP +DA∗−1 [ε1 + ε4] . (2.18)
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This depends on the tolerance used in solving each step, but above all on the norm of A∗−1,
on the accurate approximation of A∗−1 and on the extrapolation of the pressure P ∗. We
denote by β2 the matrix norm of D[H −A−1]DT and by β3 the one of DA−1. Then

‖R2‖ � ε2 + β2 ‖δP ‖ + β3 (ε1 + ε4) . (2.19)

In order to save iterations in the solution of steps 1, 2 and 4, it is possible to use expres-
sion (2.18) to optimize the tolerances to be used. The following strategy may be adopted.

(i) Extrapolate the magnitude of ‖δP ‖ such that

mδ
 < ‖δP ‖ (2.20)

and stop the iterative method which solves the first Yosida’s step as soon as

ε1 =
∥∥∥b1 −A∗Ũ −DT P ∗

∥∥∥ < 1
10
β2

β3
mδ
 ;

(ii) Stop the iterative method which solves the second Yosida’s step as soon as

ε2 =
∥∥∥b2 −DHDT δP +DŨ

∥∥∥ < 1
10
β2 ‖δP ‖ ;

(iii) Define P n+1 = P ∗ + δP ;

(iv) Stop the iterative method which solves the forth Yosida’s step as soon as

ε4 =
∥∥b1 −A∗Un+1 −DTP n+1

∥∥ < min
{
β2

β3
‖δP ‖ , 1

10
β1

∥∥Un+1 − U∗∥∥}
As a consequence of estimates (2.17) and (2.19) and under the assumption that inequal-
ity (2.20) holds,

‖R1‖ � 1.1β1 ‖δU‖,
‖R2‖ � 1.3β2 ‖δP ‖.

If D[H −A−1]DT is invertible, let β′2 be the norm of its inverse. Then

‖R2‖ � 1
β′2

‖δP ‖ − ε2 − β3 (ε1 + ε4) . (2.21)

Hence, even if the linear problems in steps 1, 2 and 4 are solved with a very small tolerance, the
residual of the Yosida scheme is dominated by the error in the extrapolation of the pressure.

Indeed the same remark holds for the extrapolation of the velocity. As a result, the
extrapolation of the physical unknowns affects not only the convergence on ∆t, but also the
one on h. This means that in some situations, even if using a first order scheme for the time
discretization, it may be necessary to do a higher order extrapolation. Another choice can be
to bound the time and the space discretization parameters.

For example, with a first order extrapolation of the physical unknowns (U ∗ = Un and
P ∗ = P n), ∆t must be smaller than ch. Then tolerances in the steps 1, 2 and 4 have to be
proportional to ∆t. The resulting scheme is of order ∆t in time and h in space.
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In contrast, with a second order extrapolation (U ∗ = 2Un−Un−1 and P ∗ = 2P n−P n−1),
∆t must be smaller than c

√
h and the tolerances in the Yosida scheme proportional to ∆t2.

Still, the resulting scheme is only of order ∆t in time and h in space, since a (semi-)implicit
Euler scheme is of order ∆t. Hence this choice leads to a more accurate resolution and is
useful to relax the dependence between h and ∆T .

In the case of a second order time scheme such as Crank-Nicolson it is necessary to use
a second order extrapolation, since the Yosida scheme with a first order extrapolation would
downgrade the accuracy of the scheme.

Incremental Chorin-Temam

The Yosida scheme allows to solve the momentum equation more accurately. Here we present
a scheme which instead solves the continuity equation more accurately.

1) A∗Ũ = b1 −DT P ∗,

2) DHDT δP = b2 +DŨ ,

3) P n+1 = P ∗ + δP ,

4) Un+1 = Ũ −HDT δP .

As for the Yosida scheme we analyze the residual vectors εi, i = 1, 2 related with this scheme.
The second equation of problem P2.12 has residual

DUn+1 − b2 = DŨ −DHDT δP = ε2, (2.22)

i.e., the residual has the same order as the tolerance used to solve step 2. The first equation
has residual

AUn+1 +DTP n+1 − b1 = AŨ −AHDT δP +DTP n+1 − b1

= (A−A∗) Ũ + ε1 −DT P ∗ +DT P n+1 −DT δP + (Id−AH)DT δP

=
(
B(Un+1) −B(U∗)

)
Ũ + ε1 + (Id−AH)DT δP (2.23)

and its norm is
‖AUn+1 +DT P n+1 − b1‖ � β1‖δU‖ + ε1 + β4‖δP ‖,

where β4 is the matrix norm of (Id−AH)DT . Again, this depends on the tolerance used in
solving each step, but above all on the accurate approximation of A−1 and on the extrapolation
of the velocity and of the pressure. This means that when using the Chorin-Temam scheme,
it is reasonable to choose a tolerance for steps 1 such that ε1 is smaller than an extrapolation
of β1‖δU‖ + β4‖δP ‖.

2.4 Defective boundary conditions

In this section we present a technique to impose a mean flux on several disjoint sections
S̆0, S̆1, . . . , S̆n, n � 1 of the domain Ω̆t, derived from its Cartesian counterpart presented
in [FGNQ00] and [Nob01, §5.2]. In axisymmetric blood flow simulations we are in general
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2.4. DEFECTIVE BOUNDARY CONDITIONS

interested in one inflow or one outflow section. We neglect all the dependency on time to
simplify the notations.

We formalize the problem of fluid equations with defective boundary conditions in the
following way: We are interested in solving the axisymmetric Navier–Stokes equations (2.5)
in the axisymmetric domain Ω̆ whose boundary may be rigid or deformable. As usual we
suppose zero angular component of the data.

The boundary of the half-section Ω is decomposed into ΓD and ΓN =
⋃
Si. The Navier–

Stokes equations are supplemented by Dirichlet boundary conditions

u = φ on ΓD

and prescribed mean flux conditions on sections Si, i = 0, . . . , n,∫
Si

u · n r(s)ds = Qi, i = 1, . . . , n, and
(
pn − ν

∂u

∂n

)∣∣∣∣
S0

= 0, (2.24)

where the Qi’s are assigned functions of time and r(s) is the value of the radial coordinate at
the point with tangential coordinate s.

We could also have imposed the flux on every section Si, i = 0, . . . , n. In this case, due
to the incompressibility of the fluid, a compatibility relation must exist among the fluxes Qi∫

ΓD

φ · n r(s)ds+
n∑

i=0

Qi = 0.

and the pressure is defined up to a constant. Note that imposed three-dimensional mean flows
are equal to 2πQi, i = 1, ..., n.

The fulfillment of the flux conditions can be obtained through the use of Lagrange multi-
pliers.

P2.13 Find (u, p) in V (Ω)×Q(Ω), with u(0) = u0 and u = φ on Γ× I, and λ1, ..., λn : t �→
R

n, such that for almost every t in I and for all (v, q) in VΓD(Ωt) ×Q(Ωt),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

∫
Ωt

u · v rdx +
∫

Ωt

[(u − w) · ∇]u · v rdx +
∫

Ωt

div(u − w)u · v rdx

+
∫

Ωt

(ur − wr) u · v dx + 2ν
∫

Ωt

ε(u) : ε(v) rdx

+ 2ν
∫

Ωt

urvr
1
r
dx −

∫
Ωt

div v p rdx −
∫

Ωt

vrp dx

+
n∑

i=1

λi

∫
Si

v · n r(s)ds =
∫

Ωt

f · v rdx +
∫

ΓN
t

σ · v r(s)ds,

−
∫

Ωt

div u q rdx −
∫

Ωt

urq dx = 0,∫
Si

u · n r(s)ds = Qi.

(2.25)

Formaggia et al. show in [FGNQ00] that any smooth solution of problem P2.13 satisfies
the additional boundary conditions(

p− ν
∂un

∂n

) ∣∣∣
Si

= λi, and
∂uτ

∂n

∣∣∣
Si

= 0, i = 1, · · · n, (2.26)
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where un = u · n and uτ = u − unn. In particular, this yields that both ∂�τ
∂� and p − ν ∂un

∂�
are indeed constant over Si for i = 1, · · · , n. Moreover, the Lagrange multipliers represent
the normal component of the normal stress on each section Si and have then the dimension
of a pressure.

In the cited paper, it is shown that, for a stationary Stokes problem, problem P2.13) is well
posed. Moreover different strategies are proposed to efficiently solve problem (2.25) discretized
with finite elements. Here we recall the ones based on the Yosida algebraic factorization
scheme with P1isoP2/P1 finite elements.

At a given time step, we note by Λ the set of the Lagrange multipliers (λ1,h, ..., λn,h)T , by
Φ the n×N� matrix with coefficients

Φi,j =
∫

Si

ϕj · n r(s)ds

and by Q = (Q1, ..., Qn)T the vector of imposed fluxes.
The discrete problem to solve at each time step is⎡⎣A DT ΦT

D 0 0
Φ 0 0

⎤⎦⎡⎣U
P
Λ

⎤⎦ =

⎡⎣b1

b2

Q

⎤⎦
We can rewrite the block matrices as

D̃ =
[
D
Φ

]
, P̃ =

[
P
Λ

]
and b̃2 =

[
b2

Q

]
.

Then the system of equations can be written in a similar form as in problem P2.12,[
A D̃T

D̃ 0

] [
U

P̃

]
=
[
b1

b̃2

]
and the Yosida or Chorin-Temam schemes applies in the same way as already described. The
algorithm can be easily implemented starting from an existing Navier-Stokes solver which
uses factorization methods. Indeed, it suffices to add to the matrix D the few lines of matrix
Φ, and apply the chosen factorization method.

On the contrary, the constraints on the fluxes are not satisfied exactly. In fact the error
|ΦUk − Qk| behaves as O(∆t2). This result has been confirmed numerically in the cited
paper.

2.5 Some numerical results

We have tested the axisymmetric formulation of the Navier–Stokes equations in a moving
domain with a Womersley flow (for Womersley flow see for example [Ven98]). The flow is
defined on a cylinder of radius 1.2cm and we impose a Womersley number equal to 15. The
fluid characteristics are µ = 0.035poise, ρ = 1g/cm3. The pressure at the inlet is given by

Pin = 150 · L · cos
(

2π
0.8s

t

)
,

where L = 1 is equal to the length of the tube, and we impose the pressure equal to zero at
the outlet.
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Figure 2.5: Convergence rate w.r.t. h in L2((0, T ), L2
1(Ω))-norm for the velocity and pressure

for a moving domain immersed in a Womersley flow.

The computational domain is a cylinder which radius is a prescribed function of time:

r(t) = 1 + 0.16 sin(
2πt
10s

)

and the time horizon T is equal to 1.2s.
Indeed, we do not impose the pressure but the σn. For a time step equal to 10−4s we have

the convergence rate w.r.t. h shown in figure 2.5 and w.r.t. ∆t for a fixed h = 0.01 in figure 2.6.
Note that for simplicity reasons we computed the velocity error in the L2

1-norm instead of the
H1

1 -norm. This explains the super-convergence shown in figure 2.5 of the velocity field. The
super-convergence of the pressure is due to the fact that the exact pressure is linear and it
belongs to the finite element space.

We also tested Dirichlet boundary conditions on the inlet, imposed mean fluxes on the
inlet as well as on both the inlet and outlet with the same results on the convergence rate. In
last test, we have rescaled the pressure at each time step by the mean value of the pressure
at the outlet.
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Figure 2.6: Convergence rate w.r.t. ∆t in L2((0, T ), L2
1(Ω)) norm for the velocity and pressure

for a moving domain immersed in Womerlsey flow.
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Part II

Fluid-Structure Interaction





Chapter 3

A fluid-structure interaction
problem

Introduction

Large displacement low speed problems (in which a flexible elastic structure interacts with the
flow of an external or internal fluid) occur in many engineering fields, from civil engineering
(aeroelasticity) to bio-mechanics (biomedical flows). One challenge arising in the numerical
approximation of these fluid-structure problems is the definition of fast and accurate coupling
algorithms that allow to predict the long-term time evolution maintaining the stability of the
overall system. This issue is particularly difficult to face when the fluid and the solid densities
are of the same order, for example in haemodynamics, since only implicit schemes can ensure
stability of the resulting method (see [LM01, Nob01, GV03]). Thus, at each time step, the
rule is to solve a highly coupled non-linear system (the fluid domain depends on the structural
motion) using efficient methods that preserve, inside inner loops, the fluid-structure subsystem
splitting. Standard strategies to solve this non-linear system are fixed-point based methods
as Block-Jacobi or Block-Gauss-Seidel (BGS) iterations, see [CC96, LM01, Nob01, MWR01].
More recent approaches make use of Block Newton methods [MS00, FM03, FM04, GV03,
Hei03] on the non-linear coupled problem.

In this chapter we introduce a fluid-structure interaction problem in its coupled form
and we set the basis for the development of algorithms to accelerate the convergence of
BGS or Newton algorithms. The solution algorithms presented here and in the following
chapters do not depend on the dimension of the original problem. In fact, they can be
applied arbitrarily to two-dimensional, three-dimensional or three-dimensional axisymmetric
Navier–Stokes equations for the fluid and to shell or string models for the structure. For the
sake of clarity, we will introduce the problem in a general framework, so that the reader can
easily adapt the methods to specific situations.

3.1 Formulation of the fluid-structure problem

3.1.1 The governing continuum equation

In order to address each problem in its natural setting, we choose to consider the fluid in
an ALE formulation, already presented in the previous chapter, and the structure in a pure
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Ω̂f

Σ̂

Γ̂in Γin
t Γout

t

Ω̂s
Ωs

t

ΩtΩ̂

Γ̂out

Ωf
t

Σt

At

Figure 3.1: ALE mapping between the initial configuration and the configuration at time t.

Lagrangian framework.
The system under study occupies a moving domain Ωt in its actual configuration. It is

made of a deformable structure Ωs
t (vessel wall, pipe-line, . . . ) surrounding a fluid under

motion (blood, oil, . . . ) in the complement Ωf
t of Ωs

t in Ωt (see figure 3.1). The problem
consists in finding the time evolution of the configuration Ωf

t, as well as the velocity and
Cauchy stress tensor for both the fluid and the structure.

We assume the fluid to be Newtonian, viscous, homogeneous and incompressible. Its
behavior is described by its velocity and pressure. The elastic solid under large displacements
is described by its velocity and its stress tensor. The classical conservation laws of the
continuum mechanics drive the evolution of these unknowns.

We denote by Γin
t and Γout

t the inflow and outflow sections of the fluid domain, by n
the fluid domain’s outward normal and by ns the one of the structure. In particular on the
fluid-structure interface Σt, n = −ns. The boundary conditions to impose on the fluid inlet
and outlet can be of Dirichlet type, Neumann or defective as described in section 2.4, while
on the interface we impose that the fluid and structure velocities match as well as normal
stresses. For simplicity, we assume zero body forces on both the structure and the fluid and
that the conditions on the remaining structure boundary are homogeneous of Dirichlet or of
Neumann type.

We denote by u and p the velocity and pressure of the fluid and by d the displacement of
the structure and define a mapping

∀t ∈ I , At : Ω̂ → Ωt,

such that its restriction to the fluid reference domain is the ALE mapping defined in chapter 2
and its restriction to the structure reference domain is the Lagrangian mapping related to the
structure displacement. Indeed, we will only need the restriction to the closure of the fluid
reference domain and we will denote it also by At.

We recall that x̂ denotes the coordinates on the reference configuration Ω̂ and w = dAt
dt

the domain velocity.
For example, if at the inlet and outlet we impose the stress tensor, the fluid problem reads
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3.1. FORMULATION OF THE FLUID-STRUCTURE PROBLEM

P3.1 (Fluid problem)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρf

(
∂u

∂t

∣∣∣∣
�̂

+ (u − w)∇u

)
= div(2µε(u)) − ∇p on Ωf

t,

div u = 0 on Ωf
t,

u(x, t) =
∂d

∂t

(
A−1

t (x), t
)

on Σt,

σf · n = g on Γin
t ∪ Γout

t ,

where ρf is the fluid density, µ its viscosity, ε(u) = (��+(��)T )
2 is the strain rate tensor and

σf = −pId+ 2µε(u) the Cauchy stress tensor.
The equation of the structure can be written as

P3.2 (Structure Problem)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρs
∂2d

∂t2
= d̂iv( ˆ̂T ) on Ω̂s,

ˆ̂
T · n̂s = det

(
∂At

∂x̂

)
σf ·

∂At

∂x̂
n̂s on Σ̂,

d = 0 or ˆ̂
T · n̂s = 0 on ∂Ω̂s \ Σ̂,

where T̂ is the first Piola–Kirchoff stress tensor. It is possible to choose appropriate models
for the structure depending on the simulation. The reader may refer to [LT94, QTV00, LL75,
LMP91, CB03, ALDR03, Ani02, AL99] for other models.

A generalized string model

When we are dealing with an axisymmetric model for the fluid, we often use a generalized
string model presented in [QTV00], which is a simplified wall model. This model is very simple
and is based on the hypotheses, among others, of relative small displacements, which is not
the case in haemodynamics. Even then, we will use it in testing the interaction algorithms,
since it is easily implemented and provides the relevant properties in the mechanical coupling.
It should be clear to the reader that, for a satisfactory blood-flow simulation, one have to
employ more sophisticated structure models.

The generalized string model derives from a membrane model, which is in general appli-
cable for the arterial wall when bending is of minor importance. Starting from the general
equations for large deformations of a cylindrical nonlinear membranes (see, e.g., [MLL92]),
the following assumptions have been introduced:

• We allow only axisymmetric radial displacement of the wall;

• The radial deformation of the wall is small (|dr/Ro| << 1);

• The long wave assumption holds (|∂dr/∂z| << 1);

• No-preloading is applied prior to the small deformations.

The equation of the generalized string model on dr are

ρsh
∂2dr

∂t2
− kGh

∂2dr

∂z2
+

Eh

1 − ν2

dr

R2
0

− γ
∂3dr

∂z2∂t
= σΣ,
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where h is the wall thickness, k is the so-called Timoschenko shear correction factor, G the
shear modulus, E the Young modulus, ν the Poisson ratio, ρs the wall density and γ a
viscoelastic parameter. R0 is a reference radius independent from the axial coordinate z and
σΣ is the radial component of the stress vector of the fluid acting on the structure. The term
kGh∂2dr

∂z2 accounts for the shear deformation but can also be considered as an axial preloading.
The term γ ∂3dr

∂z2∂t introduces a viscoelastic behavior and its presence is motivated largely by
numerical convergence issues.

The small deformation assumption enters the formula in two ways. One is in the lineariza-
tion of the governing equations for the radial displacement of the membrane, independent of
the particular constitutive equation used. The second is the use of a linear elastic model for the
wall material. Once the small deformation approximation is used for the radial deformation,
it is consistent to use the linearized elasticity approximation for the wall behavior.

We allow only axisymmetric radial displacement such that the assumption of axisymmetric
domain for the fluid is not broken. Note that without the long wave assumption, the wall
curvature would enter the equations in the form of

√
1 + (∂dr/∂z)2.

A discussion on the energy balance of this model coupled with a three-dimensional fluid
may be found in [Nob01, §4] and the results therein are applicable to the axisymmetric case.

3.1.2 Weak formulation

A global weak formulation of the coupled problem has been proposed by Le Tallec and Mouro
in [LM01]. As far as we know only a few partial results on the existence and uniqueness of
a solution are available. In [Nob01] or [Gra98] a sub-problem decomposition is presented. In
the latter reference, existence and uniqueness of weak solutions are proved for the stationary
problem consisting of the coupling between Stokes equations and a fourth order structural
equation under the hypothesis of small data. Other available results concern the motion
in a fluid of rigid bodies or deformable ones, whose deformations are described by a linear
combination of a finite number of elastic eigenmodes. Existence of weak solutions has been
proved in [DE99], [DE00] and [DEGL01] for all T > 0 provided there isn’t any collision
between the bodies.

A proof on the existence of a strong solution of the coupling of a two-dimensional Navier–
Stokes model for the flud and a string model for structure with periodic boundary condition
is given in [BdV04]. Existence of strong solutions of the motion of a rigid body in a viscous
incompressible fluid, at least for a short time interval, has instead been proved in [GM00]
under the hypothesis that the mass and the inertia of the body are sufficiently large.

See also [GM01] for a review of results concerning fluid-structure interaction problems or
[LM01], [GV03] or [GVF03] for a more comprehensive presentation.

Since our aim in the following chapters is not to further analyze the coupled problem,
but to improve algorithmic aspects, we only present the sub-problem decomposition. The
fluid test function spaces are presented in chapter 2 for the axisymmetric case. In a general
framework, in the case of natural inflow and outflow condition, the fluid function spaces are
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defined through the ALE mapping as

V (Ωf
t) =

{
v : Ωf

t → R
3, v = v̂ ◦ A−1

t , v̂ ∈ H1(Ω̂f)3
}
, (3.1)

VΣ(Ωf
t) =

{
v ∈ V (Ωf

t), v ◦ At = 0 on Σt

}
, (3.2)

Q(Ωf
t) =

{
q : Ωf

t → R, q = q̂ ◦ A−1
t , q̂ ∈ L2(Ω̂f)

}
, (3.3)

V (Ωf) =
{

v : Ωf × I → R
3, vt ∈ V (Ωt)

}
,

Q(Ωf) =
{
q : Ωf × I → R, qt ∈ Q(Ωf

t)
}
.

We introduce the structure function space as

X(Ω̂s) =
{

d ∈ H1(Ω̂s)3,d|∂Ω̂\Σ̂ = 0
}
,

with the obvious modifications in case of Dirichlet inlet or outlet conditions for the fluid
or Neumann boundary conditions for the structure. Under the assumptions described in
section 2.2.2 on the ALE mapping, the fluid-structure interaction problem in weak form is
the coupling of the following three problems,

P3.3 (ALE mapping) For almost every t in I, find At : Ω̂f → Ωf
t such that At in H1(Ω̂f)3

and for all y in H1(Ω̂f)3 with y|∂Ω̂f = 0,∫
Ω̂f

∇At : ∇ydx = 0,

At = dt on Σ̂,

At = 0 on Ω̂f \ Σ̂.

(3.4)

Define wt = dAt
dt on Ω̂f and Ωf

t = At(Ω̂f).

P3.4 (Fluid) Find (u, p) in V (Ωf) × Q(Ωf) such that for almost every t in I and for all
(v, q) in VΣ(Ωf

t) ×Q(Ωf
t),⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d

dt

∫
Ωf

t

ρfut · v +
∫

Ωf
t

ρf(ut − w) · ∇ut · v −
∫

Ωf
t

ρfut · v div w

−
∫

Ωf
t

pt div v +
∫

Ωf
t

2µε(ut) · ε(v) =
∫

Γin
t ∪Γout

t

gt · vds,∫
Ωf

t

q div ut = 0,

ut = wt ◦ A−1
t on Σt.

(3.5)

P3.5 (Structure) For almost every t in I find d(·, t) in X(Ω̂s) such that for all ϕ̂ in X(Ω̂s),∫
Ω̂s

ρs
∂2d

∂t2
· ϕ̂ dx̂ + as (d, ϕ̂) =

∫
Σt

(pn − 2µε(u) · n) · ϕ̂ ◦ A−1
t ds. (3.6)
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The right hand side of (3.6) imposes the equality in fluid and structure normal stresses and
can be computed as the residual of the first equation in (3.5) with test functions v equal to
the lifts of ϕ ◦ A−1

t |Σ̂. This can be easily verified by integrating by parts (3.5).
The operator as is in general non-linear and can be written for example in terms of the free

energy function (see for example [LT94]). In case of a generalized string model, the operator
as is linear and as described in [Nob01, §4], Ω̂s reduces to Σt × [0, h] and

as(dr, ϕ̂) =
Eh

1 − ν2

∫
Σt

drϕ̂ dz + h

∫
Σt

(
kG

∂dr

∂z
+
γ

h

∂2dr

∂z∂t

)
∂ϕ̂

∂z
dz.

Here the pressure is scaled with respect to the external pressure, i.e., to the real pressure we
subtract the external pressure.

The system arising from P3.3-P3.4-P3.5 is coupled and non-linear. Concerning its time
discretization several schemes can be considered. A first strategy leads to a loosely coupled
algorithm [FL00, PFL95], which consists in using an explicit scheme for the fluid (respectively
for the structure) and an implicit scheme for the structure (respectively for the fluid). Thus,
at each time step, the fluid solution is completely determined starting from the solution of the
previous time step and, once the fluid load at the interface has been computed, the structure
can be advanced on time updating the position of the interface. In short, the geometry
and the interface coupling are treated explicitly. This strategy is computationally cheap and
performs well in many practical situations, for example, in aeroelasticity applications [FL00,
PFL95]. However, numerical experiments and analysis on simplified models (see [LM01,
Nob01, GV03]) indicate that these staggered algorithms are unstable when the structure is
light, more precisely when the fluid and structure densities are comparable, as it happens in
haemodynamics applications. In these situations, fluid-structure equilibrium must be ensured
accurately at each time step. In other words, the geometry and the interface coupling have
to be treated implicitly, and then implicit coupling schemes must be considered. For these
reasons we will focus on fully coupled implicit schemes.

3.2 Time discretization

In the sequel, we consider a time discretization of the coupled system based on the implicit
Euler method for the fluid equations and a mid-point rule for the structure. For simplicity we
write a scheme for the fluid equation which dos not satisfy the GCL condition. The resulting
time discretized problem reads: For n = 0, 1, . . . , T

∆t − 1,

P3.6 (Discrete ALE mapping) Find Atn+1 in H1(Ω̂f)3 such that for all y in H1
0 (Ω̂f)3∫

Ω̂f

∇Atn+1 : ∇ydx = 0,

Atn+1 = dn+1 on Σ̂,

Atn+1 = 0 on ∂Ω̂f \ Σ̂.

(3.7)

Define wn+1 = Atn+1−Atn

∆t and Ωf
t = At(Ω̂f).
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P3.7 (Semi-discretizaion of the fluid equations) Set Ωf
tn+1 = Atn+1(Ω̂f). Find

(un+1, pn+1) in V (Ωf
tn+1) × Q(Ωf

tn+1) such that for all (v, q) in VΣ(Ωf
tn+1) × Q(Ωf

tn+1) and
for u∗ = un+1,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
∆t

∫
Ωf

tn+1

ρfu
n+1 · v +

∫
Ωf

tn+1

ρf(u∗ − wn+1) · ∇un+1 · v −
∫

Ωf
tn+1

ρfu
n+1 · v div wn+1

−
∫

Ωf
tn+1

pn+1 div v +
∫

Ωf
tn+1

2µε(un+1) · ε(v) =
1

∆t

∫
Ωf

tn

ρfu
n · v +

∫
Γin

tn+1∪Γout
tn+1

g · vds,∫
Ωf

tn+1

q div un+1 = 0,

(3.8)

un+1 = wn+1 ◦ A−1
tn+1 on Σtn+1 .

P3.8 (Semi-discretization of the structure equation) Find (dn+1, ḋn+1) in X(Ω̂s) ×
L2(Ω̂s) such that for all ϕ̂ in X(Ω̂s),

1
∆t

∫
Ω̂s

ρs

(
ḋn+1 − ḋn

)
· ϕ̂ dx̂+

1
2

(
as

(
dn+1, ϕ̂

)
+ as

(
dn, ϕ̂

))
=
∫

Σt

(
pn+1n − 2µε(un+1) · n

)
· ϕ̂ ◦ A−1

t ds,

dn+1 − dn

∆t
=

ḋn+1 + ḋn

2
.

(3.9)

We consider sub-problem P3.7 solved when u∗ = un+1, but often an extrapolation of the
velocity is used to linearize the problem. In sub-problem P3.8, ḋ is an approximation of the
structure velocity. When using conforming finite elements, the forcing term on the right hand
side of (3.9) can be computed as the residual of the fluid equations.

We assume that each problem has been appropriately discretized in space, for instance by
a finite element formulation. We formally write the operators associated to each subproblem
as follows:

1. For a given displacement of the structure at the interface dΣ = d|Σ, the ALE map and its
velocity are computed on the whole fluid domain:(

Atn+1 ,wn+1
)

= D
(
dn+1

Σ

)
; (P3.6)

2. The Navier–Stokes equations in ALE formulation are solved on the new domain to obtain
the velocity and the pressure of the fluid:(

un+1, pn+1
)

= F
(
Atn+1 ,wn+1

)
; (P3.7)

3. The structure equations are solved to obtain the wall displacement and its velocity cor-
responding to the force that the fluid exerts on the structure, thus in particular the dis-
placement of the fluid-structure interface:

S = S2 ◦ S1 :

{
σ = S1

(
un+1, pn+1

)
,(

dn+1, ḋn+1
)

= S2(σ).
(P3.8)
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In (P3.7), F is the Navier–Stokes solution operator. In some circumstances, we might be
interested to solve a linear flow problem in which the convective field un+1 is replaced by a
suitable (given) approximation, say u∗. In that case the corresponding solution operator will
be noted by F�∗ . Note that F = F�n+1.

In (P3.8) we have split the computation of S into the computation of the forcing terms
excerted by the fluid on the structure and the resolution of the structure problem. If the
equation for the structure is non-linear, we use for example a Newton–Raphson method to
solve P3.8. It is also possible to linearize the structure equation with an extrapolation, in
which case some light modifications apply.

For the applications to blood flow simulations we are interested in strongly coupled algo-
rithms. More precisely we look for a fixed-point on the interface displacement of the mapping
T = γΣ ◦ S ◦ F ◦ D (where γΣ is the restriction operator that maps (d, ḋ) to dΣ) at every
time step, i.e.,

T (dΣ) = dΣ. (3.10)

Note that T is a nonlinear operator acting on the structure displacement at the fluid-structure
interface. The nonlinearities come from: The inertial term in the Navier–Stokes equations,
the displacements of the fluid domain and the (large) displacements in the structure.

In the sequel, we will look for strategies to solve efficiently the coupled problem and we
will refer to the operators T , S, F and D defined here.

3.3 An abstract formulation

In this and the following sections we provide a general framework for a class of iterative
methods which are widely used for the solution of the non-linear coupled problem P3.6-
P3.7-P3.8. In this section we describe Newton based methods to solve the fluid-structure
problem (3.10) and we consider how to compute the Jacobian of the fixed point problem and
possible approximations leading to different algorithms.

In order to solve the fluid-structure interaction problem (3.10) by a Newton method, we
make use of the formalism introduced in [FM04]. We denote by u = (u, p) the fluid state
variables and d = (d, ḋ) the solid ones. Let U f × U s be the space of fluid and solid states
and V f and V s the space of the fluid and solid test functions. Let F be the fluid operator
associated to the fluid variational formulation (3.7)-(3.8):

F : U f × U s → (V f)′

(u, d) �→ F(u, d),

Then, since F and D are the solvers associated to (3.7) and (3.8), for all d in U s

F(F ◦ D(dΣ), d) = 0 in (V f)′. (3.11)

Similarly, let S be the solid operator associated to the solid variational formulation (3.9):

S : U f × U s → (V s)′

(u, d) �→ S(u, d),

hence for all u in U f

S(u,S(u)) = 0, in (V f)′. (3.12)
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Since equations (3.11) and (3.12) characterize the solvers D, F and S, using the above defi-
nitions, the coupled non-linear problem P3.6-P3.7-P3.8 can be reduced to:

Find (u, d) in U f × U s such that

F(u, d) = 0, (3.13)
S(u, d) = 0. (3.14)

Substituting u in (3.13) with F ◦ D(dΣ) and replacing it in (3.14) leads to the fixed point
problem (3.10), which we can write as: Find dΣ such that

R(dΣ) def= T (dΣ) − dΣ = 0. (3.15)

Although problems (3.13)-(3.14) and (3.15) are equivalent, the first one is set on the domain
Ωf ∪ Ωs, while the second one on the fluid-structure interface Σ.

3.3.1 Newton based algorithms for the solution of the fixed-point problem

A natural approach consists of defining fixed point iterations to solve (3.15), i.e., given d0
Σ, find

for k > 0, dk+1
Σ = T (dk

Σ). However, for the problem at hand in most cases these iterations
diverge. The convergence may be recovered by relaxed fxed point method as described in
chapter 4. Otherwise, we can formulate a non-linear GMRES algorithm to solve the non-
linear problem (3.15) in a general form as follows. Let J(dΣ) be an approximation of the
Jacobian of R in dΣ and ωk a scalar to be chosen at each iteration.

We want to find an approximation d∗
Σ of the root of R, such that ‖R(d∗

Σ)‖ < Tol for given
tolerance and norm. The (quasi-)Newton algorithm (qN) associated to this problem reads:

1. define an initial guess d0
Σ, set k = 0 and compute R(d0

Σ);

2. solve J(dk
Σ)δdΣ = −R(dk

Σ);

3. set dk+1
Σ = dk

Σ + ωkδdΣ;

4. compute the residual R(dk+1
Σ );

5. if ‖R(dk+1
Σ )‖ < Tol, then stop, otherwise increase k and go to 2.

Step 2 can be carried out using an iterative free matrix method such as GMRES. In
this case, we only need to evaluate several times the operator J(dΣ) against solid state
perturbations zΣ,

J(dΣ) · zΣ = γΣ · S ′(F ◦ D(dΣ)) · (F ◦ D)′(dΣ) · zΣ − zΣ, (3.16)

where we recall that γΣ · d = dΣ.
On step 3, the scalar ωk is in general equal to one, save in the cases when the norm of

the residual is not reduced. In fact, when using the exact Jacobian, the Newton algorithm
guarantees that the norm is monotonically decreasing. However, this can be no longer true,
when replacing the Jacobian by an inexact Jacobian. Then a strategy, for example line search,
must be chosen in order to guarantee a smaller residual.

In the following chapters, we will propose three alternatives to approximate the Jacobian
(see section 5.3) and one to approximate the residual (see chapter 4). We will also present a
dynamic preconditioner (section 5.4) which can be used on step 2, as well as an extension to
the vector case of the Aitken method to dynamically choose ωk when the Jacobian is replaced
by the identity.
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3.3.2 Computation of the Jacobian against a given vector

We want to compute J(dΣ) · zΣ exploiting the relationship between problems (3.13)-(3.14)
and (3.15). With this aim, let d and z be extensions of dΣ and zΣ in Ωs and Du and Dd

denote differentiation with respect to u and d. Assume that we are able to compute the four
block of the Jacobian of (F,S)T [

DuF DdF

DuS DdS

]
. (3.17)

We do not apply a Newton method for the problem (3.13)-(3.14) on the whole domain Ωf∪Ωs,
but prefer to use the blocks in (3.17) to compute (3.16).

From the implicit differentiation theorem and identity (3.11), we have

0 = Dd ( F(F ◦ D(dΣ), d) ) · z
= DuF (F ◦ D(dΣ), d) · (F ◦ D)′(dΣ) · γΣ · z +DdF (F ◦ D(dΣ), d) · z

= DuF (F ◦ D(dΣ), d) · (F ◦ D)′(dΣ) · zΣ +DdF (F ◦ D(dΣ), d) · z, (3.18)

and from (3.12),

0 = Du ( S(u,S(u)) ) · w = DuS (u,S(u)) · w +DdS (u,S(u)) · S ′(u) · w, (3.19)

In order to evaluate (3.16), we have first to compute

w = (F ◦ D)′(dΣ) · zΣ,

which thanks to (3.18) is equivalent to the solution w of the following problem,

DuF (F ◦ D(dΣ), d) · w = −DdF (F ◦ D(dΣ), d) · z. (3.20)

Since dΣ is a given vector in (3.16), let us denote by u the value F ◦ D(dΣ). Then we must
compute

y = S ′(u) · w

If the structure operator is linear, than y can be computed straight-forwardly. Otherwise,
from (3.19) we have that y can be optained by solving the following problem,

DdS (u,S(u)) · y = −DuS (u,S(u)) · w. (3.21)

To summarize, if dΣ is a given solid state vector, the computation of J(dΣ) · zΣ for any
zΣ can be achieved by the following steps:

1. Solve (3.20);

2. Solve (3.21);

3. compute γΣy − zΣ.

The diagonal blocks of the Jacobian (3.17) are the natural derivatives of the fluid, respec-
tively structure, problems, which implies the solution of the tangent problem of the fluid,
respectively structure. The main difficulty (see [FM03, FM04]) relies on the computation of
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the extra-diagonal blocks. For example, the right hand side of (3.20) involves the evaluation
of the cross-derivative of the fluid operator:

DdF(u, d) · z,

which corresponds to the directional derivative with respect to fluid-domain perturbations. In
previous works, the evaluations of these cross-Jacobians were performed using finite difference
approximations, that only require state operators evaluations [MS02, MS03, Tez01, Hei03].
However, the lack of a priori criteria for selecting optimal finite difference infinitesimal steps,
may lead to a reduction of the overall convergence speed [GV03].

In order to speed up the convergence toward the solution of problem (3.15), in the next
paragraphs we describe several techniques to perform (possibly using Jacobian approxima-
tions) the critical step (3.20) in the Newton’s loop (qN).

Neglecting the cross derivative DdF

If DdF is replaced by zero, then in expression (3.20) w = 0 and in (3.16) J(dΣ) · zΣ = −zΣ

and the Newton algorithm (qN) reduces to a block Gauss-Seidel (BGS) algorithm in the
variables u and d (see BGS, section 4.1). In this case ωk is a relaxation parameter which
must be chosen appropriately (see Aitken acceleration, section 4.2). Since this algorithm
needs several iterations to converge, it is convenient to replace the computation of the residual
by a simplified one at least for some iterations (see transpiration conditions, section 4.3).

Neglecting the volumic terms in DdF and the convective and the diffusive terms
in DuF

In [GV03] the authors provide an explicit expression for the case when DdF is neglected
on Ωf \ Σ and DuF is replaced by DuF̃: The nonlinear acceleration and viscous terms are
neglected in Ωf (see also section 5.3, FSI-QN1). Then the tangent problem for the fluid is
replaced by a simpler one where the domain is frozen about its current state.

Neglecting the volumic terms in DdF

In section 5.3 (see FSI-QN2) we provide an explicit expression for the case when DdF is
neglected on Ωf \ Σ. Then the tangent problem for the fluid is replaced by a simpler one
where the domain is frozen about its current state.

Exact Jacobian

In [FM04], the authors provide the explicit expression of the cross Jacobians using shape
sensitivity calculus (see [SZ92]). In a block formulation, this can be viewed as performing
Newton’s iterations using the complete exact Jacobian of the coupled non-linear problem.

The approximations indicated above for problem (3.13)-(3.14) would lead to the following
inexact Jacobian (3.17):
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Neglecting the cross derivative DdF
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Remark: Dynamic preconditioner and accelerated Newton algorithm

In chapter 5.4 we introduce a dynamic preconditioner that can be used in the GMRES reso-
lution of step 2 which is well suited for the case of either the exact or the inexact Jacobian
computation. The preconditioner is built up during the first Newton loop (at each time step).

In section 5.5 we propose a modified Newton algorithm which spares some residual’s
evaluations and Jacobian’s inversions.

3.3.3 Strategies for the solution of the non-linear coupled system

To conclude this section, we give a few suggestions on the suitability of the various methods
indicated above for the solution of the fluid-structure problem.

The BGS algorithm (chapter 4) is well suited when we want to re-use an already existing
software for the fluid and the structure, separately, and we can not modify them to include
the computation of the Jacobian. If the software allows to, a transpiration condition can
be applied (section 4.3). However, a very restrictive condition on the time step applies (see
[GV03]).

The exact computation of the Jacobian reduces dramatically the number of Newton iter-
ations and the condition on the time step may be relaxed. However, the computation of the
Jacobian is costly and requires the use of shape derivatives (see [FM04]).

The approximations FSI-QN1 and FSI-QN2 of the Jacobian, in particular FSI-QN1, seem
to offer a good compromise (chapter 5). In fact, the codes can be modified with a relative
effort and the computation of the approximated Jacobian, in particular for FSI-QN1, is cheap.
However, numerical experience suggests that the time step must be smaller than in the case
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of the exact Jacobian and a line-search at step 3 is necessary if the residual does not decrease
(see [FM04]).

3.4 A domain decomposition formulation approach

In this section we reformulate the fluid-structure interaction problem in a domain decom-
position framework, then we propose several splitting algorithms which are mutuated from
sub-domain iterative procedures (see also [DDQ]).

3.4.1 Stokes problem

We start by considering the Stokes problem that we formally write as

Stokes(u, p) = f . (3.22)

Let Ω be split into two sub-domains Ω1 and Ω2 and let Σ be the interface between them. We
assume that on each ∂Ωj there is a set of positive measure where Neumann conditions are
prescribed. We denote by λ the velocity u|Σ on the interface and by uj the fluid variables
(u, p) on the sub-domain Ωj, j = 1, 2. We also denote the normal stress of uj on Σ, j = 1, 2,
by σj(uj)|Σ = µ

∂�j

∂�j
−pjnj (no summation on repeated indices) and we introduce the following

operators:
Dirichlet–to–Neumann map in Ωj, j = 1, 2:

Sj : λ �→ σ

λ �→ find uj :

{
Stokes(uj) = 0
uj|Σ = λ

�→ σ = σj(uj)|Σ.

Neumann–to–Dirichlet map (homogeneous) in Ωj, j = 1, 2:

(
S̄j

)−1 : σ �→ λ

σ �→ find uj :

{
Stokes(uj) = 0
σj(uj)|Σ = σ

�→ λ = uj |Σ.

Note that if f j = 0, then (S̄j)−1 is the inverse of Sj . The Steklov–Poincaré problem associated
to the Stokes problem (3.22) (see [QA99, §5] for details) reads: Find λ such that

S1(λ) + S2(λ) = χ, (3.23)

for a suitable right hand side χ that depends, among others, on f .
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Preconditioned Richardson method

The preconditioned Richardson method applied to the Steklov–Poincaré problem (3.23) reads:
Start with λ0, k = 0.

Repeat until ‖µk‖ < Tol

(D)

[
σk

1 = S1λ
k

σk
2 = S2λ

k
,

σk = σk
1 + σk

2 − χ,

µk = P−1σk,

λk+1 = λk + ωkµk,

with appropriate choices of the scalar ωk and of the preconditioner P that maps the interface
variables space onto the space of normal stresses, P : λ �→ σ (for example P : H

1/2
00 (Σ) →

H−1/2(Σ) when λ = 0 on Σ ∩ ∂Ω).
The parameter ωk can be chosen by the same Aitken extrapolation technique described

in section 4.2, i.e., for k > 0

ωk = −
(
µk − µk−1

)
·
(
λk − λk−1

)
‖µk − µk−1‖2 ,

which minimizes ∥∥∥(λk − λk−1
)

+ ωk
(
µk − µk−1

)∥∥∥ .
Special choices of P lead to well known sub-domain iteraive procedures. More precisely,

let us define:
P−1 = αk

1(S̄1)−1 + αk
2(S̄2)−1.

We obtain:

• If αk
1 = 1 and αk

2 = 0 (or vice-versa), the Dirichlet-Neumann method;

• If αk
1 + αk

2 = 1, the Neumann-Neumann method.

Then P−1σk is computed in two steps,

(N)

[
µk

1 =
(
S̄1

)−1
σk

µk
2 =

(
S̄2

)−1
σk

,

µk = αk
1µ

k
1 + αk

2µ
k
2,

Since the problem is linear, in the Dirichlet–Neumann case the computational effort may be
reduced to only one Dirichlet solution in one sub-domain and one Neumann solution in the
other.

In the Neumann–Neumann case, it can be interesting to choose αk
1 and αk

2 which minimize
µk, i.e., αk

1 = 1 − αk
2 and

αk
2 = −

(
µk

2 − µk
1

)
· µk

1∥∥µk
2 − µk

1

∥∥2 .
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Still in the Neumann–Neumann case, another possiblity is to choose first ωk
1 and ωk

2 which
minimize ∥∥∥(λk − λk−1

)
+ ωk

1

(
µk

1 − µk−1
1

)
+ ωk

2

(
µk

2 − µk−1
2

)∥∥∥
then to set

λk+1 = λk + ωk
1µ

k
1 + ωk

2µ
k
2.

The parameters ωk
1 and ωk

2 are the solution of

ATA

(
ωk

1

ωk
2

)
= AT

(
λk − λk−1

)
,

where A is the two column matrix

A =
((
µk

1 − µk−1
1

)
;
(
µk

2 − µk−1
2

))
.

3.4.2 Fluid-structure interaction

In the case of the coupled fluid-structure problem, the domain is naturally split into the fluid
domain Ωf and the structure one Ωs. Let Σ be the interface between them and suppose that
the problem has already been discretized in time. We suppose to have solved the problem
at time tn and we look for the solution at time tn+1. We neglect the superscript n+ 1 and
denote by λ the interface variable d|Σ, u the fluid variables (u, p) while d is (d, ḋ). We use
the following shorthand notation for the fluid and structure problems P3.1 and P3.2:

Fluid(u;g) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆Atn+1 = 0,
Ωf

tn+1 = Atn+1(Ω̂f),

ρf

(
∂u

∂t

∣∣∣∣
�̂

+ (u − w)∇u

)
= div(2µε(u)) − ∇p on Ωf

tn+1 ,

div u = 0 on Ωf
tn+1 ,

σf · n = g on Γin
tn+1 ∪ Γout

tn+1 ,

Str(d) :

⎧⎨⎩ρs
∂2d

∂t2
= div(σs) on Ω̂s,

d = 0 or σs · ns = 0 on ∂Ω̂ \ Σ̂,

with coupling conditions on Σ

Atn+1|Σ = λ,

u|Σ =
λ− dn

Σ

∆t
,

d|Σ = λ,

σf(u) · nf + σs(d) · ns = 0,

where we simplified the notations in P3.1 and P3.2, nf is the outward normal unit vector of
∂Ωf , ns is the outward normal unit vector of ∂Ωs, σf is the Cauchy stress tensor of the fluid
and σs is the first Piola–Kirchoff stress tensor of the structure.

We note by Fluid′
λ and Str′λ the tangent problem solvers associated to Fluid and Str. If

the ALE mapping is known, than we denote by FluidA the solution of the fluid problem. It
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will be clear from the context, whether we impose Dirichlet or Neumann boundary conditions
on the interface Σ. On ∂Ω, instead, the problems always have the same kind of boundary
conditions.

We need to define the operators Sj and (Sj)−1, j = f, s. We also formally introduce the
tangent operators S̄j and (S̄j)−1, which we may need in the definition of the preconditioner.
Remark that in the case of Stokes, the linearity of the problem implies that the tangent
operators are equal to the homogeneous operators noted by a “bar”.

Dirichlet–to–Neumann map in Ωf ,

Sf : λ �→ find u :

{
Fluid(u;g)
u|Σ = λ−�n

Σ
∆t

�→ σ = σf(u) · nf .

Note that u = (u, p) = F ◦ D(dΣ) for dΣ = λ on page 65.
Neumann–to–Dirichlet map in Ωf , with given Atn+1 ,

(Sf,A)−1 : σ �→ find u :

{
FluidA(u;g)
σf(u) · nf = σ

�→ λ = ∆tu|Σ + dn
Σ.

Dirichlet–to–Neumann map in Ωs,

Ss : λ �→ find d :

{
Str(d)
dΣ = λ

�→ σ = σs(d) · ns.

Neumann–to–Dirichlet map in Ωs,

(Ss)
−1 : σ �→ find d :

{
Str(d)
σs(d) · ns = σ

�→ λ = dΣ.

Note that d = (d, ḋ) = S2(−σ) on page 65.
The Steklov–Poincaré interface equation is

Sf(λ) + Ss(λ) = 0. (3.24)

Note that the dependence on the data (χ in the right hand side of (3.23)) is hidden in the
definition of the operators Sf and Ss.

In the Stokes problem, we have introduced the homogeneous operators S̄j. Since the
Stokes problem is linear, (S̄j) coincides with the Stokes tangent operator. Hence we formally
introduce also the tangent operators for the fluid and structure problems

Dirichlet–to–Neumann tangent map at a given point λ (homogeneous boundary conditions
on ∂Ωf \ Σ and zero body forces),

S′
f(λ) : δλ �→ find δu :

{
Fluid′

λ(δu)
δu|Σ = λ

∆t

�→ δσ = σf(δu) · nf .

Neumann–to–Dirichlet tangent map at a given point λ (homogeneous boundary conditions
on ∂Ωf \ Σ and zero body forces),

(
S′

f(λ)
)−1 : δσ �→ find δu :

{
Fluid′

λ(δu)
σf(δu) · nf = δσ

�→ δλ = ∆t δu|Σ.
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Dirichlet–to–Neumann tangent map at a given point λ (homogeneous boundary conditions
on ∂Ωs \ Σ and zero body forces),

S′
s(λ) : δλ �→ find δd :

{
Str′λ(δd)
δd|Σ = δλ

�→ δσ = σs(δd) · ns.

Neumann–to–Dirichlet tangent map at a given point λ (homogeneous boundary conditions
on ∂Ωs \ Σ and zero body forces),

(
S′

s(λ)
)−1 : δσ �→ find δd :

{
Str′λ(δd)
σs(δd) · ns = δσ

�→ δλ = δd|Σ

Preconditioned Richardson method

Since the Steklov–Pioncaré problem (3.24) is non-linear, the preconditioned Richardson method
must be interpreted in a slightly different way. For the sake of simplicity, even if Sf and Ss

are non-linear, we use the notation for linear operators when they are applied to a vector, for
example Ssλ

k denotes Ss(λk). A step of the iterative method reads: Start with λ0, k = 0.

(D)

[
σk

f = Sfλ
k

σk
s = Ssλ

k
,

σk = σk
f + σk

s ,

µk = P−1σk,

λk+1 = λk + ωkµk,

with appropriate choice of the preconditioner that maps the interface variables space onto the
space of normal stresses, P : λ �→ σ.

For example in the Dirichlet–Neumann or Neumann–Neumann methods, P−1 can be
defined as

P−1 = αk
f (Sf,A)−1 + αk

s (Ss)−1,

and as before P−1 can be computed in two steps.
Again, in the Dirichlet–Neumann method, the computational effort can be reduced to

the resolution of a Dirichlet problem in one sub-domain and a Neumann one on the other.
Actually, if the structure is solved with Dirichlet boundary conditions on Σ, the Dirichlet–
Neumann method is equivalent to a fixed-point algorithm (see BGS, section 4.1).

An approach resembling the Newton method is to use the tangent operators. The simplest
extension is a Dirichlet–Neumann or a Neumann-Neumann method with the preconditioner
computed with S′

f and S′
s instead of Sf and Ss:

P−1 = αk
f

(
S′

f(λ
k)
)−1

+ αk
s

(
S′

s(λ
k)
)−1

. (3.25)

The pure Newton algorithm is retrieved by choosing P as

P−1 =
(
S′

f(λ
k) + S′

s(λ
k)
)−1

.

Then one may approximate the tangent problems to accelerate the computations or use a
preconditioner to invert P .
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This strategy is not equivalent to a Newton algorithm on the fixed-point problem T (dΣ)−
dΣ = 0 that we consider in section 3.3.1, however, it could be interesting to explore the
preconditioner (3.25). The analog of the Newton strategy on the fixed-point iterations is

µk = P−1σk =
(
S′

s(λ
k)−1 S′

f(λ
k) + Id

)−1
S−1

s σk

=
(
S′

f(λ
k) + S′

s(λ
k)
)−1

S′
s(λ

k)S−1
s σk,

which we may write, neglecting the dependence on λk, as

P = Ss S
′
s
−1

(
S′

f + S′
s

)
.

In fact,
S−1

s σk = S−1
s Sfλ

k + λk

is the residual of the fixed point problem and the Jacobian is

S′
s(λ

k)−1 S′
f(λ

k) + Id

and the difference in the signs comes from the choice in the unit outwards normal of ∂Ωs on
Σ.

The methods described here are the result of recent research and open new perspectives.
In particular, in the domain decomposition of the Stokes equations, the Aitken like extrapo-
lation must still be tested and in fluid-structure interaction new schemes may be deduced by
exploiting the analogy with the domain decomposition. This investigation will be continued
in [DDQ].
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Chapter 4

Efficient solution of BGS iterations

Introduction

The nature of the problem suggests the use of a simple algorithm, namely fixed point sub-
iterations, which in this case are equivalent to block Gauss Seidel (BGS) sub-iterations. It
has the main advantage of coupling the fluid and the structure in an independent fashion,
such that codes can be easily coupled through natural conditions.

Indeed, a pure fixed point algorithm can not be employed, since in most of the cases the
sub-iterations do not converge. In the literature, for example in [Nob01], relaxed fixed point
iterations have been successfully used. The algorithm may be easily modified to render it
compatible with a factorization of the Navier–Stokes problem with a Yosida or a Chorin–
Temam scheme as in section 2.3.4. In particular the fluid operator would depend also on an
extrapolation of the pressure.

4.1 Block Gauss Seidel algorithm

The relaxed BGS algorithm reads

1. Set k = 0 and define an initial guess for the displacement of the wall and also for the fluid’s
unknowns

d0,n+1
Σ =

(
dn

Σ +
3∆t
2

ḋn
Σ − ∆t

2
ḋn−1

Σ

)
,

u0,n+1 = 2un − un−1

and set u∗ = u0,n+1;

2. Solve straightforward (
Ak+1

tn+1 ,w
k+1,n+1

)
= D

(
dk,n+1

Σ

)
,(

uk+1,n+1, pk+1,n+1
)

= F�∗
(
Ak+1

tn+1,w
k+1,n+1

)
,(

d̃k+1,n+1,
˙̃
dk+1,n+1

)
= S

(
un+1, pn+1

)
;
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3. Chose ω ∈ (0, 1) and relax the interface displacement

dk+1,n+1
Σ = (1 − ω)dk,n+1

Σ + ω d̃k+1,n+1
Σ ;

4. If convergence is achieved, i.e., for a given norm∥∥∥T (dk,n+1
Σ

)
− dk,n+1

Σ

∥∥∥ � Tol, (4.1)

then the solution at time tn+1 is given by

(dn+1, ḋn+1) = (dk,n+1, ḋk,n+1) , (un+1, pn+1) = (uk+1,n+1, pk+1,n+1).

Otherwise set

u∗ = uk+1,n+1,

k = k + 1 and go to (2).

The following remarks are in order:

• The failure of the staggered algorithm to converge infers that the coupled problem must
be solved with a small tolerance. We will show this with an example. Moreover, when
testing the convergence on ∆t, we suggest to replace the tolerance by ∆tTol.

• The convergence test must be done on the residual of the coupled fluid-structure prob-
lem. In particular, if the fluid is solved by a factorization scheme, it involves also the
error on the extrapolations u∗ and p∗. Moreover, the test on the displacement of the
structure must be done on the “unrelaxed” quantities, otherwise the relaxation param-
eter influences the test. It is also important that the norm in step 4 involves also the
first time derivative of the displacement.

• The choice of the relaxation parameter is crucial. Nobile in [Nob01] underlines that if
ω is constant, than its value must be chosen as a function of the domain, otherwise the
algorithm does not converge. In particular in the case of a straight tube, ω is decreases
to zero as the tube becomes longer and longer.

The problem with a relaxation parameter close to zero is that the convergence of the
algorithm is slowed. This suggests a dynamic choice. This strategy is explored in
[MW01] [MWR01] and [GV03] and is described in section 4.2.

• The use of a factorization scheme in the fluid resolution is interesting, since extrapo-
lated quantities are naturally given by the previous sub-iteration. However, as already
mentioned, this implies a convergence test also on these quantities.

• The algorithm is slowed down by the computation of the ALE mapping and of the
matrices. In section 4.3 we propose a version where the geometry is frozen during some
sub-iterations.
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4.1.1 Residual of BGS

When testing the convergence, we have to define a norm for the residual and to evaluate the
residual in inequality (4.1). The residual of the equation is equal to

T
(
dk,n+1

)
− dk,n+1

Σ = T
(
dk,n+1

Σ

)
− d̃k+1,n+1

Σ + d̃k+1,n+1
Σ − dk,n+1

Σ

= S ◦ (F −F�∗) ◦ D
(
dk,n+1

Σ

)
+ d̃k+1,n+1

Σ − dk,n+1
Σ .

We assume that there is a constant c such that we may bound the norm of the residual and we
make the dependence on the norm of the residual on the first time derivative of the structure
displacement explicit:∥∥∥T (dk,n+1

Σ

)
− dk,n+1

Σ

∥∥∥ � c
∥∥∥(F − F(�∗,p∗)

)
◦ D

(
dk,n+1

Σ

)∥∥∥
+ c

∥∥∥(d̃k+1,n+1
Σ ,

˙̃
dk+1,n+1

Σ

)
−
(
dk,n+1

Σ , ḋk,n+1
Σ

)∥∥∥ . (4.2)

Indeed there are at least two ways to consider the first term on the right hand side. The first
one, is that, assuming that the norm of the operator (F − F�∗) ◦ D is uniformly bounded,

c
∥∥∥(F − F�∗) ◦ D

(
dk,n+1

Σ

)∥∥∥ � c′
∥∥∥(dk−1,n+1

Σ , ḋk−1,n+1
Σ

)
−
(
dk,n+1

Σ , ḋk,n+1
Σ

)∥∥∥ ,
In particular, if this method is used, the convergence must be checked on the fluid-structure
interface displacement and velocity for the last two sub-iterations,∥∥∥(d̃k+1,n+1

Σ ,
˙̃
dk+1,n+1

Σ

)
−
(
dk,n+1

Σ , ḋk,n+1
Σ

)∥∥∥ � C1 Tol,∥∥∥(dk,n+1
Σ , ḋk,n+1

Σ

)
−
(
dk−1,n+1

Σ , ḋk−1,n+1
Σ

)∥∥∥ � C2 Tol .

The second, is to check the convergence on both the fluid and the structure, i.e.,∥∥∥(d̃k+1,n+1
Σ ,

˙̃
dk+1,n+1

Σ

)
−
(
dk,n+1

Σ , ḋk,n+1
Σ

)∥∥∥ � C1 Tol,∥∥∥uk+1,n+1 − uk,n+1
∥∥∥ � C3 Tol .

Then inequality (4.2) guarantees the convergence of the coupled problem.

The constants C1, C2 and C3 may be difficult to choose and they depend on the norm
used. To avoid the evaluation of these constants, it is possible to use the relative error with
for example a discrete maximum norm. The main advantage of the relative error is that it is
adimensional. However, when the structure is almost at rest, this stopping criterion becomes
too restrictive.

This is not the case if we can normalize the error with an absolute value. In this case it
is necessary to find adequate reference values. For example, the test on the displacement can
be normalized with a reference displacement dref for the fluid domain. For the study of blood
flow in an artery a reasonable value is ten percent of the mean radius of the vessel, since this
is the expected value of the displacement of big arteries.
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We suggest a heterogeneous test of this kind: For a given norm, e.g. the discrete maximum
norm, define the tolerance that we want to achieve for the normalized displacement. Suppose
that we would like to achieve ∥∥∥d̃k+1,n+1

Σ − dk,n+1
Σ

∥∥∥
dref

∼= Tol,

which is equivalent to ∥∥∥d̃k+1,n+1
Σ − dk,n+1

Σ

∥∥∥∥∥∥d̃k+1,n+1
Σ

∥∥∥ ∼= dref Tol∥∥∥d̃k+1,n+1
Σ

∥∥∥ .
Then we can perform the convergence test as

∥∥∥d̃k+1,n+1
Σ − dk,n+1

Σ

∥∥∥ < dref Tol,

∥∥∥ ˙̃
dk+1,n+1

Σ − ḋk,n+1
Σ

∥∥∥∥∥∥ ˙̃dk+1,n+1
Σ

∥∥∥ <
dref Tol∥∥∥d̃k+1,n+1
Σ

∥∥∥ ,∥∥uk+1,n+1 − uk,n+1
∥∥

‖uk+1,n+1‖ <
dref Tol∥∥∥d̃k+1,n+1
Σ

∥∥∥ .
(4.3)

This approach has two main advantages. The first one is that the test on the displacement is
absolute, such that when the displacement is very small, there is no abnormal increase of the
number of sub-iterations, and the convergence is performed an all variables with the same
order of magnitude. In the applications we have verified the importance of the test on both
the velocity of the structure and of the fluid.

The second one is that we can choose the norms independently for each variable. In
our applications, we choose the discrete maximum norm for the structure variables and the
M -norm based on the lumped mass matrix for the fluid variables.

4.1.2 Fluid’s residual’s norm

Let Tol be the precision that we require in the coupling. As in section 2.3.3, the tolerance for
the residual must be proportional to the parameter h of the triangulations used to solve the
fluid and the structure.

Moreover, when using a Yosida factorization scheme, we can use inequality (4.2) to dy-
namically adapt the precision in the resolution of the fluid. In fact, the resolution of the
fluid must be more precise than the accuracy required at the end, but does not need to be
“extremely” precise. In other words, we can easily code the linear solver of the fluid, such
that the stopping criteria are, with the same matrices notation as in chapter 2,∥∥∥A∗Ũ − b1 +DT P ∗

∥∥∥ � max
{ c1

10

∥∥∥U∗ − Ũ
∥∥∥ , c2

10
Tol

}
,∥∥∥DHDT δP − b2 −DŨ

∥∥∥ � max
{ c3

10
‖δP ‖ , c2

10
Tol

}
,∥∥∥A∗Uk+1,n+1 − b1 −DT P k+1,n+1

∥∥∥ � max
{ c1

10

∥∥∥U∗ − Uk+1,n+1
∥∥∥ , c2

10
Tol

}
.

The constants c1, c2 and c3 depend on C3 and on the norm used. Moreover, the criteria are
divided by ten such that the residual of the fluid-structure problem is not affected by the
residual of the fluid equations.
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Figure 4.1: Wall displacement and velocity with a weak and very small tolerances.

Example. Let Ω be an axisymmetric tube, the fluid be axisymmetric, incompressible and
Newtonian and the structure be modeled by a generalized string equation. The initial domain
is a cylinder of radius R = 0.5 cm and length L = 6cm. The cylinder wall may deform only
along the radial direction. The fluid and the structure are initially at rest.

The external pressure and the initial pressure of the fluid are both set equal to zero.
The wall density is ρs = 1.1g/cm3, its thickness h = 0.1cm, Young modulus E = 0.75 ·
104dyne/cm2, Poisson coefficient ν = 0.5, longitudinal stress kGh = 2.5 · 104dyne and vis-
coelastic constant γ = 0.01. The fluid viscosity is µ = 0.035poise and the fluid density
ρf = 1g/cm3.

On the outlet we impose σ(u, p)n = 0 and on the inlet one “pressure wave” of a period
of 5 ms, i.e.,

σ(u, p)n =

⎧⎨⎩ −Pin

2

[
1 − cos

(
2πt
5

)]
n, t � 5ms,

0, t > 5ms.

with Pin = 2 · 104 dyne/cm2. We have adopted axisymmetric P1isoP2/P1 finite elements
for the fluid and P1 for the structure such that the normal stresses on the structure are
easily computed as the residual of the discretized fluid equations. The fluid mesh is uniformly
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regular with h = 1/20cm, 5516 elements, 11527 velocity nodes and 3006 pressure nodes. The
time is discretized by a mid-point scheme for the structure and implicit Euler for the fluid
equations (see chapter 3).

We would like to show that the tolerance required for the coupled problem may be crucial.
We adopt the convergence test as in (4.3) with dref = 0.05. First of all, we remark that without
relaxation, the algorithm breaks down after few iterations, even with a very small ∆t.

In figure 4.1 the displacement is plotted at different time steps with a too mild tolerance
and a very small one. We can remark that the structure displacement and velocity are different
for different tolerance. In particular, the velocity needs a more accurate coupling. Also, in
the tests, the more difficult constraint to satisfy in the convergence test (4.3) is the one the
wall velocity.

�

4.2 The role of Aitken extrapolation

In resolving a fixed-point problem using iterations techniques it is sometimes necessary to
introduce a relaxation step. This is for example the case in fluid-structure interaction prob-
lems, as described in chapter 3. Fixing the relaxation parameter in advance has are two major
drawbacks. Firstly, the choice depends on the problem under consideration and secondly, even
if we can find an optimal value, it still involves too many fixed-point iterations.

In the one-dimensional problem, the parameter may be chosen at each iteration by the
Aitken method (see [Tra64, A.D], [IK94, 3.1] or [QSS00, 6.6]), which may be derived from
the assumption that the problem is linear. In n-dimensional problems, an extensions of the
Aitken acceleration method has been presented in [MWR01] and [IT69]. Here we present
an interpretation of the formula therein and some possible extensions. The interpretation
is based on the linearization of the problem about the exact solution. This allows several
extensions of the method, and we propose some of them. In one dimension there exists
analytical results about the convergence order of the Aitken method, but to our knowledge,
these results are no longer valid in n-dimensions.

4.2.1 Problem setting

Let T be a vector map from R
n to R

n, which in our case is the discrete fluid structure
mapping raised on the interface. We are looking at a solution of T (x) = x. This problem
can be transformed into a root’s problem by defining R(x) = T (x)−x. The Newton method
(see also chapter 5) is based on the iterations

xk+1 = xk − J−1
R (xk)R(xk), (4.4)

where JR(xk) is the Jacobian of R computed at point xk. Often the Jacobian is costly or
difficult to compute. The quasi-Newton method is based on the idea of approximating J−1

R (xk)
by a suitable and efficient operator J̃ . Here we seek an approximation of the Jacobian which
is equal to a scalar times the identity matrix.

4.2.2 Scalar Aitken method

If the problem is scalar (n = 1) and linear, the Newton method converges (obviously) in only
one iteration (to, say, x∗) independently from the initial guess x0. Moreover the Jacobian is
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Figure 4.2: Number of iterations with a tolerance of 10−4 (ms stands for milliseconds). The
results refers to the example in section 4.1.2 on page 81.

a constant (call ω its inverse), hence for two (possibly unrelated) points xk−1 and xk it holds
that

x∗ = xk−1 − ωR(xk−1),

x∗ = xk − ωR(xk).
(4.5)

This can be interpreted as a system of equations in (ω, x∗), whose solution is

ω =
xk − xk−1

R(xk) −R(xk−1)
,

x∗ = xk − ωR(xk).
(4.6)

If our problem is still scalar but not linear, the last equality does not hold but can be used to
find a new iterate xk+1. Then for a scalar non-linear problem the Aitken acceleration method
reads:

1. Choose an initial guess x0 and an initial relaxation parameter ω0. Set k = 0 and compute
R(x0);

2. Set xk+1 = xk − ωkR(xk);

3. Compute R(xk+1);

4. If ‖R(xk+1)‖ < Tol, then exit. Otherwise:

5. Compute ωk+1 =
xk+1 − xk

R(xk+1) −R(xk)
;

6. increase k and go to 2.
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Figure 4.3: Number of iterations with a tolerance of 10−5 (ms stands for milliseconds). The
results refers to the example in section 4.1.2 on page 81.

In [QSS00, 6.6] it is proved that if a given fixed point iteration is convergent of order
p � 1 and the root has multiplicity 1, then the method 4-6 is of order max(2, 2p − 1) and
in particular, if p = 1 (in which case the un-relaxed version may even not converge), this
method is quadratically convergent. If the root has multiplicity m � 2 and the underlying
fixed point iteration has order 1, then the Aitken method converges linearly with convergence
factor C = 1 − 1/m.

4.2.3 Extension to the vector case

Suppose again that R is linear. As in the scalar case the Newton method converges in only one
iteration and the Jacobian is a constant matrix. We approximate the inverse of the Jacobian
by a scalar time the identity, ω Id, then equation (4.5) may be written as

x∗,k−1 =xk−1 − ωR(xk−1),

x∗,k =xk − ωR(xk).
(4.7)

This system of equations is not well defined, hence ω must be recovered using another tech-
nique, for example by least squares:

ωk = arg min
ω

∥∥∥x∗,k − x∗,k−1
∥∥∥2

= arg min
ω

∥∥∥(xk − xk−1
)
− ω

(
R(xk) −R(xk−1)

)∥∥∥2
(4.8)

This problem can be written as

ωk = arg min
ω

‖b − aω‖2 , (4.9)

where b = (xk − xk−1) and a = (R(xk) −R(xk−1)), and it is equivalent to solving

a · aω = a · b (4.10)
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Figure 4.4: Number of iterations with a tolerance of 10−4 (ms stands for milliseconds). The
results refers to the example in section 4.1.2 on page 81 and are the comparison between (in
the same order as in the legend) 6cm tube length and 120 nodes on the interface, 6cm and
240 nodes, and 12cm and 240 nodes.

Hence the solution of (4.8) is given by

ωk =

(
R(xk) −R(xk−1)

)
· (xk − xk−1)

‖R(xk) −R(xk−1)‖2 (4.11)

and the scalar-case algorithm may be applied with the new definition of ωk given by (4.11)
with the addiction of a test to avoid that ωk is too close to zero.

Example. We applied this method to the example in section 4.1.2 on page 81 and the
number of iteration decreases as showed in figures 4.2 and 4.3. We remark that the effects
on the number of iterations of a smaller tolerance are amplified in the constant relaxation
approach. The number of iteration is affected by the length of the tube but not by the number
of nodes (see figure 4.4).

�

4.2.4 Minimizing on ω−1

The nature of the minimization in (4.8) allows to change the unknown ω with ω−1,

(ωk)−1 = arg min
ω−1

∥∥∥ω−1
(
xk − xk−1

)
−
(
R(xk) −R(xk−1)

)∥∥∥2
,

which leads to the equation

ωk =

∥∥xk − xk−1
∥∥2

(R(xk) −R(xk−1)) · (xk − xk−1)
(4.12)

and the algorithm may be applied with the new definition of ωk given by (4.12). In our tests,
the results are the same as those obtained by using (4.11).
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Figure 4.5: ωk versus k with a tolerance of 10−5. The results refers to the example in
section 4.1.2 on page 81.
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Figure 4.6: Number of iterations with a tolerance of 10−4 (ms stands for milliseconds). The
total number of iterations are: 2054 for the original Aitken method, 2215 with the addition of
the multiplicity, 2085 for the minimization on the inverse and 2153 with the addition of the
multiplicity. The results refers to the example in section 4.1.2 on page 81 and the multiplicity
of the root is 1.

4.2.5 Approximating the multiplicity

In the scalar case, we can use a guess of the multiplicity of a root defined as follows (see
[QSS00, 6.6]),

mk =
T (xk) − T (xk−1)
R(xk) −R(xk−1)

= 1 + ωk,

where we recall that R(x) = T (x) + x. In fact for k → ∞, mk converges to the multiplicity
of the root. We can generalize this equation to n dimensions as

mk =

(
T (xk) − T (xk−1)

)
·
(
T (xk) − T (xk−1)

)
(T (xk) − T (xk−1)) · (R(xk) −R(xk−1))

,

and we replace ωk with mkωk in the algorithm.
The multiplicity of the root in the example under consideration is one and is therefore

not surprising that the number of sub-iterations needed by this variants is equivalent to that
of the original one (see figures 4.6 and 4.7).

4.2.6 Variants

We have tested other simple variants to accelerate the convergence of our fluid-structure BGS
algorithm, however in general the results are disappointing. Yet, we present them here to
show that the choice of the relaxation parameter is quite delicate.
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Figure 4.7: Number of iterations with a tolerance of 10−5 (ms stands for milliseconds). The
total number of iterations are: 2864 for the original Aitken method, 3195 with the addition of
the multiplicity, 2828 for the minimization on the inverse and 2972 with the addition of the
multiplicity. The results refers to the example in section 4.1.2 on page 81 and the multiplicity
of the root is 1.

Diagonal relaxation

The inverse of the Jacobian is approximated by a block diagonal matrix,

J−1
R (xk) ∼

⎡⎢⎣ω1 Id · · · 0
...

. . .
...

0 · · · ωN Id

⎤⎥⎦ ,
where N is the number of blocks and is smaller then n (the number of nodes on the interface).
Each block represents a piece of interface.

The resulting scheme splits each block into independent sections and the least square leads
to

ωk = arg min
�

∥∥∥∥∥∥∥
⎛⎜⎝xk

1 − xk−1
1

...
xk

1 − xk−1
1

⎞⎟⎠−

⎡⎢⎣ω1 Id · · · 0
...

. . .
...

0 · · · ωN Id

⎤⎥⎦
⎛⎜⎝R1(xk) −R1(xk−1)

...
R1(xk) −R1(xk−1)

⎞⎟⎠
∥∥∥∥∥∥∥

2

,

which can be solved component by component for j = 1, ..., N

ωj =

(
Rj(xk) −Rj(xk−1)

)
· (xk

j − xk−1
j )

‖Rj(xk) −Rj(xk−1)‖2 ,

i.e., the minimizing parameters are given by equation (4.11), with the full vectors replaced
by the block corresponding to the computed parameter.

If the blocks are reduced to single components, this method is equivalent to applying the
scalar Aitken relaxation component by component.

We tried this scheme with a number of blocks going from 2 to n in the example presented
in section 4.1.2 but the scheme diverges.
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Block relaxation

Another option is to express the inverse of the Jacobian as a block matrix whose blocks are
a scalar times the identity and each block has the same size. If we split the Jacobian into
N blocks but the dimension n of the problem is not a multiple of N , then it is possible to
replicate some of the components, e.g.,

⎛⎝x1

x2

x3

⎞⎠→

⎛⎜⎜⎝
[
x1

x2

]
[
x3

x1

]
⎞⎟⎟⎠ .

The maximal number of blocks is
√
n. The inverse of the Jacobian is approximated in the

following way,

J−1
R (xk) ∼

⎡⎢⎣ω1,1 Id · · · ω1,N Id
...

. . .
...

ωN,1 · · · ωN,N Id

⎤⎥⎦
and we have to solve

ωk = arg min
ω

∥∥∥∥∥∥∥
⎛⎜⎝xk

1 − xk−1
1

...
xk

1 − xk−1
1

⎞⎟⎠−

⎡⎢⎣ω1,1 Id · · · ω1,N Id
...

. . .
...

ωN,1 · · · ωN,N Id

⎤⎥⎦
⎛⎜⎝R1(xk) −R1(xk−1)

...
R1(xk) −R1(xk−1)

⎞⎟⎠
∥∥∥∥∥∥∥

2

.

To further describe this case, we need to express the vector b and matrix A introduced before
as block matrices:

bj = xk
j − xk−1

j j = 1, ..., N,

A =
[
R1(xk) −R1(xk−1) , · · · , RN (xk) −RN (xk−1)

]
where xj and Rj(x) are block column vectors. We can rewrite the minimization as

ωk = arg min
ω

∥∥∥∥∥∥∥
⎛⎜⎝b1 −A

⎛⎜⎝ω1,1
...

ω1,N

⎞⎟⎠ , . . . , bN −A

⎛⎜⎝ωN,1
...

ωN,N

⎞⎟⎠
⎞⎟⎠
∥∥∥∥∥∥∥

2

,

which leads to N independent problems: for j = 1, ..., N solve

ATA

⎛⎜⎝ωj,1
...

ωj,N

⎞⎟⎠ = AT bj ,

where in ATA and AT bj the blocks are multiplied with a scalar product. Since in some cases
ATA may have some eigenvalues equal to zero, it is preferable to solve this problem by an
iterative method such as conjugate gradient or MINRES [VdV03, 5, 6 and 10].

In contrast to the diagonal relaxation, this method preserves the dependence between each
block.
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Independent evaluations

We would like to mention two other strategies which however were not efficient at all in the
BGS-iterations for fluid-structure interaction (with the hope that they might perform better
on different non-linear problems).

The following variant has the advantage of having independent evaluations of R which
can be carried out in parallel. The algorithm is:

Choose two initial guesses x0 and x1. Set k = 1 and repeat

compute R(xk), compute R(xk−1),

if ‖R(xk)‖ < Tol exit, if ‖R(xk−1)‖ < Tol exit,

ωk+1 =

(
R(xk) −R(xk−1)

)T (xk − xk−1)

‖R(xk) −R(xk−1)‖2 ,

xk+2 = xk − ωk+2R(xk), xk+1 = xk−1 − ωk+2R(xk−1),
k =k + 2.

(4.13)

Non-constant relaxation

We replace ω by a linearization ωmg(xk) + ωq, where g is a real function to be chosen. For
example define g as the difference of the evaluation index, then (4.7) becomes

x∗,k−1 =xk−1 − ωq R(xk−1),

x∗,k =xk − (ωm + ωq)R(xk).
(4.14)

and (5.7)

(ωk
m, ω

k
q ) = arg min

(ωm,ωq)

∥∥∥(xk − xk−1) − ωmR(xk) − ωq

(
R(xk) −R(xk−1)

)∥∥∥2
. (4.15)

Defining the matrix A =
(
R(xk),

(
R(xk) −R(xk−1)

))
, the relaxation parameters may be

computed by solving

ATA

(
ωm

ωq

)
= AT (xk − xk−1). (4.16)

Then the new iterate is given by

xk+1 = xk − (ωm + ωq)R(xk).

4.3 Transpiration interface conditions

In this section we focus on the issue accelerating the BGS iterations introduced in section 3
by saving some computations of the ALE mapping and of the fluid matrices. The standard
Block-Jacobi or Block-Gauss-Seidel iterations are both CPU time consuming. Indeed, to
the generally slow convergence of the algorithms we must add the cost of updating the
fluid mesh, and the corresponding fluid matrices, at each iteration. We propose a modified
fixed-point algorithm which combines the Block-Gauss-Seidel iterations with a transpiration
formulation (see [HMY+93, RH93, Ren98, FFT00, Fer01, Med99]). The underlying idea
of our approach relies on the fact that standard BGS iterations associated with moderate
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interface deformations can be treated through transpiration techniques. These formulations
do not require updating of the fluid computational mesh and matrices. They only involve
modifications of the interface boundary conditions.

The contents of this section have been already published in a paper by Deparis, Fernndez
and Formaggia, Acceleration of a fixed point algorithm for fluid-structure interaction using
transpiration conditions [DFF03].

Each iteration of the standard BGS method (see section 4.1) involves an update of the fluid
domain through the ALE mapping Ak+1

tn+1 and of its velocity wk+1,n+1. Consequently, the fluid
matrices have to be recomputed in this new configuration. This is due to the circumstance
that we are using an ALE formulation for the fluid (since large displacements are involved
in the whole fluid-structure problem). However, between two successive BGS iterations the
fluid-structure interface frequently features moderate variations.

In order to be able to solve a low cost fluid-structure problem featuring moderate defor-
mation, aeronautical engineers have developed transpiration techniques, from an early idea
of Lighthill [Lig58]. These formulations do not require to update the computational grid,
but only involve modifications of the boundary conditions for the fluid at the fluid-structure
interface.

n0

Σ̂

Σk+1,n+1

dk,n+1
Σ (x0)

Af
trans(x0)

x0

Σtrans

Figure 4.8: Taylor expansion of the fluid velocity.

Consider the BGS sub-iterations to solve the fluid-structure coupling at a time-step n+1.
We fix a (known) configuration for the fluid (for example one at a given BGS sub-iteration)
and we denote it with Ωf

trans. The fluid will be computed on this configuration for some BGS
sub-iterations. To this configuration is associated a mapping

Atrans : Ω̂f → Ωf
trans,

a velocity of the domain

wtrans =
Atrans −Atn

∆t

and an interface
Σtrans = Atrans(Σ̂).

To this quantities, we associate a displacement of the interface

dtrans
Σ = Atrans|Σ̂
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At a sub-iteration step k + 1, the fluid domain is given by Ωf
k+1,n+1 and the interface asso-

ciated to it is denoted Σk+1,n+1; the ALE mapping Ak+1
tn+1 is given in terms of the structure

displacement dk,n+1|Σ̂ at step k. The structure displacement and velocity (·dk,n+1) are sup-
posed to be known by the previous sub-iteration. As in the previous chapter, we denote
dk,n+1

Σ = dk,n+1|Σ̂.
Since the two domains Ωf

trans and Ωf
k+1,k+1 do not coincide and we want to compute the

fluid solution on Ωf
trans, it is necessary to derive the conditions on Σtrans from the conditions

imposed by the structure on Σk+1. This is possible using transpiration interface conditions,
which can be derived in a heuristic way from a truncated Taylor expansion of the fluid velocity
in the neighborhood of the reference fluid-structure interface Σtrans (see figure 4.8). Then

uk+1,n+1
(
Ak+1

tn+1(x0)
)

= uk+1,n+1
(
Atrans(x0)

)
+ ∇uk+1,n+1

(
Atrans(x0)

)
·
(
Ak+1

tn+1(x0) −Atrans(x0)
)

+ o
(∣∣∣Ak+1

tn+1(x0) −Atrans(x0)
∣∣∣) (4.17)

for x0 on Σ̂. See [HMY+93, RH93, Ren98, Med99] and refer to [FFT00, Fer01, Mou02] for a
more rigorous justification.

Thus, from the (semi-implicit) kinematic condition on Σ̂

uk+1,n+1 ◦ Ak+1
tn+1 = ḋk,n+1

Σ ,

we get the following transpiration condition of first order in |Ak+1
tn+1(x0) − Atrans(x0)| on the

reference interface Σ̂

uk+1,n+1 ◦ Atrans = ḋk,n+1
Σ − ∇uk+1,n+1 ◦ Atrans ·

(
dk,n+1

Σ − dtrans
Σ

)
,

or equivalently on the fixed interface Σtrans

uk+1,n+1 = ḋk,n+1
Σ ◦

(
Atrans

)−1 − ∇uk+1,n+1 ·
(
dk,n+1

Σ − dtrans
Σ

)
◦
(
Atrans

)−1
.

The implicit dependence on the gradient∇uk+1,n+1 can be made explicit by modifying the
relation into

uk+1,n+1 = ḋk,n+1
Σ ◦

(
Atrans

)−1 − ∇uk,n+1 ·
(
dk,n+1

Σ − dtrans
Σ

)
◦
(
Atrans

)−1 (4.18)

on Σtrans

This latter condition can now be used to approximate the fluid subproblem P3.7.
Moreover, we have alternative options for the convective term u∗ as well. Indeed, it can be

updated at every sub-iteration as in the classic BGS algorithm, or frozen. This last choice is
more appropriate in the frame of the transpiration strategy, as it prevents from recomputing
the fluid matrices.
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P4.1 (Transpired fluid) Find (uk+1,n+1, pk+1,n+1) in V (Ωf
trans)Q(Ωf

trans) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
∆t

∫
Ωf

trans

ρfu
k+1,n+1 · v +

∫
Ωf

trans

ρf(u∗ − wtrans) · ∇uk+1,n+1 · v

−
∫

Ωf
trans

ρfu
k+1,n+1 · v div wtrans −

∫
Ωf

trans

pk+1,n+1 div v +
∫

Ωf
trans

2µε(uk+1,n+1) · ε(v)

=
1

∆t

∫
Ωf

tn

ρfu
n · v +

∫
Γin

trans∪Γout
trans

g · vds,∫
Ωf

trans

q div uk+1,n+1 = 0,

(4.19)
for all (v, q) in VΣ(Ωf

trans)Q(Ωf
trans), with the following boundary condition for uk+1,n+1 on

Σtrans:

uk+1,n+1 = ḋk,n+1
Σ ◦

(
Atrans

)−1 − ∇uk,n+1 ·
(
dk,n+1

Σ − dtrans
Σ

)
◦
(
Atrans

)−1
. (4.20)

The spaces V , vΣ and Q are defined in (3.1), (3.2) and (3.3) on page 63.
We formally denote the solver related to this problem by(

uk+1,n+1, pk+1,n+1
)

= F trans
�∗

(
dk+1,n+1

Σ , ḋk+1,n+1
Σ

)
.

The obtained fluid-subproblem allow us to take into account the interface motion, while
keeping a fixed fluid domain. This is achieved by using non-standard boundary conditions on
the fixed reference interface Σtrans without the need of updating the mesh.

In the same way, the fluid stress at the moving interface can be recovered from a similar
Taylor expansion. Let σf = pn − 2µε(u), then

σk+1,n+1
f

(
Ak+1

tn+1(x0)
)

= σk+1,n+1
f

(
Atrans(x0)

)
+ ∇σk+1,n+1

f

(
Atrans(x0)

)
·
(
Ak+1

tn+1(x0) −Atrans(x0)
)

+ o
(∣∣∣Ak+1

tn+1(x0) −Atrans(x0)
∣∣∣) (4.21)

on Σ̂. Thus the subproblem P3.8 for the vessel structure can be replaced by the following
one,

P4.2 (Transpired structure) Find (dk+1,n+1, ḋk+1,n+1) in X(Ω̂s)L2(Ω̂s) such that for all
ϕ̂ in X(Ω̂s),

1
∆t

∫
Ω̂s

ρs

(
ḋk+1,n+1 − ḋn

)
· ϕ̂ dx̂+

1
2

(
as

(
dk+1,n+1, v̂

)
+ as

(
dn, ϕ̂

))
=∫

Σtrans

[(
σk+1,n+1

f + ∇σk+1,n+1
f ·

(
dk,n+1 − dtrans

)
◦
(
Atrans

)−1
)
· n
]
· ϕ̂ ◦

(
Atrans

)−1
ds,

dk+1,n+1 − dn

∆t
=

ḋk+1,n+1 + ḋn

2
.
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The bilinear form as(·, ·) is defined in problem P3.5 on page 63. We formally denote the solver
related to this problem by(

dk+1,n+1, ḋk+1,n+1
)

= Strans
(
uk+1,n+1, pk+1,n+1

)
.

A simpler approximation, see [Med99, FFT00], can be obtained by replacing the first order
Taylor expansions (4.17) and (4.21) by zeroth order expressions. In that case, the interface
transpiration condition in (4.19) reduces to

uk+1,n+1 = ḋk,n+1
Σ ◦

(
Atrans

)−1 (4.18bis)

and the fluid interface stress in (4.21) to

σk+1,n+1
f

(
Ak+1

tn+1(x0)
)

= σk+1,n+1
f

(
Atrans(x0)

)
. (4.21bis)

on Σ̂.

By exploiting the previous considerations we have derived the modified BGS algorithm
reported in figure 4.9. The boxes on the right column of figure 4.9 represent the transpiration
loop, which is also described at the end of this section. Here, instead of updating fluid mesh
and matrices, we just enforce the transpiration velocity

ḋk,n+1
Σ ◦

(
Atrans

)−1 − ∇uk,n+1 ·
(
dk,n+1

Σ − dtrans
Σ

)
◦
(
Atrans

)−1

at the interface. Tolerances Tolintrans and Tolout
trans define the range of relative interface displace-

ments where the transpiration formulation will be used. The convergence test of the whole
algorithm is always made after two standard BGS iterations, (2x in the figure), in order to
ensure the convergence to the original coupled problem P3.7-P3.7-P3.8. This also implies
that the algorithm terminates with standard BGS iterations and with an updated mesh.

4.3.1 Confidence interval

In order to test whether to activate the transpiration part of the algorithm, the relative error
described in section 4.1.1 on page 79 is useless. Indeed, what we have to measure in this case
is how much the computational fluid domain is distant from the actual fluid domain. The
transpiration may be adopted only when this distance is small. Hence, the condition that has
to be satisfied is ∥∥∥dk+1,n+1

Σ − dtrans
Σ

∥∥∥
Lref

k

< Toltrans, (4.22)

where Lref
k is a characteristic “length” of the fluid domain at the k-th iteration. For blood

fluid dynamics Lref
k can be taken as the mean of |R+ dk+1,n+1| over the interface points.

4.3.2 Description of the algorithm

The part of the algorithm concerning pure BGS iterations is presented in section 4.1. At the
end of one BGS iteration, if convergence is not achieved, we proceed as follows:
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Relax the structural displacement

F

F

T

F

T

k = k + 1

k = k + 1

2x

T

= S
(
un+1, pn+1

)

Af
trans = Ak+1

tn+1 , wtrans = wk+1,n+1

Convergence test

u∗ = uk+1,n+1, Ωf
trans = Ωf,k+1

tn+1 ,

= Strans
(
un+1, pn+1

)

Convergence or

‖dk+1,n+1
Σ − dk,n+1

Σ ‖
Lref

k

< Tolintrans

MAXITERtrans or
‖dk+1,n+1

Σ − dtrans
Σ ‖

Lref
k

> Tolout
trans

u∗ = uk,n+1(
Ak+1

tn+1 ,w
k+1,n+1

)
= D

(
dk,n+1

Σ

)
Ωf,k+1

tn+1 = Ak+1
tn+1(Ω̂f)

(
d̃k+1,n+1, ˙̃dk+1,n+1

)
with condition (4.21bis) on Σ̂

(
d̃k+1,n+1, ˙̃dk+1,n+1

)

and velocity and velocity

Relax the structural displacement

(
uk+1,n+1, pk+1,n+1

)(
uk+1,n+1, pk+1,n+1

)
= Fu∗

(
Ak+1

tn+1 ,w
k+1,n+1

)
= F trans

u∗

(
dk,n+1

Σ , ḋk,n+1
Σ

)
with condition (4.18) on Σtrans

Figure 4.9: Diagram of the proposed algorithm. On the left the BGS part, on the right the
transpiration steps.
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1. If the displacement of the domain is small enough,

‖dk+1,n+1
Σ − dk,n+1

Σ ‖
Lref

k

< Tolintrans,

we can enter the transpiration loops,

2. Freeze the domain and the linearization u∗,

u∗ = uk+1,n+1,

Ωf
trans = Ωf,k+1

tn+1 , Σtrans = Σk+1
tn+1 ,

Atrans = Ak+1
tn+1 , wtrans = wk+1,n+1;

3. Solve the problem P4.1 with condition (4.17) on Σtrans,(
uk+1,n+1, pk+1,n+1

)
= F trans

�∗
(
dk,n+1

Σ , ḋk,n+1
Σ

)
;

4. Solve the structure problem P4.2 with condition (4.21) on Σtrans,(
d̃k+1,n+1, ˙̃dk+1,n+1

)
= Strans

(
uk+1,n+1, pk+1,n+1

)
5. Chose ω ∈ (0, 1) and relax the structure’s displacement and velocity

dk+1,n+1
Σ = (1 − ω)dk,n+1

Σ + ω d̃k+1,n+1
Σ ,

6. If convergence is achieved, exit the transpiration loop, go to the standard BGS iterations
and if this has also converged, impose an extra loop to the BGS. If the maximum number
of transpiration loops is reached or if the reference domain Ωtrans is not accurate enough,
i.e.,

‖dk+1,n+1
Σ − dtrans

Σ ‖
Lref

k

> Tolout
trans,

return to the standard BGS iterations. Otherwise set k = k + 1 and go to (3).

4.4 Numerical experiments

4.4.1 Two-dimensional test

We have applied the above algorithm to a fluid-structure problem arising in the modeling
of blood flow on large arteries, precisely on a thin elastic tube conveying an incompressible
viscous fluid. In order to simplify the problem we considered the axisymmetric incompressible
Navier-Stokes equations without rotation (see chapter 2) combined with a generalized string
model (see [Nob01]) for the structure. The test is the same carried out on the example on
page 81.

We have adopted axisymmetric P1isoP2/P1 finite elements for the fluid and P1 for the
structure. The time is discretized by a mid-point scheme for the structure and implicit Euler
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Axes

Γ̂w
0

Γ̂w(t)

Γ̂outΓ̂in R

η

Ω̂(t)

Figure 4.10: The computational domain.

Standard 1
Order 0 0.65
Order 1 0.63

Table 4.1: Normalized CPU time w.r.t. standard BGS , zeroth or first order transpiration
schemes.

for the fluid equations (see chapter 3), with a time step of ∆t = 0.1ms, a tolerance of 10−4

and a fixed point with Aitken relaxation.
We have used the simplified form (4.21bis) for the forcing term and the following values for

the tolerances in the proposed numerical scheme: Tol = 10−6 for the fixed point with reference
displacement equal to 10% of the initial radius of the artery, Tolintrans = 0.05, Tolout

trans = 0.1
and MAXITERtrans = 50. We take as characteristic length of the domain the initial radius
of the artery, Lref

k = R.
In figure 4.11 we report the number of sub-iterations per time step required by the stan-

dard BGS method compared with the one obtained using the modified BGS scheme with
transpiration. The number of BGS iterations is strongly reduced in the transpiration version
(see figure 4.11, 1st order: BGS sub-iter). Let us notice that at each time step, the number of
outer iterations is almost equal in the two schemes. However, the computing time is greatly
reduced: a gain of 40% over 240 time steps. The proposed algorithm does not introduce
any loss of accuracy. Indeed, as mentioned above, the converged solution provided by our
algorithm coincides with one iteration of the standard BGS method.

We have also tested the zeroth order formulation with (4.18bis).
The CPU time and the number of iterations are of the same order (see table 4.4.1). The

slight difference in CPU time derives from the computation of the fluid velocity gradients.
The fact that the convergence obtained with the two alternatives (zeroth and first order
approximations) is similar, is due to the limited contribution of the velocity gradients for
this test case. Indeed, the additional contribution given by the first order scheme is only
10−7 times the zeroth order term. This follows from the very little variations in the wall
displacement between the first two BGS iterations and the following transpiration ones.

Remark

It is possible to improve the efficiency (in terms of CPU time) of the transpiration algorithm
by updating the fluid domain only once per time steps, at the beginning or after the first time
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standard: BGS
transp+BGS (0th o.)
transp+BGS (1st o.)
BGS (1st o. transp)
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Figure 4.11: Iterations history.

that convergence is achieved. It is also possible to update the domain only every n time steps,
provided that the displacement is in the confidence interval defined by (4.22). However, the
gain in time of this approach is very small and does not justify the loss of accuracy introduced.
In figure 4.12 it is possible to see the error introduced in the wall displacement in the test
case.

The superiority of the first order transpiration condition with respect to the zeroth one
can be better appreciated when the difference between the transpiration domain and the
actual fluid domain are more significant. For example, if the fluid mesh is updated only at
the beginning of the time step or every 5 time steps (see figure 4.12), the wall displacement
is better reproduced by the first order condition.

4.4.2 Three-dimensional test

Here we present another test in three dimension to show that the performance of algorithm
presented in this chapter is independent from the dimension of the problem. We couple the
incompressible three-dimensional Navier-Stokes equations (for the fluid) with an independent
ring model (for the wall displacement) in a cylindrical domain (see figure 4.13).

On the inlet we impose a “pressure pulse” of period of 5 ms,

σ(u, p)n = −Pin

2

[
1 − cos

(
2πt
5

)]
n,

with Pin = 13103 dynes/cm2.
The independent ring model reads

ρw h
∂η2

∂t2
+

Eh

(1 − ν2)R2
η = p− p0.

We use the following parameters: R = 0.5cm, L = 5cm, ρ = 1gr/cm3, µ = 0.03poise,
ρw = 1.1gr/cm3, h = 0.1cm, E = 3106dyne/cm2 and ν = 0.3.
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Figure 4.12: Comparison between zeroth and first order transpiration conditions. The domain
is updated only at the beginning of the BGS iterations (Samp 1) or every 5 time steps (Samp
5). We have zoomed a portion of the picture to better emphasize the different curves. The
enhanced accuracy of the second order transpiration condition is appreciated when the domain
is updated less often.

Figure 4.13: The three-dimensional cylinder.

The fluid is discretized with P1bubble/P1finite elements in space and implicit Euler in
time. The structure is discretized with a mid-point scheme. We perform 150 time steps with
∆t = 0.1ms. The parameters for the transpiration loop are: Tolintrans = 0.05, Tolout

trans = 0.1
and MAXITERtrans = 50, with Aitken’s relaxation parameter.
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Chapter 5

Preconditioning of Newton and
quasi-Newton algorithms for the
solution of the fully implicit
problem

Introduction

In this chapter, we investigate some acceleration techniques for the Newton or quasi-Newton
algorithms.

Newton–Krylov [BS94] or Jacobian-free Newton–Krylov methods [KK03] are popular so-
lution strategies for nonlinear problems in applied mathematics and computational physics.
They rely on a combination of Newton-type methods with super-linearly convergence rates
and Krylov subspace methods for solving the Newton correction equations. Their main core
requires to solve a sequence of linear systems of type:

Aixi = bi (i=1,2, ...) (5.1)

where the coefficient matrices Ai and the right-hand sides bi are different. In this work, we
investigate some linear and nonlinear acceleration techniques in the framework of Newton–
Krylov or quasi-Newton–Krylov algorithms to derive an efficient and robust nonlinear solver.

Our first purpose is to accelerate the convergence of a given linear system by reusing
information built during previous resolution processes. While most papers in the literature
(e.g. [CW97, Par80, Saa97, SG95, SPM89]) consider the case of multiple linear systems only
with different right-hand sides, at our knowledge few attempts [CN99, RR98] have addressed
the general case (5.1). Moreover both approaches are restricted to a sequence of linear systems
with symmetric positive definite matrices. Here the coefficient matrices Ai are only assumed
to be regular and each linear system will be solved with the GMRES method [SS86]. The
proposed dynamic preconditioner consists of exploiting information that is related to the
sequence of Hessenberg matrices built during the successive orthogonalization procedures.
We show that this new preconditioner is non-singular and well defined and we describe how
to nestle more than one preconditioner.

Some aspects of our approach are similar to [Cho95, §4] and [CE96]. These authors
consider a restarted GMRES(m) method and build a preconditioner for the next perturbed
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system using the Krylov subspace and the Hessenberg matrix stored during the previous
GMRES(m) application. They also apply the preconditioners in a nested way to solve the
Navier–Stokes equations within a Newton algorithm. Although connected, the two approaches
differ in the iterative method used (restarted against full GMRES) and in the stored data:
even if they nestle the preconditioners, they store only one Krylov subspace, hence some
informations may be lost. Here we propose to store some Krylov subspaces and the related
basis associated to benefit from all the information already collected. The drawback of our
approach is the amount of memory needed, however nowadays this item is loosing importance.
Moreover, in the fluid-structure interaction problem presented here, the degrees of freedom
concerned by the Newton–Krylov algorithm are only those located on the interface; this leads
to small sized problems in practice.

We then detail a nonlinear acceleration technique for the resulting preconditioned Newton–
Krylov algorithm. Previous work was done in this respect. For instance Washio et al. [WO97]
and Fokkema et al. [FSvdV98] have proposed to store both the iterates and the residuals and
to search for a better iterate in the affine subspace generated during the previous iterations.
Washio et al. [WO97] have proposed to find the new iterate by minimizing the norm of the
linearized residual. Following this approach, we remark that if the linearization of the residual
is accurate enough, a new (quasi-)Newton step can be carried out even without evaluating
the new residual. Indeed, we are able to define an entire acceleration step, where neither
the residual nor the inverse of the Jacobian are explicitly computed. They are replaced by a
linearization of the residual and an application of the dynamic preconditioner respectively.

The resulting algorithm is well suited to problems where the functional or its Jacobian
are very expensive to compute. In particular, to build the preconditioner there is no need
to explicitly build the matrices Ai (in other words, the Jacobians), but only to evaluate the
matrices against given vectors in the GMRES algorithm.

The resulting solution method is then tested in the framework of fluid-structure interaction
problems in haemodynamics. The numerical results for two and three-dimensional problems
are very satisfactory, with a total computational gain of up to 50% in CPU time versus a
standard Newton method.

5.1 Newton

For the applications we have in mind – blood flow simulations – we are interested in strongly
coupled algorithms. This means that a fixed point of the map T = S ◦ F ◦ D presented in
chapter 3 has to be found at each time step, which is equivalent as finding the root of the
operator R = T − Id. Note that R is a nonlinear operator restricted to the fluid-structure
interface. The nonlinearities come from: The inertial term in the Navier-Stokes equations,
the displacements of the fluid domain, the (large) displacements in the structure. For the test
cases presented here the constitutive law of the structure is linear.

We can formulate the Newton algorithm in a general form as follows. Given a vector field
on R

N , we want to find an approximation x∗ in R
N of the root of R, such that ‖R(x∗)‖ < Tol

for a given tolerance and for the Euclidean norm.

1) define an initial guess x0 and set k = 0;

2) compute R(x0);

3) solve J(xk)δx = −R(xk), where J(xk) is the Jacobian of R in xk;
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4) set xk+1 = xk + δx;

5) compute the residual R(xk+1);

6) if ‖R(xk+1)‖ < Tol, then stop, otherwise increase k and go to 3.

The computational challenge is represented by the inversion of the Jacobian in step 3.
When a Krylov subspace method is used, it requires many evaluations of J(xk) at different
points. Moreover the evaluation itself can be costly, even if sometimes it is possible to solve
the system inexactly (with a relaxed accuracy). In many cases this cost can be reduced by
replacing the Jacobian by a simpler and cheaper operator, as in quasi-Newton algorithms. The
dynamic preconditioner defined in section 5.4 can be used to reduce the number of iterations
in GMRES iterations. In section 5.5, we will propose a modified Newton algorithm that can
be used to further speed up the convergence. In other cases, it is possible or even mandatory
to compute the Jacobian in an exact way (see [FM04]).

5.2 How to compute the Jacobian

In the Newton algorithm, we have to solve the problem

JR(xk)δx = −R(xk), (5.2)

Its resolution can be carried out with a GMRES method, which implies the evaluation of the
Jacobian multiplied with the successive residuals.

In the fluid-structure problem introduced in chapter 3, the unknown x∗ must be replaced
by the interface displacement dn+1

Σ̂
at time tn+1. We note by dk,n+1

Σ̂
the intermediate values

of the displacement given by the Newton algorithm. In the sequel we neglect the time step
tn+1 and its index n+1 to simplify the notations. The exact computation of J(dk)r is treated
in [FM03] and [FM04] and its implementation implies shape derivatives (see also section 3.3).
A more simple approach is proposed in [MS00] with finite difference methods. However,
this technique implies a choice of a parameter, which depends on the situation and whose
choice is critical. This technique is computationally expensive, since it implies the additional
computation of the residual R in the direction of the derivative. An efficient solution is
to approximate the Jacobian with simplified models based on the physical meaning of the
problem at hand. In the following section we propose two simplified models.

In section 5.4 we introduce a preconditioner for the inversion of the Jacobian which is
based on the properties of the GMRES method. Its advantage is that it is independent from
the choice for the Jacobian, i.e., it can be used with an approximate Jacobian or with the
exact one. At each time step, a new preconditioner with the first GMRES iterations is built
and it is used from the second Newton iteration on.

5.3 How to compute approximate Jacobian

We now propose two approximate models used to evaluate the Jacobian.

FSI-QN 1

The first simplified model, which has been proposed by Gerbeau and Vidrascu [GV03], is
based on the following assumptions:
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(i) The fluid domain is frozen about its current state.

(ii) The structure equation is linearized about its current state.

(iii) Non-linear inertial and viscous terms are neglected in the fluid. The fluid equation
therefore reduces to a Poisson problem on the pressure.

FSI-QN 2

The second simplified model, which is derived from a zeroth order transpiration, is based on
the following assumptions:

(i) The fluid domain is frozen about its current state.

(ii) The structure equation is linearized about its current state.

(iii) The fluid equation is linearized about its current state. The fluid problem therefore
reduces to an Oseen equation with a reaction term.

In both cases, we can split the computation of J(dk)r in two steps, which derive from the
following equality,

J(dk)r = JS(F ◦ D(dk)) JF◦D(dk) r,

where JF◦D is the Jacobian of the fluid problem in a moving domain defined by dk and
JS(F ◦D(dk)) is the Jacobian of the structure problem related to F ◦D(dk). Note that since
the residual R(dk) has already been computed, so has F ◦ D(dk). Moreover, if the structure
is linear we have already computed the related matrix (which we denote by DK). Otherwise,
we can choose to solve the structure with a Newton–Raphson algorithm ([Ode72, CCG96,
Cha85, MMV99]) and we denote by DK the tangent operator of the structure problem which
is computed during this step (see also[GV03]).

FSI-QN 1

The quasi-Newton algorithm related with FSI-QN 1 reads:
Suppose that Atn , (un, pn), dn and ḋn are known at time tn; their update at time tn+1 is

obtained as follows

1) Set k = 0 and extrapolate the position of the interface,

dk
Σ = dn

Σ +
3∆t
2

ḋn
Σ − ∆t

2
ḋn−1

Σ ,

as well as the fluid velocity u∗ = 2un − un−1 (and pressure p∗ = 2pn − pn−1, in case of a
fractional step);

2) Solve the the genuine fluid-structure problem with(
Ak+1,wk+1

)
= D

(
dk

Σ

)
,(

uk+1, pk+1
)

= F�∗
(
Ak+1,wk+1

)
,(

d̃k+1,
˙̃
dk+1

)
= S

(
uk+1, pk+1

)
;
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3) Evaluation of the residual,
Rk = d̃k+1

Σ − dk
Σ;

4) If converged (see section 4.1.1 on page 79), go to the next time step. Otherwise

5) Compute δdk+1
Σ by solving the approximate tangent problem with GMRES:

R′ δdk+1
Σ = −Rk.

The matrix R′ is not explicitly computed. The evaluation of the product of R′ by a vector
z (one time per GMRES iteration) is performed as follows

(a) Solve

∆ δp = 0 in Ωf,k+1,

∂δp

∂n
= − ρf

∆t2
z ◦

(
Ak+1

)−1
· n on Σk+1,

δp = 0 on Γin,k+1 ∪ Γout,k+1;

(b) Find δf in H1/2(Σ̂)3 such that for all ϕ̂ in X(Ω̂s) (see also equation (3.6))∫
Σ̂
δf · ϕ̂dŝ =

∫
Σk+1

δpn · ϕ̂ ◦ Ak+1ds; (5.3)

(c) Solve
DKkδz = δf ;

(d) The product R′ by z is given by z − δz;

The GMRES iterations are stopped as soon as the norm of the linear residual is lower
than εlin times the norm of the nonlinear residual;

6) Compute the new displacement of the interface as

dk+1
Σ = dk

Σ + ωkδdk+1
Σ ,

where ωk is computed, if necessary (i.e., if the increment with ωk = 1 does not decrease
the norm of the residual), by a line-search strategy;

7) Set u∗ = uk+1(, p∗ = pk+1) and go to step 2;

8) Go to next time step with

Atn+1 = Ak+1 , un+1 = uk+1 , pn+1 = pk+1

dn+1 = dk , ḋ
n+1

= ḋ
k
.
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FSI-QN 2

With the second simplified model, we have only to replace steps 5a and 5b. The evaluation
of the product of F ′ by a vector z (one time per GMRES iteration) is performed as follows:
Find (δu, δp) in V (Ωf,k+1) ×Q(Ωf,k+1) such that for all (v, q) in VΣ(Ωf) ×Q(Ωf),⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
∆t

∫
Ωf,k+1

ρfδu · v +
∫

Ωf,k+1

ρf(u∗ − wk+1) · ∇δu · v +
∫

Ωf,k+1

ρfδu · ∇u∗ · v

−
∫

Ωf,k+1

ρfδu · v div wk+1 −
∫

Ωf,k+1

δp div v +
∫

Ωf,k+1

2µε(δu) · ε(v) = 0∫
Ωf,k+1

q div δu = 0,

(5.4)

δu =
z

∆t
◦
(
Ak+1

)−1
on Σk+1.

Step 5b reads: Find δf in H1/2(Σ̂)3 such that for all ϕ̂ in X(Ω̂s),∫
Σ̂
δf · ϕ̂dŝ =

∫
Σk+1

(δpn − 2µε(δu) · n) n · ϕ̂ ◦ Ak+1ds. (5.5)

As in problem P3.5, the right hand side of (5.5) can be computed as the residual of (5.4).

Clearly, FSI-QN 1 (that has been proposed in [Ger03, GV03]) approximates more roughly
the nonlinear problem. It is therefore not surprising that it requires generally more Newton
iterations to converge than FSI-QN 2. Nevertheless, in all the test cases we have performed,
the CPU time was less with FSI-QN 1 than with FSI-QN 2, each evaluation of FSI-QN 1
being much cheaper than that of FSI-QN 2. This conclusion certainly depends on the physical
situation considered, and it is possible that in certain circumstances, FSI-QN 2 leads to better
results. This is the reason why we present both models.

Regardless the fluid-structure interaction context, the reader may consider that FSI-QN 1
corresponds to a situation where the Jacobian of the nonlinear problem is roughly approx-
imated, the convergence therefore requires several, but cheap, Newton iterations, whereas
FSI-QN 2 corresponds to a better Jacobian approximation, which leads to less numerous, but
more expensive, Newton iterations.

5.4 Preconditioned Krylov iterations for the Jacobian system

In this section we present a preconditioner which can be used whenever a sequence of similar
linear problems has to be solved. This is the case when inverting the Jacobian in the Newton
algorithm. We use generic notations to keep the method presented here independent from
the fluid-structure interaction problem.

5.4.1 The GMRES iterative method

Consider the following linear problem: Find x in V such that

Ax = b, (5.6)

where A is a linear operator from and onto a generic vector space V with scalar product (·, ·)
and b is an element of V . The GMRES iterative method builds an orthonormal sequence
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(vj)j=1,...,k+1 in V , and two matrices, one Qk, orthogonal of size k+ 1× k+ 1, and the other
Rk, upper triangular of size k + 1 × k, such that if x =

∑k
j=1 ξjvj , then Ax =

∑k+1
j=1 ζjvj

where ζ = QkRkξ.
The sequence (vj)j=1,...,k+1 is an orthonormal basis of the Krylov subspace

Lk+1 = Kk+1(A, r0) = span
{
r0, Ar0, . . . , A

kr0

}
,

where r0 = b − Ax0. Moreover Qk and Rk are the QR-decomposition of the Hessenberg
matrix H, defined by Hjl = (vj , Avl) (see for example Saad and Schultz [SS86], Van der
Vorst [VdV03, §4 and §6]).

The residual of (5.6) is minimized on the linear subspace Lk and the approximated solution
is given by

x = arg min
�∈Lk

‖Ax − b‖. (5.7)

The standard implementation of the GMRES algorithm does not solve this problem explicitly,
since the residual is built up dynamically, and the solution is only computed at the end.

Suppose that instead of building the decomposition of the Hessenberg matrix and the
basis of the Krylov subspace, these are already given and we would like to solve (5.7) for a
given datum b (for example if one need to solve equation (5.6) for two different left hand
sides). Then problem (5.7) is equivalent to

Rkξ = Π∗QT
k β, (5.8)

where βj = (b,vj) for j = 1, . . . , k+ 1, and Π∗ is the projection that sets the last component
of a vector to zero (note that the last line of Rk has all components equal to zero). Note that
the error is equal to the last component of QT

k β.
In exact algebra, the GMRES method ends after a finite number of iterations, namely the

dimension of the vector space V . Usually a tolerance is given for the relative error on the
residual, such that it is in general not necessary to build a full basis of V . A drawback of this
method is the need to store the sequence (vj)j=1,...,k+1 and the matrices Qk and Rk. This can
require a large amount of memory. In the literature, to avoid memory problems, a restart is
proposed but in this work we consider only full GMRES. If storing the sequence of vectors
and the matrices is not a major problem, the sequence and the matrices can be exploited to
build an efficient preconditioner for the solution of another problem close to the first one (see
section 5.4.3).

5.4.2 Dynamic initial guess

Assume that we have two problems of type (5.6) on the same space V : Find x1 and x2 in V
such that

A1x1 = b1 and A2x2 = b2, (5.9)

where the operators A1, A2 are close enough, e.g., the first one is a good preconditioner of
the second one, but are both expensive to invert.

Then it is possible to generate an initial guess for the second problem using the iterates
built during the solution of the first one. More precisely, let the first full (i.e., not restarted)
GMRES method produce the sequence (v(1)

j )j=1,...,k+1 and the matrices Q1,k and R1,k, where
k + 1 is the number of iterations required to converge for the first problem (up to a given
tolerance).
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The classical way to define the initial guess for the solution of the second equation, is to
take the solution x1 of the first one which is in fact arg min�∈L1,k

‖A1x−b1‖. As pointed out
previously, it is possible to use the Hessenberg decomposition and the Krylov subspace of the
first GMRES resolution. This means that we can find at low computational costs an initial
guess as

arg min
�∈L1,k

‖A1x − b2‖. (5.10)

Intuitively, this choice is more appropriate as a first approximation of the solution of the
second equation in (5.9).

The minimization in (5.10) can be carried out without any evaluation of A1, since it is
equivalent to solve as in (5.8) the problem reduced to the first k components,

R1,k ξ = Π∗QT
1,k β2, (5.11)

where the components of β2 are now given by (b2,v
(1)
j ). To be efficient, the two operators

have to be close to each other. See section 5.6.

5.4.3 Dynamic preconditioner

We would like to extend this idea and to use the information stored in the sequence and the
matrices of the previous GMRES iteration to build a preconditioner. Indeed this is based on
the idea that A1 can be a good preconditioner for A2.

The basic step is to take the orthogonal projection of b2 on the image of A1|L1,k
(noted

ΠIm(A1|L1,k
)b2) and then to apply the inverse of Q1,kR1,k. In fact Q1,k and R1,k are the QR

factorization of the restriction of A1 on L1,k

A1|L1,k
: L1,k → Im(A1|L1,k

) ⊂ L1,k+1.

Then, to avoid a singular preconditioner, add λ−1(b2 −ΠIm(A1|L1,k
)b2), where λ is a scalar to

be chosen.
The corresponding preconditioner is

P−1
1 =

(
A1|L1,k

)−1 ΠIm(A1|L1,k
) +

1
λ

(
Id− ΠIm(A1|L1,k

)

)
. (5.12)

Its application to a vector y in V can be carried out in five steps:

ζj = (y,v(1)
j ) j = 1, . . . , k + 1, (5.13)

χ = Q1,k
T ζ, (5.14)

τ = Q1,k (Id− Π∗)χ, (5.15)
ξ : solve R1,kξ = Π∗ χ, (5.16)

z =
k∑

j=1

ξjv
(1)
j +

1
λ

⎛⎝y −
k+1∑
j=1

(ζj − τj)v
(1)
j

⎞⎠ , (5.17)

where ζ = (ζ1, ..., ζk+1)T , etc., and Π∗ is the projection that sets the last component of a
vector to zero and is equivalent to the projection ΠIm(A1|L1,k

) on the image set of A1|L1,k
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(see lemma 5.4.1). Since the last line of R1,k is zero, equation (5.16) is well defined and its
resolution is straight-forward by backward substitution.

We propose to set the scalar λ equal to the last diagonal element of R1,k, i.e., R1,k(k, k).
Other choices can be derived from an Aitken relaxation parameter from the previous iterates,
see section 5.6, or from the mean of the diagonal elements of R1,k.

5.4.4 Invertibility of the preconditioner

To simplify the notation, in this section we refer to A, Q, R, etc., without indices whenever
there are no ambiguities.

In the following we prove that for a non singular operator A on a finite dimensional vector
field V with scalar product (·, ·), the preconditioner defined in (5.12) has full rank and can
be computed following steps (5.13) to (5.17).

Theorem 5.4.1 If A is not singular, then the operator

M = (A|Lk
)−1 ΠIm(A|Lk

) +
1
λ

(
Id− ΠIm(A|Lk

)

)
(5.18)

is invertible on V .

Proof The GMRES algorithm computes an orthonormal sequence (vj)j=1,...,k+1 such
that Im(A|Lk

) is included in Lk+1. Recall that ΠIm(A|Lk
) is the orthogonal projection on

Im(A|Lk
). Since A is regular, A|Lk

is invertible on Im(A|Lk
) and M is well defined.

Let y be an element in V such that My = 0. We need to show that y is equal to zero.
Let y2 = ΠIm(A|Lk

)y and y1 = y − y2. Then

1
λ

y1 = − (A|Lk
)−1 y2. (5.19)

This implies that y1 is also in Lk, i.e., y1 =
∑k

j=1 ϕjvj. But since y1 is in the orthogonal
hull of Im(A|Lk

), (y1, Avl) = 0 for all l = 1, ..., k, hence

0 =
k∑

j=1

ϕj(vj , Avl) =
k∑

j=1

ϕjHjl,

where H is the Hessenberg matrix of A with respect to (vj)j=1,...,k. This can be written in
vector form as

∑k
j=1 ϕjhj = 0, where hj is equal to (Hj1, ...,Hjk)T . Since A is regular and the

vectors vj, j = 1, ..., k, are linearly independent, the vectors hj are also linearly independent.
Hence ϕj = 0 for j = 1, ..., k and y1 = 0. From equation (5.19) also y2 = 0, which means

that y = 0 and that M is invertible.
�

Lemma 5.4.1 The operator QΠ∗QT : R
k+1 → R

k+1 is an orthogonal projector with respect
to the Euclidean scalar product. Moreover, its image is equal to the image of QR: R

k → R
k+1.

Proof The operator is a projection, since(
QΠ∗QT

)2
= QΠ∗Π∗QT = QΠ∗QT .
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To prove the orthogonality first note that Id −QΠ∗QT = QQT −QΠ∗QT = Q(Id − Π∗)QT .
Then for ξ and ζ in R

k+1

(
Q (Id− Π∗)QT ζ , QΠ∗QT ξ

)
=
(
(Id− Π∗)QT ζ , Π∗QT ξ

)
= 0,

since Q is orthogonal. Hence Π∗ is an orthogonal projection with respect to the Euclidean
scalar product.

Moreover we have that ImQR = ImQΠ∗QT . Firstly, ImQR ⊂ ImQΠ∗QT , since the
last line of R has only zeros and

QΠ∗QTQR = QΠ∗R = QR.

Then, let ξ ∈ R
k and ζ ∈ R

k+1. Equation QRξ = QΠ∗QT ζ is equivalent to Rξ = Π∗QT ζ,
which has a unique solution since the last line of R has only zeros, R is upper diagonal and
all elements of the diagonal are different from zero (else A is singular). Hence ImQΠ∗QT ⊂
ImQR.

�

Proposition 5.4.1 Let y be in V and set ζj = (y,v(1)
j ), j = 1, . . . , k + 1 and let ξ =

QΠ∗QT ζ. Then

ΠIm(A|Lk
)y =

k+1∑
j=1

ξjvj. (5.20)

Proof Firstly note that for x =
∑k

j=1 χjvj, Ax =
∑k+1

j=1 (QRχ)j vj . Then, the proof
follows from lemma 5.4.1.

�

5.4.5 Application to a sequence of problems

In this section we apply the preconditioner defined in the previous section in a nested way to
a sequence of problems.

The preconditioner may be applied as a left or a right preconditioner. Anyway, we present
it in its right form, since a left preconditioned GMRES changes the norm used in computing
the residual, while it is not the case in the right preconditioned version. Moreover, it is
possible to apply this method to an already existing left preconditioned GMRES, such that
the resulting GMRES has both left and right preconditioners (see also [VdV03, §10]).

Suppose that we have solved A1x = b1 with GMRES and that we define P1 according to
formula (5.18), then the second right preconditioned problem reads

A2P
−1
1 y = b2 x = P−1

1 y. (5.21)

Suppose now that there is a third equations to solve. We can use P1 as a preconditioner,
but if operator A3 is closer to A2 than to A1, as in the case of the Newton algorithm, it is
more interesting to use P2. Unfortunately, since we suppose that A2 (not A2P

−1
1 !) is a good

preconditioner for A3, this is not possible.
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Storing the intermediate vectors

A first solution is to use a technique taken from Flexible GMRES (see [Saa93] or [VdV03]).
FGMRES, in addition to the storage of the matrices and the basis of the Krylov subspace,
stores the basis of the intermediate evaluations of P−1

1 .
More precisely, the GMRES resolution with right preconditioning, at a given step j,

computes AP−1
1 vj. We perform this operation in two steps and we store the intermediate

vector wj = P−1
1 vj .

This allows to build a preconditioner P2 which is well suited for A3 and its application to
a vector y in V can be carried out in five steps similarly to steps (5.13) to (5.17)

ζj = (y,v(2)
j ) j = 1, . . . , k + 1,

χ = Q2,k
T ζ,

τ = Q2,k (Id− Π∗)χ,
ξ : solve R2,kξ = Π∗ χ,

z =
k∑

j=1

ξjw
(2)
j +

1
λ

⎛⎝y −
k+1∑
j=1

(ζj − τj)v
(2)
j

⎞⎠ .

In the last line, the term

y −
k+1∑
j=1

(ζj − τj)v
(2)
j

accounts for the complement of the projection on Im(A2|L2,k
) of y, i.e.,(

Id− ΠIm(A2|L2,k
)

)
y,

and it is important that there are involved the vectors v
(2)
j and not w

(2)
j .

The coding of these steps requires only few modifications to the subroutines required for
steps (5.13) to (5.17). Then the third preconditioned problem reads

A3P
−1
2 y = b3 x = P−1

2 y.

The drawback of this method is that if for example P1 works fine on A2, then the basis {v(2)
j }

has few members and P2 is less rich than P1 is. As a consequence, the basis {v(3)
j } has more

members and the preconditioner build from is richer. As a result, the number of GMRES
iterations oscillates (see figure 5.15). We would like to avoid these oscillations and to inherit
the richness of P1 for A3 and at the same time use also P2. This is possible with the following
method.

Nested preconditioners

Instead, we choose to nest the preconditioners. For example, the third preconditioned problem
reads

A3P
−1
1 P−1

2 y = b3 x = P−1
1 P−1

2 y. (5.22)

In fact, P2 is a preconditioner derived from (5.21) and is therefore well suited for A3P
−1
1 . It is

mandatory to keep the number of preconditioners small, so it is recommended to do a restart
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of the preconditioners. In principle one can either delete all the preconditioners or just keep
P1.

As mentioned above, it is also possible to use an already defined left preconditioner M ,
such that the problems are

M−1A1 x = M−1b1, (5.23)
M−1A2P

−1
1 y = M−1b2 x = P−1

1 y, (5.24)
M−1A3P

−1
1 P−1

2 y = M−1b3 x = P−1
1 P−1

2 y, (5.25)
etc. (5.26)

Indeed, it is possible that the left preconditioner depends on the problem index, as long as
the original preconditioned problems, i.e., M−1

i Ai, are close to each other.

5.5 Nonlinear acceleration of the Newton–Krylov algorithm

We present in this section our global procedure for solving nonlinear problems. We first
recall the solution method based on Newton–Krylov methods [BS94]. Then we describe an
accelerating procedure that aims to improve its computational efficiency. Finally we present
the global framework in an algorithmic fashion.

The main computational challenge is the inversion of the Jacobian matrix (step 3 on
page 102) with Krylov-type methods. One drawback of this procedure is that in every lin-
earization step the Jacobian must be evaluated in many directions. Nevertheless this poten-
tially huge cost can be reduced by replacing the Jacobian matrix by a simpler and cheaper
operator, as done in the quasi-Newton algorithm.

In this work a preconditioned GMRES method is used to solve the Jacobian problem
stated in step 3. As a preconditioner for GMRES, the dynamic preconditioner presented
in section 5.4 is investigated. An accelerating procedure is presented in the following for
enhancing the efficiency of this preconditioned Newton-GMRES procedure.

We use generic notations to keep the method presented here independent from the fluid-
structure interaction problem.

5.5.1 Acceleration strategy

We apply here a strategy proposed by Washio et al. [WO97] aiming to build a nonlinear
subspace acceleration for general nonlinear solvers combined with the replacement of the
Jacobian by the preconditioner defined in section 5.4.3 (noted J̄).

The idea in [WO97] was to store the iterates and the residuals in two different subspaces
(of dimension m) which represent a basis for an approximated linear problem. Then they
proposed to find a new iterate xnew on the affine subspace xk +

∑m−1
j=0 αj (xj − xk) by mini-

mizing the residual. With this goal in mind, the residual is considered affine in this subspace,
such that the minimum can be found without new evaluation of R.

A simplified acceleration scheme deduced from [WO97] has been adopted here. We refer
to [WO97] for a complete description of the nonlinear convergence acceleration strategy. This
simplified scheme basically requires two parameters: m, the dimension of the minimization
subspace and εB , a parameter needed to control the nonlinear convergence. We keep in the
minimization subspaces the m latest iterates and corresponding residuals when available. In
the following, we only detail the procedure to be carried out after a Newton step if convergence
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is not achieved. Indeed, this can be repeated as long as the approximation J̄ of the Jacobian
is satisfactory.

Likely, the simplest approximation of the Jacobian is to use the extension of the Aitken
relaxation method which can be seen as a rough approximation of the Jacobian. In this case,
J̄−1 = ωId, where ω is a scalar equal to

ω =
[R(xk) −R(xk−1)]

T (xk − xk−1)
‖R(xk) −R(xk−1)‖2 (5.27)

If we make this choice, it is preferable to do only one acceleration step, since otherwise we
would be barely performing an accelerated Aitken algorithm.

A better choice is the preconditioner defined in section 5.4.3, J̄ = Pk · · ·P1. This is moti-
vated from the good properties as preconditioner in the resolution of the following Jacobian.

1) Find the solution of the minimization problem:

α = arg min
α∈�m

∥∥∥R(xk) +
m−1∑
j=0

αj (R(xj) −R(xk))
∥∥∥;

2) Set the candidate iterate as: xnew = xk +
m−1∑
j=0

αj (xj − xk) ;

3) Control of the acceleration strategy:

if εB ‖xnew − xk‖ > min
j<m

‖xj − xk‖
xnew = xk;
R̄new = R(xk);

else

R̄new = R(xk) +
m−1∑
j=0

αj (R(xj) −R(xk)) ;

end;

4) Solve J̄δx = −R̄new by a Krylov subspace solver;

5) Set the next iterate as: xk+1 = xnew + δx;

6) Compute the next residual: R(xk+1);

7) if ‖R(xk+1)‖ < tol, then stop;

8) Control: if ‖R(xk+1)‖ > minj�m ‖R(xj)‖ then

(a) Perform a line-search and exit the acceleration step; or

(b) Do not store xk+1 and exit the acceleration step;

9) If J̄ is old, exit the acceleration step, otherwise k = k + 1 and go to 1.
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Steps 1 to 3 are related to the acceleration scheme and are briefly detailed in the following.
To find the minimizing α (item 1), store the points xj of the Newton algorithm in a matrix
V and the values of the residuals R(xj) in a matrix F , such that

V = [x0, . . . ,xk−1] and
F = [R(x0) −R(xk), . . . ,R(xk−1) −R(xk)]

(5.28)

Then α in R
k can be found by solving the linear problem

F TF α = −F TR(xk). (5.29)

Since this problem may be singular, there are two choices: solve the problem with an iterative
method (we use conjugate gradient), or, as proposed by Washio et al. in [WO97], use a direct
method (Cholesky factorization) and, to ensure the invertibility of problem (5.29), add a term
εF Id for a small εF to the matrix F TF . They propose εF = 10−16max(diag(F TF )).

Since this scheme is based on a linearization of the residual, this algorithm must be
”securised”. Thus a control step (step 3) is introduced to avoid the occurrence of too close
iterates leading to stagnation in nonlinear convergence. In case of stagnation, both latest
available iterate xk and residual R(xk) are retained. This control criterion can be replaced
by a more efficient one, namely

∑m−1
j=0 |αj | > εB or ‖α‖2 > εB , which in addition can be

carried out before step 2.
The positive control parameter εB can be chosen depending on the nonlinearity of the

problem. If the problem is highly nonlinear, it is crucial to keep εB small, since the algorithm
is based on the good approximation of the residual in xnew given by the linearization.

Note that this accelerating procedure is rather cheap: a solution of a small system of size
m×m, 2m+ 2 inner products and m vector updates and the evaluation of nonlinear residual
at most.

Finally a control procedure for the global Newton process (step 8) has been added. Indeed
it may happen that the new residual norm ‖R(xk+1)‖ is larger than the minimal residual norm
of the intermediate solutions. There are potentially two reasons for this behavior: either
the frozen Jacobian J̄ is no more accurate enough or the linearized residual R̄new is really
different from the true one R(xnew). A control procedure is therefore needed to cure these
two bottlenecks. In practice however this situation has not been experienced numerically.

In a Newton framework, this acceleration scheme offers two main advantages. First the
new residual is expressed as a linear combination of residuals that belong to the minimization
subspace of residuals. Thus an expensive operation (evaluation of the residual) is avoided
when building the right-hand side for the new Jacobian system. Second, the frozen Jacobian
J̄ can be reused again and again as will be shown in the numerical results. These two points
explain the improved efficiency of the preconditioned Newton-GMRES algorithm.

5.5.2 Global procedure

Finally the global procedure is a preconditioned Newton-GMRES method accelerated by
the nonlinear strategy presented in section 5.5.1. The linear preconditioner is the dynamic
preconditioner presented in section 5.4. This relatively complex algorithm is shown in Figure
5.1. It is meant to be robust and efficient when treating general (maybe highly) nonlinear
problems. As a first evaluation, it has been investigated in the framework of fluid-structure
interaction in haemodynamics as described next.
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k = k + 1

k = k + 1

k = −1

F

F

F

F

T

T

T

T

initial guess �0

compute R(�0)

solve J(�k)δ� = −R(�k)

�k+1 = �k + δ�

compute R(�k+1)

‖R(�k+1)‖ < Tol

min
α∈Rm

���R(�k)+

m−1�

j=0

αj
�R(�j)−R(�k)

����

solve J̄δ� = −R̄new

update J̄ ?

line search

R̄new=R(�k)+

m−1�

j=0
αj
�R(�j)−R(�k)

�

�new = �k +

m−1�

j=0

αj (�j − �k)

‖�new − �k‖<εB min
j<m

‖�j − �k‖

‖R(�k+1)‖ < min
j�k

‖R(�j)‖

Figure 5.1: Accelerated Newton algorithm. On the left, the standard Newton algorithm at
top, to the right, the acceleration step.

115



CHAPTER 5. PRECONDITIONING OF NEWTON AND QUASI-NEWTON
ALGORITHMS FOR THE SOLUTION OF THE FULLY IMPLICIT PROBLEM

2 Acc. cycles
1 Acc. cycle

Newton

cycles

Ja
co

bi
an

in
ve

rs
io

ns

14121086420

14

12

10

8

6

4

2

0

Figure 5.2: Number of Jacobian inversions per cycle (= Newton or accelerated).

5.6 Application to fluid-structure interaction

We present in this section an application of the previous algorithms to fluid-structure inter-
action problems.

5.6.1 Settings

The linear preconditioner is used in a nested way as explained in section 5.4.5, and is fully
restarted at every time step. A reason for this complete restart is that at a new time step
the underlying system can be quite different from the one at the previous time step. As we
pointed out, the key idea for the efficiency of this dynamic preconditioner is that the problems
in the sequence must be close to each other.

The nonlinear convergence acceleration scheme is used with minimization subspaces of
dimension 5 (m = 5) and the control parameter εB is set to 0.5. The frozen Jacobian J̄
corresponds to the previous Jacobian matrix.

In the accelerating step, as Jacobian’s approximation we use the preconditioner built from
the previous resolution of the Jacobian and we keep that approximation for two acceleration
steps. As already mentioned, we keep only the last 5 residual’s evaluations. We apply the
accelerating step even after the first evaluation of the residual, which means that xnew is equal
to xk, but that the Jacobian is not evaluated for two Newton steps. This choice is arbitrary
and in some cases may be negative. Another choice is to apply the accelerating step only
when there are at least two or three evaluations of the residual. We suggest to verify which
choice fits at best from problem to problem.

5.6.2 Three-dimensional test case

Test case: Pressure wave in a bent cylinder, 100 time iterations (δt = 2 · 10−4). The
discretized fluid domain has 5874 nodes while the interface and the structure have 1056
nodes.
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Figure 5.3: Number of residual evaluations per cycle (= Newton or accelerated).

Algorithm CPU Time Normalized CPU Time
No Prec. 6h16’ 1
Prec. 5h56’ 0.94
Prec. & Acc. 5h31’ 0.88

Table 5.1: CPU time for the FSI-QN 1 approach.

The nested preconditioners applied to the quasi-Newton method to solve the fluid-structure
interaction problem highly reduces the number of GMRES iterations in both experiments (see
figures 5.5 and 5.8). Note that its use reduces the CPU time of only 6 % for the first approx-
imation of the tangent problem (see table 5.1). In this case the evaluation of the Jacobian is
a small computational task in comparison to the evaluation of the residual. Using the nested
preconditioner reduces the CPU time of 29 % in the second tangent problem (see table 5.2).
Here the Jacobian evaluation is more involved, hence saving GMRES iterations has a bigger
impact on the computing time. In contrast, since the number of Newton iteration is highly
reduced (2 or 3 iterations), the accelerated algorithm slows down the computations. In fact,
since the approximate Jacobian J̄ is not precise enough (with respect to the exact one), the
accelerated part of the algorithm is not as efficient as the standard part. Hence the the ad-
ditional cost of the acceleration (i.e., extra residual evaluations see figure5.3) slows down the
computations.

In Figures 5.5 and 5.8 the number of GMRES iterations against the successive Newton
resolutions is shown. At each new time step the stored preconditioners are deleted, hence
the number of GMRES iterations at the first Newton iteration for the “no prec” and the
“prec” approaches are obviously the same. As expected, in both cases the number of Newton
iterations is not reduced.

As shown in Figure 5.2, the acceleration algorithm can be effective when there is at least
a relative number of Newton iterations to be performed. In fact, in the second experiment,
there are only few (2 or 3) Newton iterations at each time step (see figure 5.9). Consequently
the acceleration approach slows down the computations (see table 5.2). On the other hand,
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Figure 5.4: Propagation of a pressure wave in a bent cylinder.

Algorithm CPU Time Normalized CPU Time
No Prec. 12h36’ 1
Prec. 8h57’ 0.71
Prec. & Acc. 9h13’ 0.73

Table 5.2: CPU time for the FSI-QN 2 approach.

in the first experiment the number of Newton iterations to be performed is sufficient for the
accelerated algorithm to show its benefits (see Figure 5.6). In this case the number of genuine
Newton iterations is reduced from 8-9 to 3-4. The CPU time is reduced of another 6 % for a
total gain of 12 %.

To compare these results with a different problem’s size, we have tested the same approach
to a two-dimensional case. We report the results in the next section.

5.6.3 Two-dimensional test case

In this section we show the results of a two-dimensional experiment with the same parameters
for the proposed algorithm considered in the three-dimensional one. The computational
domain is a straight tube, the fluid is modeled by the two-dimensional incompressible Navier–
Stokes equations and the structure by a generalized string model. The discretized fluid domain
has 779 nodes while the interface and the structure have 41 nodes.

The tolerance for the solution of the coupled system is 10−6 and 10−8 respectively, in
order to show the differences when the number of Newton iterations increase.

The results are essentially the same as in three dimensions, except the fact that in this
case the approximated Jacobian FSI-QN 2 is only slightly more expensive than FSI-QN 1
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Figure 5.5: Number of GMRES iterations for FSI-QN 1.
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Figure 5.6: Number of genuine Newton iterations for FSI-QN 1.
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Figure 5.7: Number of functional T evaluations for FSI-QN 1.
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Figure 5.8: Number of GMRES iterations for FSI-QN 2.
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Figure 5.9: Number of genuine Newton iterations for FSI-QN 2.
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Figure 5.10: Number of functional T evaluations for FSI-QN 2.
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and that the improvements of the preconditioner and of the accelerated algorithm in the
FSI-QN 1 case are pronounced (see tables 5.3 and 5.4). Remark also that when using a more
restrictive tolerance, the approximation with FSI-QN 2 and the accelerated algorithm shows
a performance nearer to the FSI-QN 1 case.

As we can see in figures 5.5, 5.8, 5.11-5.14, the benefits of the presented preconditioner
are equivalent in both experiments.

In addition to the tests carried out in the previous section, we consider a mixed use
of the approximate Jacobians FSI-QN 1 and FSI-QN 2. In this case we do not consider the
accelerated algorithm. At each time step, we proceed as follows: At the first Newton iteration,
we solve the tangent problem using FSI-QN 1. Among others, this allows to compute a
preconditioner P1 at low cost. Then at the next Newton iterations we use FSI-QN 2. We
would like to remark that the results in term of number of iteration is the same as when using
only FSI-QN 2, but that the CPU time when the tolerance is smaller (see tables 5.3 and 5.4
and figure 5.14).

For testing purposes, we applied also the FGMRES approach described in section 5.4.5,
where we do not need to nestle the preconditioners. As expected, the number of GMRES
iterations oscillates because when a preconditioner is built with many basis, the GMRES
needs less iterations and the new preconditioner is built with less basis, and vice-versa (see
figure 5.15).

FSI-QN 1 CPU Time GMRES iter. residual eval.
No Prec. 1 = 10’09” 1 = 8158 1 = 1219
Prec. P1 0.78 0.42 1
Nested Prec. 0.77 0.40 1
Prec. & Acc. 0.61 0.21 0.93
FSI-QN 2
No Prec. 1.13=11’20” 0.39 = 3173 0.49 = 600
Nested Prec. 0.88 0.24 0.49
Prec. & Acc. 0.94 0.24 0.64
FSI-QN 1+2
Prec 0.87 0.29 0.64

Table 5.3: Two-dimensional experiment with tolerance 10−6 for 200 time steps. The values
are normalized with respect to the “no prec.” algorithm.

5.7 Conclusion

In this chapter we have dealt with the definition of a dynamic preconditioner to be applied
to a sequence of problems and with the acceleration of a (quasi-)Newton algorithm.

We have shown that the preconditioner is well defined and that its application is straight
forward. A great advantage of the defined preconditioner, is that there is no need to build
the matrix A explicitly. In fact, A represents a generic linear operator, and in the numerical
experiments the corresponding matrix is never built.

We then applied the preconditioner as an approximation of the Jacobian in the acceleration
of the Newton algorithm.
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FSI-QN 1 CPU Time GMRES iter. residual eval.
No Prec. 1 = 16’35” 1 = 14339 1 = 1942
Prec. P1 0.72 0.39 0.98
Nested Prec. 0.70 0.34 0.98
Prec. & Acc. 0.50 0.19 0.79
FSI-QN 2
No Prec. 1.11 = 18’25” 0.39 = 5624 0.41 = 790
Nested Prec. 0.72 0.29 0.41
Prec. & Acc. 0.64 0.15 0.51
FSI-QN 1+2
Prec. 0.65 0.19 0.46

Table 5.4: Two-dimensional experiment with tolerance 10−8 for 200 time steps. The values
are normalized with respect to the “no prec” algorithm.

Both have been tested in two fluid-structure simulations with a gain of up to 29% in CPU
time in a three-dimensional experiment and up to 50% in a three dimensional one.
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Figure 5.11: 2D: Number of GMRES iterations for FSI-QN 1, tolerance 10−6.

prec: QN 1 then QN 2
FSI-QN 1 prec

FSI-QN 1 no prec

Number of gmres iterations for FSI-QN 2

cycles
2520151050

12

10

8

6

4

2

0

Figure 5.12: 2D: Number of GMRES iterations for FSI-QN 2, tolerance 10−6.
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Figure 5.13: 2D: Number of GMRES iterations for FSI-QN 1, tolerance 10−8.
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Figure 5.14: 2D: Number of GMRES iterations for FSI-QN 2, tolerance 10−8.
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CHAPTER 5. PRECONDITIONING OF NEWTON AND QUASI-NEWTON
ALGORITHMS FOR THE SOLUTION OF THE FULLY IMPLICIT PROBLEM
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Figure 5.15: 2D: Comparison between the nested preconditioners and the FGMRES approach.
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Conclusions

In this thesis we addressed the mathematical modeling of blood flow in arterial vessels. The
numerical problem that is generated after space and time discretization of the mathematical
equations is computationally complex. Hence a judicious choice of solution algorithms is
mandatory.

In the first part, we proposed an axisymmetric model for the blood flow in vessels featuring
a symmetry with respect to a straight axis. Moreover, should the angular component of the
data be zero, the three-dimensional problem reduces to a two dimensional one on a half section
of the domain under consideration. With this aim, the integrals in the weak formulation of
the three-dimensional equations are simplified by a change of variable (from Cartesian to
cylindrical coordinates) and integration with respect to the angular coordinate.

In the case of the steady axisymmetric Stokes equations, we formulated a finite element
discretization and shown stability and optimal a priori error estimates. For the unsteady
axisymmetric Navier–Stokes equations in moving domains, we showed stability and provided
a stabilization for the semi-discretized formulation.

In the second part, we described the fluid-structure interaction problem in an abstract
setting that is suited in a broad variety of situations. We reviewed classical fixed-point and
Newton like algorithms and proposed convenient techniques for accelerating the convergence.

On one hand, should the programs for the solution of the fluid and the structure be
originated from independent sources, the use of a relaxed fixed-point iteration strategy is
advisable. In order to choose the relaxation parameter we used the Aitken extrapolation
method. In addition, by using the transpiration boundary conditions technique we strongly
reduced the computational time.

On the other hand, when the codes of the fluid and structure solvers are accessible,
Newton-based methods are generally more effective. Depending upon the specific situation
(strength of the non-linearity, time step constraints, . . . ), it is possible to approximate the
Jacobian by physically inspired less sophisticated models. We proposed an approximation of
the Jacobian (in addition to the exact form and to another approximation already present
in the literature) and a preconditioner to invert the Jacobian, which have the advantage of
being simple and computationally cheap.

Besides, we also proposed to use, at each new time step, a rough approximation of the
Jacobian based on a very simple model at the first Newton iteration in order to build the
preconditioner. Then in the subsequent Newton iterations we use a more appropriate approx-
imation of the Jacobian (or else the exact one) in conjunction with the preconditioner based
on the first Newton iteration. Finally, we exploited a Newton-Krylov technique to provide an
accelerated Newton algorithm.

All the algorithms above have been tested on two and three-dimensional test cases with
a consistent reduction of computational time with respect to the existing algorithms.





Appendix A

Useful properties needed in the
analysis of the axisymmetric Stokes
problem

A.1 Lemmas needed by proposition 1.5.2

In this section we prove some lemmas needed by proposition 1.5.2. For Tk in Th and xkj a
midpoint of Tk not on Γ∪Γ0, define Dk as the union of the three subtriangles of Tk members
of Th/2 which have xkj as a vertex. Let |Dk| be the area of Dk and tk, dk be the weighted
measures of Tk, Dk respectively. Let ϕkj be a basis function of Vh/2 which is one at xkj and
zero at every other node of Th/2.

Lemma A.1.1 There is a scalar ρkj with 9
11 � ρkj <

9
8 , such that∫

Dk

ϕkj rdx =
1
3
dkρkj.

Proof Define x∗ as the radial coordinate of the midpoint between xkj and the vertex of
Tk which is not on the same edge as xkj. Let rkj and r∗ be the radial coordinates of xkj and
x∗ respectively. Define r̄kj and r̃kj as the radial coordinates of

x̄kj =
1
6
(5xkj + x∗kj) and x̃kj =

1
9
(7xkj + 2x∗kj). (A.1)

Notice that ∫
Dk

ϕkj rdx =
1
3
|Dk|x̄kj

and
dk = |Dk|x̃kj.

Let ρ be equal to r̃kj

r̄kj . If 0 < rkj � r∗, then r̄kj < r̃kj (and ρkj � 1) and r∗ � 2rkj. Therefore
r̄kj � rkj and r̃kj � rkj + 2

9r
kj, hence ρkj � rkj/(rkj + 2

9r
kj) = 9

11 .
If 0 < r∗ < rkj, then ρkj > 1 and rkj � 2r∗, therefore r̄kj < rkj and r̃kj >

1
9 (7rkj + 21

2r
kj)

hence ρkj <
9
8 .

�



APPENDIX A. USEFUL PROPERTIES NEEDED IN THE ANALYSIS OF THE
AXISYMMETRIC STOKES PROBLEM

Lemma A.1.2 Let a and b be two vectors in R
2 and note �(a, b) = θ the angle between

them. If θ0 < θ � π − 2θ0 and θ0 � π
3 , then for all c in R

2

|c|2 � 1
sin θ0

2

[(
a · c
|a|

)2

+
(

b · c
|b|

)2
]
.

Proof The minimum of {�(a, c) , �(b, c)} is bigger than π
2 − θ0

2 , hence

max
{
|a · c|
|a| ,

|b · c|
|b|

}
� |c| cos

(
π

2
− θ0

2

)
= |c| sin θ0

2
.

�

Lemma A.1.3 Let (Th)h be a regular family of triangulations. Then there exists a θ0 � π
3

independent of h, such that every couple of sides a and b of any triangle in Th, satisfies the
hypothesis of lemma A.1.2.

Proof Let T be a triangle in Th, note θi, i = 1, 2, 3 its angles and ρT the radius of the
inscribed circle. Since θi < π for i = 1, 2, 3, tan θi

2 � ρT
hT

� σ. Define θ0 as 2 arctan σ. Then
θi � θ0, 3θ0 � θ1 + θ2 + θ3 = π and θ1 = π − θ2 − θ3 � π − 2θ0.

�

Lemma A.1.4 For Tk and Dk defined as before and without the restriction that xkj is not
on Γ ∪ Γ0,

dk

tk
� 3

8
. (A.2)

Proof Divide the triangle Tk into four sub-triangles A1, ..., A4 belonging to Th/2 and
order them such that the first has the smallest weighted measure. Let r1, ..., r4 be the radial
coordinates of the center of gravity of the sub-triangles. The weighted measure of each sub-
triangle is ai = 2πri|Ai|, where |Ai| is the area of Ai. Since dk � 3a1 and the center of gravity
of Tk has its radial component less or equal to 2r1, tk � 2π(2r1)(4|A1|) = 8a1. Therefore

dk

tk
� 3a1

8a1
� 3

8
.

�

A.2 A result on the divergence operator

Here we present the proof of a result in [BDM99]. The proof is based on the same result on
classic three dimensional Sobolev spaces that the reader can find in [GR86]. In this section
we use the notation

X =
{
v ∈ H1

0 (Ω̆)3 : div v = 0 in Ω̆
}
,

M =
{
q ∈ L2(Ω̆) :

∫
Ω̆
q dx = 0

}
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A.2. A RESULT ON THE DIVERGENCE OPERATOR

and let X⊥ be the orthogonal complement of X in H1
0 (Ω̆)3 w.r.t. a(·, ·). Note also

Xa =
{

v ∈ V 1
1�(Ω) ×H1

1�(Ω) : div v +
1
r
vr = 0 in Ω

}
,

Ma =
{
q ∈ L2

1(Ω) :
∫

Ω
q rdx = 0

}
and similarly let X⊥

a be the orthogonal complement of Xa in V 1
1�(Ω) ×H1

1�(Ω) w.r.t. a(·, ·).

Proposition A.2.1 There exists a positive constant c, such that for all p in L2
1(Ω) with∫

Ω rp = 0, there exists a u in V 1
1�(Ω) ×H1

1�(Ω) such that

div u +
1
r
ur = p and ‖u‖V 1

1 (Ω)×H1
1 (Ω) � c‖p‖L2

1(Ω).

Proof Lemma 3.2 in [GR86] states that the divergence operator is an isomorphism from
X⊥ onto M . This implies that for any p in Ma, there is a unique (div−1)p̆ in X⊥ and that
there exists a constant C such that

1
C
‖p̆‖L2(Ω̆) � ‖(div−1)p̆‖H1(Ω̆)3 � C‖p̆‖L2(Ω̆) = C‖p‖L2

1(Ω).

Since the divergence operator is axisymmetric, (div−1)p̆ is axisymmetric. Write (v̆r, v̆θ, v̆z)
for it and define v̆ = (v̆r, 0, v̆z) (and v consequently). Then the norm of v is bounded by the
norm of p, since

‖v‖V 1
1 (Ω)×H1

1 (Ω) = ‖v̆‖H1(Ω̆)3 � ‖(div−1)p̆‖H1(Ω̆)3 � C‖p‖L2
1(Ω),

and div v̆ = p̆ − 1
r∂θv̆θ = p̆, since vθ is axisymmetric, which implies that its derivative in θ is

zero.
This means that div v + 1

rvr = p, which proves proposition A.2.1.
�
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[Bab73] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math.
20 (1972/73), 179–192. MR 50 #11806

[BBD] Z. Belhachmi, C. Bernardi, and S. Deparis, Weighted Clément operator and ap-
plication to the finite element discretization of the axisymmetric Stokes problem,
Submitted to Numer. Math.

[BDM] C. Bernardi, M. Dauge, and Y. Maday, Polynomials in Sobolev spaces, and appli-
cations.

[BDM99] , Spectral methods for axisymmetric domains, Gauthier-Villars, Éditions
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due to Mejdi Azäıez. MR 2000h:65002

[BdV04] H. Beiro da Veiga, On the existence of strong solutions to a coupled fluid-structure
evolution problem, J.Math.Fluid.Mechanics 21-52 (2004).

[BF91] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer-
Verlag, New York, 1991. MR 92d:65187



BIBLIOGRAPHY

[BG98] C. Bernardi and V. Girault, A local regularization operator for triangular and
quadrilateral finite elements, SIAM J. Numer. Anal. 35 (1998), no. 5, 1893–1916.
MR 99g:65107

[BMR04] C. Bernardi, Y. Maday, and F. Rapetti, Discrétisations variationnelles de
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d’interaction fluide-structure, Ph.D. thesis, Univ. Paris 6, 1998.

[GV03] J.-F. Gerbeau and M. Vidrascu, A quasi-Newton algorithm based on a reduced
model for fluid structure problems in blood flows, M2AN 37 (2003), no. 4, 631–
648.

[GVF03] J.-F. Gerbeau, V. Vidrascu, and P. Frey, Fluid-structure interaction in blood flows
on geometries coming from medical imaging, Tech. report, INRIA No 5052, 2003.

[Han94] P. Hansbo, Aspects of conservation in finite element flow computations, Comput.
Methods Appl. Mech. Engrg. 117 (1994), no. 3-4, 423–437. MR 96b:76065

136



BIBLIOGRAPHY

[Hei03] M. Heil, An efficient solver for the fully-coupled solution of large-displacement
fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg.
(2003), In press.

[HMY+93] W. Huffman, R. Melvin, D. Young, F. Johnson, J. Bussoletti, M. Bieterman, and
C. Hilmes, Practical design and optimisation in computational fluids dynamics,
proceedigns of the AIAA 24th Fluid Dynamics Conference, Orlando, Florida,
1993.

[IK94] E. Isaacson and H. B. Keller, Analysis of numerical methods, Dover Publications
Inc., New York, 1994, Corrected reprint of the 1966 original [Wiley, New York;
MR 34 #924]. MR 1 280 462

[IT69] B. Irons and R. Tuck, A version of the Aitken accelerator for computer iteration,
Int. J. Numer. Methods Eng. 1 (1969), 275–277.

[KK03] D. Knoll and D. Keyes, Jacobian-free Newton-Krylov methods: A survey of ap-
proaches and applications, Journal of Computational Physics (2003).

[Kuf80] A. Kufner, Weighted Sobolev spaces, Teubner-Texte zur Mathematik [Teubner
Texts in Mathematics], vol. 31, BSB B. G. Teubner Verlagsgesellschaft, Leipzig,
1980, With German, French and Russian summaries. MR 84e:46029

[Lam04] D. Lamponi, One dimensional models for blood circulation and application to
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