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Abstract

This work is dedicated to the construction of numerical techniques for the models of viscoelastic
�uids that result from polymer kinetic theory. Our main contributions are as follows:

1. Inspired by the interpretation of the Oldroyd B model of dilute polymer solutions as a
suspension of Hookean dumbbells in a Newtonian solvent, we have constructed new numerical
methods for this model that respect some important properties of the underlying di�erential
equations, namely the positive de�niteness of the conformation tensor and an energy estimate.
These methods have been implemented on the basis of a spectral discretization for simple
Couette and Poiseuille planar �ows as well as �ow past a cylinder in a channel. Numerical
experiments con�rm the enhanced stability of our approach.

2. Spectral methods have been designed and implemented for the simulation of mesoscopic
models of polymeric liquids that do not possess closed-form constitutive equations. The meth-
ods are based on the Fokker-Planck equations rather than on the equivalent stochastic di�er-
ential equations. We have considered the FENE dumbbell model of dilute polymer solutions
and the Öttinger reptation model [100] of concentrated polymer solutions. The comparison
with stochastic simulation techniques has been performed in the cases of both homogeneous
�ows and the �ow past a cylinder in a channel. Our method turned out to be more e�cient in
most cases.
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Version Abrégée

L'objectif de ce travail est de contribuer à la construction des méthodes numériques pour la
simulation des écoulements des �uides viscoélastiques en utilisant les modèles délivrés par la
théorie cinétique des polymères. Nos contributions principales sont les suivantes :

1. Inspirés de l'interprétation cinétique du modèle Oldroyd B � une suspension des � haltères �
de Hook dans un solvant Newtonien � nous avons proposé des nouvelles méthodes pour ce
modèle qui respectent certaines propriétés importantes des équations di�érentielles concernées :
la dé�nition positive du tenseur de conformation et l'estimation d'énergie. Ces méthodes ont
été implémentées à l'aide de discrétisations spectrales pour les écoulements planes de Couette
et Poiseuille ainsi que l'écoulement bidimensionnel autour d'un cylindre placé dans un canal.
Des expériences numériques démontrent que nos méthodes sont plus stables que celles utilisant
l'équation constitutive.

2. Nous avons développé et implémenté des méthodes spectrales pour la discretization des mod-
èles mésoscopiques des �uides polymériques qui ne possèdent pas d'équations constitutives. Nos
méthodes sont basées sur les équations de Fokker-Planck plutôt que sur les équations stochas-
tiques di�érentielles équivalentes. Nous avons choisi le modèle des � haltères � FENE pour
les solutions polymériques diluées et le modèle de reptation d'Öttinger [100] pour les solutions
polymériques concentrées. La comparaison avec les techniques stochastiques de simulation a
été faite pour les écoulements homogènes ainsi que pour l'écoulement bidimensionnel autour
d'un cylindre placé dans un canal. Il s'est avéré que nos méthodes sont plus e�caces dans la
plupart des situations.
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Introduction

The main goal of this work is to design more e�cient and more robust numerical techniques
for simulating the �ows of polymeric �uids. The latter belong to the class of viscoelastic �uids,
i.e. �uids possessing a memory of past deformation, which are present in a wide range of ap-
plications e.g. multigrade oils, food processing, biological �uids such as blood. Comprehensive
reviews of the state of the art in modelling polymeric �uids are given in the two volumes of
the textbook Dynamics of Polymeric Liquids by Bird et al. [17, 18], and the recent book by
Owens and Phillips [108] provides an excellent introduction to the numerical techniques used
for the simulation of these models.

Viscoelastic �uids belong to the broad class of non-Newtonian �uids. To be more speci�c
about what we mean by Newtonian and non-Newtonian �uids, let us recall �rst some basic
equations that are valid for any incompressible and isothermal �uid (only such �uids will be
considered in this work). The equations of continuity and linear momentum conservation read

∇ · v = 0, (1)
and

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · σ + ρf , (2)

where v and σ denote, respectively, the velocity and Cauchy stress �elds,ρ is the density of the
�uid and f is an external force (per unit mass) e.g. gravity. The system (1)-(2) is incomplete
and we need an extra equation for the Cauchy stress. The simplest relation for the stress and
the velocity is provided by Newton's hypothesis

σ = −pI + ηs(∇v +∇vT ), (3)

where ηs is a constant viscosity and p is the pressure. Substituting (3) into (2) one obtains the
famous Navier-Stokes equations

ρ

(
∂v

∂t
+ v · ∇v

)
+∇p− ηs∆v = f . (4)

The �uids for which (3) is valid are called Newtonian and water (under normal conditions) is
the most important example of these. However, �uids with more complex microstructure (e.g.
polymer solutions and melts) can exhibit speci�c features such as shear-thinning, non-zero
normal stress di�erences in shear �ows and memory e�ects, that cannot be explained by the
Newtonian theory. One must then abandon the hypothesis (3) and use instead some other
constitutive relation for the stress tensor that is usually much more complicated.

Constitutive models for polymeric �uids can be constructed on two di�erent levels: con-
tinuum mechanics [17] and kinetic theory [18]. Continuum mechanics attempts to provide

1



2 Introduction

macroscopic equations of state (usually referred to as constitutive equations) that are founded
empirically or microscopically. The simplest examples of constitutive equations are general-
izations of the Newtonian law (3) with a viscosity dependent on the velocity gradient. More
involved constitutive equations for viscoelastic �uids are usually di�erential equations or in-
tegral equations along the particle paths. Some of the best known examples are the class
of Oldroyd models [97] with the special case of Maxwell models. The �rst numerical simu-
lations for non-trivial geometries using closed-form constitutive equations were performed at
the end of the 1970's. Then the so-calledHigh Weissenberg Numerical Problem made its �rst
appearance. This problem consists in the breakdown of any numerical method as the Weis-
senberg number, which is a non-dimensional measure of elasticity of the �uid, is increased and
is probably related to the ill-possedness of the governing equations under high Weissenberg
numbers. Indeed, existence and uniqueness results are usually known only for su�ciently low
Weissenberg numbers (see, for example, [7] for a review).

Polymer kinetic theory attempts to understand the polymer dynamics by starting from a
coarse-grained description of polymer chains by representing them as e.g. chains of springs
or rods. Statistical mechanics then provides a partial di�erential equation (PDE) known as
the di�usion equation or the Fokker-Planck (FP) equation for the probability density of the
microstructural quantities and the stress is obtained as the mean of some function of these
quantities. In comparison with the continuum mechanics approach, the kinetic theory gives
researchers more freedom and �exibility in incorporating their knowledge and intuition into the
models, and this in turn should give rise to better predictions of complex behavior of polymeric
�uids.

In some cases, one can derive a macroscopic constitutive equations for the stress starting
from the kinetic theory model. The best known example is the interpretation of the Oldroyd
B model as a suspension of Hookean dumbbells, i.e. two beads connected by a linear spring.
In the present thesis (Chapter 3) we use this equivalence to construct some new numerical
methods that are proved to be more stable than the traditional methods, which discretize
directly the macroscopic constitutive equation.

In general, however, it is impossible to derive a closed-form constitutive equation for the
stress, which is equivalent to a kinetic theory model, and this fact may make kinetic models
very complicated for analytical and numerical investigation. One is therefore led to construct
e�cient numerical techniques to simulate �ows using models for which no constitutive equation
exists. The most popular way is to use the equivalence existing between FP equations and
stochastic di�erential equations. One can then start from the stochastic di�erential equation,
introduce a large number of pseudo-random realizations of microstructural quantities and solve
a PDE for each of them that can be discretized by �nite elements or any other numerical
technique (micro-macro or CONNFFESSIT approach [99]). All this must be coupled with the
momentum and continuity equations for the velocity and pressure. It is easy to see that such
a technique is extremely expensive, even in one of its most e�cient versions, the Brownian
con�guration �elds method [64].

One can try to alleviate the three main disadvantages of the Brownian con�guration �elds
method, which are large CPU cost, huge memory requirements and the presence of statistical
noise in the computed elastic extra-stress, by solving directly the FP equation for the proba-
bility density instead of the stochastic di�erential equation. A review of the literature reveals
that very little has been done in order to advocate this approach, mainly due to the lack of e�-
cient numerical techniques to solve the FP equation. In the pioneering work of Warner in 1972
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[132] the FP equation was used to solve the steady-state shearing �ow and small-amplitude
oscillatory shearing �ow of a FENE �uid. It was only thirteen years later, in 1985, that Fan
[43] improved the original idea of Warner by requiring that the probability density function
be smooth at the origin, leading to more accurate results. In [44] the method was extended
to encapsulated dumbbells. The dilute multibead-rod model was the model of choice of Fan
in 1989 in a series of two papers [45, 46]. The second paper is, to our knowledge, the �rst
attempt in the published literature to use the FP equation for �ows in complex geometries. In
recent work by a group in MIT [2], the start-up of steady shear �ow for dilute solutions of rigid
rod-like macromolecules was also treated with the FP equation using Daubechies wavelets for
the discretization in con�guration space. In [96], this method was used to simulate the dy-
namics of both the rigid dumbbell model and the Doi model for liquid crystalline polymers in
a complex �ow environment (see also [125]). In the present thesis, we introduce some fast nu-
merical methods for the FP equations for some models of dilute (Chapter 4) and concentrated
(Chapter 5) polymer solutions and compare them with stochastic simulations. It turns out
that FP-based methods can be signi�cantly more e�cient than their stochastic counterparts
for models with low-dimensional con�guration space.

To date, most numerical simulations of viscoelastic �ows have been performed using �nite
di�erence, �nite volume and �nite element methods for the discretization in physical space.
However, spectral and pseudospectral methods have, since 1987, also enjoyed extensive (and
largely successful) use in solving smooth viscoelastic �ow problems, most notably through the
e�orts of research groups at Delaware [4, 5, 10, 11, 13, 117, 118, 119, 127] and Aberystwyth
[35, 55, 104, 105, 107, 121, 122]. In this thesis, we use a variant of pseudospectral methods
called the spectral element method as implemented by Chauvière and Owens in [33] including a
special treatment of the hyperbolic constitutive equation (a combination of streamline upwind
Petrov/Galerkin method and element-by-element approach).

The outline of this thesis is as follows:

• In Chapter 1, we present the models for polymeric liquids used in this work. We start with
a description of dumbbell models for dilute polymer solutions and related constitutive
equations. We then present brie�y some models suitable for describing concentrated
polymer solutions and conclude the chapter with an introduction to stochastic simulation
techniques. All the material of this chapter is well-known and we follow in its presentation
the textbooks [18], [99] and [108]. However, in contrast to [18] and following [42, 15,
16, 116], special attention is paid here to the proper formulation of the model in non-
homogeneous �ows.

• Chapter 2 is also of introductory character. We introduce spectral methods; these be-
ing our principal numerical tools. The basic facts about orthogonal polynomials and
quadrature formulas are borrowed from [26]. We also give some details about the im-
plementation of a spectral element method for the Oldroyd B model with the special
treatment of the constitutive equation, following [33], and some numerical examples for
the start-up Couette �ow of an Oldroyd B �uid from [84].

• The presentation of our main results begins in Chapter 3. We consider models of dilute
polymer solutions (Oldroyd B [97] and FENE-P [112]) having constitutive equations but
regarded from the viewpoint of kinetic theory. This viewpoint enables us to construct
some new numerical methods that are more robust than their conventional counterparts
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and prove some theoretical results. The results of this chapter have been published in
[29] and [82].

• In Chapter 4 we turn our attention to the models that do not possess the closed-form
constitutive equations. We consider here the FENE dumbbell model for the dilute poly-
mer solutions and give a description of FP-based numerical methods for its simulation.
We compare FP-based simulation with the stochastic ones in terms of CPU cost and ac-
curacy. The last section of this chapter is devoted to numerical simulations of a strongly
non-homogeneous �ow of a FENE �uid in a narrow channel. The results of this chapter
have been published in [30], [31], [80] and submitted for publication in [83].

• Chapter 5 contains results of a similar nature to those of the preceding chapter, but con-
centrated polymer solutions and melts are considered here. We have chosen a reptation
model by Öttinger [100] for our numerical simulations and we present some modi�cations
of this model that allow us to achieve better agreement with the experimental data. The
results of this chapter have been published for the most part in [81]. The modi�cation
of the Öttinger model is a part of the submitted article [50].

Finally, we conclude with a summary of our results and a description of some outstanding
issues.



Chapter 1

Modelling polymeric liquids

1.1 Dumbbell models for dilute polymer solutions

1.1.1 The Fokker-Planck equation
Many of the interesting properties of dilute polymer solutions can be understood by modelling
them as suspensions of simple coarse-grained objects (e.g. dumbbells1) in a Newtonian liquid.
A schematic diagram of a dumbbell is given in Fig. 1.1 and shows two beads, each of mass

q1

q2

q3

q(t)

Figure 1.1: Representation of polymer molecules by dumbbells.

m joined by a massless nonlinear spring. We denote the position vectors of the two beads
relative to some �xed origin by r1 and r2, and q = r2−r1 and x = 1

2
(r1 + r2) therefore denote,

respectively, a dumbbell end-to-end vector and the position vector of the dumbbell's centre
of mass. Neglecting acceleration terms, and in the absence of external forces, a force balance

1Much more complicated objects, e.g. chains of springs or rods, can be used to render the model more
realistic, see [18].

5



6 CHAPTER 1. MODELLING POLYMERIC LIQUIDS

equation for the beads yields

ζ

(
dr1

dt
− v(r1)

)
= B1 − F(r1 − r2), (1.1)

ζ

(
dr2

dt
− v(r2)

)
= B2 − F(r2 − r1), (1.2)

where ζ is a friction coe�cient and v(ri) (i = 1, 2) denotes the solvent velocity at the point
with position vector ri. In (1.1) and (1.2) Bi denotes the Brownian force acting on bead i and
F the intermolecular spring force.

The simplest law for the spring force used in the polymer science is the Hookean one:

F(q) = Hq (1.3)

where H is a spring constant. This law is very attractive mathematically since it allows one to
develop a closed-form constitutive equation for the elastic extra-stress (see Section1.1.5 below)
and it is suitable for modelling certain classes of polymeric �uids (Boger �uids). However, it is
limited essentially to slow to moderately fast �ows since at high �ow rate and in extensional
�ow the dumbbells can extend in length unboundedly, which is certainly not physical. This
problem can be cured by incorporating a maximum extensibility into the force law. This is done
in another popular model introduced by Warner [132] and known as the Finitely Extensible
Non-linear Elastic (FENE) model:

F(q) =
Hq

1− |q|2/Q2
max

, (1.4)

where Qmax is the maximum length of the spring .
Let us introduce the phase-space distribution functionf(r1, r2, ṙ1, ṙ2, t), de�ned to be such

that f(r1, r2, ṙ1, ṙ2, t) dr1dr2dṙ1dṙ2 is the expected number of dumbbells at time t having
bead positions and velocities in the di�erential boxes [ri, ri + dri] and [ṙi, ṙi + dṙi] (i = 1, 2),
respectively. Then, de�ning a con�guration distribution functionψ12(t, r1, r2) as the marginal
distribution

ψ12(t, r1, r2) =

∫

ṙ1,ṙ2

f(r1, r2, ṙ1, ṙ2, t) dṙ1dṙ2, (1.5)

it may be shown (see [18], for example), that the equation of continuity forψ is

∂ψ12

∂t
= − ∂

∂r1

· [¿ ṙ1 À ψ]− ∂

∂r2

· [¿ ṙ2 À ψ] , (1.6)

where the average¿ · À over velocity space for a quantityA is de�ned by

¿ A À=
1

ψ

∫

ṙ1,ṙ2

Af(r1, r2, ṙ1, ṙ2, t) dṙ1dṙ2. (1.7)

By taking the velocity-space average of (1.1)-(1.2) throughout we get

ζ

(
¿ dr1

dt
À −v(r1)

)
= ¿ B1 À −F(r1 − r2), (1.8)

ζ

(
¿ dr2

dt
À −v(r2)

)
= ¿ B2 À −F(r2 − r1), (1.9)
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and, assuming equilibration in momentum space (Maxwellian velocity distribution), the sta-
tistically averaged Brownian force¿ Bi À (i = 1, 2) may be written

¿ Bi À= − 1

ψ

∂

∂ri

· [¿ m(ṙi − v)(ṙi − v) À ψ] = −kT
∂

∂ri

ln ψ. (1.10)

Thus, from (1.6) and (1.8)-(1.9) we may write down the non-homogeneous FP equation

∂ψ12

∂t
= − ∂

∂r1

·
[
v(r1)ψ

12 − 1

ζ
F(r1 − r2)ψ

12

]

− ∂

∂r2

·
[
v(r2)ψ

12 − 1

ζ
F(r2 − r1)ψ

12

]
+

kT

ζ

∂2ψ12

∂r2
1

+
kT

ζ

∂2ψ12

∂r2
2

, (1.11)

or, in terms of the independent variablesx and q, and de�ning

ψc(t,x,q) = ψ12(t,x− q/2,x + q/2) :

∂ψc

∂t
=

∂

∂q
·
(

2kT

ζ

∂ψc

∂q
+

2ψcF(q)

ζ
− [v(x + q/2)− v(x− q/2)]ψc

)

+
∂

∂x
·
(

kT

2ζ

∂ψc

∂x
− v(x− q/2) + v(x + q/2)

2
ψc

)
. (1.12)

1.1.2 Stress tensor
Taking an arbitrary surface in the dumbbell solution we consider the contribution to the elastic
stress tensor at a point P with position vector r due to (a) the spring tension in dumbbells
straddling the surface at P and (b) changes in momentum brought about by beads passing
through the surface at P . Thus, denoting the total Cauchy stress tensor at P at time t by
σ(r, t) we decompose σ into the sum

σ = σS + σC + σK , (1.13)

where σS denotes the solvent contribution,σC the spring tension contribution andσK the bead
motion contribution. The expressions for all these contributions in the homogeneous �ow case
can be found in the book of Bird et al. [18]. We use their extensions to the non-homogeneous
�ow case developed by Biller and Petruccione [16, 116]:

σS = −pI + ηs(∇v+∇vT ), (1.14)

σC(t, r) =

∫ ∫ 1

s=0

qF(q)ψc(t, r + (s− 1/2)q,q) ds dq, (1.15)

and
σK(t, r) = −2n(t, r)kT I, (1.16)

where
n(t, r) =

∫
ψc(t, r + q/2,q) dq (1.17)
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Figure 1.2: Computation of σC .

is the polymer number density. In writing the integrals appearing in (1.15) and (1.17) we
assume that ψc is set to zero for �forbidden� con�gurations i.e., those that mean that a bead
leaves the �ow domain. The integration with respect to q can be thus performed over the
whole of Rd.

In (1.14) p is a pressure contribution from the solvent, ηs is the solvent viscosity and γ̇ is
the rate-of-strain tensor ∇v +∇vT . (1.17) takes into account our assumption that the mass
is concentrated at the beads of the dumbbells. (1.15) is slightly di�erent from the equivalent
formula of Bird et al. (see Eq.(13.3-5) of [18]) and takes account of the fact that ψc depends
upon x. As shown in Fig. 1.2, as the parameter s varies from 0 to 1 all dumbbells having
end-to-end vector q and straddling the line at the point with position vectorr are accounted
for: from those with bead �2� having position vectorr (s = 0) to those with bead �1� lying on
the line (s = 1). If n is a unit normal vector to the line then q · nψ(r + (s − 1/2)q,q, t)ds
is the expected number of dumbbells with end-to-end vectorq whose centres of mass lie in a
parallelogram of unit length, of heightq ·nds and located at a distance (s− 1/2)q ·n from the
line.

As in [18] the bead motion contribution σK gives rise to an extra pressure term where
equilibration in momentum space has been assumed in the derivation of (1.16).

1.1.3 Homogeneous �ows
Let us consider homogeneous �ows, i.e. �ows with prescribed velocity �eld of the form

v(x) = κ(x− x0) + v0 (1.18)

where κ is a traceless matrix that can depend on time but does not depend onx and x0 is
some reference point. In such a �ow, the FP equation (1.12) reduces to

∂ψc

∂t
=

∂

∂q
·
(
−κqψc +

2kT

ζ

∂ψc

∂q
+

2ψcF(q)

ζ

)
(1.19)
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and has a solution ψc(t,q) independent of x. It is easy to see by integrating (1.19) over
con�guration space that the integral

∫
ψc(t,q) dq is conserved. In view of (1.17), it means

that the polymer number density is constant. The polymer number density will be denoted
from now on by np.

In order to rewrite the FP equation in a more conventional and convenient form, we non-
dimensionalize q as q/l0, where l0 =

√
kT/H is a characteristic microscopic length scale

(characteristic dumbbell size2) and introduce a characteristic relaxation timeλ = ζ/4H. The
non-dimensional force laws looks like:

F(q) = q, (1.20)

for Hookean dumbbells and
F(q) =

q

1− |q|2/b, (1.21)

for FENE dumbbells with the non-dimensional extensibility parameterb = Q2
max/l

2
0. We also

normalize the con�guration distribution functionψc by np in order to obtain the probability
density function (pdf) ψ, for which we have

∫
ψ(t,q)dq =1. (1.22)

In this notation, the FP equation (1.19) takes the form

∂ψ

∂t
=

∂

∂q
·
(
−κqψ +

1

2λ

∂ψ

∂q
+

1

2λ
F(q)ψ

)
(1.23)

and (1.15) can be rewritten as

σC(t) = npkT

∫
qF(q)ψ(t,q) dq. (1.24)

The bead motion contribution to the stressσK is constant and equal to −2npkT I.
Let us consider now several important special cases.

1. Equilibrium solution
We put κ = 0 so that the velocity is constant everywhere. The FP equation (1.23) then has the
steady-state equilibrium solution ψeq, which satis�es for any isotropic force law, the equation

∂ψeq

∂q
+ F(q)ψeq = 0. (1.25)

In particular, we have for Hookean dumbbells

ψeq = C exp

(
−|q|

2

2

)
,

2Strictly speaking, l20d is the expectation of |q|2 for zero velocity equilibrium distribution in the d-
dimensional Hookean dumbbell model, since the corresponding con�guration distribution function is given
by ψ = C exp(−|q|2/2l20).
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and for FENE dumbbells
ψeq = C

(
1− |q|2

b

)b/2

,

where C are some normalization constants. By substituting ψ = ψeq into (1.25) and using
(1.24), we obtain that σC + σK = −npkT I at equilibrium.

In general situation of non-zero velocity it is customary to incorporate the equilibrium
polymeric contribution to the stress (−npkT I) to the pressure term (adding a constant to the
pressure does not change the dynamics of an incompressible �uid) and to combine the rest of
σK and σC into the tensor τ :

τ (t) = npkT

(
−I +

∫
qF(q)ψ(t,q) dq

)
, (1.26)

which can be called the elastic extra-stress. Equation (1.26) is known as the Kramers expres-
sion.

2. Steady state shear �ow
Let the velocity gradient κ be set to

κ =
·
γAs with As =




0 1 0
0 0 0
0 0 0


 .

Such a �ow is known as steady-state shear �ow and ·
γ is called the shear rate. The stationary

solution of (1.23) cannot be found analytically for a general force law in this case, but it is
relatively easy to construct a �rst-order approximation in the limit of small ·γ (�13.5 of [18]).
To see this, we represent the pdf asψ = ψeq(1+λ

·
γψ1 +O((λ

·
γ)2), substitute it into (1.23) and

take into account (1.25) to obtain the equation for ψ1

∂

∂q
·
(

ψeq

∂ψ1

∂q

)
= 2

∂

∂q
· (Asqψeq

)

that has solutions ψ1 = As : qq. By substituting ψ = ψeq(1 + λ
·
γψ1 + O((λ

·
γ)2) into (1.26), we

obtain the expression for the shear stress3

τxy=λ
·
γ

{
npkT , for Hookean dumbbells,
npkT b

b+d+2
+ O((λ

·
γ)3), for d-dimensional FENE dumbbells.

We recall that the coe�cient of proportionality between the viscous shear stress and the shear
rate in the Newtonian �uids is called the viscosity of the �uid. By analogy, we term the
coe�cient of proportionality between the elastic extra-stress and the shear-rate in polymeric
liquids at small shear rates as the polymeric viscosity and denote it byηp. Using this notation,
the formula for τ can be rewritten for Hookean dumbbells as

τ (t) =
ηp

λ

(
−I +

∫
qqψ(t,q) dq

)
(1.27)

3Note that this expression is exact for Hookean dumbbells as it can be most easily seen from the equivalent
Oldroyd B constitutive equation in Section 1.1.5 below.
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and for FENE dumbbells as

τ (t) =
ηp

λ

(
b + d + 2

b

)(
−I +

∫
qq

1− |q|2/bψ(t,q) dq

)
.

Taking into account the second term in the expansion ofψ in powers of λ
·
γ, one can show

that there are non-zero normal stress di�erences τxx − τ yy and τ yy − τ zz. This phenomenon is
one of characteristic features of non-linear viscoelastic �uids.

3. Extensional �ows
Two other important special cases are planar extensional �ow with the velocity gradient

κ =
·
ε




1 0 0
0 -1 0
0 0 0


 . (1.28)

and uniaxial extensional �ow with the velocity gradient

κ =
·
ε



−1

2
0 0

0 −1
2

0
0 0 1


 . (1.29)

In both cases, ·
ε is called the extensional rate. The FP equation (1.23) has a steady-state

analytical solution for both types of extensional �ows (and more generally for any symmetric
matrix κ). This solution is given by formula (13.2-14) in [18] and has the form

ψ = C

(
1− |q|2

b

)b/2

exp(λκ : qq) (1.30)

where C is some normalization constant.

1.1.4 Local homogeneity assumption
Let us return to the general situation of a non-homogeneous velocity �eld and adopt the local
homogeneity assumption: the velocity v and the con�guration density ψc are linear on the
length scale of the dumbbell. More precisely, l20[∂

2v/∂x2] ¿ [v] and l20[∂
2ψc/∂x2] ¿ [ψc]

where the brackets [·] denote the characteristic value of the corresponding quantity. After the
non-dimensionalization of q and the introduction of the relaxation timeλ, as in the preceding
section, the FP equation (1.12) takes the form

∂ψc

∂t
+

v(x− q/2) + v(x + q/2)

2
· ∂ψc

∂x
=

∂

∂q
·
(

1

2λ

∂ψc

∂q
+

1

2λ
F(q)ψc − [v(x + q/2)− v(x− q/2)]ψc

)
+

l20
8λ

∂

∂x
· ∂ψc

∂x
.(1.31)

Using the Taylor expansion of the velocity in the vicinity ofx and neglecting the second-order
derivatives of v and ψc multiplied by l20 in accordance with the local homogeneity assumption,
we can simplify (1.31) as

Dψ

Dt
=

∂

∂q
·
(
−∇v.qψ +

1

2λ

∂ψ

∂q
+

1

2λ
F(q)ψ

)
(1.32)
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where
D

Dt
=

∂

∂t
+ v(x) · ∂

∂x

is the material derivative and∇v is the velocity gradient: ∇vij = ∂vi/∂xj. From now on, we
drop the superscript c in ψc for the reasons explained in the next paragraph.

The formulas for the stress and the polymer number density can be also simpli�ed under
the local homogeneity assumption. Indeed, expanding (1.17) as a Taylor series, we get

n(t, r) =

∫
ψ(t, r,q)dq +

∫
l0

∂ψ

∂x
(t, r,q) · q

2
dq +

∫
l20

∂

∂x

∂

∂x
ψ(t, r + θq,q) :

q

2

q

2
dq

(θ ∈ [0, 1]). The �rst-order term here is zero due to the symmetry ofψ if the boundary e�ects
are not taken into account. The second-order term can be neglected by the local homogeneity
assumption. Hence, we obtain

n(t, r) =

∫
ψ(t, r,q) dq

and we can see from (1.32) that the polymer number density is conserved. As in the homoge-
neous �ow case, we denote the constant polymer number density bynp, normalize ψ by (1.22)
and term it the probability density function. By simplifying in the analogous way, the formulas
for the stress, we can recover the Kramers expression (1.26) for the elastic extra-stress. The
FP equation (1.32) can be now regarded as an equation for the pdf. It is the same as the FP
equation (1.19) of the homogeneous �ow case, but the derivative in time is now understood as
the material derivative.

To evaluate the validity of the local homogeneity assumption, we consider the characteristic
macroscopic length L. The quantities l20[∂

2v/∂x2]/[v] and l20[∂
2ψc/∂x2]/[ψc] can be estimated

in the bulk as l20/L
2. In common situations this ratio is indeed negligibly small. For example,

it has been estimated interpreted by Bhave et al. [15] to be from O(10−9) to O(10−7) when
L ≈ 1 cm. Therefore, the principal di�erence between stress and number density predictions
based on the solution to (1.31) and (1.32) are to be seen in thin boundary layers. This is
unsurprising since it is precisely near physical boundaries that a dumbbell is restricted in the
con�gurations that it may adopt and the usual homogeneous �ow assumption is most easily
seen to be violated. The local homogeneity assumption can thus be advocated for most polymer
�ows, where macroscopic length scale is much greater than the typical molecule length. We
recall that El-Kareh and Leal [42] expressed the hope that introducing di�usion in physical
space could increase the stability of numerical methods, however small the di�usivity coe�cient
was. However, numerical experiments [127] reveal that for stabilization one needs much larger
di�usivity coe�cients than those predicted by the kinetic theory. In the last section of Chapter
4 we shall describe a simulation of a �ow in a very narrow channel, in which (l0/L)2 is not
negligible.

Let us summarize the mathematical model under the local homogeneity assumption. The
total Cauchy stress is σ = −pI + ηs(∇v+∇vT )+τ where τ should be calculated by (1.26).
Substituting this expression forσ into (2) we obtain the equation for the velocity and pressure

ρ

(
∂v

∂t
+ v · ∇v

)
− ηs∆v +∇p = ∇ · τ + f . (1.33)
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Equations (1), (1.33) and (1.32) form a complete system that should be supplied by the bound-
ary and initial conditions. We choose Dirichlet boundary condition for the velocity

v|Γ = g, (1.34)

where Γ is the boundary of Ω. Due to the hyperbolic nature (in physical space) of the FP
equation (1.32), the pdf ψ should be prescribed only on the in�ow part of the boundary

Γin = {x ∈ Γ : v(x) · n(x) < 0}, (1.35)

where n is the outward normal unit vector, so that

ψ|Γin
= ψin. (1.36)

The initial conditions for ψ are
ψ(0,x) = ψ0(x). (1.37)

If ρ > 0 we should additionally supply the initial condition for the velocity

v(0,x) = v0(x). (1.38)

1.1.5 Constitutive equations
As already mentioned, the Hookean dumbbell model (under the local homogeneity assumption)
allows one to develop a closed form constitutive equation for the elastic extra-stress. To see
this we multiply (1.32) by qiqj and integrate it over con�guration space

D

Dt

∫
qiqjψdq =

∫
qiqj

∂

∂qk

(
−∂vk

∂ql

qlψ +
1

2λ

∂ψ

∂qk

+
1

2λ
qkψ

)
dq

where summation is assumed over repeated indices. We then use integration by parts to obtain

D

Dt

∫
qiqjψdq− ∂vi

∂ql

∫
qlqjψdq− ∂vj

∂ql

∫
qiqlψdq+

1

λ

∫
qiqjψdq = − 1

2λ

∫ (
∂ψ

∂qi

qj +
∂ψ

∂qj

qi

)
dq.

Integrating by parts again on the right-hand side and using the normalization (1.22), we get

D

Dt

∫
qiqjψdq− ∂vi

∂ql

∫
qlqjψdq− ∂vj

∂ql

∫
qiqlψdq +

1

λ

∫
qiqjψdq =

1

λ
δij.

Denoting
τ ′ =

ηp

λ

∫
qqψdq (1.39)

(τ ′ is known as the conformation tensor), we can rewrite the last equation in the compact
tensor notation as

τ ′ + λ
∇
τ ′ =

ηp

λ
I, (1.40)

where the notation ∇· stands for the upper-convected derivative de�ned by

∇
τ=

Dτ

Dt
−∇vτ − τ∇vT .
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We see from (1.27) that τ = τ ′− ηp

λ
I and note that

∇
I = −(∇v +∇vT ) to obtain the equation

for τ :
τ + λ

∇
τ = ηp(∇v +∇vT ). (1.41)

Equation (1.41) is known as the Oldroyd B equation. It was derived originally from continuum
mechanics considerations [97].

The Oldroyd B model can be thus summarized as follows: it consists of 3 equations (1),
(1.33) and (1.41) forming a complete system that should be supplied with boundary and initial
conditions. We choose Dirichlet boundary condition for the velocity (1.34) and initial condition
(1.38) if ρ > 0. Due to the hyperbolic nature of (1.41), the elastic extra-stress τ should be
prescribed only on the in�ow part of the boundary (1.35) so that

τ |Γin
= ϕ. (1.42)

The initial conditions for τ are
τ (0,x) = τ 0(x). (1.43)

It is impossible to derive a closed-form equation for FENE dumbbells. There exist, however,
several approximations to this law that have such a closure. The most popular among them
is the FENE-P model by Peterlin [112] which is based on a pre-averaging of the FENE spring
force, so that in non-dimensional form we have

F(q) =
q

1− 〈|q|2〉 /b, (1.44)

where 〈·〉 =
∫ ·dq. In the same way as in deriving the Oldroyd B model, we then get the

equation for the conformation tensorA = 〈qq〉:
A

1− trA/b
+ λ

∇
A = I. (1.45)

By calculating the �rst order term of the shear stress in shear �ows with smallλ ·
γ one can

show that the polymeric viscosity should be de�ned for the FENE-P model asηp = npkTλ b
b+d

.
Using this notation, the formula (1.26) for the elastic extra-stress τ can be written as

τ =
ηp

λ

(
b + d

b

)(
−I +

A

1− trA/b

)
. (1.46)

A detailed comparison of the FENE and FENE-P dumbbell models can be found in [60].
Among more recent and more accurate approximations we cite the FENE-L and FENE-LS
models introduced in [124, 77] that, unlike the FENE-P approximation, capture properly the
hysteretic behaviour of dilute polymer solutions in relaxation following extensional �ow.

1.2 Concentrated polymer solutions and melts
In this section, we sketch some ideas used to model concentrated solutions and melts of linear
polymers. By concentrated polymer solutions we are referring to those solutions of polymers
where faithful constitutive modelling requires that interactions between polymers be taken into
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account. Such systems are also known as entangled. The best known coarse-grained description
of this interaction is provided by so-called reptation models, originally introduced to the �eld of
polymer melts by de Gennes [36] and extended by Doi and Edwards in three landmark papers
of the late 1970's [38, 39, 40]. The main physical phenomenon that is captured in this theory
is that the motion of a polymer molecule perpendicular to its backbone is strongly reduced by
the surrounding polymers, so that one can assume that a polymer molecule moves (reptates)
through a tube whose surface is formed by the surrounding polymers. An important feature of
such a movement is the separation of time scales for changing the orientation and stretching
of polymers. The stretch of polymer chains relaxes quickly after a deformation on a time scale
(Rouse time) comparable to that of an unentangled polymer. Changes in orientation are much
slower. Indeed, the relaxation of orientation can only proceed via di�usion of the chain out
of the tube. When the chain reptates out of the tube, a new tube segment is created at this
location. At the other side of the chain a part of the tube disappears. The corresponding time
scale is known as the reptation or disengagement timeτ d.

Mathematically, the direction of a particular tube segment is described by a unit vectoru.
A parameter s ∈ [0, 1] indicates which segment of a polymer chain is in the tube segment with
orientation u, so that s = 0 and s = 1 correspond to the head and tail, respectively, of the
polymer chain. In accordance with the reptation picture, whens = 0 or 1, a new completely
random orientation u is created. Otherwise the orientation vectors u are convected with the
�ow. To simplify the analytical investigation, the so called Independent Alignment Assumption
(IAA), was introduced in the Doi-Edwards (DE) model, according to which each tube segment
deforms independently. Furthermore, the polymer molecules in the original DE model are
assumed to retract instantaneously back to their equilibrium length after deformation, so that
the Rouse time is set e�ectively to zero. This reptation picture gives rise to the FP equation
for the pdf ψ(t,u, s), where ψduds is the joint probability that at time t a tube segment has
associated orientation vector in the interval [u,u + du] and contains the part of the polymer
chain labelled in the interval [s, s+ds]. In a homogeneous �ow with the FP equation is velocity
gradient κ

∂ψ

∂t
= − ∂

∂u
· [(I− uu) · κ · uψ] +

1

π2τ d

∂2ψ

∂s2

with the boundary conditions at s = 0 and s = 1

ψ(t,u, s) =
1

4π
δ(|u| − 1), s = 0, 1.

The elastic extra-stress is then proportional to the average ofuu.
Although the predictions of the DE model are in good agreement with experimental data

for shear �ows at low shear rates, it has some unrealistic features. The best known of these is
the prediction of excessive shear-thinning in fast steady shear �ows. As explained in numerous
papers (see, for example, [92, 49, 114]) this particular weakness is not overcome by building in a
non-zero Rouse time and thus allowing tube stretch: the polymers simply end up by orientating
themselves along the �ow direction and the drag on them is reduced as a consequence. The
crucial di�erence between modern reptation theory and that of Doi and Edwards lies elsewhere:
for su�ciently fast �ows proper account is taken in these models of a release of constraints by
motion of the members of the matrix that forms the tube around a given polymer chain. Thus
the polymer is far freer to relax than would be the case by reptation alone. This convective
constraint release (CCR) mechanism suppresses the tendency of polymer chains to align with a
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shear �ow and occurs when polymers of the surrounding matrix move faster than the polymer
chain within is able to relax i.e. for shear rates γ̇ > τ−1

d . Modern reptation theories that
include these phenomena and avoid IAA are, among others, the models by Marrucci [88],
Ianniruberto and Marrucci [66], Hua and Schieber [61, 62, 63], Mead, Larson and Doi [92]
and a thermodynamically admissible reptation model by Öttinger [100]. The latter model was
proposed in two versions: a �uniform� model where the chain contour labels was unin�uenced
by the �ow �eld so that only uniform stretching of the chain could occur, and a �tuned� model
where s was rescaled by the total tube stretching rate. The possibility for anisotropic tube
cross sections was also included in the original model. However, following Fang et al. [49], we
will consider only the �uniform� variant of the model without anisotropic tube cross sections.
Such a model will be termed the simpli�ed uniform (SU) model.

Fang et al. [49] have performed an extensive comparative study of the Hua-Schieber model,
the Mead-Larson-Doi (MLD) model and the SU model in various transient and steady shear
and extensional �ows. The predictions of this model have been by compared with experimental
results for a solution of polystyrene in tricresyl phosphate [72]. In shear �ows the three reptation
models were seen to manifest similar behaviour in many cases and the SU model was able to
capture, at least qualitatively, real polymer behaviour. A more detailed description of the DE,
MLD and SU reptation models will be given in Chapter 5.

An alternative approach to modelling concentrated solutions is the encapsulated dumbbell
model of Bird and Deaguiar [19], which is an extension of the dumbbell model, described in
the previous section, and usually used for dilute polymer solutions. Their model includes an
anisotropic friction tensor to simulate the restriction on motion in a direction perpendicular
to the backbone of a polymer chain. In a recent paper [50] it was shown how CCR and other
relaxation mechanisms could be added to this model to produce very good agreement with
experimental data both for shear and extensional �ows.

1.3 Stochastic simulations
As we have seen in the preceding sections, many kinetic theory models for polymeric liquids
in homogeneous �ows can be mathematically formulated in terms of FP equations for the
probability density function ψ(t,q)

∂ψ

∂t
+

∂

∂q
· (A(t,q)ψ) =

1

2

∂

∂q

∂

∂q
: (D(t,q)ψ), (1.47)

where q is a d-dimensional vector that describes the coarse-grained microstructure,A(t,q) is a
d-dimensional vector (the drift term) that de�nes the deterministic contribution to the model,
and D(t,q) is a symmetric positive-de�nite d × d matrix known as the di�usion tensor that
de�nes the stochastic contribution to the model.

There is an important equivalence between FP equations and stochastic di�erential equa-
tions of the form

dq(t) = A(t,q(t))dt + B(t,q(t))dW(t), (1.48)

where q(t) is a d-dimensional stochastic process to be found, andW(t) is the Wiener process
with the following properties:

a) W(0) = 0 with probability 1,
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b) For 0 ≤ s < t, the random vector W(t) −W(s) has components which are normally
distributed with mean zero and variance t− s, i.e. W(t)−W(s) ∼ N(0,

√
t− s),

c) For 0 ≤ s < t < u < v, W(t) − W(s) and W(v) − W(u) are independent random
vectors.
It can be shown that if A and B in (1.48) satisfy the Lipschitz conditions in q-space and the
linear growth conditions at in�nity then (1.48) has a unique solution that is a Markov process
with the pdf satisfying (1.47) with

D(t,q) = B(t,q)BT (t,q).

A rigorous mathematical theory of equations of the form (1.48) was constructed by Itô and
is reviewed in [99]. This theory is rather complicated but for our purposes it is su�cient to
understand (on an intuitive level) the solution q(t) of (1.48) as a limit under ∆t → 0 of the
discrete stochastic process qn = q(tn), with tn = n∆t, n = 1, 2, . . ., that satis�es the equation

qn+1 = qn + A(tn,qn)∆t + B(tn,qn)
√

∆t∆Wn (1.49)
where ∆Wn are mutually independent random d-dimensional vectors having probability dis-
tribution N(0, 1). Strictly speaking, under certain conditions onA and B, the discrete scheme
(1.49), known as the explicit Euler-Maruyama method, converges weakly to the solution of
(1.48) with order 1, i.e. for any �xed timeT > 0 and ∆t such that T = n∆t, for all su�ciently
smooth functions g : Rd → R with polynomial growth, there exist a constantCg independent
of ∆t such that for su�ciently small ∆t

| 〈g(q(T ))− g(qn)〉 | ≤ Cg∆t

where the brackets 〈·〉 stand for the mathematical expectation. One can also prove the strong
convergence of (1.49) that provides information on the accuracy of individual trajectories. In
the case when the coe�cientB does not depend on q it is easy to construct an implicit variant
of the Euler-Maruyama method by evaluatingA and B at tn+1,qn+1 in (1.49). In the general
case, the drift term A should be modi�ed in such a scheme to preserve consistency.

The equivalence between FP equations and stochastic di�erential equations, and the dis-
cretizations of the latter of type (1.49) open the way to the construction of stochastic (or
Brownian dynamics) simulations of kinetic theory models of polymeric liquids. To achieve
this, a large number of pseudo-random realizationsqm

n , m = 1, . . . , M of the random variables
qn at time tn are introduced and an equation of type (1.49) should be solved for them with
the pseudo-random numbers∆Wm

n , m = 1, . . . , M on the right-hand side. This technique has
been successfully applied since 1970's for various models in homogeneous �ows (see the book
by Öttinger [99] and the references therein) and has turned out to be very �exible and robust.
For example, it can be applied even in situations where no FP equation exists so that the
physical ideas are incorporated directly into the stochastic numerical scheme, as is the case in
the simulations of Hua and Schieber [61, 62, 63].

The 1990's have seen the advent of methods combining Brownian dynamics technique for
computing the polymer stress, with a discretization of the conservation equations to simulate
the complex �ows of �uids described by kinetic theory models. In the case of �nite element
discretization for the conservation equations Laso and Öttinger [75] termed this hybrid method
CONNFFESSIT (Calculation of Non-Newtonian Flow: Finite Elements and Stochastic Sim-
ulation Technique). It is known more generally as the micro-macro approach. At each time
step the original algorithm of [75] proceeds as follows:
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1. Using the current approximation to the polymer stress as a source term in the momentum
equation the conservation equations are solved by any standard numerical method to
update approximations to the velocity and pressure �elds.

2. The new velocity �eld is then used to convect a su�ciently large number of model polymer
`molecules' through the �ow domain. This is achieved by integrating the stochastic
di�erential equation associated with the kinetic theory model along particle trajectories
(one assumes that the local homogeneity assumption is applicable, so that one can use
the homogeneous FP equation with the derivation along the particle paths to update the
con�gurations of the `molecules').

3. The polymer stress within an element is determined from the con�gurations of the poly-
mer molecules in that element.

This original implementation of the micro-macro approach su�ered from several shortcom-
ings. First, the trajectories of a large number of molecules have to be determined. Secondly,
to evaluate the local polymer stress the model polymer molecules must be sorted according
to elements. Thirdly, the computed stress may be non smooth and this may cause problems
when it is di�erentiated to form the source term in the momentum equation. In subsequent
developments of the technique these shortcomings have been overcome to a certain extent.

A means of reducing the statistical error in a stochastic simulation without increasing the
number of trajectories is to use variance reduction. Melchior and Öttinger [94, 95] proposed
a number of variance reduction methods in the context of the CONNFFESSIT methodology
based on importance sampling strategies and the idea of control variables. The idea in impor-
tance sampling is to introduce a bias that gives greater weight to the realizations that make a
substantial contribution to the average. The bias is constructed from an approximate solution
of a stochastic di�erential equation for a modi�ed stochastic process that gives greater weight
to the important realizations [94]. In the second approach, based on control variables [95], the
idea is to �nd a random variable that possesses the same �uctuations as the random variable
of interest, but with a zero mean. When the control variable is subtracted from the original
variable then the mean remains unchanged while the �uctuations are reduced.

The construction of an appropriate control variable to be used in a parallel process sim-
ulation is not straightforward in general �ow situations. An alternative approach is to use
local ensembles of model polymers that are correlated. The idea is that corresponding model
polymers in each material element feel the same Brownian force. More precisely, the same ini-
tial ensemble of model polymers is de�ned in each material element and corresponding model
polymers in each material element are allowed to evolve using the same sequence of random
numbers. This approach leads to strong correlations in the stress �uctuations in neighbouring
material elements. The evaluation of the divergence of the stress in the momentum equation
involves the di�erence between stresses and leads to a cancellation of �uctuations and dramatic
variance reduction. The Brownian con�guration �eld method of Hulsen et al. [64, 101] and
the Lagrangian particle method of Halin et al. [59] are examples of variance reduced stochastic
simulation methods based on the idea of correlated local ensembles of mode polymers. Not
only do these techniques reduce the spatial �uctuations in the computed velocity and stress
�elds but they also require the generation of fewer random numbers. This greatly reduces the
computational cost associated with these stochastic simulation techniques. The cost of achiev-
ing variance reduction is that unphysical correlations in the random forces are introduced into
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the simulations. For problems in which physical �uctuations are important one must revert
to calculations based on uncorrelated Brownian forces even though this is likely to be more
expensive.

In the Lagrangian particle method [59], the stochastic di�erential equation is integrated by
placing a large number of dumbbells at each Lagrangian particle. Over each time interval, the
con�guration of each dumbbell is determined by solving the stochastic di�erential equation
along the particle trajectory using the velocity �eld obtained from a standard numerical simu-
lation of the conservation equations. The polymer stress associated with each particle is then
approximated by taking an ensemble average over its client dumbbells. Variance reduction is
achieved through correlated ensembles of dumbbells. The implementation of this idea in the
context of the Lagrangian particle method is accomplished by specifying that corresponding
dumbbells in each Lagrangian particle have the same initial con�guration and evolve using the
same sequence of Brownian forces.

Brownian con�guration �elds method [64] overcomes the problem of having to track par-
ticle trajectories, provides e�cient variance reduction and may be interpreted as an Eulerian
implementation of the idea of correlated local ensembles. This method departs from the stan-
dard micro-macro approach in that it is based on the evolution of a number of continuous
con�guration �elds rather than the convection of discrete particles speci�ed by their con�g-
uration vector. Dumbbell connectors with the same initial con�guration and subject to the
same random forces throughout the �ow domain are combined to form a con�guration �eld.
The polymer dynamics is then described by the evolution of an ensemble of con�guration �elds
instead of the evolution of local ensembles of model polymers. The method also provides a
smooth spatial representation of the con�guration �eld that can be di�erentiated to form the
source term in the momentum equation.
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Chapter 2

Spectral methods

2.1 Orthogonal polynomials and quadrature formulas
We review here some standard results concerning the orthogonal polynomials that constitute
the basis of spectral methods. More details can be found in the textbooks on spectral methods,
for example [14] and [26].

Expansion in terms of a system of orthogonal polynomials
Let w(x) be a positive function on (−1, 1). We consider the space L2

w(−1, 1) of functions v
such that

‖v‖w =

∫ 1

−1

|v(x)|2w(x)dx

is �nite. The associated inner product is

(u, v)w =

∫ 1

−1

u(x)v(x)w(x)dx.

Assume that {pk}k=0,1,... is a system of algebraic polynomials (where the degree of pk is
equal to k) that are mutually orthogonal in L2

w(−1, 1):

(pk, pl)w = δkl‖pk‖2
w.

For an integer N > 0, consider a truncated expansion of a functionu ∈ L2
w(−1, 1) in terms

of the system {pk} :

PNu =
N∑

k=0

ukpk

where
uk =

1

‖pk‖2
w

(u, pk)w.

Due to the orthogonality of pk, PNu is the orthogonal projection in L2
w(−1, 1) of u upon the

space PN of all polynomials of degree≤ N , i.e.

(PNu, v)w = (u, v)w for all v ∈ PN .

21
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The Weierstrass theorem implies that the system{pk} is complete in L2
w(−1, 1) so that for all

u ∈ L2
w(−1, 1) we have

‖u− PNu‖w → 0 as N →∞.

The polynomials orthogonal with respect to the weightw(x) = (1−x)Jα(1+x)Jβ with some
Jα, Jβ > −1 are known as Jacobi polynomials. They are usually denoted asP Jα,Jβ

k (x) under
the normalization P

Jα,Jβ

k (1) =

(
k + Jα

k

)
. Jacobi polynomials can be alternatively de�ned

as the eigenfunctions of the following singular Sturm-Liouville problem:

−((1− x)1+Jα(1 + x)1+Jβu′)′ = λk(1− x)Jα(1 + x)Jβu

with λk = k(k + Jα + Jβ + 1). The importance of Jacobi polynomials for numerical methods
lies in the fact that the expansion of in�nitely smooth functions in terms of them guarantees
the spectral convergence, that is faster than any power ofN . More precisely one can prove for
any function u(x) ∈ L2

w(−1, 1) such that its m-th derivative u(m)(x) is in the same space that

‖u− PNu‖w ≤ CN−m
(‖u(m)‖w + ‖u‖w

)
,

where C > 0 depends only on m.
In the special case w = 1, i.e. Jα = Jβ = 0 the Jacobi polynomials are also known as

Legendre polynomials.

Gauss integration
Let x1, . . . , xN be the roots of the N -th orthogonal polynomial pN and let w1, . . . , wN be the
solution of the linear system

N∑
j=1

(xj)
k−1wj =

∫ 1

−1

xk−1w(x)dx, k = 1, . . . , N.

Then, wj > 0 for j = 1, . . . , N and

N∑
j=1

p(xj)wj =

∫ 1

−1

p(x)w(x)dx (2.1)

for all polynomials p(x) ∈ P2N−1. The positive numberswj are called quadrature weights. The
quadrature rule is optimal in the sense that it is not possible to �ndxj, wj > 0, j = 1, . . . , N
such that (2.1) holds for all polynomials p(x) ∈ P2N .

We will use the Gauss integration only in the case of Jacobi polynomials and term it Gauss-
Jacobi or Gauss-Legendre (GL) in the special case of Legendre polynomials. It is convenient
to introduce Lagrange interpolating polynomials through the points xj, i.e. hi(x) ∈ PN−1,
i = 1, . . . , N such that hi(xj) = δij, i, j = 1, . . . , N , and to de�ne the di�erentiation matrix
Dij = h′i(xj) and the matrix of second derivatives D

(2)
ij = h′′i (xj) . In the case of Jacobi

polynomials, the points xj, the weights wj and the entries of the matrixDij can be calculated
analytically. The necessary formulas and FORTRAN codes can be found in [26]. In the
computations reported in this work we have used their implementation by E. M. Rønquist.
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As for the matrix of second derivatives, it is easy to see thatD(2) is the square ofD. Indeed,
since h′i(x) is a polynomial of degree N − 2 we can expand it in terms of hj(x) as

h′i(x) = h′i(xj)hj(x) = Dijhj(x),

where we assume the summation over repeated indices. Di�erentiating the last equality and
applying it once more we obtain

h′′i (x) = Dijh
′
j(x) = DijDjkhk(x).

Thus, h′′i (xk) = DijDjk.

Gauss-Lobatto integration
Let −1 = x0, x2, . . . , xN = 1 be the roots of polynomial q(x) = pN+1 + apN + bpN−1 where the
numbers a and b are chosen so that q(±1) = 0 and let w0, . . . , wN be the solution of the linear
system

N∑
j=0

(xj)
kwj =

∫ 1

−1

xkw(x)dx, k = 0, . . . , N.

Then,
N∑

j=0

p(xj)wj =

∫ 1

−1

p(x)w(x)dx (2.2)

for all polynomials p(x) ∈ P2N−1.
We shall use Gauss-Lobatto integration only forw = 1, i.e. with Legendre polynomials, and

term it Gauss-Lobatto-Legendre (GLL). As in the case of GL integration, one can introduce
Lagrange interpolating polynomials, i.e. hi(x) ∈ PN , i = 0, . . . , N such that hi(xj) = δij,
i, j = 0, . . . , N , and the di�erentiation matrix Dij = h′i(xj). The formulas and FORTRAN
codes to compute xj, wj and Dij corresponding to Legendre polynomials can be found in
[26]. In the computations reported in this work we have used their implementation by E. M.
Rønquist.

2.2 Spectral element discretization
Spectral element methods [85, 109] are high-order weighted residual methods for partial di�er-
ential equations enjoying exponential rates of convergence for smooth problems and involving,
as do �nite element methods, a decomposition of the problem domain into subdomains. They
di�er from p-type �nite element methods, however, in the choice of test and trial functions:
whereas p �nite element methods use representations in each element for the variables in terms
of linear combinations of Legendre polynomials, in spectral element methods tensorized bases
are employed, consisting of Lagrange interpolating polynomials based on Gauss-type quadra-
ture points.

A few words are in order here on the history of applications of Legendre spectral element
methods to simulations of viscoelastic �ows. The �rst such application in computing creeping
�ows was by Van Kemenade and Deville [129, 130] in 1994. The authors attempted to deal
with the question of whether or not the loss of convergence of standard �nite element and
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�nite di�erence methods was due to the low-order space discretizations of such methods. The
authors concluded that the failure of their spectral element method to converge beyond a
limiting Weissenberg number showed that the so-called �high Weissenberg number problem�
could not be attributed to the order of the space discretization, either in the case of �ows
with or without a change of mathematical type. In [129] excellent agreement was obtained
by the authors with the results of Pilitsis and Beris [117, 118]. A comparison of the spectral
element results with those produced using the 4× 4 SUPG �nite element method of Marchal
and Crochet [87] for Weissenberg numbers up to 12 gave not only excellent agreement, but the
spectral element method proved cheaper for comparable accuracy in the two methods. Among
more recent publications, where spectral element methods have been applied to viscoelastic
�ows modelled by constitutive equations of di�erential type, we cite those of Phillips et al.
[120], Fiétier [51], Fiétier and Deville [52], Owens [102] and Chauvière and Owens [32, 33]. In
the last paper, it was found that enhanced stability and accuracy were possible using consistent
streamline upwinding with a Legendre spectral element method (contrary to the opinion of Liu
and Beris, expressed in [78]). Further improvement in the quality of the solution was evident by
solving the constitutive equations on an element-by-element basis, taking account of upstream
velocity and stress information only at each elemental solve. Weissenberg numbers more than
double those achieved in [106] were now realizable.

Let us illustrate the spectral element method with the example of the Stokes system

∇ · v = 0, (2.3)
−β∆v +∇p = f . (2.4)

We introduce the following linear spaces over the �ow domainΩ ⊂ R2

V =
{
v ∈ (

H1(Ω)
)2

: v = 0 on Γ = ∂Ω
}

, (2.5)
Q = L2

0(Ω). (2.6)

Equipped with these functional spaces, we introduce the following bilinear forms:A : V ×V −→
R, B : Q× V −→ R, C : (L2(Ω))2 × V −→ R, thus:

A(v,w) = β

∫

Ω

∇vT : ∇wdx ∀v,w ∈ V, (2.7)

B(q,w) =

∫

Ω

q∇ ·wdx ∀q ∈ Q, w ∈ V, (2.8)

C(f ,w) =

∫

Ω

f ·wdx ∀f ∈ (L2(Ω))2, w ∈ V. (2.9)

With these de�nitions, the Galerkin weak formulation of the governing equations (2.3)-(2.4)
may be formally written: �nd (v, p) ∈ V ×Q such that

A(v,w)−B(p,w) = C(f ,w), ∀w ∈ V, (2.10)
B(q,v) = 0, ∀q ∈ Q, (2.11)

The Legendre spectral element method [85] may be used for the discretization of the continuous
problem (2.10)-(2.11).
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The domain Ω is partitioned into K (say) non-overlapping spectral elements {Ωk}K
k=1 and

each of the spectral elements is mapped onto a parent element
Ω̂ = {(ξ, η) : −1 ≤ ξ, η ≤ 1} .

This can be achieved using the trans�nite mapping technique of Gordon and Hall [58]. Then,
letting PN denote the space of functions such that their restrictions to every spectral element
Ωk are inverse images of polynomials of degree ≤ N in both ξ and η under the mapping
Ωk → Ω̂, our choice of �nite-dimensional subspaceV N ⊂ V for the components of velocity is

V N = V ∩ PN .

We may then write down discrete representationsvN for the velocity vector, as follows:

vN |Ωk
≡ vk

N(ξ, η) =
N∑

i=0

N∑
j=0

vk
i,jhi(ξ)hj(η) ∈ VN , (2.12)

In (2.12), hi(ξ), are the degree N Lagrange interpolating polynomials through the Gauss-
Lobatto-Legendre points. In order to satisfy the Babu�ska-Brezzi condition for the veloc-
ity/pressure compatibility, a suitable choice for the pressure approximation space isQN ≡
L2(Ω) ∩ PN−2, see [14]. The spectral representation of the pressure inΩk is therefore taken as

pk
N(ξ, η) =

N−2∑
i=0

N−2∑
j=0

pk
i,jh̃i(ξ)h̃j(η), (2.13)

where h̃i(ξ), 0 ≤ i ≤ N − 2, are Lagrange interpolating polynomials of degreeN − 2 based on
the interior Gauss-Lobatto-Legendre points. Inserting the discrete spectral representation of
(v, p) into (2.10)-(2.11), the problem is now: �nd (vN , pN) ∈ VN ×QN , such that

K∑

k=1

(Ak(v
k
N ,wk

N)−Bk(p
k
N ,wk

N) = Ck(f
k
N ,wk

N)), ∀wk
N ∈ VN , (2.14)

K∑

k=1

Bk(q
k
N ,vk

N) = 0, ∀qk
N ∈ QN . (2.15)

The integrals appearing in (2.14)-(2.15) are determined numerically using Gauss-Lobatto quadra-
ture rules. Equations (2.14)-(2.15) can now be written in the following matrix-vector product
form:

Axvx −Bxp = Cfx,

Ayvy −Byp = Cfy,

BT
x vx + BT

y vy = 0,

where fx, fy, vx, vy and p are vectors containing, in an obvious way, the nodal values of the
right-hand side f and the velocity and pressure variables.

The discretization of the Stokes system described above will be used in all our simulations
of complex creeping �ows of polymer �uids since we decouple the solution of the conservation
equations for velocity and pressure from the solution to the constitutive relations for the elastic
extra-stress at each time step. In the next section, we give a simple example of such a decoupled
simulation.
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2.3 Numerical example: time-dependent Couette �ow of
an Oldroyd B �uid

2.3.1 Problem description
Let us consider the incompressible, isothermal and inertialess (or massless) �ow of an Oldroyd
B viscoelastic �uid in the absence of body forces. The governing equations for these �ows are
the conservation of mass (1), conservation of linear momentum (1.33) with ρ = 0 and the
constitutive equation, which we take here in the form (1.40) for the positive de�nite tensor τ ′

de�ned in (1.39). These three equations can be written in dimensionless form as

∇ · v = 0, (2.16)
−β∆v +∇p = ∇ · τ ′, (2.17)

τ ′ + We

(
∂τ ′

∂t
+ v · ∇τ ′ − τ ′(∇v)− (∇v)T τ ′

)
=

1− β

We
I, (2.18)

where β is the ratio of the solvent to total viscosityβ = ηs/(ηs + ηp) and We is a Weissenberg
number We = λU/L where U and L are the characteristic velocity and length, respectively. For
our numerical tests we will attempt to solve a simple benchmark problem � start-up Couette
�ow in the rectangle Ω = (−1, 1)2 (see Fig. 2.1). Cartesian coordinates (x, y) are chosen with
x in the streamwise direction and y perpendicular to x in the plane of the �ow. With a velocity
�eld v = (vx, vy) given by

vx = (y + 1)(1− e−t/We), vy = 0 (2.19)

the components of τ ′ may be expressed analytically by the formulas

τ ′xx = 2(1− β)We

(
1 + e−t/We

(
1− 2

t

We
− t2

2We2

)
−

e−2t/We

(
t

We
+ 2

))
+

1− β

We
,

τ ′xy = (1− β)

(
1−

(
1 +

t

We

)
e−t/We

)
, τ ′yy =

1− β

We
,

the pressure p being an arbitrary constant. The parameterβ is set equal to 0.1.
The steady Couette �ow of an Oldroyd B �uid atRe = 0 is known to be linearly stable

[134]. Nothing is presently known about the linear stability of the start-up Couette problem
at Re = 0. Note that the analytical solution tends to a stationary Couette �ow as time tends
to in�nity.

2.3.2 Numerical schemes
We discretize the problem (2.16)�(2.18) in space using the spectral element method. One
spectral element is used (the method can be termed hence simply as a pseudospectral one). The
discretization of velocity and pressure has been described in Section2.2. Nothing is presently
known about compatibility conditions which may apply to the discrete spacesV N and ΣN for
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Figure 2.1: Couette �ow.

the velocity and the elastic extra-stress, respectively, used in numerical solutions to the full set
of non-linear equations (2.16)�(2.18). The partial existing results are as follows: in the mixed
Galerkin formulation of the 3 �elds Stokes limit of the Upper Convected Maxwell equations
(We = 0, β = 0) a compatibility condition applies between V N and ΣN [53, 54], however no
such condition is required for the same limit of the Oldroyd B equations (We = 0, β 6= 0, see
[8]). Consistent with the latter result, we approximate the components of the elastic extra-
stress by the polynomials of the same degree as the components of the velocity.

For discretization with respect to time we use the uniform gridti = i∆t and the system of
equations is decoupled at each time step as follows:

1. We solve the Stokes problem (2.16)�(2.17) to obtain vi+1, pi+1 at time ti+1 using the tensor
τ ′i from the previous time step ti which has already been computed. The discretization
of the Stokes problem is described in Section 2.2.

2. The constitutive equation (2.18) for τ ′i+1 is solved afterwards using the velocities from
time steps ti and ti+1. The choice of the numerical method for the constitutive equation
turns out to be the most important factor for the success of the simulations.

We present �rst a Galerkin approximation of Eq. (2.18). Let ΣN(Ω) be the space of
symmetric tensors whose components are arbitrary polynomials fromPN(Ω). Then τ ′i+1 is the
unique element of ΣN(Ω) satisfying the following equations:

We

(
τ ′i+1 − τ ′i

∆t
+ vi+α · ∇τ ′i+α,S

)
+ avi+α(τ ′i+α,S)

=
1− β

We
(I,S) , ∀S ∈ Σin

N (Ω), (2.20)
τ ′i+α|Γin

= ϕ′
i+α,

where

Σin
N (Ω) = {S ∈ ΣN(Ω) : S|Γin

= 0},
τ ′i+α = (1− α)τ ′i + ατ ′i+1, vi+α = (1− α)vi + αvi+1,

av(T,S) =
(
T−We(T(∇v) + (∇v)TT),S

)
,

and ϕ′
i+α is an appropriate approximation of the in�ow boundary conditionϕ at time (i+α)∆t.

We have here introduced the parameter α ∈ [0, 1] which accounts for di�erent time marching
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algorithms; for instance α = 1/2 for a Crank-Nicolson scheme andα = 1 for a backward Euler
scheme.

Applying an energy method to Eq. (2.20) one can prove that if α ∈ [1/2, 1], ∇ · vi = 0
and aui+α(τ ′i+α, τ ′i+α) ≥ 0 for any integer i ≥ 0, then any perturbations to the right-hand side
of Eq. (2.20) that are uniformly bounded in time give rise (at worst) to linear growth of the
error for τ ′. More precisely, denoting by τ̃ ′i the solution of Eq. (2.20) with the right-hand side
modi�ed by adding a term (Ri,S) for any Ri ∈ ΣN(Ω) we have the inequality

∥∥τ̃ ′n − τ ′n
∥∥

L2(Ω)
≤ n∆t

We
max
i<n

∥∥Ri
∥∥

L2(Ω)
. (2.21)

The requirement of a solenoidal velocity can be easily overcome. Indeed, for the scheme

We

(
τ ′i+1 − τ ′i

∆t
+ vi+α · ∇τ ′i+α +

1

2
(∇ · vi+α)τ ′i+α,S

)

+avi+α(τ ′i+α,S) =
1− β

We
(I,S) , (2.22)

the estimate (2.21) can be established even if ∇ · vi 6= 0. (Note that the method (2.22) is
consistent since ∇ · v = 0 for the exact solution of the di�erential equation).

However, the issue of positive de�niteness of the bilinear formav is crucial and the solution
can become unstable if av is too �negative�. There is a simple necessary and su�cient criterion
for positive semi-de�niteness of the bilinear formavi+α , namely

Λmax(∇vi+α + (∇vi+α)T ) ≤ 1

We
,

everywhere in Ω, Λmax(∇vi+α + (∇vi+α)T ) being the largest eigenvalue of the rate-of-strain
tensor.

The simplest Galerkin method (2.20) works well for We ≤ 1. For example, Fig. 2.2 shows
some results forWe = 1. The method is unconditionally stable, in agreement with the estimate
(2.21); re�ning of the mesh in space does not improve the accuracy (Fig. 2.2(a)) since the exact
solution is represented by polynomials of degree at most 1, but the error diminishes when the
time step ∆t decreases (Fig. 2.2(b)). Moreover, the error decays to zero rapidly as time goes
on. Here, and in what follows, we present the plots of the relative error forτ ′ in the maximum
norm since the errors for velocity and pressure are always less than that of the tensorτ ′. The
method (2.20) fails already for We = 2 as can be seen in Fig. 2.3(a). However, the instability
can be attributed partly (at least) in this case to the in�uence of the non-zero divergence of the
velocity since method (2.22) works much better for the same value ofWe (Fig. 2.3(b)). Note,
nevertheless, that all is still not well since, as in Fig. 2.2(a), increasing the mesh resolution
does nothing to enhance accuracy.

Both methods (2.20) and (2.22) fail for some larger values of We in the sense that for any
su�ciently large We there exists a critical time Tcrit(We) such that the numerical solution for
any N and ∆t blows up at some time t ∈ (0, Tcrit). Moreover, Tcrit is a decreasing function of
N for any �xed We (Fig. 2.4(a) shows some examples for We = 50).

In order to gain more insight into the reasons for the instability we present in Fig. 2.4(b)
some model simpli�ed calculations for the same value ofWe. The dashed curve here represents
the error in calculations with a simpli�ed constitutive equation

τ ′ + We

(
∂τ ′

∂t
+ v · ∇τ ′

)
=

1− β

We
I, (2.23)
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Figure 2.2: Galerkin approximation at We = 1; (a) ∆t = 1/100, (b) N = 8.
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Figure 2.3: Galerkin approximation at We = 2; (a) method (2.20), (b) method (2.22).
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Figure 2.4: Galerkin approximation at We = 50; (a) the full Oldroyd B model, (b) simpli�ed
model computations.

instead of Eq. (2.18). The absence of instabilities in this case can be easily explained by
observing that the Galerkin method for Eq. (2.23) di�ers from those of Eqs. (2.20) or (2.22)
only in that the termavi+α(τ ′i+α,S) is replaced by the inner product(τ ′i+α,S) which is obviously
positive-de�nite.

Our second simpli�ed example (the solid curve in Fig. 2.4(b)) involves solving the original
constitutive equation (2.18) alone with the substitution of the exact velocity �eld (2.19) into it.
Here again the Galerkin method works perfectly well which indicates that one of the sources
of instabilities can be the very high sensitivity of this numerical method to small errors in the
velocity.

2.3.3 Stabilization techniques
We �rst consider two well-known stabilization techniques, namely �ltering and the SUPG
(streamline upwinded/Petrov-Galerkin) method [23]. Filtering consists of projecting onto the
space of polynomials of a lower order. That is, applying a �lter to a functionuN ∈ PN(Ω)
gives the function uM ∈ PM(Ω) such that

(uM , vM) = (uN , vM), ∀vM ∈ PM(Ω),

for some M < N . Numerical experiments show that �ltering of the elastic extra-stress tensor
has a much stronger e�ect on the stability of the solution than �ltering of either the velocity or
its gradient. But applying even very crude �lters can only postpone the blow-up of the solution.
This is the case, for example, for calculations at the rather moderate value ofWe = 6, as can
be seen from Fig. 2.5.

The SUPG method consists in replacing the test functionS in Eq. (2.20) by

S̃= S + Θ

(
vi+α

|vi+α| · ∇
)

S.
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Figure 2.5: Filtering, We = 6; (a) M = N/2, (b) M = N/3.
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Figure 2.7: We = 50; (a) SUPG with Θ = 1 and �ltering N/2, (b) stabilized method (2.25).

We have thus

We

(
τ ′i+1 − τ ′i

∆t
+ vi+1 · ∇τ ′i+α, S̃

)
+ avi+�(τ ′i+α, S̃)=

1− β

We

(
I, S̃

)
,

instead of Eq. (2.20). Deciding on the proper choice of the upwinding factorΘ is not an easy
task. For steady-state viscoelastic simulationsΘ ∼ 1/N2 can lead to a signi�cant improvement
in terms of stability [33]. However, this seems to be too small for time-dependent simulations
(see Fig. 2.6(a)). Only rather large values of the upwinding factor (Θ = 1, for example)
combined with the crude N/2 �lter leads to satisfactory results (Fig. 2.6(b)).

No combination of �ltering and SUPG helps to stabilize the solution at larger values of
We (see, for example, Fig. 2.7(a) for We = 50). The only thing which we found suitable was
to add stabilizing positive-de�nite terms to the left-hand side of the Galerkin equations. We
introduce therefore a Galerkin approximation of Eq. (2.18) with the weak treatment of the
in�ow conditions:

We

(
τ ′i+1 − τ ′i

∆t
+ vi+1 · ∇τ ′i+α,S

)
+ avi+α(τ ′i+α,S)− We

2

∫

Γin

(vi+1,n)Ti+α : Sds

=
1− β

We
(I,S)− We

2

∫

Γin

(vi+1,n)ϕi+α : Sds, ∀S ∈ ΣN(Ω). (2.24)

The scheme (2.24) has approximately the same properties as (2.20) and the estimate (2.21)
can be established for it under the same hypotheses. We then add to the left-hand side (LHS)
some positive-de�nite bilinear form, for example,

LHS := LHS+ Θ̃(∇τ ′,∇S), Θ̃ =
We

2N
. (2.25)

This method gives a stable solution with the error tending to 0 as the solution approaches the
steady state (see Fig. 2.7(b)). Although the term Θ̃(∇τ ′,∇S) is not balanced by anything
on the right-hand side, the method (2.25) is still consistent (unlike the stabilized schemes of
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Sureshkumar and Beris [127] or Atal�k and Keunings [3]) since Θ̃ is a decreasing function of
N .

As a summary of this section, we can note that none of the traditional stabilizing techniques
has been able to produce a method suitable for spectral element calculations of time-dependent
viscoelastic �ows for all values of the parameter We. We note that the instability observed
in our computations cannot be attributed to the presence of higher harmonics alone, as is
demonstrated by the experiments with �ltering. A stabilized method has been developed
yielding numerically stable solutions for all We but at the expense of rather large errors for
intermediate times.

2.4 The element-by-element method
Many simulations described in the subsequent chapters, will be performed for time-dependent
�ows of various polymer �uids past a cylinder con�ned in a channel. Spectral element dis-
cretization will be used in physical space. It is easy to see that an e�cient method for hy-
perbolic constitutive equations (or for an FP equation for kinetic theory models) is of special
importance in such simulations. Indeed, the Stokes system (for inertialess �ows) is a linear
system with constant coe�cients so that the matrices resulting from its discretization can be
constructed and LU-decomposed once for all, and this makes the solution for pressure and
velocity relatively inexpensive. On the other hand, all the constitutive relations are non-linear
with coe�cients depending on the velocity, so that the matrices for their discretization should
be constructed and decomposed at every time step.

Fortunately, an e�cient method for the discretization of hyperbolic equations encountered
in viscoelastic �ows simulations, termed the element-by-element method, has been developed in
[33]. This method uses continuous approximations of the unknowns in the hyperbolic equation,
but allows it to be solved sequentially element-by-element. Thus, the element-by-element
method has the advantages of the discontinuous Galerkin method of Lesaint and Raviart [76]
but avoids the inconvenience of the latter of having to compute line integrals at the interfaces
between adjacent spectral elements. We here provide a description of the element-by-element
method borrowed from [33] and using the example of the stationary Oldroyd B constitutive

R
H

Figure 2.8: Cylinder radius R placed symmetrically in a 2D channel of half-widthH.
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Figure 2.9: Streamline and numbering of the spectral elements for the element-by-element
method.
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Figure 2.10: Illustration for the application of the element-by-element method.

equation that can be written in the non-dimensional form as

τ + We
5
τ = (1− β)

(∇v +∇vT
)
, (2.26)

with
5
τ = v · ∇τ − τ (∇v)− (∇v)T τ .

The main idea comes from treating the constitutive equation (2.26) in a fashion appropriate
for �rst-order hyperbolic equations. For a given velocity �eld,τ in a spectral element Ωk can
be determined so long as its value τ − k− is known at the in�ow boundary ∂Ω−

k by solving the
local problem

∫

Ωk

(
τ k + We

5
τ k

)
: Sdx = (1− β)

∫

Ωk

(∇vk +∇vT
k

)
: Sdx, ∀S ∈ Σ,

τ k = τ−k , on ∂Ω−
k .

Therefore, starting with a spectral element whose in�ow boundary is a subset of∂Ω−, a careful
ordering of spectral elements which ensures that the value τ−k of τ on ∂Ω−

k is available as
in�ow data makes it possible to solve for the elastic extra-stress tensor components element-
by-element. Such an ordering always exists as shown by Lesaint and Raviart [76] for �ows
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without recirculation. We illustrate this for the �ow around a cylinder con�ned in a channel,
see Fig. 2.8. Figure 2.9 shows an example of numbering 22 spectral elements in accordance
with the streamlines.

The ordering of the elements is based on the velocity �eld available at the previous Newton
iteration in the case of the stationary �ow simulation described here. In a time-dependent
simulation, the velocity from the last time step should be used instead. The stress components
are required to be continuous across elemental interfaces. C0 continuity between spectral
elements is automatically satis�ed by feedingτ−k on ∂Ω−

k as an in�ow condition for any spectral
element Ωk. The main di�erence with the standard Galerkin method lies in the treatment of
interfaces between spectral elements. The application of the constitutive equation on the
out�ow boundary ∂Ω+

k of an element Ωk does not imply a contribution from other elements
having boundaries with non-empty intersection with ∂Ω+

k but it only requires contributions
from element Ωk itself. To state more precisely what we mean, we consider the simple case
of Figure 2.10 where two conforming spectral elementsΩ1 and Ω2 are contiguous and have an
interface ∂Ω12. Let us assign a numbering (p1, q1) (say) in Ω1 to a Gauss-Lobatto point in the
interior of ∂Ω12. Suppose now that the local numbering for the same point inΩ2 is (p2, q2) and
take a test tensor S such that

S|Ω1 ≡ S
(p1,q1)
N and S|Ω2 ≡ S

(p2,q2)
N ,

where S
(i,j)
N denotes the second-order test tensor both of whose components are polynomials

of degree N , these vanishing at all (N + 1)2 Gauss-Lobatto points except the (i, j)th. For the
standard Galerkin method, the above choice ofS yields

∫

Ω1

(
τ + We

5
τ
)

: S(p1,q1)dx+

∫

Ω2

(
τ + We

5
τ
)

: S(p2,q2)dx =

(1− β)

∫

Ω1

(∇v +∇vT
)

: S(p1,q1)dx+(1− β)

∫

Ω2

(∇v +∇vT
)

: S(p2,q2)dx.

When an element-by-element approach is used, instead of summing the contributions from the
elements that share a common edge only contributions from the upstream region of∂Ω12 are
needed. If �ow is from left to right in Figure 2.10 and ∂Ω12 is then the in�ow boundary of Ω2

we obtain
∫

Ω1

(
τ + We

5
τ
)

: S(p1,q1)dx = (1− β)

∫

Ω1

(∇v +∇vT
)

: S(p1,q1)dx.

The qualitative improvement of the element-by-element method over the standard Galerkin
spectral element method has been shown in [33] (see Figs. 4a-b there). For greater smoothness
and higher Weissenberg numbers, this method can also be used in conjunction with the SUPG
technique (see Fig. 4c in [33]). Yet higher Weissenberg numbers could be achieved in [103] by
allowing the upwinding factor to vary from one test function to another. We recall, however,
that no signi�cant improvement has been observed by using SUPG technique in time-dependent
simulations (see the preceding section).
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Chapter 3

On the use of kinetic theory in the
construction of numerical methods to
simulate �ows of an Oldroyd B �uid

3.1 Noise-free realizations of the Brownian con�guration
�elds method

3.1.1 Model description

We consider in this section inertialess, isothermal �ow of an incompressible Oldroyd B �uid
in a bounded domain Ω ⊂ Rd. The basic conservation equations can be written in this case
as (1) and (1.33) with ρ = 0. As always, v denotes the �uid velocity, p is the pressure, τ is
the elastic extra-stress tensor, and ηs is the solvent viscosity. As explained in Section 1.1, the
stress τ can be computed either from the constitutive equation (1.41) or, by interpreting the
�uid as a suspension of Hookean dumbbells, by the formula (cf. (1.27))

τ =
ηp

λ

(−I + 〈qqT 〉) (3.1)

where the brackets 〈·〉 are used to express the ensemble average of the quantities inside the
brackets and q is the dumbbells' end-to-end vector. As is explained in Section 1.3, random
process q(t,x) is the solution to the stochastic di�erential equation, which takes the following
form for Hookean dumbbells:

dq +

(
v ·∇q−∇v.q+

1

2λ
q

)
dt =

√
1

λ
dW. (3.2)

The kinetic theory interpretation of the Oldroyd B model permits the construction of
stochastic simulation techniques for it. In the next section, we give the description of one such
technique, which is the Brownian con�guration �elds (BCF) method.

37
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3.1.2 The Brownian con�guration �elds method (Oldroyd B �uid)
Using a simple implicit Euler-Maruyama scheme for the time discretization of (3.2), we obtain
the following stochastic partial di�erential equation:

q(ti,x) +

(
v(ti,x) ·∇q(ti,x)−∇v(ti,x)q(ti,x)+

1

2λ
q(ti,x)

)
∆t

= q(ti−1,x) +

√
∆t

λ
Φ(ti) (3.3)

where Φ(ti) are mutually independent random vectors (discrete increments of the Wiener pro-
cess scaled by a factor of1/

√
∆t) having probability distributionN(0, 1) so that 〈Φ(ti)Φ

T (tj)〉 =
δijI. Note that the increments of the discrete Wiener process∆Wi =

√
∆tΦ(ti) in (3.3) do

not depend on x although the original stochastic di�erential equation (3.2) assumes an inde-
pendent Wiener process on each particle path. We can a�ord this simpli�cation since we are
interested only in some averages of random vectorsq(ti,x). This idea is the basis of the BCF
method [64].

Denoting the linear operator in the �rst line of (3.3) by Ev, this equation can be rewritten
as

Evq(ti,x) = q(ti−1,x) +

√
∆t

λ
Φ(ti). (3.4)

We suppose that the �uid is at equilibrium at time t0 = 0, and the system of equations
(3.4) is therefore supplied with initial conditions of the form

q(x,t0) = Φ(t0), (3.5)

where Φ(t0) is a Gaussian vector satisfying 〈Φ(t0)〉 = 0 and 〈Φ(t0)Φ
T (t0)〉 = I.

In the BCF method all the random quantities Φ(ti) are modelled by a large number of
pseudo-random vectors Φm(ti), m = 1, . . . , M , each of them having approximately Gaussian
distribution. This gives rise to M con�guration �elds {qm(ti,x)}1≤m≤M which model the
random quantities q(ti,x) and therefore satisfy the equations

Evqm(ti,x) = qm(ti−1,x) +

√
∆t

λ
Φm(ti). (3.6)

Then an approximation of equation (3.1) for the computation of the elastic extra-stress tensor
is

τ (ti,x) ≈ ηp

λ

(
−I +

1

M

M∑
m=1

qm(ti,x)qT
m(ti,x)

)
. (3.7)

Using equation (3.7) leads to elastic extra-stresses su�ering from the slowO( 1√
M

) convergence
typical of stochastic methods. In order to get solutions with relatively low noise level, it is
usual to solve (3.6) with at least several thousands independent pseudo-random vectorsΦm(ti)
at each time step1. The mesoscopic approach is not only CPU intensive but it also requires
large amount of memory since all the vectors {qm(ti−1,x)}1≤m≤M coming from the previous
calculation at time ti−1 must be stored in order to evaluate the right-hand side of (3.6) at time
ti.

1Several hundreds pseudo-random realizations may be enough if variance reduction techniques are used, see
[20, 21]
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3.1.3 A noise-free implementation of the Brownian con�guration �elds
method by Chauvière

Chauvière [28] showed how the linear structure of the equation (3.4) could be used to construct
a noise-free implementation of the BCF method. The main idea of his method is the following:
instead of performing a stochastic simulation as in (3.6), one can express the random vectors
q(ti,x) as linear combinations of Gaussian mutually independent vectorsΦ(tj), j ≤ i and
write down the PDEs for the coe�cients of these linear combinations. One can then solve
these PDEs numerically and obtain the elastic extra-stress as the second moments of sums of
Gaussian variables.

Let us describe the method in more detail. It is based on the following result:
Theorem 3.1 from [28]. For any i ≥ 1, there exist d× i (non-random) vectors denoted

by {qti−l

j (ti,x)}1≤j≤d
0≤l≤i−1 such that the solution q(ti,x) of (3.4) at time ti is given by

q(ti,x) =
d∑

j=1

{(
i−1∑

l=0

√
∆t

λ
q

ti−l

j (ti,x)Φj(ti−l)

)
+ qt1

j (ti,x)Φj(t0)

}
. (3.8)

The proof of this theorem is by induction and gives an explicit expression for the vectors
q

ti−l

j (ti,x) which can be obtained with equation
qti

j (ti,x) = E−1
v (ti,x)ej, (3.9)

at their time of creation and subsequently updated according to the equation
q

ti−l

j (ti,x) = E−1
v (ti,x)q

ti−l

j (ti−1,x) for l = 1, ..., i− 1. (3.10)
The notation ej in (3.9) stands for the j-th Cartesian basis vector. The next theorem shows
how the elastic extra-stress can be computed from the vectors{qti−l

j (ti,x)}1≤j≤d
0≤l≤i−1.

Theorem 3.2 from [28]. The elastic extra-stress tensor τ (ti,x) at time ti can be com-
puted from the vectors {qti−l

j (ti,x)}1≤j≤d
0≤l≤i−1 by:

τ (x,ti) =
ηp

λ

(
−I+

d∑
j=1

{(
i−1∑

l=0

∆t

λ
q

ti−l

j (ti,x)⊗ q
ti−l

j (ti,x)

)
+ qt1

j (x, ti)⊗ qt1
j (ti,x)

})
.

(3.11)
The resulting method (3.9)�(3.11) is thus deterministic and noise-free. As can be seen

from its description, its computational cost increases linearly with the number of time steps.
Although this method was demonstrated to be more e�cient than a traditional implementation
of the BCF method for the benchmark problem of the �ow past a con�ned cylinder, it is
obviously much more expensive than a direct discretization of the constitutive equation. In
the next section, we shall follow a slightly di�erent approach in implementing the BCF method,
that will result in a numerical method whose computational cost is of the same order as that
of traditional methods that solve the constitutive equation.

3.1.4 A new noise-free implementation of the Brownian con�guration
�elds method

The idea of this implementation is to represent the solutionq(ti,x) of (3.4) (in the sense of
probability distributions) as

q(ti,x) ∼ A(ti,x)Φ̃(ti), (3.12)
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where by de�nition Φ̃(ti) are d-dimensional Gaussian random vectors satisfying
〈
Φ̃(ti)

〉
= 0 and

〈
Φ̃(ti)Φ̃

T (tj)
〉

= δijI, (3.13)

and A(ti,x) are d × d (non-random) matrices satisfying recurrence relations speci�ed in the
following

Theorem 1 Let q(ti,x) be the solution to (3.4)�(3.5) and A(ti,x) for i ≥ 1 denote symmetric
positive de�nite d× d matrices de�ned by

A2(ti,x) = Â(ti,x)ÂT (ti,x) + Ã(ti,x)ÃT (ti,x), (3.14)

where Â(ti,x) and Ã(ti,x) are d× d matrices satisfying the following equations 2





EvÃ(ti,x) =A(ti−1,x),

EvÂ(ti,x) =

√
∆t

λ
I,

(3.15)

and
A(t0,x) = I. (3.16)

Then, we have
q(ti,x) ∼ A(ti,x)Φ̃(ti), (3.17)

where Φ̃(ti) is a d-dimensional Gaussian random vector satisfying (3.13).

Proof: We will prove this statement by induction on i. We �rst note that (3.17) is true for
i = 0. Let us suppose then that (3.17) is true at time ti−1. We can now introduce two d × d

matrices Ã(ti,x) and Â(ti,x) satisfying the relations (3.15). Then, according to Eq. (3.4) and
using the inductive hypothesis, we have

q(ti,x) ∼ Ã(ti,x)Φ̃(ti−1) + Â(ti,x)Φ(ti). (3.18)

Since the distribution of a Gaussian vector is uniquely determined by its mean and covariance
matrix, in order to prove the relation (3.17), we need to show the two following equalities

1. 〈q(ti,x)〉 =
〈
A(ti,x)Φ̃(ti)

〉
,

2.
〈
q(ti,x)qT (ti,x)

〉
=

〈
A(ti,x)Φ̃(ti)

(
A(ti,x)Φ̃(ti)

)T
〉

.

The �rst equality is trivially satis�ed since
〈
A(ti,x)Φ̃(ti)

〉
= A(ti,x)

〈
Φ̃(ti)

〉
= 0, ac-

cording to Eq. (3.13). In order to prove the second equality, we note that Φ̃(ti−1) and Φ(ti)

2Note that the operator Ev is applied here to matrix �elds although it was de�ned as acting on vectors.
This is done in the usual way, namelyEv is applied separately to each column of the corresponding matrix.
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are independent random variables sinceΦ(ti) is proportional to the increment in the Wiener
process (W(ti)−W(ti−1)) which does not depend on the history for t ≤ ti−1; so that we have

〈
Φ̃(ti−1)Φ

T (ti)
〉

=
〈
Φ(ti)Φ̃

T
(ti−1)

〉
= 0. (3.19)

Replacing q(ti,x) by its statistically equivalent expression (3.18) and by using (3.19), we
obtain

〈
q(ti,x)qT (ti,x)

〉
=

〈(
Ã(ti,x)Φ̃(ti−1) + Â(ti,x)Φ(ti)

)

(
Ã(ti,x)Φ̃(ti−1) + Â(ti,x)Φ(ti)

)T
〉

= Â(ti,x)ÂT (ti,x) + Ã(ti,x)ÃT (ti,x). (3.20)

In a similar way we compute
〈
A(ti,x)Φ̃(ti)

(
A(ti,x)Φ̃(ti)

)T
〉

as follows

〈
A(ti,x)Φ̃(ti)

(
A(ti,x)Φ̃(ti)

)T
〉

=
〈
A(ti,x)Φ̃(ti)Φ̃

T
(ti)A

T (ti,x)
〉

= A(ti,x)
〈
Φ̃(ti)Φ̃

T
(ti)

〉
AT (ti,x)

= A(ti,x)AT (ti,x). (3.21)

Comparing the right-hand sides of the equations (3.20) and (3.21) we see that the random
vectors q(ti,x) and A(ti,x)Φ̃(ti) have the same covariance matrices and therefore are equiva-
lent in distribution provided the matricesA(ti,x) are de�ned at each point x by (3.14). Note
that Eq. (3.14) has a unique solution for A(ti,x) in the class of symmetric positive de�nite
matrices since its right-hand side is a symmetric and positive de�nite matrix. The theorem is
thus proved by induction. ¤

Theorem 5 can be used in order to derive a simple expression for the elastic extra-stress
τ (x,ti) as stated in the theorem below.

Theorem 2 The elastic extra-stress τ (ti,x) at time ti = i∆t is given by

τ (ti,x) =
ηp

λ

(−I + A2(ti,x)
)
, (3.22)

where A(ti,x) is the d× d matrix de�ned by equation (3.14).

Proof: The vector q in equation (3.1) at time ti and at a position x can be replaced by its
statistically equivalent expression A(ti,x)Φ̃(ti) derived in Theorem 5. and the elastic extra-
stress becomes

τ (ti,x) =
ηp

λ

(
−I +

〈
A(ti,x)Φ̃(ti)

(
A(ti,x)Φ̃(ti)

)T
〉)

(3.23)

We can now use the relation (3.21) derived in Theorem 5 to get (3.22). ¤
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Note that expression (3.22) for the elastic extra-stress tensor gives noise-free solutions. In
the next theorem, we would like to make the connection between the new way of computing
the elastic extra-stress described above and the Oldroyd B constitutive equation (1.41). This
theorem is thus a justi�cation of the discretization of stochastic di�erential equation in the
very simple case of Hookean dumbbells.
Theorem 3 The elastic extra-stress tensor computed by (3.22) and (3.4)�(3.16) satis�es the
equation

τ (ti,x)− τ (ti−1,x)

∆t
+

1

λ
τ (ti,x) + v(ti,x) · ∇τ (ti,x)

− ∇v(ti,x)τ (ti,x)− τ (ti,x)∇vT (ti,x)

=
ηp

λ

(∇v(ti,x) + ∇vT (ti,x)
)

+ O(∆t) (3.24)

which gives the Oldroyd B constitutive equation (1.41) in the limit ∆t → 0.

Proof: Let us start by developing the following tensor product:〈(
q(ti−1,x) +

√
∆t

λ
Φ(ti)

)
⊗

(
q(ti−1,x) +

√
∆t

λ
Φ(ti)

)〉

= 〈q(ti−1,x)⊗ q(ti−1,x)〉+

√
∆t

λ
〈q(ti−1,x)⊗Φ(ti)〉

+

√
∆t

λ
〈Φ(ti)⊗ q(ti−1,x)〉+

∆t

λ
〈Φ(ti)⊗Φ(ti)〉 . (3.25)

In order to simplify the above expression, we note that the random vectorsq(ti−1,x) and Φ(ti)
are independent, so we have〈(

q(ti−1,x) +

√
∆t

λ
Φ(ti)

)
⊗

(
q(ti−1,x) +

√
∆t

λ
Φ(ti)

)〉

= 〈q(ti−1,x)⊗ q(ti−1,x)〉+
∆t

λ
I. (3.26)

We can now substitute q(ti−1,x) by its equivalent expression obtained from (3.3) and divide
throughout by ∆t to obtain

1

∆t
〈q⊗ q〉(ti−1,x) +

I

λ
= ∆t

〈(
1

∆t
q + v ·∇q− (∇v)q +

1

2λ
q

)
⊗

(
1

∆t
q + v ·∇q− (∇v)q +

1

2λ
q

)〉

(ti,x)

. (3.27)

Here we have introduced the notation 〈·〉(ti,x) to indicate that all variables inside the brackets
are evaluated at x at time ti. By developing the tensor product and neglecting the higher order
terms in ∆t, we obtain

1

∆t
〈q⊗ q〉(ti−1,x) +

I

λ
= 〈q⊗ (v ·∇q)〉(ti,x) − 〈q⊗ (∇v)q〉(ti,x)

+
1

λ
〈q⊗ q〉(ti,x) + 〈(v ·∇q)⊗ q〉(ti,x)

− 〈(∇v)q⊗ q〉(ti,x) +
1

∆t
〈q⊗ q〉(ti,x) + O(∆t). (3.28)
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We can group some of the terms since

q⊗ (v ·∇q) + (v ·∇q)⊗ q = v ·∇(q⊗ q), (3.29)

and note that
q⊗∇vQ = q⊗ q(∇v)T , (3.30)

to simplify equation (3.28) as follows

1

∆t
〈q⊗ q〉(ti−1,x) +

I

λ
=

1

∆t
〈q⊗ q〉(ti,x) +

1

λ
〈q⊗ q〉(ti,x)

+ v(ti,x) ·∇ 〈q⊗ q〉(ti,x)

− ∇v(ti,x) 〈q⊗ q〉(ti,x)

− 〈q⊗ q〉(ti,x) ∇vT (ti,x) + O(∆t). (3.31)

We have according to equation (3.22)

〈q⊗ q〉(ti,x) = A(ti,x)AT (ti,x) = I+
λ

ηp

τ (x,ti).

Inserting the above expression into equation (3.31), we obtain (3.24). ¤
Theorem 3 shows that our method is equivalent to the implicit Euler numerical scheme for

the constitutive equation (1.41) if one neglects the terms of order∆t. One can then ask what
is the advantage of our method over a straight forward simulations based upon the constitutive
equation. We point out two such advantages:

1. The BCF methods are usually more stable than ones based directly upon the macroscopic
equations. One should expect the same of our method since it is in fact a version of the
BCF method which employs an in�nite number of con�guration �elds. This observation
is justi�ed by the numerical results of Section 3.1.6.

2. One can prove that any solution of the Oldroyd B constitutive equation should satisfy
the property that the conformation tensorI+ λ

ηp
τ is positive de�nite for all x and t. The

violation of this property in numerical simulations can result in Hadamard instabilities
[70]. The positive de�niteness of the conformation tensor is preserved automatically by
our method due to (3.22). On the contrary, it can be violated in traditional numerical
simulations using closed-form constitutive equations.

3.1.5 Computational procedure
The algorithm introduced in the previous section was discrete only with respect to time. In
this section, we will describe how it can be discretized in space as well. The considerations
here are quite general and do not suppose a particular type of discretization i.e. methods such
as �nite element methods, spectral element methods, �nite volume methods, etc. may equally
well be used.

Let the computational grid consist of points xl, 1 ≤ l ≤ Nc and let Ev(ti) be the matrix
resulting from the discretization of the linear operatorEv at time ti for a given velocity �eld
v. We recall that the operator Ev acts on vector �elds, which are now de�ned at each of the
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grid nodes {xl}, hence the dimensions of the matrix Ev(ti) are (dNc) × (dNc). We suppose
that the problem is well-posed so that Ev(ti) has the inverse E

−1

v (ti). The unknowns in our
approach are d × d matrices A(ti,xl) de�ned at all the grid points xl, 1 ≤ l ≤ Nc and for all
times ti = i∆t.

At the initial time we set

A(t0,xl) = I, τ (t0,xl) = 0, 1 ≤ l ≤ Nc.

The general computational procedure at the i-th time step (i ≥ 0) may be summarized as
follows:

1. Solve the discrete analogue of the Stokes problem (1), (1.33) to determine the velocity
�eld v(ti−1,x,)) using the elastic extra-stress τ (ti−1,x) computed at the previous time
step.

2. Compute the matrix Ev(ti) based on the velocity v(ti−1,x).

3. Gather all the d × d matrices A(ti−1,xl), l = 1, . . . , Nc into a (dNc)× d matrix A(ti−1)
by stacking them one on top of another and denote byI the (dNc)× d matrix composed
of Nc identity d × d matrices arranged in the same manner. Compute new (dNc) × d

matrices Ã(ti) and Â(ti) satisfying (approximately if an iterative technique is used) the
equations

Ev(ti)Ã(ti) = A(ti−1),

Ev(ti)Â(ti) =

√
∆t

λ
I,

which are the discrete analogues of (3.15). Disassemble Ã(ti) and Â(ti) back into the
matrices Ã(xl,ti) and Â(xl,ti), respectively, with l = 1, . . . , Nc.

4. Compute the d×d symmetric positive de�nite matricesA(ti,xl) by solving at every grid
point xl, 1 ≤ l ≤ Nc the equation

A2(ti,xl) = Â(ti,xl)Â
T (ti,xl) + Ã(ti,xl)Ã

T (ti,xl). (3.32)

5. Compute the extra stress τ (x,ti) by applying at every grid point xl, 1 ≤ l ≤ Nc the
formula

τ (ti,xl) =
ηp

λ

(−I + A2(ti,xl)
)
. (3.33)

6. Increment i by 1 and go to stage 1 unless the �nal time has been reached or a stopping
criterion is satis�ed.

Note that steps 4 and 5 of the algorithm need a number of operations proportional toNc

so their cost will be very small in comparison with steps 1�3. In step 3 we need to solve the
linear system with the matrix Ev(ti) with 2d di�erent right-hand sides. This means that our
method is equivalent in terms of the cost to a BCF method with2d con�guration �elds. It is
an important improvement since in the BCF approach the number of con�guration �elds may
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be several thousands. Clearly, our method is also advantageous with respect to the method
of Chauvière [28] described in Section 3.1.3 since the linear system with the matrixEv(ti) is
solved there with 2d(i + 1) right-hand sides. In fact, our method is at least as e�cient as
the methods based on the constitutive equation and for some implementations it can be even
cheaper (see the numerical results in the next section).

3.1.6 Numerical results for the �ow past a con�ned cylinder
In order to evaluate the performance of the proposed numerical method, we shall compute
solutions for the planar viscoelastic �ow of an Oldroyd B �uid past a cylinder placed symmet-
rically in a channel (see Fig. 2.8). For an extensive review of this benchmark problem, the
reader is referred to the recent book by Owens and Phillips [108]. The ratio of the cylinder's
radius R to the half-width of the channelH is taken equal to 0.5. This benchmark problem is
acknowledged to be more di�cult than the related sphere problem because for the same aspect
ratio R/H, the planar �ow past a cylinder in a channel undergoes stronger contraction and
expansion than the axisymmetric �ow past a sphere. The Weissenberg numberWe for this
problem is de�ned in the usual fashion to be

We =
λU

R
, (3.34)

where U is the average velocity of the �uid in the channel at entry. The ratio of the solvent
viscosity ηs to the total viscosity η = (ηs + ηp) was taken equal to 0.59, as is usually done in
the literature [27, 41, 48, 126] for this benchmark problem.

We implement three approaches: direct discretization of the constitutive equation, the
method of Chauvière [28] described in Section 3.1.3 and our new noise free implementation of
the BCF method summarized in the preceding section.

Discretization of the equations
For discretization in physical space, we use for all three approaches the Legendre spectral
element method [85, 109], as described in Section 2.2. The �ow domain is divided into 46
conforming spectral elements and polynomial degrees ranging fromN = 6 to N = 12 are
used in the two spatial directions for velocity and stress or matrix �eldsA (the polynomials
for the pressure are always of degree N − 2). To discretize the constitutive equation and the
operator Ev we use the element-by-element method described in Section 2.4 in combination
with the SUPG technique with an upwinding factor1/N2. The time steps are chosen equal to
∆t = 0.025 and the iterations are stopped when the following convergence criterion is ful�lled
for all collocation points x ∈ Ω :

|v(ti+1,x)− v(ti,x)|
∆t

≤ 10−4.

Filtering
Most of our numerical results would not have been possible without �ltering the solutions.
This �lter takes the form

σ(η) = exp(−αη2p),
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where 2p is the order of the �lter and α = − ln ε; ε being the machine accuracy. An extensive
description and detailed properties of this �lter can be found in [86, 57] and references therein.
For all our numerical experiments, we use the same order for the �lter i.e. p = 9, which was
found to give the best compromise between stability and accuracy. For the numerical results of
the new method described in this paper, we �lter the columns of the matricesÃ(ti) and Â(ti)
introduced in the previous section. This was found to give better results (in terms of accuracy
and robustness) than �ltering the elastic extra-stress. For macroscopic simulations, microscopic
quantities are not available and therefore we �lter the elastic extra-stress. Although no �lter
was originally used in [28], the results reported in Table 3.4 make use of the �lter in order not
to disadvantage any of the tested methods.

Numerical results
The drag factor F ∗ on the cylinder is de�ned by

F ∗ =
F

4πηU
, (3.35)

where F is the drag on the cylinder

F =

∫ π

0

{(
−p + 2ηs

∂ux

∂x
+ τxx

)
cos θ +

(
ηs

(
∂uy

∂x
+

∂ux

∂y

)
+ τxy

)
sin θ

}
Rdθ.

Tables 3.1 and 3.2 give the value of the drag factor for the new mesoscopic approach
described in Section 3.1.5 and for the classical Oldroyd B constitutive equation (1.41), respec-
tively, for di�erent level of discretization (N = 6, .., 12) and di�erent Weissenberg numbers3.
We see that the mesoscopic simulation is always more stable (Weissenberg numbers up to 0.9
can be reached) than its macroscopic counterpart for which the maximum Weissenberg number
achievable was limited to 0.7.

All the values for F ∗ obtained by our method are very close to those presented in [41, 48,
126]. Moreover, in Table 3.3 we show that the drag factor on the cylinder converges to that
from [48] as the time step is reduced with the exception of the caseWe = 0.9. εF in this table
stands for the absolute value of the di�erence betweenF ∗ computed by our method and that
from [48], divided by the latter.

The CPU intensive part of our algorithm is the LU decomposition of the matrixEv at
each time step. Since we are using an element-by-element method, then for a 2D problem
and using a polynomial representation of degreeN , we need to LU decompose matrices of size
2(N +1)2. The number of operations involved per time step is then proportional to8(N +1)6.
When a macroscopic approach is used, instead of having two unknowns(Qx, Qy), we have three
unknowns (τxx, τxy, τ yy) and the size of the matrices to be LU decomposed is now3(N + 1)2.
The cost involved is then proportional to 27(N + 1)6. The gain in using our new approach for
the computation of the non-Newtonian part is therefore more than threefold as compared to
using a closed-form constitutive equation. The relative CPU time taken to compute both the
velocity �eld and the elastic extra-stress is compared for the three methods in Table3.4. Note
that the overall gain in time is less than threefold since we have to solve on each time step the

3Omissions in Table 3.2 indicate that the code blows up for the corresponding parameter set. The same
behaviour was observed for higher Weissenberg numbers that are therefore not included in the table.
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Table 3.1: Drag factor F ∗ computed on uniform meshes (N = 6, .., 12). Mesoscopic simulation.
We N=6 N=8 N=10 N=12
0.5 9.4464 9.4468 9.4464 9.4462
0.6 9.3696 9.3638 9.3636 9.3638
0.7 9.3446 9.3292 9.3278 9.3274
0.8 9.3649 9.3352 9.3327 9.3291
0.9 9.4218 9.3742 9.3709 9.3615

Table 3.2: Drag factorF ∗ computed on uniform meshes(N = 6, .., 12). Macroscopic simulation.
We N=6 N=8 N=10 N=12
0.5 9.4621 9.4628 9.4548 9.4560
0.6 - 9.3806 9.3710 9.3726
0.7 - 9.3553 9.3402 9.3365

Table 3.3: Drag factor F ∗ computed on uniform mesh (N = 10) for di�erent time steps ∆t.
Mesoscopic simulation.

We ∆t = 2.5× 10−2 ∆t = 1.25× 10−2 ∆t = 6.25× 10−3

F ∗ εF F ∗ εF F ∗ εF

0.5 9.4464 1.0 · 10−3 9.4509 5.6 · 10−4 9.4530 3.4 · 10−4

0.6 9.3636 9.6 · 10−4 9.3672 5.7 · 10−4 9.3682 4.7 · 10−4

0.7 9.3278 8.8 · 10−4 9.3314 5.0 · 10−4 9.3319 4.4 · 10−4

0.8 9.3327 7.0 · 10−4 9.3374 1.9 · 10−4 9.3389 3.3 · 10−5

0.9 9.3709 2.2 · 10−3 9.3772 2.8 · 10−3 9.3824 3.4 · 10−3

Table 3.4: Relative CPU time for three di�erent methods on uniform meshes(N = 7, .., 10) at
We = 0.6.

N=7 N=8 N=9 N=10
Present method 1.0 1.0 1.0 1.0
Constitutive equation 1.5 1.5 1.6 1.6
Method in [28] 18.7 14.4 16.6 15.9
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(a) Micro-macro simulation
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(b) Macroscopic simulation

Figure 3.1: Contours of τxx computed with a uniform mesh N = 8 at We = 0.7. Oldroyd B
�uid.

Stokes problem. We can see however, that depending on the mesh used, the present approach
is between 1.5 to 1.6 times faster than using a constitutive equation and it is also between 14.4
to 18.7 times faster than using the method presented in [28].

In Fig. 3.1, we have represented the contour plot of τxx with N = 8 and We = 0.7 for the
new method introduced in this paper (a) and when a constitutive equation is used (b). We
can see that, as expected, the two methods give similar results.

3.1.7 Extension of the method to the FENE-P model
The method described in the previous sections may be extended to the FENE-P model, i.e.
the dumbbells having spring force law (1.44). The operator Ev introduced in Section 3.1.2
may now be replaced by

Evq(ti,x) = q(ti,x)

+


v(ti,x) ·∇q(ti,x)−∇v(ti,x)q(ti,x)+

1

2λ

q(ti,x)

1− 1

b

〈|q(ti−1,x)|2〉


 ∆t. (3.36)



3.2. NOISE FREE REALIZATIONS OF THE BCF 49

Note that in the equation above, we have taken the non-linear term
〈
q(ti−1,x)2〉 explic-

itly. Then, it can be shown by induction, in the same way as in Theorem5 that q(x,ti) ∼
A(ti,x)Φ̃(ti), where A(ti,x) is de�ned by the same equation (3.14) as in the Oldroyd B case.
The only minor modi�cation to the demonstration of Theorem5 concerns the con�guration
�eld at equilibrium which is, for the d-dimensional FENE-P dumbbells,q(t0,x) ∼

√
b

b+d
Φ̃(t0).

For the FENE-P model, the elastic extra-stress tensor is given by (1.46). We can replace〈
q(ti,x)qT (ti,x)

〉
by A2(ti,x) and also �nd an expression for 〈|q(ti,x)|2〉 as a function of

A(ti,x) as follows:
〈|q(ti,x)|2〉 = tr

〈
q(ti,x)qT (x, ti)

〉

= tr

〈
A(ti,x)Φ̃(ti)

(
A(ti,x)Φ̃(ti)

)T
〉

= tr
(
A(ti,x)

〈
Φ̃(ti)Φ̃

T (ti)
〉

A(ti,x)
)

= trA2(ti,x). (3.37)

Then the expression for the elastic extra-stress tensor (1.46) may be written

τ (ti,x) =
ηp

λ

(
b + d

b

)(
−I +

A2(ti,x)

1− trA2(ti,x)/b

)
. (3.38)

Note that when b →∞, we recover the expression (3.22) of the Oldroyd B model.

Numerical results
We now present some numerical results for the �ow of a FENE-P �uid past a cylinder con�ned
in a channel using the method described above. The �ow geometry is shown in Fig. 2.8.
The parameters of the domain and the type of discretization in physical space are the same
as that of our Oldroyd B �ow simulations in the preceding section. We choose the maximum
extensibility parameter b to equal 10. Although the �ow is planar, there is no physical reason
to suppose that the dumbbells lie in the plane of the �ow, and indeed the con�guration vector
q should be three-dimensional (the 3D FENE-P model). However, we will also consider a 2D
FENE-P model, in which caseq is restricted to lie in the plane of the �ow4. The computational
cost of the 2D FENE-P model is only slightly less than that of the 3D FENE-P model, because
the latter consists of a problem for a 2 × 2 matrix �eld (for the components of matrix A
lying in the upper left corner) and a separate equation forA33. The non-linear coupling term,
which links these two equations, is treated explicitly according to (3.36). On the other hand,
an analogous distinction between two-dimensional and three-dimensional dumbbells heavily
a�ects the computational cost for the FENE model (see Chapter 4).

We �rst demonstrate convergence with mesh re�nement by comparing the results on meshes
with N = 10 and N = 12. This is done for the 2D FENE-P model at a Weissenberg number
We = 1 in Fig. 3.2 and for the 3D FENE-P model at a Weissenberg numberWe = 2 in Fig.
3.3. The xx-component of the elastic extra-stress is plotted in both cases along the axis of

4A distinction between two-dimensional and three-dimensional dumbbells is not important in the Hookean
case since the 3D Oldroyd B equation for planar �ows can be decoupled into the 2D Oldroyd B equation for
τxx, τxy, τyy and an independent equation for τzz, which has the solution τzz = 0.
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Figure 3.2: τxx for the 2D FENE-P �uid along the axis of symmetry and the cylinder surface
computed at We = 1. ∆t = 0.01.
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Figure 3.3: τxx for the 3D FENE-P �uid along the axis of symmetry and the cylinder surface
computed at We = 2. ∆t = 0.01.
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We 2D FENE-P 3D FENE-P
0.6 8.7363 8.8302
0.8 8.5095 8.5932
1.0 8.3641 8.4390
1.2 8.2659 8.3338
1.4 8.1970 8.2594
1.6 8.1473 8.2055
1.8 8.1109 8.1657
2.0 − 8.1360

Table 3.5: Drag factors for the FENE-P �uid computed on a uniform mesh withN = 10.
∆t = 0.01.

x

T
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20

2D FENE-P
3D FENE-P

Figure 3.4: τxx for the 2D FENE-P �uid along the axis of symmetry and the cylinder surface
computed at We = 1.8 on the uniform mesh with N = 10. ∆t = 0.01.



52 CHAPTER 3. ON THE USE OF KINETIC THEORY FOR THE OLDROYD B MODEL

symmetry and the cylinder surface. We see that convergence is achieved in the �eyeball� norm
for both models. The N = 10 mesh is used therefore in presenting the rest of our numerical
results.

We were able to reach a Weissenberg number of 1.8 using the 2D FENE-P model and 2.0
using the 3D FENE-P model. The drag factors de�ned by (3.35) for both models are reported
in Table 3.5. We see that they are very close for all the achievable Weissenberg numbers, that
of the 2D case being slightly lower (about 0.5-1 percent) than that of the 3D case. However,
the di�erence in the stress pointwise may be more signi�cant, as can be seen from Fig. 3.4.
The results of the same kind will be demonstrated for 2D and 3D FENE models in Chapter 4.

3.2 An energy estimate for the Oldroyd B model and a
numerical scheme respecting it

3.2.1 An a priori estimate for an Oldroyd B �uid
In this section we present energy estimates for the stresses and velocity components in a
general setting, for both inertial and inertialess �ows of an Oldroyd B �uid. Our results apply
to �ows in bounded domains in any number of dimensions, subject to Dirichlet and possibly
in�ow boundary conditions. Although the results are obtained from the constitutive equation,
their physical meaning is understood from the kinetic theory interpretation of the model. A
novel numerical scheme is introduced and shown to be superior to a conventional Galerkin
discretization of the Oldroyd B equations.

Let us recall the governing equations for �ow of an incompressible, isothermal Oldroyd B
�uid in some bounded domain Ω ⊂ Rd :

∇ · v = 0, (3.39)

Re

(
∂v

∂t
+ (v · ∇v)

)
− β∇2v +∇p = ∇ · τ ′ + f , (3.40)

1

We
τ ′ +

(
∂τ ′

∂t
+ (v · ∇)τ ′ −∇vτ ′ − τ ′∇vT

)
=

(1− β)

We2
I. (3.41)

The notation and non-dimensionalization here are the same as in Section2.3 but we now allow
for the possibility of positive Reynolds numbersRe = ρV L/η where V and L are, respectively,
characteristic velocity and length.

The system (3.39)�(3.41) is augmented by boundary and initial conditions

v|Γ = g, (3.42)

τ ′|Γin
= ϕ′, (3.43)

where Γ is the boundary of Ω and Γin the in�ow part of Γ (see (1.35)),

τ (0,x) = τ 0(x), (3.44)

and, if Re > 0,
v(0,x) = v0(x). (3.45)
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Interpreting an Oldroyd B �uid as a suspension of Hookean dumbbells, we can rewrite the
de�nition (1.39) of τ ′ under our non-dimensionalization as

τ ′ =
(1− β)

We
〈qq〉, (3.46)

where q is the end-to-end vector of the dumbbell. We note from (3.46) that τ ′ is a symmetric
positive de�nite tensor. We also note that the space of such tensors does not constitute a vector
space and that we are not at liberty, consequently, to de�ne a norm on this space. However,
because of the symmetry and positive de�niteness of τ ′, trτ ′ ≥ 0 and trτ ′ = 0 iff τ ′ ≡ 0.
Thus a non-negative function ‖ · ‖∗,Ω having domain all d× d positive de�nite real symmetric
tensors de�ned on Ω may be de�ned as follows:

‖τ ′‖∗,Ω =

∫

Ω

trτ ′ dx. (3.47)

From (3.47)
‖τ ′‖∗,Ω =

(1− β)

We

∫

Ω

〈Q2〉 dx, (3.48)

where Q = |q| is the length of the interconnecting spring, and (3.47) thus returns a scaled
average over physical and con�guration space ofQ2, which can be interpreted as the potential
energy of the dumbbells. We recall, in passing, that there is no physical mechanism in the
Oldroyd B �uid to prevent the dumbbell springs from becoming in�nitely extended.

We are now in a position to prove an a priori energy estimate.

Theorem 4 Let f(t, ·) ∈ (L2(Ω))d, t ≥ 0 and g(t,x) ∈ (H1/2(Γ))d, t ≥ 0, x ∈ Γ be functions
chosen so that there exists a divergence-free vector �eldv∗(t, ∗) ∈ (W 1,∞(Ω))d satisfying v∗|Γ =
g and such that the numbers

c1 = sup
t≥0

‖∇v∗(t, ·)‖L∞(Ω)

and

c2 = sup
t≥0

(
dMeas(Ω)

(1− β)

We2
+

∣∣∣∣
∫

Γin

(g(t,x) · n(x))trϕ′(t,x) dx

∣∣∣∣

+

∥∥∥∥
(
f −Re

(
∂v∗

∂t
+ v∗ · ∇v∗

))
(t, ·)

∥∥∥∥
2

0

+ |v∗(t, ·)|21
)

,

are �nite.
Then there exist positive constants γ and C depending only on Ω, Re, We, and β such that

any solution to (3.39)-(3.45) satis�es

Re

2
‖v(t, ·)‖2

0 + ‖τ ′(t, ·)‖∗,Ω ≤ (
2Re‖v0‖2

0 + ‖τ ′0‖∗,Ω
)
exp (2c1d− γ) t

+
Cc2

γ − 2c1d
(1− exp (2c1d− γ) t)

+2Re‖v∗0‖2
0 exp(2c1d− γ)t

+Re‖v∗(t, ·)‖2
0. (3.49)



54 CHAPTER 3. ON THE USE OF KINETIC THEORY FOR THE OLDROYD B MODEL

Moreover, when g = 0, any solution to (3.39)-(3.45) may be shown to satisfy

Re‖v(t, ·)‖2
0 + ‖τ ′(t, ·)‖∗,Ω ≤ (

Re‖v0‖2
0 + ‖τ ′0‖∗,Ω

)
exp(−γt)

+
Cc2

γ
(1− exp(−γt)) . (3.50)

Proof. Let us put v = v∗ + w. We multiply the momentum equation (3.40) by w, integrate
it over Ω and use integration by parts to obtain

Re

(
∂v

∂t
+ v · ∇v,w

)
+ β(∇v,∇w) = −(τ ′,∇w) + (f ,w). (3.51)

We note that

(v · ∇w,w) =
1

2

∫

Ω

v · ∇|w|2 dx =
1

2

∫

Γ

(v · n)|w|2 dx = 0.

Hence
(v · ∇v,w) = (v · ∇v∗,w) = (v∗ · ∇v∗,w) + (w · ∇v∗,w)

and (3.51) can be rewritten as

Re

2

d

dt
‖w‖2

0 + β|w|21 + Re

(
∂v∗

∂t
+ v∗ · ∇v∗,w

)
+ Re (w · ∇v∗,w)

= −β(∇v∗,∇w)− (τ ′,∇v) + (τ ′,∇v∗) + (f ,w). (3.52)

Let us now take traces of Eq. (3.41):

1

We
trτ ′ +

(
∂trτ ′

∂t
+ (v · ∇)trτ ′ − 2∇v : τ ′

)
= d

(1− β)

We2
. (3.53)

Integrating each term in Eqn. (3.53) over the domain Ω yields
1

We
‖τ ′‖∗,Ω +

d

dt
‖τ ′‖∗,Ω +

∫

Ω

v · ∇trτ ′ dx

−2(τ ′,∇v) = dMeas(Ω)
(1− β)

We2
. (3.54)

Using integration by parts and the incompressibility equation∇ · v = 0 we can see that

∫

Ω

v · ∇trτ ′ dx =

∫

Γ

(v · n)(trτ ′) dx

≥
∫

Γin

(g · n)trϕ′ dx. (3.55)

The last inequality in (3.55) is valid since (g · n) ≥ 0 on Γ\Γin and trτ ′ ≥ 0 everywhere.
We multiply Eq. (3.52) by 2, add it to Eq. (3.54) and use (3.55) to obtain

1

We
‖τ ′‖∗,Ω +

d

dt
‖τ ′‖∗,Ω + Re

d

dt
‖w‖2

0 + 2β|w|21
≤ F (t) + 2(τ ′,∇v∗) + 2(f̃ ,w)− 2β(∇v∗,∇w)− 2Re (w · ∇v∗,w) . (3.56)
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with
F (t) = dMeas(Ω)

(1− β)

We2
−

∫

Γin

(g · n)trϕ′ dx

and
f̃ = f −Re

(
∂v∗

∂t
+ v∗ · ∇v∗

)
.

We are now going to prove some auxiliary inequalities. First of all note that at any point
in space and time we have

|τ ′ : ∇v∗| ≤
d∑

i,j=1

∣∣∣∣τ ′ij
∂u∗i
∂xj

∣∣∣∣ ≤ c1

d∑
i,j=1

∣∣τ ′ij
∣∣ . (3.57)

The tensor τ ′ is symmetric and positive de�nite everywhere, so that
∣∣τ ′ij

∣∣ ≤ 1

2

(
τ ′ii + τ ′jj

)
,

pointwise. We now conclude from (3.57) that

|τ ′ : ∇v∗| ≤ c1

2

(
d∑

i,j=1

|τ ′ii|+
d∑

i,j=1

∣∣τ ′jj
∣∣
)

= c1dtrτ ′.

Integrating over Ω and using the fact that
∫

Ω

|f | dx ≥
∣∣∣∣
∫

Ω

f dx

∣∣∣∣ ,

for any f ∈ L1(Ω), gives
|(τ ′,∇v∗)| ≤ c1d‖τ ′‖∗,Ω. (3.58)

In a similar fashion to (3.58) we may prove that

| (w · ∇v∗,w) | =
∣∣∣∣
∫

Ω

vivj
∂u∗i
∂xj

dx

∣∣∣∣ ≤ c1

d∑
i,j=1

∫

Ω

|vivj| dx ≤ c1d ‖w‖2
0 . (3.59)

Using the Cauchy-Schwarz inequality, the Poincaré-Friedrichs inequality and a Young's-type
inequality we may write

2|(f̃ ,w)| ≤ 2C1‖f̃‖0|w|1 ≤ C2
1

β1

‖f̃‖2
0 + β1|w|21, (3.60)

and
2β|(∇v∗,∇w)| ≤ β2

β2

|v∗|21 + β2|w|21, (3.61)

where β1 and β2 are arbitrary positive numbers and C1 is the constant in the Poincaré-
Friedrichs inequality that is dependent only onΩ.
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We get from the inequalities (3.56)�(3.61):

1

We
‖τ ′‖∗,Ω +

d

dt
‖τ ′‖∗,Ω + Re

d

dt
‖w‖2

0 + (2β − β1 − β2)|w|21

≤ F (t) + 2c1d‖τ ′‖∗,Ω + 2c1dRe ‖w‖2
0 +

C2
1

β1

‖f̃‖2
0 +

β2

β2

|v∗|21

We can choose β1 = β2 = β/2 and obtain, using the Poincaré-Friedrichs inequality, that

1

We
‖τ ′‖∗,Ω +

d

dt
‖τ ′‖∗,Ω + Re

d

dt
‖w‖2

0 +
β

C2
1

‖w‖2
0

≤ F (t) + 2c1d‖τ ′‖∗,Ω + 2c1dRe ‖w‖2
0 + 2

C2
1

β
‖f̃‖2

0 + 2β|u∗|21
≤ 2c1d‖τ ′‖∗,Ω + 2c1dRe ‖w‖2

0 + Cc2 (3.62)

with
C = max

(
1, 2

C2
1

β
, 2β

)
. (3.63)

Let us introduce
|||w, τ ′||| ≡ Re‖v‖2

0 + ‖τ ′‖∗,Ω
and

γ = min

(
1

We
,

β

C2
1Re

)
. (3.64)

Using this notation, we can derive from (3.62):

d

dt
|||w, τ ′|||+ γ|||w, τ ′||| ≤ 2c1d|||w, τ ′|||+ Cc2. (3.65)

An application of Gronwall's lemma to (3.65) gives

|||w, τ ′||| ≤ |||w0, τ
′
0||| exp(2c1d− γ)t

+
Cc2

γ − 2c1d
(1− exp(2c1d− γ)t) . (3.66)

If g = 0 then v∗ may be taken to be the zero vector and (3.50) follows immediately.
If v∗ 6= 0 we use the triangle inequality

‖v‖0 ≤ ‖v∗‖0 + ‖w‖0, (3.67)

and square both sides to get

‖v‖2
0 ≤ ‖v∗‖2

0 + 2‖v∗‖0‖w‖0 + ‖w‖2
0 ≤ 2‖v∗‖2

0 + 2‖w‖2
0, (3.68)

so that
1

2
‖v‖2

0 − ‖v∗‖2
0 ≤ ‖w‖2

0. (3.69)

Similarly,
‖w‖2

0 ≤ 2‖v∗‖2
0 + 2‖v‖2

0. (3.70)
The inequality (3.49) then follows from (3.66), (3.69) and (3.70). ¤
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3.2.2 Numerical scheme
We present here a time-discretized algorithm for simulation of unsteady Oldroyd B �ows that
can be shown to preserve the energy estimate derived in Theorem4. We �x some ∆t > 0 and
proceed at each time ti = i∆t, i ≥ 1 as follows: suppose that we know (vi−1, τ

′
i−1) from the

previous time step, where τ ′i−1 is symmetric and positive de�nite everywhere. Then we �nd a
vector �eld vi(x), a scalar �eld pi(x) and a d× d tensor �eld Ai(x) such that

Re

(
vi − vi−1

∆t
+ vi · ∇vi

)
− β∇2vi +∇pi = ∇·(AiA

T
i ) + fi, (3.71)

∇ · vi = 0, (3.72)

Ai + ∆t

[
1

2We
Ai + (vi · ∇)Ai −∇viAi

]
=

√
τ ′i−1, (3.73)

vi|Γ = gi, Ai|Γin
=

√
ϕ′

i, (3.74)

where fi,gi and ϕ′
i are the values of f ,g and ϕ′ at time t = ti. We then set at every point

x ∈ Ω

τ ′i = AiA
T
i +

(1− β)∆t

We2
I. (3.75)

Note that the square root in (3.74) is taken of symmetric and positive de�nite matrices and
that the result of this operation is assumed to be symmetric and positive de�nite as well. The
positive de�niteness of τ ′i is preserved automatically by (3.75).

The numerical scheme proposed above bears similarities to that described in Sections3.1.4-
3.1.5, the essential di�erence being that nonlinear coupling between the momentum equation
(3.71) and Eq. (3.73) is introduced here.

Lemma 5 vi, pi and τ ′i de�ned by (3.71)�(3.75) satisfy the Oldroyd B equation system (3.39)�
(3.41) as ∆t −→ 0.

Proof. The equivalence of (3.39) and (3.71) is clear since we have from (3.75)

∇·(AiA
T
i ) = ∇·τ ′i.

From (3.73) we have, on multiplying the equation by its transpose that

AiA
T
i + ∆t

(
1

We
AiA

T
i + (vi · ∇)AiA

T
i −∇viAiA

T
i −AiA

T
i (∇vi)

T

)

= τ ′i−1 + O(∆t)2. (3.76)

By substituting (3.75) into (3.76) we see that τ ′i satis�es

τ ′i + ∆t

(
1

We
τ ′i + (vi · ∇)τ ′i −∇viτ

′
i − τ ′i∇uT

i

)

= τ ′i−1 +
(1− β)∆t

We2
I + O(∆t)2, (3.77)

which is equivalent to (3.41). ¤
We now prove that the weak Galerkin solution to the scheme (3.71)�(3.75) satis�es the

bound (3.50) in the case of zero Dirichlet boundary conditions on the velocity. The result can
be extended easily to the case of general boundary conditions.
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Lemma 6 Let g = 0. The weak Galerkin solution of (3.71)�(3.75) satis�es the bound (3.50)
as ∆t −→ 0.

Proof. Introducing a solenoidal test vector w that vanishes on Γ and a test tensor S, weak
forms of (3.71) and (3.73) may be written down, respectively, in the form

Re

∆t
(vi − vi−1,w) + Re (vi · ∇vi,w) + β (∇vi,∇w)

= −(AiA
T
i ,∇w) + (fi,w) , (3.78)

and
1

∆t
(Ai,S) +

[
1

2We
(Ai,S) + (vi · ∇Ai,S)− (∇viAi,S)

]

=
1

∆t

(√
τ ′i−1,S

)
. (3.79)

We begin the proof by choosingw = vi in (3.78), multiplying throughout by 2 and using (3.60)
with β1 = β . This yields the inequality

2Re

∆t
(vi − vi−1,vi) + β (∇vi,∇vi) + 2 (∇viAi,Ai) ≤ C2

1

β
‖fi‖2

0. (3.80)

In the weak form (3.79) we now choose S = Ai, and use a Young's inequality on the right-hand
side to get

(
1

We
+

1

∆t

)
(Ai,Ai)− 2 (∇viAi,Ai) ≤ 1

∆t

(√
τ ′i−1,

√
τ ′i−1

)
. (3.81)

Summing up (3.80) and (3.81), using the Poincaré-Friedrichs inequality and noting that
(√

τ ′i−1,
√

τ ′i−1

)
=

∫

Ω

tr
(√

τ ′i−1

)2

dx = ‖τ ′i−1‖∗,Ω,

allows us to write
2Re

∆t
(vi − vi−1,vi) +

β

C2
1

(vi,vi) +

(
1

We
+

1

∆t

)
(Ai,Ai)

≤ 1

∆t
‖τ ′i−1‖∗,Ω +

C2
1

β
‖fi‖2

0. (3.82)

Referring to Eqn. (3.75) we see that

(Ai,Ai) =

∫

Ω

tr
(
AiA

T
i

)
dx = ‖τ ′i‖∗,Ω −

d(1− β)∆t

We2
Meas(Ω), (3.83)

so that, using a Young's inequality to treat the product ofvi and vi−1 in the inertial term in
(3.82), we get

Re

∆t
(vi,vi) +

β

C2
1

(vi,vi) +

(
1

We
+

1

∆t

)
‖τ ′i‖∗,Ω −

1

∆t
‖τ ′i−1‖∗,Ω

≤ Re

∆t
(vi−1,vi−1) +

C2
1

β
‖fi‖2

0

+
(1− β)d∆tMeas(Ω)

We2

(
1

We
+

1

∆t

)
. (3.84)



3.2. AN ENERGY ESTIMATE FOR THE OLDROYD B MODEL 59

Let us now rearrange (3.84) and recall, as in (3.64), that

γ = min

(
1

We
,

β

C2
1Re

)
.

Then from (3.84) we may conclude that
(

γ +
1

∆t

)
|||vi, τ

′
i||| −

1

∆t
|||vi−1, τ

′
i−1|||

≤ C2
1

β
sup
i≥1

‖fi‖2
0 +

d(1− β)Meas(Ω)

We2

(
1 +

∆t

We

)
. (3.85)

De�ne
si = |||vi, τ

′
i||| −

C2
1

βγ
sup
i≥1

‖fi‖2
0 −

d(1− β)Meas(Ω)

γWe2

(
1 +

∆t

We

)
. (3.86)

Then from (3.85) we see that (
γ +

1

∆t

)
si ≤ si−1

∆t
,

and hence that
si ≤ (1 + γ∆t)−is0.

Substituting for si from (3.86) we then get

|||vi, τ
′
i||| ≤ |||v0, τ

′
0|||(1 + γ∆t)−i

+
C

γ
Meas(Ω)

[
sup
i≥1

‖fi‖2
0 +

d(1− β)

We2

(
1 +

∆t

We

)]
(1− (1 + γ∆t)−i), (3.87)

with C = C2
1/β, which is smaller than C de�ned in (3.63). At any �xed time t = i∆t as

∆t −→ 0 and i −→∞, (1 + γ∆t)−i −→ exp(−γt) and the bound (3.50) may therefore be seen
to be respected by the numerical scheme . ¤

3.2.3 Example: planar channel �ow
The results of the previous two sections apply to all bounded �ows of an Oldroyd B �uid
where we supply Dirichlet boundary conditions for the components of velocity and prescribe
in�ow conditions for the components of the elastic tensorτ ′. The results equally well apply to
periodic �ows of an Oldroyd B �uid, where the pressure (minus, possibly, a pressure gradient),
velocity and stress are considered periodic in at least one coordinate direction and Dirichlet
velocity conditions are imposed on the boundary.

In this section we present the derived a priori bounds (3.49)-(3.50) for planar channel �ow
of an Oldroyd B �uid. Similar results would apply for circular Poiseuille �ows of such a �uid.
The boundary of the domain Ω = {(x1, x2) ∈ (0, L) × (0, 1)} is denoted by Γ and the in�ow
and out�ow boundaries for the Dirichlet problem byΓin and Γout, respectively. We proceed to
describe �rstly the periodic problem and follow this up with the results of the analysis when
in�ow conditions on τ ′ are imposed.
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Periodic boundary conditions
In this case periodicity in the �ow variables (v, τ ′) is assumed in the x1 direction over some
length L. The pressure may be expressed as the sum of a steady base �ow pressure−Px1 + c
(P ≥ 0 and c, constants) and an L−periodic part p̃. We now drop the tilde on the periodic
part of the pressure and simply put the body force f = (P, 0) in (3.40). The divergence-free
velocity �eld v∗ may be taken to be zero. Consequently c1 = 0.

With f = (P, 0) in (3.40) and g = 0 on x2 = 0 and 1, c2 is given by

c2 = Meas(Ω)

[
2(1− β)

We2
+ P 2

]
. (3.88)

When Re = 0 and with c1 and c2 as given above, Eqn. (3.49) leads to the following bound
on ‖τ ′‖∗,Ω:

‖τ ′‖∗,Ω ≤ ‖τ ′0‖∗,Ω exp

(
− t

We

)

+CWeMeas(Ω)

[
2(1− β)

We2
+ P 2

](
1− exp

(
− t

We

))
. (3.89)

For Re 6= 0 and noting that w = v, the inequality (3.50) reads

|||v, τ ′||| ≤ |||v0, τ
′
0||| exp (−γt)

+
C

γ
Meas(Ω)

[
2(1− β)

We2
+ P 2

]
(1− exp(−γt)). (3.90)

In�ow boundary conditions
A steady state solution (v, p, τ ′) of plane Poiseuille �ow of an Oldroyd B �uid between two
plates x2 = 0 and x2 = 1 in the absence of body forces (f = 0) may be written in the form

p = −Px1 + c, (3.91)
v = (v1, v2) = (Px2(1− x2)/2, 0), (3.92)

τ ′11 =
(1− β)

We
+ 2We(1− β)

(
dv1

dx2

)2

, (3.93)

τ ′12 = (1− β)
dv1

dx2

, (3.94)

τ ′22 =
(1− β)

We
, (3.95)

where −P is a constant pressure gradient. The solution (3.91)-(3.95) has led us to choose the
boundary conditions (see (3.42)) g = Px2(1−x2)/2 and ϕ′ as in (3.93)-(3.95). Thus a suitable
choice of v∗ is v∗ = g throughout Ω. With this choice c1 = P/2. In order to calculate c2 we
compute

|v∗|21 =

∫

Ω

(
P

2
− Px2

)2

dx1dx2 = Meas(Ω)
P 2

12
, (3.96)
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and
∣∣∣∣
∫

Γin

g · ntrϕ′
∣∣∣∣ =

∫ 1

x2=0

P

2
x2(1− x2)

[
2(1− β)

We
+ We(1− β)(1− 2x2)

2P 2

2

]
dx2

=
P (1− β)

6We
+

P 3(1− β)We

120
. (3.97)

Thus
c2 =

(
2
(1− β)

We2
+

P 2

12

)
Meas(Ω) +

P (1− β)

6We
+

P 3(1− β)We

120
. (3.98)

Let us now consider the cases of zero and non-zero Reynolds number �ows. WhenRe = 0 the
analysis of Theorem 4 indicates that the stress τ ′ is bounded as follows:

‖τ ′‖∗,Ω ≤ ‖τ ′0‖∗,Ω exp

(
2P − 1

We

)
t

+
Cc2

(1/We)− 2P

(
1− exp

(
2P − 1

We

)
t

)
, (3.99)

with c2 as given in (3.98). When Re > 0 inequality (3.49) shows that

Re

2
‖v‖2

0 + ‖τ ′‖∗,Ω ≤ Re‖v∗‖2
0(1 + 2 exp(2P − γ)t)

+ (2Re‖v0‖2
0 + ‖τ ′0‖∗,Ω) exp(2P − γ)t

+
Cc2

γ − 2P
(1− exp(2P − γ)t), (3.100)

where ‖v∗‖2
0 = P 2

120
Meas(Ω) and c2 is as given in (3.98).

Remarks
It should be noted that although (v, p, τ ′) may be interpreted as being the sum of a base

�ow and a perturbation, the estimates given in (3.89), (3.90), (3.99) and (3.100) cannot be used
to infer whether or not channel �ow of an Oldroyd B �uid is stable to in�nitesimal or �nite
amplitude disturbances. However, we are at least able to deduce that for periodic channel �ow
as t −→∞, �nite bounds, proportional toMeas(Ω) [2(1− β)/We2 + P 2], exist on ‖τ ′‖∗,Ω and
|||v, τ ′||| for the inertialess and inertial cases, respectively.

In the event of in�ow boundary conditions being speci�ed on the components of the elastic
stress, proof of the existence of �nite bounds on the velocity and stress �elds may be seen from
(3.99) and (3.100) to be conditional on the pressure gradient being su�ciently small. The
condition on P in (3.100) is more stringent in this respect than that in (3.99).

3.2.4 Numerical results
We report here some numerical results obtained with two di�erent schemes. The �rst one
(referred to as Method 1 in the sequel) is the scheme described in Section3.2.2. The other
one (Method 2) is a direct implicit Euler discretization in time of (3.39)�(3.40) and (3.41)
with an implicit treatment of the convective terms in both (3.40) and (3.41). Note that
both our methods are thus fully implicit. We consider planar Poiseuille �ow with periodic
boundary conditions in the x1-direction with a wavenumberα, so that the �ow domain is Ω =



62 CHAPTER 3. ON THE USE OF KINETIC THEORY FOR THE OLDROYD B MODEL

(0, 2π/α)×(−1, 1). For the discretization in space we use in both approaches a spectral method,
employing a Fourier series in the periodic direction and Lagrange interpolating polynomials
hl(x2) on the Gauss-Legendre-Lobatto (GLL) grid in the x2-direction. Thus the velocity is
represented as

v(x1, x2, t) =

N/2∑

k=−N/2

M∑

l=0

vkl(t) exp(iαkx1)hl(x2).

The same polynomial basis is used for τ ′i and Ai. The pressure is approximated in the x2-
direction by polynomials of degree M − 2 instead of M in order to avoid spurious pressure
modes [14]. The integrals in the weak forms of the Galerkin equations are evaluated using a
GLL quadrature rule. The resulting nonlinear algebraic problem is solved at each time step
using a simple iterative method.

4 4.25 4.5 4.75 5
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Figure 3.5: Start-up Poiseuille �ow. τ ′12 on the wall x2 = 1. Re = 1, We = 1. Solid curve �
analytical solution; dashed curve � Method 1 withM = 8, N = 4 and ∆t = 0.01; dotted curve
� Method 1 with M = 16, N = 4 and ∆t = 0.001.

For all the computations described in this section care had to be taken to ensure that the
discretization in the transverse direction x2 was su�ciently �ne for a given value of N and
α. Keiller [73] observed that arti�cial numerical instabilities could occur in �nite di�erence
simulations of the time-dependent viscoelastic Couette problem and proposed an instability
criterionWecrit = O(∆x/∆y) for the problem, where∆x and ∆y are the resolution scales in the
streamwise and cross-stream directions, respectively. Keiller [74] also suggested that a similar
criterion could apply to steady-state calculations of viscoelastic Poiseuille �ow. Interestingly,
the necessity of adequate re�nement in the streamwise direction relative to the cross-stream
direction is also in evidence for simulations of time-dependent shear �ows using �nite volume
methods [123], �nite element methods [24] and spectral element methods [51].

In validation of Method 1 we begin by showing in Fig. 3.5 values of τ ′12 computed on
the wall x2 = 1 with two di�erent meshes and time steps for start-up Poiseuille �ow, and



3.2. AN ENERGY ESTIMATE FOR THE OLDROYD B MODEL 63

Time
10 20 30 40

10-4

10-3

10-2

10-1

M=8
M=12
M=16
M=20
M=24

Figure 3.6: Evolution of perturbation in creeping Poiseuille �ow. L2 error in the elastic extra-
stress against time. Method 1 withWe = 10, N = 4, ∆t = 0.005.
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Figure 3.7: Evolution of perturbation in creeping Poiseuille �ow. L2 error in the elastic extra-
stress against time. Method 2 withWe = 10, N = 4, ∆t = 0.005.
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Figure 3.8: Evolution of perturbation in Poiseuille �ow. v2 at (0, 0). Re = 2400, E = 4×10−4,
β = 0.5, α = 1.3231, M = 24, N = 8 and ∆t = 0.005.
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Figure 3.9: Evolution of perturbation in Poiseuille �ow. v2 at (0, 0). Re = 2400, E = 6×10−4,
β = 0.5, α = 1.3231, M = 24, N = 8 and ∆t = 0.005.
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Figure 3.10: Evolution of perturbation in Poiseuille �ow computed with Method 1. v2 at (0, 0).
Re = 3500, E = 4.11 × 10−4, β = 0.5, α = 1.3231 and ∆t = 0.005. In Zoom 1 is shown a
magni�cation of the perturbations for 100 ≤ t ≤ 150 and in Zoom 2 a similar magni�cation
for 4000 ≤ t ≤ 4050. Solid curve � M = 24, N = 8; dotted curve � M = 28, N = 10.
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Figure 3.11: Evolution of |||v, τ ′||| = Re‖v‖2
0 +‖τ ′‖∗,Ω for the same parameters as in Fig. 3.10.
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compare these with the exact solution of Waters and King [133]. The Weissenberg number
and the Reynolds number are both set to unity. Zero initial conditions were supplied for all
components of and elastic stress τ and a constant pressure gradient ∂p/∂x1 = −2 was applied
at all time. As the mesh is re�ned and the time step reduced increasingly good close agreement
with the exact solution may be observed, even near the �rst stress overshoot. For this problem
no limiting Weissenberg number was encountered provided that, for su�ciently smallN , M
was chosen su�ciently large.

In Figs. 3.6 - 3.10 we show the results of our computations when the steady state solution
of the Oldroyd B Poiseuille problem was �nitely perturbed at t = 0. We start with creeping
�ows (Re = 0), see Figs. 3.6 and 3.7. The initial perturbation here was chosen to be very
small (of order 10−15) random but nevertheless the same for the 2 methods. As can be seen
from the �gures, no distinct advantage has been found in using our new method for these
�ows. The determining factor seems to be the ratio of discretization steps in two directions.
Note, however, that the simulations using Method 1 do note explode in time, as do those using
Method 2. This is the manifestation of the fact that the former respect the energy bound
(3.50) whereas the latter do not.

However, we are able to prove the superiority of our new method for simulations of �ows
with inertia. The initial perturbation in this case was constructed from the eigenfunctions
of the Newtonian linear stability problem corresponding to the least stable eigenvalue with
the aim of comparing our results with those of Atal�k and Keunings [3] who considered the
evolution of �nite perturbations of this type to viscoelastic Poiseuille �ow. The maximum
norm of the velocity perturbations was set equal to 0.1 in all our numerical experiments and,
following one of the choices of Atal�k and Keunings, the wavenumberα was taken as 1.3231.
In Figs. 3.8 and 3.9 we show the results of �nitely perturbing the Oldroyd B Poiseuille �ow
at elasticity numbers E = We/Re of 4 × 10−4 and 6 × 10−4, respectively. The value of v2 at
(0, 0) is plotted. According to the study of Atal�k and Keunings [3], a periodic non-decaying
wave should result in the �rst case, whereas the second case is borderline, lying on the curve
of neutral stability of Fig. 6 of [3]. We see that both Methods 1 and 2 predict that the
perturbations die out with time. Agreement in Fig. 3.8 between the two methods is excellent
whereas at the higher elasticity number the oscillations are sustained for rather longer using
Method 2.

Increasing the Reynolds number to 3500 whilst keeping the same Weissenberg number as in
Fig. 3.9 leads to periodic and non-decaying oscillations, as shown in Fig. 3.10. The elasticity
number is now equal to 4.11×10−4 and the results are consistent with the predictions of Atal�k
and Keunings. In order to investigate the long term behaviour with mesh re�nement, solutions
on two di�erent meshes (M, N) = (24, 8) and (28, 10) were computed. A small di�erence in
period became apparent for large t and in Zoom 2 of the �gure this shows up as a slight
shift between the perturbations in v2 computed at (0, 0) using the two meshes. At these large
times the amplitude of the oscillations has settled down to a steady state and is computed
to be approximately 0.11 on the �ner mesh and 0.12 on the coarser mesh. The period of the
oscillations is approximately 13.87 on both meshes.

In Fig. 3.11 we demonstrate what happens when Method 2 is applied to the same Poiseuille
problem as described in the previous paragraph. In this case the iterative process employed
at each time step to solve the nonlinear governing equations fails to converge after 63760 time
steps. Even before this point, however, the energy estimate (3.49) has been violated by Method
2. We note that the failure of Method 2 cannot be attributed to the lack of positive de�niteness
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of τ ′ since it was checked to be positive de�nite at all collocation points at all points in time.
In contrast, and in keeping with the analysis of Section 3, the value of|||v, τ ′||| computed with
Method 1 is less than the theoretical bound at all times.
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Chapter 4

Simulations of �ows of dilute polymer
solutions using a Fokker-Planck equation
for the FENE dumbbell model

In this chapter we report on the results on using the numerical methods based on the FP
equation for a dilute polymer solution modelled by FENE dumbbells with the force law (1.4)
(or (1.21) in the non-dimensional form). The global or local homogeneity of the �ow (see
Section 1.1.4) will be assumed in the �rst 4 sections of this chapter and the simulations, which
do not use these assumptions, will be presented in the last Section. Throughout this chapter,
we shall be interested mostly in two-dimensional planar �ows. However, even in this case,
there is no physical reason to suppose that the dumbbells lie in the plane of the �ow, hence
the con�guration vector q should be three-dimensional. For simplicity, one can also consider
a simpli�ed model where q is restricted to lie in the plane of the �ow. In the latter case, we
will denote the model as 2D FENE, and in the former case as 3D FENE.

4.1 Discretization of the Fokker-Planck equation for sim-
ple �ows

In this section, we restrict ourselves to the case of homogeneous �ows, so that the velocity is
given by (1.18). Thus, we do not need to solve the momentum and mass conservation equations
and we are only seeking a pdfψ(t,q) that is independent of spatial position. Let us recall that
the FP equation can be written in this case after non-dimensionalization ofq as

∂ψ

∂t
+ divq

((
κq− 1

2λ

q

1− |q|2/b
)

ψ

)
=

1

2λ
∆qψ. (4.1)

The discretization of this equation for 2D FENE and 3D FENE models is described separately
in the following two subsections.

4.1.1 Two-dimensional FENE dumbbells
The magnitude of the con�guration vectors for the FENE dumbbells cannot exceed

√
b, hence

the pdf ψ for the 2D FENE model should be de�ned in the disc |q| <
√

b. Therefore, it is

69
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natural to use polar coordinates (ρ, ϕ) to represent q as

q1 = ρ cos ϕ, q2 = ρ sin ϕ, with ρ ∈ [0,
√

b] and ϕ ∈ [0, 2π]. (4.2)

We now give a detailed expression for (4.1) in the variables (ρ, ϕ) :
∂ψ

∂t
= −ρb1(κ, ϕ)

∂ψ

∂ρ
− b2(κ, ϕ)

∂ψ

∂ϕ
+

1

2λ

(
bρ

b− ρ2
+

1

ρ

)
∂ψ

∂ρ

+
b2

λ(b− ρ2)2
ψ +

1

2λ

∂2ψ

∂ρ2
+

1

2λρ2

∂2ψ

∂ϕ2
, (4.3)

where b1(κ, ϕ) and b2(κ, ϕ) are de�ned by

b1(κ, ϕ) = κ11 cos 2ϕ +
κ12 + κ21

2
sin 2ϕ, (4.4)

and
b2(κ, ϕ) = −κ11 sin 2ϕ +

(
κ12 + κ21

2

)
cos 2ϕ +

κ21 − κ12

2
. (4.5)

We note that (4.3) possesses two singularities at ρ = 0 and ρ =
√

b that require special
treatment. Consistent with the fact that the probability density function should be zero at
ρ =

√
b and satisfy ∂ψ/∂ρ = 0 at ρ = 0 (the latter condition follows from symmetry of the pdf

with respect to q), we introduce a new unknown α(t, η, ϕ) de�ned by

ψ(t, ρ, ϕ) =

(
1− η

2

)s

α(t, η, ϕ), (4.6)

where
ρ2 = b

1 + η

2
, η ∈ [−1, 1], (4.7)

and s is a positive number. The choice ofs will be discussed below. Substituting the expression
for ψ given by (4.6) into (4.3), we get

∂α

∂t
= L0α + κ11L1α + κ12L2α + κ21L3α, (4.8)

where L0, . . . , L3 are linear operators (independent ofκ) de�ned by

L0 =
2(b− 2s)(2− s− sη)

bλ(1− η)2
+

2

bλ

(
(b− 4s)(1 + η)

1− η
+ 2

)
∂

∂η

+
4(1 + η)

λb

∂2

∂η2
+

1

λb(1 + η)

∂2

∂ϕ2
, (4.9)

L1 =
2s(1 + η)

1− η
cos 2ϕ− 2(1 + η) cos 2ϕ

∂

∂η
+ sin 2ϕ

∂

∂ϕ
, (4.10)

L2 =
s(1 + η)

1− η
sin 2ϕ− (1 + η) sin 2ϕ

∂

∂η
− 1

2
cos 2ϕ

∂

∂ϕ
+

1

2

∂

∂ϕ
, (4.11)

and
L3 =

s(1 + η)

1− η
sin 2ϕ− (1 + η) sin 2ϕ

∂

∂η
− 1

2
cos 2ϕ

∂

∂ϕ
− 1

2

∂

∂ϕ
. (4.12)
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Discretization in con�guration space
We shall search for an approximate solutionα(t, η, ϕ) to the FP equation (4.8) of the form

αN(t, η, ϕ) =
1∑

i=0

NF∑

l=i

NR∑

k=1

αi
kl(t)hk(η)Φil(ϕ), (4.13)

for some positive integers NF and NR, with

Φil(ϕ) =

{
cos 2lϕ, i = 0
sin 2lϕ, i = 1

= cos
(
2lϕ− i

π

2

)
. (4.14)

In the above expression, {hk(η)}1≤k≤NR
are Lagrange interpolating polynomials based on the

Gauss-Legendre points ηr (see Section 2.1). Note that the set {ηr} is chosen so that it does
not include the points η = −1 and η = 1 since the boundary conditions there are already taken
into account by (4.6). Only the Fourier modes of even order are kept in (4.14) because of the
symmetry of α(η, ϕ). The integrals with respect to η are evaluated using the Gauss quadrature
rule (2.1). The integrals with respect to ϕ can be computed analytically.

To calculate the components of the matrixL0 that is the discretization of the operatorL0

de�ned by (4.9), we insert (4.13) into (4.9), form its product with a test functionhm(η)Φjn(ϕ)
and integrate over con�guration space, to obtain

L0αN =
1∑

j=0

NF∑
n=j

NR∑
m=1

(L0α)j
mnhm(η)Φjn(ϕ)

with

(L0α)j
mn =

NR∑

k=1

(
2

bλ

(
(b− 4s)(1 + ηm)

1− ηm

+ 2

)
h
′
k(ηm) +

4(1 + ηm)

λb
h
′′
k(ηm)

)
αj

kn

+

(
2(b− 2s)(2− s− sηm)

bλ(1− ηm)2
− 4l2

λb(1 + ηm)

)
αj

mn. (4.15)

Note that the quadrature weights in Gauss integration with respect toη have been cancelled
in (4.15) so that this equation is simply an evaluation of the di�erential operator (4.9) at the
quadrature points. This approach is known as the collocation method.

The discretizations L1, . . . ,L3 of operators L1, . . . , L3, de�ned by (4.10)�(4.12), may be
written in similar notation as

(L1α)j
mn =

1∑
i=0

NF∑

l=i

NR∑

k=1

[(
2s(1 + ηm)

1− ηm

h
′
k(ηm)− 4

1 + ηm

1− ηm

δkm

)
J0

iljn + K1
iljnδkm

]
αi

kl, (4.16)

(L2α)j
mn =

1∑
i=0

NF∑

l=i

NR∑

k=1

[(
s(1 + ηm)

1− ηm

h
′
k(ηm)− 2

1 + ηm

1− ηm

δkm

)
J1

iljn −
1

2
K0

iljnδkm

]
αi

kl+(−1)jnα1−j
mn ,

(4.17)
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(L3α)j
mn =

1∑
i=0

NF∑

l=i

NR∑

k=1

[(
s(1 + ηm)

1− ηm

h
′
k(ηm)− 2

1 + ηm

1− ηm

δkm

)
J1

iljn −
1

2
K0

iljnδkm

]
αi

kl−(−1)jnα1−j
mn ,

(4.18)
where

Jp
iljn =

1

π(1 + δn0)

∫ 2π

0

cos
(
2ϕ− p

π

2

)
Φil(ϕ)Φjn(ϕ)dϕ

=
1

2(1 + δn0)

(
δl+n,1 cos(p− i− j)

π

2
+ δn−l,1 cos(p + i− j)

π

2
+ δl−n,1 cos(p− i + j)

π

2

)
,

and
Kp

iljn =
1

π(1 + δn0)

∫ 2π

0

sin
(
2ϕ− p

π

2

)
Φ
′
il(ϕ)Φjn(ϕ)dϕ = 2l(−1)1−iJp

iljn.

Equation (4.8) can be discretized in time using an implicit Euler scheme. Combining it
with the discretization in con�guration space described above, we arrive at a scheme

αn+1
N = (I−∆t (L0 + κ11L1 + κ12L2 + κ21L3))

−1 αn
N , (4.19)

where αn
N is the vector of the expansion coe�cientsαi

kl(t) at time tn = n∆t.
If one is only interested in the steady-state solution, one can �nd directly a non-trivial

solution αN of
(L0 + κ11L1 + κ12L2 + κ21L3) αn

N = 0 (4.20)

by changing one of the rows in the singular matrix (L0 + κ11L1 + κ12L2 + κ21L3) by the dis-
cretized form of the integral of ψ over the whole of con�guration space (see (4.27)), set equal
to unity.

Computation of the elastic extra-stress
The elastic extra-stress can be written as (see equation (3))

τ =
ηp

λ

(
b + 4

b

)(
−I+

∫

|q|<
√

b

q⊗ F(q)ψdq

)
. (4.21)

Using (4.2) and (4.7), an expression for q⊗ F(q) is

q⊗ F(q) =
r2

1− r2

b

e⊗ e = b
1 + η

1− η
e⊗ e, (4.22)

where e is the unit vector (cos ϕ, sin ϕ). With the help of (4.6), the integral appearing in (4.21)
can now be rewritten as

∫

|q|<
√

b

q⊗ F(q)ψdq =

∫ 1

−1

∫ 2π

0

b2

16
(1 + η)

(
1− η

2

)s−1

αe⊗ edϕdη. (4.23)
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We then replace α in the above integral by its expression (4.13), evaluate the integral with
respect to ϕ analytically and the integral with respect to η numerically. Most of the terms
vanish and we get the following expressions for the three components of the elastic extra-stress:

τxx =
ηp

λ

b + 4

b

(
−1 +

πb2

16

NR∑
i=1

wi(1 + ηi)

(
1− ηi

2

)s−1

(2ψ0
i0 + ψ0

i1)

)
, (4.24)

τxy =
ηp

λ

b + 4

b

πb2

16

NR∑
i=1

ωi(1 + ηi)

(
1− ηi

2

)s−1

α1
i1, (4.25)

τ yy =
ηp

λ

b + 4

b

(
−1 +

πb2

16

NR∑
i=1

ωi(1 + ηi)

(
1− ηi

2

)s−1 (
2α0

i0 − α0
i1

)
)

, (4.26)

where ωi are the Gauss-Legendre quadrature weights as in (2.1).
Analogously, the formula for computing the integral ofψ over the whole of con�guration

space may be written as
∫

|q|<
√

b

ψdq ≈πb

2

NR∑
i=1

ωi

(
1− ηi

2

)s

α0
i0. (4.27)

4.1.2 Three-dimensional FENE dumbbells
For the 3D FENE model, con�guration space is a ball of radius

√
b and therefore it is natural

to represent the vector q in spherical coordinates

q1 = ρ sin θ cos ϕ, q2 = ρ sin θ sin ϕ, q3 = ρ cos θ, (4.28)

where ρ ∈ [0,
√

b], ϕ ∈ [0, 2π] and θ ∈ [0, π]. We now introduce the unit vector u de�ned by
q = ρu and the following two operators

Λ =
∂

∂u
· (I− uu)

∂

∂u
, (4.29)

L(κ)ψ =
∂

∂u
· [(I− uu) · κ · uψ] . (4.30)

With these notations, the FP equation (4.1) takes the form:

Dψ

Dt
+ L(κ)ψ + divq

(
(ρκ : uuu− 1

2λ

ρu

1− ρ2/b
)ψ

)
=

1

2λ

(
∂2

∂ρ2
+

2

ρ

∂

∂ρ
+

1

ρ2
Λ

)
ψ. (4.31)

Expanding the divergence operator, we get

∂ψ

∂t
+ L(κ)ψ +

(
3κ : uu− 3− ρ2/b

2λ(1− ρ2/b)2

)
ψ +

(
κ : uu− 1

2λ(1− ρ2/b)

)
ρ
∂ψ

∂ρ

=
1

2λ

(
∂2

∂ρ2
+

2

ρ

∂

∂ρ
+

1

ρ2
Λ

)
ψ. (4.32)
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To treat the boundary conditions we introduce the transformation of variables as in the 2D
case

ψ(t, ρ, θ, ϕ) =

(
1− η

2

)s

α(t, η, θ, ϕ),

where ρ and η are related by (4.7). The FP equation (4.32) can now be rewritten as

Dα

Dt
= −L(κ)α− κ : uu

(
3− 2s

1 + η

1− η

)
α− 2κ : uu(1 + η)

∂α

∂η
+ L0α, (4.33)

where

L0 =
1

λb(1 + η)
Λ +

(5− η − 2s(1 + η))(b− 2s)

bλ(1− η)2

+
2

bλ

(
3 + (b− 4s)

1 + η

1− η

)
∂

∂η
+

4(1 + η)

bλ

∂2

∂η2
, (4.34)

is the part of the FP operator that does not depend on the velocity gradient.
We restrict ourselves to velocity gradients of the form

κ =




κ11 κ12 0
κ21 −κ11 − κ33 0
0 0 κ33


 . (4.35)

We can now rewrite the FP equation (4.33) in the form analogous to that of the 2D FENE
model (4.8)

∂α

∂t
= L0α + κ11L1α + κ12L2α + κ21L3α + κ33L4α

where Lr, r = 1, . . . , 4, are linear operators independent ofκ de�ned by

Lr = −L(Ir)− Ir : uu

(
3− 2s

1 + η

1− η

)
− 2Ir : uu(1 + η)

∂

∂η
, (4.36)

with the matrices Ik of the form

I1 =




1 0 0
0 −1 0
0 0 0


 , I2 =




0 1 0
0 0 0
0 0 0


 , (4.37)

I3 =




0 0 0
1 0 0
0 0 0


 , I4 =




0 0 0
0 −1 0
0 0 1


 . (4.38)

Discretization in con�guration space
A discrete approximation of the unknown functionα(t, η, θ, ϕ) may be written as

αN(t, η, θ, ϕ) =
1∑

i=0

Nη∑

l=1

Nu∑
n=0

n∑
m=i

αi,l,n,m(t)Φi
2n,2m(θ, ϕ)hl(η), (4.39)
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where Φi
n,m(θ, ϕ) = Pm

n (cos θ) cos
(
mϕ− iπ

2

)
are spherical harmonics andPm

n are the associated
Legendre polynomials. In (4.39), only the spherical harmonics of even order appear becauseα
is an even function of u. hl(η) are Lagrange interpolating polynomials of orderNη based on
the Gauss-Jacobi points ηk with certain parameters Jα, Jβ > −1 (see Section 2.1). In contrast
with the 2D FENE case, we prefer to use here the more general Jacobi polynomials for reasons
that will be explained below.

To discretize the operators L0, . . . , L4 we insert (4.39) into (4.34) and (4.36), form the
products with test functions Φi

2n,2m(θ, ϕ)hl(η) multiplied by a weight function and integrate
over the con�guration space. In doing so, the integrals with respect toθ and ϕ can be evaluated
exactly since the spherical harmonics form the orthogonal basis inL2 space on the unit sphere.
For the integrals with respect to η, we resort to the Gaussian quadrature rule (2.1).

We note also that the spherical harmonics are the eigenfunctions of the Laplace operator
on the unit sphere, so we have

ΛΦi
n,m = −n(n + 1)Φi

n,m.

We can thus write the discretizationL0 of the operator L0:

L0αN(t,x,η, θ, ϕ) =
1∑

i=0

Nη∑

l=1

Nu∑
n=0

n∑
m=i

(L0α)i,l,n,m (t,x)Φi
2n,2m(θ, ϕ)hl(η), (4.40)

where

(L0α)i,l,n,m =

(
−2n(2n + 1)

λb(1 + ηl)
+

(5− ηl − 2s(1 + ηl))(b− 2s)

bλ(1− ηl)
2

)
αi,l,n,m

+
2

bλ

(
3 + (b− 4s)

1 + ηl

1− ηl

) Nη∑
p=0

h′p(ηl)αi,p,n,m

+
4(1 + ηl)

bλ

Nη∑
p=0

h′′p(ηl)αi,p,n,m. (4.41)

In the case of operators L1, . . . , L4 we need also the discretizations of operatorsL(κ) and
κ : uu that are described in Appendix A (see formulas (A.6) and (A.9) there with the necessary
coe�cients supplied in Tables A.1�A.4). We can thus write the discretizations Lr of the
operators Lr, r = 1, . . . , 4:

(Lrα)i,l,n,m = −
m+1∑

k=m−1

n+1∑
j=n−1

[
a2k,2m

2j,2n

(
w2k

2j (Ir)αi,l,j,k + (−1)iv2k
2j (Ir)α1−i,l,j,k

)

+

(
3− 2s

1 + ηl

1− ηl

)
b2k,2m
2j,2n

(
w2k

2j (Ir)αi,l,j,k + (−1)iv2k
2j (Ir)α1−i,l,j,k

)

+ 2(1 + ηl)

Nη∑
p=0

h′p(ηl)b
2k,2m
2j,2n

(
w2k

2j (Ir)αi,p,j,k + (−1)iv2k
2j (Ir)α1−i,p,j,k

)
]

.(4.42)

Discretization in time can be done in exactly the same manner as for the 2D FENE model.
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Computation of the elastic extra-stress
The elastic extra-stress can be written as (see equation (3))

τ =
ηp

λ

(
b + 5

b

)(
−I+

∫

|q|<
√

b

q⊗ F(q)ψdq

)
. (4.43)

We use the expression (4.22) for q⊗ F(q) and replace the pdf ψ by a function of α to get
∫

|q|<
√

b

q⊗ F(q)ψ(t,x,q)dq

=

∫ 1

−1

∫ 2π

0

∫ π

0

b5/2

25/2+s
(1 + η)3/2(1− η)s−1α(t,x,q)u⊗ udθdϕdη. (4.44)

We then replace α in the above integral by its discrete representation (4.39), evaluate the
integrals with respect to θ and ϕ analytically and the integral with respect to η numerically.
Most of the terms vanish and we get the following expressions for the three components of the
elastic extra-stress :

τxx =
ηp

λ

b + 5

b

(
−1 +

πb5/2

2s+1/2

Nη∑

l=0

ωl(1 + ηl)
3/2−Jβ(1− ηl)

s−1−Jα

(
1

3
α0,l,0,0 − 1

15
α0,l,1,0 +

2

5
α0,l,1,1

))
,

τxy =
ηp

λ

b + 5

b

πb5/2

2s+1/2

2

5

Nη∑

l=0

ωl(1 + ηl)
3/2−Jβ(1− ηl)

s−1−Jαα1,l,1,1,

τ yy =
ηp

λ

b + 5

b

(
−1 +

πb5/2

2s+1/2

Nη∑

l=0

ωl(1 + ηl)
3/2−Jβ(1− ηl)

s−1−Jα

(
1

3
α0,l,0,0 − 1

15
α0,l,1,0 − 2

5
α0,l,1,1

))
,

τ zz =
ηp

λ

b + 5

b

(
−1 +

πb5/2

2s+1/2

Nη∑

l=0

ωl(1 + ηl)
3/2−Jβ(1− ηl)

s−1−Jα

(
1

3
α0,l,0,0 +

2

15
α0,l,1,0

))

where ωl are the the quadrature weights from (2.1).
Analogously, the formula for computing the integral ofψ over the whole con�guration space

may be written as
∫

|q|<
√

b

ψdq ≈ πb3/2

2s+1/2

Nη∑

l=1

ωl(1− ηl)
s−Jα(1 + ηl)

1/2−Jβ .
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We see that the power of (1 + ηl) in all the sums above is 1/2− Jβ or 3/2− Jβ and that of
(1−ηl) is s−1−Jα or s−Jα. Therefore, these terms correspond to polynomials if1/2−Jβ and
s−1−Jα are non-negative integers, i.e. if we setJα = s−1−k and Jβ = 1/2− l for some non-
negative integers k and l. Since the Gauss quadrature rule is exact for polynomials of degree up
to 2Nη−1 and the interpolating polynomial overNη points has the degreeNη−1, all the sums
above will calculate the corresponding integrals exactly if3/2−Jβ+s−1−Jα+Nη−1 ≤ 2Nη−1
or k + l ≤ Nη − 1 in terms of the integers k and l. This is why in the case of the 3D FENE
model, we prefer to work with Jacobi polynomials withJα and Jβ selected as described above,
rather than with Legendre polynomials. We should recall the restrictions on the parameters
Jα, Jβ > −1 that give rise to the further restrictions on k and l: k < s, l < 3/2 i.e. l is 0 or 1.

4.2 Numerical results for simple �ows
In our numerical experiments we have used the following parameters : s = 2 for 2D FENE
simulations and s = 2.5, Jα = Jβ = 0.5 for 3D FENE simulations. We have no rigorous
justi�cation for choosing those values; they have been found after some numerical experiments
to give a good compromise between accuracy and stability.

Shear �ow

We �rst consider a homogeneous shear �ow, for which the velocity �eld is given by(ux, uy) =

(
·
γy, 0) where ·

γ is the shear rate. In Fig. 4.1 we compare the steady-state values of the
e�ective polymeric viscosity ηp(

·
γ) = τxy/

·
γ computed using the 2D FENE algorithm on the

mesh (NF , NR) = (15, 31) against the same quantity computed for 3D FENE dumbbells on
the mesh (NF , NR) = (12, 24). We see that the results for 2D and 3D dumbbells are close for
non-dimensional shear rates λ

·
γ in the range (0, 10). Moreover, the time-dependent behaviour

is very similar in the same parameter range. We illustrate this in Fig. 4.2 by comparing 2D
FENE and 3D FENE results for the evolution in time of the elastic extra-stress obtained at
b = 100 and λ

·
γ = 5. Since good agreement with the experimental data is reported in [43] only

for λ
·
γ ≈ 4 or less, we suggest that the simpli�ed 2D FENE model can be used to simulate

planar �ows of dilute polymeric solutions as well as the full 3D model.
We have observed severe stability restrictions at high shear rates, which are more pro-

nounced for the 3D FENE simulations than for the 2D FENE ones. This is illustrated in
Figs. 4.3 and 4.4, where the spectra of the discretized 2D FENE and 3D FENE FP operators
(that is, L0 +

·
γL2) are plotted for three levels of discretization, the parameters of the model

being set to b = 100 and λ
·
γ = 10. We see that a large number of spurious eigenvalues with

positive real parts is present in the 2D case for the meshes (NF , NR) = (10, 20) and (12, 24)
but that the spurious eigenvalues disappear after re�ning the mesh to(NF , NR) = (14, 28). In
contrast, the spurious eigenvalues are present even with the �nest mesh(12, 24) in the case of
the 3D FENE model. Since the number of degrees of freedom in the representation of the pdf
is NR(NF + 1)2 in this case, which is equal to 6300 for the �nest mesh in Fig. 4.4, this can
become a serious obstacle in using such a discretization in complex �ow simulations. We hope
that some �ltering techniques can help to remove the spurious eigenfunctions, but this is yet
to be veri�ed.
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Figure 4.1: Steady-state polymeric viscosity for 2D (solid line) and 3D (dashed line) FENE
models. The meshes are (NF , NR) = (15, 31) for the 2D FENE model and (NF , NR) = (12, 24)
for the 3D FENE model.
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Figure 4.2: Stress vs. time; 2D (solid line) and 3D (dotted line) FENE models. The meshes
are (NF , NR) = (15, 31) for the 2D FENE model and (NF , NR) = (12, 24) for the 3D FENE
model. ∆t = 0.01.
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Figure 4.3: Spectrum of the discretized FP operator for the 2D FENE model at 3 levels of
discretization: red � (NF , NR) = (10, 20), green � (NF , NR) = (12, 24), blue � (NF , NR) =
(14, 28).
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Figure 4.4: Spectrum of the discretized FP operator for the 3D FENE model at 3 levels of
discretization: red � (NF , NR) = (10, 20), green � (NF , NR) = (12, 24), blue � (NF , NR) =
(14, 28).
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NR NF Computed Relative error
11 5 9.37276961201 3.7 · 10−5

13 6 9.37240261618 2.2 · 10−6

15 7 9.37242377204 1.1 · 10−7

17 8 9.37242273550 4.5 · 10−9

19 9 9.37242277922 1.6 · 10−10

21 10 9.37242277768 5.5 · 10−12

Table 4.1: Numerical results for planar extensional �ow at ·ε = 1 (the exact value of τxx is
9.37242277773).
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Figure 4.5: Plot of the pdf ψ for ·
ε = 1 and (NF , NR) = (6, 13).

NR NF Computed Relative error
11 5 diverging −
13 6 79.3936 0.35
21 10 119.819187 2.0 · 10−2

31 15 122.313126 1.4 · 10−4

41 20 122.295791 2.1 · 10−7

Table 4.2: Numerical results for planar extensional �ow at ·ε = 5 (the exact value of τxx is
122.295817)
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Figure 4.6: Plot of the pdf ψ for ·
ε = 5 on two meshes: (a)(NF , NR) = (6, 13); (b) (NF , NR) =

(20, 41).
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Figure 4.7: Normal stress di�erence in the extensional �ow of 2D and 3D FENE models.
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Planar extensional �ow
To study the convergence of our 2D FENE algorithm with mesh re�nement, we consider a
homogeneous planar extensional �ow, for which the velocity gradient is given by (1.28). The
analytical expression (1.30) of the steady-state pdf can be written in this case (see [18]) as

ψ = C

(
1− |q|2

b

)b/2

exp(λ
·
ερ2 cos 2ϕ)

where C is some normalization constant.
We report the results of two computations for di�erent values of the non-dimensional ex-

tension rate (λ ·ε = 1 and λ
·
ε = 5) with the maximum extensibility parameter b = 10. Table

4.1 gives the computed values of the xx-component of the elastic extra-stress and the relative
error for di�erent resolutions in the case ·

ε = 1. We can see that the error is very small even
for low resolutions. At this extension rate, the solution is very smooth (see Fig. 4.5, which
represents the pdf for the computational mesh (NF , NR) = (6, 13)) and only a few points are
needed for our spectral method to properly capture the solution.

When the extension rate is increased up to λ
·
ε = 5, getting accurate numerical results

requires much more re�ned meshes, as is shown in Table 4.2. This is because the exact
solution at high extension rates possesses huge gradients which are very localized. Capturing
such a solution requires highly re�ned meshes. Figure 4.6(a) shows the numerical oscillatory
solution for a low level of discretization (NF , NR) = (6, 13) and Fig. 4.6(b) shows how the
solution can be properly captured when the mesh is re�ned up to (NF , NR) = (20, 41). It is
clear from Fig. 4.6(b) that a stochastic simulation would outperform our FP-based algorithm
at su�ciently large extension rates (or more generally at large velocity gradients) since the
statistical variance in the solution is very small.

To compare the behaviour of the 2D FENE and 3D FENE models in steady-state exten-
sional �ow, we plot in Fig. 4.7 the non-dimensional normal stress di�erence N∗

1 = (τxx −
τ yy)λ/ηp computed using the exact solution (4.2) at three values of the maximum extensibility
parameter and non-dimensional extension ratesλ

·
ε ∈ (0, 10). The di�erence between the two

models is too small to be captured on such a graph. In fact, it is less than 1 per cent over the
range of parameters presented in this �gure.

4.3 Algorithms for complex �ow simulations
We turn now to simulations of complex �ows under local homogeneity assumption. We will
give �rst some more details on the stochastic simulations (Brownian con�guration �elds (BCF)
method) and then present two algorithms based on the FP equation.

4.3.1 Brownian con�guration �elds method for FENE dumbbells
The BCF method has been described in Section 3.1.2 for Hookean dumbbells, but in order
to implement it for FENE dumbbells we need to introduce some small changes. Indeed, it
would be prohibitively expensive to use the Brownian con�guration �eld equations as they are
written in (3.6) since this would require solving a large non-linear system at each time step.
On the other hand, if we were to replace the implicit Euler method in (3.6) by an explicit Euler
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method, we would have to use very small time steps. Moreover, it is preferable to treat the
F(q) term in an implicit way in order to prevent it from exceeding the maximum length

√
b

(otherwise, a rejection technique should be used, see [99]). Therefore, we implement the BCF
method using a time-splitting technique with implicit treatment at both stages of the splitting:

q̃m(ti,x)− qm(ti−1,x)

∆t
+ u(ti,x) ·∇q̃m(ti,x) = 0, (4.45)

qm(ti,x)− q̃m(ti,x)

∆t
+

1

2λ
F(qm(ti,x)) =κ(ti,x)q̃m(ti,x)+

√
1

λ∆t
Φm(ti). (4.46)

The �rst equation should be solved using a numerical method appropriate for hyperbolic PDEs
and (4.46) can be solved independently at every grid point. To see that this splitting prevents
the norm of the vectors qm from exceeding

√
b, we rearrange (4.46) and use (1.21) to arrive at


 1

∆t
+

1

2λ

1

1− |qm(ti,x)|2
b


qm(ti,x)= sm(ti,x), (4.47)

where
sm(ti,x) =

q̃m(ti,x)

∆t
+ κ(ti,x)q̃m(ti,x)+

√
1

λ∆t
∆Wm(ti),

is a known vector since q̃m(ti,x) has been computed from equation (4.45). We put sm =
|sm(ti,x)| and qm = |qm(ti,x)| and derive from (4.47) the cubic polynomial equation for qm

q3
m −∆tsmq2

m − b

(
∆t

2λ
+ 1

)
qm + ∆tsmb = 0. (4.48)

This equation can be shown to possess one root that satis�es0 ≤ qm <
√

b. Having determined
this root, the con�guration vector qm(ti,x) is simply

qm(ti,x) =


 1

∆t
+

1

2λ

1

1− q2
m

b




−1

sm(ti,x). (4.49)

4.3.2 A �slow� FP solver
We recall that the FP equation takes the form (1.32) under the local homogeneity assumption,
which di�ers formally from the FP equation for a homogeneous �ow (4.1) only in that the
partial derivative in time is replaced by the material derivative. The di�culty in a numerical
simulation of (1.32) is that it has to be solved in a high dimensional space (t,x,q). We would
like to solve (1.32) in an implicit manner in order to avoid severe restrictions on time steps. We
introduce therefore a �rst-order time-splitting to decouple the computation in physical spaceΩ
from the computation in con�guration spaceD = {|q|2 < b}. Using an implicit Euler method
on each step of the splitting, combining it with the discretization in con�guration space, which
has been described for homogeneous �ows in preceding sections, and coupling this with the
solution of equations for velocity and pressure, we can write the following method to discretize
(1.32) in the case of inertialess planar �ows:

On the (n + 1)-st time step:
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• Update velocity and pressure vn and pn using a discretization of the Stokes system (1),
(1.33) with ρ = 0, supplying on the right-hand side of the momentum equation the known
approximation of the elastic extra-stress τ n(x) at time tn = n∆t.

• Perform a con�guration step in updating the functionα which is related to the pdf ψ
through (4.6) by calculating at each grid point x of the physical domain Ω the approxi-
mation α

n+1/2
N (x):

α
n+1/2
N (x) = (I−∆t (L0 + κ11(x)L1 + κ12(x)L2 + κ21(x)L3))

−1 αn
N , (4.50)

where the components of the velocity gradient κkl = ∂vn
k /∂xl are calculated from the

latest available velocity �eld at the grid point x. The matrices L0 − L3 are given by
(4.15)-(4.18) for the 2D FENE model and by (4.41) and (4.42) for the 3D FENE model.

• Perform a con�guration step in updating the functionα by solving the transport equation

αn+1 − αn+1/2

∆t
+ vn ·∇αn+1 = 0. (4.51)

• Use αn+1 to calculate the elastic extra-stress τ n+1(x) at time tn+1 at each grid point x.

The CPU-expensive part of this scheme is the solution of (4.50) rather than that of (4.51).
This can be easily seen by noticing that implementing (4.50) results in a system of linear
equations with the coe�cients depending on the position in physical space and on time, while
(4.51) is the same for all the components ofα. Therefore, a di�erent linear system resulting from
(4.50) should be solved at every grid point at each time step, which can lead to unacceptably
long computing times. We call the procedure described above the slow FP solver.

4.3.3 A �fast� FP solver
Fortunately, the �rst step of the splitting (4.50)�(4.51) can be implemented in a much more
e�cient way. To construct this implementation we need to rewrite the homogeneous FP equa-
tion (4.1) in a slightly di�erent form. We are going to present the derivation of this form in
the case of the 3D FENE model, the 2D case being completely analogous.

We decompose the velocity gradient for a planar �ow

κ =




κ11 κ12 0
κ21 −κ11 0
0 0 0


 .

into symmetric and antisymmetric parts and rotate the coordinates to the principal axes of
the symmetric part. We thus have

κ = kπφI1π−φ + kaIa (4.52)

where Ia = I2 − I3, I1, I2 and I3 are de�ned by (4.37), (4.38) and πφ is the matrix of the
rotation by angle φ in 12-plane

πφ =




cos φ − sin φ 0
sin φ cos φ 0

0 0 1


 .
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The scalars k, φ and ka appearing in (4.52) are calculated from κ via

k(κ) =
√

κ2
11 + (κ12 + κ21)2/4, (4.53)

sin 2φ =
κ12 + κ21

2k
, cos 2φ =

κ11

k
, (4.54)

and
ka(κ) =

κ12 − κ21

2
. (4.55)

Let Πφ be the operator de�ned for an arbitrary function on the unit sphereΦ(ϕ, θ) by

ΠφΦ(ϕ, θ) = Φ(ϕ + φ, θ), (4.56)

i.e. the result of the rotation of coordinates π−φ. Substituting (4.52) into (4.33) and using
the notation (4.56) and the fact that L(Ia) = −∂/∂ϕ (see Appendix A.1) and Ia : uu = 0, we
arrive at the desired form of the FP equation

Dα

Dt
= kΠ−φL1Πφα + ka

∂α

∂ϕ
+ L0α (4.57)

We see now that (4.50) is the �rst order approximation in time of the following equation

∂α

∂t
= knΠ−φnL1Πφnα + kn

a

∂α

∂θ
+ L0α, (4.58)

which is solved from t = tn to t = tn+1, αn+1/2 and αn being set to α|t=tn+1 and α|t=tn

respectively. The upper indices n have been added to k, ϕ and ka de�ned by (4.53)-(4.55) to
emphasize the fact that those quantities are computed for the tensorκn that is updated at
time t = tn. In what follows, we denote explicitly the dependence ofα on t and θ alone but
it should be kept in mind that α is a function of η as well and that all the quantities (α, k, ϕ
and ka) depend on the position in physical space as a parameter.

We set tn+1/2 = tn + ∆t/2 and note (using a Taylor expansion) that

α(tn+1/2, θ) =
1

2

(
α(tn+1, θ − 1

2
kn

a∆t) + α(tn, θ +
1

2
kn

a∆t)

)
+ O(∆t2), (4.59)

∂α

∂θ
(tn+1/2, θ) =

1

2

(
∂α

∂θ
(tn+1, θ − 1

2
kn

a∆t) +
∂α

∂θ
(tn, θ +

1

2
kn

a∆t)

)
+ O(∆t2), (4.60)

and

∂α

∂t
(tn+1/2, θ)− kn

a

∂α

∂θ
(tn+1/2, θ) =

α(tn+1, θ − 1

2
kn

a∆t)− α(tn, θ +
1

2
kn

a∆t)

∆t
+ O(∆t2). (4.61)

We now evaluate (4.58) at t = tn+1/2, use (4.59)�(4.61), neglect the terms of orderO(∆t2) and
denote similarly to (4.50) αn+1/2(θ) = α(tn+1, θ) and αn = α(tn, θ) to get

αn+1/2(θ − 1

2
kn

a∆t)− αn(θ +
1

2
kn

a∆t)

∆t
= RHS (4.62)
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where

RHS =
1

2
knΠ−φnL1Πφn

(
αn+1/2(θ − 1

2
kn

a∆t) + αn(θ +
1

2
kn

a∆t)

)
+

1

2
L0

(
αn+1/2(θ − 1

2
kn

a∆t) + αn(θ +
1

2
kn

a∆t)

)
. (4.63)

We have thus obtained a time discretization of (4.58) of Crank-Nicolson type. Of course, this
does not mean that the global scheme formed by equations (4.62) and (4.51) will be second
order accurate in time (a three-stage Strang splitting would be necessary for that). However,
(4.62) has an important advantage over (4.50) since it can be implemented in an e�cient way
as will be explained in the remaining part of this subsection.

Applying Πϕn to both sides of equation (4.62), noting that Πϕn commutes with L0 and L1,
and introducing the discretizationsL0 and L1 we get the discretized equations:

Πϕn− 1
2
kn

a ∆tα
n+1/2 − Πϕn+ 1

2
kn

a ∆tα
n
N

∆t
=

1

2
L0

(
Πϕn− 1

2
kn

a ∆tα
n+1/2 + Πϕn+ 1

2
kn

a ∆tα
n
N

)
+

kn

2
L1

(
Πϕn− 1

2
kn

a ∆tα
n+1/2 + Πϕn+ 1

2
kn

a ∆tα
n
N

)
, (4.64)

where we have denoted the unknowns discretized in con�guration space by the same symbols
as the non-discretized ones. By rearranging (4.64) we get

(
1

∆t
I−1

2
M0 − kn

2
L1

)
Πϕn− 1

2
kn

a ∆tα
n+1/2 =

(
1

∆t
I+

1

2
L0 +

kn

2
L1

)
Πϕn+ 1

2
kn

a ∆tα
n,

or
αn+1/2 = Π 1

2
kn

a ∆t−ϕn (I− knL)−1 (R + knM)Πϕn+ 1
2
kn

a ∆tα
n, (4.65)

with the matrices M and R de�ned by

M =
1

2

(
1

∆t
I− 1

2
L0

)−1

L1,

R =

(
1

∆t
I− 1

2
L0

)−1 (
1

∆t
I +

1

2
L0

)
. (4.66)

Finally, let's call D the diagonal matrix formed with the eigenvalues ofM. Then, there
exists an invertible matrix P (with columns formed by the eigenvectors of M) such that
M = PDP−1. Thus, we can express (4.65) in the form

αn+1/2 = Π 1
2
kn

a ∆t−ϕnP (I− knD)−1 P−1(R + knM)Πϕn+ 1
2
kn

a ∆tα
n. (4.67)

In the above equation, the matrices D, P, P−1, M and R do not change in space and time,
so they can be computed once at a preprocessing step. Since (I− knD) is a diagonal matrix
it can be inverted and multiplied by a vector at a cost ofO(N) where N is the dimension of
the discrete con�guration space forα. Clearly, the rotation operations are inexpensive as well.
Indeed, the rotation operator (4.56) is implemented by using the expression

ΠφΦil(θ) = cos 2lθΦil(θ)− (−1)n sin 2lθΦil(θ). (4.68)
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Therefore, for a given grid point, the major cost for determining the solution of the pdf comes
from the matrix-vector multiplication withM, R, P−1 and P.

The reason for using (4.67) rather than (4.50) as the �rst step in time splitting of the FP
equation (4.3) should now be clear. Indeed, in the right-hand side of (4.50) we had three
coe�cients that were varying with a grid point (namelyκ11, κ12 and κ21) whereas, after the
transformations and rotations, in (4.67) we have only one coe�cient varying with a grid point
(namely kn). This enables us to use the diagonalization technique to solve (4.67) with the help
of the formula (4.67) at a cost O(N2) instead of a cost O(N3) that the solution of (4.50) would
have required .

Let us recapitulate the method. On the (n + 1)-st time step, we perform the following:

• Update velocity and pressure vn and pn using a discretization of the Stokes system (1),
(1.33) with ρ = 0 supplying at the right-hand side of the momentum equation the known
approximation of the elastic extra-stress τ n(x) at time tn = n∆t.

• Perform a con�guration step in updating the functionα by calculating α
n+1/2
N (x) at each

grid point x of the physical domain Ω using the equation (4.67) where the components
of the velocity gradient κkl = ∂vn

k/∂xl are calculated from the latest available velocity
�eld at the grid point x.

• Perform a con�guration step in updating the functionα by solving the transport equation
(4.51).

• Use αn+1 to calculate the elastic extra-stress τ n+1(x) at time tn+1 at each grid point x.

The method described in this section will be called the fast FP solver.

4.4 Numerical results for the �ow past a con�ned cylinder
We test the algorithms described above on the benchmark problem of steady planar viscoelastic
�ow around a cylinder con�ned in a channel. We choose the aspect ratioΛ = R/H = 1/2,
where H is the half-width of the channel and R is the radius of the cylinder (see Fig. 2.8).
The ratio of the solvent viscosity ηs to the total zero shear-rate viscosity η = (ηp + ηs) was
taken equal to 0.59 as is usually done by other authors. A global Weissenberg number for this
problem may be de�ned by We = λU/R,where U is the average velocity of the �uid in the
channel at entry.

Periodic boundary conditions are used at the in�ow and out�ow of the channel for all
quantities except the pressure which is periodic up to a linear function. The total length
of the channel is 40 times the cylinder radius so that we can assume that the interaction of
the cylinder with the other cylinders in the periodic array is negligible. We impose no-slip
conditions on the cylinder surface and on the channel wall. In order to save in computational
cost, we assume that the �ow has y = 0 as a plane of symmetry so that only half of the domain
needs to be considered. The problem is solved by dividing the �ow domain into 30 conforming
spectral elements and polynomial degrees ranging from N = 8 to N = 10 are used in the
two spatial directions. We use an SUPG spectral element-by-element method as described in
Section 2.4 to solve the hyperbolic equations (4.45) and (4.51). The time step ∆t is chosen
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Figure 4.8: xx component of the elastic extra-stress along the axis of symmetry and on the
cylinder surface for We = 1.2 and two levels of discretization in con�guration space.

equal to 0.01. For the deterministic simulations based on the FP equation the iterations are
stopped when the following convergence criterion is ful�lled for all collocation pointsx ∈ Ω :

|ui+1(x)− ui(x)|
∆t

≤ 10−4. (4.69)

It would be impossible to satisfy the same criterion with the stochastic simulations because of
the presence of the random noise. The stochastic simulations are arbitrarily stopped instead
at t = 7.

The most popular quantity used for the comparison of numerical results is the drag factor
F ∗ de�ned by (3.35). However, as noted in numerous papers ([6, 32, 47, 48], for example), such
a quantity is not a good indicator of the quality or accuracy of the solution. Therefore, we will
not only give the value of the drag factor in this section but we will also plot the tensile elastic
normal stress in the wake of the cylinder, this being the most di�cult �ow region in which to
resolve the solution convincingly.

4.4.1 Numerical results for the 2D FENE model
Convergence with mesh re�nement
We �rst demonstrate convergence with mesh re�nement in both con�guration and physical
spaces for our highest Weissenberg numberWe = 1.2 using the fast FP solve, as summarized
at p. 87. The parameter b in (1.21) is taken equal to 20. We plot the xx component of
the elastic extra-stress along the axis of symmetry (|x/R| > 1) and on the cylinder surface
(|x/R| ≤ 1) for the following two cases:

1. The polynomial degree for the representation of the variables in physical space is kept at
N = 8 and the resolution in con�guration space is increased from(NF , NR) = (10, 20) to
(NF , NR) = (12, 24).

2. The resolution in con�guration space is set at (NF , NR) = (10, 20) and the polynomial
degree in physical space is increased fromN = 8 to N = 10.
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Figure 4.9: xx component of the elastic extra-stress along the axis of symmetry and on the
cylinder surface for We = 1.2 and two levels of discretization in physical space.
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Figure 4.10: Comparison of the drag factor for stochastic and deterministic simulations at
We = 0.8.

Figures 4.8 and 4.9 show that convergence with mesh re�nement is achieved in both cases
(1) and (2), respectively. Therefore, in the sequel we can restrict our numerical investigations
by taking (NF , NR, N) = (10, 20, 8).

Comparison between deterministic simulations and stochastic simulations
We now compare the deterministic simulations with their stochastic counterparts in terms
of accuracy and CPU cost. We �rst compare the drag factor as a function of time for the
stochastic simulation when the number of pseudo-random realizationsM is set to 1000 and
then 16000. The results are shown in Fig. 4.10 for a Weissenberg number We = 0.8 and
clearly, the stochastic solution converges towards the solution of the deterministic approach
as we increase the number of realizations. However for stochastic simulations, the rate of
convergence is very low (typicallyO(1/

√
M)). Note that for the two approaches, we have used

the same resolution in physical space (N = 8). The same experiment is carried out in Fig.
4.11 but for a higher Weissenberg number (We = 1.2) and the conclusions remains unchanged.

Figures 4.12 and 4.13 show the contour plots of the three components of the elastic extra-
stress (τ yy, τxy and τxx from top to bottom) for the stochastic simulation (with 16000 realiza-
tions) and the FP simulation, respectively, at a Weissenberg numberWe = 1.2. We can see
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Figure 4.11: Comparison of the drag factor for stochastic and deterministic simulations at
We = 1.2.
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Figure 4.12: Contour plot of the three components of the elastic extra-stress. Stochastic
simulation.
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Figure 4.13: Contour plot of the three components of the elastic extra-stress. Deterministic
simulation.

Table 4.3: Comparison of the CPU cost per time step for the deterministic approach and for
the stochastic approach.

FP (fast solver) FP (slow solver) BCF-1000 BCF-16000
3.3 198.0 18.0 285.0

that for the FP case, the three plots are reasonably smooth whereas for the stochastic case,
wiggles appear in the plot of the xx-component of the elastic extra-stress1.

We now turn our attention to the comparison of the CPU cost of the di�erent approaches.
Table 4.3 shows the average CPU time per time step for the solution of the FP equation by the
fast solver summarized on p. 87 with (NF , NR, N) = (10, 20, 8), for the slow solver summarized
on p. 83 with the same NF , NR and N and for the stochastic simulations using 1000 and 16000
realizations. Results are reported in seconds and the test was made on a PC with a Pentium IV
1.5GHz processor. We see that the fast solver produces a speedup of a factor 60 compared to
the slow solver. The deterministic simulations using the fast solver are about 5.5 times faster
than the stochastic simulation with a low number of realizations and up to 86 times faster for
the case with 16000 realizations. Because of the noise in the stochastic solution, in both cases,
the deterministic approach is always more accurate.

Lastly we report in Table 4.4 the values of the drag factor on the cylinder as a function
of the Weissenberg number for the deterministic simulation. To the author's knowledge, these
values have not been available in the literature so far. The solutions of stochastic simulations

1The most important wiggles actually lie along a spectral element boundary in the wake region. Unfortu-
nately, we have no explanation for this phenomenon.
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Table 4.4: Drag factor F ∗ computed on uniform meshes (N = 8, Nf = 10, Nr = 12) for di�erent
Weissenberg numbers. Fokker-Planck simulation.

We 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Drag Factor 8.8941 8.7729 8.6776 8.6008 8.5384 8.4865 8.4429
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Figure 4.14: Drag factor as a function of time for the 2D and 3D FENE models with a stochastic
simulation using 16000 realizations atWe = 0.6.

are too noisy (see Figs. 4.10 and 4.11) to give an accurate average value of the drag factor.

4.4.2 Numerical results for the 3D FENE model

For all the simulations involving the 3D FENE model, the maximum extensibilityb is chosen
equal to 10. The stochastic simulations are arbitrarily stopped instead at t = 6. We take
Nu = 6 and Nη = 12 for the discretization in con�guration space (see formula (4.39)).
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Figure 4.15: Drag factor as a function of time for the 2D and 3D FENE models using the
Fokker-Planck equation at We = 0.6.
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Figure 4.16: Drag factor as a function of time for the 2D and 3D FENE models with a stochastic
simulation using 16000 realizations atWe = 0.9.
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Figure 4.17: Drag factor as a function of time for the 2D and 3D FENE models using the
Fokker-Planck equation at We = 0.9.
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Figure 4.18: Di�erence of the xx component of the elastic extra-stress between the 2D and the
3D FENE model at We = 0.6.
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Figure 4.19: Di�erence of the xy component of the elastic extra-stress between the 2D and the
3D FENE model at We = 0.6.
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Figure 4.20: Di�erence of the yy component of the elastic extra-stress between the 2D and the
3D FENE model at We = 0.6.

x

T
xx

0 5

0

1

2

3

4

5

6

7

8

9

10

11

Figure 4.21: The xx component of the elastic extra-stress for the 2D (solid line) and the 3D
(dashed line) FENE models at We = 0.9.
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Figure 4.22: The xy component of the elastic extra-stress for the 2D (solid line) and the 3D
(dashed line) FENE models at We = 0.9.

x

T
yy

0 5

0

1

2

3

4

Figure 4.23: The yy component of the elastic extra-stress for the 2D (solid line) and the 3D
(dashed line) FENE models at We = 0.9.
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Figure 4.24: The zz component of the elastic extra-stress for the 3D FENE models atWe = 0.9.
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Comparison between the stochastic approach and the deterministic approach

Figure 4.14 shows the value of the drag factor as a function of time for the stochastic simulation
using 16000 realizations for the 2D and the 3D FENE models at a Weissenberg number of 0.6.
For the stochastic simulation in Fig. 4.14, the magnitude of the noise is such that it is di�cult
to conclude which model (2D or 3D) gives the higher drag factor. On the other hand, the FP
simulation is deterministic and for the same problem and same parameters, the results shown
in Fig. 4.15 clearly indicate that the drag factor of the 3D FENE model is higher than the
drag factor for the 2D FENE model. The same kind of results are reproduced in Fig.4.16 and
4.17, but for a higher Weissenberg number (We = 0.9) and the conclusions remain the same.
Not only is the FP approach more accurate than its stochastic counterpart, but it is also more
e�cient in terms of CPU cost. This can be seen from Table4.5 which gives the average CPU
time per time step in seconds for a computation performed on a Pentium IV 1.5GHz processor.
Solving the FP equation is about 1.8 times faster than solving the stochastic equation with 1000
realizations. Note that, as can be expected, the stochastic approach with 16000 realizations is
about 16 times slower than the same computation with only 1000 samples.

Table 4.5: Comparison of the CPU cost per time step for the deterministic approach and for
the stochastic approach (3D FENE model).

Fokker-Planck Stochastic-1000 Stochastic-16000
7.1 12.6 202.0

Comparison between 2D FENE and 3D FENE models

Based on the drag factor (see Fig. 4.15 or Fig. 4.17), it seems that the di�erences between the
2D FENE model and the 3D FENE model are small. Such a �nding is con�rmed in Figs.4.18-
4.20 which show respectively the di�erences in the xx, xy and yy components of the elastic
extra-stress between the 2D and 3D FENE models at We = 0.6. The small black square
indicates the location of maximum absolute di�erence. As can be seen from the values of the
contour levels, the di�erences between the two models are small for all components over all
of the domain. In all cases, the maximum di�erence is located on the cylinder surface, where
we have strong shear �ow. Results at a higher Weissenberg number of 0.9 are presented in
Figs. 4.21�4.24 where the components of the stress are plotted only on the cylinder surface
and on the axis of the symmetry. We see from Figs. 4.21�4.23 that the di�erences between xx,
xy and yy components of the extra-stress computed by the 2D and the 3D FENE models are
again small. Moreover, Fig. 4.24 indicates that the zz-component of the extra-stress, which is
obviously absent from the 2D FENE model, remains very small in the 3D FENE model.

Such an investigation would not have been possible using a stochastic approach since the
di�erence between the two models would have been of the order of magnitude of the noise. The
fact that we can use the 2D FENE model instead of the 3D model without major changes in the
solution is important from a computational point of view, since solving the FP equation in a
2D con�guration space is one order of magnitude cheaper than solving it in a 3D con�guration
space. On the other hand, for the stochastic approach, going from 2D to 3D is not so critical
since it only requires one extra equation to be solved forqz.



4.5. STRONGLY NON-HOMOGENEOUS FLOW IN A TUBE 97

Maximum Weissenberg number achievable
The maximum Weissenberg number that could be achieved for the 3D FENE model using the
FP equation was We = 1.1. However, convergence with mesh re�nement (both in physical
space and in con�guration space) was only possible up toWe = 0.9 and this is why in the
previous section we only present results up to this Weissenberg number. The di�culty, as we
increase the Weissenberg number, comes from the fact that the �ow may be strong in some
areas of the domain, leading to a pdf with extremely localized features, which are very di�cult
to capture numerically. In contrast, the limiting Weissenberg numbers using the stochastic
approach were found to be around We = 4.0. This situation is quite di�erent from what we
have observed in our 2D FENE simulations. The maximum Weissenberg number achievable in
the latter case was about 1.2 both for stochastic and deterministic approaches.

4.5 A Fokker-Planck-based numerical method for mod-
elling strongly non-homogeneous �ows of dilute poly-
meric solutions

This section di�ers considerably from the previous sections of this chapter as well as from
Chapter 3, since we here abandon the assumption of a linear variation in the con�guration
density function (cdf) over the length scale of a dumbbell. To simplify the numerical method,
we keep still the analogous assumption concerning the solvent velocity �eld. Nevertheless, such
an approach allows us to take into account at least qualitatively phenomena near the boundary
and in strongly non-homogeneous regions. We choose the FENE dumbbell model2 in its two-
dimensional version. As is evidenced in the preceding sections, assumption of two-dimensional
dumbbells does not corrupt signi�cantly the results. Following [16] and [116], the boundary
conditions for the cdf are derived from the assumption of elastic collisions between the beads
of the dumbbells and the wall. We will present a deterministic numerical method based on
the FP equation for a Poiseuille �ow in a narrow channel using this model. Results collapse to
those of the usual locally homogeneous �ow FENE model for polymer dimensions su�ciently
small compared to the channel wall separation distance.

Among other formulations for non-homogeneous �ows of polymer solutions we may cite
the body-tensor continuum formalism of Öttinger [98], the two- �uid Hamiltonian model of
Mavrantzas and Beris [1, 90] and the kinetic theory of Bhave et al. [15] that has been recently
corrected and expanded upon by Curtiss and Bird [34]. The theory of Bhave et al. starts from
the FP equation for Hookean dumbbells. Then, a number of approximations are used to obtain
constitutive equations for the polymer number density and the stress tensor. In an illuminating
paper dating from 1994, Beris and Mavrantzas [12] performed a detailed comparison of the
three approaches mentioned above. Although the body-tensor continuum formalism of Öttinger
[98] and the two-�uid Hamiltonian model of Mavrantzas and Beris [1, 90] predicted the same
equation for the polymer number density, the kinetic theory of Bhave et al. [15] led to the
addition of an extra term in this equation. Beris and Mavrantzas identi�ed the di�culty with
the approach of Bhave et al. as being due to their retention only of the linear terms in a

2Whereas we admit that it would be desirable from a micro-mechanical point of view to work with full
FENE chains within distances of several polymer lengths from a solid boundary, the present results should
nevertheless be considered to have qualitative value.
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Taylor series expansion of the cdf in their expression for the polymer species concentration.
The damaging consequences of this inconsistent approximation could be avoided by rederiving
the mass �ux equation using the force balance equation and by using a Taylor expansion for the
cdf up to and including second-order terms. The resulting equation for the polymer number
density was now the same as in the analyses of Öttinger and Mavrantzas and Beris. Neglect
of second and higher-order terms in the velocity gradient could be shown to lead to the same
stress evolution equation under all three formulations. Note that no explicit equation for the
polymer number density is required in this chapter since we work throughout with the cdfψ.
The polymer number density may be calculated, however, at any time by integratingψ over
con�guration space (see (1.17)).

Previous simulations with non-homogeneous �ow models have included the use of a two-
�uid Hamiltonian [90] in investigations of instabilities in cone-and-plate and parallel plate
rheometers [91] and of stress gradient-induced migration e�ects in the viscoelastic Taylor-
Couette problem [1]. Rectilinear shear �ows of Hookean dumbbells have been studied by,
amongst others, Bhave et al. [15] using a �nite di�erence method. Biller and Petruccione
[16] used a Brownian dynamics simulation for simple shear �ow of dumbbells having both a
Hookean spring force law and a simple nonlinear modi�cation to this force law, obtained from
the FENE spring force law for small values of dumbbell extensionR. The same technique
was used by the authors to investigate non-homogeneous pressure-driven �ows of the same
dumbbell solutions [116]. The present work applies a new method (see Sections 4.5.1 and
4.5.2) to the planar Poiseuille �ow of dumbbells having a FENE force law without the same
restriction on the magnitude of the extension R. The results therefore generalize what has
gone before.

4.5.1 Boundary conditions and weak problem statement

Let us recall the notation of Section 1.1.1 that will also be used here. ψ12 stands for the cdf
in terms of the position of two beads r1, r2 and ψc stands for the cdf in terms of the position
vector of the centre of mass x and the end-to-end vector q. We assume that the boundary Γ
of the �ow domain Ω is an impenetrable wall. Following Biller and Petruccione [16, 116], a
no �ux condition¿ ṙi À · n = 0 on Γ with normal vector n is applied to the averaged bead
velocity¿ ṙi À (i = 1, 2). Assuming that v(ri) · n = 0, Eqns. (1.8)- (1.10) lead to

(
kT

∂ψ12

∂ri

+ F(ri − rj)ψ

)
· n = 0 for ri ∈ Γ. (4.70)

To take into account the fact that the dumbbells cannot be extended to the maximum length
Rmax, we also impose a homogeneous Dirichlet condition onψ:

ψ = 0, for |r1 − r2| = Rmax. (4.71)

Conditions (4.70) and (4.71) enable us to write down the weak statement of the FP problem
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(1.11) as
∫ ∫

r1,r2∈Ω

∂ψ12

∂t
ϕ dr1dr2 =

∫ ∫

r1,r2∈Ω

(
v(r1) · ∂ϕ

∂r1

+ v(r2) · ∂ϕ

∂r2

)
ψ12 dr1dr2

−1

ζ

∫ ∫

r1,r2∈Ω

(
kT

∂ψ12

∂r1

+ F(r1 − r2)ψ

)
· ∂ϕ

∂r1

dr1dr2

−1

ζ

∫ ∫

r1,r2∈Ω

(
kT

∂ψ12

∂r2

+ F(r2 − r1)ψ

)
· ∂ϕ

∂r2

dr1dr2, (4.72)

where ϕ = ϕ(r1, r2) is a suitable test function such that ϕ = 0 for |r1 − r2| = Rmax.
Although formally correct, the weak form (4.72) is di�cult to discretize e�ciently since

proper account should be taken of the localization ofψ in the subdomain of small |r1 − r2|.
We prefer therefore to work withx and q since this allows us to obviate the latter problem. In
general, however, even simple �ow geometries can become rather complicated in these variables.
Indeed, the vector q �lives� in con�guration spaces dependent onx:

D(x) = {q : |q| < Rmax}
⋂
{q : x± q/2 ∈ Ω}.

Analogously, the domain for x depends on q.
In recasting the weak statement of the FP problem (4.72) into one in terms of x and q we

reintroduce the assumption of a linear variation in the solvent velocity over the length scale
of a dumbbell, i.e. (v(r1) + v(r2))/2 ≈ v(x) and v(r2) − v(r1) ≈ ∇v(x)q. Although it is of
course possible to simply rewrite all derivatives and inner products appearing in (4.72) directly
in terms of x and q this does not yield an equation which will be useful to us in the sequel.
Instead, we begin by observing that the boundary condition (4.70) may be re-expressed in the
following form:

[
∂ψc

∂x
± 2

(
∂ψc

∂q
+

1

kT
F(q)ψc

)]
· n = 0, for x± q

2
∈ Γ. (4.73)

Then, multiplying (1.12) throughout by a test function ϕc = ϕc(x,q), integrating over all
(x,q)-space such that x ± q/2 ∈ Ω and using integration by parts in con�guration space, we
have

∫

Ω

∫

D(x)

Dψc

Dt
ϕc dqdx+

∫

Ω

∫

D(x)

∇v(x)q · ∂ψc

∂q
ϕcdqdx

=

∫

Ω

∫

Γ±(x)

[(
2kT

ζ

∂ψc

∂q
+

2

ζ
F(q)ψc

)
· nϕc

]
dSdx

−
∫

Ω

∫

D(x)

(
2kT

ζ

∂ψc

∂q
+

2

ζ
F(q)ψc

)
· ∂ϕc

∂q
dqdx

+
kT

2ζ

∫

Ω

∫

D(x)

∂2ψc

∂r2
ϕc dqdx, (4.74)

where Γ±(x) are the parts of the boundary of D(x), on which x ± q/2 ∈ Γ. In (4.74) Γ(x)
denotes the boundary of D(x) and we have used the con�guration boundary conditionψc =
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ϕc = 0 for |q| = Rmax. Appealing to the boundary condition (4.73) we see that the weak form
(4.74) may be further expressed as

∫

Ω

∫

D(x)

Dψc

Dt
ϕc dqdx+

∫

Ω

∫

D(x)

∇v(x)q · ∂ψc

∂q
ϕcdqdx

=

∫

Ω

∫

Γ±(x)

[
∓kT

ζ

∂ψc

∂x
· nϕc

]
dSdx

−
∫

Ω

∫

D(x)

(
2kT

ζ

∂ψc

∂q
+

2

ζ
F(q)ψc

)
· ∂ϕc

∂q
dqdx

+
kT

2ζ

∫

Ω

∫

D(x)

∂2ψc

∂r2
ϕc dqdx. (4.75)

4.5.2 Discretization and solution algorithm
We are now going to describe a discretization of the weak form (4.75) applying it to non-
homogeneous start-up plane Poiseuille �ow of a 2D FENE �uid. The �ow geometry is shown
in Fig. 4.25(a) and consists of two plates y = ±d between which a dilute polymer solution
�ows under a constant pressure gradient. We assume that stress and velocity depend only on
y, so that the dependence on the position vectorx will be denoted in the sequel of the section
by dependence on y.

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
���

	�		�	
	�	

�

�


�


������
���
������
��� y=−d

����������������������������������
����������������������������������
����������������������������������

���������������������������������������������������������������������
���������������������������������������������������������������������
���������������������������������������������������������������������

���������������������������������������������������������������������
���������������������������������������������������������������������
���������������������������������������������������������������������
���������������������������������������������������������������������

y=d

������
���
������
���

������
���
������
���

���
�

���
�

		




���
�

�
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

������ �  � !!"" #
#
$$
%%&
&

''(
(

))*
*

++,
,

--.
.

//0
0

112
2

334
4
556
6

778
8

99:
:

;;<
<

==>
>

??@
@

AAB
B

CCD
D
EEF
F

GGH
H

IIJ
J

KKL
LMMN
N

OOP
P

QQR
R

SST
TUUV
V

WWX
X

YYZ
Z

[[\
\]]^
^

__`
`
aab
b

c�cc�cd
d

e�ee�ef�ff�f
g�gg�gh�hh�h

iij
jkkl
lmmnn oopp

qqr
rsst
t

uuv
v

wwx
x

yyz
z

{{|
|}}~~
���
�

���
�

���
�

���
�

���
�
���
��

��� ���
��������

�

���
�
���
��������

����
�
���
�

�� 
 
¡¡¢
¢

££¤
¤

¥¥¦
¦

§§¨
¨
©©ª
ª

««¬
¬

®
®

¯¯°
°
±±²
²

³³´
´

µµ¶
¶

··¸
¸
¹¹º
º

»»¼
¼

½½¾
¾

¿¿À
À

ÁÁÂ
Â

ÃÃÄ
Ä

Figure 4.25: (a) Flow between two parallel walls and Gauss collocation grid, (b) con�guration
spaces D(y) for two di�erent values yk of y with superposed Gauss-Lobatto grids

As in the case of homogeneous and locally homogeneous �ow simulations we introduce a
new variable α which is related to ψ by (cf. (4.6))

ψc(t, y,q) = ψs(q)α(t, y,q), (4.76)

where ψs(q) =
(
1− R2

R2
max

)s

for some s ≥ 1, and rewrite the problem (4.75) in terms of α.
We will discretize the weak problem (4.75) by collocating in physical space and employing
a Galerkin spectral method in con�guration space. What we do is formally equivalent to
introducing a test function

ϕc = ϕc
k = δ(y − yk)ψ

−1
s (q)σk(q), (4.77)
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where δ is a delta function, yk is the position vector of the k-th point in some collocation
grid covering the interior physical �ow domain (−d, d) and σk an (as yet) arbitrary function
whose support is D(yk). In each D(yk), a suitably de�ned set Σk of Lagrangian interpolants
on a Gauss-Lobatto-Legendre (GLL) grid adapted toD(yk) will be used for the test and trial
functions in con�guration space.

Allowing ∆t to denote a time step and αn
k ∈ Σk an approximation to α(n∆t,yk,q), where α

has been introduced in (4.76), we may use an Euler method for (4.75) with an implicit treatment
of the operators in con�guration space and an explicit treatment for those in physical space:

(
αn+1

k − αn
k

∆t
, σk

)

D(yk)

+ Ak(α
n+1
k , σk)

= −kT

ζ

(
ny

(
∂α

∂y

)n

k

, σk

)

Γ(yk)

+
kT

2ζ

((
∂2α

∂y2

)n

k

, σk

)

D(yk)

, ∀σk ∈ Σk, (4.78)

where (·, ·)D(yk) denotes the L2 inner product over D(yk), ny = sgn(y) and

Ak(α, σ) =

(
2kT

ζ

∂

∂q
(ψsα) +

2

ζ
F(q)ψsα,

∂

∂q

(
ψ−1

s σ
))

D(yk)

+
∂vx

∂y
(yk)

(
Ry

∂

∂Rx

(ψsα) , ψ−1
s σ

)

D(yk)

. (4.79)

where (·)n
k denotes a suitable approximation to the quantity in parentheses at t = n∆t and

y = yk. A Gauss-Lobatto quadrature formula is to be used in this paper for the evaluation
of the integrals over D(yk). The computation of the partial derivatives ofα in physical space
appearing on the right-hand side of (4.78) is normally performed by taking a weighted sum of
physical nodal values of α. Therefore a double sum - for the quadrature rule and the di�erence
formulae required for the physical derivatives - is needed and care must be taken to ensure
that each term in the double sum makes sense i.e. no attempt is made to evaluate a nodal
value αn

p (say) of α at a quadrature point in con�guration space which is outsideD(yp).

Approximation of derivatives in physical space
Since the most interesting phenomena are near the boundaries y = ±d, we choose the col-
location points to be the Gauss-Legendre (GL) points yk (k = 1, · · · , NGL) (for some choice
of the parameter NGL) mapped onto the interval (−d, d). Note that this set of collocation
points does not include the end points±d since the cdf ψc(y,q, t) has no meaning for y lying
on the boundary (con�guration space has zero two- dimensional measure there). Fig. 4.25(b)
illustrates the con�guration spaces D(y) for two di�erent choices of y. We are now going to
describe the approximation of partial derivatives iny contained in the scheme (4.78).

Using a �rst-order approximation for the derivative ∂ψ
∂y

in the boundary integral, we obtain
from (4.78)

(
αn+1

k − αn
k

∆t
, σk

)

D(yk)

+ Ak(α
n+1
k , σk)

=
kT

ζ

(
αn

k+j − αn
k

h+
k

, σk

)

Γ(yk)

+
kT

2ζ

((
∂2α

∂y2

)n

k

, σk

)

D(yk)

, (4.80)
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where j is −nyk
so that yk+j ∈ (−|yk|, |yk|) and h+

k = |yk+j − yk|. In what follows below h−k
will denote the step size |yk−j − yk|.

Equation (4.80) is the scheme we shall use for our simulations. Λψn
k needs still to be

speci�ed. This discrete operator in physical space depends upon the point of con�guration
space where it is applied. Indeed, if yk−j is de�ned and q ∈ D(yk−j), then we can use the
standard central di�erence approximation:

(
∂2α

∂y2

)n

k

(q) =
2

h+
k + h−k

(
αn

k+j(q)− αn
k(q)

h+
k

+
αn

k−j(q)− αn
k(q)

h−k

)
.

Otherwise, αn
k−j(q) is not de�ned and we construct instead a �rst-order approximation for

∂2α
∂y2 (yk,q, tn) using the boundary condition (4.70).

Using the notation

Ψ = ψ−1
s

(
1

kT
Fy(q)ψsα +

∂(ψsα)

∂Ry

)
sgn(Ry),

the boundary condition (4.70) can be rewritten as
∂α

∂y
ny = −2Ψ. (4.81)

In this situation, the point yb, such that yb + Ry/2 or yb−Ry/2 is on the boundary, lies in the
interval between yk and yk−j. Let δ = |yb − yk|, δ < h. Using the Taylor expansion we can
write

∂α

∂y
(tn, yb,q) =

∂α

∂y
(tn, yk,q) + nyb

δ
∂2α

∂y2
(tn, yk,q) + O(h2).

Denoting the value of Ψ at time tn and point yk by Ψn
k(q), we can also write

Ψ(tn, yb,q) = Ψn
k − δ

Ψn
k+j −Ψn

k

h+
k

+ O(h2).

Applying the boundary condition (4.81) at point yb and using the last two formulas, we get

nyb

∂α

∂y
(tn, yk,q) + δ

∂2α

∂y2
(tn, yk,q) = −2Ψn

k + 2δ
Ψn

k+j −Ψn
k

h+
k

+ O(h2). (4.82)

From a Taylor expansion, we have

αn
k+j = αn

k − nyb
h+

k

∂α

∂y
(tn, yk,q) +

(h+
k )2

2

∂2α

∂y2
(tn, yk,q) + O(h3),

which in combination with (4.82) gives

αn
k+j = αn

k + 2h+
k Ψn

k − 2δ(Ψn
k+j −Ψn

k) + h+
k

(
h+

k

2
+ δ

)
∂2α

∂y2
(tn, yk,q) + O(h3).

We see now that a �rst order approximation for ∂2α
∂y2 (yk,q, tn) can be de�ned as

(
∂2α

∂y2

)n

k

(q) =
αn

k+j − αn
k − 2h+

k Ψn
k + 2δ(Ψn

k+j −Ψn
k)

h+
k (δ + h+

k /2)
.

Remark: Although only �rst-order discretizations in physical space as described above have
been used for the numerical results to be presented in Section 4.5.3 this is for the sake of
illustration and simplicity only. Extension to second- and higher-order approximations to the
�rst and second derivatives of α with respect to y are entirely straightforward.
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Discretization in con�guration space
For each yk the corresponding con�guration space is the intersection of the discR <

√
b and

the rectangle (Rx, Ry) ∈ (−
√

b,
√

b) × (−dk, dk) where dk = 2(d − |yk|). We introduce in this
rectangle the GLL points (Rk,i

x , Rk,j
y ), i = 1, . . . , Nk

x , j = 1, . . . , Nk
y , and then expand α in

terms of a tensorized basis consisting of Lagrange interpolating polynomials based upon these
points. That is, we write

αn
k(q) =

Nk
x∑

i=1

Nk
y∑

j=1

α̂n
ijkH

k
i (Rx)H

k
j (Ry), (4.83)

where the coe�cients α̂n
ijk are set to zero for polynomials corresponding to grid points outside

the disc, i.e. such that (Rk,i
x )2 + (Rk,j

y )2 ≥ b. In other words, the discrete space Σk to which
both trial and test functions in con�guration space belong, is de�ned to consist of polynomials
Hk

i (Rx)H
k
j (Ry) with i, j such that (Rk,i

x )2 + (Rk,j
y )2 < b. For the results presented in Section

4.5.3 we have chosen for simplicity the number of pointsNk
x and Nk

y in the two directions equal
to some constant NGLL (say), independent of k.

We recall that the parameter s was set equal to 2 in our simulations of homogeneous and
locally homogeneous �ows of a 2D FENE �uid and thatα was only required to be bounded
on R =

√
b there. However, in the present approach α approximated by (4.83) is already

approximately zero at R =
√

b so that the parameter s may be set equal to unity here.
We now give attention to explaining how the con�guration step for a giveny = yk may

be performed e�ciently. The main idea follows that of Section4.3.3 but in the present case
is considerably simpli�ed since there is only one non-zero component of∇v. Denoting the
solution velocity vector by v = (vx(y), 0) and gathering the coe�cients α̂n+1

ijk of (4.83) into a
vector α̂n+1

k , the con�guration step may be written in matrix-vector form for any givenk as

α̂n+1
k − α̂n

k

∆t
+

∂vx

∂y
Aα̂n+1

k + Bα̂n+1
k = βn

k , (4.84)

where βn
k is a vector known from the previous time step. Gathering terms together we may

write (4.84) in the form
(

(I + B∆t) + ∆t
∂vx

∂y
A

)
α̂n+1

k = ∆tβn
k + α̂n

k . (4.85)

Since the matrix multiplying α̂n+1
k on the left-hand side of (4.85) varies both with y and time

and is non-trivial, computing its inverse could be expensive and moreover will have to be done
for each real collocation point yk and at each time step. As a �rst step towards a more e�cient
approach we write α̂n+1

k in terms of α̂n
k as

α̂n+1
k =

(
(I + B∆t)

[
I + ∆t

∂vx

∂y
(I + B∆t)−1A

])−1

(∆tβn
k + α̂n

k). (4.86)

Now suppose that the matrix (I + B∆t)−1A is diagonalizable. Then there exists a matrixP
and a diagonal matrix D (neither being dependent on t) such that (I + B∆t)−1A = PDP−1

and so
α̂n+1

k = P

(
I + ∆t

∂vx

∂y
D

)−1

P−1 (I + B∆t)−1 (∆tβn
k + α̂n

k). (4.87)
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Now, although the matrix
(
I + ∆t∂vx

∂y
D

)
depends upon y and t, its inversion is very cheap.

All other matrices appearing on the right-hand side of (4.87) need only be computed for each
collocation point yk in real space once at the �rst time step.

Computation of the polymer density n and elastic stress σC

Direct computation of σC by a discrete variant of (1.15) would involve the interpolations ofα
between di�erent con�guration spacesD(yk). We found in practice that better accuracy and
stability could be achieved by an alternative way of computation ofσC that does not involve
such interpolations.

Instead of (1.15) we use its weak form:
∫ d

−d

σC(y, t)H(y)dy

=

∫ d

−d

∫

R

∫ 1

s=0

qF(q)ψc(y + (s− 1/2)Ry,q, t)H(y) dsdqdy

=

∫ d

−d

∫

R

qF(q)ψc(y,q, t)

(∫ 1

s=0

H(y − (s− 1/2)Ry)ds

)
dqdy, (4.88)

the test function H(y) here being set to 0 outside the interval (−d, d). We now set H(y) equal
to the i-th interpolating Lagrangian polynomialhi(y) based on the physical collocation points
{yj} (hi(yj) = δij) and evaluate the integral in (−d, d) by using the Gauss-Legendre quadrature
rule with weights {ωk}NGL

k=1 . We thus obtain an approximation forσC at the grid points

σC(yi, tn) =

NGL∑

k=1

ωk

ωi

∫

D(yk)

qF(q)ψs(q)αn
k

∫ 1

s=0

H(yk − (s− 1/2)Ry) dsdq. (4.89)

The same idea can be applied to the computation of the number density:

n(yi, tn) =

NGL∑

k=1

ωk

ωi

∫

D(yk)

ψs(q)αn
kH(yk −Ry/2) dq. (4.90)

Computation of the velocity
For our one-dimensional problem, the equation of motion can be written as

−ηs

d2vx

dy2
= P +

dσC
xy

dy
, (4.91)

where P is the magnitude of the imposed pressure gradient.
After integration in y, (4.91) becomes

ηs

dvx

dy
= −Py − σC

xy + C, (4.92)

with unknown constant C.
We approximated the velocity vx by using a basis consisting of interpolating polynomials

based on a GLL grid ofNGL+1 points. The discrete system for determining the approximation
of the velocity was then obtained by collocating (4.92) at the points {yk}, k = 1, . . . , NGL, and
setting vx to zero at y = ±d. We thus have NGL + 2 equations for the components of vx and
C.
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4.5.3 Numerical results
The numerical results in this section will be presented in terms of the dimensionless ordinate
y/d. A dimensionless streamwise velocity and polymer number density may be de�ned as
vx/V and n/navg, respectively, where the characteristic velocityV may be chosen as d/λ and
where navg is the average polymer number density. Accordingly, the natural unit for stresses
and pressure is navgkT , and for the viscosity navgkTλ. We chose the following parameter set:√

b = 3, ηs = 0.2navgkTλ and the dimensionless pressure gradientP ∗ was set equal to 2 or 10.
The number NGL of GL collocation points in real space was chosen equal to24 or 34 and the
number NGLL of GLL points in each direction in con�guration space varied between20 and
30. The time step ∆t was set equal to 0.01λ.

In the presentation of the results we shall make frequent reference to the parameter ratio

l0
d

=
1

d

√
kT

H
, (4.93)

which measures a characteristic equilibrium length scale for the dumbbell relative to the wall
separation distance. Thus, the smaller the value of l0/d the smaller the in�uence of the walls
on the �ow between them, except for an increasingly thin boundary layer. Indeed, forl0/d = 0
the usual FENE solution for plane Poiseuille �ow is recaptured.

Equilibrium
We report �rst some numerical results at equilibrium, i.e. v = 0. In Fig. 4.26 we plot
the components of σC in the case l0/d = 0.1. We see that at equilibrium σC

xx is greater
than or equal to σC

yy throughout the gap between the plates y = ±d. This property is proved
analytically in Appendix B. In Fig. 4.27 we plot σC

yy at equilibrium for values of l0/d = 0.05, 0.1
and 0.2. Although σC

yy varies strongly with y in the boundary layers the lower plot shows that
σC

yy + σK
yy is a constant in accordance with the momentum conservation equation (4.91). This

is con�rmed analytically in Appendix B: see (B.17).

Planar start-up non-homogeneous Poiseuille �ow
In Figs. 4.28-4.29 the pro�les of the steady dimensionless velocity vx(y) and of the polymer
number density n(y), calculated with an applied dimensionless pressure gradientP ∗ = 2 are
shown for di�erent values of l0/d. For l0/d = 0 (equivalent to the locally homogeneous FENE
model) the polymer number density is a constant. However, we observe that asl0/d increases
from 0 to 0.2 the wall e�ects become stronger and polymer migrates from the channel walls
y/d = ±1 towards the centre of the channel. As a consequence the velocity gradient steepens
near the walls in order to maintain the total shear stress and the pro�le �attens near the
channel centre since the total viscosity increases there. These e�ects are also evident as we
increase the applied pressure gradient from P ∗ = 2 to P ∗ = 10 whilst �xing l0/d = 0.1. As
well as the obvious increase in mass �ow rate (see Fig. 4.30) we see that by dividing each of
the pro�le values by their maximum value (see Fig. 4.31) the rescaled pro�les are typical of
those at lower and higher shear rates in a shear-thinning �uid, the pro�le �attening near the
centreline for the higher pressure gradient.

From Eqn. (1.15) it should be clear that the dimensionless spring tension contribution
σC to the total Cauchy stress vanishes at the boundaries y/d = ±1 since con�guration space
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Figure 4.26: Normal components of σC at equilibrium; l0/d = 0.1, NGL = 24, NGLL = 20.
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Figure 4.28: Velocity vx for di�erent ratios l0/d; NGL = 24, NGLL = 20.
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Figure 4.29: Polymer number density n for di�erent ratios l0/d; NGL = 24, NGLL = 20.
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Figure 4.30: Velocity for P ∗ = 2 and P ∗ = 10; NGL = 34, NGLL = 30.
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Figure 4.31: Normalized velocity for P ∗ = 2 and P ∗ = 10; NGL = 34, NGLL = 30.
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Figure 4.32: Stress component σC
xx for di�erent ratios l0/d; NGL = 24, NGLL = 20.
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Figure 4.34: Stress component σC
xy for di�erent ratios l0/d; NGL = 24, NGLL = 20.

shrinks to a line (and therefore to a region in two- dimensional space of measure zero!) From a
micro-mechanical point of viewσC must be zero at a solid wall since no dumbbells can straddle
this boundary. Thus, for l0/d > 0 boundary layers are to be seen in Figs. 4.32-4.34. As l0/d
increases from 0 to 0.2 the number density of polymers in the bulk �ow also increases and leads
to an increase in the magnitude of the stress there relative to the homogeneous �ow (constant
n) case.

In Figs. 4.35 and 4.36 we test the convergence of our method with mesh re�nement and
compare our results with those obtained by stochastic simulations analogous to that of [16, 116].
For the stochastic simulations we implemented an Euler method with the implicit treatment
of the spring force term usingM pseudo-random realizations and an equispaced grid in(−d, d)
with NP points. The boundary conditions (4.70), which correspond to the re�ection of the
beads from the walls y = ±d once they attempt to cross it, are modelled by the method
described in Appendix C. The time step in the stochastic simulations was set to∆t = 0.001λ.
The simulations were performed over the time interval(0, 6λ) and all the results were averaged
over (4λ, 6λ).

As can be seen from Figs. 4.35-4.36, excellent convergence is achieved for our Fokker-
Planck-based method with the grid NGL = 24, NGLL = 20 for l0/d = 0.1 and there is a good
agreement between the results obtained with our deterministic approach and the stochastic
simulations. However, signi�cant noise is present in the results of stochastic calculations (es-
pecially for the polymer number density, see Fig. 4.36), unless the number of pseudo-random
realizations is big enough, so that stochastic simulations require comparable or even larger
CPU times than the (converged) deterministic simulation.
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Figure 4.35: Velocity computed with the di�erent methods, l0/d = 0.1; dots � stochastic with
M = 5000, NP = 100 (CPU time 4 sec), dashed � stochastic with M = 500000, NP = 100
(CPU time 394 sec), dash-dot � deterministic withNGL = 24, NGLL = 20 (CPU time 51 sec),
solid � deterministic with NGL = 30, NGLL = 26 (CPU time 230 sec).
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Figure 4.36: Polymer number density computed with the di�erent methods,l0/d = 0.1; dots �
stochastic with M = 5000, NP = 100 (CPU time 4 sec), dashed � stochastic withM = 500000,
NP = 100 (CPU time 394 sec), dash-dot � deterministic withNGL = 24, NGLL = 20 (CPU
time 51 sec), solid � deterministic withNGL = 30, NGLL = 26 (CPU time 230 sec).
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Chapter 5

Fokker-Planck simulations of fast �ows of
melts and concentrated polymer solutions

5.1 Description of the models
In this section we state the equations of three reptation models mentioned in Section1.2: the
Doi-Edwards (DE) model [38, 39, 40], the Mead-Larson-Doi (MLD) model [92] and the simpli-
�ed uniform (SU) version of the Öttinger model [100, 49]. Unlike the DE model, the reptation
models of Mead et al. and Öttinger allow for tube stretching and both incorporate CCR.
Additionally, the SU model has two features not present in the MLD model: double reptation
(see (5.15) and the succeeding paragraph) and the possibility of incorporating anisotropy in
the tube cross-sections. As in [49], however, we make no use in this paper of this last feature
of Öttinger's model.

5.1.1 Doi-Edwards model
The FP equation of the original DE model [38, 39, 40] has been already presented in Section
1.2 for homogeneous �ows. Using the local homogeneity assumption, as was done for dumbbell
models of dilute polymeric solutions, the same FP equation with the material derivative in
place of the partial time derivative can be used in the situation of non-homogeneous �ows.
Thus, the FP equation for the pdf ψ(u, s,x, t) can be written as

Dψ

Dt
= − ∂

∂u
· [(I− uu) · κ · uψ] +

1

π2τ d

∂2ψ

∂s2
, (5.1)

where κ denotes the velocity gradient tensor
(
κij = ∂vi

∂xj

)
which is a function of position in

physical space x, D/Dt is the material derivative, and τ d is the reptation time. The di�erential
operator ∂/∂u in (5.1) includes only the derivatives tangent to the unit sphere. The boundary
conditions at s = 0 and s = 1 supplementing the FP equation (5.1) are

ψ(u, s,x, t) =
1

4π
δ(|u| − 1), s = 0, 1, (5.2)

where δ denotes the delta function. The elastic contribution τ to the Cauchy stress is then
determined in the Doi-Edwards theory by

τ = 5G0
NS, (5.3)

113
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where G0
N is an elastic modulus, S = 〈uu〉 is the orientation tensor and 〈·〉 denotes an ensemble

average.
We note that the DE model can be written in equivalent form as an integral equation for

the orientation tensor S(t)

S(t) =

∫ t

t′=−∞
m(t, t′)Q(F(t, t′)) dt′, (5.4)

where m is the memory function, given for the DE model by

m(t, t′) = mDE(t, t′) =
8

π2τ d

∞∑

k=0

exp

(
−(2k + 1)2(t− t′)

τ d

)
, (5.5)

and Q is the deformation-dependent tensor de�ned in terms of the deformation gradient tensor
F(t, t′) as follows:

Q(t, t′) = 〈uu〉t′ =

〈
F(t, t′) · u(t′)F(t, t′) · u(t′)

|F(t, t′) · u(t′)|2
〉

t′
. (5.6)

The subscript t′ in (5.6) indicates that the orientation vector u in the ensemble average was
created at time t′ according to the uniform distribution as in the boundary conditions (5.2).
The integration in (5.4) is performed along the particle paths. The DE simulations of Peters et
al. [114] using a deformation �eld method, the results of which are discussed in Section5.3.3,
were for a single-mode version of this model. In this case the memory function is given by

mDEsm(t, t′) =
1

τ d

exp

(
−(t− t′)

τ d

)
, (5.7)

and the corresponding FP equation by

Dψ

Dt
= − ∂

∂u
· [(I− uu) · κ · uψ]− 1

τ d

(
ψ − 1

4π

)
. (5.8)

5.1.2 Mead-Larson-Doi (MLD) model
As mentioned already in Section 1.2, although the predictions of the DE model are in excellent
agreement with experimental step-shear strain data, the model is severely shear-thinning in
steady shear �ow. Some more recent reptation models incorporate two important improvements
to the original DE model: tube stretching for �ows faster than the inverse of the Rouse time
τ s for the relaxation of the polymer chain, and the CCR mechanism for �ows faster than the
inverse of the reptation time τ d. In this subsection we recapitulate the essential mathematics
of the MLD model [92].

The MLD model is based on the model by Pearson et al. [110], which is a simpli�ed form of
the Marrucci-Grizzuti extension of the DE model [89]. The MLD model incorporates the e�ects
of tube stretching and constraint release. Speci�cally, account is taken of tube stretching via
a function λ = λ(x, t) de�ned as

λ =
L

L0

,
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where L is the contour length of a polymer chain andL0 its equilibrium contour length. λ is
incorporated into the expression for τ as

τ = 5G0
Nλ2S, (5.9)

where S = 〈uu〉 is the orientation tensor, which is calculated through the integral equation
(5.4) with the memory function speci�ed below. The time rate of change ofλ is governed by
the balance between stretch due to the �ow �eld and relaxation of the chain within the tube.
Constraint release e�ects are also taken into account, which gives the equation

λ̇ =
Dλ

Dt
= λκ : S− 1

τ s

(λ− 1)− 1

2

(
κ : S− λ̇

λ

)
(λ− 1), (5.10)

where τ s is the longest Rouse time of the polymer chain.
In deriving the expression for the memory function, Mead et al. started from the memory

function of the single-mode DE model (5.7). The latter may be seen to satisfy

DmDEsm

Dt
= − 1

τ d

mDEsm, (5.11)

with an e�ective relaxation time τ = τ d. By modifying τ to take account of an extra relaxation
of orientation due to CCR, Mead et al. proposed a memory function that satis�es

DmMLD

Dt
= −

(
1

λ2τ d

+
1

λ

(
κ : S− λ̇

λ

))
mMLD. (5.12)

Here the reptation time τ d is multiplied by λ2 to take account of the increase in the reptation
time produced as a result of the lengthening of the chain's primitive path by the �ow.

5.1.3 Simpli�ed Uniform (SU) model
We now brie�y discuss the equations characterizing the SU model [100], as implemented by
Fang et al. [49].

The model features a maximum allowable extension ratioλmax and the evolution equation
for the chain stretching ratio λ is

λ̇ =
Dλ

Dt
= λκ : S− 1

τ s

(
λ2 − 1

)
λ2

max

λ
(
λ2

max − λ2
) . (5.13)

The �rst term on the right-hand side of (5.13) corresponds to a�ne deformation and will be
denoted in Section 5.2 by λ̇con. The second term is a dissipative contribution, denoted hereafter
by λ̇dissip.

The FP equation for the con�guration pdf assumes the form

Dψ

Dt
= − ∂

∂u
· [(I− uu) · κ · uψ] − ∂

∂s
(ṡtotψ)− λ̇dissip

λ
ψ

+
1

π2τ d

∂2ψ

∂s2
+ D

∂

∂u
· ∂ψ

∂u
, (5.14)
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where the drift velocity ṡtot = − 1
λ

(
s− 1

2

)
λ̇dissip and D is an orientational di�usion coe�cient.

The second term on the right-hand side of (5.14) is a creation/destruction term accounting
for non-zero drift of con�gurations through the boundaries s = 0 and s = 1. The boundary
conditions for the FP equation (5.14) are the same as those in (5.2). The physical signi�cance
of the terms in (5.14) is discussed in [49, 100]. The orientational di�usion coe�cient D in
(5.14) may be de�ned as

D =
1

6

[
δ1

1

τ d

− δ2
λ̇dissip

λ
H

(
− λ̇dissip

λ

)]
, (5.15)

where H is a Heaviside function. δ1 and δ2 are positive λ-dependent parameters representing
double reptation and the CCR mechanism, respectively. Double reptation is so called because
with δ1 = 1 there is an additional relaxation mechanism with the same reptation time as in
the original DE model. Following [49] we have chosen δ1 = δ2 = 1/λ.

Finally, the elastic stress τ is related to the orientation tensor S = 〈uu〉 by

τ = 5G0
N

[
1 +

λ2 − 1

1− (λ/λmax)2

]
S, (5.16)

and is the sum of a DE contribution (�rst term in the square parentheses of (5.16)) and
a contribution associated with chain stretching. We note in passing that as λmax −→ ∞
τ −→ 5G0

Nλ2S, which is the same as (5.9).

5.1.4 Modi�ed SU model
In this subsection we will introduce two modi�cations to the SU model, which are intended to
improve the modelling of polymer chains at high velocity gradients and will be shown later to
lead to better agreement with experimental data. The model includes all the features of the
original SU model, with the addition of convective conformation renewal (CCR2) mechanism
due to �ow-induced lengthening of tube segments [67, 68].

The FP equation (5.14), the boundary conditions for it (5.16) and the expression for the
elastic stress tensor (5.16) remain the same as for the SU model. We introduce, however, a
modi�ed expression for D in (5.14) as D = 1/6τ eff where

τ eff =
1

1
τd

+ β1kH(k)
+ τRH(k), (5.17)

where H = H (k) is the Heaviside step function with

k = κ : S− λ̇

λ
. (5.18)

The di�usion coe�cient D, de�ned in Eq. (5.17), accounts for double reptation (through τ d)
and CCR (through k) in the same way as in the SU model. The factor β1 appearing in Eq.
(5.17) allows CCR2 to be represented in the same manner as for CCR andβ1kH(k) determines
the e�ective orientation relaxation rate caused by constraint releases. We note that in addition
to the double reptation and CCR terms in (5.17) there is a third term proportional to the Rouse
time τR. Without such a term the orientational relaxation time would tend to zero in the limit
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of very fast �ows. The additional term is an irreducible friction term expressing the fact that
once the topological contribution to the chain friction is swept away the orientational relaxation
time of the now unentangled chain drops to the Rouse timeτR (see Ianniruberto and Marrucci
[68, 69]). Eq. (5.17) describes a monotonic variation of D from 1/6τ d to 1/6τR due to CCR
and the argument just mentioned.

In opposition to the point of view expressed by some in the literature [68, 69], we here argue
that a similar physical mechanism also applies to chain length relaxation. That is,τ s should
also vary with CCR from the value at equilibrium under constraint to the value corresponding
to a somehow unconstrained Rouse chain, because of the fast removal of constraints. Hence
we propose

τ s =
1

1
τR0

+ β2kH(k)
+ τRH(k), (5.19)

where τR0 is the primary Rouse time at equilibrium and the factor β2 has the same role as
β1, i.e. β2kH(k) is the e�ective stretching relaxation rate caused by constraint releases. We
choose τ d/τR = 3Z and τ d/τR0 = Z consistent with the fact that at equilibrium (entangled
case) stretch relaxation is simply along the contour path of the chain and thus essentially one-
dimensional, whereas the assumption underlying the choice of the pre-factor 3 in the original
Doi-Edwards choice of 3Z for the reptation to Rouse time ratio was that relaxation occurred
in three dimensions [93]. Stretch relaxation therefore takes place over a longer time under
equilibrium conditions than in a fast �ow, as seems intuitively reasonable. Note that it has
been usual in the literature (see, for example, [49]) to choose a �xed ratio τ d/τ s = 3Z for the
characteristic reptation and stretching times.

5.2 Numerical method
One of the most e�cient techniques that has been used up to now for numerical simulation of
reptation models in complex �ows is the deformation �eld method [113, 65]. It is applied to
the DE model in [128] and to the MLD model in [114]. This method is based on the integral
representation (5.4), (5.6) of the orientation tensorS(t). However, such a simple representation
does not exist for the SU model due to the presence of the second and third terms on the right-
hand side of its FP equation (5.14). This makes impossible the application of the deformation
�eld method to the SU model.

An alternative is to use stochastic numerical methods. This approach was applied to the
SU model by Fang et al. [49]. However, only homogeneous �ows were considered by these
authors.

Recently, Gigras and Khomami [56] have combined the Brownian con�guration �elds method
and the deformation �eld method to allow the simulation of advanced reptation models such
as the SU model. Their so-called adaptive con�guration �elds method was tested against the
results of the Brownian dynamics simulations of [49] for several homogeneous �ows and the
results were found to be in excellent agreement.

In the present work we explore an alternative approach to simulate the SU and modi�ed
SU models: solving directly the FP equation (5.14) using high-order methods, similar to what
was done in Chapter 4 for the FENE model of dilute polymeric solutions. We shall show
that this can be much more e�cient than stochastic methods in the case of homogeneous
�ows and moreover complex �ows can also be investigated. The equations to solve in the SU
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model are (1), (1.33), (5.13) and (5.14). This necessitates discretization in time and in both
con�guration and physical space. A Galerkin method is used in con�guration space and a
streamline-upwinded Petrov/Galerkin (SUPG) spectral element method in physical space, as
will be elaborated on in the subsections to follow.

5.2.1 Time-splitting scheme
We denote the evaluation of a �eld variable (v, p, τ , λ, ψ) at time t = j∆t with a superscript
`j'.

The initial conditions (j = 0) are chosen as τ 0 = 0, λ0 = 1 and ψ0 = 1/4π. For simplicity,
we decouple the solution of the Stokes system (1)-(1.33) from the elastic extra-stress calculation
(5.13), (5.14) and (5.16). Thus, τ j appears as a source term evaluated at time j∆t in (1.33)
and we solve the continuity-momentum pair for velocityvj and pressure pj.

As in the case of the FENE model in Chapter 4, we propose splitting every time step into
two half time steps, the �rst one accounting for con�guration space and the second one for
physical space. The physical step can be done implicitly, but it is di�cult to do so for the
con�guration one. Indeed, the fast FP solver, introduced in Chapter 4 for the FENE model,
cannot be applied here, because the FP equation now contains several non-constant coe�cients.
We treat therefore the con�guration step explicitly, splitting it intoNα smaller time steps to
meet possible restrictions of CFL type. Nα was set equal to 10 for all the results presented in
Section 5.3. All this leads to the following time marching scheme:

• First half time step
Set λj(0) = λj and ψj(0) = ψj and calculate ψj(α) for α = 0, . . . , Nα − 1 via the formulas

λj(α+1) − λj(α)

∆t/Nα

= λ̇con(λj(α),Sj(α)) + λ̇dissip(λ
j(α)), (5.20)

ψj(α+1) − ψj(α)

∆t/Nα

= LFP (ψj(α), λj(α)), (5.21)

where LFP refers to the Fokker-Planck operator appearing on the right-hand side of
(5.14). In the calculations according to both (5.20) and (5.21) we use the latest available
velocity �eld, i.e. vj, to compute the velocity gradient that is present implicitly in these
formulas. The orientation tensor Sj(α) may be calculated from

Sj(α)(x, t) =

∫ 1

s=0

∫ π

θ=0

∫ 2π

ϕ=0

ψj(α)(x, t,u(θ, ϕ), s)u(θ, ϕ)u(θ, ϕ) sin θ dϕdθds, (5.22)

where u = sin θ cos ϕex + sin θ sin ϕey + cos θez.
We set then λj+1/2 = λj(Nα) and ψj+1/2 = ψj(Nα).

• Second half time step
λj+1 − λj+1/2

∆t
+ (vj ·∇)λj+1 = 0, (5.23)

ψj+1 − ψj+1/2

∆t
+ (vj ·∇)ψj+1 = 0. (5.24)
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We compute then τ j+1 using (5.16)and the algorithm increments j by 1 and returns to the
Stokes system (1)-(1.33).

5.2.2 Discretization in con�guration space
A discrete approximation to the con�guration pdf ψ, expressing dependence on s and on a
generic point on the unit sphere in con�guration space, may be written in the form

ψ(u, s,x, t) ≈
1∑

i=0

Ns∑

l=0

Nu∑
n=0

n∑
m=i

ψi,`,n,m(x, t)Φi
2n,2m(θ, ϕ)L`(s). (5.25)

In (5.25) Φi
n,m = Pm

n (cos θ)((1 − i) cos mϕ + i sin mϕ) (i = 0, 1) are spherical harmonics 1

de�ned in terms of the associated Legendre polynomialsPm
n and the spherical polar coordinates

θ and ϕ. L`(s) is a degree Ns polynomial, de�ned on [0, 1] by

L`(s) = h`(ξ), (5.26)

where ξ = 2s− 1 and

h`(ξ) = − 1

Ns(Ns + 1)PNs(ξ`)

(1− ξ2)P ′
Ns

(ξ)

(ξ − ξ`)
. (5.27)

Here PNs(ξ) is the degree Ns Legendre polynomial and the {ξ`}Ns

`=0 are the Gauss-Lobatto-
Legendre (GLL) points. h` is the `th Lagrange interpolating polynomial based on the GLL
points and has the property that h`(ξj) = δ`j j, ` = 0, . . . , Ns.

Inserting (5.25) into the FP equation (5.14) for ψ we simplify the terms in the square
parentheses appearing on the right-hand side of (5.14), by using the formula (see Appendix A)

∂

∂u
· [(I− uu) · κ · uΦi

n,m

]
=

m+2∑

k=m−2

n+2∑
j=n−2

am,k
n,j

(
wk

j (κ)Φi
j,k + (−1)1−ivk

j (κ)Φ1−i
j,k

)
. (5.28)

The di�usion term is much easier. The spherical harmonics are the eigenfunctions of the
Laplace operator on the unit sphere; speci�cally,

∂

∂u
· ∂Φn,m

∂u
= −n(n + 1)Φi

n,m. (5.29)

Using (5.25) and (5.28)-(5.29) we form the product of (5.14) with a test functionΦi
2p,2q(θ, ϕ)Lk(s)

(i = 0, 1; p = 0, . . . , Nu; q = i, . . . , p; k = 0, . . . , Ns) and integrate over con�guration space
B(0, 1) × [0, 1]. The integral with respect to s is evaluated using a Gauss-Lobatto quadra-
ture rule, and orthogonality of the spherical harmonics overB(0, 1) is exploited. The time-
and con�guration space-discretized equations corresponding to (5.21) and (5.24) now therefore

1We note that only the spherical harmonics of even order appear in (5.25). This is because ψ is an even
function of u.
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become
ωk

∆t/Nα

(
ψ

j(α+1)
i,k,p,q (x)− ψ

j(α)
i,k,p,q(x)

)
= −ωk

p+1∑
n=p−1

q+1∑
m=q−1

a2q,2m
2p,2n

(
w2m

2n ψ
j(α)
i,k,n,m(x) + (−1)iv2m

2n ψ
j(α)
1−i,k,n,m(x)

)

−
Ns∑

`=0

ψ
j(α)
i,`,p,q(x) ((ṡtotL`(s))

′, Lk(s))Ns
− λ̇dissip

λ
ωkψ

j(α)
i,k,p,q(x)

+
1

π2τ d

Ns∑

`=0

ψ
j(α)
i,`,p,q (L′′` (s), Lk(s))Ns

− 2p(2p + 1)ωkDψ
j(α)
i,k,p,q,

and
1

∆t

(
ψj+1

i,k,p,q(x)− ψ
j+1/2
i,k,p,q(x)

)
+ (vj ·∇)ψj+1

i,k,p,q(x) = 0,

i = 0, 1; p = 0, . . . , Nu; q = i, . . . , p; k = 1, . . . , Ns − 1.

(·, ·)Ns denotes the (Ns + 1) point GLL quadrature evaluation of the L2 inner product over
[0, 1] (see (2.2)).

Once we have the pdf in the form (5.25), the components of the orientation tensorS = 〈uu〉
may be computed from the formulas

Sxx = 4π
Ns∑

l=0

ωl

(
1

3
ψ0,`,0,0 −

1

15
ψ0,`,1,0 +

2

5
ψ0,`,1,1

)
,

Syy = 4π
Ns∑

l=0

ωl

(
1

3
ψ0,`,0,0 −

1

15
ψ0,`,1,0 −

2

5
ψ0,`,1,1

)
,

Szz = 4π
Ns∑

l=0

ωl

(
1

3
ψ0,`,0,0 +

2

15
ψ0,`,1,0

)
,

Sxy =
8π

5

Ns∑

l=0

ωlψ1,`,1,1,

the other components being zero in a �ow parallel to thexy-plane.

5.2.3 Discretization in physical space
Finally, we discretize equations (1), (5.20) and (5.23)-(5.24) in physical space using a spectral
element method. This is done by choosing tensorized bases in real space for all dependent
variables - with the exception of the pressure - consisting of polynomials of degreeN in each
spatial variable. The pressure basis polynomials are chosen to be of degree 2 less in each
direction so as to ensure that the discrete problem is well posed [14]. A discrete system of
equations is set up using a Galerkin method for (1), (1.33) and an Uzawa algorithm (block
Gaussian elimination) is used to construct a discrete Poisson-type problem for the pressure
from (1) and (1.33).

Equations (5.20) and (5.21) are solved separately at each collocation point. An SUPG
element-by-element spectral element method with constant upwinding factor, as detailed in
Section 2.4, is used to treat the convection equations (5.23) and (5.24).
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Table 5.1: Convergence of our FP method for the simple shear �ow (5.31) at γ̇τ d = 3. Final
time 100/γ̇.

Nu Ns γ̇∆t τxy |∆τxy/τxy| CPU time (sec)
4 4 0.02 0.509716873089292 3.6× 10−3 0.16
8 8 0.02 0.511583481828495 6.0× 10−10 0.75
12 12 0.01 0.511583481521587 6.5× 10−13 5.4
16 16 0.005 0.511583481521068 3.6× 10−13 27
20 20 0.0025 0.511583481521067 3.6× 10−13 113
24 24 0.00125 0.511583481521072 3.5× 10−13 527
28 28 0.000625 0.511583481521099 3.0× 10−13 2535
40 40 1.5625× 10−4 0.511583481521253 - 34161

Table 5.2: Convergence of the stochastic simulations [49] for the simple shear �ow (5.31) at
γ̇τ d = 3. Final time 100/γ̇.

Nsample Nblock γ̇∆t τxy δτxy |∆τxy/τxy| CPU time (seconds)
10000 10 0.04 0.5073 2.7× 10−3 8.4× 10−3 604
10000 10 0.02 0.5097 4.3× 10−3 3.6× 10−3 1166
10000 10 0.01 0.5103 3.6× 10−3 2.4× 10−3 2320
10000 100 0.04 0.5074 8.7× 10−4 8.1× 10−3 6054
10000 100 0.02 0.5091 1.4× 10−3 4.8× 10−3 11672
10000 100 0.01 0.5104 1.2× 10−3 2.3× 10−3 23225

5.3 Results
In the presentation of the results in Section 5.3 we work with dimensionless variables, here
denoted with an asterisk, and de�ned by

x∗ = x/L, t∗ = t/τ d, v∗ = vτ d/L, p∗ = p/G0
N and τ ∗ = τ/G0

N , (5.30)

where L represents a suitably chosen length scale.
In rewriting equations (1), (1.33), (5.13)-(5.14) and (5.16) in terms of these dimensionless

variables it may be shown easily that the only parameters that require prescription are the
maximum extension ratio λmax, the ratio of the reptation time to the Rouse time τ d/τ s and
the dimensionless solvent viscosity η∗s = ηs/G

0
Nτ d.

5.3.1 Homogeneous �ows of the SU model: Stochastic simulations
[49] vs. the Fokker-Planck method

The predictions of the SU model for homogeneous shear and extensional �ows are described in
detail in [49]. Here we want to validate our numerical method by comparing the results with
those from the stochastic simulations [49]. We also want to investigate the e�ciency of the two
approaches. All CPU times quoted in Section 5.3.1 are for a Pentium III 800 MHz machine
and the parameters of the SU model are taken to beλmax = 21 and τ d/τ s = 50.
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Figure 5.1: Relative error for τxy for the simple shear �ow (5.31) at three values of γ̇τ d using
Nu = Ns = 4, 8, 12, 16, 20 and 24. Each data point is labelled with the total CPU time in
seconds and, in parentheses, the value of γ̇∆t used. Final time = 100/γ̇.
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Figure 5.2: The pdf ψ as a function of ux and uy at s = 0.5 for the simple shear �ow (5.31) at
γ̇τ d = 3 computed with Nu = Ns = 12.
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Figure 5.3: The pdf ψ as a function of ux and uy at s = 0.5 for the simple shear �ow (5.31) at
γ̇τ d = 800 computed with Nu = Ns = 16.
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Figure 5.4: Evolution of τxy for the start-up simple shear �ow (5.31) at γ̇τ d = 800. FP M
stands for the FP-based numerical method with Nu = Ns = M and ∆t = 0.005/γ̇. The
stochastic simulation was implemented with Nsample = 10000, Nblock = 2, ∆t = 0.01/γ̇. The
CPU times on a Pentium III 800 MHz machine are also indicated.
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Start-up shear �ow.
We report here the results for homogeneous start-up shear �ow. That is, we solve the FP
equation (5.14) coupled with (5.13) with the steady velocity �eld

v = (vx, vy, vz) = (γ̇y, 0, 0). (5.31)

Fig. 5.1 shows the relative errors for τxy after reaching the steady state with the FP-
based method described in Section 5.2 for three di�erent values of the dimensionless shear rate
γ̇τ d = {3, 80, 300}, taking the value computed on a �ner grid (Nu = Ns = 40) as the exact
one. Each data point in the �gure is labelled �rst with the CPU time required to reach a
�nal time of 100/γ̇ and secondly, in parentheses, we indicate the dimensionless time stepγ̇∆t
chosen. The choice of the time step was made by performing a run at γ̇∆t = 0.02 and (if
necessary) dividing this successively by 2, 4, . . . , etc. until convergence was achieved. We see
that the approximation provided by the scheme is exponentially convergent. However, as is to
be expected, the rate of convergence gets lower with increasing γ̇τ d.

The reason for this becomes clear if we compare the solutions for the pdfψ at the shear
rates γ̇τ d = 3 and 800 shown in Figs. 5.2 and 5.3 respectively, where ψ is plotted as a
function of ux and uy at s = 0.5 for the steady state i.e., ψ evaluated at s = 0.5 on the upper
hemisphere pointed to by u is projected onto the unit disc. We see that the solution in Fig.
5.2 is very smooth, but that in Fig. 5.3 has two spikes that can be captured accurately only
on a su�ciently re�ned mesh.

Not surprisingly, our FP method is particularly advantageous in comparison with the
stochastic simulations in [49] at low shear rates. We compare the respective CPU times at
γ̇τ d = 3 in Tables 5.1 and 5.2 (note that the simulations were performed in [49] in Nblock

independent blocks, in each of which Nsample trajectories of the stochastic processes u and s
were allowed to propagate). In Table 5.1 we show the computed values of τxy, the absolute
relative errors |∆τxy/τxy| (assuming the solution computed with Nu = Ns = 40 to be exact)
and the CPU times for our method. In Table 5.2 we supply the values of τxy computed with
the method of [49] and averaged over the �nal 200 time steps, the standard deviations δτxy

over the same time interval, the absolute relative errors |∆τxy/τxy| (again, assuming that our
FP solution computed with Nu = Ns = 40 is exact) and the CPU times. We see that both
methods give approximately the same results, but that our FP method can be thousands of
times faster for the same level of accuracy. As an example, in the FP shear �ow calculation
with Nu = Ns = 4 detailed in Table 5.1, only 0.16 CPU seconds were taken to compute a
solution having a relative error in the shear stress τxy of 3.6× 10−3. The vast majority of this
time (99.9%) was consumed performing the iterations (5.20)-(5.21) and the remaining time
mainly with the construction of the coe�cient matrix for the FP operator in (5.21). For the
same level of accuracy it may be seen from Table5.2 that 1166 CPU seconds were required by
Fang et al.'s stochastic algorithm to reach the same �nal time of100/γ̇. The reason for the
signi�cant di�erence in CPU time between the two methods is that reduction of the variance
requires that Nsample × Nblock be chosen su�ciently large and accuracy demands that∆t be
chosen su�ciently small.

What is less evident is that our method can be more e�cient than the stochastic simulation
technique even at the high shear rate γ̇τ d = 800, as may be seen from Fig. 5.4. Although
relatively high values for Nu and Ns are needed in order to match the �deterministic� solution
with the stochastic one, our method gives about a 15-fold gain in CPU time.
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Figure 5.5: Relative error for N1 for the uniaxial extensional �ow ( 1.29) at three values of ε̇τ d

using Nu = Ns = 4, 8, 12, 16, 20, 24 and 28. Each data point is labelled with the total CPU
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Figure 5.7: The pdf ψ for the uniaxial extensional �ow ( 1.29) at ε̇τ d = 300 computed with
Nu = Ns = 12.

0

2

4

6

8

10

12

14

ψ

0

1

2

3

θ
0

0.2
0.4

0.6
0.8

1

s

Figure 5.8: The pdf ψ for the uniaxial extensional �ow ( 1.29) at ε̇τ d = 300 computed with
Nu = Ns = 50.



5.3. RESULTS 127

t/ d

N
1

/G
N0

10-3 10-2 10-1 100 101 102
10-2

10-1

100

101

102

103

104

ττ

0.14 0.15 0.16

10500

10600

10700
a

b
c

d

e
f

Figure 5.9: Evolution of N1 for the start-up uniaxial extensional �ow (1.29) at ε̇τ d = 300 with
a zoom on steady state regime. a) FP-based simulation withNu = Ns = 24, ∆t = 0.0025/ε̇,
CPU time 109 seconds; b) the same with Nu = Ns = 28, CPU time 284 seconds; c) the
same with Nu = Ns = 32, CPU time 437 seconds; d) stochastic simulation with Nsample =
10000, Nblock = 2, ∆t = 0.02/ε̇, CPU time 107 seconds; e) the same with∆t = 0.002/ε̇, CPU
time 1063 seconds; f) the same with∆t = 0.0002/ε̇, CPU time 10609 seconds. All CPU times
quoted are for a Pentium III 800 MHz machine.

Ns

C
P

U
tim

e
pe

r
ite

ra
tio

n
(s

ec
)

4 8 12 16 20 24 28 32 36 404448

10-4

10-3

10-2

10-1 Shear flow
Extensional flow
4 10-8Ns

4.

Figure 5.10: CPU time (seconds) per time step for the simple shear �ow (5.31) and the start-up
uniaxial extensional �ow ( 1.29) vs. the con�guration resolutionNs.



128 CHAPTER 5. FP SIMULATIONS OF CONCENTRATED SOLUTIONS

Uniaxial extensional �ow.
We report here the results for homogeneous start-up uniaxial extensional �ow, for which the
velocity gradient is given by (1.29).

Fig. 5.5 shows the relative errors for the normal stress di�erence N1 = τ zz − τxx after
reaching the steady state (�nal time 50/ε̇) with the FP-based numerical method for three
di�erent values of the dimensionless extensional rate ε̇τ d = {3, 80, 300}. �Exact� solutions for
these three extensional rates were calculated withNu = Ns = 40. In a similar manner to Fig.
5.1, each data point in Fig. 5.5 is labelled �rst with the CPU time required to reach a �nal
time of 50/ε̇ and then, in parentheses, the dimensionless time step ε̇∆t chosen.

The scheme again converges exponentially fast but, of course, the convergence rate decreases
with increasing ε̇τ d. We are able to demonstrate even more clearly than in the previous
subsection why this should be so. ψ is plotted in Figs. 5.6 and 5.7 for ε̇τ d = 3 and 300
as a function of θ and s (the solution for ψ does not depend on ϕ in this extensional �ow
since the velocity �eld is invariant to rotation about the z-axis). We see that the solution
at ε̇τ d = 300 has sharp boundary layers at s = 0 and 1, which a mesh of Nu = Ns = 12 is
unable to resolve adequately; numerical oscillations being the result. Increasing the resolution
in con�guration space to Nu = Ns = 50 captures the boundary layers satisfactorily, as shown
in Fig. 5.8. However, our method is at least as e�cient as the stochastic simulation for the
same accuracy level as may be seen from Fig. 5.9. Reasonable agreement is found in the
steady state values of N1 at ε̇τ d = 300 predicted by run �c� of the FP method and run �f�
of the stochastic method of [49]. Having said this, whereas run �c� required just 437 CPU
seconds, the stochastic calculation took 10609 seconds using the same hardware. Although
the convergence of both the FP and stochastic approaches is rather slow in the case of large
extensional rates, the CPU time is always less for our method than for the stochastic one.

To facilitate comparisons of the computational cost for di�erent levels of con�guration mesh
resolution for both the start-up shear �ow (5.31) and the uniaxial extensional �ow (1.29), we
have computed the CPU time per time step for each of the values ofNu = Ns selected in Figs.
5.1 and 5.5. These results are presented in graphical form in Fig. 5.10 on a log-log scale and
indicate that the CPU requirement increases in both cases no more rapidly thanO(N4

s ).

5.3.2 SU and modi�ed SU models: comparison with experimental
data

The results of comparing the predictions of the SU model and the modi�ed SU model with
experimental data for steady simple shear �ow are presented in Fig. 5.11. In this �gure
the steady-state values of the shear stress τxy and the �rst normal stress di�erence N1 are
plotted as functions of the shear rate γ̇. The experimental data used for comparison are taken
from the thesis of Kahvand [72]. The test �uid is a solution in tricresyl phosphate of nearly
monodisperse polystyrene with a molecular weightMw of 1.9 × 106 (polydispersity index of
1.2) and a polymer density of 0.135 g/cm3. The average number of entanglements (Z) of the
�uid is estimated to be 10. The maximum chain stretching ratio (λmax) of the �uid is equal
to the square root of the number of Kuhn steps per entanglement according to the theory in
[49] and is thus estimated to be 17.6. The parameters τ d and G0

N are chosen in such a way
that the cross-over point of the steady shear stress and �rst normal stress di�erence curves is
predicted correctly.
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For the two models, we then obtain τ d = 15 s and G0
N = 1160Pa. With a value of λmax =

17.6 both the predictions of the original SU model and those of the modi�ed SU model leave
something to be desired. Firstly, the SU model predicts a slight decrease in the shear stress
over a range of shear rates that extends from roughly γ̇ ≈ 0.2s−1 to γ̇ ≈ 2s−1, which is
inconsistent with the data and indicates an instability. Then, although good for low shear
rates, the modi�ed SU model predicts a sharp increase in the shear stress and �rst normal
stress di�erence for γ̇ > 10s−1, way above what has been measured experimentally. However,
we found that a much smaller value (1.75) of λmax gives more realistic predictions at high shear
rates. The predictions of the shear stress by the modi�ed SU model with the smaller value of
λmax are now in excellent agreement with the experimental data over the whole range of shear
rates and the �rst normal stress di�erence increases gradually with shear rate, consistent with
the experimental data. We note in passing that a similar reduction inλmax brought about
only a marginal improvement in the predictions of the original SU model. The same need
for λmax smaller than the theoretically determined value was documented by Ianniruberto and
Marrucci [68] in their comparisons of shear data with the experimental results of Bercea et al.
[9] for a semi-dilute solution of PMMA in toluene. The authors conjectured that the small
value of λmax that had to be taken in the simulations could be attributed to the crudeness of
their single-relaxation-time model and that more realistic values could be used in multi-mode
simulations: something that was shown to be true, at least partially, in a subsequent paper
[69].

For all the fact that we have registered an improvement in the predictive capacities of the
modi�ed SU model by taking λmax = 1.75, this situation is far from ideal. Numerical evidence
that the need for an unphysically small value ofλmax �nds its origin in the decoupling of Eqn.
(5.13) for the chain stretch λ from Eqn. (5.1) is presented in [50].

5.3.3 Two-dimensional �ow past a con�ned cylinder.
Having validated our numerical method for start-up shear �ow and extensional �ow in Sections
5.3.1 and 5.3.1 we now wish to evaluate, for the �rst time, the SU model in a complex �ow.
For this we choose the benchmark problem of �ow past a con�ned cylinder (see Fig.2.8) with
a cylinder radius to half-channel ratio ofR/H = 0.5. The cylinder radius R is chosen as the
characteristic length scale with respect to which the spatial variables are non-dimensionalized
(see (5.30)) and a Weissenberg number We for this �ow is de�ned as

We = U
∗ ≡ Uτ d

R
, (5.32)

where U is the mean velocity in the in�ow/out�ow section of the channel. For all the calcula-
tions presented here we have chosen λmax = 21 and τ d/τ s = 50. Unless otherwise indicated in
a �gure caption, the discretization in con�guration space was chosen asNu = Ns = 14. The
�ow domain was decomposed into 30 spectral elements and, unless indicated otherwise, degree
N = 10 polynomials in both spatial directions were used for the representation of all dependent
variables with the exception of the pressure. Upstream and downstream channel lengths of50
cylinder radii were chosen and periodic boundary conditions for all the �eld variables except
the pressure were applied (the pressure is periodic up to addition by a linear function).
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Figure 5.11: Steady-state values of shear stress τxy and �rst normal stress di�erence N1 as
functions of shear rate γ̇. Shown are the predictions of the SU model, the modi�ed SU model
and experimental data [72].

Comparison of SU model with DE and MLD models [114] at low Weissenberg
numbers.

Direct comparisons of the SU results with those obtained for the single-mode DE model and
the MLD model over long time intervals are not possible using our FP method - in neither
case is there a di�usion term in u in the FP equation, provoking numerical instabilities at
modest Weissenberg numbers. However, we are able to compare our results atWe = 0.3 and
0.6 with those obtained for these two models by Peters et al. [114], who used a deformation
�eld method [113] and the same value as above for τ d/τ s.

Throughout this subsection, for both our results and those of Peters et al., the dimensionless
solvent viscosity η∗s is set equal to 0.05. At a Weissenberg number of 0.6, the viscous stresses
play an important but not yet dominant role, as may be seen from Fig. 5.12 where both
the elastic and viscous contributions to the xx−component of the Cauchy stress are plotted
along the axis of symmetry and on the cylinder surface. Fig. 5.13 shows that at Weissenberg
numbers of 0.3 and 0.6 the departure from unity of the stretch parameterλ for the SU and MLD
models on the cylinder surface is very small (less than 5% di�erence between the maximum
and equilibrium values for the MLD model) with the stretch in the SU model even smaller than
that of the MLD model. The extra contribution to the elastic stress due to chain stretching is
therefore expected to be comparatively small and the stress-orientation tensor relations (5.9)
and (5.16) essentially collapse to that of the DE model (5.3). This does not mean that the drags
on the cylinder computed with the three models will be even approximately the same, however.
Certainly, and the same was observed in [114], low Weissenberg numbers and a solvent viscosity
ηs = 0.05G0

Nτ d tend to mask the di�erence between the single-mode DE model and the MLD
model. However, as may be observed from Figs. 5.14 and 5.15 a slightly higher steady-state
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Figure 5.14: Flow past a con�ned cylinder: Comparison of dimensionless drag force for DE
and MLD models [114] and SU model at We = 0.3. L denotes the length of the cylinder.
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drag is found at We = 0.3 and 0.6 with the MLD model than for the single-mode DE model,
due to the small amount of tube stretching2.

Clearly, the explanation for the signi�cant di�erence visible in Figs. 5.14 and 5.15 between
the computed steady-state drag values for the SU model and the other two models must lie other
than in the amount of tube stretch present. The key to the explanation lies in a comparison
of the FP equations (5.8) and (5.14) for the single-mode DE and SU models. With λ ≈ 1,
λ̇dissip ≈ 0 and a noteworthy di�erence in this case between the two FP equations is seen to
be the presence of the di�usion term (δ1/6τ d)∂/∂u · ∂ψ/∂u in (5.14). This double reptation
term in the SU model introduces an additional relaxation mechanism for the polymer chains
and results in a primitive relaxation time a half that of the DE model. Chains in the SU
model have the possibility of escaping their tubes more quickly than those in the single-mode
DE model. Hence they may escape high orientation with the �ow �eld and as a consequence
normal stresses are lower and so is the drag. As the �ow rate is increased (going from Fig.
5.14 to Fig. 5.15) with τ d unaltered, both sets of drag values increase in magnitude but those
for the DE and MLD models remain larger than that for the SU model.

Computation for zero solvent viscosity: �ow of a melt
Simulations of the SU �uid in the case of a zero solvent viscosity necessitates modi�cation
of the numerical treatment of the linear momentum equation (1.33). As a generalization of
the approach adopted in the previous subsection we now introduce a variant of the DEVSS-G
scheme [79] in the form

∇pj − (ηs + β)∇2vj = ∇ ·
(
τ j − β

(
Gj−1 + Gj−1T

))
, (5.33)

where β is a viscosity term. G is a continuous second-order tensor which is obtained by �ltering
the velocity gradient tensor ∇v in each spectral element using an exponential �lter [86] and
then replacing the component values on elemental interfaces by the average values computed
there from the adjoining elements. We note that the addition of the elliptic stabilization terms
on the both sides of equation (5.33) does not modify the continuous linear momentum equations
and furthermore that in the limit β −→ 0 we recapture our original scheme (1.33).

In validation of our numerical method for zero solvent viscosity we present in Figs. 5.16
and 5.17 some results of convergence studies atWe = 0.6. In Fig. 5.16 pro�les of τxx (the most
sensitive component of the elastic stress ) along the axis of symmetry and on the cylinder surface
are shown. We see that choosing two di�erent values of β has little e�ect on the computed
elastic stress, with only a small discrepancy visible near the peak value on the cylinder surface.
Convergence with spatial mesh re�nement (N = 8, 10 and 12) is evident from Fig. 5.17 and
convergence with re�nement in con�guration space may be deduced by comparing theN = 10
plots from Figs. 5.16 and 5.17. The non-dimensionalized drag, being an integrated quantity
(and therefore averaged and smoothed, in some sense) is considerably less sensitive than the
components of the elastic stress to changes in the resolution in con�guration and real space
and this is apparent from Fig. 5.18 where for ηs = 0 very close agreement at all times is seen
between simulations on a coarse (Nu = Ns = N = 10) and a �ne (Nu = Ns = 14, N = 12)
mesh.

2We remark here that the drags computed in [114], and presented in Figs. 4 and 6 of this paper, were for
only half a cylinder [115]. Accordingly, we have doubled all their drag values in our discussion of the results.
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Having established the reliability of our DEVSS-G scheme we now proceed to consider the
e�ects on the drag, chain stretch and Cauchy stress of selectingηs to be zero (melt) or non-
zero (concentrated polymer solution). Consistent with our observations from Figs. 5.13-5.15
that chain stretching e�ects on the elastic stress are comparatively small, we note from Fig.
5.18 that a non-zero solvent viscosity results in a higher drag on the cylinder than in the zero
solvent viscosity case but that this must be due to the viscous stresses rather than to chain
contour stretching. This assertion is substantiated in Fig. 5.19 where for both zero and non-
zero solvent viscosities the maximum stretch on the cylinder is less than6% of the equilibrium
value.



Chapter 6

Conclusions and future perspectives

This thesis describes the fruit of three years of work during which we have tried to construct
more e�cient and more robust methods for the simulations of viscoelastic �ows.

From the viewpoint of robustness, some progress has been made in deriving new numerical
methods for discretizing the Oldroyd B model, as is described in Chapter 3. Our e�orts were
inspired by the observation that the most challenging di�culty in the numerical solution of
this model was the proper treatment of the non-linear terms in the constitutive equation (see
Section 2.3) whereas most attention was paid in the past to stabilizing the transport term.
That is why we have constructed new methods for the Oldroyd B model (taking its kinetic
theory interpretation as a departure point) that respect certain properties of the system of
di�erential equations in the hope of enhancing the robustness of simulations. As is evidenced
in Chapter 3, our methods permit slightly higher Weissenberg numbers to be reached than
via their conventional counterparts. However, convergence is obtained only at su�ciently low
Weissenberg numbers and we are not in a position yet to decide with certainty whether their
divergence should be attributed to the de�ciency of the numerical approach or to that of the
model. Much greater e�ort is needed on the levels of the underlying physics, mathematical
analysis and numerical analysis.

Here are some tracks that may be followed in the future:

• A di�usion term [15, 42] and some terms describing the breaking of polymer chains [42]
can be added to the Oldroyd B equation. In principle, this should help to increase the
stability of numerical methods, since it will smooth the steep gradients in the stress �eld,
that are present in the solutions of Oldroyd B (and other) models. El Kareh and Leal
[42] were even able to prove the existence of solution at all Weissenberg numbers for a
constitutive equation featuring a di�usion term and a term that keeps the stress bounded
to model the breaking of polymers under tensions that exceed some bound. However, the
di�usion coe�cient is usually very small so that the proper inclusion of such a di�usion
term will be problematic on the numerical level. On the level of modelling, the problem
lies in formulating boundary conditions. Moreover, the appropriateness of modelling
the polymeric solutions using suspensions of dumbbells is arguable near the wall and in
regions where the �ow is strongly non-homogeneous. Well established models for polymer
chains breaking are not yet available either.

• On a purely numerical-analytical level, one could try to generalize the results of Keiller
[73, 74]. Indeed, he showed that the stability of a �nite di�erence scheme for the time-
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dependent Couette and Poiseuille �ows of an Oldroyd B �uid is determined by the ratio
of resolution scales in the streamwise and cross-stream directions. It is probable that for
more complex geometries a proper local assignment of this ratio in di�erent points of the
�ow domain would also increase the stability of numerical methods.

All the above remarks concerning the stability of numerical methods also apply to kinetic
theory models that do not possess closed-form constitutive equations. An additional problem
here is the huge CPU and memory requirements of numerical simulations using such models.
That was our motivation in constructing the deterministic methods based on the Fokker-Planck
equation for the FENE dumbbell model (Chapter 4) and Öttinger SU reptation model (Chapter
5). We have showed that signi�cant savings can be achieved by using such methods compared
with stochastic simulation techniques. Stability properties of our methods in complex �ow
simulations are more or less the same as that of the stochastic simulations with the exception
of the 3D FENEmodel, where higher Weissenberg numbers could be reached with the stochastic
simulations.

Unfortunately, the Fokker-Planck methods are restricted to the models with low dimen-
sional con�guration space (essentially with dimension up to 3). The e�cient implementation
of deterministic methods for more complex models, such as bead-spring chains, would require
much more work. The ideas presented in [111], for example, look promising.



Appendix A

Expression of some operators through
spherical harmonics

The purpose of this appendix is to compute the expansion coe�cients of the operatorsL(κ) and
κ : uu with respect to the spherical harmonicsΦi

n,m. These coe�cients are needed to construct
the discretizations of the FP equations for the 3D FENE model and reptation models. The
coe�cients for the operator L(κ) are borrowed from [45].

A.1 Discretization of the operator L( κ)

Let us de�ne the operator L(κ) by

L(κ)ψ =
∂

∂u
· [(I− uu) · κ · uψ] ,

with a 3 × 3 matrix κ. We restrict our attention to matrices with κ13 = κ23 = κ31 = κ32 = 0
and trκ = 0.

The operator L(κ) can be written in spherical coordinates as

L(κ)ψ =

(
eϕ

1

sin θ

∂

∂ϕ
+ eθ

∂

∂θ

)
· (Aϕψeϕ + Aθψeθ)

=
1

sin θ

[
∂

∂ϕ
(Aϕψ) +

∂

∂θ
(sin θAθψ)

]
, (A.1)

where

Aϕ = κu · eϕ =

(
−κ11 − κ22

2
sin 2ϕ +

κ21 + κ12

2
cos 2ϕ +

κ21 − κ12

2

)
sin θ,

and

Aθ = κu · eθ =

(
κ11 − κ22

2
cos 2ϕ +

κ21 + κ12

2
sin 2ϕ− 3κ33

2

)
sin θ cos θ.
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Plugging the above expression forAθ and Aϕ into (A.1), we get after simpli�cations

L(κ)ψ =

(
−κ11 − κ22

2
sin 2ϕ +

κ21 + κ12

2
cos 2ϕ +

κ21 − κ12

2

)
∂ψ

∂ϕ

+

(
κ11 − κ22

2
cos 2ϕ +

κ21 + κ12

2
sin 2ϕ

)(
−3 sin2 θψ + sin θ cos θ

∂ψ

∂θ

)

+

(
κ11 + κ22

2
− κ33

)(
(3 cos2 θ − 1)ψ + sin θ cos θ

∂ψ

∂θ

)
(A.2)

Let's put ψ = Φi
n,m = Pm

n (cos θ) cos
(
mϕ− iπ

2

)
into (A.2), then we get, denoting cos θ by x,

L(κ)Φi
n,m = −m

(
−κ11 − κ22

2
sin 2ϕ +

κ21 + κ12

2
cos 2ϕ +

κ21 − κ12

2

)
sin

(
mϕ− i

π

2

)
· Pm

n (x)

+

(
κ11 − κ22

2
cos 2ϕ +

κ21 + κ12

2
sin 2ϕ

)
cos

(
mϕ− i

π

2

)
· Sm

n (x)

−3κ33

2
cos

(
mϕ− i

π

2

)
· (Sm

n (x) + 2Pm
n (x)), (A.3)

where
Sm

n (x) = (x2 − 1)

(
3Pm

n (x) + x
d

dx
Pm

n (x)

)
.

Noting that for i = 0, 1

sin
(
ϕ− i

π

2

)
= (−1)i cos

(
ϕ− (1− i)

π

2

)
, (A.4)

we can rewrite (A.3) as

L(κ)Φi
n,m =

κ11 − κ22

4

[
cos

(
(m + 2)ϕ− i

π

2

) −
Sm

n (x) + cos
(
(m− 2)ϕ− i

π

2

) +

Sm
n

]

+(−1)i κ12 + κ21

4

[
cos

(
(m + 2)ϕ− (1− i)

π

2

) −
Sm

n − cos
(
(m− 2)ϕ− (1− i)

π

2

) +

Sm
n

]

−3

2
κ33 cos

(
mϕ− i

π

2

)
·

0

Sm
n − (−1)im

κ21 − κ12

2
cos

(
mϕ− (1− i)

π

2

)
· Pm

n (x) (A.5)

where
±

Sm
n (x) = Sm

n (x)±mPm
n (x) and

0

Sm
n (x) = Sm

n (x) + 2Pm
n (x).

The following identities hold for the spherical harmonics (the �rst and second ones are valid
for all m ≥ 0 and the third one for all m ≥ 2):

−
Sm

n (x) =
(n− 2)

(2n + 1)(2n− 1)
Pm+2

n−2 (x)

+
3

(2n + 3)(2n− 1)
Pm+2

n (x)

− (n + 3)

(2n + 1)(2n + 3)
Pm+2

n+2 (x),
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Table A.1: Coe�cients am,k
n,j from formula ( A.6).

am,m−2
n,n−2

(n−2)(n+m)(n+m−1)(n+m−2)(n+m−3)(1−δm0)
4(2n+1)(2n−1)

am,m−2
n,n

3(n+m)(n+m−1)(n−m+1)(n−m+2)(1−δm0)
4(2n+1)(2n+3)

am,m−2
n,n+2

(n+3)(n−m+1)(n−m+2)(n−m+3)(n−m+4)(1−δm0)
4(2n+1)(2n+3)

am,m
n,n−2

(n−2)(n+m)(n+m−1)
2(2n+1)(2n−1)

am,m
n,n

3(n+m)(n−m)−n(2n−1)
2(2n+1)(2n+3)

for wk
j or m

2
for vk

j

am,m
n,n+2

(n+3)(n−m+1)(n−m+2)
2(2n+1)(2n+3)

am,m+2
n,n−2

(n−2)(1+δm0)
4(2n+1)(2n−1)

am,m+2
n,n

3(1+δm0)
4(2n+1)(2n+3)

am,m+2
n,n+2

(n+3)(1+δm0)
4(2n+1)(2n+3)

Table A.2: Coe�cients wk
j ( κ) from formulas ( A.6) and ( A.9).

wm−2
n−2 wm−2

n wm−2
n+2 wm

n−2 wm
n wm

n+2 wm+2
n−2 wm+2

n wm+2
n+2

κ11 − κ22 κ11 − κ22 κ22 − κ11 3κ33 −3κ33 −3κ33 κ11 − κ22 κ11 − κ22 κ22 − κ11

Table A.3: Coe�cients vk
j ( κ) from formulas ( A.6) and ( A.9).

vm−2
n−2 vm−2

n vm−2
n+2 vm

n−2 vm
n vm

n+2 vm+2
n−2 vm+2

n vm+2
n+2

κ12 + κ21 κ12 + κ21 −κ12 − κ21 0 κ21 − κ12 0 −κ12 − κ21 −κ12 − κ21 κ12 + κ21
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0

Sm
n (x) = −(n− 2)(n + m)(n + m− 1)

(2n + 1)(2n− 1)
Pm

n−2(x)

+
3(n + m)(n−m)− n(2n− 1)

(2n + 3)(2n− 1)
Pm

n (x)

+
(n + 3)(n−m + 1)(n−m + 2)

(2n + 1)(2n + 3)
Pm

n+2(x),

and

+

Sm
n (x) =

(n− 2)(n + m)(n + m− 1)(n + m− 2)(n + m− 3)

(2n + 1)(2n− 1)
Pm−2

n−2 (x)

+
3(n + m)(n + m− 1)(n−m + 1)(n−m + 2)

(2n + 3)(2n− 1)
Pm−2

n (x)

− (n + 3)(n−m + 1)(n−m + 2)(n−m + 3)(n−m + 4)

(2n + 1)(2n + 3)
Pm−2

n+2 (x).

Replacing
±

Sm
n (x) and

0

Sm
n (x) by their expressions given above we obtain

L(κ)Φi
n,m =

m+2∑

k=m−2

n+2∑
j=n−2

am,k
n,j

(
wk

j (κ)Φi
j,k + (−1)1−ivk

j (κ)Φ1−i
j,k

)
. (A.6)

All the non-zero coe�cients am,k
n,j , wk

j (κ) and vk
j (κ) are collected in the Tables A.1, A.2 and

A.3, respectively.

A.2 Discretization of the operator κ : uu

We now turn our attention to the operatorκ : uu. We note that

κ : uu =
κ11 + κ22

2
sin2 θ +

κ11 − κ22

2
sin2 θ cos 2ϕ +

κ12 + κ21

2
sin2 θ sin 2ϕ + κ33 cos2 θ.

Denoting x = cos θ, we have thus

κ : uu =
κ11 − κ22

2
(1− x2) cos 2ϕ +

κ12 + κ21

2
(1− x2) sin 2ϕ +

κ33

2
(3x2 − 1). (A.7)

Multiplying (A.7) by Φi
nm = Pm

n (cos θ) cos
(
mϕ− iπ

2

)
and using (A.4), we obtain

κ : uuΦi
nm =

κ11 − κ22

4
(1− x2)Pm

n (x)
[
cos

(
(m + 2)ϕ− i

π

2

)
+ cos

(
(m− 2)ϕ− i

π

2

)]

+(−1)i κ12 + κ21

4
(1− x2)Pm

n (x)
[
cos

(
(m + 2)ϕ− (1− i)

π

2

)
− cos

(
(m− 2)ϕ− (1− i)

π

2

)]

+
κ33

2
(3x2 − 1)Pm

n (x) cos
(
mϕ− i

π

2

)
. (A.8)
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Table A.4: Coe�cients bm,k
n,j from formula (A.9).

bm,m−2
n,n−2

(n+m)(n+m−1)(n+m−2)(n+m−3)(1−δm0)
4(2n+1)(2n−1)

bm,m−2
n,n

(n−m+2)(n+m−1)(m(m−1)−n(n+1))
2(2n+1)(2n+3)

bm,m−2
n,n+2 − (n−m+1)(n−m+2)(n−m+3)(n−m+4)(1−δm0)

4(2n+1)(2n+3)

bm,m
n,n−2

(n+m)(n+m−1)
2(2n+1)(2n−1)

bm,m
n,n −3(n+m)(n−m)−n(2n−1)

3(2n+1)(2n+3)
for wk

j or 0 for vk
j

bm,m
n,n+2 − (n−m+1)(n−m+2)

2(2n+1)(2n+3)

bm,m+2
n,n−2

1+δm0

4(2n+1)(2n−1)

bm,m+2
n,n − 1+δm0

2(2n+1)(2n+3)

bm,m+2
n,n+2 − 1+δm0

4(2n+1)(2n+3)

As for the operator L(κ), we note the identities (the �rst and second ones are valid for all
m ≥ 0 and the third one for all m ≥ 2):

(1− x2)Pm
n (x) =

(n + m− 3)(n + m− 2)(n + m− 1)(n + m)

(2n− 1)(2n + 1)
Pm−2

n−2 (x)

+ 2
(n−m + 2)(n + m− 1)[m(m− 1)− n(n + 1)]

(2n− 1)(2n + 3)
Pm−2

n (x)

+
(n−m + 1)(n−m + 2)(n−m + 3)(n−m + 4)

(2n + 1)(2n + 3)
Pm−2

n+2 (x),

(1− x2)Pm
n (x) = −(n + m− 1)(n + m)

(2n− 1)(2n + 1)
Pm

n−2(x)

−2
n2 −m2 − (2n− 1)(n + 1)

(2n− 1)(2n + 3)
Pm

n (x)

−(n−m + 1)(n−m + 2)

(2n + 1)(2n + 3)
Pm

n+2(x),
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and

(1− x2)Pm
n (x) =

1

(2n− 1)(2n + 1)
Pm+2

n−2 (x)

− 2

(2n− 1)(2n + 3)
Pm+2

n (x)

+
1

(2n + 1)(2n + 3)
Pm+2

n+2 (x).

We plug these identities into (A.8) and obtain

κ : uuΦi
n,m =

m+2∑

k=m−2

n+2∑
j=n−2

bm,k
n,j

(
wk

j (κ)Φi
j,k + (−1)1−ivk

j (κ)Φ1−i
j,k

)
. (A.9)

All the non-zero coe�cients wk
j (κ), vk

j (κ) and bm,k
n,j are collected in the Tables A.2, A.3 and

A.4, respectively.



Appendix B

Equilibrium solution for a FENE �uid in
a tube with the account of
non-homogeneous e�ects

In this appendix we study the kinetic theory of a FENE dumbbell solution under equilibrium
conditions in the channel shown in Fig. 4.25(a) without assuming a linear variation in the con-
�guration density function (cdf) over the length scale of a dumbbell. The results presented here
generalize those of Brunn and Grisa� [25] who considered Hookean dumbbells in equilibrium.

Beginning with (4.74) in a no-�ow situation, we see that the cdfψc
eq satis�es

0 =

∫

x

∫

Γ±(x)

[(
2kT

ζ

∂ψc
eq

∂q
+

2

ζ
F(q)ψc

eq

)
· nϕc

]
dSdx

−
∫

x

∫

D(x)

(
2kT

ζ

∂ψc
eq

∂q
+

2

ζ
F(q)ψc

eq

)
· ∂ϕc

∂q
dqdx

+
kT

2ζ

∫

x

∫

D(x)

∂2ψc
eq

∂r2
ϕc dqdx. (B.1)

This has solution

ψc
eq(x,q) =

{
ψ0(q), if x± q/2 ∈ Ω = (−∞,∞)× [−d, d],

0, otherwise,
(B.2)

where
ψ0(q) = C

(
1− |q|2

R2
max

)b/2

, (B.3)

is the equilibrium cdf for the homogeneous-�ow FENE model and which satis�es

F(q)ψ0(q) + kT
∂ψ0(q)

∂q
= 0. (B.4)

From (1.15) and (B.2) we may write the spring force contribution to the equilibrium stress
tensor as

σC
eq(r) =

∫

|q|<Rmax

∫ β(y,Ry)

s=α(y,Ry)

F(q)qψ0(q) ds dq,

=

∫

|q|<Rmax

(β(y,Ry)− α(y, Ry))F(q)qψ0(q) dq, (B.5)
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where r = (x, y)T and limits α and β on s have been chosen to ensure that r+(s− 1/2)q ∈ Ω,
i.e. |y + (s− 1/2)Ry| < d. It is straightforward to show that

β(y, Ry)− α(y,Ry) = min

(
1,

(
d− |y|
|Ry|

))
. (B.6)

We appeal to (B.4) to rewrite (B.5) as

σC
eq = −kT

∫

|q|<Rmax

(β(y,Ry)− α(y, Ry))q
∂ψ0(q)

∂q
dq, (B.7)

and, using integration by parts,

σC
eq = kT

∫

|q|<Rmax

∂

∂q
((β(y,Ry)− α(y, Ry))R)ψ0(q)dq. (B.8)

Hence,

σC
eq,xx(y) = kT

∫

|q|<Rmax

∂

∂Rx

((β(y,Ry)− α(y, Ry))Rx) ψ0(q) dq,

= kT

∫

|q|<Rmax

(β(y, Ry)− α(y, Ry))ψ0(q) dq, (B.9)

and
σC

eq,yy(y) = kT

∫

|q|<Rmax

∂

∂Ry

((β(y,Ry)− α(y, Ry))Ry) ψ0(q) dq. (B.10)

Note that

∂

∂Ry

((β(y, Ry)− α(y, Ry))Ry) =

{ ∂Ry

∂Ry
= 1, if d− | y |>| Ry |

∂
∂Ry

(
d−|y|
|Ry| Ry

)
= 0, if d− | y |<| Ry |

Hence, from (B.10)

σC
eq,yy(y) = kT

∫

{|q|<Rmax}
T{|Ry |<d−|y|}

ψ0(q) dq, (B.11)

and from (B.9) and (B.11) we see that

σC
eq,xx − σC

eq,yy = kT

∫

{|q|<Rmax}
T{|Ry|≥d−|y|}

(
d− |y|
|Ry|

)
ψ0(q) dq ≥ 0 (B.12)

with the inequality strict provided |y| ∈ (d − Rmax, d). Hence the equilibrium stress �eld is
anisotropic, as observed by Brunn and Grisa� [25] for Hookean dumbbells.

Troubling as an anisotropic stress �eld at equilibrium may appear at �rst sight, there is in
fact no inconsistency between this and equilibrium conditions since

∇ · (σC
eq + σK

eq

)
= 0.
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There are two results that need to be shown in order to substantiate this. First, and rather
obviously,

σC
eq,xy(y) = kT

∫

|q|<Rmax

∂

∂Rx

((β(y,Ry)− α(y, Ry))Ry) ψ0(q) dq = 0. (B.13)

Secondly, the yy−component of the total equilibrium Cauchy stress is independent ofy. To
see this, we introduce the integrals

I1 =

∫

|q|<Rmax

ψ0(q) dq, (B.14)

and
I2 =

∫

{|q|<Rmax}
T{|Ry|≥d−|y|}

ψ0(q) dq. (B.15)

Then, we note that the integrand in (1.17) is non-zero only for q such that r + q ∈ Ω, i.e.
y + Ry ∈ (−d, d). Hence, we obtain in the case y > 0, for example, that

σK
eq,yy = −2kTn(y) = −2kT

∫

{|q|<Rmax}
T{Ry<d−y}

ψ0(q) dq. (B.16)

or, by the symmetry of ψ0(q)

σK
eq,yy = −2kT (I1 − I2/2).

Thus, we can use (B.11) to obtain

σC
yy + σK

yy = kT (I1 − I2)− 2kT (I1 − I2/2)

= −kTI1, (B.17)

and this is independent of y.
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Appendix C

Weak approximation of stochastic
di�erential equations with re�ecting
boundary conditions

In this appendix we present a scheme of weak order 1.0 for an Itô stochastic di�erential equation
(SDE) with re�ecting boundary condition This scheme is used in the stochastic simulations of
the strongly non-homogeneous Poiseuille �ow described in Section 4.5.

Consider the SDE of the form

dXt = A(Xt)dt + BdWt (C.1)

with a constant coe�cient B. We restrict Xt to be > 0 for all t and impose the re�ecting
boundary condition at x = 0. The pdf p(t, x) of the stochastic process Xt satis�es the FP
equation

∂p

∂t
(t, x) = − ∂

∂x
(A(x)p(t, x)) +

1

2
B2 ∂2p

∂x2
(t, x) (C.2)

with a boundary condition at x = 0 of the form

−A(0)p(t, 0) +
1

2
B2 ∂p

∂x
(t, 0) = 0. (C.3)

Let us consider a semi-implicit Euler discretization of the SDE (C.1)

Xn+1 − A(Xn+1)∆t = Xn + B∆Wn + Yn (C.4)

where Xn is an approximation of Xt at the discrete time tn = n∆t, ∆Wn is an approximation
of W (tn+1)−W (tn) and Yn is a random variable representing a possible re�ection atx = 0. Yn

should be chosen so that Xn + B∆Wn + Yn is always > 0. The function A(x) is supposed to
be such that the equation x−A(x)∆t = f has a unique solution x > 0 provided f > 0. Hence
the equation (C.4) is solvable for Xn+1.

Such a scheme (with an explicit treatment of the drift term andYn making the process Xn

re�ect with respect to 0 once it crosses it) is known to be of weak order 1 if the increments∆Wn

are Gaussian variables with the mean 1 and the variance 1 (see [22] for a proof in a very general
setting). It is also known that in numerical simulations of SDE on the whole line (without
boundary conditions) ∆Wn can be chosen arbitrarily, as long as it has the correct mean and
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variance, without loosing he order of weak convergence. In this note we are interested in the
question whether the same is true for an SDE with re�ections, i.e. we want to construct a
scheme with weak order 1 when a distribution other than Gaussian is used for∆Wn. In view
of the analysis below, we choose for∆Wn the two-point distribution:

P (∆Wn = ±
√

∆t) =
1

2
.

We see now that a numerical re�ection (Xn+B∆Wn < 0) can occur only ifXn ∈ (0, B
√

∆t)
and ∆Wn = −√∆t. Therefore the most natural choice for the random variableYn seems to be

Yn =

{
2(B

√
∆t−Xn), if Xn ∈ (0, B

√
∆t) and ∆Wn = −√∆t,

0, otherwise. (C.5)

It turns out, however, that the scheme (C.4) with (C.5) converges weakly only with order 0.5.
Consider arbitrary su�ciently smooth functiong(x). We apply g to both sides of (C.4) and

take the expectation to arrive at
∫ ∞

0

g(x− A(x)∆t)pn+1(x)dx =

∫ ∞

0

〈g(x + B∆Wn + Yn)〉x pn(x)dx (C.6)

where pn(x) is the pdf of Xn and < · >x denotes the conditional expectation of the quantity in
parentheses under the hypothesisXn = x. Taking into account that ∆Wn and Yn are of order√

∆t and that Yn vanishes for Xn ≥ B
√

∆t, we can deduce from (C.6) that
∫ ∞

0

(g(x)− g′(x)A(x)∆t)pn+1(x)dx =

∫ ∞

0

(
g(x) +

1

2
g′′(x)B2∆t

)
pn(x)dx

+

∫ B
√

∆t

0

(
g′(x) 〈Yn〉x +

1

2
g′′(x)(

〈
Y 2

n

〉
x

+ 2B 〈∆WnYn〉x)
)

pn(x)dx + O(∆t2)

or
∫ ∞

0

(g(x)− g′(x)A(x)∆t)pn+1(x)dx =

∫ ∞

0

(
g(x) +

1

2
g′′(x)B2∆t

)
pn(x)dx

+g′(0)pn(0)

∫ B
√

∆t

0

〈Yn〉x dx + (g′′(0)pn(0) + g′(0)p′n(0))

∫ B
√

∆t

0

x 〈Yn〉x dx

+
1

2
g′′(0)pn(0)

∫ B
√

∆t

0

(
〈
Y 2

n

〉
x

+ 2B 〈∆WnYn〉x)dx + O(∆t2) (C.7)

We can evaluate the integrals as
∫ B

√
∆t

0

〈Yn〉x dx =

∫ B
√

∆t

0

(B
√

∆t− x)dx =
B2∆t

2
, (C.8)

∫ B
√

∆t

0

x 〈Yn〉x dx =

∫ B
√

∆t

0

x(B
√

∆t− x)dx =
B3∆t3/2

6
, (C.9)
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∫ B
√

∆t

0

(
〈
Y 2

n

〉
x

+ 2B 〈∆WnYn〉x)dx =

∫ B
√

∆t

0

[2(B
√

∆t− x)2 − 2B
√

∆t(B
√

∆t− x)]dx

= −B3∆t3/2

3
. (C.10)

Substituting (C.8)-(C.10) into (C.7), we see that
∫ ∞

0

(g(x)− g′(x)A(x)∆t)pn+1(x)dx =

∫ ∞

0

(
g(x) +

1

2
g′′(x)B2∆t

)
pn(x)dx

+ g′(0)pn(0)
B2∆t

2
+ g′(0)p′n(0)

B3∆t3/2

6
+ O(∆t2),

or, after two integrations by parts and dividing by∆t
∫ ∞

0

g(x)
pn+1(x)− pn(x)

∆t
dx =

∫ ∞

0

g(x)

(
−(A(x)pn+1(x))′ +

1

2
B2p′′n(x)

)
dx

+g(0)

(
−A(0)pn+1(0) +

1

2
B2p′n(0)

)
+ g′(0)p′n(0)

B3
√

∆t

6
+ O(∆t). (C.11)

We see that (C.11) approximates the FP equation (C.2) with boundary conditions (C.3) only
with order 0.5. The reason for this is the presence of terms of order (∆t)3/2 in (C.7), i.e. of
non-zero integrals (C.9) and (C.10).

To increase the order of the convergence, we can modify the de�nition ofYn so that the
integrals (C.9) and (C.10) would be identically 0 while maintaining the value of the integral
(C.8). A simple choice of such a de�nition is provided by

Yn =





3(B
√

∆t−Xn), if Xn ∈ (0, B
√

∆t) and ∆Wn = −√∆t,

B
√

∆t− 3Xn, if Xn ∈ (0, B
√

∆t) and ∆Wn =
√

∆t,

0, if Xn ≥ B
√

∆t.
(C.12)

To see that this choice of Yn is a good one we note, �rst of all, that it ensures the positivity of
Xn for all n. Indeed

Xn + B∆Wn + Yn =

{
2(B

√
∆t−Xn), if Xn ∈ (0, B

√
∆t),

Xn + B∆Wn, if Xn ≥ B
√

∆t. (C.13)

Secondly, we note that the expansion (C.7) is still valid for the new Yn and the integrals
(C.8)-(C.10) can now be evaluated as

∫ B
√

∆t

0

〈Yn〉x dx =

∫ B
√

∆t

0

[
3

2
(B
√

∆t− x) +
1

2
(B
√

∆t− 3x)

]
dx =

B2∆t

2
,

∫ B
√

∆t

0

x 〈Yn〉x dx =

∫ B
√

∆t

0

[
3

2
x(B

√
∆t− x) +

1

2
x(B

√
∆t− 3x)

]
dx = 0,

∫ B
√

∆t

0

(
〈
Y 2

n

〉
x

+ 2B 〈∆WnYn〉x)dx =

∫ B
√

∆t

0

[
9

2
(B
√

∆t− x)2 +
1

2
(B
√

∆t− 3x)2

]
dx

+2B
√

∆t

∫ B
√

∆t

0

[
−3

2
(B
√

∆t− x) +
1

2
(B
√

∆t− 3x)

]
dx = 0.
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Substituting these integrals into (C.7), we see now that the terms of order ∆t3/2 are absent
from it so that the the pdf of Xn satis�es

∫ ∞

0

g(x)
pn+1(x)− pn(x)

∆t
dx =

∫ ∞

0

g(x)

(
−(A(x)pn+1(x))′ +

1

2
B2p′′n(x)

)
dx

+g(0)(−A(0)pn+1(0) +
1

2
B2p′n(0)) + O(∆t),

which is a �rst order approximation of the FP equation (C.2) with boundary conditions (C.3).
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