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1 Abstract in French

1

Abstract in French

La tendance croissante de fabriquer des produits de plus en plus proches du désir de
tout un chacun, amene les entreprises d’aujourd’hui & s’équiper de chaines de pro-
duction flexible (CPF). La flexibilité dans une CPF représente la possibilité qu’a une
unique machine de fabriquer différents produits finis, disons N. De plus, cette machine
ne peut généralement fabriquer que M < N produits simultanément (nous dirons qu’elle
a une “capacité limitée”). Chaque sorte de produit fini répond & une demande spécifique
qui possede généralement des fluctuations aléatoires autour d’une valeur moyenne. La
présence de ces fluctuations ne permet pas de connaitre précisément les demandes fu-
tures et impose donc une grande réactivité de 'entreprise afin d’assurer la satisfaction
de sa clienteéle. En effet, chaque client est une entité égoiste qui a des désirs qu’elle veut,
en principe, réaliser sans attendre. Pour faire face a cette difficulté, deux solutions se
présentent, :

e La construction de stocks de couverture :
La fluctuation i) du fluz de production (due aux enrayages des machines) et ii) du
flux de la demande peux étre partiellement absorbée par la construction de stocks
de produits finis. Notons que de telles zones de stockage impliquent des colts non-
négligeables surtout en présence d’'une demande ayant des désirs tres personnalisés.
Clairement, le conflit existant entre la volonté de répondre au plus vite & une de-
mande spécifique et celle de minimiser les cotts de production rend 'optimisation du
probleme compliquée. Généralement, une solution optimale sera un compromis entre
ces deux volontés qui se traduira par la construction de stocks de couverture pour cer-
tains produits (production sur stock) et non pour d’autres (production a la demande).

e L’utilisation d’ordonnancement dynamique de production :

La présence intrinseque de fluctuations a l'intérieur d’une chaine de production im-
plique que des politiques simples d’ordonnancement (comme par exemple des ordres
de production déterminés a l’avance qui ne réagissent pas aux aléas possibles du
marché) ont peu de chance d’étre optimales. Clairement, ’expérience acquise par la
connaissance des événements passés et ’observation de I’état présent de la CPF (i.e. le
niveau de remplissage des stocks de couverture, la vitesse instantanée de production et
la quantité présente des demandes) doivent étre a la base de la construction d’une poli-
tique optimale d’ordonnancement. Nous comprenons donc qu’une telle politique devra
nécessairement s’adapter aux aléas du marché (i.e. une politique d’ordonnancement
en temps réel).

Malgré une utilisation grandissante des CPF dans le monde industriel actuel, le probleme
général de déterminer sa politique optimale d’ordonnancement reste un des problemes
ouverts dans le domaine de la recherche opérationnelle. Dans le but d’apporter quelques
réponses a ce probleme d’ordonnancement, nous allons discuter dans cette thése deux
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1 Abstract in French

modeles mathématiques connus sous le nom de “Probléeme du Bandit a plusieurs
bras” (traduction de “Multi-Armed Bandit problem” (MABP)) et de “Probléeme du
Bandit Agité” (traduction de “Restless Bandit problem” (RBP)) & ’aide desquels nous
pourrons décrire et discuter la solution de notre CPF. Décrivons briévement les propriétés
principales du probleme du Bandit :

Dans sa version classique, le MABP considere une série de N processus stochastiques
(aussi appelés projets dans la suite) qui évoluent en parallele. A chaque instant ¢, un
opérateur de décision (OD) doit engager exactement un des N projets (cette hypothese
reflete la capacité limitée de notre chaine de production). Le projet engagé géneére un
cout et évolue en temps. Les projets qui restent inactifs ne cotltent rien et restent figés
dans leur état jusqu’a ce qu’ils soient a nouveau engagés (dynamique figée des projets
désengagés). Le probleme d’ordonnancement dynamique de la MABP consiste a choisir,
a chaque instant, lequel des IV projets est a engagé afin de minimiser le cott global sur
un horizon de temps donné. Une solution optimale pour les MABP a été apportée par
Gittins en 1974. Cette politique d’ordonnancement est basée sur la construction d’un
ensemble de N indices de priorités (connu sous le nom d’indices de Gittins). Ces indices
indiquent 'urgence d’engager chaque projet. Sur la base de ces indices, I’'ordonnancement
optimal est comme suit :

“A chaque instant, engager le projet possédant la plus petite valeur d’indice de Gittins”

Pour pouvoir utiliser le formalisme des MABP afin de modéliser notre probleme de chaine
de production flexible, nous devons nous débarrasser de la supposition que la dynamique
des projets désengagés est figée. En effet, nous devons autoriser la situation suivante :

a) Les projets qui sont désengagés évoluent en temps et génerent des coiits. Cette
généralisation est nécessaire pour notre CPF, en tenant compte que la demande des
produits non fabriqués actuellement continue d’arriver. De plus, leurs stocks génerent
des cofts.

L’hypothese a) nous amene a étudier le probléme connu sous le nom de “Bandit Agité”
(RBP) pour lequel la politique optimale n’est pas encore connue. Comme il est écrit
dans la (rare) littérature existante sur les RBP, une généralisation naive de la politique
d’indices de priorité conduit a un résultat loin de ’optimum. Néanmoins, des heuristiques
(sous-optimales) apportant un résultat proche de 'optimum peuvent étre obtenues a par-
tir d’'une généralisation adéquate des Indices de Priorité. L’utilisation de tels in-
dices a 'avantage de fournir des heuristiques simples, ce qui est une condition essentielle
pour pouvoir les appliquer aux problemes industriels que nous avons & l'esprit. Un des
buts rattachés a notre étude des CPF sera donc de construire de telles heuristiques. En
particulier, nous nous efforcerons de trouver des modeles simples dont la politique opti-
male d’ordonnancement peut étre dérivée explicitement. Ceci nous aidera a développer la
perception nécessaire a la construction d’heuristiques fiables, applicables aux problemes
généraux.

En conséquence, I’approche adoptée dans cette these est la suivante :
i) Construire des classes de problemes de Bandits (classiques et agités) pour lesquels la

politique optimale d’ordonnancement peut étre dérivée explicitement.

ii) Développer une heuristique permettant d’approcher la solution optimale pour le
probleme d’une chaine de production flexible et tester son efficacité en la comparant
aux politiques optimales dérivées au point ii).
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plus, notons que la flexibilité dans les CPF géneére la plupart du temps des cotits et
temps de set up lors du changement entre un type de production et un autre (tel

que le cout de la main d’oeuvre supplémentaire nécessaire au lavage des machines) nous
allons donc aussi :

iii)

iv)

En

construire une classe de Bandits classiques avec pénalités de set up pour laquelle la
politique d’ordonnancement peut étre dérivée explicitement.

Développer une heuristique permettant d’approcher la solution optimale pour le
probleme général des MABP avec des pénalités de set up et tester son efficacité
en la comparant a la politique optimale dérivée au point i%).

résumer nos contributions sont les suivantes :

Calcul explicite de l’indice de Gittins pour une nouvelle classe de MABP
(sans cotuit de set up) :

Nous avons été capables de construire explicitement la forme de l'indice de Gittins
quand I’évolution sous-jacente est donnée par un processus déterministe par morceau.
Un tel processus est intrinsequement non-Markovien. Cette classe de MABP est une
des premiere classes non-Markovienne que nous pouvons trouver dans la littérature
pour laquelle l'indice de Gittins peut &étre calculé explicitement (M.-O. Hongler and
F. Dusonchet, “Optimal stopping and Gittins indices for piecewise deterministic evo-
lution process”, Discrete Events Systems (2001) (11), 235-248).

Discussion explicite du probleme du Bandit Agité :

Nous avons étudié plusieurs dynamiques stochastiques sous-jacentes directement
utiles pour le contexte industriel (e.g. processus de diffusion et processus de nais-
sance et de mort). Nous avons obtenu des formules explicites d’indices de priorité
généralisés et 'heuristique en découlant a été comparée avec la politique optimale
construite numériquement par Ha (Oper. Res. 45, 1994, 42-53). Finalement, en se
basant sur les RBP, nous avons proposé une politique d’ordonnancement efficace
pour une machine flexible pouvant fabriquer plusieurs types de produits, lorsque les
pénalités de set up peuvent étre négligées (F. Dusonchet and M.-O. Hongler, “Contin-
uous Time Restless Bandit and Dynamic Scheduling for Make-to-Stock Production”,
accepted for publication by IEEE Trans. on Robo. and Auto., (2003)).

Construction d’une heuristique d’ordonnancement sous-optimal pour le
probleme des MABP avec pénalités de set up :

Tenir compte des pénalités induites par les set up accroit singulierement la difficulté de
la recherche d’une politique optimale. De ce fait, il existe tres peu de résultats sur ces
sujets et la recherche de la politique optimale des problemes de décision avec pénalités
de changement reste un probléme peu exploré. Pour la fin de cette these, nous avons
donc concentré nos efforts sur le probleme des MABP avec colits et temps de set up.
Un progres significatif a été obtenu étant donné que nous avons pu construire une
nouvelle classe de MABP avec pénalités de set up pour laquelle la politique optimale
d’ordonnancement peut étre calculée explicitement. Sur la base de cette politique
optimale, nous avons pu proposer une heuristique approchant la solution générale des
MABP avec pénalités de set up. Cette heuristique est basée sur une généralisation de
la politique d’indices de priorité (F. Dusonchet and M.-O. Hongler, “Optimal Policy
for Deteriorating Two-Armed Bandit Problems with Switching Costs”, accepted by
Automatica, (2003)).
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2

Abstract in German

Dem zunehmenden Bediirfnis der Industrie Produkte mit immer mehr Riicksicht auf
die fluktuierende (d.h. zufillig schwankende) Nachfrage herzustellen, begegnet die indus-
trielle Produktion mit dem Konzept flexibler Fabrikationssysteme (FFS). Dabei versteht
man in diesemn Zusammenhang unter Flexibilitdt die Féahigkeit einer einzelnen Produk-
tionszelle mehrere ( sagen wir N) verschiedene Teil- oder Fertigprodukte (folgend kurz
Produkte genannt) herzustellen. Gewohnlich ist die Produktionskapazitit limitiert, so
dass hochstens K < N verschiedene Produkte gleichzeitig gefertigt werden konnen. Jedes
Produktionsgut sieht sich dabei einem entsprechenden Absatzmarkt gegeniiber der, wie
bereits erwahnt, zufilligen Fluktuationen unterliegt. Um auf diese Schwankungen rasch
zu reagieren sind effiziente Produktionsstrategien fiir FF'S unabdingbar. Solche Strategien
beinhalten im wesentlichen zwei Punkte:

1. Endproduktlager. Fluktuationen im Produktionsfluss (auf Grund fehleranfalliger
Produktionsinstallationen) und in der Nachfrage kénnen durch einen entsprechenden
Lagerbestand fertiger Produkte (LFP) partiell aufgefangen werden. Eine Strategie
die sich auf ein Endproduktlager abstiitzt, muss das durch den Lagerbestand gebun-
dene Kapital mit den Vorteilen einer dadurch gewonnenen hohen Reaktivitat in ein
glnstiges Verhéltnis stellen. Das resultierende Optimierungsproblem ist komplex und
die optimale Losung beinhaltet in der Regel hybride Produktionsregeln (d.h. ver-
schiedene Produkte verlangen verschiedene Produktionsstrategien).

2. Dynamische Strategien. Die naturgeméss vorhandenen Fluktuationen haben zur
Folge, dass einfache, deterministische Produktionsregeln (wie z.B., ”fertige periodisch
jedes Produkt wahrend einer gewissen Zeitspanne”) einen sehr bescheidenen Leis-
tungsnachweis erbringen. Eine gute Strategie bedient sich zum Einen, vorhandenen
Erfahrungswerten und zum Anderen, dem aktuellen Zustand des Produktionssys-
tems und der Nachfrage (z.B., Information iiber LFP, Produktionsfliisse und Bestelle-
ingdnge). Eine optimale Strategie wird demzufolge einen zeitabhingigen adaptiven
Charakter aufweisen miissen (”Real-time” Strategie).

Trotz seiner unbestrittenen Relevanz fiir industrielle Anwendungen bilden real-time
Optimierungsprobleme fiir FFS nach wie vor ein weites, keineswegs abgeschlossenes
Forschungsfeld. Die vorliegende Doktorarbeit platziert sich in diesem Arbeitsfeld mit
zwel mathematischen Modellen bekannt unter den Namen ”Multi-Armed Bandit Prob-
lems” (MABP) und ”Restless Bandit Problem” (RBP). Dieser ”Bandit”-Formalismus
erlaubt die Beschreibung einer FFS. Er sei hier folgend inhaltlich kurz zusammengefasst.

In seiner Grundversion besteht das MABP aus NN stochastischen Prozessen (auch ”Pro-
jekte” genannt), die sich zeitlich parallel entwickeln. Zu jedem Zeitpunkt ¢ kann hochstens
ein (Teil)-Projekt aktiv sein (sprich, hergestellt werden). Die Herstellung eines Projekts
generiert entsprechende Herstellungskosten doch wird angenommen, dass wéhrend dieser
Herstellzeit die tibrigen Projekte weder Kosten verursachen noch ihren Zustand dndern
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2 Abstract in German

(nicht aktive Projekte sind in ihrem Ist-Zustand ”erstarrt”). Das dynamische Grund-
problem besteht nun darin zu jedem Zeitpunkt aufs neue zu entscheiden welches Projekt
herzustellen ist, so dass die globalen Produktionskosten wahrend eines gegebenen Produk-
tionszeitraums minimiert werden. Dieses Grundproblem wurde 1974 von Gittins exakt
gelost. Seine Losung basiert auf der Konstruktion von N Index-Funktionen (Gittins-
Index) welche jedem Produkt eine ”Dringlichkeitsfunktion” zuweist und mit deren Hilfe
die optimale dynamische Produktionsstrategie wie folgt zusammengefasst werden kann:

“Stelle zu jedem Zeitpunkt das Produkt mit kleinster Dringlichkeitsstufe her.”

Um den MABP-Formalismus auf industrielle Produktionssysteme anwenden zu kénnen
muss die oben genannte Grundhypothese — nicht-aktive Projekte sind “erstarrt” —
aufgeweicht werden. Tatséchlich sollte sie wie folgt verallgemeinert werden:

(H) Auch nicht aktive Projekte konnen ihren Zustand dndern und Kosten verursachen.

Die Verallgemeinerung ist notwendig um der sich verandernden Nachfrage eines (nicht
notwendigerweise aktiven) Projekts zu begegnen und seine Lagerkosten zu beriicksichtigen.
Lagerkosten und allgemein Kosten die nicht direkt produktionsbedingt sind, werden fol-
gend kurz als Zusatzkosten angesprochen.

Diese Annahme veranlasste uns die in diesem Fall addquateren “Restless-Bandit” Prob-
leme anzugehen fiir die jedoch im allgemeinem noch keine optimalen Losungen vorliegen.
Die spirliche Literatur zum mathematischen Problem beinhaltet im wesentlichen ein
“negatives” Resultat welches zeigt, dass eine naive Erweiterung der oben erwahnten
Index-Losung zwangshalber sub-optimal ist. Trotzdem koénnen durch generalisierte
Index-Strategien gute Produktionsregeln aufgestellt werden die nahe der optimalen
Losung sind. Der entscheidende, die Sub-Optimalitit iberwiegende Vorteil von Index-
Strategien ist ihre sehr einfache Implementierung was mit Blick auf unsere industrielle
Anwendung in der Tat essentiell ist. Die Konstruktion einfacher, optimal 16sbarer “Ban-
dit” Probleme soll dabei helfen, die sub-optimalen generalisierten Index-Strategien auf
ihre Verwendbarkeit hin zu untersuchen. Entsprechend wurde der vorliegenden Arbeit
folgendes Programm zu Grunde gelegt:

(i) Konstruktion einer Klasse von explizit l6sbaren Bandit Problemen.

(ii) Entwicklung heuristischer Methoden fiir FFS und Studium ihrer Verwendbarkeit auf
Grund numerischer Simulationen.

Dariiber hinaus soll mit Blick auf die industrielle Anwendung im Bereich FFS die Ar-
beitshypothese (H) wie folgt integriert werden:

(iii) Konstruktion einer Klasse von explizit 16sbaren MABP mit Zusatzkosten.

(iv) Entwicklung heuristischer Methoden fiir MABP mit Zusatzkosten und Studium ihrer
Verwendbarkeit basierend auf einem Vergleich mit den explizit konstruierten Mod-
ellen in (iii).

Unser Beitrag zu diesem Forschungsprogramm ist:

e Explizite Berechnung des Gittins-Index fiir MABP ohne Zusatzkosten.
Fiir eine nicht-Markovsche, stiickweise deterministische Projektdynamik wurden die
Gittins-Index Funktionen explizit berechnet. Es ist dies das erste nicht-Markovsche
Model mit expliziter Losung und bereits publiziert unter “Optimal Stopping and
Gittins indices for picewise deterministic evolution process”, M.-O. Hongler und F.
Dusonchet in “Discrete Events Systems” (2001) Vol. 11, 235-248.
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Explizite Teillosungen fiur “Restless-MAB” Prozesse.

Verschiedene, fiir die industrielle Produktion relevante, stochastische Projektdy-
namiken (z.B. Diffusionsprozesse) wurden untersucht. Wir konstruierten explizite
(generalisierte) Index-Funktionen und verglichen die resultierende Produktionsstrate-
gie mit den numerischen Resultaten der implizit gegebenen optimalen Lésungen von
A. Ha (Oper. Res. 45, 1994, 42-53). Schlussendlich wurde mit Hilfe des “Restless-
Bandit” Formalismus eine heuristische Losung fiir das “Multi-Item Make-to-Stock”
Produktionsproblem vorgeschlagen. Dieser Beitrag ist zur Publikation in IEEE “Trans-
actions on Robotics and Automation” (2003) unter dem Titel “Continuous Time Rest-
less Bandit and Dynamic Scheduling for Make-to-Stock Production” (F. Dusonchet
und M.-O. Hongler) freigegeben.

Konstruktion einer Heuristik fiir MABP mit Setup Kosten.

Werden zusétzlich Setup Kosten (z.B., die Kosten die beim Aktivieren eines passiven
Projekts anfallen) in das Optimierungsproblem aufgenommen, wird ein singuléres
Losungsverhalten immer wahrscheinlicher und eine allfillige Losung wird sehr kom-
pliziert ausfallen. Es ist deshalb nicht verwunderlich, dass bis heute kaum Resultate
existieren die solche Kosten miteinbeziehen. Unsere Anstrengungen konzentrierten
sich auf MAB-Probleme mit Setup Kosten und ein signifikanter Fortschritt wurde
durch die Identifizierung einer Klasse von MABP erzielt fiir die die optimale Strate-
gie durch rekursive Konstruktion explizit angegeben werden kann. Mit Hilfe dieser
speziellen optimalen Losung wurde anschliessend eine heuristische Strategie fiir das
generelle MAB-Problem mit Zusatzkosten abgeleitet. Dieser Beitrag ist zur Publika-
tion in “Automatica” (2003) unter dem Titel “Optimal Policy for Deteriorating Two-
Armed Bandit Problems with Switching Costs” (F. Dusonchet und M.-O. Hongler)
freigegeben.
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Abstract in English

Due to the steady tendency to propose highly customized products and to respond to
volatile (i.e random) demands, Flexible Manufacturing Systems (FMS) are now
present in most shopfloors. In this thesis, flexibility in a FMS is understood as the
ability of a single production cell to deliver several different types of items, say N. The
production capacity is usually limited in the sense that only one or K < N type(s) of
items can be simultaneously produced. Each type of item faces a specific market demand
which often shows random fluctuations. To insure a high reactivity when facing such
random demands, efficient production rules for the FMS are mandatory. These rules
include in particular two generic entities, namely:

e Finished Goods Inventories. The fluctuations of i) the production flows, (due to
failure-prone machines) and ii) the demand flows, can be partly absorbed by the pres-
ence of Finished Good Inventories (FIG). Such storage zones incur costs especially
when serving highly customized demands. Clearly, the balance between the advantage
of high reactivity on the one hand and storage costs on the other introduces complex
optimization issues. The optimal solution will generally include hybrid production
rules, i.e. certain types of products optimally require FIG (we call this strategy make-
to-stock production), while other types require no FIG (we call this strategy make-to-
order production).

e Dynamic Scheduling rules. The intrinsic presence of fluctuations implies that sim-
ple deterministic scheduling rules (as for example deterministic polling rules which
produce each type j of items periodically during a fixed period of time T}) may lead
to a very poor performance. Clearly, an optimal production schedule will be based
on both past experience and observation of the present state of the system (i.e the
populations of the FIG and the instantaneous rates of the demand and production
flows). Hence, any optimal scheduling rule will necessarily present a time adaptive
character (i.e. real time scheduling rules).

In spite of a growing usage of FMS in industry, the general problem of determining the
optimal dynamic scheduling of flexible manufacturing systems remains, in its full
generality, an open issue of operations research. In order to give some answers to the
question of optimal scheduling, the present thesis will discuss two mathematical models
known as “Multi-Armed Bandit Problem” (MABP) and “Restless Bandit Prob-
lem” (RBP) in terms of which the FMS can be modeled. Let us briefly recall the salient
features of the Bandit formalization.

In its basic version, the MABP considers a series of N stochastic processes (also called

projects) evolving in parallel. At each time ¢, a decision maker (DM) can engage at most
one project (this feature reflects the limited resource property). The engaged project
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3 Abstract in English

generates an instantaneous cost while the disengaged projects incur no cost and remain
fixed (“frozen” dynamic rule of the disengaged projects). The optimal scheduling problem
in the MABP consists in choosing at each time ¢ which project to engage in order to
minimize the global cost over a given time horizon. An exact solution of the basic MABP
has been given in 1974 by Gittins. The solution is based on the construction of a set of IV
priority indices (the so-called Gittins indices) which assign to each project an “urgency
function” in terms of which the optimal dynamic scheduling reads:

“At each instant, engage the item exhibiting the smallest priority index value”.

To use the MABP formalization in the production engineering context, the basic hypoth-
esis of the “frozen” dynamics needs to be loosened. It is indeed mandatory to allow for
the following features:

a) Disengaged projects evolve in time and do incur costs. This generalization is necessary
to reflect the fact that demands for items not currently produced continue to accrue
and their FGI obviously also incurs costs.

The assumptions in a) lead us to study the so-called “Restless Bandit problems” for
which the optimal scheduling rule is yet unknown. As it has been noted in the (scarce)
literature available, a naive generalization of the priority indices will definitely not yield
the optimal rule. However, close to optimal solutions can still be expressed in terms of
suitably generalized priority indices. The use of such indices has the determining
advantage of leading to very simple —though sub-optimal- scheduling policies. This is
indeed an essential feature of the production applications we have in mind. Hence, the
construction of simple solvable models of optimal scheduling rules, will help to develop
the perception needed to construct reliable heuristics applicable to the general problems.

Accordingly, the general approach adopted in the present thesis is:

i) Construct explicitly solvable classes of Bandit problems (Classical and Restless).

ii) Develop a heuristic to approach the problem of FMS and tests its validity on the
basis of simulation studies.

Moreover, as flexibility in a FMS generally generate setup penalties (such as the
need for additional workforce incurring additional costs or cleaning operations impos-
ing switching time delay) we will further:

iii) Construct an explicitly solvable class of MABP with setup penalties.

iv) Develop a heuristic to approach the general problem of MABP with setup costs and
test its validity on the basis of the simple models introduced in iii).

Our original contributions are:

e Explicit computation of the Gittins index for MABP (without switching
penalties).
We were able to compute explicitly the form of the Gittins indices when the evolu-
tion is given by a piecewise deterministic process which is intrinsically non-Markovian.
This is among the few classes of non-Markovian examples in the literature for which
the Gittins indices can be computed explicitly (M.-O. Hongler and F. Dusonchet,
“Optimal stopping and Gittins indices for piecewise deterministic evolution process”,
Discrete Events Systems (2001) (11), 235-248).
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3 Abstract in English

Explicit treatment of the Restless Multi-Armed Bandit process.

We studied several underlying random dynamics relevant for the production engineer-
ing context, (e.g. diffusion processes as well as birth and death processes). We obtained
explicit generalized priority indices and the resulting dynamic scheduling was com-
pared with exact results derived numerically by A. Ha, (Oper. Res. 45, 1994, 42-53).
Finally, using the RBP, we propose a sub-optimal heuristic solving the multi-items
make-to-stock production problem (F. Dusonchet and M.-O. Hongler, “Continuous
Time Restless Bandit and Dynamic Scheduling for Make-to-Stock Production”, ac-
cepted for publication by IEEE Trans. on Robo. and Auto., (2003)).

Construction of a sub-optimal heuristic for the MABP with setup penal-
ties.

Adding setup penalties to optimal control problems singularly increases the com-
plexity of the solution. Therefore, very few results presently exist and the optimal
decision problem with setups remains mostly unexplored. Our effort concentrates on
the MABP with setup penalties and significant progress has been made by construct-
ing a new class of MABP with setups for which the optimal policy can be explicitly
constructed by recursion. Using this optimal derivation, we then propose a heuristic,
approaching the optimal policy for general MABP with switching penalties (F. Du-
sonchet and M.-O. Hongler, “Optimal Policy for Deteriorating Two-Armed Bandit
Problems with Switching Costs”, accepted by Automatica, (2003)).
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Preface

Preface

This thesis is about scheduling optimization in an industrial context. Like any subject,
scheduling optimization lends itself to different treatments, ranging from a very pragmatic
and problem centered approach to a more generalized quest for knowledge. And the very
existence of these two polarities has been one of the key hurdles I had to overcome. All
through the years I spent writing this thesis, I recurrently faced the dilemma:

“Should I try to come up with practical solutions to specific industrial scheduling
problems or should I transcend specifics in order to gain deeper and more generic
understanding of the generalized scheduling problem?”

At one point I actually thought I could avoid a definite choice and strike instead a fine
balance between the two contradictory approaches. But I must admit however that it
would be perhaps pretentious and certainly misleading if I claimed to have achieved such
a goal. In the end the theoretical slant prevailed over the practical, not least because I
felt that gaining broad knowledge was more in keeping with the very nature of a PhD
thesis. For it can safely be assumed that if we are able to fully understand and model a
process, in due course such insight will lead to innovative practical solutions and serve
as a platform for knowledge sharing (through articles, seminars, etc) with the industrial
and the scientific community at large.

Given my choice, I would not be surprised if many practitioners of the scheduling art
may find the heuristic approach both frustrating and unsatisfactory. That would be par
for the course. I am conscious that running a production line is not like sipping tea at a
mid-summer garden party. On the contrary, it is a taxing challenge to keep production
rolling, day in day out, month after month and year after year, constantly facing a variety
of problems - most of them urgent, some of them vital - with no slack time whatever
for dreaming up lofty theories and innovative solutions. Product line management is all
about the here and now. To paraphrase a famous Ross Perot ! saying:

“...on the shop floor, if you see a rattlesnake you grab a shovel and kill it. You don’t
walk off to invent the new snake vaccine.”

Men who keep the supply chain constantly stocked as per manufacturing requirements
have all my admiration. And if some of them are reluctant to tackle the mathematics
and modeling that would give them a better understanding of the dragon they are trying
to slay, this is perfectly understandable. While it is indeed difficult to justify that a
production manager should perform the detached work of a scientist, this limitation
does not in any way imply that the theoretical view should always be looked upon
with suspicion. Indeed we can safely assume that well managed R&D (Research and
Development) is often the key to competing successfully in a crowded marketplace. And

! founder of EDS and one-time presidential US candidate
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when it comes to R&D, both scientists and industrial decision makers agree on at least
one fundamental point, i.e. that “...building a sound model is the starting point
for understanding and, ultimately improving complex processes.” Once a model
is found, solutions can then be delivered in the shape of

a) analytical study,
b) numerical computation or

c¢) simulation tools.

Whatever choices one may want to emphasize from the above list, it should be crys-
tal clear that time and effort should be spent up-front on analyzing and modeling the
specifics of the given problem. Unfortunately, human nature being what it is, it is not
surprising that a number of ads in the specialized press offer quick and inexpensive fixes
of “Simulations without Modeling” [8]. One can but assume that such unscrupulous pro-
motions are initiated by fast buck artists, fishing for naive prospects at the high-tech end
of the engineering marketplace.

Needless to say, it has not been my aim to cut any such corners in this thesis. Even though
our models may at times oversimplify reality (but in a way isn’t that what modeling is all
about?), we have certainly made every possible effort to insure that they contain all the
essential ingredients that make up the underlying reality of scheduling problems. Fur-
thermore, whatever simplifications we may have introduced and whatever assumptions
we may have built into our models, have been clearly enunciated and described. Thus
our whole treatment of the subject matter has been totally transparent and is open to
criticism. Finally, beyond all the math and the modeling, we sincerely hope that this
thesis will be first and foremost thought provoking.

At its deepest level, reality is mathematical in nature. Pythagore.
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Introduction

1.1 Optimal Decision Problem

Which is the best course of action to take given what is already known about a situa-
tion? This natural question is in the center of “Decision Theory”. Decision theory is an
important subject of the mathematics, taking into account three categories of problems,
namely:

a) Decision-making in a deterministic environment.
In this case, each action taken has a corresponding single outcome which is exactly
known in advance.

b) Decision-making in a random environment (i.e. risky or uncertain).
Here, several reactions may follow a single action taken. Each particular reaction will
depend directly on the state of the environment and its consequences will follow a law
of probability which may or may not be known a priori. (Take for example the re-
sult of throwing a dice, which will be a value between 1 and 6 with a probability of %)

c) Decision-making in a situation of conflict.
In this case, it is the behaviour of the adversary which creates the incertitude and
not the environment itself. This class of decision problem is known under the name
of “Games theory”.

In this thesis, we decided to focus our attention on the problems belonging to category
b). Specifically, we will study a mathematical formalism which allows a choice between
actions yielding immediate reward and others (such as acquiring information or skill, or
preparing the ground) whose benefit will appear only later but potentially may lead to a
higher global reward. A common characteristic of these problems is the random nature of
the dynamics of the underlying environment. This random behaviour impose that the op-
timal actions cannot be determined simply as they would be for deterministic evolutions.
In general the environment behaviour drastically influences the decision-making. Prob-
lems of this type belong to the class of “sequential decision problems”. Here “sequential”
suggests that a Decision Maker (DM) must make his decision by relying only on his past
experience and that no premonition is allowed. Moreover he may change his mind at any
time in a sequential manner. Dealing with sequential decision-making problem, we can
distinguish between two main issues:

a) System identification: How to use the information obtained from the observed outputs
to reduce the uncertainty about the system’s behaviour in the future.
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b) Stochastic control: Select feedback control actions, (i.e. closed loop reaction), to op-
timize the values of a relevant cost function.

In order to illustrate both cases a) and b) above let us consider the industrial world:
Most manufacturing firms are large, complex systems characterized by several decision
subsystems, such as finance, personnel, marketing and operations. They commonly have
a number of plants and warehouses and produce a large number of different products
using a wide variety of machines and equipment. Moreover, these systems are subject to
discrete events such as the construction of new facilities, the purchase of new equipment
and scrappage of old, machine setups, failures and repairs and the introduction of new
products. These events could be deterministic or stochastic. To be efficient, management
must be aware of and react to these events. We thus understand the importance of con-
structing an efficient model of the manufacture device and efficient scheduling heuristics
in order to achieve a very rapid (ideally instantaneous) response to random demands
while maintaining production costs as low as possible.

Because of the large size of these firms and the occurrence of such events, obtaining
exact models and optimal policies to run these systems is nearly impossible both theo-
retically and computationally. Let us look, as an example, at firms producing watches. In
such manufacture, the tendency is to propose very customized products matching each
individual desire. To match this requirement, the engineer usually constructs flexible
production lines, each of which is able to produce many different types of finished goods.
Usually only a single type of product can be delivered at a given instant and therefore
specifications of production plans (i.e. a proper scheduling for the type of production to
engage) are mandatory. At each decision time, the production schedule will be based on
both available past experience and present information regarding inventories, production
and demand flows. Practice shows that actual flexible production and/or assembly lines
always involve setup penalties such as cleaning operations. During these setups, the pro-
duction is stopped and an additional workforce is usually needed. Hence, these setups
are costly and it is therefore very important to schedule the precise periods for changing
the production type.

Although flexible production is well implanted in actual manufacturing systems, we can
observe that the optimal scheduling of their production flow is generally not known. In
industry, the Decision Maker (DM) schedules his installation using very simple decision
rules. In most cases, these simple rules perform well enough for the survival of the firm,
but are far from the optimal strategies. Therefore, every step towards the understanding
of optimal scheduling is welcome and will help to develop more efficient decision rules.
Accordingly, this thesis will study the dynamic scheduling of Flexible Manufacturing
Systems (FMS) operating in a random environment.

One of the most important methods in dealing with the optimization of large, complex
systems such as FMS is that of hierarchical decomposition. The idea is to reduce the over-
all complex problem into manageable approximate ones, to solve them and to construct
a solution of the original problem from the solution of the simpler ones. This idea has
been identified as particularly fruitful when applied in the area of Operations Research
(see [44]) but is also a general idea used to discuss any difficult problem. Indeed, we can
cite, for example, Descartes who, in his “Discourse on Method”, already introduced this
concept as follows:

[...] “Instead of the great number of precepts of which logic is composed, I believed that
the four following would prove perfectly sufficient for me, provided I took the firm and
wnwavering resolution never in a single instance to fail in observing them.
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The first was never to accept anything for true which I did not clearly know to be such;
that is to say, carefully to avoid precipitancy and prejudice, and to comprise nothing
more in my judgement than what was presented to my mind so clearly and distinctly as
to exclude all ground of doubt.

The second, to divide each of the difficulties under examination into as many parts as
possible, and as might be necessary for its adequate solution.

The third, to conduct my thoughts in such order that, by commencing with objects the
simplest and easiest to know, I might ascend by little and little, and, as it were, step by
step, to the knowledge of the more complex; assigning in thought a certain order even
to those objects which in their own nature do not stand in a relation of antecedence and
sequence.

And the last, in every case to make enumerations so complete, and reviews so general,
that I might be assured that nothing was omitted.”

Descartes “The Discourse on the Method” [10].

Fig. 1.1. “Make-to-stock” production facility (MSP).

Let us then make some approximations in our initial FMS in order to obtain a tractable
problem. From the point of view of external demand, we may consider our FMS as a single
flexible production entity with a set of finished goods inventories (i.e. a “make-to-stock”
production (MSP) facility with multiple products, see figure 1.1). Specifically, the MSP
consists of a single production unit which is able to manufacture N types of different
products, however only one at a time. Each finished product is placed in its respective
inventory which services an exogenous demand. When demand for a product arises, it is
either satisfied immediately from on-hand inventory, if available, or is backordered oth-
erwise (i.e. the demand waits until the desired good is produced). In a MSP we normally
assume that there is plenty of raw material at the entrance of the production unit so
that the machine can always be supplied with the parts needed for its work. Moreover
we normally assume that the production time for each good is fixed but that the demand
for this good has fluctuations around its mean value. These assumptions are not always
proven accurate in the real flexible production line. Indeed, the supplier may have delays
causing the production of one type of goods to stop because of raw material shortage.
Moreover, the production line being generally composed of several workstations, the time
needed for the production of one good may be random. Therefore considering a make-
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to-stock production instead of the actual flexible production line is a first approximation.

Although the MSP is a simplified problem, both difficulties a) and b) aforementioned are
still present. Indeed, the demand flow of the MSP is identical to the demand flow of our
initial production line and the characterization of its properties have to be discussed in
order to look for optimal scheduling (case a)). Therefore, in the present thesis we shall
start by assuming that system identification is already performed. Hence, we assume that
the probabilistic laws characterizing the uncertainties are determined. The attention will
then be focused on the dynamic scheduling of the MSP which minimizes the backorder
and holding costs of the multiple finished goods surpluses and also minimizes the setup
costs and/or time delays incurred when switching from one production type to another
(case b). Let us first consider simple scheduling rules solving the MSP and discuss its
efficiency:

i) The Polling Policy: The flexible facility first produce a fixed number P; of one
type of good then switch its production to another type, produce a fixed number P
of this type, and so on until every type of good has been produced, then it restarts
cyclically to the first produced type of good. The values P;, j € {1,2,...,N} are
chosen a priory at every cycle start,.

ii) The Minimal Stock Policy: The flexible facility always produces the variant which
has the smallest number of items in its inventory (this value may be negative when
no goods are in the inventory and there are customers waiting to be served). When
all the finished goods inventories are filled up, the facility is idle until a demand comes.

ili) The Two Thresholds Policy: We fix a minimal threshold d; and a maximal thresh-
old D; for the finished good inventory of each product type j € {1,2,...,N}. The
minimal and maximal value may be different for each j. When one of the inventories
falls below d; we switch the production facility to this type of good and produce it
until its stock reaches the level D;. Then we look, among the other types, for another
having its inventory level below its minimal threshold. If one exists, we switch the
production to this type (say type k) and we produce it until its inventory level is Dy,
(if several exist we switch to the one having the lowest inventory). If none exists we
carry on producing the type j until either one type k finds its stock level falling below
dy, or the inventory of type j is filled up, then we let the facility be idle.

What is the efficiency of these heuristics?

i) The polling policy is a static policy in the sense that it does not react to environmen-
tal events. Indeed, once a cycle is started, no decisions are taken until the next one.
This could produce truly poor results if, for example, the cycle time were long and
suddenly demand rose higher than expected for a particular good. In this situation
the customer for those goods would have to wait a long time before being served,
which could considerably reduce customers satisfaction (this is really costly in a com-
petitive environment).

ii) The minimal stock policy has catastrophic results when setup penalties are to be
taken into account. Indeed, assuming that all inventories full to approximately the
same level, then this policy will command to switch the production very often in a
short interval of time. Because of the setup costs, this cannot possibly be optimal.

iii) The two thresholds policy precludes switching all too often from one type of good to
another. It is therefore well adapted for production problems with setup penalties.
Note however that in order to implement it in an actual factory, a difficult problem is



1.2 Mathematical Formalization of Decision-Making Problem

to find the adequate threshold d; and D;. Moreover these thresholds are fixed once an
for all and do not depend on environmental events. This lack of reactivity certainly

prevents the policy from being optimal and it is indeed what will be observed in part
IIT below.

Being award that simple heuristics can not possibly lead to the optimal policy, we will
study two mathematical formalisms affording to model the MSP and based on this model
we will propose more efficient heuristics.

1.2 Mathematical Formalization of Decision-Making Problem

The very precursor to use mathematical formalizations for decision-making problems, is
probably Blaise Pascal who, in the 17th century, proved the importance of believing in
God by constructing his famous “wager” (see [39]):

[...] “God is, or He is not. But to which side shall we incline? Reason can decide nothing
here. There is an infinite chaos which separated us. A game is being played at the ex-
tremity of this infinite distance where heads or tails will turn up... Which will you choose
then? Let us see. Since you must choose, let us see which interests you least. You have
two things to lose, the true and the good; and two things to stake, your reason and your
will, you knowledge and your happiness; and your nature has two things to shun, error
and misery. Your reason is no more shocked in choosing one rather than the other, since
you must of necessity choose... But your happiness? Let us weigh the gain and the loss
in wagering that God is... If you gain, you gain all; if you lose, you lose nothing. Wager,
then, without hesitation that He 1s.”

Pascal, Pensées, 233.

His argument can be summarized as follows:

Available Choices| God exists |God does not exist
I believe Reward = C4; Loss = C»
I do not believe | Loss = Cy; Reward = (s

Here above I have tried to express Pascal’s word in table format that should be read
as follows: Available choices are in column 1, the assumption that God does actually
exist in column2 and that he does not in column 3. The rows represent an individual’s
choice. He may believe (row 1) of not believe (row 2). The point of the exercise is to try
a measure (albeit in a hypothetical manner) whether there is more to be gained and less
to be lost from being a believer as opposed to a non-believer. We may gain this info from
looking up the permuted reward and losses from the table. in symbols we have that Cjj,
1,7 = 1,2 are the expected gain or lost obtained when:

e (11 we belive in God and He exists,

C12 we believe in God and He does not exist.
C51 we do not believe in God and He exists,

e (5 we do not believe in God and He does not exist.

Since this thesis is all about optimal decision taking under uncertainty (i.e. in a random
environment) we will be dealing extensively with probabilities. Here is an example of
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how we would use a simple probability measurement to the Pascal problem cited above.
Assume that the probability of the existence of God is P; and the probability of his
non-existence is P». Hence, the expected reward obtained by someone who believes in
God is

Sl :P1 X 011 +P2 X C12

i.e. he will receive reward C7; with probability P, and reward Cy» with probability P;.
Similarly, the expected reward for someone who does not believe in God is

52:P1X021+P2X022.

In his “Pensées” [39], Pascal shows that S; is much larger than Sy (i.e. S; > S2). Indeed,
assume that P; = P, (i.e. the probability of existence of God is equal to the probability
of his non-existence). Now, remark that Ci; has, for the believer, an infinite positive
value (he will reach eternal life) and C;» has a finite positive value (his belief helps him
to overcome his fear). On the contrary, Cy; has an infinite negative value and Css a
finite negative value. It is therefore imperative to believe in God as S; brings infinite
satisfaction while S, brings infinite desolation.

[...] “But there is an eternity of life and happiness. And this being so, if there were an
infinity of chances, of which one only would be for you, you would still be right in wagering
one to win two, and you would act stupidly, being obliged to play, by refusing to stake one
life against three at a game in which out of an infinity of chances there is one for you,
if there were an infinity of an infinitely happy life to gain. But there is here an infinity
of an infinitely happy life to gain, a chance of gain against a finite number of chances of
loss, and what you stake is finite. It is all divided; wherever the infinite is and there is
not an infinity of chances of loss against that of gain, there is no time to hesitate, you
must give all...”

Pascal, Pensées, 233.

While Pascal applied this mathematic formalization to a fundamental theological prob-
lem, the formalization of decision mechanisms went on to some more frivolous problems
such as the card games, or random games, which were popular in the 18th century (ex-
amples are the contributions of Georges-Louis Buffon and the Bernoulli brothers, partic-
ularly Daniel). As emphasis in section 1.1, in this thesis we will apply the mathematical
formalization to manufacturing problems.

Let us now introduce the mathematical notations needed in the sequel by modeling a
general decision-making problem in a random environment: Consider a dynamical system
consisting of N projects evolving with time. A Decision Maker (DM) engages these
projects in parallel and we suppose that he can engage only M < N of them at the same
time (we usually say that the DM has a “limited capacity”). When a project is engaged
by the DM we say that it is in its “active phase” otherwise we say that it is in its “passive
phase”. Let us write
X;J(t)7 .] e {]‘727"'7N}

for the state of the project j at time ¢. Here, the superscript 7;(¢) € {a, p} correspond to
the operating state (active or passive) of project j at time ¢. Particularly m; = a when
the DM engages project j at time ¢ and 7; = p otherwise. Assume that V¢ € R we have:

X;-Tj (t) S Xj.
We then say that X is the set of possible states of project j. We will use the notation
X7T(t) = (X[ (1), X532 (1), -, XRV (1))

to characterize the global state of the system at time ¢. Note that the limited capacity of
the DM implies that at most M of the N components of the vector 7(t) have their value

[ 1P

equal to “a”. For example, suppose that N = 3 and M =1, then:
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— -

X7 () = (X7(8), X5(1), X5 (1))

means that at time ¢, the project 7 = 2 is engaged and the projects 7 =1, and 5 = 3 are
disengaged. The evolution of all the projects will generally follow stochastic (i.e. random)
processes and we impose an important concept, the Markov property of the processes:

Definition (Markov Process [41]) We say that a process is Markovian if its future prob-
abilities are only determined by its most recent values.

Therefore, under the Markov assumption, the information contained in X7 (¢) at time ¢
(i.e. the present state of the system) is sufficient in order to completely characterize the
stochastic evolution of X7 () for 7 > t. Let us now assume that we can construct “utility

functions”

hi(x;), j €{1,2,...,N}

which give the instantaneous reward gained when the project j is in state X;-Tj (t) =
(generally, hf(z;) # hi(z;)). Then, based on X7(t) and h7 (X7 (t)), the DM decides
which project to engage with respect to his limited capacity and in order to maximize his
global reward. Note that all the decisions taken by the DM at time ¢ are summarized in
the vector 7(t) which assigns values “a” to each activated project and “p” to the others.

The function
7(t) : {1 x Xy x ... x An} = {a,p} x ... x {a,p}

(‘,'U].?‘,L'Z?"'?‘/L'N) = ﬁ(t)E{CL,p}N

will be called a “scheduling policy” and for ease of notation we will omit the arrow
when no confusion can arise (i.e. #(t) will be written as 7(¢) in the following). When the
scheduling policy 7(t) makes his decisions based on the evolution of the system X 7 (t) we
say that the policy is a “dynamic scheduling policy”. Note, however, that not all policies
7(t) are of dynamic type. For example, when M = 1, we can construct a policy which
engages each project j periodically during a fixed time 7;.

Let us now consider a time limit H (also called time horizon) during which we engage the
projects following a scheduling policy 7 (). We can then define the global performance
of the policy as

H N
Je(7o, B) = Ex / e P lz hg(X,’;(s))] ds— Y e fmic, (1.1)
0 k=1 i <H

where

e 7y describes which are the M projects initially engaged.

e The 7; are the instances at which it is decided to disengage a project and engage
another one (i.e. the switching times).

e The C;, are the switching costs incurred during the setups.

e The term E, represents the expectation operator which computes the mean reward
for all the possible realisations of the random process X (t). Note that when the dy-
namics of the system is deterministic, the presence of this operator is superfluous as
X;(t) takes a single realization.

e The term e Pt with 3 > 0 is a discount factor which takes into account the fact that
the future rewards are less attractive than ones available immediately. Specifically, one
reward unit will correspond to e=#* < 1 when received ¢ units of time in the future.
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Therefore, for a large value of § all the rewards gained in the future are almost
negligible (the value of e %% is close to 0) and maximizing the global satisfaction is
equivalent to maximizing the immediate one (myopic policy). On the contrary, when
B is small, future rewards are not negligible, thus, the myopic policy is not necessarily
optimal.

Clearly, the first term of equation (1.1) corresponds to the sum of all discounted rewards
received in each project j over the horizon H and the second term represents the sum of
all discounted switching costs. Now the goal for the DM is to find the scheduling policy
7* which maximizes J (7, %y), i.e.

Jrx (o, o) = sup Jx (7o, Lo)-
™

Such a policy is called optimal.
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Thesis Organization and New Results

The present thesis belong to the general research program of the Group QuaDeStra
(Quality decision Strategy “http://ipr.epfl.ch”) in which we view the supply-production-
customer chain as being a far from thermodynamical equilibrium process [Hong 94] and
[Schw. 97]. This point of view is summarized in the Figure 2.1 below where the position
the present thesis (i.e. the dynamic scheduling problem) is located in the hatched part.

Supply Production Customer

Manufacturing System
o e e

Energy
—*| | Scheduling

> Byproducts

Production flow >

==
mormstn] |3 N =7
R

74
Finished
goods

‘I T
Production Buffer k
cells

Hedging
stocks

Fig. 2.1. Schematic view of a supply-production-customer chain. The domain of relevance of
the present thesis is located in the highlighted green part of the production process.

In order to model our scheduling problem we will focus our attention on two classes of
decision problems namely the “Multi-Armed Bandit Problem” (MABP) in part I and the
“Restless Bandit Problem” (RBP) in part II. Because of the importance of setup penalties
when switching production in real industrial environments, we generalize the MABP in
part IIT by including switching costs an/or time delays. All the results obtained from
these formalisms are applied to the flexible manufacturing problem in part IV. Let us
just mention here the particularities of the MABP (with and without switching penalties)
and the RBP:

a) Multi-Armed Bandit Problem (without switching penality):
The following simplifications are included in the model:
i) There is no switching cost.
ii) The disengaged projects do not evolve in time (i.e. X7 (t) = X7 (t + dt))
iii) The disengaged projects bring no reward (i.e. hY(z) = 0).
iv) The DM can engage only one project at a time (i.e. M = 1).
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v) The projects are independent (i.e. the evolution of project j does not influence
the evolution of the other projects k # j).

b) Multi-Armed Bandit Problem with switching penalties:
The following simplifications are applied:
i) There are switching penalties each time we stop a project and we engage another
one.
ii) Points ii) to v) are identical to the ones for MABP without switching penalty.

c) Restless Bandit Problem:

The following simplifications are included in the model:

i) The first point is similar to the MABP, i.e. there is no switching cost.

ii) The disengaged projects evolve in time and their evolution may be different when
engaged or disengaged.

iii) The disengaged projects bring rewards.

iv) The DM can engage more than one project at a time (i.e. 1 < M < N).

v) Asin the MABP, the projects are independent (i.e. the evolution of project j does
not influence the evolution of the other projects k # j).

Multi-Armed Bandits problems are in fact specific sub-problems of Restless Bandits prob-
lems. Therefore we can build a hierarchy of bandit problems starting with the simplest
sub-problem (the Deteriorating MABP) to the more complex one (the RBP). This is
resumed in the single table which follows:

Decision Theory
With Switching Costs Without Switching Costs

Bandit

Restless

Bandit

Deteriorating
Bahdit

Classical

Fig. 2.2. Classification of Multi-Armed Bandits problems and Restless Bandits problems.

MABP RBP
Deterministic|Random ||Deterministic|Random
Without switching penalties 1 2 3 4
With switching costs 5 6 7 8
With switching time 9 10 11 12
Wl.th .swr.cchlng costs and 13 14 15 16
switching time

10
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Our contribution spreads over classes 1 to 6 plus 9, 10, 13 and 14. Note that every section
which presents a new result has its title beginning with a star (@) In particular:

e We compute explicitly the form of the Gittins indices when the evolution is given
by a piecewise deterministic process which is intrinsically non-Markovian. This is the
first class of non-Markovian examples in the literature for which the Gittins indices
can be explicitly computed (see [31]).

e We studied several underlying random dynamics relevant to the industrial engineering
context, (e.g. diffusion processes as well as birth and death processes). We obtained
explicit generalized priority indices for RBP and the resulting dynamic scheduling
was compared with exact results derived numerically by A. Ha [22]. Finally, using
these results, we propose a sub-optimal heuristic solving the multi-items make-to-
stock production problem (see [12] and [11])

e For the MABP with switching penalties, significant progress has been made by con-
structing a new class of MABP with setups for which the optimal policy can be
explicitly constructed by recursion. Using this optimal derivation, we then propose a
heuristic, approaching the optimal policy for general MABP with switching penalties
(see [13]).

In short, the structure the thesis is as follows:

Each part begins with an introduction summarizing its content and ends with a small
conclusion. We formally define the MABP and give some characteristic illustrations in
chapter 3. In chapter 4 and appendix A, we review the optimal scheduling policy for
MABP. We briefly present the elegant example given by Karatzas [24] in section 5.2,
who computes explicitly the priority index for a MABP in continuous time, when the dy-
namics are driven by diffusion processes. We explicitly derived in section 5.3 the priority
index function for MABP with a dynamics driven by piecewise deterministic evolution
processes.

Note that, for the RBP, the optimal policy is not known, given general underlying dy-
namics and reward functions. However, a heuristic based on the priority index, known
under the name “Whittle Relaxation”, yields very efficient scheduling rules. The defini-
tion of the RBP can be read in chapter 7 and the derivation of the Whittle heuristic is
described in chapter 8. Explicit computations of the indices are performed for different
underlying dynamics:

e in sections 8.1.1 for a simple deterministic dynamics,
e in sections 8.1.2 for a diffusive dynamics,
e in sections 8.1.3 for a continuous time Markov chain dynamics.

The efficiency of these index policies is finally tested in sections 17.2.2 and 17.3 where
we compare them to numerically derived optimal policies for a flexible machine able to
produce two different product types.

For the MABP with switching penalties, it has been established that no policy based
on priority indices can possibly be optimal (see section 12.1). Nevertheless index policies
are attractive as they are simple to use. Therefore, in chapter 12, we construct a possible
generalization of the Priority Index Policy based on two index functions for each project
j€{1,2,...,N}. Then, in chapter 14, we derive the optimal policy for a simple class of
MABP with switching costs and, based on this solution, we show in chapter 15 that the
proposed generalization of the Priority Index Policy leads to very interesting heuristics
as it reproduces the generic form of the optimal policy. Even if the optimal policy for

11
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MABP with switching penalties is generally not known, we can maintain that only dy-
namic scheduling will lead to an optimal policy. This is precisely what is observed in the
example studied in chapter 14.

Finally, all the above result are used in part IV to discuss the scheduling policy of a
flexible manufacturing production facility.

12



Part 1

Multi-Armed Bandit Problem (MABP)






Introduction

The Multi-Armed Bandit Problem (MABP) is an idealized mathematical description of
the conflict existing in the decision-making problems. The term “Multi-Armed Bandit
Problem” comes from the case where the decisions to be taken are engagement of slot
machines. In the vast domain of decision problems, the class of MABP certainly plays
an important role as it is a building block used to model decision problems and it can be
solved optimally. Indeed, in 1974, Gittins proved that the optimal policy for the MABP
may be obtained by solving a family of simple stopping problems that associate with
each project an urgency function (known as the Gittins index) in terms of which the
optimal scheduling reads:

“At each instant produce the item exhibiting the highest priority index”.

We briefly recall the definition of the MABP in chapter 3. Then, in chapter 4 we present
the priority index policy based on the Gittins Index, which is the optimal policy for
MABP (see appendix A). The remaining difficulty is to explicitly calculate the Gittins
Index for given situations. As noted in [21], it is rather exceptional that the Gittins Index
can be solved explicitly and only few examples are available in the literature among which
we can cite:

e The simple deterministic example derived by Walrand [46] which is exposed in chap-
ter 5.

e The class of deteriorating MABP, first proposed by Whittle [49], which is defined and
solved in section 5.1.

e The MABP given by Karatzas [24], for with the underlying random dynamics is mod-
eled by diffusion processes (see section 5.2)

We complete this list by proposing an original contribution, exposed in section 5.3, where
we solve the class of alternating Markovian renewal processes (i.e. piecewise determin-
istic (PD) evolution processes). One motivation to study PD processes originates from
the fact that they arise naturally in the fluid modeling of production flows delivered
by failure-prone machines, [6], [17]. Finally we apply our results to a simple production
scheduling problem in section 5.3.3.

Illustration of Multi-Armed Bandit Problems

The Gambling Machine Problem [49]: A natural illustration of MABP is the slot
machine problem as follows: Suppose that a player faces two gambling machines. Assume
that he knows that the first machine always distribute good rewards and assume that
he knows nothing about the reward sequence of the second machine. From the point of
view of immediately expected rewards, it would be preferable to use the first machine.
However, if long-term performances are important, then it may be preferable to test the
second machine, which has a chance of being better than the first one.

The Gold Mine Problem [18]: Consider the situation where a miner extracts gold
from N different mines but can work only in one of them at a time. Every morning he
has a choice of either continuing to work in the same mine as in the previous day or to
change to another mine. He takes his decision accordingly to what he gained in the mines
in the past. His goal is to maximize the extracted quantity of gold.

15



The Clinical Trials Problem [50]: A doctor has N alternative medical treatments
to treat a particular illness. He can only use one of these treatments on each patient.
Each time he uses a treatment he learns more about its efficiency. His goal is to find the
treatment which is the best adapted for the illness. It is important to note that ethics
play an important role in the present decision problem. Indeed, the doctor has to choose
if he wants to maximize a short-term or a long term-reward as follows: To go for the
short-term reward is to maximize the probability of success for the present patient. To
go for the long-term reward means experimenting until he is confident to have found the
best treatment.

Remark: An important common feature of all the above illustrations is the possibility
for the Decision Maker (DM) to have a choice between several attitudes (e.g. which
project to engage) at each moment in time. Another one is the impossibility for the DM
to collect the reward of all the projects at the same time (we say that the DM has a
limited capacity).

16



3

Definition of the Multi-Armed Bandit Problem

3.1 Discrete Time

The Multi-Armed Bandit Problem (MABP) exemplify the conflict of a decision maker
(DM) having to choose at each instant of time one among N projects (also named arms
from now on) as follows: Consider N dynamical projects. Let us assume that the DM
may choose to continue with the currently engaged project or switch to another at each
decision time ¢;. Without loss of generality, we can assume that the DM makes a decision
at each unit of time (i.e. t; = ¢ € N). Let us write X;(¢;) for the state of the project j at
time ¢;, then:
Xj(ti) = € Xj,

where X; C R", n > 0 is the set of all possible states for the project j. If at time ¢;,
the decision is to engage the project j in the state x;, then one gets an instant reward
hj(x;), where

h]’ : Xj - R

is a C? uniformly bounded function. The rewards are discounted over time by a factor
0 < B8 < 1. This means that the present value of one unit of gain equals 3t when received
t units of time in the future. Each time the project j is engaged it moves into the state
X;(tit1), where X;(¢;) is a stochastic process. We assume the stochastic independence of
the X(t;), k € {1,2,...,N}. Moreover, the stochastic processes Xy (t;) are assumed to
be Markovian and stationary. Finally, we impose that the states of the NV — 1 disengaged
projects remain frozen (i.e. Xy (t;41) = Xi(t;), Vk # j) and yield no reward. Note that,
with these assumptions, the MABP belongs to the class of stationary Markov decision
processes [41].

We write .
X(t;) = (X1(t:),---, Xn(t:))

for the state of the N-armed MABP at time ¢;. By abuse of notation we will also use
X (t;) instead of (X, k) to represent the N-armed Bandit problem itself. The decision to
engage (or disengage) a project, as a function of time, is called a scheduling policy .
Therefore, at each decision time ¢; a policy commands to engage one of the IV projects
(i.e. w(t;) € {1,2,...,N}). In the following, we will restrict our attention to the class of
admissible policies defined by:

Definition 3.1 (Admissible policy [50]). A policy 7 is admissible if w(t;) is a deter-
ministic function depending only on the instantaneous state X;(t;) of project j at time
t; (i.e. it is non-anticipating). In the following the set of all admissible policies is called U.

17



3 Definition of the Multi-Armed Bandit Problem

Let us define the indicator IT (¢;):

1 if project j is engaged at time ¢; under policy ,
(t:) = .
0 otherwise

Given a policy 7, an initial condition X (to) and a discounting factor 0 < 8 < 1, we can
write the total discounted reward gained when engaging the MABP under policy 7 as

o] N
J™ (X (to)) = Ex Zﬂti Zhj(Xj(ti))I;'T(ti) X(to) ¢, (3.1)
=0 =1

where E { - | X (to)} is the mathematical expectation under policy = conditional to the
initial condition X (fo). In equation (3.1) the first sum extends to all the decision times
t;, i = 1,2,... and the second sum gives the reward of the engaged project at time ¢;
(when the engaged project is project j, then I7T(¢;) = 1 and If (t;) = 0, k # j). The aim
is to find a scheduling policy 7* which maximizes the total discounted reward, i.e.

T (X (b)) = sup J"(X(t0)). (3.2)

Such a 7* policy will be called “optimal”. Let us now define the one-step operators L;
which describes the short time evolution of the expected global reward when it is decided
to engage project j at time ¢;:

LjJ™(X(t:)) = hj(X; () + BE[J™ (X (tir1) | I (8:) = 1)], (3.3)
where the expectation operator E computes the mean value of X (ti+1) at time t;41. In

term of the L; operators j € {1,2,...,N}, J (X(to)) may be equivalently defined by
using the Dynamic Programming (see [49] and [51]), as being the unique solution of:

J™(X(to)) = max L;jJ™ (X(t)).
j=1,...,.N

. The Gambling Machine Problem.

Remark: Applying this formalization to the illustrations given in the beginning of this
section we have:

e For the Gambling Machine Problem (see Figure 3.1), we maximize the long-term per-

formance when the discounting is not too steep (i.e. £ is not too close to 0)

e For the Gold Mine Problem, the projects X;(t) are the quantity of gold extracted at
time ¢ in mine j and the discounting factor corresponds to the passive interest on the
investment.

18



3.2 Continuous Time

e For the Clinical Trials Problem the projects are the treatments, their state X;(t)
is the degree of confidence in the efficiency of the treatment j and the discounting
factor f is usually regarded as the ethical parameter. Indeed, as § varies from 0 to 1,
one gradually changes from maximizing the short time reward (i.e. the treatment suc-
cess of a single patient) to maximizing the long time reward (i.e. the research activity).

3.2 Continuous Time

In continuous time, the definition of the MABP is similar to the one in discrete time. The
modifications to be included are the expected ones arising naturally from the continuous
nature of the processes, namely:

e The t;, ¢ € N denotes the sequence of increasingly ordered switching times occurring
when it is decided to stop a project in order to engage another one.
e The discount factor is e="%.

Hence, equation (3.1) is rewritten as:

00 tit1 N .
FEE) =EAY [T et Y mGeFod| X, G
=0 t; j=1
which is equivalent to
— o0 N —
J"(X(to)) = Ex /0 e Pt Z hi (X5 () L7 (t) dt | X(to) ¢ - (3.5)
j=1

Again the Dynamic Programming implies that the optimal cost function J* (X (to))
fulfills the following property:

max [hy(X;(to)) = B (X (t0) + L J™ (X (k)] =0,
j=1,....N

where L; is the infinitesimal generator for J™ (X (t;)) (see [51] chapter 4, p.178).
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4.1 The Gittins Index in Discrete Time

4

Structure of the Optimal Policy for the MABP —
The Gittins Index

The optimal policy for the MABP was first derived by J.C. Gittins [19] who introduced
priority indices (Gittins indices) as follows:

Definition 4.1 (Priority Index Policy). Given an N-armed MABP X (), a Priority
Index Policy is a scheduling policy, based on the existence of N stationary functions

vg; :.X}—)]R j=1...,N
zj = vg;(z;)

depending only on the state of the project j alone (i.e. not depending on the other N —1
projects). In terms of the vg;(xz;), the Priority Index Policy reads: “At each decision time
t; engage the project exhibiting the largest index value vg;(X;(t;))” (see Figure 4.1.

Fig. 4.1. Priority Index Policy.

4.1 The Gittins Index in Discrete Time

The computation of the priority indices is done by splitting the initial /N-armed Ban-
dit problem into IV associated stopping problems (called as problems SP;, j =1,...,N):

21



4 Structure of the Optimal Policy for the MABP —The Gittins Index

Definition 4.2 (Problem SP;)). Given an N-armed MABP X (t;), the stopping prob-
lem SP; associated with project j =1,...,N are: Given a terminal reward

v

1-5
where v € R and 0 < f < 1 is the discounting factor, find an optimal stopping time
77 (7) € Ry which mazimizes the reward J;(Xj(to)) gained by *engaging project j until
time 77 (7), then stopping and collecting the terminal reward 57 (V)ﬁ.

For ease of notation we will omit the project index j in the optimal stopping time 77 ()
and write it simply as 7*(y). Given an initial condition X;(¢o), it can be proven (see
[49]) that the maximal expected reward J; (X;(t9)) of the stopping problem SP; is the

unique bounded solution of the equation:

J](X;(to)) = max s Ly} (X;(t0))] (4.1)

Y
1-p
with the one-step operator L; defined by equation (3.3). Indeed, the left alternative in
the “max” of equation (4.1) correspond to stop while the right alternative is to con-
tinue. Intuitively, if the stopping reward - increases, then the maximal expected reward
J7(Xj(to)) should also increase. This intuition is correct and Whittle [49] proved that
J] (X;(to)) is a non-decreasing function of v which equals # for v sufficiently large.

Definition 4.3 (Gitting Index). Given an N-armed MABP X (t;), the Gittins index
vg;(xz;) of project j for a given state X;(to) = x;, is defined as the smallest value of v

for which one has:
v

I} (Xj(to)) = -5

J

Remarks:
e By definition, the index vg;(X;(to)) is exactly the critical value of y for which imme-
diate stopping is optimal i.e.

LjJ;gj(Xj(tO))(X] (to)) = w (4.2)

e The index vg;(X;(t0)) can be regarded as the minimal value of v which renders the
following options equivalent:

a) Disengage project j immediately and collect the reward #

b) Engage project j at least once, stop optimally thereafter at optimal
stopping time 7*(y) and collect the reward ﬂT*(V)ﬁ.

Definition 4.4 (Problem P;). Given an N-armed MABP X(t;), define N two-armed
MABP (called problem Pj;, j=1,...,N) as follows:

The first arm of the two-armed MABP P; corresponds to the project j of )Z(ti), with
dynamics X;(t;) and yielding a reward h;j(X;(t;)). The second arm of P; (called project
T from now on) has the “frozen” dynamics:

Xr(t;) =€€ Xr CR, Vi,

and gives a constant reward v when engaged (i.e. h(§) =, see Figure 4.2).
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4.1 The Gittins Index in Discrete Time

Fig. 4.2. Problem P;.

We will now prove that the problems P; are equivalent to the problems SP; in the sense
that solving the problems P; gives the stopping time 77 (v) and the reward J; (X;(to))
of the problems SP;.

Lemma 4.5. The problems P; are stopping problems, equivalent to the problems SP;, j =
1 N.

yeey

Proof: Assume that initially project j is engaged. Then, once the project 7 is engaged,
it will never be optimal to reengage the project j. Indeed, if at time ¢; it is optimal to
engage project T, the states of the system at time ¢;;1 remain identical with those given
at time ¢; (the project j is “frozen”), hence by a recurrence argument engaging project
7T is optimal forever. From this observation, we conclude that problems SP; and P; are
equivalent as they both engage project j until the stopping time 77 () which maximizes
the global reward JJ (X, (to)).

([l
Theorem 4.6 (Gittins Index). Given the problem P; associated with project j, the
Gittins index for project j is ([18], [19], [46], [49]):

Ea; {T"Z%: ﬁ“hj(Xj(ti))}

vg;(X;(to)) = sup — : (4.3)
Ted Ez]{ Z ﬁti}
i=0
where E,; = Ex[ - | X;(to) = ;], @ € U is an admissible (i.e. non anticipating) policy

for problem Pj and t,_ is the stopping time at which project T is engaged under policy
7 (i.e. the numerator represents the expected reward of problem P; until time t._).

Proof: For each admissible policy 7 for the problem P;, there is a corresponding stopping
time ¢, at which it is required to engage project 7. As problem P; and problem SP;
are equivalent, we have:

(7)) = tr,

where ¢, _, is the optimal stopping time at which the optimal policy 7* (for problem P;)
commands to engage project 7. Now, the minimal value of v that makes equivalent to
immediately disengage project j and collect the reward ﬁ or engage project j until

time ¢, ., then stop and collect the reward [ 11,87 is solution of:

Tr* —

1
E| Y Bhi(X;(t)) + 8= | =7E
i=0

zﬂ] | (4.4
i=0

Solving equation (4.4) for v we get:
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4 Structure of the Optimal Policy for the MABP —The Gittins Index

{5 s

=0

Tpx—1
o5

By definition, the Gittins index vg; (X (to)) corresponds to this minimal value of . Hence,
taking the “sup” over all admissible policies ensures that the summations in equation
(4.3) are done with upper bound i = 7% — 1.

7:

O

Theorem 4.7 (Optimality of the Gittins index). The Priority Index Policy based
on the Gittins index is the optimal policy for the MABP.

Proof: See [19], [18], [46] or Appendix A.

Lemma 4.8. The Gittins index of the “frozen” project T is

vgr(X7(to)) = . (4.5)

Proof: Consider problem P7 associated with project 7 (i.e. a two-armed MABP with
both projects having the “frozen” dynamics as defined for project 7). Suppose that the
first project (71) offers a constant reward of v; and that the second project (7z2) offers
a constant reward of v,. Then the optimal policy of problem P is to engage forever
the project with the highest value of v, k = 1,2. This policy is achieved with priority
indices vgr;, (§) defined as:

vy (&) =, k=12

Lemma 4.9. The optimal stopping time 7*(7) of problem SP; is:
() = inf{t; | vg;(X;(t:)) <~}

Proof: Problem SP; is equivalent to problem P;. As P; is solved optimally with a Gittins
index policy, the solution to the stopping problem SP; is as follows: “Engage project j as
long as vg;(X;(t;)) > vgr(X7(t:)) otherwise stop and engage project T forever”. From
lemma 4.8 we know that vg7r(X7(¢;)) = v which ends the demonstration.

O

Lemma 4.10. When h;(z) > 0, an optimal policy for a MABP commands never to be
idle (see [49]).

Proof: Assume ad absurdum that at time ¢; the optimal policy commands to be idle
during T" > 0. Then, as the dynamics of the MABP is frozen during T', the state of the
system 1is identical at time t; + T and at time ¢;. Therefore, it is optimal to be idle at
time ¢; + T and hence forever. This is clearly sub-optimal as h;(x) > 0.

O
Remarks:

e The optimal policy for a two-armed MABP without switching cost is characterized
by three subsets of A7 x A5:

51,82, 5162 C A x Xy

where
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4.2 The Gittins Index in Continuous Time

— The set Sy contains the states (z,y) € A1 x X3 in which it is optimal to engage
project 1:
S1={(z,y) € X1 x X2 | vgi(z) > vg2(y)}-

— The set S contains the states (z,y) € X1 x Xa in which it is optimal to engage
project 2:
Sy ={(w,y) € X1 x Xy | vgi(z) <vga(y)}-

— The set S1«2 contains the states (z,y) € A1 x A3 in which both previous decisions
are equivalent:

Siez ={(z,y) € X1 x X2 | vg1(z) = vg2(y)}

e  When both projects are identical (same dynamics and reward function), the MABP
is symmetric and we have that vg,(z) = vg2(z), so

Sier ={(z,y) € Xy x X |y =}

is a straight line.

4.2 The Gittins Index in Continuous Time

The continuous time version of section 4.1 is straightforward. Moreover, all the Theorems
and Lemmas of the previous section hold in continuous time. We give here only the main
changes:

e The terminal reward of the problem SP; is 4.

e The maximal expected reward of the problem SP; reads as:

J](X;(to)) = E {/T e Pthi(X; (1) dt + efﬁT*% ‘ Xj(to)} : (4.6)

to

e Definition 4.11 (Gittins index). Given the problem P; associated with project j,
the Gittins index for project j reads as ([18], [19], [46]):

By eth; (X, (1) dt |
B ena)

vg;(X;(to)) = (4.7)
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5 Examples of MABP and Their Explicit Solutions

5

Examples of MABP and Their Explicit Solutions

In order to consolidate the notations and definitions presented in section 3.1, we repro-
duce here a simple deterministic MABP in discrete time proposed by Walrand in [46].

Consider three sequences of nonnegative numbers X;(t;):

X1(t;) = (3,2,4,1,0,0,...),
Xz(ti) = (27 3,2,0,0,.. ')7
Xa(t:) = (2,1,4,0,0,...)

and assume that the discounting factor is 8 = 0.5. We define a MABP as follows:
“At each decision time t;, choose one of the sequences, receive a reward correspond-
ing to the first number of the chosen sequence and delete it from the sequence (e.g. if
at time tg we choose the first sequence, we receive a reward of 3 and the first sequence
becomes X (ti11) = (2,4,1,0,...)). The goal is to mazimize the global discounted reward
J™(X (to)) given by equation (3.1)”.

For project 1, we denote vg; (3) the value of the Gittins index when the initial condition
is X1(to) = 3 (i-e. we start the sequence of rewards at the beginning). Similarly, we
denote vg; (2) the value of the Gittins index when the initial condition is X;(t9) = 2 (i.e.
we already received the first reward of project 1 and start the sequence at the second
position) and so on for each state of every project. Computing the Gittins index of project
1 we find:

vg1(3) = max {37 342(0.5) 3+2(0.5) +4(0.5)> 3+2(0.5) +4(0.5)% + 1(0.5)° } _,

1405 7 1405+ (052 7 1+0.5+(0.5)2+(0.5)3
Similarly, we have

vg1(2) =

w00

) Vgl(4) = 47 Vgl(]-) = ]-7 Vgl(o) = 07
Vg2(2) = %7 ng(3) =3, ng(2) =2, ng(O) =0,

vgs3(2) =2, vgs(1) =2, vgs3(4) =4, vgs(0) =0,

The Priority Index Policy then corresponds to receiving the rewards of the three sequences
in the following order:

1st, 1st, 1st, 2nd, 2nd, 3rd, 3rd, 3rd, 2nd, 1st,

i.e.
(3,2,4,2,3,2,1,4,2,1,0,...),

which yields a global reward of
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- SR S SR R SR S R R
J7(3,2,2) =3+ 52+ 54452453+ 5 2+5 145445 2+5 1=555664

Note that if we received the rewards as follows:
1st, 1st, 1st, 2nd, 2nd, 2nd, 3rd, 3dr, 3rd, 1st,

we would obtain the same global reward. This is because vg3(2) = vg2(2). In fact, when
at a decision time t;, several projects have the same maximal index value we can engage
anyone of them indifferently. We can easily check that 5.55664 is the optimal reward for
this problem.

5.1 Deteriorating MABP

Let us introduce the class of “Deteriorating MABP”. This is a primordial class of Bandit
problems as every MABP can be reduced to a deteriorating MABP by a suitable con-
struction [27] (see also chapter 13).

Definition 5.1 (Deteriorating MABP [49]). We say that a MABP X (t;) is deteri-
orating, if for all j = 1,...,N, J](X;(t;)) (defined in equation (4.1)) is non-increasing
in t;. We shall write DMABP for the class of deteriorating MABP.

Theorem 5.2 (Whittle [49]). The Gittins index for a DMAPB X;(t;) with reward
function hj(x) is:
vg;(z) = hj(x). (5.1)

Proof: Equation (4.1), written out explicitly is

J‘;Y(X] (to)) = max

v
ek hj(X;(to)) + BE[J] (X;(t1)) | X;(to)]
Now, letting v = vg;(X;(to)), we have, by definition, that J}(X;(to)) = 725 and stop-
ping is optimal at X;(t). Thus, as the function J(X;(t;)) is decreasing in ¢;, stopping
will certainly be optimal at X;(¢1) and

Y
E[J} (X;(t1)) | X;(to)] = 5
Now, by definition of the Gittins index, we have that the decision to continue with project
Jj or stop should give the same expected reward at position X;(to) (as v = vg;(X;(to))).

This yields the relation
v Y
—— = h; (X, (¢ e
1_/8 .7( J(O))-I-/B]._ﬁ
Solving this equation for v gives the equation (5.1). Accordingly, to choose the project
with the maximal value of the index is to choose the project with the maximal immediate

return.
O

Remark: The Priority Index Policy for a DMABP is a one-step look-ahead rule as it
directly maximizes the instantaneous reward h;(X;(to)). Hence, we say that this policy
is myopic.

28



5.1 Deteriorating MABP

Lemma 5.3 ([49]). A MABP is a DMABP if and only if hj(X;(t;)) is non-increasing
int;,Vj=1,...,N.

Proof: If h;(X;(t;)) is non-increasing in ¢;, V j = 1,..., N, we clearly have, by defi-
nition, that J(X;(t;)) is non-increasing in ¢;. To prove the converse, let us show that
function vg;(X;(¢;)) is non-increasing. Then, as vg;(X;(t;)) = h;(X;(¢;)) this will prove
the non-increasing property of the reward function h;(X;(¢;)).

We want to show that vg;(X;(t1)) < vg;(X;(to)). Assuming that v = vg;(X;(t0)); then,
by definition of the reward function we have that

Jj (X;(to)) = .
As we deal with deteriorating MABP
I} (X (1)) < J](X;(t))-
Finally, by definition of .J;(X;(tp)) this implies
v < J7(X(h)) < J7(X;(t) =1,

hence, stopping is optimal at X;(¢1). We end the demonstration using lemma 4.9 and we
have that

vg;(X;(t1)) < v =vg;(X;(to)).

Illustration
Here is a simple example proposed by Whittle [49] to illustrate the class of DMABP.

Suppose there are N sites, at each of which there may be a treasure with probability P;.
Let v; be the expected value of the treasure at site j and C; the cost of examining the site
for one unit of time. Supposed that there is a treasure at site j, then the probability that
it will be found in a search over one unit of time is ;. Hence, the expected immediate
reward from an examination of site j reads as:

Hj = Oéij’Uj — Cj.

Let us then construct the following MABP:
e The projects j =1,2,...,N, are the N sites.

e The projects states are X;(ty) = P; and X;(t;) = P;(t;) where P;(t;) is the posterior
probability that there is a treasure at site j conditional to the fact that we didn’t find
it, although we looked for it at time ¢;_;. Thus, when no treasure is found, by Bayes’

heorem
t X;(t;) = Py(t:) = Py(tim1)(1 — o)
T Byt (1 — ) + (1= Pi(ticy)

and if the treasure is found, Pj (t;) increases to 1 but, since the treasure is then re-
moved, Pj(t;) effectively falls to zero at the next step.

e The reward function is
h](x) = ozjxvj — Cj.

29



5 Examples of MABP and Their Explicit Solutions

Note that with these definitions
hj(X;(t:)) = o; X;(ti)v; — Cj

is a non-increasing function (as Xj(t;) is non-increasing) and by Lemma 5.3, the defined
MABP is a DMABP. Therefore, using Theorem 5.2, the optimal policy is to examine the
site j for which h;(X;(t;) is maximal.

5.2 MABP with a Dynamics Driven by Diffusion Processes

In this section we briefly review the elegant example given by Karatzas [24] which will be
needed in section 5.3. In [24], Karatzas computes explicitly the Gittins index for a MABP
in continuous time, when the dynamics are driven by diffusion processes as follows:

dX;(t) = p; (X;(t))dt + 05 (X;(2))dW (),
Xj (to) = :L‘?,
with dW(t) a White Gaussian noise process. The reward functions h;(z), * € R are
assumed to be strictly increasing with bounded, continuous first and second derivatives
and they satisty the conditions (see Figure 5.1
lim hj(r) = K, lim hj(z) =k, lim hj(z)=0.
Tr—r—00

T —00 |z]— o0

—
X

Fig. 5.1. Limit behaviours of h; (z).

For simplicity, we will derive here the Gittins index only for the particular case when the
drift and the variance of the diffusion processes are constant i.e.

i (X;(t) = pj and 0;(X;(t) = 0;.

To this end, following Whittle, we compute J;’(xg), the maximal expected reward of
the stopping problem SP; (given by equation (4.6)) with initial condition X;(to) = 7.
The increasing nature of the reward function h;(z) suggests that the continuation region
for the stopping problem should be an open interval ]b;(y),o0[. Using the Dynamic
Programing and the It6’s rule [25], it can be shown that in the continuation region,

J] (1) is solution of:

, d?

d
0} 5] @) 4 iy =T (@) = BT} (@) + () = 0. (5.2)

1
2 T de I

Due to the linearity of equation (5.2), its general solution in R is:

J;Y(x?) = Aje_wjmg + Bjew;w? + Sj(x(])-)
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13+ 207 +

with the notations:

w = - >0
J 0-]% ’
12807 —

w; = > >0

J

where A; and B; are integration constants and S;(x) are the particular solutions of
equation (5.2) corresponding to engaging the project X; forever with initial condition
X (to) = x. We obtain:

Si(@) = B, J;7 e %h;(X; (1)) dt =

a?(w;’—i-w;)

—wte £ w?t w, T x° —w;
=—5—2—|e " [ hjy)e“iVdy+e i © [ hi(y)e i Ydy]|.
— 00 T

Note that when x(])- = +o0o the optimal reward of the stopping problem is attained by

engaging the project j forever. From the fact that w;-L >0 and w; > 0 we have:

. VN ' o
JEll)n;o Ji(z) = zli»H;o Sj(x) = B; =0.
On the interval | — 00, b;] the maximal reward of the stopping problem is attained by
disengaging the project j immediately and receiving the stopping reward %, i.e.

b

J(29) = 5 x?— €] —00,b].
By a smooth fitting argument (see chapter 8 for more details on the smooth fitting) we
get:

d J7 (z) 0 (5.3)

—J/ (x = 0. .

dx 7 x=b;(7)
Given v, elimination of A; in equation (5.3) yields the determining equation for the
boundary value of the continuation region b;(y) = b. Conversely, given b;(v) = b € R,
equation (5.3) enables to determine the value of v such that the boundary value of the
continuation region is exactly b. Karatzas shows that this v is unique for each b. We can
hence construct the function

vg; : R—=R

z = vg;i(z)
such that
bj(vg;(z)) = .

It can be shown [24], that the function vg;(x) is non-decreasing. Therefore, given 9, the
value of 7y solving equation (5.3) (i.e. 7 = vg;(«Y)) is the smallest value of y for which it
is optimal, for the stopping problem J}’(w‘}), to immediately disengage project j when in

0 :

position z7, i.e.

Jl./gj(lg) (1170) — ng(w.?)

J J
Then, by definition, the function vg;(z) is the Gittins index of project j. After straight-
forward but lengthy algebra one obtains

vie) = [ hsta+ ey (5.4
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5.3 ® MABP with a Dynamics Driven by Piecewise
Deterministic Evolution Processes

In the beginning of this section we consider a single process X, we will therefore omit the
item index j as long as no confusion arises. In order to compute the priority index vg;(z)
associated with a class of piecewise deterministic processes, we will solve the stopping
problem P; of the type discussed in chapter 4.

5.3.1 ® Optimal Stopping Problem

Here we focus our attention on the two-states random velocity model as follows: The
process X (t) evolves linearly in time with two possible velocities, velocity U or velocity
D ie.

X(@t)=Ut+zo or X(t) = Dt+ xo.

Hence, its scalar time evolution for ¢ > 0 is given by:

%X(t) — I(t), X(0) =, 1(0)=8 € {U,D}, and X(t) € R (5.5)
where I(t) is an alternating Markovian renewal process ([42] and [40]) taking the alternate
constant values U (up) and D (down). Assume that the sojourn times in the U and D
phases are exponentially distributed with parameters A and p respectively. We further
impose:

DN+Up>0 with D<0 and D+U >0

so that the expected value of X (t) increases with time. Note that the path realizations
of the stochastic differential equations equation (5.5) are continuous in contrast to the
class of dynamics discussed in [9] where jumps in the realization are present. A typical
realization of the solution of equation (5.5) is sketched in Figure 5.2. It is important to
note that the process X (t) solution of equation (5.5) is not Markovian. However the pair
process defined by ((t) := (X(t),I(t)) € R x {D,U} is itself a Markov process. Hence,
the optimal reward equation (4.6) of the stopping problem SP must be defined with the
variable ((t) and reads as:

to

J(X (o), I(to)) =E{ / : e*ﬁth(X(t>>dt+e*BT*% X(to>,l(to)} (5.6)

Let us assume that the reward function h(z) is a twice differentiable function, which is
strictly increasing. In addition, we follow [49] and [24] and impose the following asymp-
totic properties:

lim h(x) =K, lim h(z)=k 0<k<K, (5.7)

T—r0o0 T—r—00

with £ > 0 and:
d
—h(z) = lim Ah'(z) =0,

To solve the optimal stopping problem, we proceed as usual by applying a classical
Dynamic Programming argument: “When the process (X(t),1(t)) defined by equation
(5.5) is in a given state, we can either wait a certain period of time before stopping or
stop immediately”. The resulting rewards are computed by assuming that the subsequent
decisions are optimal. Accordingly, we can write:

i) If at time ¢, the decision is to wait for an (infinitesimal) time & before stopping, the
optimal reward J7 (X (¢), I(t)) is greater than the running reward from ¢ to ¢ + £ and
the optimal reward from time ¢ + £ onwards. This yields the inequality:

JU(X (1), () > /tlmrE e PEOR (X (s))ds + e PETN(X(t+€), It +E)).  (5.8)
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A X®

1 (1)
A

Fig. 5.2. Qualitative behavior of the solution of equation (5.5) as a function of a realization of
the noise I(t).

ii) If the decision at time ¢ is to stop immediately, the reward is precisely:

T(X (1), 1) = 7.
B
Let us focus on case i) for which we consider two possible rewards depending on the
realization of the process I(t), namely: I = U or I = D. To these two possibilities, we
associate the reward functions J7(z,U) and J7(x, D) respectively. With this notation
and the Markov character of the alternating process I(t), the first order time expansion
of equation (5.8) yields:

0>h(x)—(B+NJ(z,U)+ U%J”(w,U) + AJ7(z, D) (5.9)
and
0> h(z) — (8 + u)J" (z, D) + D%ﬂ(m, D) + uJ (z,U). (5.10)

Following the same line as Karatzas [24], we observe that the strictly increasing nature
of h(z) suggests that the stopping problem should have three regimes holding in three
adjacent intervals O;, j = 1,2,3 defined by two thresholds b, < bgq. In the interval O,
we continue to engage project j for both states U of D of the noise. In the interval O,
we continue to engage project j for the state U of the noise and disengage it when the
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state is D. In the interval O3 we disengage project j for both the state U of D of the
noise. Accordingly, we shall write:

a) Oy = [bg, 00),
b) Oz = [by, bd],
C) 03 = (_Ooabu]'

Solving equations (5.9) and (5.10), we now construct the reward functions J&) (z,D) and
J&.) (z,U), i=1,2,3, valid in the intervals Oy, O2, and O3 respectively. The qualitative
behavior of the reward functions is sketched in Figure 5.3.

‘ rewards

0

B S

S

k e - - -

-
b.u by £

Fig. 5.3. Qualitative behavior of the rewards functions J?(z,U) and J7(z, D) in the intervals
O, k=1,2,3.

a) Solution in the interval O;: This is a continuation region for both J&)(w, D) and
J(Wl) (z,U). In this region equations (5.9) and (5.10) hold simultaneously with equality.
Before solving them, let us define:

d=D(B+AN+UB+p) >0, and p=(B+p+A)

and

hP(z) = ph(z) — Dh'(z) and hY(z) = ph(z) — UK (z).
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Then, the solutions of the linear differential equations (5.9) and (5.10) are derived by
determining the associate eigenvalues which read as:

VN [5 /0% = 4DUp/3} ,

T 2DU

and 1
V" = 357 [§ - Vo7 — 4DUB| .

As v~ > 0, the solution attached to this eigenvalue does not converge for z — oo and
must then be rejected. Therefore, we only need to calculate the eigenvector associated
with —y* which read as («, 1) with:

-1

= 07 (5 —2U(B+p) + /0% — 4DUpB) .

«

Finally, the general solution of equations (5.9) and (5.10) read as:
Ja)(x,D) = Ad716_7+$ +pg(x), for z > by (5.11)

and

Ja)(:v,U) = aAd71677+’” +pu(z), for = >bq (5.12)

with A4 1 being an integration constant.
The functions pg(z) and p,(z) are particular solutions. They represent the rewards
when running forever, (i.e. when no stopping occurs). Hence, from equation (5.7)

we have that p,(x) > k and pg(x) > k. In our case, two particular solutions of the
inhomogeneous equations (5.9) and (5.10) respectively read as:

pu(w) = E(w,U) /OOO eiﬁthD (X(t)) dt =

=N {e”u/ hD(y)67+ydy + e%/ hD(y)ery}

and -
pale) = By [ € PRV (X(0) dt =
0
=N [e_7+z/ hU(y)e’Yerdy-l-e%/ hU(y)e_:’ydy} ,
with: )
N =[-DU(*" +7)]

and

5 — At + i >0

Y= DU =

Solution in the interval O,: This is a stopping region when I(¢t) = D and hence
J(é) (z,D) = £ and a continuation region when I(t) = U. Hence the use of equation

(5.9) with J7(z,D) = % immediately yields:

“[Bh(s) +Ay] _
Jo(z,U) = e“* {AUA —/ [57] e “’Sds} , 5.13
(2)( ) 2 o BU ( )
with A, o being an integration constant and w = B%’\
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¢) Solution in the interval Os: This is a global stopping region and we therefore have

v
(ZL', U) = J&)(ZL',D) = E
From equations (5.11), (5.12), (5.13), we see that we have to determine two constants of
integration A4, and A, 2. Moreover the thresholds b, and bgq are yet unknown. Hence,
we need four relations to determine these four unknowns. These relations are (see figure

(5.3)):

i) J7, (ba D) = 3.

Yy
J3)

i) #J0) (@ D) |(z=by)= 0.

i) /) (bu, U) = 3.

iV) J&) (bd7 U) = JEYQ (bd7 U)

)

The relations i) and ii) determine the constants by and Ag; and the details of the resulting
algebra is identical with those yielding the equations (3.14) and (3.20) of Karatzas’ paper
[24] (see also section 5.2 above). Accordingly, we obtain:

vg(ba) =y
Lo s, 510
with:
- U 2\ -z
vyg(z) = h" (x + g)e dz. (5.15)
0

Note that Agq; is strictly positive which imply that the smooth fitting at the boundary
bq is optimal.

Finally, the relations iii) implies:

bu
Ayp = %6_“”’“ -I-/O {L@(sﬁ); /\7} e~ “*ds (5.16)

which, together with the relation iv), enable to calculate b,,. Note that there is no smooth
fitting at the boundary b,. This is due to the fact that the only possibility for the process
X (t) to reach b, is to start at b, (see [32] for details).

Lemma 5.4. The function vg(x) defined in equation (5.15) is strictly increasing.

Proof: Integrating vg(z) by parts we can write:
& z
vg(z) = / h(zx + g)e_zdz (p—U) +~Uh(z). (5.17)
0

Note that in equation (5.17) the function in the integral is on h(z) and not hY (z). Hence,
the derivative of vg(z) reads as:

vy (x) = /000 B (x+ %)e‘zdz (p—~~U)+~yUN (x),

which is strictly positive. Indeed, h(x) is strictly increasing and
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_ \/2_7
2Dp +9 21‘; WDpB (5.18)

p— U=

The equation (5.18) follows directly from the definition of § and p and the fact that
D <0.

([l

Using Lemma 5.4 we conclude that the parameters b; and b,, are the unique solutions of

equations (5.14) and (5.16) respectively.

Using equation (5.7), note that the following properties consistently hold:
lim vg(x) =K and lim vg(z) =k. (5.19)

T—r00 T—r—00

Theorem 5.5. Assume that the instant reward function h(x) is strictly increasing. Then
for the initial conditions X (0) = z and I(0) = D respectively 1(0) = U, the optimal stop-
ping times 7*(x, D, ) respectively 7*(x,U,~y) read as:

a) Whenk <y < K:

m™(z,D,v) =inf {t > 0; X(t) < bg and I(t) = D} (5.20)
and

0 if © < by,
m™(@,U,y) = (5.21)
inf{t > 0; X(¢t) <bg and I(t) = D} if x > b,

where the thresholds by and b, are implicitly given in equations (5.14) and (5.16). As
the process X (t) is increasing in the U phase and the reward function h(x) is strictly
increasing, remark that if © > b, we never stop while I(t) =U.

b) When~y > K:

In this case we have: by = b, = 00 hence 7 (x, D,~) = 7 (x,U,~) = 0. Therefore, the
associated reward functions read as

J(z,U) = J"(x,D) = J, (z,U) = J.

y
) D) =5

¢) Wheny <k:

In this cases we have: by = b, = —00 and hence 7 (x, D,~v) = 7*(x,U,y) = co. This
implies that the associated reward functions read as:

JY(z,D) = J&)(x,D) =pg(x) > k

and
JV(x,U) = Ja)(x,U) = py(z) > k.

Remarks:

e When 0 < k <y < K, equations (5.20) and (5.21) implies that at the stopping time
7(z,D,v) or 7*(z,U, ), the process I(t) will always be in the D phase, namely:

I(*(2,D,7)) =D or I(r"(z,U,7)) = D.
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e By definition, if the initial condition is (X (0) = zo,I(0) = D) and we impose that
v = vg(zp), then immediate stopping is optimal (i.e. vg(z) can be viewed as the
Gittins index for the “down” state of the noise, see below for more details).

5.3.2 ® N-Armed MABP

Now that the optimal stopping problem is solved let us derive the optimal solution for
an N-armed MABP with piecewise deterministic dynamics:

d . .
EX](t) = 1[x(t)=j]Ij(t)> J = 1,2, ,N, X](O) =Ty, I](O) = lj (522)

where the process x(t) € {1,2,..., N} indicates which project is engaged at time ¢
and 1}, (;)=; is the indicator function. As before, I;(t), j € {1,2,..., N} are indepen-
dent alternating Markovian renewal processes similar to the one introduced in equa-
tion (5.5) with states U; and D;. Remember that when a project is not engaged its
dynamics remains “frozen”. Note that with the previous assumptions the processes
C(t) :== (Xp(t), I (t)) € Rx{Dy, U} for k =1,2,...N are independent and Markovian.

The MABP therefore consists in finding an optimal policy 7* = {x*(¢)} which maximizes
the expected reward:

J(X,]) = max E { /0 e Pt hy- ) (Xy=0y (1)) dt | X(to) = T, I(to) = Z} . (5.23)

where U is the set of admissible (i.e. non-anticipating) policy. In equation (5.23) we use
the notation:

X(to) = (29,29, ...,2%) and I(to) = (1,49, ...,i%) » iy € {Uk, Dy},

The reward functions hj;(z), for j = 1,2,..., N, are assumed to be strictly increasing,
twice differentiable functions and, as before in equation (5.7), we impose that:

lim hj(z) =K, lm hj(x)=%k Vj=12,...N; 0<k<K.

T—r00 T—r—00
In [34], (see also section 3.9 of [4]), it is shown that the optimal reward function equation
(5.23) associated with the MABP for general Markov processes has a simple product
form in terms of individual stopping problems without any smoothness properties of the
optimal reward function neither for the global problem nor for the individual stopping
problems. The processes (;(t) := (X;(t), [;(t)) being Markovian, the MABP defined by
equations (5.22) and (5.23) belongs to the class discussed in [34]. For each individual
process X;(t) given by equation (5.22), we then consider the associated stopping prob-
lem P; from which we can define, for a given position x;, two Gittins indices vgf (x;)
and l/g]U(:Uj) depending on the respective states D and U of the of the noise as follows:

By definition, the Gittins indices are the smallest values of the terminal reward -; which
make immediate stopping profitable when the state of the process is (; = (z;, D;) respec-
tively ¢; = (z;,Uj). In view of the results obtained above, the index ugjp(mj) therefore
coincides with the expression equation (5.15). To identify the index ngU(:I/'j), we can
conclude, from Figure 2, that it must be equal to the expected value of the stopping
problem when the stopping reward is equal to Vg]’-:’(xj), ie.

vgy (xj) = J" ) (2, Uj)

Note in particular that both indices are monotonously increasing and that they obviously
satisfy the relation equation (5.19).
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The expressions vg? (z;) and vgY (z),) can be used as priority indices to characterize the
optimal allocation policy * as follows: Define vg;(z;, I;(t)) as

vy} (x;)) if 1;(t) = Dy,

vg;(xj, 1;(t)) ==
vy (z;) if I;(t) = Uj,

and the optimal strategy follows the rule: “Play the project with the leading index
VAgj(xj)”-

Observe that:
vy (z;) < vgl (),

hence, for identical arms occupying a given identical position z;, one should optimally
engage the arm exhibiting the U; state of the noise. This is obviously what is intuitively
expected. Moreover, when I;(t) = U; and project j is engaged, the process Xj(t) is in-
creasing and hence ung (X;(t)) is increasing. Therefore it is optimal to continue engaging
project j at least as long as the state of its noise is “up”. In other words, all the disen-
gaged projects Xy, have Ij(t) = Dy.

5.3.3 ® Illustration in the Manufacturing Context

In the manufacturing context, a simple illustration of PD processes can be given by
considering a flexible failure-prone machine able to produce N different types of items.
Due to its limited capacity, the machine can produce only a single item at a time. We
assume the set-up costs and time to change from one production type to another to be
negligible. As in [6] and in [17], we assume that the cumulated production Y;(t) of the
items of class j = 1,2,..., N can be described by a fluid equation of the form:

Wl _ Lion,0, v0 20, v, (5.29)
where 1;(¢t) € {0,1} is the indicator which has the value 1 when the production of
the item j is engaged and 0 otherwise, and I;(t) € {0,U;} is an alternating Markovian
stochastic renewal process [42] with the assumption that the sojourn time in the “on”, re-
spectively “failed” phase is exponentially distributed with parameters A;, respectively p;.

Let us now introduce a set of constants Dj, j = 1,2,..., N which are the target produc-
tion rates for the item j. We can now write:

dX;(t) .

#:[Ij(t)—Dj]lj(t), j=12...,N. (5.25)

We will interpret X;(t) as a performance measure of the production balance for item j at
time ¢. Indeed from equation (5.25), we observe that when X;(t) > 0, we fulfill or exceed
the production target and conversely when X;(t) < 0 we are below our objective. In order
to be able to satisfy the demands on average we choose the D; such that D;\;+Uju; > 0.
Note from equation (5.24), that when the production of item j is disengaged, both the
time evolution of X;(t) and the state of the process I;(t) are “frozen”.

When the production process j is engaged, we assume that an instantaneous performance
gain h; (X;(t)) is achieved. The gain

hy (X;(8)) = A + h§™ (X;(1))

admits two contributions, namely a systematic contribution due to the intrinsic value of
the item produced, say h, and an extra contribution h$**"* (X;(t)) which depends on
the production balance X;(t). We shall assume that:
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h(]e_xtra (X;(t)) =0 for X;(t) >0,

AU (X;(t)) <0 for X;(t) <O. (5.26)

The contribution h5**"* (X (t)) reflects that extra costs are incurred when the production

is below the target rate. We assume that these costs increase monotonously with the
distance to the target production and that

lim h$*™®(z) = —hj. (5.27)

Tr—>—00
From equations (5.26) and (5.27), we directly have:
0 < hy (X;(t)) < hj (5.28)
and therefore h; (X;(t)) is monotonously increasing as required by equation (5.7).

Remark: Note that for a single class of items (i.e. when N = 1), equation (5.25) coincides
(see [6] and [17]) with the time evolution of a surplus X;(t) with D; being an external
demand rate (1;(¢) = 1 for all ¢ in this case). However, when N > 1 the model defined
by equation (5.25) differs fundamentally from the make-to-stock multiclass production
context. Remember that for a make-to-stock multiclass production problem of the type
described in [35] (see also part IV below), X;(t) represents the surplus of items of type
Jj and equation (5.25) should be replaced by:

dX;(t) .

#:Ij(t)lj(t)—Dj(t), j=12,...,N. (5.29)
In view of equation (5.25) and equation (5.29) we observe that, for disengaged items, the
demand continues to increase in the make-to-stock context (i.e. equation (5.29)), while
X;(t) given by equation (5.25) remains frozen. Clearly, in equation (5.25), X;(t) is a
performance measure which describes the operating characteristics of the machine when
it delivers items of class j and this independently from the external demands.
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Summary

It is established that for the classical MABP, the optimal scheduling rule is explicitly
known (i.e. Priority Index Policy). We derived this policy in section 5.3 for a class of
process describing the failure-prone machines (i.e. two-states random velocity models). As
failure-prone machines are present in most manufacturing facilities, we would like to apply
this result to actual production lines. Unfortunately, in most manufacturing scheduling
problems for which the set-up costs and/or delays can be neglected, the classical MABP
is still not directly applicable due to the “frozen” dynamics assumption. Clearly, when
the scheduling problem depends on the external demands (as typically for the inventory
levels), disengaged arms do evolve with time and the “frozen” dynamics hypotheses
is violated. In general, the demands for the different types of items steadily increase
independently of the fact that a particular production is engaged or not. The extended
class of MABP for which the “frozen” assumption is relaxed is known as the Restless
Bandit Problem (RBP). This class of dynamic scheduling problems will be studied in the
next part.
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Part 11

Restless Bandit Problem (RBP)






Introduction

Fig. 6.1. Aircraft surveillance problem.

The Multi-Armed Bandit Problem (MABP) was suggested during the Second World War
as an aircraft surveillance problem (see Figure 6.1):

“M aircrafts are trying to track the position of N enemy submarines with M < N.
Accordingly the aircrafts must change task from time to time as all submarines are to
be monitored. The problem is to allocate this surveillance in order to gain the mazimal
knowledge of the position of the submarine fleet.”

In this problem, the projects (i.e. the knowledge of the position of the submarines) are
restless in the most literal sense. Indeed, even untracked, the submarines continue to
move, hence the “frozen” assumption characterizing the MABP is no more satisfied. The
generalization of the MABP for which the “frozen” assumption is relaxed is known as
the “Restless Bandit Problem” (RBP). We briefly present in chapter 7 the basic for-
mulation of the continuous time, continuous state space version of the RBP, along the
lines pioneered by Whittle [50]. We will neither define the discrete time version nor the
continuous time and discrete state space version of the RBP as it follows naturally from
the continuous time and continuous state space one. Nevertheless, the reader can find
in section 8.1.3 an example of continuous time and discrete state space RBP explicitly
solved.

The optimal solution for RBP is not yet known for general underlying dynamics and
Priority index policies are known to yield sub-optimal results in general (see [49] and [47]
for example). While the complete and analytical characterization of the optimal strategy
for RBP remains a mathematical challenge, it is not clear that overcoming this difficulty
will be of great benefit for actual applications. Therefore, in 1988 Whittle proposed a
powerful heuristic for sub-optimally yet efficiently solving the RBP [50]. The Whittle
heuristic is known under the name “Whittle relaxation” and is defined in section 8 be-
low. Explicit expressions for the Whittle indices are derived under several underlying
dynamics, including the diffusion dynamics in section 8.1.2 and the Markovian queue
dynamics in section 8.1.3.

In part I the functions h;(z) was defined as being a reward function. The MABP can be
indifferently defined with h;(x) being a cost function. When the h;(z) are cost functions,
the aim of the Bandit problem is to minimize the global discounted cost rather than
maximizing the global discounted reward. This cost problem is natural in the sense that
in many applications we want to minimize the running cost (such as the production cost,
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the storage cost, the setup cost...) We will assume in the sequel, that the h;(z) are cost
functions. Therefore we will concentrate our efforts in order to construct an efficient
policy minimizing the global discounted cost of the RBP.

Illustration of Restless Bandit Problems

The “frozen” assumption needed for the MABP is a very strong restriction. In many
actual industrial problems this assumption precludes the utilisation of the MABP in or-
der to model the problem. In this sense, the RBP is an important generalization of the
MABP. Let us illustrate this through some simple examples of application:

The police control of drug markets problem [4]: In this problem, M police units
are trying to control N > M drug markets. The state of a project corresponds to the
drug-dealing activity level of the corresponding drug market. When a police unit is fo-
cussed on an area, the drug-dealing activity is decreasing on this area (active phase). On
the contrary, the drug-dealing activity is growing in the areas without police surveillance
(passive phase). The goal is to move the police units in order to minimize the global
drug-dealing activity.

Worker scheduling problem [50]: A number M of employees out of a pool of N
have to be set to work at any time. The state of a project-worker represents his state of
tiredness. Setting an employee to work (active phase) results in exhaustion of the corre-
sponding worker, whereas letting it rest (passive phase) results in recuperation. The goal
is to schedule the working time table of the pool in order to have workers as rested as
possible.

The control of a make-to-stock production facility problem [35]: In this prob-
lem, a production facility can produce N different classes of items but it can produce
only M < N products at the same time. Each finished item is placed in its respective in-
ventory, which services and exogenous demand. The level of the inventory represents the
state of each project (item class). The goal is to minimize the costs due to the inventory
and the costs due to the delay of delivery.
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7

Restless Bandit Problem in Continuous Time and
Continuous State Space — Definition

Counsider a collection of N projects (i.e. N dynamical systems) evolving in the state space
R. The state of project 7 at time ¢ is:

X;(t)eR, j=1,2,..,N.

We impose that at each instant t € Rt exactly M < N projects must be engaged
(i.e. must be in their active phase). If at time ¢, the project j is in state X;(t) = z;
and is engaged, then an active running cost h{(z;) is incurred and the project evolves
following an active transition probability. We assume in the following that the X;(¢) are
stationary Markovian stochastic processes and we use the notation

P, (Xj(t + dt) ‘ X;(b), a)

to describe the transition probability, where a indicates that the active action is selected.
The running cost is discounted over time by a factor e~%*. This means that the present
value of one unit of tax equals e #* when received t units of time in the future.

The other N — M projects remain disengaged (i.e. remain in their passive phases). They
generate passive running costs h% (z;) and evolve according to stationary Markovian
transition probabilities

P, (Xk(t+dt) ‘Xk(t),p),

where p indicates that the passive action is taken. The costs incurred in the passive phase
are discounted by the same factor e ¢,

Projects are to be selected for operation according to a scheduling policy m € Upr where
Uy is a subset of the admissible policies U (see Definition 3.1) having the property that
each m € Uy, engages exactly M projects at each time t. We write

X(t) = (X1(t),...,Xn())

for the state of the system at time ¢. The absence of switching penalties implies that the
initial condition @y € {a,p}”, describing the initial operation state (active or passive)
of each project, is not necessary to characterize the evolution of X (t). Then the Restless
Bandit Problem, for a given initial condition

X(0) =& = (a?,...,2%),

is to derive the optimal scheduling policy 7* which minimizes the total expected dis-
counted cost J*(Zp) over an infinite time horizon:

o N
J*(#) = inf ET / SR (X (s))ePuds| - (7.1)
0 k=1

TEUN 0
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The superscript II;(t) € {a,p} denotes the operating state of the project j at time ¢
when the policy m is adopted. The operator E7 = denotes the expectation, under policy
m, conditional to Zy.

Let us define the action function:

- 1 if the project j is active at time t under policy 7,
IT(t) = .
J 0 otherwise

and -
I]’-T(t) =1- I}T(t).

In terms of IT () and f}f (t), we can rewrite the RBP as:

(J*(Zo) =

TEUNM

RBP = _ - N - .
a) b)

o N oo N
inf ET / > h(X )] (te Pt + / D RE(X ()] (t)e Pat
- -

subject to the constraint

N
S IF(t) =M, Vt>o0.
j=1

\

The term a) describes the cost incurred by the active projects. Indeed, I7 () = 0 when
project j is passive at time t. Similarly, the term b) describes the cost incurred by the
passive projects.

48



8

Heuristic Scheduling for the Restless Bandit Problem
— The Whittle Relaxation

The complexity of the RBP has been shown in [7] to be PSPACE-hard. To solve this type
of problems, one therefore relies in general on approximations. Whittle proposed in [50]
an approximation scheme known as the Whittle relaxation problem (WR), which consists
in relaxing the requirement that exactly M projects must be active at each time ¢, to

the weaker requirement that M projects must be active on average. Accordingly,
the WR reads as:

( TV (i) =
. o0 N o0 N T t
nf EZ, I Zlh?(Xj(t))I}T(t)thdt + o 21 hE(X;(8)I7 (t)e Ptdt
J= J=

WR

subject to the constraint

N
B, 15 S e = %,
i=

\

(8.1)
where Uy is a subset of the admissible policies U (see Definition 3.1) having the property
that each m € Uy engages M projects on average. Note that

Uy CUw CU.

From the definition of the action function I7(t), we have:

oo N

- _ N-M

Ez, / E:I}T(t)e it | = 5
U ——t

Along the lines pioneered by Whittle, we use a Lagrangian multiplier to solve the problem
(8.1). Accordingly, the Lagrange function J"W (#,7) associated with equation (8.1) reads
as:

N
TV (Fo,m) = D0 P (,7) = (N = M), (8.2)
j=1
with
I (29,7) = ;xé{{Eg? [/OOO hg(Xj(t))I;T(t)e—Btdt+/Ooo(h§?(Xj(t))+7)I‘;f(t)e—5tdt . (8.3)

Clearly the problem given in equation (8.1) is now decoupled into N single-project sub-
problems J7 (z;,v) of the type given in equation (8.3). Following [50] and [36], we interpret
the multiplier v as playing the economic role of a constant tax incurred when not produc-
ing. Each single problem of the type arising in equation (8.3) is known as a y-penalty
problem.
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Passive: hf-(x) =0

-~

Active: ho-(x)

Fig. 8.1. Problem P;.

Definition 8.1 (Problem 75]) Given a N-armed RBP X (t), define N two-armed RBP
(called problem 75j, j=1,...,N) as follows:

The first arm of the two-armed RBP 75j, corresponds to the project j of X(t), with
dynamics X;(t) and cost functions h?(Xj(t)), 0 € {a,p}. The second arm of P; (called
project T ) has the “frozen” dynamics:

Xr(t)=¢€R, V¢

The project T gives a constant cost v when activated and brings no cost when deactivated
(i.e. h%-(x) = and h-(x) =0, see Figure 8.1).

Remark: The y-penalty problem J7 (m?,’y) is equivalent to the problem 75j. Indeed, at

each instant of time, both the vy-penalty problem Jj(x(;-, ) and the problem 75j bring the
same cost and have the same dynamics.

The y-penalty problem belongs to the class of stationary Markovian decision problems
[41]. It has been proven that for these problems, the optimal policy is stationary [41]
(i.e. m(X;(t) = z;) only depends on the state x; of project j and not on the time t).
Therefore, for each z; € R the optimal policy 7* either commands to activate project j
or to let it passive (i.e. m(x;) € {a,p}). We can therefore make the following definition:

Definition 8.2 (Active States). The set of active states XJ'(y) C R contains all the
states ; € R for which it is optimal to take the active action in the y-penalty problem

(8.3) (i.e. 7 (z;) = a).

Intuitively, the larger is the tax v, the more state will belong to A (7). Hence in terms
of the set X (7), the following structural property is essential:

Definition 8.3 (Indexability). We say that problem (8.3) is indexable if the set X' ()
increases monotonically (i.e. 1 <72 = Xf(71) C Xf(72)) from the empty set to the full
state space as the tax v increases from —oo to +00.

Definition 8.4 (Index vj(x;)). Assume that the problem P; (defined by equation (8.3))
is indezable. It follows that we can derive indices vj(x;), for each x; € R such that the
values vj(zj) correspond to the smallest values of y for which z; € X}'(7).

Remark: The indices vj(z;) can be used to characterize the optimal solution of the
~-penalty problems for each fixed value of v € R as follows:
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8 Heuristic Scheduling for the Restless Bandit Problem — The Whittle Relaxation

“Activate the project j when v;(X;(t)) <~ at time t or let it be passive”.

Hence, assuming that the project j is in the state z;, the value v;(z;) is the unique
breakpoint of the tax « which makes both the active and passive phase of project j
indifferent for the 7-penalty problem. Equivalently, when X;(t) = «;, the index v;(z;)
is the smallest value of the tax v that makes the immediate engagement of the “frozen”
project T or the engagement of project j for the two-armed RBP 75j indifferent.

Given an N-armed RBP X (t), we shall assume from now on, that the indexability of
each problem 75]-, j=1,...,N, holds. Under this assumption, we shall give a derivation
of the indices v;(x;), associated with the projects j = 1,..., N and we will construct an
heuristic scheduling rule approaching the optimal policy of the RBP.

The Dynamic Programming (see [51] chapter 4, p.177), implies that the optimal cost
function J7(z?,7) (defined in equation (8.3)) fulfills the property:

in [1(a9) = .1(a8.7) + L) F(a$.7)] = . (8.4)

where L(6) is the infinitesimal generator of the controlled process J/(z,7).

For notational ease, we define Jg (:L'?, 7) to be the solution of:
[P(29) = BT} (29,7) + LO) T3 (9, 7)] =0,

ie. Jg (:L'?, ) stands for the minimum discounted cost, when it is decided to take action
6 € {a,p} for the project j, at time 0.

As the indexability of the y-penalized problem is assumed to holds, the index value v; (a:?)
will be the minimal value of v such that:

Ji(aj,7) = Jh(a5,7) & Ji(af,v(ah)) = I (a], vi(a7)). (8.5)
By deriving the index value for any initial condition z; € R, we get the index function
of project j:
vi :R =R
zj — vj(x;) =inf{y € R | Eq.(8.5) holds}.
This index will be call the Whittle Index in the following. Using the Whittle Index, we

set the generalized heuristic scheduling rule for the multi-armed Restless Bandit
problem, as:

(8.6)

Definition 8.5 (Whittle heuristic). Assume that each project j = 1,...,N, of an
RBP is indexable, then the Whittle heuristic commands: “Engage at each time t the M
projects exhibiting the M smallest index values v;(x;) where z; = X;(t), j=1,...,N".

Remark: When v is fixed, the optimal discounted cost Ji(z;,v) = Ji(zj,v) for
z; € Xj(vy) and J/(z;,7) = J)(z;,7) for z; & X7 (7). In order to entirely define the
optimal discounted cost J/(z;,7) in terms of JJ(z;,v) and JJ(z;,7), it remains to fit
Ji(xj,7) and JJ(z;,7) on the active/passive boundary (i.e. the boundary of X/ (7)). In
the following, we make use of the “smooth-fit” principle:
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Definition 8.6 (Smooth-fit principle). Suppose that x; is on the active/passive
boundary. Then the smooth-fit of Ji(x;,7) and Ji(x;,7) reads as:

Ji(xj,7) = T} (x5,7),

L Ji(x,7)

= %Jg(m77)‘w:zj7 (87)

2 .
= L7 (x,7)

T=Tj

2 .
LT ()

T=Tj

Remarks:

The smooth-fit principle was first studied in detail in [5]. See also [45] and [28, Chap. 1
& 6], as well as [29, p.636] for a discussion of this principle and its history.

When the evolution of the X;(t) are given by diffusion processes, the smooth-fit prin-
ciple yields the optimum (see section 3.8 of [45]). This is not necessarily so for cases
where non-diffusive processes occur. Nevertheless, the aim of the Whittle relaxation
being to give a heuristic (possibly suboptimal) solving the RBP, we will systemati-
cally use the smooth-fit principle.

For problems with discrete state space (for example Z i.e. Jg(xo,v) i Z — R), we
embed Z into R and consider Jj(zo,7) as being a continuous function on R (i.e.

J)(z0,7) : R — R). Using this continuous function, the smooth-fit principle will be
extended to:

Jg(wj77) = Jg(mj77)7

AJ) (x,7)

e=g; (8.8)

A2JI(x,7) = A2JI(z,7)

T=Tj

where the derivatives A are define as:
AJ)(0,7) = Jj(z0,7) — J§(z0 — 1,7)
A2 T (wo,7) 1= J) (w0 +1,7) — 273 (x0,7) + Jj (w0 — 1,7).

We will verify a posteriori (section 17.2 and appendix B) that this extended principle
yields the optimal results for the Markov chain dynamics.

8.1 Explicitly Solved Examples

The explicit computations of the priority index for an arbitrary underlying stochastic
process, is generally an elaborated exercise. Here we compute this index for several sim-
ple types of dynamics. Some of the expressions derived in this section will later be used
in the production engineering context in part IV.

For general processes X (t) and arbitrary cost functions hg (z), 0 € {a,p}, the indexability
of the y-penalty problem (8.3) is not guaranteed. To progress we will assume in the
following that the processes X;(t) and the cost functions h?(w) possess the required
properties to ensure the indexability to hold. As only single-armed Bandits are considered
in the following sections, we will omit the item index j.
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8.1 Explicitly Solved Examples

8.1.1 ® Simple Deterministic Project

As an introductive illustration, we derive the index for the discounted version of the
deterministic problem presented in section 5 of [50].

Cousider a continuous time project X (¢) € R satisfying

d

EX(t) = fox ) (X(1)), (8.9)

where fy(x 1)) (X (t)) equals f, (X (t)) when the project is in state X (¢) and is in its active
phase, and equals f,(X (¢t)) when the project is in the state X (¢) and is in its passive
phase. Let us also introduce two instantaneous cost functions hg(z), 6 € {a, p}.

To derive the index v(z) for this problem, we first solve the corresponding deterministic

y-penalty problem J7(z;,7):

Lemma 8.7. Following the optimal policy ©* for the y-penalty problem, equation (8.4)
read as: ) J
ha(ﬂ}') + fa(ZU)EJa(QZ,’)/) - ﬂJa(ZL’,')/) =0

if 7%(X(0) =x) = q,

(8.10)
hy(@) + fo(@) L Jp(2,7y) — BJp(z,7) +7 =0.

it 7*(X(0) =z) =p.

\

Proof: Assume that 7*(X(0) = ) = a, then the first order time expansion of equation
(8.4) reads as:

4 Ja@m),

Ja(e,7) = €ha(e) + (1= 5O ale,7) + € 2 X (0) L,

After neglecting the terms of order O(£2) in the above expansion, one gets the required
result. A similar expression can be directly derived when 7*(X(0) = ) = p.

([l
We solve equation (8.10) for £ Jy(x,7), 8 € {a,p} and obtain:
J 76']“(””);:();)%(9”) in the active phase,
%Jﬁ (37,'7) =
W in the passive phase.
Using the smooth-fit principle given in equation (8.7) and solving for v we obtain:
z) — fu(z xh;x—axh’x
) i) — ) + B BN ~ L@@

fo(@)(fo(@) = B) = fale)(fy(2) — B)

Observe that in the limit § — 0, equation (8.11) consistently reduces to the result given
in the Proposition 8 of [50] i.e.

33



8 Heuristic Scheduling for the Restless Bandit Problem — The Whittle Relaxation

8.1.2 ® RBP with Dynamics Driven by Diffusion Dynamics.

Consider now the situation where the project X (¢) is a diffusion process solving the
stochastic differential equation:

dX (t) = u(t)dt + o (t)dW (t), (8.12)

with dWW (t) a White Gaussian noise process. The controlled drift u(t) and variance o(t)
terms read:

> 0 if the active action is chosen,
ey = { e

fip <0 if the passive action is chosen,

respectively:
o(t) = oq > 0 if the active action is chosen,
" | op > 0 if the passive action is chosen,

where piq, ftp, 04,0, are fixed constant. Define p, as the absolute value of fi, (i.e. pu, =
|fep|). Using the Itd formula, equation (8.4) can be written in the form (see for example
[24]):

gdd_!]( 77)+/la%Ja(‘T>7)_6Ja($:7)+ha(x):Oa when 71'7(1‘)20,,

MI»—I

1 2
29pdx

&|&
o

s Jp(€,7) = tpsLdp(w,7) — BIp(w,7) + hy(x) + v =0, when my(z) = p,

(8.13)
where 7, (x) gives the optimal action (active or passive) to take when in state x. The
general solution of equation (8.13) in R is:

Jo(z,7) = Cle —wr a4 Crea® + So(z,7)

and

with the notations:

/0,2 2 2
_ u9+ 500+H0>0
]
_ A\ HE+2B05 — e

w, = >0
) 03

where C; and C;;” are four integration constants and Sy(z) are the particular solutions of
equation (8.13) corresponding to engage [respectively disengage] the project X}, forever
(see [24] or section 5.2 above). We obtain:

Sa(xa = z ) fo et h )) dt =

= % |:e—w2’z f ha(y) ew:—ydy + ew;z f ha(y) e_waydy:| s

2 (wi +wg

and

Sp(@,7) = By Jy- e (hy (2 (1)) +7) dt =

0'}% (wp +wp )

_ —{ i [ () +) e pydy+ewﬁf<hp<y>+wew:ydy].

If g = 400 the optimal discounted cost is attained by remaining passive forever. Simi-
larly, when zg = —oo the optimal discounted cost is attained by remaining active forever.
From the fact that w} >0 and that w; > 0 this implies:

lim Jp(z,v) = hm Sp(x,7) = CF =0

T—r00
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8.1 Explicitly Solved Examples

and
lim J,(z,7) = lim S,(z,7) = Cl =0.
T——00 T—>—00

Using the smooth-fit principle described in equation (8.7), we can write, after straight-
forward but lengthy algebra, the index v(z) in the compact form:

+ + - - +

_ Wy o (wy —w,) o (W, —wr) 2 2
v(z) = = [IgaaT F Loy o (@) — Iy ()ot]. (814)
where: o
o _ Yy y
I] = ho(x — —) e Ydy
0 Wy
and

o0
I35 = / hy(x + L_i_)e*ydy.
0 w

Remark: When h,(z) = 0, g, = 0 and in the limit o, — 0, the RBP converges to the
static Bandit problem where the passive project remains “frozen” and does not incur
cost. In this limit, the index given by equation (8.14) converges to the value

V() =/ ha(z — 2o)e v dy, (8.15)
0 Wa

which directly corresponds to Karatzas’ result [24], provided we reinterpret the reward

problem in [24] as a cost problem (see also the equation (5.4) of section 5.2 above).

8.1.3 ® RBP with Dynamics Driven by Continuous Time Markov Chains

Let us finally consider the case where the processes Xj(¢) is a birth and death process
(i.e. a continuous-time and discrete state Markov chain for which X (t) € Z). Assume
that the holding time between the transitions from the state z to = + 1 is exponen-
tially distributed with parameter p, when the active action is chosen and p, for the
passive action. Conversely, for the transitions from the state  to « — 1, the parameter
is A, for the active action and A, for the passive action. We impose that p, > A, and
that p, < Ap. In other words, the time average of the process X (t) increases when ac-
tive and decreases when passive. The associated running costs rates are hg(z), 8 € {a,p}.

Lemma 8.8. Under the above assumptions and following the optimal policy *, equation
(8.4) takes the form:

( BJa(x,7) = ha(2) + Aada(z — 1,7) + pada(® + 1,7) — (Ao + pa) Ju(,7)

it 7(X(0) =z) =a.

(8.16)
Bp(z,7) = hp(z) + Apdp(z — 1,7) + ppdp(@ + 1,7) — (Ap + pp) Jp(z,7) + 7

if 7(X(0)=x) =p.

Proof: Assume that 7*(X(0) = x) = a, then the first order time expansion of equation
(8.4) reads as:

Jo(@,7) = Eha () + (1= BE) |EXada(@ —1,7) + Epada (@ +1,7) + (1 = EXNa — Epa) Ja(2,7) |-

Neglecting the terms of order O(£2) in the above expansion yields the required result. A
similar expression can also be derived when 7*(X (0) = x) = p.
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8 Heuristic Scheduling for the Restless Bandit Problem — The Whittle Relaxation

The general solutions of equation (8.16) are:

Ja(:l?,’y) = Ca*’(wj)z + Ca— (wa—)z + Sa(m77)>

Jp(aj,’}/) = Cp+ (w;_) + Cp7 (w;)z + SP($77)7

with Cy+ and Cy-, 0 € {a,p}, four integration constants,

(B+Xe +N9)+\/(ﬁ+)\s +1e)2—4Ng 1o
2pg

+
Wy =

wo = (B4+Xo+1s) =/ (B+Xo+15)2—4Ng i
o = 2pe

and S, (x,7), Sp(z,v) being the particular solutions which correspond to remaining active
[respectively passive] forever. We derive S,(z,~) in the appendix C and obtain:

5u(7) = — @) X b)) 3 )™ .

Ha(wa — Wq ) k=—o00 k=z+1

A computation along the same line yields:

z—1

Sp(wav)zé{(hp(w)-l-v)ﬂw;)z > (hp(k) +)(w;) ™+

.up(w;j—pr_) k= o

o0
W) S () + ) .
k=x+1
For consistency, it is required that the total cost incurred, when & — —oo must equal the
cost incurred when engaging the project forever. Moreover, when x — +oo the global
cost must equals the cost incurred when letting the project be idle forever. Using the
fact that
0<w, <1<wy,

which is straightforward to establish, these asymptotic behaviours imply:

ﬁll)ngo Ip(z,7) = zlgrgo Sp(z,7) = Cpr =0
and
lim Jy(x,v) = lim S,(z,v) = C,- =0.
Tr—r—00 Tr—r—00
Again, the index v(z) is derived by fitting both functions J,(z,v) and Jp(z,v) as de-
scribed in equation (8.8). Explicit expressions for v(z) will be given in section 17.2.1
below when a specific form of the cost function hy(z) is chosen.
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Summary

The exact solution of stochastic scheduling problems involves the construction of a dy-
namic allocation policy in order to optimize a performance objective. This problem ap-
pears to be, in most relevant models, an unreachable goal. Therefore, the identification
and study of restricted problems whose special structure yield a tractable solution re-
mains of prime research interest. Beyond the intrinsic interest of writing a completely
solvable model, its solution may provide building blocks for constructing well-grounded
heuristic solutions for more complex models. In his article [50], Whittle studied what is
arguably the most promising extension to the classical Multi-Armed Bandit Problem:
the Restless Bandit Problem (RBP).

The rich natural modeling potential offered by the RBP in multiple disciplines spreading
over robotics, aircraft surveillance, worker scheduling, make-to-stock queue or clinical
trials, makes the development and analysis of a heuristic policy a problem of significant
research importance. In his seminal paper on the subject, Whittle [50] presented a simple
heuristic based on the Priority Index Policy. This class of heuristic is very appealing for
actual problem as its implementation is easy and allows real time control. The remaining
difficulty is to compute the indices. This can be done by using numerical computations
or, in some simple cases, by deriving explicitly analytical results. The latter situation is
exactly the one we applied in this chapter, where we derive explicit expressions for the
Whittle priority indices when the underlying dynamics are diffusion or Continuous Time
Markov Chains processes.
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Part 111

Multi-Armed Bandit Problem with Switching
penalties






Introduction

So far in the MABP and RBP we have discussed neither costs nor time delays incurred
when switching from one project to another one. This absence of switching penalties is
barely encountered in the industrial context. In fact setup costs enter naturally in almost
every production processes as cleaning operations or the need of additional workforce for
setup. Think for example of a manufacturing process where a chocolate production is
able to deliver plain chocolate P or chocolate with nuts N. For this problem, the setup
time delay to go from P to N is almost negligible, on the contrary the setup to go from
N to P will usually require a lengthy cleaning operation. Therefore, when the produc-
tion N is engaged and demands for plain chocolate arrive, the Decision Maker (DM) will
not necessarily switch immediately the production from N to P in order to avoid the
switching penalties. Indeed, he may decide to continue to serve the demand for chocolate
with nuts and wait until more demand for plain chocolate arrives.

This example shows the importance for the DM to know which is the production engaged
at time ¢; 7 in order to take the optimal decision at time ¢;. For a N-armed MABP, we
will say that “the DM is engaged on project j at time t;” if project j was engaged at
time t; 1. Therefore, if the DM is initially engaged on project j, this means that he can
engage project j at time ¢y without incurring switching penalties. The information about
the engaged project will be given by the indicator I7(¢;) defined by:

1 if project j is engaged at time ¢; under policy m,
I7(t) = (0.1)
0 otherwise.

The objective of the present part is to study the difficulties arising when adding switching
penalties into the MABP (defined in chapter 3). We will proceed as follows:

First, in chapter 10 we give a definition of the MABP with switching costs only. Then
in chapter 11 we generalize the problem of chapter 10 and define the MABP including
switching costs and/or switching times delays. In section 12.1 we will show that the pres-
ence of switching penalties in MABP, precludes the characterization of the optimal policy
by using priority indices. To this end we will expose the counterexample constructed by
Banks and Sundaram [3]. Nevertheless, numerical experiments such as those performed
for instance in [22] and [38] show that in presence of switching costs, the optimal strat-
egy exhibits a highly complex structure. This often implies complex implementations,
a drawback that will drive most practitioners to prefer efficient (though sub-optimal)
rules which are more easy to use. In particular, strategies based on generalized priority
indices potentially remain —due to their simplicity— very appealing. We therefore propose
in section 12.2 a possible generalization of the Priority Index policy based on two indices
for each project.

How far from optimality can we expect to be when using generalized index policy in
MABP with switching penalties? We will approach the answer of this question by study-
ing a class of models involving MABP for which it is possible to exactly determine the
optimal strategy by direct computation. The model we consider belongs to the class of
deteriorating MABP (DMABP) for which the reward is monotonously decreasing. The
DMABP plays a privileged role in the class of Bandit problems, as Kaspy and Mandel-
baum in [27] proved that any MABP can be reduce to a Deteriorating one. Moreover it
is a conjecture that the same construction affords to reduce any MABP with switching
penalties into DMABP with switching penalties [26]. In chapter 13 we revue this con-
struction and we characterize a class of MABP with switching costs for which it applies.
Then we show in section 14.1 that the optimal policy for deterministic DMABP with
switching penalties can be explicitly calculated and that when two arms are considered,

61



it exhibits an hysteretic shape. The hysteresis reflects the fact that not only the present
state but also the history of the process is to be taken into account in order to decide
which is the optimal scheduling. In chapter 15, we compare, for this two-armed process,
the sub-optimal strategy resulting from the use of the GIH, with the optimal scheduling.

As we consider classical MABP in this part, the functions h;(z) will be reward
function as in part L.

TAX TAX TAX TAX ¥ TAX TAX TAX TAX

Fig. 9.1. MABP with Switching penalties.
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10

Multi-Armed Bandit Problem with Switching costs

10.1 Definition in Discrete Time

We reconsider the class of models given in section 3.1 with hj;(z), j € {1,2,..., N} being
reward functions and we now introduce the indicator:

A™(t;) = {

1 if a switch occurs at time t;,
0 otherwise,

where 7 is the scheduling policy. As the knowledge of the engaged project is necessary
to derive the optimal scheduling policy, the initial conditions are:

X(to) = (Xui(to), ..., Xn(t)),

Iﬁ(to) = (I{T(to)a v 7‘[]7{}(2‘;0))7
where [T (t;) stands for the indicator function for the operation state (engaged or disen-
gaged) of project j defined by equation 9.1.

Let us assume that the DM is initially engaged on project j, (i.e. I;(to) = 1, and Ixx; = 0,
ke {1,...,N}). Instead of equation 3.2, we now have to write for the optimal discounted
reward J™ (X (to), I(to)):

J™ (X (to), I(to)) = SUB J™(X (to), I(to))
TE
where now

-

T (X (t), I(to)) =

[e's} N
sup Eﬂ{ > Bt [Z hi (X (t) I (t:) —=C AT (ts)
=0 L j=1

a) b)
In equation 10.1, the term a) represents the reward received by the engaged project
(remember that I7 (¢;) = 0 for the disengaged project). The term b) add the switching
costs when a switching occurs at time ¢;. Observe that the initial condition in equation
10.1 includes now the initial operating state f(to) of the MABP. This is mandatory as we
have to take into account the fact that for arms being in identical dynamical states, the
one currently engaged is more rewarding as a switching to the other one incurs a cost.

As before

X(to), IF(to) = 1}. (10.1)

=

J™ (X (to), I(ty)) = max Ly J™ (X (to), I(to)) (10.2)

with the one-step operator Ly introduced in equation 3.3 which takes now among one of
the two alternatives:
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10 Multi-Armed Bandit Problem with Switching costs

The DM is engaged on project j # k at time ¢; and decide to switch to project k:

L™ (X (t:), 1(t:) =
—C + hi (X (t:) + BE [J“(X(ti+1), T(tisn)) | X(t), I (t:) = 1” .
—_——

s

a) o

b)

The term a) is the switching cost incurred when switching from project j to project k
plus the reward gained by the engagement of project k at time ¢;. The term b) describes
the expected global reward from time ¢;;1 ahead discounted by the term /5.

The DM is engaged on project k at time ¢; and continue with project k:

Ly J™ (X (t:), [(t;)) =

-

hi(Xi(t:) + BE | J™(X (tis1), I(ti1)) | X (t:), IF (t:) = 1)| .
—————

'

a) b)

The term a) describes the reward received by the engagement of project k at time ¢;
(here no switching occurs). The term b) is as above.

10.2 Definition in Continuous Time

For continuous time, the definition of the MABP follows the one introduce in section
10.1 with the modifications:

The {t;, i =0, 1,...}, with 0 <t < -+ <t; <tjp1 < -+, i =1,2,..., describe the
sequence of ordered switching times.

The discount factor in continuous time is e 7?.

Equation (10.1) is now rewritten as:

= %

I (X(0), 17 (0)) =

o0 N
suBEﬂ{/eﬁt > " hi(X; )T () — Co™(t—t;) | dt | X(0), ”ﬂ(O)}, (10.3)
TE 0 j=1

with 6™ (¢t — ¢;) being the Dirac mass distribution.
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11

Multi-Armed Bandit Problem with Switching Costs
and Switching Time Delays

Let us now consider the problem where the switching penalties are costs and/or
time delays. This means that each time the DM decides to stop a project and engage
another one, he has to wait a fixed time D > 0 before the new project becomes activated
and pay a fixed tax C' > 0. During this time delay, no project evolves and no reward is
gained. Note that C' and D depend neither on the project we leave nor on the project
we engage.

11.1 Definition in Discrete Time

Remember that in discrete time, the ¢; are the decision times. For simplicity, let us
assume that ¢;11 —t; = 1 when no switching occurs at time ¢; and ¢;41 —t; = 1+ D when
a switching occurs at time ¢;. With the notations of section 10.1, the expected optimal

-»

reward J™(X (ty), I(to)) for the MABP with switching time delay reads as:

T (X (to), I(t)) =

00 i (¢ N
suBEW{ZB+7¥A( )DthJ (t;) — CA™(t;) ‘X(to), ”(to)}. (11.1)
mE k=1
As before, . .
J™ (X (to), I(to)) —makaJ’T (X (to), I(to)) (11.2)

with the one-step operator Ly introduced in equation 3.3 which takes now among one of
the two alternatives:

The DM is engaged on project j # k at time ¢; and decide to switch to project k:

L™ (X (), 1(t) =
B] = € b X(t)) + B[ (X (ta0). Tltes)) | X (0. 17 (1) = 1] |.

The DM is engaged on project k at time ¢; and continue with project k:

LT (X (t:), I(t:) =

he(Xe(t2)) + BE[J7(X (t112), T(t51)) | X (), I (81) = 1))
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11 Multi-Armed Bandit Problem with Switching Costs and Switching Time Delays

11.2 Definition in Continuous Time

For continuous time, the definition of the MABP with switching costs and switching time
delays follows the one introduce in section 11.1 with the modifications:

e The{t;, i=0,1,...},with0<¢t < - <t; <tip1 <---, i=1,2,..., describe the
sequence of ordered switching times.

e The discounted factor in continuous time is e 5?.
e Equation (11.1) is now rewritten as:
J™(X(0), 17 (0)) = sup,cy E,,{

X’(O)J’f(O)},

(11.3)
with E.{ - | X(0),17(0)} being the conditional expectation with respect to the initial
conditions and 6™ (¢t — ¢;) is the Dirac mass distribution.

t;

i tit1 N
Y2 () S e““(E hj(XJ-(t))I;-f(t)—Oéﬂ(t—n)) t
Jj=1
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12

Heuristic Scheduling for the MABP with Switching
penalties

The simple form of the scheduling policy given by priority indices strongly encourages
us to look for a possible extension valid in presence of switching penalties. Following
the procedure introduced in chapter 4, we can consider the decoupling of the original
MABP into a series of N stopping problems SP; and introduce a stopping cost. This
method enables to construct IV priority indices on which a scheduling policy can be based.
Unfortunately such a naive extension leads generally to far from optimal policies. This
should not come as a surprise as a simple decoupling of the MABP into NV SP; problems
does not incorporate the information regarding the operating states (i.e. engaged or
disengaged) of the projects. In presence of switching costs, this information is however
essential as it is obvious that for two projects with neighbouring dynamical states, the
currently engaged one is likely to be continued to avoid to pay a switching cost. This
introductive idea suggests that hysteresis zone will enter into the scheduling diagram.
The simplest manner to allow for the presence of these hysteresis is to introduce a set of
two indices for each project j € {1,2,..., N}, as follows:

e A “continuation index” wc;(X;(t;)) for the case when the DM is engaged on the
project j at time ;.

e A “switching index” vs;(X;(t;)), if project j was idle during the last period.

Given ve;(X;(to)) and vs;j(X;(to)) for each project of an N-armed MABP, a generaliza-
tion of the Gittins index policy for MABP with switching costs will be:

Definition 12.1 (Generalized Index Heuristic (GIH)). Assume that the DM is
initially engaged on project j, then the Generalized Index Heuristic (GIH) is: “Engage
project j as long as vc;(X;(t)) is greater or equal than vsy (X (t)), Vk # j. If ve; (X;(2))
undergoes a switching index of another project, then switch to the project, different from
project j, having the greatest switching index and engage it immediately”.

Given an N-armed MABP with switching penalties X(t), remember that A; € R is the
set of states space of project j. Define

O=X x...x Xy € RN,
then the GIH policy can be described by N? subsets:
51055152, 5153, -+, 9158 € O

S20,5251,58253,...,5258 C O

SN, SN—=1,9N52, ..., SNaN-1 C O
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12 Heuristic Scheduling for the MABP with Switching penalties

as follows:

- The set Sj contains the states (x1,...,2n5) € @ in which it is optimal to keep on
engaging project j when the DM is already engaged on project j:

Sio = {(xl,...,xN) € 0| vej(xj) >vsp(zg) VEe{1,2,...,N}\ {]}}

- The set S contains the states (z1,...,2x5) € @ in which it is optimal to switch
from project j to project k and to engage it immediately:

Siok = {(xl,...,xN) € 0 | vej(xj) < vsip(xy)

and vsy(x = maXx VSi\&; .
k( k) i:{l,...,N}\{j}( ( ))}
Remarks:

e In figure 12.1 we draw the possible subsets describing the GIH for a particular two-
armed MABP (in order to convince ourself that this situation may exist, read the
chapter 14).

Sies

5142

P
X1 X

Fig. 12.1. Subsets describing the GIH - the two-armed case. The left graphic corresponds to
the situation when the DM is initially engaged on project 1, and the right one corresponds to
the situation when the DM is initially engaged on project 2.

e The boundary 0S;, of the set S;_ is generally different from 0Sj,; so the GIH
is a hysteretic policy.

12.1 The Counterexample of Banks and Sundaram

The following counterexample constructed by Banks, Rangarajan and Sundaram [3]
shows that priority index policy based on ve;(x;) and vsg(x) cannot possibly yield
the optimal scheduling in the general case. Let us call B the class of Banks” MABP char-
acterized by:
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12.1 The Counterexample of Banks and Sundaram

e The class B evolves in continuous state space with discrete time dynamics.
e The state space is X =[0,1] € R.
e The initial state is X (0) = « € [0, 1].

e The transition probabilities are P(X(t+1) =1]| X(¢) =y) =y, and
PX(E+1)=0]X()=y)=01-y).

e The reward function is h(z) = x.

This class of processes yields a nearly constant reward. Indeed, starting with initial con-
dition z, it jumps either to position 1 with probability x and stays at 1 forever or it
jumps to position 0 with probability (1 —z) and stays there forever. Following Banks, we
will now prove that the optimal policy for MABP with switching costs C' > 0, belonging
to B, cannot be a Priority Index Policy.

To show this, let us first assume, ad absurdum, that the GIH is optimal. Now, consider
a two-armed MABP )Zupmzen” with switching costs C' > 0. Suppose that the first project
(project T1) of X «Frozen” generates a systematic and constant reward vy, € R and that its
second project (project 72) generates a systematic and constant reward v, € R. Therefore
the dynamics of both projects of X«prozen» is “frozen” (i.e. Xrt)=&teRy), j=1,2.
With these assumption we have:

Lemma 12.2. The continuation and the switching index for a “frozen” project T with
discrete time dynamics reads as:

ver(€) =y and vsr(§) = - C(1-B). (12.1)

Proof: Consider the MABP X“Frozen”. Then the optimal policy, if the DM is initially on
project 71, is to continue forever on this project if and only if

7 27— C1-p),
otherwise to switch to project 73 and stay on it forever. Hence, the GIH is optimal when
it is based on a continuous and a switching index defined as in equation 12.1.
O

Consider now another two-armed MABP with switching costs C' > 0. The dynamics of
its first project (project X1 (t)) belong to B and the second project (called T) is “frozen”
and give a systematic and constant reward v € R.

Assume that 2C(1— /) < z and that the DM is initially engaged on project X;. Consider
the two following alternative:

i) Engage project X; until it reaches the state 0, then switch to project 7 and engage
it forever:

E_t Bt +(1—x) <—ﬁt10+2ﬂtw>. (12.2)
i=1

a) i=1

b) c)
The term a) describes the reward gained by engaging project 1 at time to. The term b)
describes the reward gained by an infinite time engagement of project X; from time
t; onward, under the assumption that it jumps from state x to state 1 (this occurs
with probability x). The term ¢) describes the reward received by an infinite time
engagement of project 7 from time t; onward with a switching at time ¢; (i.e. the
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12 Heuristic Scheduling for the MABP with Switching penalties

project X; jumps initially from state x to state 0, this occurs with probability (1—z)).

ii) Switch initially to the arm 7 and engage it forever:

vy B -C. (12.3)
i=0

Now, when
x

LA T

we can easily check that the reward given by equation (12.2) is optimal. It is therefore
greater than the reward given by equation (12.3). Moreover, when equation (12.4) is
satisfied with equality, both rewards given by equations (12.2) and (12.3) are equivalent.
Therefore, assuming that the GIH is optimal, we must have the following properties:

+C(1-B), (12.4)

ver (X1(0) = o) > vsr(€) when v < i T Cc(1-5)
vey(X1(0) = ) = wsr(€) when 7 = 12— + C(1 - f)

vep (X1(0) =) <wsy(€) when v > m +C(1-p)

Hence, for the GIH to be optimal, the continuation index of the class B have to be:

x
Similar construction bring the switching index of the class B, namely:
-C(1-p)(1 1-
vs(X(0) = ) = L= CA =P+ BU = 2) (12.6)

1-B(1—a)

Finally, consider another two-armed MABP for which both project belong to B. Assume
moreover that the following conditions are satisfied:

e The initial conditions are X;(0) = z € [0,1] and X»(0) =y € [0,1].
e The DM is initially engaged on the first project X (¢).
e y>C(1-p) >z

* T >yY—Cl-y).

With these assumptions, the optimal policy is: “Engage the first project then switch to
the second if and only if the state of the first project moves to 0 or continue with the first
one forever”. If the GIH is optimal, we must have

vey(z) > vsa(y).
However, for = C =1, 2= 2 and y = 2L above assumption are satisfied and we have

17
that vei(z) = &5 = 0.3 and vsy(y) = o= ~ 0.302, hence a contradiction.

12.2 ® Construction of the GIH

In order to be natural, the construction of the continuation and the switching index
vej(x) and vs;(x), must be very similar to the one of the Gitting index, which is as
follows:
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12.2 & Construction of the GIH

Given an N-armed MABP we derive vg;(z), from problems P; j € {1,2,...,N}. The
P; are stopping problems (see section 4.1) defined as follows: “Given a terminal reward
ﬁ, find an optimal stopping time 7*(y) € Ry which mazimizes the reward gained by

”

engaging project j until time 7*(vy), then stop and collect the terminal reward BT () ﬁ

The simple formulation of the Gittins Index in term of a stopping problem is its major
advantage. Moreover, it is worth to note that the Priority Index Policy based on the
Gittins Index gives an optimal scheduling policy for the problems P;. We will therefore
derive ve;(x) and vs;(x) directly from the stopping problem P; in which we add switch-
ing penalties (i.e. a switching cost C > 0 and a switching time delay D > 0).

Remarks:
e The indices derived from the Whittle relaxation also follow from a stoping problem
(problem P; see chapter 8).

e The Whittle heuristic (Definition 8.5) based on the Whittle Index (defined in equa-
tion (8.6)) gives an optimal scheduling policy for the problems P;.

Fig. 12.2. Problem P;.

Definition 12.3 (Problem P;). Given an N-armed MABP X (t;) with switching penal-
ties (a switching cost C' > 0 and a switching time delay D > 0), define N two-armed
MABP, called problems P;, as follows:

The first arm of P; corresponds to the project j of X(t;), with dynamics X;(t;) and
yielding a reward h;(X;(t;)). The second project of 75j (called project T ) has the “frozen”
dynamics:

Xr(t)=€&Ee Xr CR, Vit

and produces a constant reward vy when engaged (i.e. h1(§) = v). Moreover, each time
we switch from one project to another we incurred the switching penalties (see Figure

12.2).
Lemma 12.4. The problem 75]- is a stopping problem.

Proof: Assume that the DM is initially engaged on the project j, then once the optimal
policy for problem 75j commands to switch from project j to project 7, it is optimal to
engage project T forever as the state of project j remains frozen. Then problem 75j is
equivalent to the stopping problems (called as problem 8~77j) with stopping costs and
stopping time delays defined as follows: “Given a terminal reward ﬁ find an optimal
stopping time 7*(y) € Ry which mazimizes the reward gained by engaging project j until
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12 Heuristic Scheduling for the MABP with Switching penalties

time 7*(7), then stop, wait D wunits of time, pay the switching tax C and collect the

terminal reward
7" (v)+D -C v ”
o (cor i)
O

Definition 12.5 (Continuation index vc;j(z;)). Given an N-armed MABP X (t;)
with switching penalties (C, D), the continuation index vc;(x;) of project j when in state
xj, is equal to the Gittins index (defined in equation (4.2)) i.e.

B, S B )
VCj(Xj(to) = :L‘j) = Sup =0 -

— (12.7)
T€U E,, { "Z: ﬂti}

=0

Remarks:

e We will see in section 12.2.2 that this definition directly follow from the problem 75j.

e From definition 12.5, it directly follows that the Gittins index for the “frozen” project
T reads as:

ver(€) = (12.8)

see lemma 4.8.

Definition 12.6 (Switching index vs;(x)). Given an N-armed MABP X(t;) with
switching penalties (C,D), the switching index vs;(x;) of project j when in state x;, is
defined as the smallest value of v that makes the immediate engagement of project T of
problem 75]- optimal (i.e. immediate stopping optimnal) when the DM is initially engaged
on project T .

Note that with the above definition, the optimal policy of problem 75]-, for each v <
vsj(x;), commands to pay initially the switching penalties, then to engage project j
until the optimal stopping time, finally to repay the switching penalties and to engage
project T forever.

Lemma 12.7. The switching index for the “frozen” project T with discrete time dynam-
ics reads as:

vsT(€) = P (y = C(1 - ). (12.9)

Proof: In order to derive the switching index for project 7 we construct (following the
definition 12.6) a two-armed MABP with both projects having the “frozen” dynamics as
defined for the project 7. Suppose that the first project (project 7;) generates a constant
reward vy, and that the second project (project 72) generates a constant reward 7,. Then
the optimal policy, if the DM is initially on project 73, is to continue forever on this
project if and only if

72 > P (- C(1-p)),

otherwise to switch to project 71 and stay on it forever. Hence, the smallest value of 7,
that makes immediate stopping optimal is

12 = vsTy () = B2 (1 — C(1 = B)). (12.10)
O
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Lemma 12.8. The switching index for the “frozen” project T with continuous time dy-
namics reads as:

vsT(€) = B7 (v - BO). (12.11)

Proof: Straightforward by following the lines given in the proof of Lemma 12.7.
O
Let us now derive the switching index for a general process X(t) with a reward function

hj(z).

12.2.1 ® Construction of the Switching Index
Discrete Time Dynamics

Theorem 12.9 (The Switching Index). Given an N-armed MABP X (t;) with switch-
ing costs C > 0 and switching time delay D > 0, the switching index vs;j(X;(to)) of
project j reads as:

E.’/vj {Til ﬂtihj(Xj(ti)) - C(]_ + ﬂtr,r+D)}
Vo (Xj (to)) = sup i=0

Te—1 ’
meU Ez]{ Z /BtH-D}

=0

(12.12)

with tr, the stopping time at which the policy ™ commands to engage the frozen project
T of problem P;.

Proof: Given v (not to large) the optimal reward J«;Y—7C7D(Xj(t0), X7 = &) for the problem
P; when the DM is initially engaged on project 7 can be written as:

TFOP (X (t0), X7 = €) = BVE

—-C+ Z B (X;(t:)) +

~ v

(12.13)
+5° {—ﬂt’"*cw“y i ﬂ“J ]

T=T,
-

v

b)

where 7+ is the time at which it is optimal to reengage 7. The term a) describes the
reward received by initially switching to project j and then engage it until time ¢, ..
The term b) describes the reward received from time ¢, . onward when we switch from
project j to project 7T at time ¢,_,. and then we engage 7T forever.

When + is the smallest value that makes immediate stopping optimal in the position
(X, (t0),&), the optimal reward is:

TP X0, 6) = 15 = B

VZﬁti] : (12.14)

Using equations (12.14) and (12.13) we have:

vZﬁ“] = pYE
i=0

which after simplification reads as:

Tp—1

E —C+ Y BUhi(X;(t:) + B
i=0

—B'C+y Y /3“] ]

I=Tnr
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12 Heuristic Scheduling for the MABP with Switching penalties

Tre—1

7§:B“”]=ﬂDE
=0

Therefore, the smallest v which make immediate engagement of project 7 optimal is
solution of equation (12.15), namely:

BYE

i BYh;(X;(t:) — C(1+ ﬁt*"“’)] : (12.15)

=0

Ez]. {721 ﬂtzh](X](tl)) - C(]_ + 625.,”4_[))}

¥ = sup — (12.16)
meu E,, { 5 6ti+D}
i=0
By definition vs;(X;(tp)) = v with v given by equation (12.16), namely
Tp—1
B, { > BUhi(X;(t:) - C(1+ ﬁt’”w)}
(X, (to)) = sup — =2 ,
e E,, { = gtwp}
i=0
which finish the demonstration.
(]

Continuous Time Dynamics

The continuous version of the switching index is similar to the discrete one:

Theorem 12.10 (The Switching Index). The switching index vs;(X;(to)) reads as:

_op [ EUST e hi(X5 (1) di — e PPC(1L+ e}

OT"+2D e—f’—”dt}

(12.17)

vsj(X;(to)) = sup ¢ E{

with T the stopping time at which the policy m engage the frozen project T of problem 75]-.

Proof: Proceed along the same lines as in the proof of Theorem 12.9, with equation
(12.13) replaced by:
0,
TP (X () =

e PP < -C+ E{ / e Pthy(X;(t)) dt — e PRI O / 7e‘ﬁtdt}> ;
0 T*+D

and equation (12.14) replaced by:

TP (X (b)) = / vedt = .
0

12.2.2 ® Construction of the Continuation Index

Let us now prove that the definition 12.5 for the continuation index is natural. To this
end, we will prove that vc;(z) may be derived from the problem 75j and that the GIH
based the continuation index (given in equation (12.7)) and the switching index (given
in equation (12.9)) solve the problem P; optimally.

Lemma 12.11. The optimal policy for the problem 75]-, is the GIH policy based on the
indices vcj(X;(t)) and vsT(§), defined by equations (12.7) and (12.9.
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12.2 & Construction of the GIH

Proof of Lemma 12.11 for Discrete Time MABP

The optimal reward for the problem 75j when the DM is initially engaged on project j
reads as:

Tr—1 >
TP (X (), €) = B | > BUhi(X;(t:) + B | =B~ C +7 > ﬂ] » o (1218)
i=0 i=Tr

~ NS ,

) ]
where ¢, is the time at which it is optimal to engage project 7. The term a) describes the
reward received by initially engaging the project j until time ¢,_. The term b) describes
the reward received from time ¢, onward when we switch from project j to project T
at time ¢, and then we engage T forever.

For an initial condition (X;(ty),{) € 0S; and when the DM is initially engaged on
project j, it is optimal to immediately switch to 7 and then to stay on it forever. This
yields a reward:

TP (0) = BP(-C + 15) = 67

—C+7iﬂti] : (12.19)

=0

Using equation (12.19) with equation (12.18) we get:

[e%e] Tre—1 [e'e)
,BDE —C+7Zﬂtz = F Zﬂtlh](X](tl))-l-ﬂD _6tT"C+726ti]] ,
i=0 i=0 Py
which yields after simplification:
Tp—1 Te—1
BPE |y Y B -C| =E| Y B5h(X;(t) - Cﬂt”“}] : (12.20)
=0 =0

On the other hand, if we want the GIH to be optimal for problem 75j, we must have at
the position (X;(to),&):

vej(X;(to)) = vst(€) = 87 (v = O(1 = B)), (12.21)

with v being the solution of equation (12.20), namely:

£ S 8s0x00) + 9P C1 - o) |

v =sup P = — (12.22)
TeU EiL‘j { Z ﬂtl}
i=0
Introducing equation (12.22) into equation (12.21) we obtain:
Tre—1
Ezj{ > Bt"hj(Xj(ti))}
vej(X;(to)) = sup =0 — , (12.23)
Teu Exj { Z 6251}
=0

which is the Gittins index. Therefore, for the GIH to be optimal with the switching index
defined by equation (12.9), the continuation index has to be the Gittins Index.

O
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12 Heuristic Scheduling for the MABP with Switching penalties

Proof of Lemma 12.11 for Continuous Time MABP

The proof in continuous time follows naturally from the previous one:

The optimal reward J]’C’D(Xj(to)) for the problem P; when the DM is initially engaged
on arm j reads as:

*

TP (X(to)) :E{/ e*ﬁthj(Xj(t))dt—e*B<T*+D>C+/
0 T

o0

7eﬁtdt}, (12.24)
*+D
where 7* is the time at which it is optimal to engage arm 7. For an initial condition
(X;(t0),€) € 0Sj and when the DM is initially engaged on project j, it is optimal to
immediately switch to arm 7 and then to stay on it forever. This yields a reward:

TV (X (t0)) = e < -C+ / ) ve“”dt) . (12.25)
0

Using equation (12.25) into equation (12.24) we get:

e 8P < -C+ [ 7eﬁtdt> =

(12.26)

E{ foT* eiﬁthj(Xj(t)) dt —e B +DIC 4 fTO*O+D ’7€Btdt}.

On the other hand, if we want the GIH to be optimal for problem 75]-, we must have:
vei(Xj(to)) = vsr(§) = e PP (y = OB), (12.27)

with «y being the solution of equation (12.26), namely:

E {foT* e Pth;(X;(t)) dt + e PPC(1 - e*ﬁr*)}

—_ BD
v=e - (12.28)
E{[y ot}
Introducing equation (12.28) into equation (12.27) we obtain:
B{Jy ety (X;(0) dt}
vej(X;(to)) = (12.29)
Y E{[7 estat
e e
which again is the Gittins index.

a

Remark: When C = 0 and D = 0, we consistently have that vs; (X (to)) = ve; (X;(to)) =
vg;(X;(to))-

12.3 ® Derivation of the GIH for the Banks’ Class of MABP

To illustrate the above definition, let us derive the value of vs;(x) and vc;j(x) for the
class B of Bandit problems defined in section 12.1. For this class of MABP we can easily
guess the optimal policy, therefore:
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12.3 & Derivation of the GIH for the Banks’ Class of MABP

Proposition 12.12. When 2C(1 — ) < z, the continuation index of a process which
belongs to B is:

ve(X(to) = 7) = % (12.30)
and the switching index is:
qu@@:x):ﬂDx_Cu_ﬂx1+5DHu_x» (12.31)

1— 320+ (1 — 1)

Proof: Assume that the DM is initially engaged on project j and that v > 0. Then the
optimal policy of problem 75]- for a process j in B is: “Continue to engage project j until
it reaches the state 0, then switch to project T ”. Under this optimal policy, equation
(12.20) reads as:

$+x26“ +(1—=z)8P (—B“C + Zﬂ%) =P <72/3ti - c) . (12.32)
i=1 =0

a) i=1

b) c)
The term a) describes the reward gained by engaging project j at time to. The term b)
describes the reward gained by an infinite time engagement of project j from time t;
onward, when with probability « it jumps from state x to state 1. The term c¢) describes
the reward received when engaging project 7 forever from time t; onward, if at time t;
we switch from project j to project 7 because the project j jumps from state x to state
0 (this occurs with probability (1 — x)).

Solving equation (12.32) for v we get:

_ xr
E T

and according to Eq(12.10) the continuation index follows.

+C(1-p)

Similarly, with the assumption that the DM is initially engaged on project 7 and that
is not too big, the optimal policy for a process j in B reads as: “Switch initially to project
j, engage it until it reaches the state 0, then switch to project T and engage it forever”.
Under this optimal policy, equation (12.15) reads as:

pP (—C+x+x25ti +(1-2)pP (—ﬂt10+ Zﬂ%)) =7y Bt
i=1 i=1 =0
Solving this equation for v we get
C(1-p)(1+ B (1 )

1—p20+1(1 — x) '

Finally, vs;(X;(to)) = vy with v given by equation 12.33.

N =pPE” (12.33)

O
Remark.:

e Observe that the equations (12.30) and (12.31) coincide with those derived in section
12.1 (i.e. equations (12.5) and (12.6)).

e The reason why the GIH is not optimal, comes from the fact that the GIH is “myopic
regarding to the number of switchings” (i.e. we compute the indices by taking into
account only one switching penalty ahead). Indeed, the indices vs;(z) and ve;(z)
are derived by considering the problem 75]-. Hence, once it is optimal to switch from
project j to project T, it is never optimal to switch back to project j (as the state of
Jj remains “frozen”). Hence we look only one switching ahead.
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12 Heuristic Scheduling for the MABP with Switching penalties

12.4 ® Comparison Between the GIH and the Heuristic of
Asawa and Teneketzis

In [2], the authors discuss the MABP with switching costs only (i.e. D = 0). They also
propose a heuristic based on two indices, the Gittins index vg;(z) equation (4.3) and a
switching index vs'(z) defined as:

E {Tfﬂtihj(xj(ti)) _ c}
1/82- (X;(to)) = sup =0 —
o e{g e

With the formalism expose in chapter 4, their switching index is derived from the stop-
ping problem (SPA;) defined as follows: “Given a terminal reward 25 and an initial
tax C to be paid prior to the engagement of project j, find an optimal stopping time 7*(7y)
which maximizes the total reward gained by engaging project j wntil time 7*(7), then stop
and collect the reward 7 (V) 125 - Remember that our switching index vs;(z) (given in

(12.34)

equation (12.12) is derived form the stopping problem SNPJ-. The difference between these
two stopping problems is that in SPA; the DM does not pay a tax C at the stopping
time 7*().

In [2], the authors established a series of Lemma that are satisfied by the indices vs}(z)

and vg;(x) for a two-armed MABP. Let us show that our GIH agrees with these Lemmas.
The first result of [2] is Lemma 2.7:

Lemma 12.13 (Lemma 2.7 of [2]). If at time t the DM is engaged on project j and
vg;(X;(t)) > vsj(X;(t)) then it is optimal to continue to engage project j.

Proof: See [2]

In ou case we have:

Lemma 12.14. The GIH based on the continuation and the switching indices equations
(12.7) and (12.12) recommends to stay on project j for each state for which we have

vg; (X;(t)) > vsj(X;(t)).
Proof: By definition, we have:

vs;j(X;(to)) < vs}(X;(to)),

so when vg;(X;(t)) > vs}(X;(t)) the heuristic proposed by Asawa et al. [2] prescribes to
keep on engaging project j and so does the GIH (as ve; (X;(t)) > vs;(X;(t))).
a

The second result is Lemma 2.8 of [2] which give a sufficient condition for the switching
from one project to another:

Lemma 12.15 (Lemma 2.8 of [2]). Consider a two-armed MABP with project j and
project k. Assume that the DM is initially engaged on project j and that:
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Ts—1 TC;*l
Eey 4 X ﬁ“h'(X'(ti))—C(lJrﬁt’")} ij{ > ﬁ“h'(X'(ti))} i
{ i=0 ! T:*_l B i=0 ch_: ! > iCﬁTii:Ts’l“(l —Tf*) _
ij{ i ﬁtz} El‘j{ i ﬂtz} ( _ﬂ J)( _B )
=0 =0

Here, 7} and Tsy, are the optimal stopping time for SNPJ-, respectively SPy, with the DM
is initially engaged on project j, respectively on project T. It is then optimal to engage
project k.

Proof: See [2]
a

With the GIH defined by equations (12.7) and (12.12), this lemma can be rewritten as:

Lemma 12.16 (Lemma 2.8 of [2]). Consider a two-armed MABP with project j and
project k. Assume that the DM is initially engaged on project j and that:

2Cﬁ‘rc;+rsZ(1 _ B)
(1= 7)1~ pk)

vsi(Xi(to) — ve; (X (1) >

It is then optimal to engage project k.

Remarks:

e Computing the indices of Asawa et al. for the Banks’ class of MABP (i.e. the class B
defined in section 12.1), we find:

vg(X(t) = =) = 1—ﬁfﬂ
and
vs' (X (to) = z) = %

As these expressions differs from the optimal one computed in section 12.1, they
clearly yield a suboptimal scheduling for the problem P;.

e Does the indices of Asawa et al. yield a optimal reward for a two-armed MABP
XB (t) with switching costs having both projects in the class B? We ask this question
because our indices gives only a suboptimal result in this case. In order to answer this
question we will calculate the optimal policy of problem X g(t) and compare it with
the scheduling obtained by the GIH based on the indices of Asawa et al. namely:

vey(z) = vsy(y) and ves(y) = vs) () (12.35)

where vsi(x) i = 1,2 is define by equation (12.34).
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12 Heuristic Scheduling for the MABP with Switching penalties

12.4.1 ® Optimal Policy for the Banks’ Class of MABP with Switching
Costs

As the project belonging to class B are Markovian and stationary, it is known (see
[41], [42] or [43]) that the optimal policy for X () belongs to the class of deterministic
and stationary policies. Therefore, it can be defined by four subsets,

S10, 5209, S152, 5251 C A1 x A»

— The sets Sj¢y, (j = 1,2) contains the states (z,y) € X1 x A, for which it is optimal
to continue with project j when the DM is already engaged on it. Using equation
(10.2), this set reads as:

Sjo = {(x,y) € X x Xs

LT} (2,y) > LiJ] (z,y), j#k € {1,2} }

— The sets Sj—,, j # k € {1,2} contains the states (z,y) € Xy x &> for which it is
optimal to switch from project j to project & when the DM is already engaged on
project j. Using equation (10.2), this set reads as:

Sj—>k = {(l‘,y) € X1 xXy

LT (e.y) < LeJT (a,y),  # k € {1,2) } (12.36)

On 0S;1_2 we have that:

LyJT (w,y) = Lo JT (2,y).

This implies that
r yb _
1_ﬂ+(1—x)<1_ﬂ—BC) =

y xp
<+l ra-w (55 -6).

We can explicitly solve these equations for y and:

0812 = {(z,2+ 1+C/30) ‘ reX ).

Similar computations for 9S,_,; yield:

08251 = {(y-l- ﬁ:y) ‘ ye X2}-

In Figure 12.3 we sketched the optimal switching cure as well as the switching curve
obtained be equation (12.35). We clearly see that both switching curve are different.
Therefore the indices of Asawa et al. are also suboptimal for problem Xp(t).

In Figure 12.4 we sketched the optimal policy of problem Xp(t) as well as the switching
costs obtained by the GIH based on our indices i.e.

ver(x) = vsa(y) and vea(y) = vsi(x) (12.37)

with the continuation and the switching index defined by equations (12.5) and (12.6)
respectively. We see in this Figure that these boundaries are also different. Note never-
theless that the switching curve obtained be equation (12.37) are closer to the optimal
one than the switching curve obtained by equation (12.35). The GIH based on our indices
bring therefore better result than the heuristic of Asawa et al. in this case.
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8SI—>2

-

Fig. 12.3. The plain lines represent the optimal switching curve. The dashed lines represent
the heuristic scheduling obtained following the Asawa’s construction (see [2]).

851—>2

-

Fig. 12.4. The plain lines represent the optimal switching curve. The dashed lines represent
the scheduling obtained by the indices equations (12.5) and (12.6).
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13 Reduction of the MABP into the Deteriorating MABP.

13

Reduction of the MABP into the Deteriorating
MABP.

In section 5.1, we considered the class of deteriorating MABP (DMABP), character-
ized by the fact that the processes h;(X;(t)) are non-increasing in time. The optimal
scheduling policy for this class of Bandit reduces to engaging at each time the project
having the largest instantaneous reward (i.e. a fully myopic policy and vg;(x) = h;(x)).
Despite its simplicity the class of DMABP is important as any MABP can be reduced
to a DMABP with an ad hoc construction [27]. This construction can be repeated for a
class of MABP with switching costs [26] and we therefore get DMABP with switching
costs. As the optimal policy for DMABP without switching cost is easy to derive, one
expect that DMABP with switching costs offer the possibility to be solved. Let us start
be deriving the construction of Kaspy which reduce the MABP with switching costs and
discrete time dynamics into the DMAPB.

Let X (t) be an N-armed MABP with switching costs and reward function %;(z). Then
the optimal global reward J™ (X (to), I(to)) for X (t) is given by equation (10.1),

I (X (to), I(to)) =

sup En{ iﬁ“ [ %hj(Xj(ti))I}r(ti) — CA™(t;)

TeU

‘X(to), I7(to) = 1}.

The Kaspy’s construction uses the Gittins vg;(z), j € {1,2,...,N} (given by equa-
tion (4.3)) and the following definition based on a realization of the random process
vg;(X;(t;)) (see figure 13.1).

— The lower envelope vy, of vg; is

- - — H - . I
Qj(XJ (t:) = ogtl’lgti VgJ(XJ ().

— The strict decreasing ladder set is
M = {ti | vg;(X; () = vy (X;(t:)) <wvg,(X;(ti-1))}
i.e. we have that
Vitie M, Vi<t vgj(X;t)) <vg;(X;&)).

- Given v € R, define
7 (y) = inf{fs > t; | vg;(X;(E)) < 7}

i

i.e. given a real value v € R, we have that thi (7) is the smallest decision time #; > t;
such that at time ¢; the index value of project j is smaller than ~.
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Fig. 13.1. One possible path realization of the Gittins Index.

— Let
€j(0) =0, (1 +1) =inf{t; > €;(1) | vg;(X;(t:)) <vg;(X;(e;()))},

then the set M, j € {1,2,..., N} may be defined as:

M;={e0) | 1=1,2,..}.

—  Write the excursion intervals of project j as
Zi(l) = {ti € [ej (1), €5 (L + D[ | L; (#:) = 1}

Remarks:

e From the definition of the excursion intervals we see that each €;(I) is the beginning
of an excursion interval Z;(I) out of the strict decreasing ladder set.

e It is possible that the only point which belongs to an interval Z;(l) is €;(l). This is
for example the case in the special realization drawn in figure 13.1 for each Z;(¢) with

1 <L
e If it exists a time ti 7é Ej(l) such that ti S I](l) then I/j(Xj(ti)) > Vj(Xj(ej(l))).

e Remember that the indicator I;(t;) represent the operation state of project j (i.e.
I;(t;) = 1 if project j is engaged at time ¢; and I;(¢;) = 0 when it is disengaged).
Hence, not all t; € [e;(1),€;(1+ 1)[ belong to the excursion intervals Z;(1). Indeed, the
policy may command to switch from project j and engage another project at some
times t € [€;(1),€;(I + 1)], in this case I;(t;) = 0.

84



13 Reduction of the MABP into the Deteriorating MABP.

e Observe that
vg;j(X;(e; (1)) = vy, (Xj(e; (1)) = vg,(X;(t:)); Vi € Z;(1) (13.1)

and '
TgJ(l)(Vg](EJ(l))) = ej(l + 1)7 .7 € {17277N}

Indeed, V t; € Z;(1) we have that vg;(X;(t;)) > vg;(e;(l)).

We also need the preliminary result:

Theorem 13.1.

B { 2 o B hi (X;(t:))

Where the summation is performed until time (thi(ugj (X;(t;:))) — 1) which corresponds
to the smallest decision time t; > t; for which we have

vg;(X;(8:) < vg;(X;(t:))-
Proof: The proof is given in [27].
(]

Thanks to the previous definition, we now derive the reduction of the MABP into the
DMABP. Writing equation (10.1) in which we omit, for ease of notation, the initial
condition, we have:

oo N
I (X (to), I(to)) = 7571615 Eﬁ{ thi [Zh](XJ (t) I (t:) — CA™(t;) } =
=0 j=1

N oo
iggEﬂ{ZZ S X)) - DN Y plcaT(t) } (13.2)

11=0 t;€Z;(I) J=11=0t;€Z;(1)

We shall now discuss the two sums separately.
N oo
{ YOS s i))} = ZZEﬁ{ > ﬂ“hj(Xj(ti))} (13.3)
J=11=0 t;€Z;(l) j=11=0 ti€Z;(l)
By definition of the Gittins index given in equation 4.3, we have:

Ew{ > BUhi(X; (ti))}

ti€Z;(1)

E.q X Bt
ti€Z; (1)

for all j and I (the left hand side do not archive the supremum). Inserting equation 13.4
in equation (13.3) and recalling equation (13.1), it follows that:

{ZZ > Bihi(X; )} {ZZ’% G0) S gtz—}z

J=11=0 t;€1; () 11=0 tieZ;(1)

< vg;(X;(;(1))) (13.4)
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00 N
{zz S g (x }:Eﬂ{zﬂtizgjaj(ti»z;(m}. (135)
=0  j=1

J=11=0 t;€Z; (1)

Lemma 13.2. For each policy m which does not command to switch from project j to
another project during an excursion interval [€;(1),€;(1 + 1)[, equation (13.5) is satisfied
with equality.

Proof: Each policy which does not command to switch during an excursion interval
fulfills V ¢; € [e;(1),e;(1 + 1)[, t; € Z;(1)). Now, V t; € Z;(1), we have

vy (X;(t:) = vg(X;(e;(1)))-

Then
e (L)+71

S Bliug,(X(t) = ve(Xs(e ) Y BY

ti€Z;(1) ti=e;(1)

with 7 = €;(I + 1) — ¢;(). Finally, as the optimal policy does not commands to switch
during an excursion interval we have, by definition of the Gittins index, that:

e;(D)+7

vg(Xi(e; (1)) D> B =D BUhi(X;(t)

ti=e; (1) ti€Z;(1)

This last equatlon follows because 7 is the optimal stopping time for an initial condition
X;(e;(1) (1 =1 (vg;(X;(t;))) — 1 and thus we can apply theorem 13.1).

O

Consider now the second sum in equation (13.2). This term contains all the switching

costs payed during a realisation of X ;(t). By avoiding to count the switching costs in-
curred during an excursion interval and retaining only the switching costs incurred at
the beginning of the excursion, we can write:

ZZ > preaT(t Z ﬂ€j<’+1>CA’f(ej(l+1)). (13.6)

J=11=0 t;€Z;(1) j=11=0

Define
1 if A™(¢;) =1 and t; = ¢;(() for some [ =1,2,...

0 otherwise,

Then equation (13.6) can be rewritten as:
N oo
Z ﬂeg l+1CA7T(6]l+]_ :ZZﬂ
j=11=0 j=1i=0

Here again, for each policy m which does not command to switch during an excursion
interval [e;(1),€; (1 + 1)[, equation (13.6) is satisfied with equality (all the switching costs
are counted).

Finally, equation (13.2) reads as:

J™ (X (to), I(to) <SUPE {Zﬂtllzl/g I7(t:) — CA™ (t,)
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13 Reduction of the MABP into the Deteriorating MABP.

The right hand side of equation (13.7) describes the reward gained by a MABP with
dynamics X;(¢;) and reward functions vy, (z), 7 € {1,2,...,N}, which is therefore a
DMABP.

Remarks:

The equation (13.7) is satisfied with equality for any policy 7 which does not command
to switch from project j to another project during an excursion interval [¢; (1), €; (1+1)][.

When C = 0, it is known that the optimal policy for a MABP is the Priority Index
Policy based on the Gittins index. This policy does not switch during an excursion
interval as it engaged at any time the project with the largest index value. Therefore,
using the above reduction, any MABP with C' = 0 is reduced to a DMABP for which
the optimal policy is fully myopic.

Each time the equation 13.7 is satisfied with equality, it is sufficient to know the
optimal scheduling policy for the reduced DMABP in order to get the optimal policy
for the original MABP. In other words, quoting Kaspy:

[...] “we may work with DMABP with reward vy, (X;(t;)) and restrict our attention

to strategies that allow switching of projects only at the strict decreasing ladder
point” |...]

Unfortunately, for MABP with switching costs, we do not know if all optimal policy
preclude switching during an excursion interval. Nevertheless, for the following two
classes of MABP with switching costs, the construction of Kaspy applied and equa-
tion 13.7 is satisfied with equality:

— The class of MABP with switching costs for which the optimal policy does not
switch during an excursion interval.

— The class of MABP with switching costs which reduce to a DMABP with switch-
ing costs for which the optimal policy does not switch during an excursion interval.
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14.1 Optimal Hysteretic Policy

14

Optimal Policy for a class of DM ABP with Switching
Costs.

14.1 ® Deterministic DMABP with switching costs — The
Two-Armed Case.

In this section, we focus on the optimal policy for the following class (class Z) of two-
armed DMABP with switching costs:

Definition 14.1 (The Class Z). The projects j belong to the class Z if:

o The dynamics of X;(t) is deterministic.
e The reward functions h;(x;) is decreasing.

o  Given X;(0), the instantaneous reward h;(X;(t)) fulfills:

li (X =I;eR j=1,2. 14.1
Jim By (X(0) =T, € R, j=1, (14.1)
Theorem 14.2. For a two-armed continuous time deterministic DMABP with switch-
ing costs, having both projects in the class Z, the optimal policy is characterized by two
non-decreasing switching curves SO1_,9 and SOy_,1. Moreover, for any initial condition,
only a finite number of switchings occur under the optimal policy.

Proof: The proof of theorem 14.2 lies on the three following propositions which are
proven in the appendix E, F and G:

O

Proposition 14.3. For any given initial condition, the optimal policy commands to
switch only a finite number of times.

Proposition 14.4. The optimal policy is characterized by two switching curves SO1_,9
and SOy_,1 which can be respectively described by two functions, § : x; — g(x1) and
T xo = T(wa).

Proposition 14.5. The optimal switching curves SO1_,5 and SOy_,1 are non-decreasing.

The above result are summarise in Figure 14.1 where we have plotted the optimal switch-
ing curves for our class Z of two-armed DMABP. In this figure, the increasing property
of the switching curves can be seen explicitly.
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X2A .
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engage project 2
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2 4 6 8 X1

Fig. 14.1. Optimal policy for the class Z of two-armed DMABP.

14.2 ® Explicit Derivation of the Switching Curves

As we consider Bandit problems with switching costs, the initial position of the Decision
Maker (DM) is necessary to compute the global discounted reward. We will therefore
include it, in the initial conditions and write them as:

(Xl(o)aXZ(O)a-[)

where I € {1,2} corresponds to the initial position of the DM. From the fact that
the optimal switching curve SO;_,2 is non-decreasing and the optimal policy involves
only a finite number of switchings, follows the existence of a value A;, such that for
any initial condition (X;(0) > Aj, X2(0),2) the optimal policy commands to engage
the project 2 forever. Similarly, it exists a value As, such that for any initial condition
(X1(0), X2(0) > A,,1), the optimal policy commands to engage the project 2 forever
(i.e. the optimal switching curves exhibit the qualitative shape sketched in Fig.14.2a).
We can compute these values as follows:

Starting with the initial condition (0o, As, 1), it is equivalent to either engage the project
1 forever, or to switch initially from project 1 to 2 and then engage it forever (i.e. the
initial conditions (0o, As, 1) is on the switching curve). Accordingly, we can write:

[/OOO e Phy (X1 () dt | X1(0) = oo} - _C+ UOOO e UKo (1)) df | Xa(0) = Ay

(14.2)
which determines A,. In equation (14.2), we used the notation [ - | X;(t) = z;] to indicate
that the project j is in state z; at time ¢. To simplify the exposition, we assume first
that both projects have identical dynamics and reward characteristics (i.e. we consider

symmetric DMABP). In this case, the strait line x = y is an axis of symmetry in the
Fig. 14.2a and hence A; = A,.

The non-decreasing property of the switching curves allows us to determine them recur-
sively. To see this, write
f : XQ - R
Ty f(d?z)
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14.2 ® Explicit Derivation of the Switching Curves

X,
A

Fig. 14.2. a) Typical shape of the optimal policy. b) The dashed lines are the optimal trajec-
tories for three different initial conditions A, B and C.

for the function which describes SO;_,5 and respectively

g X1—-R
x> g(a1)

for the function which describes SO_,1. Define the sequences of points (ug, u1,...) and
(vo,v1,...) as (see Fig. 14.3):

Ug = Al Vo = A27
up =g '(vo) vy = f 1 (uo)
uy =g *t(v1) vz =f""(w)

U, = g (vk—1) vk = fHug—1).

Remark: For symmetric two-armed DMABP g(x) = f~!(x).

Iteration 1), computation of SO,_,; in the interval [u;, A;]:

Assume that the DM is initially engaged on project 2, and that the initial positions are
up < Xl(O) =11 < A; and X2(0) = A,

(as in Fig. 14.3). Following the optimal policy, the DM switches only once, when the
state of the system reaches the position (X (t) = x1, X2(t) = Z2,2) (i.e. (x1,T=2) lies on
SOs_,1, see Fig. 14.3). Therefore the optimal reward for the initial condition (z1, As,2)
satisfies:
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14 Optimal Policy for a class of DMABP with Switching Costs.

A%

SOy, = g(x1)

Vo = AQ'

Vo }..
103 g .

SO1L2= f(w2)
o

uz Uz Ut uy = Ay X

Fig. 14.3. Optimal policy for an initial condition u1 < z1 < A;.

A%

E 5024)15 g<$1)

(z1,v1)

v = Az 1=\ (P
V1 -..'. - /
Vo §- A4 o '

us U Uy ug = A X

Fig. 14.4. Optimal policy for an initial condition us < z1 < u;.

7(Z2)
JO(r1,A2,2;%2) = [/ e Phy (X2 (1)) dt | X5(0) = Az | +
0

@
(14.3)

e F(@2) (—0 + [ / h e Pthy (X, (1)) dt | X,1(0) = xl} dt),

0

v

b)

where 7(Z2) is the smallest time at which the process X»(7(Z2)) = Z2 (i.e. X is on
S03-,1). The term a) describes the reward received by engaging the project 2 until time
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14.2 ® Explicit Derivation of the Switching Curves

7(Z2). The term b) describes the reward received when we switch from project 2 to project
1 at time 7(Z2) and then we engage project 1 forever.

By optimality, the value of Z» must satisfies:

0 _
O—@J0($17A2,2;£U2) = 0
For the symmetric DMABP, we directly get the switching curve SO;_,2 on the interval
[A1, 0] by symmetry. Now we can compute the position of the switching curve SO5_1
on the interval [us, u1] as follows:

Iteration 2), computation of SO,_,; in the interval [uq,u;]:

Assume that project 2 is initially engaged and that the initial positions are
ug < X1(0) =z <wup and X2(0) = ;.

Following the optimal policy, the DM will switch exactly twice, first in the interval [us, u1],
when the state of the system reaches the position (Xi(t) = w1, X2(t) = 72,2) and a
second times in the interval [A;, oo] when the state of the system reaches the position
(X1(t) = Z1,Xa(t) = Z2,1) (note that SO1,5 for z € [u1, A1] has been computed
previously, see Fig.14.4). Therefore the optimal reward for (z;,v1,2) is:

T1(i2)
JO(x1,v1,2;T2) = l/ e Pthy (X (1)) dt ‘ X2(0) = v | +
0

~ v
~~

a)

e_'B”(@)(—C-I- +

~

T2(Z1)
/0 e (X2(0)) dt | X1 (n () =

)

o= B(r1 (82)+72(21)) ( —C+ [/OOO e Bthy (X (1)) dt ‘ Xo (11 (Z2) + 12(71)) = m]) )

~

o

(14.4)
where 71 (Z2) is the smallest time at which the process X2 (71 (Z2)) is equal to Ty (i.e. X»
is on SO2_,1) and 72(Z;) is the smallest time at which the process X;(72(Z1)) is equal
to Zp (i.e. Xj is on SO1-,2). The term a) describes the reward received by engaging the
project 2 until time 71 (Z2). The term b) describes the reward received when we switch
from project 2 to project 1 at time 71 (Z2) and then we engage it until time 75(Z1). The
term ¢) describes the reward received when we switch from project 1 to project 2 at time
T2(Z1) and then we engage it forever.

Here again by definition of the switching curve, the value of Z, must satisfies:

0 _
8—552J0(x1’v1’ 2, 372) =0.
The switching curve SO;1_,5 on the interval [ui, A1] is again given by symmetry. Itera-
tively, we clearly can compute the complete curve SO; .

Remark: For non-symmetric two-armed DMABP, the above procedure can be general-

ized straightforwardly. Indeed, the symmetry assumption is not required to iterate the
construction of SOy_,1.
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14 Optimal Policy for a class of DMABP with Switching Costs.

14.3 ® Explicitly Solved Example - Deteriorating and
Deterministic MABP

Fig. 14.5. Shape of the reward of class D of MABP.

To illustrate our method, let us compute explicitly the recursion for the following deter-
ministic two-armed symmetric DMABP :

Counsider the deterministic class of two-armed Bandit problems for which the dynamics
X (t) of project j € {1,2} and its reward h;(z1) read respectively as follows (see Figure
14.5):

dX;

— =0 i X0 = (14.5)

and
hj(z) =T (1+e™ %), (14.6)

where «,0; € Ry and I' € R. This class of two-armed DMABP will be called as class
D in the following. Note that h;(X;(t1)) < h;(X;(t2)), V t2 > t1, so that, the class D
belongs to the class of DMABP (see Lemma 5.3).

For a Bandit in class D, equation (14.2) reduces to:
/ e P+ e it )gr = _C 4 / e Pt (1 + e al=2t+42)) gy
0 0

from which we obtain:

PR R

The equation (14.3) reduces to:
JO(:L‘l, A2, 2, :f‘g) =
fo‘r(iz) efﬁtl—v(l + efa(ﬁzt—ﬁ—Ag))dt 4 g B7(@2) (_C + fooo efﬁtl"(]_ + e*a(glﬁ‘xl))dt) ,
with

:EQ—AQ
6,

7(Z2) =

equation (14.4) reduces to:
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JO(xl,U1,2,f2) = fO

e—5mi(z2) ( L O [ P14 a0t gy

e B(ri(2)+72(21)) (—C + fooo e P+ e*a(92t+i2))dt) ) ,

with B
T2 — U1

02

Tl(:f‘g) = and T2(:f‘1) =

61

7T Bt (] 4 emallatto)) gy

Tl — 1

These equations are transcendant for general values of «, 3,6;, ¢ = 1,2. When a = =

01, = 0> = 1, explicit solutions can however be found and read:

20
Al—A2:—1n|:T:|,
up =v; = —1 @

1 =01 = n T
u_v__ln[i]
P 70— /330

fe-mm|o_C

L Al

Hence the switching curves for positive initial conditions (X;(0), X2(0)) € Ry x Ry are:

(o0 if @1 > A,
- C .
—ln[e2 _F] if up <aqp < Ay,
SO2—>1 =
1 2 —e™10)2
el (2042e®1C44/12 4141 Ce™1 + Q221

and
—In [2 (6_w1 + %)] if I Z Al,
801_,2 = - 11'1 |:2F+2C€ 1;F61;12+16F06 1] lf (5% S I < Al.

The above results are drawn in Fig. 14.1.
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15

® Explicit Expression for the GIH Indices -
Deteriorating and Deterministic Two-Armed MABP

For the class D of DMABP given by equations (14.5) and (14.6), the optimal stopping
time 7* for problem P; when the DM is initially engaged on project 7 reads as:

0 ify>I'(1+e %*)+Cp

* zoatln[— LEEB=

rr= g omet PR S p o<y <T(te ) op . (150)
o0 ity<I'+Cp

To compute the switching index vs;(X;(0)) we solve equation (12.17) with the stopping
time of the optimal policy 7* given by equation (15.1) and with the identification:

v = vs;(X;(0)).

This equation is generally transcendant. For the special case a = f =6, =0, =1, a
closed form solution exists and reads as:

vsi(zo) =I(1+e ™) +C—2VTCe 7, (15.2)
Using this expression, we can explicitly characterize the switching curve resulting from
the GIH of our symmetric two-armed DMABP. Indeed, we have:

S152 = {($1,$2) €R? | vey(z) = 1/82(332)} =

2 -3 ¢
S = {(1‘1,1‘2) e R | o = —2In |:€ 2 4 \/ﬁ:| } (153)
and
So_1 = {(ml,mz) eR | vey(zy) = I/S]_(CUQ)} =
T9 = —2In [e_%l - %C] if 11 < —2In [@]
So_1 = (xl,l‘g) S R? (154)
400 otherwise

In Fig. 15.1 we plot simultaneously the optimal hysteretic policy given by equations
(14.7) and (14.8) and the GIH given by equations (15.3) and (15.4). This picture clearly
shows that the optimal policy has a wider hysteretic gap. This behaviour is in agreement
with the result expressed by Lemma 2.7 in [2] (see also Lemma 12.13 above).

Remarks:

e The claim and its demonstration can be generalized for DMABP when the dynamics
of the project is given by random walks with no downward jumps (see [26] for the
details).
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A X2

Optimal Policy
6 \

Gittins heuristic

2 4 6 8 X1

Fig. 15.1. Optimal policy and the GIH for the parameter values: « = 8 =60, =1, I' = 2,
C=0.1.

e The sub-optimality of the GIH can be observed by the explicit computation of the dis-
counted reward obtained under a special initial condition. For example, choose I" = 2,
C=11,a=p =46, =60, =1, and the initial conditions (X;(0) = 0; X»(0) = 0;1).
With these values, the GIH commands to engage project 1 until the system reaches
the position (—2Iln [1 - \/%] ,0), then to switch to project 2 and engage it forever.

This scheduling yields a global reward of 2,988. Instead, the optimal policy commands
to engage project 1 forever and yields a global reward of 3.

e For large values of 3, the reward gained in the near future is dominant. Hence, when g
is large enough, the reward realized after the first switching tends to be negligible and
the GIH is expected to bring results closer to the optimal one. We observe this fact
for the class of symmetric Bandits given by equation (14.6) by computing numerically
the value A; = A; and comparing it with the optimal one. Both values converge as
B increases. A numerical example is given in the following table where we compute
Ag for C =0.1,0; =a =1, ' =2 and for three different values of 3

B |As GIH| A5 optimal
1| 2.996 2.302
5| 1.386 1.203
10| 0.571 0.597
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Summary

We have seen in this part that the introduction of switching penalties in sequential deci-
sion problems drastically complicates them. Indeed, although the optimal policy for the
MABP without switching penalties is known explicitly for the general cases, the intro-
duction of switching penalties in MABP preclude the possibility to derive it generically.
In particular, this optimal policy is no a naive extension of the Gittins index (see section
12.1 or [3]). Unfortunately, numerically solving the MABP with switching penalties is
hopeless as the problems are enormously time and space consuming. Trying to approach
the optimal policy by considering problems which do not take into account the switching
penalties, give catastrophic results as they allow chattering (i.e. switching from one type
of production to another arbitrarily often). However, as numerous optimization problems
possess switching costs and/or time delays, we propose in chapter 12 a simple heuristic
scheduling derived from a set of generalized priority indices. We show that our heuris-
tic is more natural than the one first introduced in a contribution of M. Asawa and D.
Teneketzis [2], in the sense that it follows directly from the Gittins index policy. More-
over, our heuristic gives, contrarily to the one of Asawa et al. the optimal policy for the
class of

e MABP with switching penalties defined by problem 75]- (see definition 12.3,

We then derive the optimal policy for the dynamic scheduling of a class of deterministic,
deteriorating, continuous time and continuous state two-armed Bandit problems with
switching costs. Due to the presence of switching costs, the scheduling policy exhibits
an hysteretic character. We show that in presence of switching penalties, our heuristic
also exhibits a hysteretic behaviour and reproduces the result already derived by Banks
et al. [3] or Asawa et al. [2] for the switching costs problem. Finally, using this exactly
solvable class of models, we are able to explicitly observe the performance of the proposed
heuristic. It is observed that, on the studied example, the GIH yields result which are
close to the optimal one. In particular the global shape of the optimal switching curves
are given by the GIH.
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Part IV

Dynamic Scheduling of a Flexible Machine.






17

Multi-Items Production Facility Operating on a
Make-to-stock Basis

Introduction

In the present part, we explore the scheduling rules and the hedging levels that can be
obtained by using a Restless Bandit Problem formulation of a make-to-stock production.
In order to allow an analytical study we consider a special configuration of the produc-
tion line where a single machine is able to manufacture N-types of items but only one
at a time. This model is defined in section 17.1 and is translated to the Restless Bandit
formalism in section 17.2. In order to be able to directly apply the result obtained in the
previous part, the holding and backorder costs are supposed to be piecewise linear, and
the stochastic processes describing the production and the demand flows are supposed
to be Markov chains in continuous time or Diffusion processes. The RBP affords to an-
alytically construct dynamic scheduling rules. These analytical results are compared in
section 17.3 with the numerically derived optimal policy, obtained for a server delivering
two types of items. It is observed that the Whittle relaxed version of the Restless Bandit
model yields nearly optimal dynamic scheduling rules.

17.1 Flexible Manufacturing System - Definition

Fig. 17.1. Multiclass, make-to-stock production system.

The dynamic scheduling of tasks in flexible manufacturing systems belongs to the class
of optimal decision problems. In its most general version, we are in presence of a flexible
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17 Multi-Items Production Facility Operating on a Make-to-stock Basis

workshop able to produce N different types of items, satisfying an external demand
subject to fluctuations. We normally suppose that the flexible workshops have a limited
capacity in the sense that they can produce only K < N items at the same time. In
order to serve the customers with the smallest delivery delays, the industrial approach
is usually to produce on a make-to-stock basis (i.e. they build stocks of finished goods).
Obviously there is a tradeoff between the storage costs and the costs incurred by late
service of the customers demands. Therefore, the characterizations of the optimal

i) hedging stock capacities
and the
ii) scheduling rules which select the type of items to produce at a given time,

is the core of the production problems. Clearly, a small hedging level risks to incur lost
sales penalties while a large one implies expensive storage costs.

This problem becomes even more complex when the switching between one type of pro-
duction to another generate additional costs (the need of an additional workforce for
example) and switching time delays (a cleaning operation for example). The general
problem of a flexible machine having switching penalties was too general to be treated
as part of this thesis but it is the natural continuation of this work. In the following,
we shall therefore focus our attention to problems for which the set-up costs and/or
time delays are negligible. Let us now give a precise definition of the flexible machine
problem in order to answer both questions i) and ii) above.

The problem of a multiclass, make-to-stock production system subject to breakdowns and
repairs is composed of a machine able to produce N different types of items. Finished
items are stored in N different respective finished good inventories (FGI) (see Figure
17.1). We write

X(t) = (X1(t),...,X;@),..., Xn(t) € 2V c RY (17.1)

to describe the net inventory process characterizing the inventory levels in the FGI’s at
time ¢. Let us denote by 0 < d; < oo the capacity of the stock of item of type j. We then
have:

2N = [—00,di[x --- x [~00,dy[C RY

The negative values of X;(¢) describe the presence of backorders (i.e. demands that
cannot be immediately satisfied). Let us assume that we can schedule the production
facility by using a “bang-bang” type control variable

a(t) = (ur(t),...,un(t)) ; u;(t) € {0,1}

where u;(t) = 1 means that the production of the items of type j is engaged and u;(t) =0
means that no item of type j is produced. Note that u;(t) = 1 only implies that the pro-
duction of the items of type j is engaged but it does not imply that the machine is
actually producing an item of type j, indeed the machine can be either broken down or
the stock can be filled up so the machine is blocked.

Both the instantaneous controlled production rate P(t) and demand rate D(t) are sup-
posed to be independent, stationary Markovian random vector-processes. We shall re-
spectively write: .

P(t) = (Py(t), ..., Pj(t),...,Pn(1)) (17.2)

and

D(t) = (Di(t), ..., Dj(t),...,Dn(t)). (17.3)
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17.1 Flexible Manufacturing System - Definition

The P;(t) are independent random processes which model the controlled production rates
for the items of type j and the D;(t) are independent random processes which model the
demands for the items of type j. Moreover, the processes P;(t) satisfy the constraints:

where C;(t) € {0,c¢;} denote the stochastic nature of the production capacity of the
(failure-prone) machine. Here we assume C;(t) to be alternating Markov renewal pro-
cesses (i.e. two-states Markov processes). For an item of type j, the value C;(t) = ¢; is
its maximal instantaneous production rate and C;(t) = O represents the failure state of
the machine (see Figure 17.2).

Y

Fig. 17.2. Problem P;.

We impose the following condition on the controlled production process P(t):

a) The production facility has a limited capacity. Accordingly, it can engage at each
time the production of a single item (i.e. at each time ¢ € R™, at most one of the N
controls u;(t) is equal to one).

b) The machine must complete the production of the item currently in process before

starting a new one. For a single server with a capacity limited to one type, this as-
sumption is natural.

To pilot the production, we introduce a scheduling policy 7, which is a mapping;:

T OV = {01}V
X(t) — a).

The function (t) defines which type of item the machine is manufacturing at time ¢.
Definition 17.1 (Admissible policy). A policy w(t) is admissible if it depends only

on the present state of the random net inventory process X(t)
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17 Multi-Items Production Facility Operating on a Make-to-stock Basis

In the sequel, we shall only consider admissible policies for which P(t) and @(t) fulfill
both conditions a) and b) above. The set of admissible policies will be called as U.

Given a policy w € U, let us denote the cumulative production up to time ¢ by

Bo(t) = /0 ey

and the cumulative demand up to time ¢ by
— ¢ —
Bt) = / Bt) dt.
0

In terms of Py (t) and D(t), the net inventory process can therefore be expressed as:

— —

X(t) =Pi(t) - D), (17.4)

with the initial condition
X(0) =@ € 2N,

—

Let us further introduce the instantaneous running costs h(X(t), @(t)) depending on the
global state of the net inventory X (¢) and the production engagement (t):

h: QN x{0,1}¥ — RV

(X)) = hX(@), @) = (b (@1), ..., i (@n)),

where §; = a (active) when the production of the j-type items is engaged (i.e. u;(t) = 1)
for a stock level X;(t) = x; and 0; = p (passive) when the production is switched off
(i.e. u;(t) = 0). In the following, the instantaneous cost will be the storage cost and cost
incurred by late delivery to a customer. The storage cost of item of type j only depends
on the quantity of finished goods present in the stock X; and not on the production
engagement u;(t) of the flexible machine. It is reasonable to assume that the storage cost
is linear with respect to the number of finished goods present in the stocks. Similarity,
the cost incurred by late delivery only depends on the number of customers waiting to
be served and not on the production engagement. It is also reasonable to assume that
this cost is linear with respect to the number of customers waiting. Nevertheless, the cost
incurred by late delivery is generally greater than the cost incurred by storage. Hence,
we will assume that
hj(x) = Wl (z) =: hj(x)

where h;(z) is a piecewise linear function.

Assuming an infinite time horizon, we define for an initial condition #y the total dis-
counted production cost J™(#y) under policy 7 by:

J™(Zo) = EX, /0 - e Pth(X (1), @(t)) dt, (17.5)

with EZ ~ denoting the expectation operator, conditioned on #o and where et with
B > 0 is a discounting factor. This discounting factor can be understood as the running
interest on the stocked raw material and finished goods, plus the running interest on the
location of the production facility (the machines, the rooms...). Clearly, the integral in
equation (17.5) does not exist for arbitrary cost functions h(Z,@). In the following, we
assume that h(#, ) satisfies the required regularity conditions, to insure that equation

(17.5) exists V m € U and for all initial conditions.
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17.1 Flexible Manufacturing System - Definition

The optimal control problem is to determine the optimal policy 7* minimizing the total
production cost given in equation (17.5). The value of the production cost under the
optimal policy 7n* will be written as:
J*(Zo) := J™ (%) = inf J™ ().

TeU
In absence of setup penalties, we will see that the formalization given by the Restless
Bandit Problem (RBP) is relevant to model the scheduling of flexible production systems.
Finding the optimal scheduling rule for a flexible production then essentially amounts to
finding the optimal policy for the RBP. In chapter 8, we have seen that using the Bandit
formalization enables us to approximately decouple the original N-armed RBP into N
single-item make-to-stock production processes [50]:

Xj(t):Pj(t)_Dj(t)7 J=1...,N, (176)

for which the scheduling policy is much easier to determine. In fact, the decoupling into
single production processes enables us to construct Priority Indices v;(z;) used to con-
struct a reliable heuristic based on the “Priority Index Policy”.

Remark: For the scheduling production problem, we will introduce an index vy41(z)
taking into account the fact that the machine can stay idle. In the following, we will call
this index “the idle index”. When this idle index is smaller than all the other indices, the
machine does not produce any item.

Remember that priority index policies give optimal rules for the Multi Armed Bandit
Problem (MABP), characterized by the fact that if not engaged, the projects remain
“frozen” (i.e X;(t) = X;(t + dt)) and no cost is incurred (i.e. k% (z) = 0). This former
assumption is however not fulfilled for the multi-class production systems we are deal-
ing with. Indeed, even unserved the demands continue to increases and hence the global
state of the system is in permanent evolution (i.e. the net inventory of an item not cur-
rently produced evolves with time). In this case, the scheduling of a flexible production
naturally belongs to the class of the RBP. For the general N-item scheduling problem,
similar decoupling approximation methods form the core of several recent contributions
where priority index policies are shown to provide suboptimal, but efficient, scheduling
rules ([15], [1], [35]). In particular, in [35], the authors use, as in the present section,
the RBP to describe an heuristic scheduling rule for a multiclass, make-to-stock M /M /1
queuing system. The Whittle index for the case where the machine operates with lost
sales and under the time average cost criterion (i.e. § = 0), is explicitly computed. Our
contribution, published in [12], is complementary as we explicitly compute the Whittle
index for machines working with backorder and under the discounted cost criterion
(i.e. B> 0).
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17.2 ® Dynamic Scheduling of Multiclass Make-to-Stock
Production.

The make-to-stock problem can be naturally formulated as a multi-armed RBP (defined
in part IT) with N + 1 projects as follows:

e Identify the positions of the N net inventories X;(¢), j = 1,2,... N, with the first N
projects of the RBP.

o Take the active and the passive cost functions identical for each item (i.e. hf(z) =
W (@) = hy(a)).

e Add an extra project Xn.1(t), called the idle project, with “frozen” dynamics given
by:
Xnpa(t) =€, teRY
i.e. the idle project take a constant value ¢ and engaging the idle project models the
decision to be idle.

e Impose the idle project to incur no cost (i.e. hyyi(z) =0).

Fig. 17.3. Piecewise linear costs function.

In order to be able to perform explicit computation, we assume the cost functions h;(z)
to have a piecewise linear form (see Figure 17.3):

hj(x) = Ajat + Bja~, j=1,2,...N, (17.7)
where T = max(z,0); ¢~ = max(—=,0) and 4;, B; > 0.

By construction, the index of the idle project is vyt1(x.) = 0. Therefore, following the
Whittle heuristic, the machine is left idle (i.e. does not produce any item) when all indices
are positive (i.e. vj(z;) > 0,j =1,...,N). Moreover, as all indices are strictly increasing,
the positions d; € R such that v;(d;) = 0 correspond to the levels of the hedging stocks
for the items of type j.

17.2.1 ® Markovian Queue Dynamics
Assume that the net inventory process given by equation (17.4) is described by a con-

tinuous-time discrete state Markov chain with parameters A\; and p;. The resulting make-
to-stock problem is identical to the one studied in [22]. Note also that the contribution [35]
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17.2 ® Dynamic Scheduling of Multiclass Make-to-Stock Production.

discusses a similar problem, but the optimization is done under the average cost criterion.

Following [35], we apply the standard uniformization argument given in [30] and the
Dynamic Programming equation (8.4) becomes:

N
* (v 1 % * (v * (v - . * (v
J(X) = 117 {h(X) + ;)\]J (X —ej) + pJ*(X) + min {O,mjln (ujﬁjJ (X)) }-I )

(17.8)
with 8;J*(X) = J*(X +e;) — J*(X) and e; is the unit vector with the j-th component
equal to unity,

N
p=max{u;} and A=p+ Z/\i'
/ i=1
As stated in [35], the form of equation (17.8) suggests that the optimal policy can be
described with switching curves and hedging stocks (this is indeed proven in [22]). As
the priority index policies lead to a similar structure, the Whittle relaxation method is
suitable to discuss the production problems. Note that strictly speaking, the Priority
Index Policy cannot be used directly to construct a heuristic from the Whittle index in
general. Indeed, in the flexible manufacturing problem, the machine has to complete the
currently engaged item before starting a new one. On the other hand, the policy resulting
from the Whittle relaxation is based on indices defined on R. Therefore, a direct use of
the multi-armed RBP requires a change in the production before completing the engaged
item. To overcome this difficulty and then allow the use of the RBP in this production
context, we will suitably renormalize the service time in order to approximately take into
account the time necessary to complete engaged items. The renormalization process is
achieved by imposing:

_ 1
i = g = pipg + (P = pj) T 7t (L= p)uj, (17.9)
i
N
)\.
pi==L p=> p
e i=1

In writing equation (17.9) we have used the fact that when the production priority
(derived from the Whittle heuristic) is to engage the type j production, three alternatives
may occur, namely:

a) The server is already engaged on the type j products and the average service time is
1

'LL_]"
b) The server is engaged on a production of type k # j and the average service time is
% + Ty where T}, is the average time needed to finish the production of the type k
J

item. We denote by 7' the average of the 7.

c) The server is idle and, as we consider only problems without switching time, the av-

erage service time is ;%
J

For infinite time horizon, fi; is therefore a weighted average taking into account the
relative contributions of a), b) and c). The respective weights are determined as follows:

i) The average sojourn time in situation a) is proportional to the partial traffic p; = 2—;
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17 Multi-Items Production Facility Operating on a Make-to-stock Basis

ii) The average sojourn time in situation b) is proportional to the global traffic, minus
the partial traffic of the k-type items: (p — pg).

iii) The average sojourn time in situation c¢) is proportional to the percentage of idle
time: (1 — p).

Note that the value of T is bounded:

1
0<T < max (—):

1
Jefl Ny \ 1y I

Remark: The renormalization procedure given by equation (17.9) is not necessary when
the ratio % is large. Indeed, in this case, the characteristic discount time % being much
smaller than the characteristic switching time delays L (i.e. £ << 1), the costs incurred
after the first few decisions tend to be negligible. Hence the global cost differences in-
duced by changing before or after the completion time will be negligible when % >> 1.

Let us now apply the Whittle relaxation and hence focus on a single item problem, say
item j. Then the y-penalty given by problem (8.3) reads as:

1

J(z,y) =

From now on, we suppress the index j as the computation involves only a single item.
To make headway, we assume the indexability property to hold. Following the method
of section 8.1.3, equation (8.4) reads as:

Bla(x,7) = h(z) + Ao(z = 1,7) + plo(z + 1,7) = A+ p) Ja(,7)

(17.11)
Bp(,7) = M) + Ap(z = 1,7) = Ap(z,7) + 7
which is a special case of the system given in equation (8.16) with u, = 0.
From section 8.1.3, we have:
Jﬂ(aj?’)/) = C;—(w+)z + Ct;(w*)w + Sﬂ(x7’y) (1712)
Jp(xa'Y) = CP(wU)w + Sp(m77)>
with CF, C7, C, being integration constants,
_ B+ (BHA+p)2—4Mn
= o ,
A1) =/ (BHA+p)2—4N .
W — (f 1) ;L; 1) " (17.13)
Wo = X435

and Sy(x,7), Sp(z,7) are the relevant particular solutions. Explicit computations are
given in Appendix C, where we find:

Sulery) = ;{hwmw_)ﬁ S AR wo) ™ 4 (w3 h(k)(w+>—k},

N(w+ - U},) j=—00 j=xz+1

x w _k
Sy, ) = (we)*+! Z (h(k)+z)( 0) |

j=—oc0

110



17.2 ® Dynamic Scheduling of Multiclass Make-to-Stock Production.

Using the fact that 0 < w- < wp < 1 < wy and the asymptotic behaviour of the
solutions, we have:

lim Jo(z,7) = lim S,(z,7) = C, =0.

T—r—00 Tr—>—00

As before, v(z) is computed with the smooth-fit principle expressed in equation (8.8).
For the piecewise linear cost function h(x) given by equation (17.7), the corresponding
index, derived in Appendix D, reads (see Figure 17.4):

Au—u<A+§?><w_>”“ if >0
v(z) = (17.14)
—=£ if z <O0.

Fig. 17.4. Typical shape of the index for Markovian queue dynamics.

Remarks:

e Observe that with our choice of h(x) the index v(z) is monotonically increasing. This
is a necessary property for indexability ([36] and [37]). Hence the Whittle heuristic
for the single item problem coincides with a hedging stock policy (i-e. produce only
when the stock level is below the hedging stock), with a hedging level d* defined as:

v(d*) = 0. (17.15)

The hedging stock policy is known to be optimal for a single-item production [35]
and [6]. Solving equation (17.15) with equation (17.14), we find:

d* = max {0, [m (MLB) 1n(11u,) - 1} } (17.16)

where [2] = n with n € Z is the smallest integer value larger than z. Despite to
the fact that the extended smooth-fit principle (see equation (8.8)) used to derive
equation (17.15) does not yield the optimal solution in general, here it does. Indeed,
the optimal hedging level d* can be derived by using an alternative approach explained
in [20]. This computation performed in Appendix B yields:

oo (25 s arn)

where |©| = n with n € Z is the largest integer value smaller than z. Clearly both
hedging stocks equations (17.16) and (17.17) are identical.
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17 Multi-Items Production Facility Operating on a Make-to-stock Basis

Asymptotic regimes: In the limit 8 — 0, we have that w_ — p := % and therefore:

= oo | (125 |

This is the optimal hedging point for the single-item problem under the average cost
criterion, derived in [35]. Moreover, when 8 — 0 and p — 1 (heavy traffic limit), the
optimal hedging stock tends to infinity (i.e. d* — 00). Such a limiting behaviour also
follows from equation (3.7) of [14], when ¢ — 0 and v — 0.

For a multi-item problem, the Priority Index Policy solves the scheduling production
problem only sub-optimally in general. This will be explicitly seen in the numerical
simulation exposed in section 17.3.

As it is emphasized in [35], the index equation (17.14) does not exist in the limit
B8 — 0 (i.e. v(x) = —00). On the contrary, for 8 > 0, the scheduling policy does
not need to serve a fixed time-average number of classes. Accordingly, for the relaxed
version of the RBP, priority indices exist when § > 0.

When z < 0, the Restless priority index directly reduces to the Bu policy. This is
consistent with the scheduling rule proposed in Wein [48] and in Ha [22]. Moreover,
the asymptotic behaviour:

% when = — +00,
v(z) = (17.18)
773“ when z <0,

exhibits the structure of the well-known Ap/Bp policy (see definition 17.4 below for
a more detailed discussion devoted to this policy).

When the indexability property is fulfilled, the make-to-stock single item production
problem is optimally solved by the Whittle relaxation. This can be proved as follows:

Consider the two-armed RBP formulation of the single item production problem and
remember that the idle project does not incur cost. This two-armed RBP is equivalent
to the y-penalized problem (17.10) with v = 0. The optimal policy for this problem
is to engage the production in all states « € Z for which v(z) < v = 0. As the idle
index is vn41(x) = 0, the optimal policy for the v = 0-penalized problem is therefore
equivalent to engaging the project with the smallest priority index. Hence the Whittle
relaxation indeed solves the single item production problem optimally.

In [23], Dallery et al. consider the problem of minimizing the storage and backorder
costs incurred by a flexible production facility having the following property:

— There is a few type of items, written by A, for which the demand is comparatively
large.

— There is a large number of type of items, written B for which the demand is re-
duced.

— The storage and backorder cost are piecewise linear.

— The net inventory process is described by a continuous-time discrete state Markov
chain.
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17.2 ® Dynamic Scheduling of Multiclass Make-to-Stock Production.

Dallery et al. show that among other, a very efficient policy is to build finished goods
inventories for the items in A and produce on a make-to-order base for the items in
B (ie. d; > 0 for j € A and d; = 0 for j € B). Moreover, the demands for items in
B are fulfilled with priority (i.e. the production of items in A is stop when demands
for a item in B arrive).

Applying the RBP to this problem restitutes precisely the policy derived in [23].
Indeed, computing the hedging level d;, j € A given by equation (17.16), gives d;j > 0
and computing di, k € B gives dr = 0. Moreover, the value vi(x) for & < 0 and
k € B (ie. vg(x) = —Bg“) is smaller than v;(z) for # < 0 and j € A. Hence when a
demand for B arrives, the Priority Index Policy command to stop the production of
A and start the production of B.

17.2.2 ® Comparison of the RBP Heuristic with the Optimal Policy
Derived by de Véricourt, Karaesman and Dallery

In [15] the authors consider a two-items make-to-stock single machine with Poisson pro-
cess dynamics for the production time and the inter-arrival demand time. They derive
numerically the optimal dynamic scheduling minimizing the average inventory and back-
order cost under the time average criterion (i.e. 8 = 0). As noted before, the use of
RBP in the limit 8 — 0 requires the use of the renormalisation given by equation (17.9).
Hence, after renormalization we compare in Figure 17.5 the optimal result derived in
[15] with the RBP heuristic. We draw two different representative configurations of their
problem which data are displayed in Table I. Observe that the global structure of the
scheduling policy is given by the RBP. Remark that this structure will not follow from the
use of a simple (myopic) hu/bp policy. In particular, the fact that B > 0 (in Figure 17.5)
and the linearly growing behaviour of the switching curve cannot follow from the hu /by
rule. Note finally that the use of the Whittle relaxation leads to an underestimation of
the hedging levels. This reflects the fact that the decoupling between the projects which
follows from the Whittle relaxation is only approximative. A probable explication of this
underestimation may be the following. By decoupling the original problem, we indeed do
not fully take into account the limited capacity of the production facility. Indeed, when
delivering a specific type of items, the server has a very high capacity compared with the
demand rate. hence low hedging levels will optimally be required. The renormalization
procedure given by equation (17.9) does only partly correct this effect.

Case )\1 )\2 M1 M2 Al A2 Bl 32
1 04041 1 1 1 5025
2 04041 1 1 1505

Table I

17.2.3 ® Diffusive Dynamics

Let us finally consider the case where we model the demand respectively the production
by diffusive processes following the stochastic differential equations:

de(Uj(t),t) = Uj(t) [Ujdt + O'jJDde,P(t)] ,J=12...N (17.19)

respectively
dD;(t) = V;dt + 0, pdW, p(t), j =1,2,...N, (17.20)

where dW; p(t) and dW; p(t) are independent White Gaussian Noise processes, ¢; and
V; are the drifts and o; p and o; p are the variances of the diffusion processes.
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17 Multi-Items Production Facility Operating on a Make-to-stock Basis

7 dlr?] i (87 7) |-
~— '

dl;?,BP = (57 4) I

Fig. 17.5. Optimal switching curve derived in [15] (dashed line) and RBP heuristic (plain line).

Using equation (17.19) and equation (17.20), it is straightforward to write the time
evolution of the net inventory X;(t) given by equation (17.4) as:

dX;(t) = Uju;(t) = Vj) dt + o (u;(t))dW; (1), (17.21)
where dW;(t) are standard independent WGN’s for j = 1,2... N, and the controlled

variances o;(u;(t)) read:

o2 (u(t)) = (0j,0)* + (u(t)ojp)®, j=1,2...N. (17.22)
Assume again that the running cost is piecewise linear, as in equation (17.7). Then for the
Whittle relaxation problem, the value of the index v;(x;) follows from equation (8.14),
provided that the following relations hold:

Ué,j = Uf(u(t) =1)=o0jp+0jp,
Uf),j = Uj(u(t) =0)= 0'57D

To further simplify the analysis, we will assume that only the demand process ﬁ(t) fluc-
tuates. Hence, we take o, ; = 0, ; = 0. In this case, we can establish:

vi(z)

e
/ o

Fig. 17.6. Typical shape of the index for diffusive dynamics.
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17.2 ® Dynamic Scheduling of Multiclass Make-to-Stock Production.

Lemma 17.2. The indez is monotonically increasing for every positive convez function
hj(x) satisfying (see Figure 17.6):

/ e Bt (R (8)dt < oo,
0

Proof: With the above assumptions, the index equation (8.14) simplifies and reads as
(we drop the index j):

V(x):lC/OOOe_y {h<x+u§/—+) —h(x—j—;ﬂdy,

with

Hence: J y J
- Yy Yy
— = Y1—h — ) ——hlz——]|dy.
dxl/(m) }C/O ¢ [dx (a: * w;) dz <a: w?,')] Y

This last expression is positive as the reward cost function is supposed to be convex

(L h(z) is increasing). Then the index v;(z) is monotonically increasing .
a

Remark: The monotonously increasing nature of v(z) is a necessary condition for in-
dexability (see [36] and [37]).

Lemma 17.3. When B > A, the hedging stock level d* is given by

d* =
2 Ha + pp — \/ 13 + 2802 + ([ p3 + 2B0?
max < 0; 7 In [(A+B) z ! -|
fia + /12 + 2802 |_ A 2(a + 11p) J
(17.23)

Proof: For the cost function equation (17.7), the index can be explicitly written as:

If z is positive:

v(z) =

1 (Ma+\/#§+2ﬂv2)w i : ‘ -
— <2A (o + pp)+e = (A+B) [—ua+\/ué +2B0% —pp— /12 + Zﬂaz} > .

232
(17.24)
If z is strictly negative:

v(z) =

5 <—2B (Ha + pp)+e o2 (A+B) {+ua+\/ug + 2802 +pp—/ 12 + 2&;2])

20

(17.25)
Now when B > A, solving v(z) = 0 with v(z) given by equation (17.24), gives the
required formula.

O
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Remarks:

When B = 0 and A > 0, the logarithm of the expression for d* given in equation
(17.23) is smaller than the unity and we consistently conclude that the optimal hedg-
ing is located at 0 (i.e.“just-in-time” production-rule).

In [14], Krichagina et al. derive for a regulated Brownian Motion a hedging level of
the form

02

= n
Pa + /15 + 2807

A+ B

d A

(17.26)

Clearly equation (17.26) and equation (17.23) are identical up to the curly bracket
factor present in equation (17.23). The difference can be traced back to the fact that
in [14] a regulated Brownian Motion is assumed while here a “bang-bang” control is
considered. These different control rules modify the local time of the process on the
hedging level and hence the hedging point. In addition, note that for the limiting case
B — 0, equation (17.26) reduces to

0.2

& =—1
20, .

A+ B
A

: (17.27)

which is the result derived by Wein [48]. This limit behaviour is expected as Wein
studies an essentially similar situation to the one described in [14]. Indeed, Wein con-
siders the scheduling under the average cost criterion (8 = 0) of a multi-items facility
with Markovian dynamics by using a diffusive limit.

In the 8 — 0 limit, our hedging stock equation (17.23) reduces to
A+ B oy
A Ha + tp

The difference between equation (17.27) and equation (17.28) originates again from
the different control rules on the hedging level.

2
& =2"1In
2pq

, Heeqn ol (17.28)
Hp

Note that in the limiting case A = B and pq = pp, we immediately deduce that
d* = 0 from both equations (17.28) and (17.23). This is in perfect agreement with
intuition, as for this symmetric case with a bang-bang control process it will clearly
never be optimal to build a stock. This behaviour validates the hedging levels given
by equations (17.28) and (17.23).

As in section 17.2.1, if B # 0 and for a vanishing discounting factor 8 — 0, the index
v(z) does not exist (i.e. tends to —00).

Observe from equations (17.24) and (17.25) that we have the asymptotic behaviour:

B’%(ua-kup)zﬁ’%u when z — oo
v(z) = (17.29)
_B—f(ua + pp) = _B—];U when z — —o0,

which again corresponds to an AU /BU (definition 17.4) type scheduling policy.

17.3 ® Numerical Experiments

In this section the Restless Bandit heuristic will be compared with the optimal policy
computed by Ha [22] for the two-items flexible facility problem. In a second group of
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17.3 & Numerical Experiments

experiments, we study the case where the machine can produce more than two different
items. The discussion will be based on a comparison between the RBP and other classical
heuristic policies which we shall briefly recall. In our simulations, the production rates
are all equal (ie. pj = p, j =1,...,N), the discounting factor is § = 0.01, and the net
inventory is empty initially.

17.3.1 Review of some Priority Rules for Make-to-Stock Productions

The three heuristics that will be compared are:

Definition 17.4 (The hju/bju Rule). Let b; be the cost rate for backorder type j
items, h; the storage cost rate for type j items and p; the production rate of type j
items. Then, the h;u/bju reads as follows:

a) If demands are backordered: Produce the item with the largest bju; among all
products for which backorder exists.

b) If no demands are backordered: Produce the item with the smallest hju; among
all products for witch the inventory levels are under their hedging stock d;.

Remark: The static hju/bjp heuristic is fully myopic in the sense that it directly mini-
mizes the instantaneous cost h(x).

Definition 17.5 (The Switching Rule). The switching rule is obtained by modifying
the hjp/bjp rule as follows:

a) If demands are backordered: Produce the item with the largest bjp; among all
products for which backorder exists (similar to the static hjp/bjp rule).

b) If no demand is backordered: Produce the item with the largest bju;(1 — x;/d})
value if positive or let the server be idle.

Remark: The quantity (1—x;/d}) can be interpreted as the proportion of unfilled stock.
The larger it is, the more probable the backordering of a product. This heuristic implies
the existence of a linear switching curve in the positive quadrant of the state space that
ends at the hedging point

-

d=(d,...,dy).

Definition 17.6 (The Priority Index Policy). The Priority Index Policy is based on
the RBP indices given by equation (17.14). For this heuristic, we apply the renormaliza-
tion procedure of p given by equation (17.9), with T = % Unlike the first two policies,
this third one is not myopic, as the priority indices take into account the potential cost
that can be generated in the future.

17.3.2 & Numerical Results

In our experimentation, we measure the total average discounted cost over 4000 sim-
ulation runs. The horizon H is chosen to be large enough to guarantee the results to
be invariant on H (the presence of the discounting factor makes this possible). For the
hp/bp policy and for the switching rule, we have chosen the hedging stocks which mini-
mize the total discounted cost. To find the hedging stocks for a machine able to produce
N types of items, we have used of a N-dimensional search around the optimal hedging
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17 Multi-Items Production Facility Operating on a Make-to-stock Basis

stock, known for a single item problem.
Experiment 1):

The number of item types is: N = 2

The demand rates are: A\; = 0.4; Ay = 0.5

The production rate is: p =1

The costs are: By =30; B, =40; A1 =1; A, =1

With 8 = 0.01, the optimal policy has been derived numerically in [22]. It is given by
a switching curve and a hedging point d* as follows: When z < 0, the optimal policy
commands to engage the item having the largest B;u;. When o > 0, the switching curve
is almost equal to the straight line y = z 4+ 1 and ends at the hedging levels d* = (9,11)
(i.e. the hedging stock is df =9 and d5 = 11).

Hedging|Cost |Percentage more
Ha (9,11) |7401 optimal
Restless | (5,8) [7437]0.5% > optimal
Switching| (4,7) |7639(3.2% > optimal
hufbp | (1,8) |7838]5.9% > optimal

Experiment 2):

The number of item types is: N =3

The demand rates are: \; = 0.3; j € {1, ..., 3}

The production rate is =1

The cost are By = 80; By = 90; B3 = 100; A1 =3; A =2; A3 =3

Hedging| Cost | Percentage more
Restless |(4, 4 ,4)|19706 Best

Switching| (4, 5,4) |20763| 5.3% > Restless
hp/bu | (0,1,8) |24672|25.2% > Restless

Experiment 3):

The number of item types is: N =4

The demand rates are: 1/A; = 4; 1/A; =4.1; 1/A3 =4.2; 1/ s = 4.3

The production rate is =1

The cost are By =40; B, =30; B3 =20; B, =10; A; =1,j€ {1, ..., 4}

Hedging |Cost | Percentage more
Restless | (2,3,3,3) [7745 Best

Switching|(2, 3, 3,4)|8366(10.4% > Restless
hp/bp |(1,1,3,3)|8983(18.6% > Restless

Remark: As noted in [22], we also find that, under the hu/bu policy, the optimal dis-
counted cost is realized for a strongly uneven distribution of the hedging stock levels (i.e.
the capacity of the stock are very different from one type of item to another).
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Summary

Using the relaxed version of the “Restless Bandit” problem, we are able to compute ex-
plicitly the generalized Gittins priority indices for several underlying stochastic processes
governing the dynamics of the arms. These explicit expressions are then used in the con-
text of production manufacturing to discuss the dynamic scheduling of jobs in a flexible
shop floor. A direct comparison with the optimal policy, known for the two products case,
shows that Restless priority indices yield a scheduling policy which is generally close to
the optimal one. In particular, if backorder exists, the priority index rule reduces to the
scheduling policy which command to produce the item with the largest bu (i.e. cost rate
for late delivery) among the backordered items. This is consistent with the scheduling
rules derived in Wein [48] and Ha [22]. In all simulation experiments performed, we ob-
serve that the Restless priority index rule is always better or at least equivalent to the
previously studied scheduling heuristics. In any case, the Restless Priority Index Policy
performs much better than any purely myopic policy.
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Part V

Conclusion of the Thesis and Perspective.






Conclusions

The solution of design and operation modes of complex production systems are often re-
quired (by industrialists) in very short time scales. While “rules of thumb” and experience
are both essential, the complexity of the issues do nevertheless incite production engi-
neers not to neglect the power of formal and simulation approaches. As a rule, simulation
models are largely favoured on the shop-floor level. This is due to their ability to directly
match the particularities of the installation under investigation. The very presence of
such abundant detailed features often precludes a basic, synthetic and conceptual under-
standing of the dynamics governing the production/consumption flows. We do however
feel confident that significant progresses in the optimization issues to be resolved can be
gained via the development of formal models (i.e. mathematical decision models). This
approach which is complementary to simulation is the one considered here. Clearly, our
work does not provide the shop-floor actors with ready to use answers to many of their
questions. Nevertheless it is hoped that for instance the concept of priority index,
due to its natural and intuitive meaning, will be of interest to decision makers. Hence,
such priority indices could be included in the management toolbox in the next future.

Our mathematical modeling belongs to the sequential decision problems known as the
Multi-Armed Bandit Problem (MABP). In this general framework the following models
are focussed on:

e the classical MABP (without switching cost)
e the Restless Bandit problem,

e the MABP with switching penalties.

In particular, the relevance of these three problems for the Flexible Manufacturing Sys-
tem (FMS) is studied. Our contribution can be summarize as follows:

e The form of the Gittins indices where the evolution of the MABP is given by a piece-
wise deterministic process which is intrinsically non-Markovian has been computed
explicitly. This is among the few classes of non-Markovian examples in the literature
for which the Gittins indices can be computed explicitly.

A study of the MABP is of interest because it can be optimally solved by the Priority
Index Policy. This simple policy is convincing to continue our work toward a general-
ization that would yield efficient solutions for more complex decision-making problems.
We therefore concentrated on RBP (a generalized form of MABP) for which an efficient
Priority Index heuristic called the “Whittle relaxation” already exists:

e RBP with several underlying random dynamics relevant for the production engineer-
ing context, (e.g. diffusion processes as well as birth and death processes) have been
studied. Explicit generalized priority indices were obtained and the resulting dynamic
scheduling was compared with exact results. Finally, using the RBP, we proposed a
sub-optimal heuristic solving the multi-items flexible make-to-stock production prob-
lem when switching penalties can be neglected.

While the FMS are well implanted almost any large manufacturing unit, the inherent
presence of setup costs in FMS to this day still foils the discovery of an optimal scheduling
policy. Looking through available literature we rapidly discovered that the contribution to
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decision making problems in presence of switching penalties remains mostly unexplored.
We therefore decided to focus the end of this thesis on MABP with switching penalties.
In particular we concentrated our efforts on the MABP with setup costs and/or time
delays:

e Significant progress has been made by constructing a new class for which the optimal
policy can be explicitly constructed by recursion. Using this optimal derivation, we
then proposed a heuristic, that approaches the optimal policy for general MABP with
switching penalties.
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Perspectives

The material presented in this thesis suggest two direction axis to be investigated:

a) RBP with switching penalties:

In parts IT and IV we assumed that the switching penalties can be neglected. Unfortu-
nately, the scheduling problems in presence of switching penalties occur in numerous
applications and especially in manufacturing systems. In particular, a complete defi-
nition of optimal scheduling for the FMS required to study the RBP with switching
penalties. It is then mandatory to construct an efficient heuristic which holds for de-
cision problems in presence of switching penalties. Hence a natural extension of the
thesis is to study the RBP with switching costs and/or time delays. In particular, one
will try to construct a generalization of the Priority Index Policy for the RBP with
switching penalties.

b) Projects dependent switching penalties:

In part III we supposed that the switching costs depend neither on the original project
nor on the project switched to. When the switching costs depend on both the original
project and the project switched to (i.e. Cj # Cy—y for some j # u or k # v) it
would be interesting to study the modification incurred in the optimal policy. We can
explore a possible simple generalization of the GIH taking into account this problem
as follows:

Define the average cost

1

N
i#
Ik 1

=

Then, for each project j derive its continuation index vc;(X;(to)) defined by equation
(12.7) and derive the N — 1 switching indices vs;—(X;(t0)), £ € {1,...,N}\ {sj}
define as:

Te—1
Ee, { > B hi(X;(t:)) — Crj — Cﬂtfw}
vsjk(X;(to)) = sup =0 —
TeU Ezj { ;) ﬂt,}

A generalization of the GIH would then be:

(18.1)

Definition 18.1 (GIH). Suppose that the DM is initially engaged on project j then
the generalized GIH reads:

“Engage project 7 as long as its continuation index is greater or equal than all the
switching indices:
Vsj_*k(Xj(tO))7 k€ {17 .. 7N} \ {.]}

As soon as the continuation index of project j falls below a switching index vsj_i(X;(to)),
switch to the project | # j having the greatest switching index vs;—(X;(to)) and en-
gage it immediately.”
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A

Optimality of the Priority Index Policy for the
MABP without switching penalties

Besides the original proof of the optimality of the priority index policy given by Gittins
himself in 1974 [19], several other elegant proofs have been written. Due to its simplicity,
we will present the proof given by Walrand [46].

Theorem A.1. The optimal policy for an N-armed Markov MABP in discrete time
(without switching penalties) is the “Priority Index Policy” (definition 4.1) with the in-
dex value defined by equation (4.3) (i.e. the Gittins index).

Proof: Without loss of generality, let us make the following assumptions:

e 1y =0 and the decision times arise each unit of time (i.e. t; =i € N),

e initially, the project 1 has the largest index value, i.e.
0 :=vgi1(Xi(to)) > vg;(X;(to)), L<j <N,

e 7.+ is the optimal stopping time, which achieves the supremum in equation (4.3).

By subtracting 6 from each h;(z), one can assume, without loss of generality, that
I/gl(Xl(to)) = 0

With the above assumption, it will be shown that there is an optimal policy that com-
mands to engage the project 1 at time ¢y. Due to the Markov property, we can repeat
this argument at any subsequent times, and this will prove the theorem. The basic idea
is to show by an interchange argument that an arbitrary policy can be improved by a
modification such that project 1 is engaged at time .

Let m € U be an arbitrary policy. Following 7, we engage at each decision time t; one of
the N projects and get its reward. We can therefore define the policy as its sequence of
engagements or similarly as its sequence of rewards. Let us focus on the decision times
at which the policy 7 engages the project 1. Write the sequence of rewards of 7 as:

o ([---]o;hl(Xl(té)),[---]1,h1(X1(ti)),[---]z,hl(Xl(ti)),---

SN NC ACTN) NG ACH AR}

where [...],, indicates the rewards obtained when project 1 is not engaged (note that
some [...],, may be equal to 0), h;(X;(t})) denotes the reward received when engaging
the project 1 for the (n + 1)-th time and ¢, is the time at which project j is engaged for
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A Optimality of the Priority Index Policy for the MABP without switching penalties

the (n 4+ 1)-th time under policy 7.

For ease of notation let us write T' := t-lr,,*fl (i.e. the time at which the reward
hy (X1 (t: . ,)) is received). Consider now the policy @ which is a modification of policy
m such that it engages at time t( the project 1 during a time 7+, then engages until time
T the other projects in the same order as policy 7w and coincides for ¢ > T with policy
7. The sequence of reward of 7 is as follows:

T (hl(Xl(t(lJ))vhl(Xl(ti))v"':hl(Xl(t}—,r*—l))a["']0:['"]h"':hk(Xk(tf)):["']l)-

By construction, the sequences of rewards of policy 7 and 7 coincide after time T'. Denote
by R, respectively R, the expected sequences of rewards up to time T given by policy m
respectively 7. To prove the Theorem it suffice to show that R > R. Let us start by the
following definition:

e tJ is the time when project 1 < j < N is selected for the (n + 1)-th time by policy 7.
e 1) is the time when project 1 < j < N is selected for the (n + 1)-th time by policy 7.

e m; + 1 is the number of times that project j is selected up to time 7" by the policies
m and 7.

Observe that the value h;(X;(t/)) under policy 7 is by definition equivalent to the value
h;(X;(#)) under policy 7. Now,

i=0 =0

R-R= E{ S A (X, (E))} — E{ S e, (t%>>}+
(A.1)

+§E{

i=2

(57— i )h,.(x,-(tg:»}.

J
i=0

Remark:

e Astl =iandwvg (X (t)) =0, the first term on the right-hand side of equation (A.1)
is equal to zero (it corresponds to the numerator of equation (4.3)).

e Since vg1(X(tp)) = 0, the second term is nonpositive. Indeed, it corresponds to the
expected reward obtained by engaging project 1 with inserted idle time. Since these
idle times cannot improve the maximum expected reward which is nonpositive, it
follows that this term is nonpositive.

It only remains to show that the last term corresponding to the reward received by each

j =2,3,...,N, is nonnegative. Define o7 as:

j i 7
60'1. — 6ti —,Bti.
Then the ¢/ are random times such that o’ 1> o + 1. To verify this fact, notice that
603—1' — /Bti—z(l _ /Bfi—tf)
By the construction of the policy 7, it follows directly that tf — ¢ and tf — th are non-

. . . . J_g . . . . . . . . i .
decreasing in i for j # 1. Hence (% ~ is non-increasing in ¢ which implies that o] — i

must be non-decreasing in i. Moreover the value o7 is a function of the project X;() up
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A Optimality of the Priority Index Policy for the MABP without switching penalties

to time tf and of the evolution of the other projects. It is therefore a stopping time of
project j by the independence of the project.

We can then rewrite the the last term of equation (A.1) as:

E{ ijwtf — gt >hj<Xj<tzi>>} = E{ ijﬂ”f‘ hj<Xj<tzi>>} (A2)
=0

=0

One may view equation (A.2) as being the expected reward received when engaging
project j with inserted idle times, the idle times being randomized by the evolution of
the other projects. Again, as these idle times cannot improve the maximum expected
reward which is nonpositive, equation (A.2) is nonpositive.

O
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B ® Position of the Hedging Stock

B

® Position of the Hedging Stock

Here we compute the optimal position of the hedging level for a single class make-to-stock
server with Markov dynamics X (¢).

In section 17.2.1, we saw that the optimal policy for a single item make-to-stock problem
is a hedging stock policy 7% with a hedging lever d*. This policy is defined as follows:
“Produce when the stock level is below the level d* or let the machine be idle”. Under
such a policy, the stochastic process:

Y(t) =d* — X(t)

is isomorphic to a M/M/1 queue [35]. Let us denote by J? (), the cost incurred under
policy 7% . Optimality of the hedging stock implies that the discrete derivative with
respect to d* vanishes, namely:

JU (@) — JT (@) = 0. (B.1)

To solve equation (B.1) let us first recall that:
J¥ (z) = E, / e Ph(X (t))dt.
0

Let 7 be an exponentially distributed random variable with mean 1/4 independent of
X (t) and h(z). Then

J (z) = EEwET [h(X(7))]. (B.2)
Permutating the expectation operators in equation (B.2), we have:
&
BJY (z) = B, Z h())P(X(r) =1| X(0) = w)] . (B.3)

Letting Y (1) = d* — X(7) we obtain:

d*—1

BJ¥ (z) = E, |A ;0 (d* —y)P(Y (1) =y |Y(0) = 0)+

B j;ﬂw —d)PY (1) = y|Y(0) = o>] .
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From equation (B.1) we obtain:

0=8J 1 (z) - pJ? (x) = E, [(A + B) (1 - i P(Y(r) =y|Y(0) = 0)) - B] :

y=d*+1
Computing the expectation with respect to 7, we find that:

0=BJ" " (2) - BI* (x) =

A—(A+B)ﬂ/ e N PY(t)=y|Y(0)=d —uz)dt.
0 y=d*+1
It is known that when z = d* (i.e. Y(0) = 0), the Laplace transform f(5,y) of the
transient probability density of the M/M/1 queue P (Y (t) =y|Y(0) =d* — z) reads
simply as (see [33] for example):

1—w_ Y
fp) = T,
where:
_BHA+) - VBHA+ ) — 4
- - 2“ )
So we obtain:
/3/00 e YT PV (1) =y|Y(0) =d —a)dt =W,
0 y=d*+1

and we end with:

0=A—(A+Bw¥ ™ = ¢ = Ln(i)ln (AfB)J.
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® Optimal Cost Functions - Markov Chain Dynamics

Here we derive the optimal cost functions J,(x,7), Jp(z,7) for a single class make-to-
stock server where the dynamics is given by a Markov chain in continuous time.

We saw in section 8.1.3 that the optimal cost functions for the ~-penalized problem obeys
to equation (8.16):

Ba(z,7) = h(z) + Ma(z = 1,7) + pla(z +1,7) = (A + p) Ju(z,7)
Bp(x,7) = h(x) + Mp(z = 1,7) = Ap(z,7) +7-
This system is linear and the general solutions of the homogenous system are

Jo(@,7) = Cot (w4)" + Co- (w-)*,
JP(:E>7) = CP(WO)za

where C,+, C,-, C}p are integration constants and

_ (BMw+/(BHA+n)® — 4

w4 21 )
w. = BTV (BHA+R)2 - (C.1)
_= 5 ,
_ _A
Wo = m

The particular solutions correspond to engage the server forever or to let the server be
idle forever. For the active case we get:

Sa(z,v) = E, [fooo e P*h(X(s))ds] =
[ e hR)PX(s) = k| X(0) = w}ds = (©2)
J e Py G h(k)P{X(s) =k — x| X(0) = 0}ds.

To compute the transition probability density P{X(s) = k — z| X (0) = 0}, consider a
space-homogeneous Markov chain process X (¢) with parameter A and p. Define p = %
and P,(t) = P{X(t) =n|X(0) = 0}. We know that P,(t) follows the equation (see for
example [41]):

C A1) =~ P(t) + uPosa (1) + AP 1 (1), (C.3)

Define:
Py(t) = Qu(t)p~ Fem rrmm2vant
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in terms of which the equation (C.3) becomes:

d

%Qn(t) = \/E(Qn-{-l (t) + anl(t) - 2Qn(t))

The solution of this last equation reads (see for example [16]):

Qn(t) = e 2224/ Ant)

with I,,(x) being the modified Bessel function:

00
eéw(t-i-l/s) _ Z tk]In(ZL')

k=—oc0

Hence, we obtain:
Pu(t) = p~ e MW 24/ Aut)

Using the Laplace transform of P, (t), which enters directly into equation (C.2), we end
with:

k—z

- h(k)p~ ="
Sa(z,vy) =
) k;m\/(ﬂ+>\+u)2—4/\u

Brr+w) - VEA+? -]
PNy

From equation (C.1) and the fact that wyw_ = % = p, we can show that S, (z,v) takes
the form:

z—1 o]
1
Sax,vzi{hx+w_’” h(k)(w_)"* + (wy)® h(k)(w _k}.
(z,7) Ty —w) (@) +( )k;m()( ) (+)k§+1()(+)
(C4)
Along the same lines, when the server is idle forever, we obtain:
Sp(w,7) = / e Y (h(k) +7)(P{X(s) = k — | X(0) = O}ds.
0 k=—00
In this case P{X(s) = k — 2| X(0) = 0} is a Poisson process and we end with:
e1 N~ (k) +7)(wo) ¥
Spl(@) = (wo)* 3 Do) ()

k=—oc0
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D

® Index Obtained for a Piecewise Linear Running
Cost

Here we compute the index for the single class make-to-stock server problem described
in section 17.2.1 where the dynamics is a continuous time Markov chain and the cost
rate function h(z) is piecewise linear:

h(z) = +Az ; A>0 ifz>0
Y=1-Bz ; B>0 ifz<0.

We have shown in section 17.2.1 that the cost functions J,(z) and J,(z) are:

Ja(l'a')/) = Ca(w—i-)w + Sa(l':'Y)
Jp(ﬂ}',')/) = Cp(wo)w + Sp(xa’)/);

where S, (z) and S, (z) are given by equation (C.4) and equation (C.5) respectively.

Using the shape of h(z), we derive the closed form of J,(x,~) and J,(x,7). For the region
x > 0, the summation formula for geometric series implies:

Jalw,7) = m{? [(A +B)((A— 0 + B0+ ) (2w_)*+
+u(wy —w_) (2“‘114(633 — A+ p)+ AN = p)(Qw_)*+

b

(BN (AB—AMB7)+(w0)® (B+X)(CpB2+(A+B)N)+6%7)
Jp(w77) - 52(/34‘)\) .

+BO\ = 1) (2w-)? + 20,1 B2(2w)7)

and

Similarly, for the region x < 0 region, we obtain:

I = ey {27 4+ B (- 7+ 50+ ) 2w
+u(wy —w_) ( —2"TIB(Br — X + p) + (2C,+ 7+

~a+ B - )y},

and

Jp(ZL', ,)/) _ B(*Bz+/\)+BB(2CPB(W0)E+’Y)_

Using the extended smooth-fit principle given in equation (8.8) and the definition given
in equation (17.13), we can derive the index v(z) in the form given by equation (17.14).
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E ® Proof of Proposition 14.3

E

® Proof of Proposition 14.3

Proposition 14.3: For any initial condition, the optimal policy, for a two-armed
DMABP in class Z, commands to switch only a finite number of times.

Proof:
In the following, we use the notation [ - | X;(t) = ;] to indicate that the project j is in
state z; at time £.

The space of initial conditions (x1,22,j) € R? x {1,2} can be split into two disjoint
subsets:

a) The set of initial conditions (z1, 2, j) € A, defined by one of the two following prop-
erties:

i) The DM is initially engaged on arm j = 1 and:

ooh

X2(0) = T2 ﬂ

V T ety (Xa (1) dt

0

i.e. the reward gained by initially paying the switching cost and then by engaging
project 2 forever is smaller than the smallest possible reward gained by engaging
project 1 alone forever.

ii) The DM is initially engaged on arm j = 2 and:

X, (0) =m1] o<l

00 efﬁt
l/o hi(X1(t))dt 5

i.e. the reward gained by initially paying the switching cost and then by engaging
project 1 forever is smaller than the smallest possible reward gained by engaging
project 2 alone forever.

b) The complementary set A" = {]R2 x {1, 2}} \ A

Note that, for any initial condition (1,22, J) € 4, the optimal policy clearly commands,
by definition, to engage project j forever. Moreover, starting with an initial condition in
A, every subsequent state reached when following the optimal policy, also belongs to A.
Indeed, for DMABP we have:

hj(X;(t2)) < hj(X;(t1)), Vi2 > t1, j=1,2.
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E & Proof of Proposition 14.3

For any initial conditions (z1, z2, ) € A4, the optimal policy commands to engage project
j forever. Hence, it satisfies the assertion of proposition 1.

It then remains to prove proposition 1 for initial conditions in A’. To do this, let us define
{t}},i = 1,2,..., the sequence of times at which the optimal policy gives the order to

switch from project 1 to 2 and {t?}, i = 1,2,..., the sequence of times at which the
optimal policy gives the order to switch from project 2 to 1 (see the Fig.E.1).

PI‘OjeCtQ —E—H—

Project] p——— i — —

-

o h f CR

Fig. E.1. The sequence of switching times ¢; and ¢? with the DM initially engage on project 1.

Let j be the project initially engaged and j the disengaged project. Define Hj and Hj
to be the cumulated sojourn times spent on project j, respectively on project j, under
the optimal policy. For an infinite horizon, we have that Hj + Hj = oo and one has
necessarily one of the three following alternatives:

i) H1= o0 and H2 = oo,
i) H1 < oo and H2 = oo,
iii) H1 = oo and H2 < oo.

Let us assume, without loss of generality, that I > I'; and assume first that:

e Alternative i) holds:

We will show that there exists a time instant 7' < oo at which the system enters into the
set A. This contradicts with the fact that the optimal policy fulfill alternative i) as after
time 7" the optimal policy does not command to switch anymore.

Engaging j alone during [0,T] write m? = [X;(T) | X1(0) = xo] for the reached position
at time time T'. We now show that: V¢ > 0, 3 T < oo such that the following properties
are simultaneously fulfilled:

a) [JoT e s (X0 dt | Xi(0) =af] < G+,
b) At time T the DM is engaged on project j.

By hypothesis, the cumulated sojourn times spent on projects 1 and 2 are infinite. Using
equation (14.1), we have:

VE >0, 3T >0, T < oo such that hj(X;(T)) < I + ¢ (E.1)

Therefore property a) is satisfied with £ = % Moreover, as we consider DMABP, VT > T
property a) is necessary satisfied.
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Observe that due to the discount factor e ~?¢ in equation (3.4), the alternative i) necessar-
ily implies an infinite number of switchings. Note further that any policy that commands
to switch an infinite number of times during a finite time interval, incurs an infinite cost
and hence cannot possibly be optimal. This implies that an optimal policy only allows
a finite number of switches on a finite time horizon. Therefore, when alternative i) is
satisfied, we must have that:

VI>0,3T>T

such that the optimal policy commands to switch from project j to j at time T and
hence b) is satisfied.

As a) and b) hold simultaneously, we have:

[/Oo e~ 0t h; (X (1)) dt ‘ X;(0) :x}’] S
0 g B

Choosing ¢ < C, we then have:

00 1=
|:/ 676thj(Xj(t)) dt ‘ Xz(O) = :L‘?i| —-C< ?J,
0
which implies that (X;(T), X;(T'), j) € A by definition of A. Hence, after the time 7' < oo,

the optimal policy never commands to switch anymore and hence T; < oo which contra-
dicts the hypothesis.

Let us now prove proposition 1 when:

e Alternative ii) holds:

Assume, ad absurdum, that the optimal policy 7* commands to switch an infinite number
of times. As alternative ii) to hold, we must have:

o0
Dot -t =Hl< oo

i=1

This implies that:
VE>0, 30 sttt —t7, <&

For ¢ small enough, we will have:

i
/ e=Bthy (X, (1)) dt < C.
t=

i—1
Therefore, the reward gained during the time interval [t?_,, ¢} is smaller that the switch-
ing cost and the policy #* cannot possibly be optimal. Hence, a contradiction.

e Alternative iii) holds: Use the same arguments than for alternative 7).

O Proposition 1
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F

® Proof of Proposition 14.4

Proposition 14.4: The optimal policy for a two-armed DMABP in the class Z is charac-
terized by two switching curves SO;_,2 and SO»_,; defined respectively by two functions,
g: x1— §J(x1) and & : @2 — Z(x2) (see Figure F.1).

Ax
(@2)

I
S

SO?—)I

(1)

<)

2 / SO1s

0

QQ

— |

/ X,
QGO OO

Fig. F.1. The sets 20, j =1,2.

Proof:
Let us start by introducing a few definitions:

e Nl = {(wl,m,l) € R? x {1,2} ‘ the optimal policy commands to switch immedi-
ately from project 1 to project 2 and then commands to switch exactly n times },
n=20,1,2,... (see Fig.F.1).

o 2 = {(wl,m,?) € R? x {1,2} ‘ the optimal policy commands to switch immedi-

ately from project 2 to project 1 and then commands to switch exactly n times },
n=0,1,2,... (see Fig.F.1).
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o Vo(z1,z2,7) denotes the reward gained by engaging project j forever when starting
at position (z1,z2,j), namely:

Vo(zy,x2,7) = lfooo e thi(X;(t)) dt | X;(0) = w;

o Vyu(z1,22,7) denotes the optimal reward gained when starting at initial position
(x1,2,7) and with the assumption that (2,22, ) belongs to 2J. This is equiva-
lent to say that starting at (z1, 22, ), the optimal policy commands to switch exactly
n times).

e T(w1,2,5) denotes the time of the first switch from project j to project j under the
optimal policy and with the initial conditions (z1, 2, j).

e (Z1,Z2) denotes the position reached at the first switch starting at (z1,z2,j) and
following the optimal policy (see Fig.F.3 for Vi (z1, z2,2)).

The dynamic programing principle implies:

Valz1,22,7) =

X;j(0) = z;

+ BT (w1,w2,5) ( -C+ anl(jlaj%j)) .

~

g

b)

~ v

(F.1)
The term a) describes the reward received when engaging the project j until time
T(z1,z2,7). The term b) describes the global reward from time T'(z1, z2,j) onward (i.e.

with initial condition (Z;,Z2,7)) minus the first switching cost.

Assume, without loss of generality, that the DM is initially engaged on project j = 1.
Then, by definition:

(11,22,1) € 2L & V7 € Ry, it more rewarding to immediately engage project 2 and
then to proceed optimally, than to stay on project 1 during a time 7, then to switch
to project 2 and finally to proceed optimally.

Formally, this reads as:

—C A V1, 12,2) > V e~Bhy (X, (1)) dt ‘ X, (0) = ml} +e—ﬂr( —C+ Vk(m;,m2,2)),
0

"

a) ;3 d 5

(F.2)
for some k > 0 and «7 is the position attained by project 1 when engaged during a time 7.
The term a) describes the reward received when immediately engaging project 2 paying
the switching penalties and then proceeding optimally. The term b) describes the reward
received when engaging the project 1 until time 7. The term c¢) describes the global re-
ward from time 7) onward (i.e. with initial condition (2], x2,2)) minus the switching cost.

Lemma F.1. If at position (x1,x2,2) it is optimal to engage project 2 forever, then it is
also optimal to engage project 2 forever at every position (x},x2,2) with ©| > x.
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Proof: Note that Vy(z1,22,2) = Vo(2],z2,2) Vi > z1. Assume that, starting at posi-
tion (2}, x2, 2), the optimal policy 7 commands to switch at least once. Write Vy (2}, 22, 2)
for the gain received under policy 7. We then have that Vo (!, z2,2) > Vo (2}, 2, 2). Write
Ti, 0 = 1,2,... for the time instants at which the policy 7 command to switch. Starting at
(x1,22,2) denote by Vo (1, z2,2) the global reward obtained when engaging the projects
X, and X as policy 7 (i.e. switching the project at time 7; see Figure F.2). As h;(z) is
non-increasing,

‘N/O(xlyx272) Z ‘7()(1‘,171‘272) > VO(Illal‘272) = VO($1,IL‘2,2)

which contradicts the optimality of Vp(z1, z2,2).

sz ‘70(25.1325272)

>
(xla T2, 2) ('Ilh Ta, 2)

Fig. F.2. Reward Vo(xl,xz,Z).

We continue the proof by iteration on n. We will show that given z;, the position in 2}
for a given n are those for which (z1, z,1) with z €] — 00, §(z1)].

Lemma F.2 (Iteration n=0, for project j=1). Assume that (z1,z2,1) € (2}, then
it exists §(xy) such that:

Vz E] - OO,:I](SU;L)], (iL"l,Z, ]-) € “Q(:%
Moreover, ¥(z1,2',1) with 2" > §(z1), we have (x1,2',1) ¢ 2§.
Proof:

By hypothesis (z1,z2,1) € 2§, then using equation (F.2) with n = 0 and the Lemma
F.1, we have that Vr € Rt:

~C + Vo(a1,22,2) > V Iy (X () dt | X1(0) = azl] + e (= O+ Vo(a],22,2)).
0

(F.3)
As Vo(a1,22,2) = Vo(a],x2,2), equation (F.3) is equivalent to:

[y e (Xa(0) + BO)dt | X,(0) = 1

foT e=pt

< BVo(z1,22,2), V7 € RT. (F.4)
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Dealing with DMABP, Lemma 5.3 implies that h;(X;(¢)) is decreasing in time. Therefore
Vr; € RY fixed, the function Vo(z1,72,2) is decreasing in z5. Hence, if equation (F.4)
holds for (z1,2,2) (ie. (z1,72,2) € (2}), it also holds for every points (z1,},2) with
xh, < xo. Given x;, write §(z1) for the value of zo when (F.4) is an equality at position
(x1,7(x1),1). It is therefore possible to define the function:

g(x1) : o1 = g(xr)-
O Lemma F.2

Lemma F.3 (Iteration n=0, for project j=2). Assume that (z1,z2,2) € 23, then,
3 Z(z2) such that:
Vz €] — 00, %(x3)], (71,2,2) € 23,

Moreover, ¥(z1,2',2) with 2' > Z(x2), we have (x1,2',2) ¢ 2.

Proof:
Follow the same arguments as in Lemma F.2 .

O Lemma F.3

Lemma F.4 (Iteration n=1, for project j=1). Assume that (z1,22,1) € 2}, then,
3 g(z1) such that:
Vz €] — o0, i(z1)], (x1,2,1) € £27.

Moreover, ¥(z1,2',1) with 2" > §(z1), we have (x1,2',1) ¢ 2}.

Proof:
By hypothesis (z1,22,1) € 2}, and using equation (F.2) with n = 1, we have that
V7 e RT:

—C +Vi(xy1,x2,2) > [/ e_'Bthl(Xl(t))dt ‘ X1(0) = xl} +e_BT(—C+Vk(xI,x2,2)),
0

(F.5)
where 27 is the position taken by project 1 after engaging it during a time 7 (see Fig.F.3).
In view of Fig.F.3, the optimal reward Vi (z], z2,2) and Vo(Z1,Z2, 1) can be decomposed
as follows:

T(x1,22,2)
Vi@, 00,2) = /0 =Bty (Xa (1)) dt +ePT@ 2DV, (a7 75.2),  (F.6)
) 5
Vo(Z1,Zs,1) = /OT e Pthy (X1 (t)) dt +e PV (2], To, 1) (F.7)
J - .

The term a) describes the reward received when engaging the project 2 from position
(27, x2,2) until state (z7,Z2,2) which is the intersection of both trajectories. The term
b) describes the reward received when engaging the project 1 from state (Z1,Z2,1) until
state (z],Z2,1) which again is the position at which both trajectory meet.

Using equation (F.1) for Vi(z1,x2,2), and using equations (F.6) and (F.7), after calcu-
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lations the equation (F.5) can be rewritten as:

T(.l‘l L2 ,2)
—C+ / e Plhy (X, (t)) dt
0

Xz(O) = .’EQ] (]. — 67BT)+

- /T e Pth (X1 (t)) dt

0

X:(0) = xll (1 — e AT@ne22)) g
+C(e 7T — e Tlonwa)) g o= S22 T (Vo (o, 22, 1) — Vi, 22, 2)) > 0,

which is equivalent to:

I:foT(z17z272) e_ﬁthg(Xg(t)) dt ‘ X2(O) = g;2:|
Fi(z1,32,1) := (1= e P2 -

|:f07' efﬁthl (Xl (t)) dt Xl (0) = LL”l] _c (1 + efﬁT(a:ha:2,2)) N
(]_ — e*ﬁ‘r) (]_ _ e—BT(x17x2,2))

efﬁT(zl,zg,2) efﬁ‘r

(]. — 6_6T($17$272)) (]_ — 6_67—)

(=C + VolaT, 22,1) — vk<m;,a:~2,2))) >0 (F8)

Fig. F.3. Two different realizations.

Lemma F.5. Given 1, the function F1(x1,22,1) (defined in equation (F.8)) is decreas-
mng in T.

Proof:
Remember that Z» is the position reached by project 2 at the first switch (i.e. X2 (T (21, %2,2)) =
T2, see Fig.F.3). We note that:
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The first term is decreasing in z,. Indeed, making the change of variable

y = Xa(t)

this first term is rewritten as

fe)i= [ hal)gty dy

T2

where
e—BX5(y) L
X2
T _ -1 1 .
f 2 e—BX; (y)X_gdy

2

g(y7 :U?) =
By assumption we have that X, > 0 then

g(y,z2) >0 and / gy, x2)dy = 1.

Given ¥(x) and @(x,y) both of class C! in z, it is well known that:

07 Jo o (a) O

Using equation (F.11) we have that
/ ” 9
fit@) = [ ha)geo(v,z2) dy ~ ha(az)g(e, ).
T2 '/I"Q
By hypothesis ha(x2) is non-increasing then
T2 8
Fi@) S ha(e) [ 5oy, dy — haaglan, o).
Zo 8372
Now, from equations (F.11) and (F.10) we have that

T2 a 8 To
/m a—@g(y,mz)dy = 92, 5 9y, x2) dy + g(w2,22) = g(w2,72)

Using equation (F.13) in equation (F.12) we get

f{(mz) <0,

which prove that the first term of equation (F.8)) is non-increasing in z,.

The second term does not depend on z-.

The third term is decreasing in x2 (i.e. its absolute value is increasing).

e~ BT (w1,22,2)

The fourth term is decreasing in z». Indeed T PTGrez D)

T (1, 22,2) is decreasing in x») and
O = (—C+ Vy(z],Z2,1) — Vi(z],%2,2)) <0.

Here, @ corresponds to the difference between:

M M
0 | ean= [ 9 () dy — ' () B, W ().

(F.10)

(F.11)

(F.12)

(F.13)

is increasing in x» (i.e.

i) the reward gained by immediately switching from project 2 to 1 and then by

proceeding optimally:
-C+ Vo(ibﬂl—, T2, 1)7
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ii) the reward gained by staying on project 2 and proceeding optimally with project
2:
Vk(ﬂ}"{,ii'z,2).

By construction, (z],Z2) lies in the hysteretic band (indeed («], Z2, 1) is on the opti-
mal trajectory starting at (z1, x2,2) see Fig.F.3). In the hysteretic band, the optimal
scheduling is to stay on the currently engaged project. Then, we necessarily have:

—C + WVo(x],Z2,1) < Vi(27, T2, 2).
O Lemma F.5

Having established that Fi(x1,x2,1) is decreasing in x5, we can conclude that if

(w1,22,1) € 2} then every (z1,x},1), with x}, < z2, also belongs to 2}. Given w1,

write §(x1) for the value of &2 such that Fi(x1,§(x1),1) = 0. We then have a function:
g(x1) : o1 = g(xr)-

O Lemma F .4

Lemma F.6 (Iteration n=1, for project j=2). Assume that (z,,2,2) € 2%, then
there ewists &(x2) such that

Vz €] — 00, (x2)], (w1,2,2) € 7.

Moreover, ¥(z1,2',2) with 2' > &(x3), we have (z1,2',2) ¢ 3.

Proof:
Follow the same arguments as in Lemma F.4.

O Lemma F.6

Lemma F.7 (Iteration n=n, for project j=1). Assume that (z1,z2,1) € 2}, then,
3 g(z1) such that,
Vz €] — o0, i(z1)], (z1,2,1) € 2},

Moreover, ¥(z1,2',1) with 2" > §(x1), we have (x1,2',1) ¢ QL.

Proof:
By hypothesis (z1,72,1) € 2%, then, using equation (F.2), we have that V7 € Rt :

—C+Vy(x1,22,2) > [/ e Pthy (X1 (1)) dt ‘ X1(0) = xl} -I-e_’BT(— C+Vk(xI,x2,2)).
0
(F.14)
Using equation (F.1) and Fig.F.3, this equation can be rewritten in the same form as
equation (F.8):

[ [ iy, (X, (1)) db ‘ Xo(0) = mz]

Fn($1,$2, ]_) = (1 — 6_’8T(z1’$2’2)) N

|:f0T eiﬁthl (Xl (t)) dt Xl (0) = fL'le B C (1 + e*BT(whwmz))
(]- — e—/3'r) (]_ — e—BT($1,x2,2))

e_ﬂT(z17w2,2) 6_’87—
e (e

+ (F.15)

(_C + Vn—l(l‘Iai‘?: ]-) - Vk(fEI;j% 2))) Z O
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Lemma F.8. Given xy, the function F ,,(x1,%2,1) is decreasing in .

Proof:
We can use the same arguments as in Lemma F.5 Indeed,

—C + Vi1 (27, T2,1) = Vi(a7,22,2) < 0.

This is due to the fact that (2], Z2) lies in the hysteretic buffer.

O Lemma F.8

Having established that f,(z1,z2,1) is decreasing in z3, we can conclude that if
(z1,22,1) € 2% then every (z1,z},1), with o, < z2, also belongs to .. Given zi,
write §(x1) for the value of w2 such that F,(x1,§(x1),1) = 0. We then have a function:

g(z1) = w1 = g(z).

O Lemma F.7

Lemma F.9 (Iteration n=n, for project j=2). Assume that (z1,x2,2) € 22, then

there ewists &(x2) such that
Vz €] — 00, #(x2)], (w1,2,2) € 22.
Moreover, ¥(z1,2',2) with 2’ > &(x2), we have (z1,2',2) ¢ 22

Proof:
Follow the same arguments as in Lemma F.7.

We therefore construct by recursion the functions
g: oy gla)

and
T xo — T(we)

ne

O Lemma F.9

which define the optimal switching curves SO;_,5 and SO»_,; respectively.
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® Proof of Proposition 14.5

From proposition 2, we know that the optimal policy for a two-armed DMABP in the
class Z is described by two switching curves. To end the proof of the claim, it remains
to show that these curves are non-decreasing.

Proposition 14.5: The optimal switching curves SO;_,2 and SO4_,1, for a two-armed
DMABP in Z are non-decreasing.

Fig. G.1. Sketch of the functions &(z2) and ¥(z1).

Proof:
Given s, let us define ®(x2) to be the smallest value of x; such that at (z1,22,1) it is
optimal to immediately engage project 2, namely 3n > 0 such that:

_C+Vn($1,$2,2) > |:/ eiﬁthl(Xl(t))dt ‘ Xl(O) = $1:| +67BT(—C+V]§($I,$2,2)).
0

Then from proposition 14.4 we know that SO;_,» is a function hence &(z2) is non-
decreasing in x». Similarly, construct the function ¥(z;) which is the largest value of x4
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such that at position (z1,z2,2) it is optimal to immediately engage project 1, namely
dn > 0 such that:

—C + Vy(z1,22,1) > [/ e Bthy(Xo(t)) dt ‘ X(0) = xz} +e’BT(— C + Vi (2], 22, 1)).
0

Again ¥(z;) is non-decreasing in z; see Fig.G.1.

Lemma G.1. There exists ug € R such that the function §(x1) (i.e. the switching curve
S01,2) is non-decreasing on an interval [ug, +00].

Proof:

By hypothesis the reward hy (z1) is decreasing in x; . Hence, the left hand side of equation
(F.4) is also decreasing in ;. Due to the fact that the righthand side of equation (F.4)
does not depend on z1, we conclude that:

if (z1,22,1) € Q) = Vai >z, (2], 22,1) € 125.

Therefore, the function §(x1) (being the largest value of w2 such that at (x1,x2,1), the
equation (F.4) is satisfied) is non-decreasing on an interval [ug, +o0o[ The position wg is
the smallest value of z; such that equation (F.4) holds (see Fig.G.2).

O Lemma G.1

Ax

’llg I X1

Fig. G.2. The increasing property of the function g(z1).

Lemma G.2. There exists vg € R such that the function &(x2) (i.e. the switching curve
S03_,1) is non-decreasing on an interval [vg, +00[.

Proof:
Same proof as for Lemma G.1

O Lemma G.2
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Remarks: Lemma G.1 and Lemma G.2 imply that:

e  &(z2) coincides with g(z;) on the interval [ug, cof.
e U(xy) coincides with &(x2) on the interval [ug, ool

Lemma G.3. The curves SOz-51 and SO1_,2 are non-decreasing on the interval [—oo, ug[
and [—o0, vg[ respectively.

Proof:

Assume, ad absurdum, that the assertion is false. If so, the optimal policy would locally
exhibit the shape sketched in Fig.G.1. To prove Lemma 4.3, we will show that if at
a position B = (pa,x2,1) the optimal policy commands to engage the project 1, then
V' A = (p1,x2,1) with p; < po the optimal policy would also command to engage the
project 1 and hence a contradiction follows (see Fig.G.3).

b

502%1

T fp=mmcfmmmmam

P1 ]I?z X,

Fig. G.3. The initial conditions A and B.

Let us write

o Ai(t) = [h(X1(t)) | X1(0) = po] for the rewards process of project 1 received when
engaging it alone with an initial condition X;(0) = ps (i.e. starting at B).

o Ai(t) =[m(Xi(t)) | X1(0) = p1] for the rewards process of project 1 received when
engaging it alone with an initial condition X;(0) = p; (i.e. starting at A).

o Ay(t) = [h2(X2(t)) | X2(0) = x] for the rewards process of project 2 received when
engaging it alone with an initial condition X»(0) = z, (i.e. starting at B).

o Ay(t) = [ha(Xa(t)) | X2(0) = 3] for the rewards process of project 2 received when
engaging it alone with an initial condition X»(0) = z2 (i.e. starting at A).
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Observe that:

e At both position A and B, the initial conditions of the project 2 is X3(0) = z2. We
then have that Asx(t) = Ax(t).

e The MABP (X, hi; X2ho) is deteriorating. We then have that A~1(t) > Ai(t),Ve>0.

From these observations is follows that, although the optimal policy 74 (t) and 7 g(t)
starting respectively at position A or B may generally differ for ¢ > 0, they coincides
at t = 0. This follows from the fact that starting at B the optimal policy commands to
engage A;(t) at t = 0 (this by hypothesis) thus, as A;(t) is more rewarding V¢ > 0 and
Ay (t) = Ay(t) Vit > 0, it is necessarily more rewarding to engage A, (t) at t = 0 starting
as position A.

O Lemma G.3
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