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Abstract

A major cause of many complications in the field of software architectures is the lack of 
appropriate abstractions for separating, combining and encapsulating concerns of various 
kinds in architectural descriptions.

Architectures of most complex software-intensive systems involve concerns that 
inherently crosscut the natural boundaries of the elements composing the architecture 
descriptions. Crosscutting concerns intersect the common modularity of systems as pre-
scribed by their architecture descriptions, by traversing both the components and connec-
tors, i.e., the relationships among the components. Crosscutting concerns are critical aspects 
of many architectural problems. However, architectural descriptions written in special-pur-
pose languages (ADLs) like Wright, Darwin, Rapide and Acme should support descriptions 
of multiple structures, which include diagrams, models and views, that intentionally address 
different kinds of concerns. ADLs should show how various concerns affect each other in 
architectural designs; they should also allow one to identify, analyze and elaborate architec-
tural concerns that cut across several software components, such as transactions, security, 
load balancing, synchronization, reuse, customization, scalability, etc.; they should, but they 
do not.

This dissertation presents a new approach to software architecture that is suitable for 
supporting concern-oriented development and documentation of architectures for software-
intensive systems. This approach allows for creating and documenting a multidimensional 
software structure that is referred to as concern-oriented software architecture; it provides 
new mechanisms for encapsulating individual concerns into independent architectural con-
structs. The ultimate goal of this new approach is to provide support for achieving design by 
concerns all through the development and description of software architectures. Moving 
towards this goal, we present a particular concern-oriented architectural framework called 
Perspectival Concern-Spaces (PCS). The PCS Framework offers a flexible and extensible 
means a) for supporting advanced separation of concerns in architectural design, and in the 
construction and evolution of software-intensive systems; and b) for filling the gap between 
architectural descriptions and modern software development artifacts.

To show the feasibility of the proposed approach, we provide new modeling tech-
niques that are used to describe and apply an aspect-oriented architectural pattern, called the 
On-demand Remodularization pattern. We give several examples of how the PCS Frame-
work can be used to integrate concern-oriented architectural documentations with main-
stream software development artifacts.
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Kurzfassung

Wenn softwareintensive Systeme komplizierter werden, gewinnt die Softwarearchitektur an 
Bedeutung als vitales Element für den Bau solcher Systeme. Eines der Ziele im Gebiet der 
Softwarearchitektur ist die Verbesserung der Art, wie komplexe Softwareinfrastrukturen so 
organisiert werden können, dass die Kosten der Softwareproduktion sinken. Ein anderes der 
vielfältigen Ziele ist die Förderung von Software-Bauelementen, die wiederverwendbar, 
stabil und entwicklungsfähig sind.
Eine der Hauptursachen der vielen Schwierigkeiten bei der Verfolgung dieser Ziele ist das 
Fehlen von geeigneten Abstraktionen, um verschiedenartige Anliegen (concerns) in 
Architekturbeschreibungen zu trennen und zu kombinieren. Querlaufende Anliegen sind in 
manchen Architekturproblemen von kritischer Bedeutung. Allerdings sollten Architekturen, 
die in Spezialsprachen (ADLs)  wie z.B. Wright, Darwin, Rapide und Acme geschrieben 
sind, die Darstellung von multiplen Strukturen mit Diagrammen, Modellen und Ansichten 
(views) unterstützen, die beabsichtigen, verschiedenartige Anliegen zu erfassen. ADL's 
sollten zeigen, wie in Architekturbeschreibungen unterschiedliche Anliegen sich 
gegenseitig beeinflussen; sie sollten auch ermöglichen, Architekturanliegen zu identifi-
zieren, zu analysieren und Architekturanliegen auszuarbeiten, die quer durch mehrere Soft-
warekomponenten gehen, wie z.B. Sicherheit, load balancing, Synchronisierung, 
Wiederverwendung, Anpassung an Kundenbedürfnisse, Skalierbarkeit etc; sie sollten das 
tun, aber sie tun es nicht.

Diese Dissertation zeigt eine Anliegen-orientierte Vorgehensweise in der Software-
architektur, die geeignet ist sowohl die Entwicklung wie auch die Beschreibung von 
Architekturen für softwareintensive Systeme zu unterstützen. Diese Vorgehensweise, 
Anliegen-orientierte Softwarearchitektur (Concern-oriented Software Architecture) 
genannt,  ermöglicht es, multidimensionale Softwarestrukturen zu schaffen und bes-
chreiben. Sie bietet neue Mechanismen, um spezifische Anliegen in eigenständige 
Architekturkonstrukte einzubauen. Das oberste Ziel dieser Vorgehensweise ist, Unterstüt-
zung für das anliegen-orientierte Design (design by concerns) während der ganzen Entwick-
lung  und Beschreibung von Softwarearchitekturen zu gewährleisten.

Ich lege ein spezielles anliegen-orientiertes Framework vor, das Perspectival Con-
cern-Spaces (PCS) genannt wird. Das PCS offeriert eine flexible und erweiterungsfähige 
Möglichkeit, um a) die höhere Trennung von Anliegen im Achitekturdesign sowie den Bau 
und die Entwicklung von softwareintensiven Systemen  zu unterstützen; und b) die Lücke 
zwischen Architekturbeschreibungen und modernen Softwareentwicklungs-Artefakten zu 
schliessen. Das PCS-Framework ermöglicht es, Softwarearchitektur als eine multidimensio-
nale Struktur zu behandeln, die einen “Vorrat an Konzepten” anbietet, aus denen ein oder 
mehrere Softwaresysteme gebaut werden können. Eine solche multidimensionale Software-
struktur wird Architektur-Anliegenbereich, (architecture concern-space) genannt. Dank 
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ihrer Fähigkeit, die Schaffung von Architektur für multiple Softwaresysteme zu unter-
stützen, ist ein Architektur-Anliegenbereich (architecture concern-space) für Softwarearch-
itekten das, was ein Anwendungsframework (application framework) für die Entwickler 
von Softwareanwendungen ist.

Um die Realisierbarkeit des vorgeschlagenen Vorgehens zu zeigen, gebe ich 
Beispiele, die zeigen, wie das PCS-Framework zur Integration von Architekturbeschreibun-
gen in mainstream Softwareentwicklungsartefakte benutzt werden kann und wie die Unter-
scheidung (Trennung) verschiedener Anliegen im Design und bei der Konstruktion und 
Entwicklung von softwareintensiven Systemen gefördert werden kann.
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Introduction
Chapter 1:

Introduction

There is no point in using exact methods where there is no clar-
ity in the concepts and issues to which they are to be applied. 

John von Neumann

1.1 My Thesis

A concern-oriented approach to software architecture is feasible and suitable for developing 
and describing architectures of software-intensive systems, for improving separation of 
concerns in the design, construction and evolution of such systems, and for integrating their 
architectural descriptions with modern software development artifacts.

1.1.1 Setting the Scene

Major goals of software architecture [PW92][SG96] are to improve the way of organizing 
complex software infrastructures, while reducing costs of software production; and to facil-
itate software construction that fosters reuse, maintainability and evolution. Other important 
goals are to provide the ability to make descriptions of software architectures that serve as 
vehicles for communication among the stakeholders (i.e., participants) of software develop-
ment projects, for manifesting the earliest design decisions in those projects, and for repre-
senting reusable and transferable abstractions of the systems under construction [BCK98].

To achieve these goals, research in the software architecture community has shown 
that software-intensive systems—i.e., systems whose design, construction, deployment and 
evolution are essentially influenced by software [IEEE00]—should not be developed from 
scratch. Instead, they should be constructed, based on well-defined architectural descrip-
tions that allow software engineers to understand how to combine various components; 
such components are possibly developed at different times, using different technologies. 
However, putting the result of this research into practice has several implications, especially 
when supporting component-based software engineering [Szy98]. 

One key implication is the following: when building a complex software system by 
composition, the components you select will be required to fulfill some “roles” anticipated 
in the software architecture of the system under construction. A particular component may 
fulfill one or more roles in order to achieve some stakeholders’ concerns. In reality, the 
same concerns can pertain to one or more aspects of the system under construction. Some 
aspects of the system can be relevant to a specific stakeholder who considers the composi-
tion problem from a particular perspective; but also, different stakeholders may have differ-
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ent concerns which pertain simultaneously to various perspectives. On the other hand, a 
given role defined by the architecture can be fulfilled by many components of the system at 
the same time or at different times; an individual concern can affect many roles, but also a 
role may have an effect on the realization of many concerns. Thus, it becomes rapidly diffi-
cult to understand and reason about the software system’s composition if we cannot repre-
sent and manipulate, adequately, the roles involved in the software architecture.

At this stage, a fundamental issue to be addressed is how to relate the stakeholders' 
concerns, belonging to the composition problem, to the roles in the architecture (i.e., 
abstract and reusable solution to the problem). Providing the capability to properly address 
this issue will have a great benefit for both software architecture and component-based soft-
ware engineering. Lacking such a capability will result in a number of complications that 
hinder accomplishing the goals of software architecture and make component-based soft-
ware engineering difficult to achieve. For example, developers of individual software com-
ponents will have to provide mechanisms for implementing not only the concerns that 
crosscut many components playing different roles, but also they will have to offer tech-
niques for supporting individual roles that affect the realization of multiple concerns. Both 
cases are very tricky and require appropriate means for separating concerns, at different lev-
els.

1.2 Critical Evaluation of Architectural Trends and Practices

To begin with, we have to admit that there is no agreement on what is called software archi-
tecture, and that there is no single, accepted framework for codifying architectural concepts. 
This lack of agreement does not facilitate the emergence of common practices in software 
architecture and their controlled evolution [IEEE00]. However, the diversity in the realm of 
software architecture stems from the variety of issues that reflect the concerns of the 
authors.

 When producing architecture descriptions in software projects, most practitioners (in 
the recent area of software architecture) prefer to draw diagrams consisting of boxes and 
lines with vaguely defined meanings, if they are defined at all. The diagrammatic notations 
used in this practice are typically informal and ad hoc, i.e., based on the whiteboard 
approach. However, the software architecture community has become aware of the prob-
lems caused by the use of informal notations for architecture descriptions, and there is an 
agreement on the need for proper notations and modeling techniques for software architec-
tures [PW92][SG96]. Modern notations are either formal, i.e., based on formal and special-
purpose modeling languages, called Architecture Description Languages (ADLs) 
[GMW97][MT00][Cle96], or they are positioned somehow between informal and formal 
notations, i.e., based on semi-formal modeling languages. Semi-formal modeling languages 
present an alternative to using informal and formal modeling techniques and notations, but 
2
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semi-formal languages also complement both. Examples of languages supporting semi-for-
mal techniques and notations include OMG’s standard, the Unified Modeling Language 
(UML) [Omg01]. Semi-formal and formal languages are both being used in different ways, 
following different trends.

The following subsections summarize some of the most important trends and prac-
tices in software architecture: ADLs (architecture description languages), multiple views 
and pattern-oriented software architecture.

1.2.1 ADL-based Software Architectures

1.2.1.1 Review

To encourage calling off the popular practice based on the whiteboard approach, numerous 
ADLs have been specifically designed to support representing, analyzing and reasoning 
about key characteristics of software systems. This goal of ADLs is mainly achieved by 
providing linguistic constructs, such as components, connectors, properties, styles and sys-
tems, which aim at supporting the encapsulation of certain kinds of architectural concerns. 
A typical ADL allows one to encapsulate architectural concerns into linguistic constructs or 
units model elements: computations and data store (into components), interactions (into 
connectors), constraints (into properties), reusability of collections of design elements and 
the conditions for reusing such collections (into styles) and configurations (into systems).

The ADL trend, essentially driven by academics, is motivated by the creation and 
improvement of ADL-based approaches to software architecture, including associated 
tools; to this practice belongs the promotion of ADLs as suitable languages for solving 
architectural problems. ADLs have the advantage of being mathematically founded, facili-
tating analysis of architectural models. However, due to their formal nature, architectures 
described in existing ADLs can be hard to understand and to use as a vehicle for communi-
cation among the stakeholders of a project. For instance, developers in need of ADL-based 
software architectures will have to learn the corresponding mathematical models.

Furthermore, the lack of integration of ADL-based descriptions with other artifacts 
commonly used by software developers leads to considerable obstacles in the promotion of 
software architecture as a new field. This is perhaps a reason why ADLs are not so widely 
used in industry. Having become aware of these obstacles recently, ADL specialists and oth-
ers have started a development effort which addresses mapping strategies allowing for inte-
gration between specific ADLs and well-accepted description languages, for instance, UML 
[RMR+98][GK00][CKS+01], and XML [Sch01]. This is a valuable approach to achieve 
integration of ADLs with modern software technologies; however, it still remains insuffi-
cient, as ADLs address only a limited number of kinds of architectural concerns. For exam-
ple, ADLs generally lack support for representing crosscutting concerns; as a result, ADL-
based architecture descriptions are difficult to maintain and adapt once they are developed.
3
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1.2.1.2 Evaluation 

Major problems encountered with ADLs are related to their lack of flexibility. Architectural 
descriptions made in special-purpose languages (ADLs) like Wright [All97], Darwin 
[MDE+95], Rapide [LAK+95] and Acme [GMW97] should support descriptions of multi-
ple structures, including diagrams, models and views, that intentionally address different 
kinds of concerns. ADLs should show how various concerns affect each other in architec-
tural designs; they should also allow you to identify, analyze and elaborate architectural 
concerns that cut across several software components at the same time, such as transactions, 
security, load balancing, synchronization, reuse, customization, scalability, etc.; they 
should, but they do not. 

ADLs do, however, allow architects to achieve good support for non-crosscutting 
concerns. They provide significant means to represent, analyze and manipulate non-cross-
cutting or “naturally localizable” kinds of concerns through encapsulation in particular lin-
guistic constructs found in most existing ADLs. But, they failed to allow architects to 
achieve support for “non-localizable” concerns; though, a good ADL should also allow 
architects to provide descriptions that address compositions of both crosscutting and non-
crosscutting concerns.

1.2.2 View-Oriented Software Architectures

1.2.2.1 Review

View-oriented software architecture practice, especially driven by practitioners in the soft-
ware industry, is motivated by the idea that an architecture involves multiple structures 
which, considered from different perspectives, present different aspects of the system. An 
important characteristic of this trend is its ability to represent an architecture as a collection 
of diagrammatic descriptions that can be depicted by different views and at different levels 
of abstraction; each view can address its own set of concerns and allow for further elabora-
tion of its elements in various ways. This provides the capability to create multiple struc-
tures simultaneously, while allowing mechanisms for repeatedly refining each structure; it 
also includes the facility to integrate architectural descriptions with modern software devel-
opment artifacts.

View-oriented approaches allow you to express different aspects of an architecture in 
different views and to compose these aspects to build the system structure as a whole. 
Unlike ADL-based approaches, view-oriented approaches are not just limited to a few kinds 
of architectural concerns; instead, they allow one to address all significant kinds of concerns 
involved in a software architecture. View-oriented approaches are usually based on semi-
formal notations.

Examples of approaches following the view-oriented trend include the Krutchen 4+1 
Views [Kru95] and the Siemens Four Views [HNS99]. Further examples include applica-
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tions of the ISO Reference Model for Open Distributed Processing (RM-ODP) [ISO95]
with UML in areas such as telecommunications [KTM97][KMP+98].

While multiple views allow one to focus on different structures of a system, individ-
ual views do not address stakeholders’ concerns explicitly. Therefore, it is difficult to know 
precisely whether an architecture description resulting from a view-oriented approach has 
addressed clearly all the concerns of importance to the stakeholders; it is most important to 
know how views and concerns relate to each other.

1.2.2.2 Evaluation 

Essential problems encountered in using multiple views of a software architecture include: 
• Lack of support for associating architectural concerns to individual views. What is 

missing in existing view-oriented approaches is a clear understanding of the kinds of 
architectural concerns that pertain to the structures represented in individual views. 
Certain kinds of architectural concerns (e.g., functionality and feature) will have an 
effect on one or many representational units or model elements. Other kinds of archi-
tectural concerns (e.g., performance, interaction, configuration and security) will not 
only affect several linguistic constructs in one partial description, but they will also 
crosscut many elements in various partial descriptions: diagrams, models and views.

• Lack of appropriate support for software connectors. Mechanisms used to encapsu-
late interaction among components, as described in most architectural views, do not 
support modularization and reuse of connectors. However, inadequate modularization 
of interactions increases maintenance costs and complicates reasoning about architec-
tural concerns, such as security policies and synchronization. 

• Lack of consistency check between views. Current approaches do not have the ability 
to check consistency among multiple views, since there is no mechanism to support a 
“conceptual repository” that encompasses all elements of all different views, models 
and diagrams, and allows checking for consistency among the elements.

• Lack of separation between architectural viewpoints and architectural views. The 
view-oriented software architecture approaches mentioned above support each only a 
few, limited number of viewpoints and views; they do not clearly define the distinc-
tion between architectural viewpoints and views. The ANSI IEEE Recommended 
Practice for Architectural Description (known as ANSI/IEEE-1471-2000 standard 
[IEEE00]), in contrast, allows for distinguishing architectural viewpoints from archi-
tectural views, and for creating and using an arbitrary number of views. Unfortu-
nately, implementations of the ANSI/IEEE-1471-2000 standard are still missing. (I 
will return to this point in section 1.4.)
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1.2.3 Pattern-Oriented Software Architectures

1.2.3.1 Review

A well-known approach in the style- or pattern-oriented architectural practice is pattern-ori-
ented software architecture [BMR+96][SSR+00]. The principal idea of this approach is 
based on the (re-)use of patterns for developing software architectures. A pattern for soft-
ware architecture addresses a specific recurring design problem, which occurs in particular 
design contexts and offers a well-understood general solution schema. The solution schema 
describes the constituent components, their responsibilities and relationships, as well as the 
collaboration among those components.

An important characteristic of a pattern-oriented approach to software architecture is 
its ability to cross several levels of abstraction. Such approaches do not focus on design-
level patterns only; instead, they cover consistently system-level or architectural patterns, 
including design patterns [GHV+95] and low-level idioms. Another characteristic of this 
approach is the selection of appropriate architectural patterns. Selecting an architectural pat-
tern requires early decision-making that is significant to the design, construction and evolu-
tion of the system at hand; the selected architectural pattern will affect not only the 
fundamental organization of the system, but also the architecture of its subsystems and their 
interconnections.

The pattern-oriented software architecture approach supports a new mechanism for 
separation of concerns, called pattern systems. Pattern systems are containers of heteroge-
neous patterns that allow software architects to separate collections of patterns according to 
various criteria. When following this approach, design patterns are required to structure 
individual subsystems and relationships among them, but they have no effect on the organi-
zation of the system itself. 

Another critical element in an architecture description is a style [SG96]. According to 
Dwayne E. Perry and Alexander L. Wolf [PW92], “an architectural style defines a family of 
software systems in terms of their structural organization. An architectural style expresses 
components and the relationships between them, with the constraints of their application, 
and the associated composition and design rules for their construction”. Architectural pat-
terns are very similar to architectural styles, but they have some differences. 

However, according to [BMR+96], every architectural style can be described as an 
architectural pattern; but to achieve this, it is important to observe the following distinc-
tions:

• There are no dependencies among architectural styles, but patterns do relate to each 
other. As mentioned above, when applying the pattern-oriented software architecture 
approach, various design patterns can be used to structure the individual subsystems 
and the relationships among them; these can, in turn, make use of idioms in their 
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implementations, etc. The dependency relationships between patterns (from architec-
tural patterns via design patterns to idioms) can be documented in pattern systems.

• Architectural styles are less problem-oriented than architectural patterns. An archi-
tectural style is a high-level design mechanism that is intended to prescribe a software 
system’s organization independently of the context of a particular design problem. In 
contrast, a pattern addresses a specific recurring design problem which occurs within 
a particular design context and offers a well-understood generic solution schema.

• Architectural styles only describe the global organizational structures of a system. 
However, they do not care about the detailed design structures for individual compo-
nents and interconnections of the system. On the other hand, architectural patterns 
involve not only the overall system organization, they also affect the design of diverse 
subsystems and their interconnections.

• Architectural styles include reference models, but architectural patterns do not. Ref-
erence models are system organizations that impose rules for constructing applica-
tions in some particular domains. Examples include: the reference model for open 
distributed systems, RM-ODP [ISO95], that prescribes the rules for building open dis-
tributed applications; the ISO Open Systems Interconnection reference model which 
recommends the 7-layer model for communication networks [Tan92]; and the refer-
ence model for compiler construction [PW92]. In effect, the level of abstraction for 
using architectural patterns is not the same as for reference models; but one or more 
architectural patterns can be applied when using a reference model.

1.2.3.2 Evaluation

Major difficulties with the pattern-oriented approach are: 
• Lack of support for identifying forces in the solution scheme. Architectural patterns do 

not have means for identifying and reasoning about the relations between individual 
forces of recurring problems and the associated generic solution schemes. Without 
this support, instantiation and reuse of patterns remain difficult; this is particularly the 
case when the concerns related to individual forces crosscut various components, 
interconnections, and associated design patterns or idioms.

• Lack of support for crosscutting roles. Patterns describe their reusable elements in 
terms of roles rather than concrete components. However, most pattern descriptions 
do not provide mechanisms for encapsulating interactions and properly addressing 
dynamically changing roles. Roles that change dynamically are frequently found in 
complex interactions; they often cut across many components at the same time.
7
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1.3 The Problem

A major cause of many complications in software architecture is the lack of abstraction for 
separating and combining concerns of various kinds in architectural descriptions. A given 
concern might cut across many elements of an architecture description. Crosscutting con-
cerns are critical aspects of the software composition problem.

However, despite the large amount of ongoing good research in software architecture, 
many of the difficulties in the creation of software compositions are related to deficiencies 
in addressing crosscutting concerns. The representation of crosscutting concerns is very 
limited in current practices; for example, interactions are difficult to modularize and reason 
about. Existing software architecture approaches either require that interactions be scattered 
across the participant components, or they concentrate on just a few kinds of interaction 
concerns, such as the protocol of communication among components. This makes it easier, 
perhaps, to design special-purpose description languages to support architectural represen-
tations. However, it also complicates considerably the creation of software connectors 
[SG96] that can combine more than one kind of interaction concern. Thus, it becomes diffi-
cult to promote connectors as first-class citizens in software architecture and to describe 
them as a specification of interaction. Unfortunately, the software architecture community 
still continues to neglect the importance of crosscutting concerns, although existing 
approaches have failed to address them appropriately.

Without new techniques to explicitly address crosscutting concerns at system-level, 
software architects are condemned to produce descriptions in which crosscutting and non-
crosscutting concerns will be entangled. When fulfilling unanticipated technological con-
straints during implementations, developers will have to customize and elaborate descrip-
tions that are already intertwined. As a result, developers will likely produce software that 
cannot be tested for conformance to the architecture. Lacking conformance between archi-
tecture and its realization will continue to limit considerably the benefits of software archi-
tecture.

We believe that focusing on only non-crosscutting concerns impedes attaining major 
goals of software architecture: it inhibits communication among the stakeholders of a soft-
ware development project, restrains the manifestation of the earliest design decisions in the 
project, and limits the ability to reuse and transfer the abstraction of a software-intensive 
system. New approaches are required to improve the current situation in order to achieve 
the goals of software architecture.
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1.4 Main Contributions

The main contribution of this thesis to solving the above problem is a new approach for 
developing and documenting software architectures, called the concern-oriented software 
architecture approach—or the COSA Approach.

 The concern-oriented software architecture approach provides new mechanisms for 
encapsulating individual concerns into independent architectural constructs. It introduces 
concern-oriented modeling techniques to encourage software architects to address their sys-
tems’ requirements in a “concern-oriented way”. The COSA Approach allows one to 
achieve:

• Integration of architecting activities with common software development. This capa-
bility enables the creation of software architectures in non-isolated ways—that is, 
COSA supports architecture development at multiple stages within the global context 
of the software life cycle, not only at one particular stage or during a specific phase of 
software development.

• Reification of stakeholders’ concerns into software. This ability allows one to address 
individual concerns at different levels of abstraction simultaneously, while distin-
guishing each concern from the software development artifacts reifying it.

• Architectural design by concerns. Practicing design by concerns allows one to clearly 
separate the software architecture of a system from its description, and to ensure that 
both the software architecture and its description address properly the stakeholders’ 
concerns and nothing more.

• Realization of an architecture concern-space. Realizing an architecture concern-space 
provides support for developing software architectures, while applying mechanisms 
of multidimensional separation of concerns (MDSOC).

• Realization of the IEEE-Std-1471 Conceptual Framework. This allows one to produce 
architecture descriptions that conform to the IEEE and ANSI standard for architec-
tural descriptions, ANSI/IEEE-Std-1471-2000.

• Effective use of UML. The COSA approach is a new way of using UML that allows 
one to integrate the resulting concern-oriented architecture descriptions with other 
architectural descriptions written in standard modeling languages, such as UML; this 
includes, for example, UML support for key ADL constructs: components, connec-
tors, styles, systems and properties.

Another key contribution of this thesis is a particular implementation of the COSA 
approach, called the PCS Framework.  The PCS Framework provides a UML-based linguis-
tic toolkit, called UML Space, and combines the realizations of IEEE-Std-1471 and 
MDSOC. Essentially, the PCS Framework achieves the requirements for fulfilling the 
COSA approach in the following steps:
9
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• The PCS Framework realizes the IEEE-Std-1471 Conceptual Framework through its 
concept of a viewpoint schema. 

• The reification of concerns is achieved by means of the projection mechanism.
• The realization of an architecture concern-space is achieved through the notion of 

UML Space—the PCS Framework uses standard UML to create a UML Space which 
architects need to use to develop and apply various viewpoint languages at will.

• The PCS Framework achieves “architectural design by concerns” through concern-
oriented modeling using one or more viewpoint languages.

• The integration of the building of software architectures with common software 
development is achieved through a combination of MDSOC with IEEE-Std-1471 and 
UML.

This thesis also provides three different Perspectival Concern-Spaces (PCS’s) which 
together build the current PCS Framework: an Aspect-Oriented Construction PCS, an On-
Demand Remodularization PCS, and a Service-Oriented PCS. The On-Demand Remodular-
ization PCS includes a new concern-oriented pattern, which we refer to as On-Demand 
Remodularization pattern. Furthermore, the dissertation provides different examples, each 
showing how to use an individual PCS.

1.5 Structure of the Dissertation

Part I- Motivation & Background

Chapter 2: Motivating Case Study
This chapter presents an introductory case study that shows the motivation for going a step 
further. The case study shows how to apply current software architecture practices, based on 
the example of a video surveillance service. The example includes an application of three 
different approaches—an informal, a formal and a semi-formal approach. The chapter also 
illustrates the limitations of these approaches and argues for a concern-oriented approach to 
software architecture development and documentation.

Chapter 3: Related Work
This chapter introduces the foundations of the concern-oriented approach to software archi-
tecture. It presents two conceptual frameworks: an architecture description framework 
which is part of the ANSI IEEE standard for architecture documentation, called IEEE-Std-
1471; and an aspect-oriented software engineering framework, known as concern spaces, 
which is part of Multidimensional Separation of Concerns (MDSOC). The Unified Model-
ing Language (UML) is introduced as a linguistic framework that can be used to establish a 
bridge between both conceptual frameworks. The chapter concludes with the needs for 
implementing these frameworks using UML.
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Part II- Building & Describing Concern-Oriented Software Architectures

Chapter 4: Concerns and Software Architecture
This chapter introduces a new perception of concerns in relationship to software architec-
ture. The first part of the chapter considers and discusses several definitions of the notion of 
concern and presents a definition used by this dissertation. It introduces concern categories 
and gives several examples of concerns from both a given requirements definition and a 
software development problem. The second part of the chapter introduces the concern-ori-
ented approach to software architecture as a general methodology that can be realized in 
different ways to achieve architectural design by concerns.

Chapter 5: The PCS Framework
This chapter introduces the PCS Framework, a particular methodology implementing the 
concern-oriented approach to software architecture. It presents a fulfillment of the general 
requirements on concern-oriented approaches to software architecture, which uses UML to 
combine the realizations of the conceptual frameworks of MDSOC and IEEE-Std-1471. 
The PCS Framework introduces new mechanisms, such as projections and UML Space, to 
support integrating software development into the building of software architectures.

Chapter 6: Aspect-Oriented Construction PCS
This chapter presents the concern-oriented approach to software architecture from the per-
spective of aspect-oriented software development, using multi-dimensional separation of 
concerns (MDSOC). It describes a perspectival concern-space, called Aspect-Oriented Con-
struction PCS. This specific PCS demonstrates how MDSOC helps deal with software com-
plexity by supporting the composition of independent components software along different 
interaction concerns. The chapter introduces a UML Space for Aspect-Oriented Modeling.

Chapter 7: On-Demand Remodularization PCS
This chapter presents an approach to implementing MDSOC for UML with a specific focus 
on on-demand remodularization. It introduces techniques for achieving architectural design 
by concerns with concern-oriented modeling. Moreover, the chapter describes a concern-
oriented pattern, called On-Demand Remodularization pattern.

Chapter 8: The Service-Oriented PCS
This chapter presents an integration of the Service-Oriented PCS with a well-known View-
point-Oriented approach to documenting software architectures. This chapter uses the 
Video Surveillance System example introduced in chapter 2 to show the applicability of the 
PCS Framework on other architectural description approaches.
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Part III - Other Related Work and Conclusions

Chapter 9: Integrating the Structural PCS with SADL
This chapter presents the case of a compiler architecture to validate the integration of Con-
cernBASE, an early structural PCS, with SADL, which is a software architecture descrip-
tion language based on architectural refinement.

Chapter 10: Conclusions
This chapter provides concluding remarks. It also presents some limitations of concern-ori-
ented approaches to software architecture and the PCS Framework, and it indicates some 
directions in which research in the new area of concern-oriented software architecture could 
be pursued.

Part IV - Annexes
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Motivating Case Study
Chapter 2:

Motivating Case Study

In describing the world, formalization and formal reasoning can 
show only the presence of errors, not their absence.

Michael Jackson 

This chapter presents an introductory case study that shows the motivation for going a step 
further. The case study shows how to apply current software architecture practices, based 
on the example of a video surveillance service. The example includes an application of 
three different approaches—an informal, a formal and a semi-formal approach. The chap-
ter also illustrates the limitations of these approaches and argues for a concern-oriented 
approach to software architecture development and documentation.

2.1 Informal Software Architecture Documentation

As discussed in the previous chapter, there are many different approaches that might be 
applied to document a system’s software architecture. But which of these approaches is 
most appropriate for solving a given problem? If there is one at all, why is it the most appro-
priate? Frankly, there is no simple answer to such questions; in reality, each particular 
approach has its advantages and limitations. This section helps get an idea of what an infor-
mal architecture documentation approach can be good for and for what it is not appropriate. 
It shows the example of an informal problem description and presents cases of documenting 
the problem space and documenting the requirements on the solution space for that prob-
lem. The following section presents the software development problem that we consider 
throughout the motivating case study.

2.1.1 Software Development Problem — The Video Surveillance Service

When the number of crimes increases in society and security becomes a concern, it is often 
necessary to make use of new technologies to control the situation. A video surveillance 
service can be useful in such a situation. For this purpose, a collection of geographically 
distributed video cameras is to be controlled and monitored by security agents from a cen-
tral video surveillance station. Each video camera captures images and produces a video 
stream that is transmitted to the central surveillance station. In case of an emergency, the 
security agents alert the police; for analysis purposes, security agents can command the sur-
veillance system to store the sequence of images related to the urgent situation in a database 
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of emergencies. Moreover, the police can ask for the video stream produced from a particu-
lar location and in a specific time period.

2.1.2 Documenting the Problem Space

Creating a software architecture for the video surveillance service is a central part of the 
development task, but the importance of the architecture depends on how much it facilitates 
the job of stakeholders. For example, developers will much appreciate it if they can find 
swiftly all the information they need to know about an architecture in order to develop soft-
ware that conforms to that architecture. A good way to achieve this objective consists in 
providing clear and systematic documentation of the software architecture.

However, before you can document a software architecture, it must first be developed. 
The remainder of this section is about documenting the problem space. Creating a docu-
mentation of a problem space allows for better understanding of the software development 
problem at hand. The elements of the problem space should provide an idea of what is 
present in the problem description and must be realized in the solution space.

Figure 2.1 shows an informal illustration of a problem space that helps understand and 
explore the video surveillance service problem; it describes the problem space as a network 
of elements. An element in a problem space is either a collaborating part (i.e., surveillance 
station, video cameras or police station) or an interconnection among those parts. Each ele-
ment of the problem space must be relevant to understand and design the solution.

2.1.3 Documenting Requirements on the Solution Space

Documenting requirements on the solution space is about determining a set of constraints 
that must be fulfilled by an architectural solution before that solution is actually developed. 
This allows us to examine how to put into software architecture practice a notion similar to 

Figure 2.1: An Informal Documentation of the Problem Space
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the popular rule of extreme programming [Beck99], known as “code the unit test first”, and 
which can be re-formulated as: “document the requirements on the solution space first”.

What Architecture Development Process is Needed?
To motivate the use of the above rule, let us have a look at an architecture development pro-
cess depicted in figure 2.2. This figure shows an approach that helps ensure that the video 
surveillance service will fulfill the stakeholders' needs, as it allows you to evaluate the soft-
ware architecture against the expectations of the stakeholders.

Figure 2.2 depicts a UML activity diagram describing the development process followed by 
many architects when building software architectures. Each step in this process is repre-
sented by an activity that takes place at one particular stage of the software architecture 
development process. As shown in the figure, the process itself is documented as part of the 
architectural solution space (which is represented by the swimlane). The architecture devel-
opment activity diagram should be interpreted as follows: 1) develop an architectural solu-

Figure 2.2: Architecture Development Activity Diagram
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tion for the video surveillance problem to be part of the software architecture; 2) document 
your architectural solution to produce a handbook that is useful for different stakeholders to 
perform their tasks, respectively, within the project; 3) use this handbook as an input for 
analyses and reasoning about the essential properties of the video surveillance service; and 
4) evaluate your architectural solution against the needs of the stakeholders and against the 
realizations of the elements introduced in the problem space.

In fact, how practical is such an architecting process? First of all, creating a good soft-
ware architecture (that is useful for developers and maintainable over time) requires a lot of 
effort and practical experience. Therefore, waiting to evaluate the software architecture at 
the end of an architecting process is risky. For instance, following the transition back—from 
the evaluation step to develop another solution or improve an existing one—can be very 
expensive. As time and budget are both major concerns that are so relevant to software 
architects, they can be seen as important decision factors which may lead to the success or 
failure of a software project.

Which Constructs are Needed in the Architectural Solution?
The following presents an example of informal documentation of requirements on the solu-
tion space. Figure 2.3 focuses on fundamental constructs required to explicitly document 
the video surveillance service architecture.

Figure 2.3 depicts a set of architectural elements: they are, CameraDevice, SurveillanceStation, 
SecurityInformationSystem and VSServiceConnector. The video cameras interact with a control sta-
tion over a particular communication platform. The first three architectural elements 
embody each an architectural abstraction reified as a Component, that is, a kind of represen-

Figure 2.3: An Illustration of Requirements on the Solution Space

Cam eraDevice

control

data

controlcontrol

datadata

ConnectorComponent

SurveillanceStation

Component

SurveillanceStation

Component

Interaction 
Protocol

Connection 
Point

Connection 
Point

Connection 
Point

Connection 
Point

SecurityInformationSystemSecurityInformationSystem

Component

VSServiceConnector
18



Motivating Case Study
tational construct. The last architectural element represents another kind of representational 
construct, called a Connector.

Both kinds of architectural constructs are equally required when documenting soft-
ware architectures: a Component represents a location for computation and data store 
within a system, while a Connector represents a location for interactions among the compo-
nents. The dashed boxes are used as graphical symbols for both kinds of constructs and for 
the elements they are composed of. Each dashed box visually encapsulates the realization of 
a specific element of the problem space, i.e., the picture contained in the box.

A major requirement of the architectural solution consists of providing specifications 
for the different types of representational constructs. For example, to fulfill the require-
ments as illustrated in figure 2.3, the architectural solution for the video surveillance service 
could specify the component type CameraDevice as an abstract representation of individual, 
geographically distributed video cameras. The SurveillanceStation could be an abstraction for 
that part of the system that remotely controls the cameras and continuously receives the 
video streams from the CameraDevice. Similarly, the SecurityInformationSystem could abstract the 
information system of the police that interacts with the SurveillanceStation. The VSServiceCon-

nector could specify an abstraction for the communication platform; it could have connection 
points and a protocol of interaction between these connection points, as shown by the nested 
elements. 

Each connection point could represent an interface element for the connector that a 
component will require to interact with other components. But in order to be able to partici-
pate in a communication mediated by a connector, a component must implement a mecha-
nism to connect to the connector interface element; the component interface element must 
match the interface element of the connector. The implementation of such a mechanism 
might be achieved in software or in hardware; however, the architecture abstracts above any 
specific implementation details. For instance, in figure 2.3, the two circuit boards, which 
implement the interface of the connector to the camera device and the video control station, 
are each encapsulated in a separate connection point.

The protocol of interaction specifies the way to perform the communication between 
the connection points. For example, an architectural solution for the Video Surveillance Ser-
vice should specify what element in the architecture realizes the notion of the duct carrying 
the control/data and protocol information exchanged between the components (i.e., the 
hardware part of the protocol of interaction, shown as cable in figure 2.3). In addition, the 
dashed cloud shows what is required to realize the software part of the interaction protocol. 
The bi-directional dashed arrows binding the components to the connector illustrate the 
connections. Connections are required to associate (connect) the elements of a component 
interface with the connection points of the connector in order to build concrete systems 
from a Video Surveillance architecture.
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2.1.4 Remarks

The description given above is only a small sample of a type of informal documentation. 
However, an essential goal of the previous two sections is to motivate the need of filling the 
gap between the specification of software development problems [Jack01] and the descrip-
tion of software architectures [MT00].

A major difficulty with the presented approach for documenting the requirements on 
the solution space is the lack of means for automating the software architecture evaluation 
process. Finding an appropriate architecture description language that can be integrated 
with different software architecture evaluation methods and tools is another problem 
[CKK02]. A key question is: how to make the idea “document the requirements on the solu-
tion space first” become a reality in the field of software architecture? 

At this stage, formal methods and techniques cannot help much since it is very diffi-
cult, or even impossible, to formalize descriptions of early requirements on an architectural 
solution before developing the actual solution itself.

The informal documentation produced above lacks preciseness. It highlights the need 
for more precise formalisms that can serve as a basis for communication among stakehold-
ers and for performing analyses on the architectural decisions or properties when document-
ing software architectures. For example, when considering figure 2.3, it is very difficult to 
understand how the components interact, or in which sequence they communicate; it is dif-
ficult to know what the interaction points for individual components are, or how to specify 
the connection points precisely.

2.2 Formal Software Architecture Documentation

This section introduces an architecture description language, called Wright [ABV92], 
which exemplifies a formal software architecture documentation.

Wright is a typical architecture description language that allows one to focus explic-
itly on the formal specification of a software architecture. Architectures described in Wright 
are centered around the following ADL constructs: components, connectors, properties, 
systems and styles. Wright formally represents the notions of component as computation, 
connector as pattern of interaction, property as constraints, system as configuration, and 
style as a collection of reusable architectural elements. Thus, describing architectures in 
Wright allows you to distinguish from one another different kinds of architectural concerns, 
such as computation/data store, interaction, constraint, configuration, and reuse. Moreover, 
Wright permits separating the structure of a system from its behavior. For example, 
figure 2.4 shows a Wright specification of a software architecture that provides a formal 
solution to the video surveillance problem; this solution addresses separately the structural 
aspects and behavioral aspects of the system.
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Describing software architectures with Wright requires one to make use of extensions 
to the CSP notation [MPW92], in order to distinguish events that are initiated (i.e., sent) by 
a specific type of component from those that are observed (i.e., received). In Wright, a com-
ponent type describes a localized, independent computation. A Wright connector type spec-
ifies interactions among a collection of components. The aim of an explicit use of 
connectors in Wright specifications is to enhance reuse of recurring patterns of interaction 
not only in one specific situation, but in many different contexts of communication: connec-
tors allow for decoupling of components.

2.2.1 Documenting Architectural Structure in Wright

The Wright specification of the video surveillance service has two essential parts, called 
Style and Configuration. Figure 2.4 shows both parts. Style represents the declaration of a 
set of properties that need to be fulfilled by any concrete video surveillance service that 
implements VSServiceArchitecture. Configuration embodies the declaration of one particular 
instantiation of the VSServiceArchitecture style; this is named VideoSurveillanceSystem.

 

Figure 2.4: A Wright Description of the Video Surveillance Architecture
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The structure of the VSServiceArchitecture style is described by three kinds of architectural ele-
ments: Component, Connector and Constraints.

Two component types are described in figure 2.4 which are named SurveillanceStation

and CameraDevice. To keep the Wright specification of the architecture simple, we deliber-
ately left out the component type SecurityInformationSystem and its interaction with the VSSer-

viceConnector.
Component (i.e., the component type description) is structured in two parts, the inter-

face and the computation. An interface consists of numerous Ports. Each Port represents a 
point of collaboration at which a component may participate in some interaction. Computa-
tion specifies what the component does and what it requires to work (i.e., what the compo-
nent expects from the environment which it interacts with). 

The Connector consists of two parts: a set of roles and the glue. Roles indicate what is 
expected of a component that will participate in an interaction mediated by the connector. 
The Glue describes how the participants collaborate to create an interaction. For example, 
the VSServiceConnector provides two roles (source and sink). 

A style description in Wright supports the declaration of properties that must be 
obeyed by any particular configuration. In the example of the VSServiceArchitecture style, the 
predicate specified in the Constraints clause indicates that there must exist a component 
instance of type SurveillanceStation, that is named ss. This component instance must be con-
nected to all digital cameras (i.e., every instance CameraDevice) contained in the system.

The component and connector instances of a Wright description must be composed 
within a configuration in order to provide a complete description of a particular system; a 
configuration must conform to a given architectural style. For example, the configuration 
VideoSurveillanceSystem is described as a collection of instances of two component types: Sur-

veillanceStation and CameraDevice (called station and digitalCamera); ports of component of those 
types (i.e., ssp and cdp) are attached to two roles (sink and source) of the connector instance 
vssConnector. The declarations in the Attachments clause describes how to assemble different 
architectural elements to build a particular system; having this as a separate clause allows 
one to focus on the topology of a configuration for that system. According to figure 2.4, 
attaching “station.ssp as vssConnector.sink” specifies that the station component will fulfill the 
sink role in the interaction mediated by the vssConnector; the station component will play this 
role while engaged in communication through the port called ssp. To be exact, all of the 
information that station outputs to port ssp will be delivered to any component that plays the 
sink role of the vssConnector. “digitalCamera.cdp as vssConnector.source” should be interpreted in a 
similar way.

2.2.2 Documenting Architectural Behavior in Wright

The Wright specification for the behavior of the Video Surveillance architecture provides an 
architecture documentation describing: 1) a set of significant events that can be processed 
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by the components of the system at hand, and 2) the sequences in which these events occur. 
The notation for behavioral description indicates the direction of the interaction; this allows 
one to explicitly distinguish events that are initiated by a sending component (overlined 
events) from those that are observed by receiving components (not overlined).

To describe the behavior of component and connector types, Wright allows us to spec-
ify a process for each of the following elements: port, role, computation and glue.

In figure 2.4, the computational behavior description for the component type Surveil-

lanceStation shows that an instance of SurveillanceStation first performs some internal computa-
tion (while engaged in internalCompute); then it repeatedly initiates an ssp.videostreamrequest

event on the port called ssp and waits to observe an ssp.start event on the same port, “or” it 
terminates successfully; the successful termination is indicated by the § symbol. “Or” means 
an internal choice; it indicates that the SurveillanceStation will decide by itself (without any 
external influence) whether it should make another request or terminate. An internal choice 
in the behavior is represented by the symbol II. The computational behavior of the CameraDe-

vice component type is similarly defined. But, in contrast to the SurveillanceStation component 
type, the specification of the computational behavior of CameraDevice makes use of an exter-
nal choice. This is indicated by the symbol [], which means that the computation process is 
expected to reply to each request, and is not allowed to terminate in advance.

Furthermore, using Wright, you can assign the port of a component to a particular 
CSP process. This capability allows one to specifically define a local interaction protocol 
for a particular port. In figure 2.4, the local interaction protocol for the ssp port covers the 
same behavioral pattern as defined in the computation process of SurveillanceStation, except 
the internal part (specified by the internalCompute event).

A separate CSP process is required to specify each of the connector roles (source and 
sink) played by the participant components. In the example, the source and sink roles are 
deliberately kept simple to allow you to easily comprehend the behavior of the roles, and to 
explain the matching required between ports and roles when describing Configuration. 

In the example, the description of Configuration shows how to attach the port ssp of 
the station component instance to the connector role, VSServiceConnector.sink, and how to attach 
the cdp port of the digitalCamera component instance to the VSServiceConnector.source role; these 
attachments are significant parts of the construction of the particular system, called VideoSur-

veillanceSystem.
Finally, the Glue process specifies the protocol of interaction among the roles of a 

connector type. The behavior of the Glue process shown in figure 2.4 can be explained as 
follows: the SurveillanceStation initiates a videostreamrequest event (via the ssp port) to request 
video streams from a CameraDevice; the request is mediated by the connector as sink.video-

streamrequest; it is observed by a CameraDevice as source.videostreamrequest event; the response 
of that CameraDevice is mediated back as source.start and received as sink.start by the Surveil-

lanceStation component.
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Remarks
2.2.3 Remarks

Wright provides good support for formal expression of the architectural abstractions intro-
duced in figure 2.3. However, the Wright mechanism for separating “the structure” of a sys-
tem from its behavior suffers from the lack of support for visually modeling multiple kinds 
of system-level structures; architecture involves more than just one structure.

Moreover, for a connector to mediate interaction among various components, two 
conditions must be fulfilled: 

1. The ports of the components must match the connector roles
2. Both the ports and roles must adhere to the interaction protocol that is specified by the 

Glue.
Fulfilling these conditions allows one to treat software connectors as first-class citizens in 
architecture descriptions, and thus to support analysis and reasoning about interaction 
among components. But requiring protocol adherence in which each port has to be perfectly 
matched to (at least) a role leads to inflexible software architectures, because perfect match-
ing is hard to achieve when evolution is a relevant architectural concern. Typically, when 
requirements change, the architecture must evolve: some ports will have to match many 
connector roles and vice-versa; thus, maintaining perfect matching becomes problematic. 
To reduce maintenance effort, software architects might anticipate as many changes as pos-
sible in their designs; however, this is not feasible because it complicates the architecture 
and the development of software that conforms to that architecture. One consequence could 
be that the project might not finish on time.

2.3 Pattern-Oriented Software Architecture Documentation

This section presents an example of pattern-oriented documentation for the video surveil-
lance service architecture. It starts with documentation of requirements on the pattern-ori-
ented software architecture; then it demonstrates how to apply simultaneously two 
additional design patterns—the Observer pattern ([GHV+95]) and the Component Configu-
rator ([SSR+00]) pattern. Finally, the section introduces an application of the Pipe-and-Fil-
ter architectural pattern ([BMR+96][SG96]) on the entire video surveillance service, and 
discusses problems related to combining different instances of multiple patterns in a soft-
ware architecture.

2.3.1 Documenting Requirements on the Pattern-Oriented Architecture

Figure 2.5 presents an informal requirements diagram consisting of a set of constraints to be 
filled by architectural constructs required: 1) for early evaluation of an architectural solu-
tion applied to the problem at hand and 2) for documenting the architectural solution so that 
it allows one to understand the composition of design and architectural patterns. The 
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requirements diagram also shows a separation of concerns that is reified in the distinction 
between “base” and “perspectival” constructs. 

Base constructs represent the basic architectural elements that should be globally visible to 
all stakeholders and from all perspectives. Base constructs should be described in any struc-
tural documentation of a software architecture; they are “objective” in nature. The base con-
structs shown in figure 2.5 include the two component types, the connector type and the 
system; these are depicted by the dashed boxes.

A perspectival construct represents a facet of a base construct—or an aspect of a col-
lection of base constructs. Perspectival constructs have a “subjective” nature; they do not 
need to be globally visible; instead, they should be relevant to some particular kinds of con-
cerns that are significant from certain perspectives, but irrelevant from others. Indeed, the 
most significant constructs for understanding, documenting and reusing the video surveil-
lance service architecture are not the base constructs (i.e., the components and connectors) 
themselves. Instead, the architectural elements of focus are the perspectival constructs that 
encapsulate the externally visible properties of base constructs. Examples of perspectival 
constructs include: the roles played by the components and connectors (shown as Ports and 
Roles), the protocol of interaction between the Roles, and the connections between Ports and 
Roles. 

Clearly, the notion of role as used in the requirements diagram is general and it 
includes the interface elements of the component types and the connector type. The names 
shown below the dashed boxes in the requirement diagram designate the roles defined by 

Figure 2.5: Informal Req. Diagram for the Video Surveillance Architecture
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An Application of Architectural and Design Patterns
the selected patterns. Each pattern role should be assigned/realized by one or more perspec-
tival constructs in the architectural solution. For example, the pattern roles named Filter and 
Component should be realized by the ports of the CameraDevice and SurveillanceStation compo-
nent types. The pattern roles called Pipe, Subject, Observer, and Channel should be realized by 
the connector roles and the interaction protocol of the VSServiceConnector. The configuration 
roles named Configurator and Repository should be fulfilled by the VideoSurveillanceSystem.

The lines between the component ports and connectors indicate the requirement for a 
mechanism to connect the ports of components to the roles of connectors. Finally, the trans-
parent arrow (from the CameraDevice to the SurveillanceStation) exemplifies the need for a 
means to document the direction of the video stream flowing through the VSServiceConnector.

2.3.2 An Application of Architectural and Design Patterns

This section documents a software architecture for the video surveillance service that 
applies three different patterns—the Observer design pattern, the Component Configurator 
design pattern and the Pipe-and-Filter architectural pattern.

2.3.2.1 Rationale for Applying the Observer Design Pattern

The rationale for this design decision is to enable a one-to-many interconnection between 
the connection points so that when one connection point changes, all the related connection 
points are notified and updated automatically. 

2.3.2.2 Documenting An Observer Pattern Occurrence

The following shows an example that documents an Observer pattern occurrence used to 
model the VSServiceConnector as a “pattern” of interaction utilizing the Observer protocol.

A pattern occurrence (or instance) binds Classifier Roles to Classifiers. As depicted in 
figure 2.6, a pattern occurrence can be modeled by a named UML Collaboration which is 
described by a set of roles: Classifier Roles and Association Roles. A Classifier Role repre-
sents a placeholder for a specific Classifier within a concrete system. Subject and Observer are 
two examples of Classifier Roles. Classifiers involved in the pattern occurrence are called 
participants. For example, the Classifiers Publisher and Subscriber are two participants of the 
Observer pattern occurrence shown in figure 2.6. A Classifier that fulfills a specific role 
(called Classifier Role) is said to be bound to that role. A binding is shown as a dashed line 
drawn from the pattern to the Classifiers.

The bindings between the Classifier Roles and the Classifiers should be interpreted as 
described below.

• Publisher is bound to Subject: the Publisher Classifier must satisfy the Subject Classifier 
Role (i.e., the Publisher must realize the corresponding responsibilities of Observer pat-
tern role, as defined in [GHV+95]);
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• Subscriber is bound to Observer: the Subscriber Classifier must fulfill the Observer Classi-
fier Role;

Using Classifiers, we have more flexibility in the design: for example, the design of the 
VSServiceConnector leaves open whether Publisher and Subscriber will be modeled as classes, 
subsystems or interfaces. The specifications of the Classifier Roles are taken from the pat-
tern description (in the catalogue).

So far, the structural description of the Observer pattern application shown at this stage does 
not address the connection points. The next design step concentrates on the connection 
points.

Figure 2.7 presents a refinement of the above instance of the Observer design pattern. 
It shows the specifications of both Classifier Roles (Subject and Observer) and describes how 
they are associated with one another. The relationship between the Classifier Roles is repre-
sented by an unnamed Association Role. This Association Role can be dynamically bound 
to associations among Classifiers. 

publisher and subscriber each represent an endpoint of the unnamed Association Role, which is 
referred to as the Association-end Role; these Association-end Roles specify the connec-
tions between the Classifier Roles Subject and Observer, and the unnamed Association Role as 
shown in figure 2.7. The multiplicities attached to the Association-end Roles (0..1 and *) 
indicate that at most one “publishing” connection point can be interconnected with many 
“subscription” connection points. 

The features of the Classifier Roles are defined in the two compartments below the 
name compartment. Having a definition of features in the Classifier Role means that all 
Classifiers acting as a Subject will have to provide an attribute to keep the subject state; Any 
Classifier that acts as a Subject must also provide the capability to publish notifications, to 
read and write the subject state attribute. On the other hand, all the potential Observers must 
be able to receive the notifications and to perform updates.

Figure 2.7 shows a facet of the instantiation of the Observer pattern and is useful doc-
umentation if your goal is to understand and represent the connection points. But it is less 

Figure 2.6: A Higher-Level Description of the Observer Pattern Instance
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useful when your goal is to describe and reason about the protocol of interaction between 
the connection points.

Figure 2.8 provides more details on realizing the different roles involved in the connector 
design. These include the unnamed Association Role specifying the interconnection 
between the connection points and the Classifier Roles that specify the connection points 
themselves. The figure shows the static structure of the Observer pattern occurrence that 
consists of the Classifier Roles Subject, Observer, and EventChannel, and the Classifiers Pub-

lisher, Duct, Subscriber and ConcreteSubscriber. The Subscriber connection point is modeled as an 
abstract Classifier to allow developers of the connector to define various ConcreteSubscribers 
that can be needed for different purposes.

The interconnection is explicitly modeled by the Duct Classifier to allow for explicit 
specification of the event propagation behavior. There must be only one instance of the 
Classifier Duct that can act as an event channel interconnecting two connection points. This 
instance is visible by the publisher only; it must be bound to the Association-end Role called 
duct. The note attached to the Duct shows an example of Java code describing how the notifi-
cation events are propagated along the interconnection. This piece of Java code implements 
the Duct Classifier as a class. 

2.3.2.3 Rationale for Applying the Component Configurator Pattern

We will now use the Component Configurator Design Pattern to address the configurability 
dimension of the software architecture. A major motivation for instantiating the Component 

Figure 2.8: An Observer Pattern Instance with Focus on the Interconnection
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Configurator [SSR+00] in this example is to help understand and document two architec-
tural concerns: 

1. How to configure the components of the video surveillance service into various pro-
cesses without having to shut down and re-start the running application processes.

2. How to link and unlink application components dynamically at runtime, without mod-
ifying, recompiling or relinking them. 

Each of the concerns presents a different facet of the configuration problem addressed by 
the pattern: one facet of the problem is the configuration of components, and the second one 
is the configuration of interconnections among components.

2.3.2.4 Instantiating the Component Configurator Pattern

The documentation of the Component Configurator pattern instance can be separated in two 
parts: structural documentation and behavioral documentation. 

Structural Documentation
The structural documentation of a Component Configurator instance describes a partial 
solution to our configuration problem; this solution is depicted in figure 2.9 as a UML col-
laboration diagram. The diagram shows the structural characteristics required to configure 
individual components of the system1. 

The system is represented by the Classifier, called VideoSurveillanceSystem, which 
involves two Classifier Roles, Repository and Configurator. The Classifier VideoSurveillanceSystem

is said to play both Classifier Roles and each of the roles must be bound to some concrete 
elements of the system. The Classifier Roles Repository and Configurator are implicitly bound, 
that is, the internal Classifiers of the system to be bound to the roles are either hidden in this 
diagram or the architect has not decided yet which of the internal Classifiers will play the 
given roles.

An essential condition for the VideoSurveillanceSystem to act as repository (i.e., to play 
the Repository role) is to be able to add different configurable components to its “configura-
tion space”; it should provide support for initialization, termination, suspension, and 
resumption of the components; VideoSurveillanceSystem should also allow one to get informa-
tion about each of the components present in the repository. The part of the system that 
plays the Repository role must be able to store all the configurable component types Surveil-

lanceStation and CameraDevice. Both component types and their abstract super type Configurable

(written in italic) are modeled as Classifiers.

1. The term “system”, as used here, refers to a software application rather than a system in the sense of ADLs 
(as used in section 2.2).
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The Classifier Role Configurator is shown as a placeholder for a specific software infrastruc-
ture that should allow you to load existing components from the repository, to configure 
those components individually, and to compose them for the purpose of generating new sys-
tems. 

The Association Role between the Classifier Roles, Repository and Configurator, denotes 
a dynamic relationship, which indicates that every configurator must have its own configu-
ration space (or repository) that holds the configurable elements.

Behavioral Documentation
The way the system interacts with its components to achieve the configuration is shown as 
UML sequence diagram in figure 2.10. 

The interaction among the VideoSurveillanceSystem and its components is achieved in 
three phases:

• Phase 1: Component initialization. This initializes each individual component that 
can be selected from the Repository and added to the Configurator.

• Phase 2: Component processing. Once added to the Repository (temporary configura-
tion space), the services provided by one component can be used by another compo-
nent.

• Phase 3: Component termination. This involves the selection of components and their 
removal from the Repository. 

The diagram shown in this figure addresses another facet of the configuration problem 
which focuses on the dynamic structure of the pattern occurrence. It documents the mes-
sages (e.g., init(), insert(), etc.) that are exchanged among the instances of the participant Clas-
sifiers.

Figure 2.9: Structural Instance of the Component Configurator Pattern
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Motivating Case Study
The sequence of interactions required to configure the components of the VideoSurveillance-

System is indicated by the timelines (the vertical lines). The vertical rectangles placed on the 
timelines show the activation boxes that indicate when instances are involved in some com-
putation. The underline indicates that the model elements are instance-level elements. 
Instances are represented by the boxes containing some text in the following format: “Classi-

fier name/Classifier Role:Classifier”. This text format expresses an explicit bindings between Clas-
sifiers and Classifier Roles.

2.3.2.5 Rationale for Applying the Pipe-and-Filter Pattern 

According to [BMR+96], the Pipe-and-Filter architectural pattern provides an organization 
for a family of systems that process stream of data. Such systems are essentially composed 
of two kinds of elements: pipes and filters. Applying this architectural pattern to the the 
video surveillance system allows one to encapsulate each processing step into a component 
filter and to convey video streams through the pipes between neighboring filters.

2.3.2.6 Instantiating the Pipe-and-Filter Architectural Pattern

The Pipe-and-Filter pattern instantiation, shown in figure 2.11, provides three elements: two 
component types, the CameraDevice and the SurveillanceStation, and the connector type VSSer-

viceConnector. Each component type has a port that represents a filter. From the connector 

Figure 2.10: Behavioral Instance of the Configurator Design Pattern
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point of view, each processing element is encapsulated in a Filter role (i.e., component port). 
Thus, video streams can be passed through the pipe positioned between the filters.

The connector type VSServiceConnector itself provides two kinds of roles—static roles and 
dynamic roles. Static roles (e.g., StreamIn and StreamOut) were previously referred to as con-
nector roles; they are part of the structure of the connector type. The dynamic roles (e.g., 
source and sink) are rather behavioral; they are transient representations of the participants in 
an interaction.

The Classifier CameraDevice is bound to the Filter Classifier Role; it must act as a stream 
producer port that is connected (i.e., attached) to the connector role StreamIn. Similarly, the 
filter on the SurveillanceStation side must behave as a stream consumer port that is connected 
to the connector role StreamOut. The connections between the component ports and the con-
nector roles are modeled as dynamic associations. 

2.3.3 Documenting an Architecture for a Family of Software Systems

As mentioned earlier, the description shown in figure 2.9 is practical for describing an indi-
vidual software application, but it is not viable for an architecture that can serve as a means 
for communication among stakeholders in the construction of a family of applications. To 
describe a family of applications, Configurable should not be modeled as a Classifier; instead, 
it should be modeled as a Classifier Role—i.e., a placeholder for the configurable elements, 
such as SurveillanceStation and CameraDevice. 

This solution provides more flexibility: it allows one to decide at will how and when 
to bind the Configurable Classifier Role to the different Classifiers (i.e., the component types) 
of the applications. The relationship stereotyped with <<bind>> represents the bindings 
between Configurable, SurveillanceStation and CameraDevice. A documentation of this solution is 
depicted in figure 2.12. 

In contrast to the previous design, this solution provides an architectural model that 
applies to a family of systems; it can be realized in different ways (by using different bind-
ings) to create different software applications.

Figure 2.11: A High-Level Structure of a Pipe-and-Filter Instance
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The sequence diagram shown in figure 2.10 can be easily updated to fit the new architec-
tural model documenting the Component Configurator pattern instance. To achieve this, we 
just need to add the Configurable Classifier Role in the interaction diagram and remove the 
Classifiers, as shown in figure 2.13.

In figure 2.13, the messages are exchanged among the objects of classes playing the Classi-
fier Roles: that is, Classifier Roles become more important in the architecture documenta-
tion than Classifiers. As a consequence, the participant components themselves (represented 
by the Classifiers) are not first-class citizens of the architectural description.

Instantiating a pattern at the design or architectural level of abstraction is a very 
human-intensive process; therefore, providing good instantiation of a pattern depends 
strongly on the experience of the developer or architect. This makes it difficult to know 
when and at which level of abstraction a pattern should be used.

Figure 2.12: A Structural Instance of the Component Configurator Pattern
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2.4 Concluding Remarks

The motivating example presented in this chapter shows how informal notations, architec-
ture description languages, and design and architectural patterns can be used to document 
different characteristics of an architecture. The example highlights some complementarity 
between the existing trends in software architecture; the view-oriented software architecture 
trend has not yet been presented.

The problem presented in this chapter has many different aspects that a software 
architect needs to separate from one another. Some of the aspects have architectural signifi-
cance and others do not. Throughout the case study, we have referred to the architecturally 
significant aspects of the video surveillance problem as architectural concerns, and we 
observed that those architectural concerns are relevant to both the problem space and the 
solution space.

The informal approach taken in section 2.1 provides the software architect with an 
idea of what is required to express the structural characteristics of an architecture before 
starting to build that architecture. The approach shows that informal descriptions can be 
helpful to establish a bridge between a given problem and an architectural solution to that 
problem. It demonstrates how informal descriptions help get an idea about various kinds of 
abstractions that are required to formally describe an architecture.

As mentioned in section 2.2.3, following the ADL-based trend to address other kinds 
of concerns is rather problematic. An ADL such as Wright hinders the identification, under-
standing and separation of multiple kinds of concerns [KCS+02]. For example, problems 
related to the use of Wright are its:

• inability to localize information about interaction concerns other than protocols of 
interaction

• lack of mechanisms for describing crosscutting aspects of both components and con-
nectors (e.g., synchronization and security)

• lack of support for integrating architecture descriptions with common software devel-
opment artifacts.

Applying patterns in architectural descriptions can hardly be achieved with formal nota-
tions. Pattern applications have been documented by using combinations of both informal 
and semi-formal notations. While using formal notations, section 2.3.1 motivated the dis-
tinction between base constructs and perspectival constructs. 

A major requirement on perspectival constructs is to provide the capability to support 
explicit representations of roles and the binding of such roles to concrete components and 
connectors in different architecture descriptions. Specifically, this capability involves sup-
port for: 

• representing and instantiating pattern roles appropriately, and
• complementing an ADL-based solution
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A lesson we have learned from the example presented in section 2.3.3 is that a design pat-
tern can be intentionally applied to structure individual elements of a software architecture. 
If the application of the pattern has no crosscutting effects, then the resulting design can be 
referred to as “non-architectural”. Otherwise it is said to be architectural, that is:

• the design pattern instance involves a crosscutting structure which might be relevant 
to the software architect. For example, the Observer protocol behavior has a crosscut-
ting effect on the participant components, because it governs the rules for mediating 
the interaction among the components.

• the design pattern instance addresses kinds of concerns that are known to be architec-
tural in nature. For example, the application of the Component Configurator design 
pattern addresses two facets of the configuration problem, though configuration is an 
architectural concern.

The approaches presented in this chapter complement each other; each approach is best 
suited to understand and describe only some particular characteristics of software architec-
tures, not all. Each approach presented has focused on the description of the software archi-
tecture of the video surveillance service: none of the approaches supported the distinction 
between the software architecture and its description; and none of them has allowed one to 
explicitly address, simultaneously, individual concerns, at different levels of abstraction.

While the solutions presented throughout this chapter have implicitly addressed vari-
ous concerns, it is not possible to localize any of these concerns in the architecture. Conse-
quently, we cannot find out whether the concerns of importance to the problem at hand have 
been addressed in the software architecture. For instance, all we know from the presented 
descriptions is that the software architecture addresses a number of generic architectural 
concerns, such as configuration, interaction, reuse, etc. What about the concerns that are 
specific to the given problem? We believe that in order to build software architectures that 
address a problem at hand, we need a concern-oriented approach to software architecture
that supports the design by concerns paradigm.
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Chapter 3:

Related Work

This chapter introduces the foundations of the concern-oriented approach to software 
architecture. It presents two conceptual frameworks: an architecture description framework 
which is part of the ANSI IEEE standard for architecture documentation, called IEEE-Std-
1471-2000; and an aspect-oriented software engineering framework, known as concern 
spaces, which is part of Multidimensional Separation of Concerns (MDSOC). The Unified 
Modeling Language (UML) is introduced as a linguistic framework that can be used to 
establish a bridge between both conceptual frameworks. The chapter concludes with the 
needs for implementing these frameworks using UML.

3.1 IEEE Recommended Practice for Architectural Description

The IEEE recommended practice for architectural description for software-intensive sys-
tems was first developed as an IEEE standard known as IEEE-Std-1471-2000 [IEEE00]. It 
has also been called ANSI/IEEE-Std-1471-2000 since its adaptation by ANSI (American 
National Standards Institute). We will refer to this standard as IEEE-Std-1471 in the remain-
der of this dissertation.

The purpose of the IEEE-Std-1471 is to facilitate the expression and communication 
of architectures. It puts emphasis on the creation, analysis, and sustainment of architectures 
of software-intensive systems, and the recording of such architectures in terms of architec-
tural descriptions. Essentially, the recommendations of IEEE-Std-1471 focus on two pro-
posals: a conceptual framework for architectural description, and a pronouncement of what 
is required to evaluate the conformance of an architecture description to the standard IEEE-
Std-1471.

3.1.1 IEEE-Std-1471 Conceptual Framework

The conceptual framework of the IEEE-Std-1471 establishes several terms and concepts 
that are relevant to the content and use of architectural descriptions; it also includes the rela-
tionships among the concepts. Especially, the conceptual framework defines the term archi-
tecture as “the fundamental organization of a system embodied in its components, their 
relationships to each other and to the environment, and the principles guiding its design and 
evolution”. In addition, it refers to an architecture description as “a collection of products to 
document an architecture”. By these definitions, IEEE-Std-1471 makes clear the distinction 
between an architecture description and an architecture of a software-intensive system. 
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IEEE-Std-1471 Conceptual Framework
According to IEEE-Std-1471, a viewpoint is a specification of the conventions for con-
structing and using a view, while a view is a representation of a whole system from the per-
spective of a related set of concerns. Concerns are those interests which pertain to the 
system development, its operation, or any other aspects that are critical or otherwise impor-
tant to one or more stakeholders. Concerns can be abstract or logical concepts from a certain 
domain, but they may also include system considerations such as performance, reliability, 
security, distribution, and evolvability. 

In this framework, the terms architectural viewpoints and views are first-class citi-
zens. Figure 3.1 illustrates in a UML class diagram a summary of the conceptual frame-
work. In this diagram, each class stands for an element of the conceptual framework. Every 
association has two roles that are optionally named. The name of a role played by a class in 
an association is shown on the opposite side of the association. The associations in the dia-
gram are unnamed. Each role name indicates the direction in which an association should be 
read. Each role has a multiplicity that is optionally shown. Multiplicities are one-to-one if 
not otherwise written.

 

Figure 3.1 should be interpreted as follows: Every System has an Architecture, an Environment, 
and one more Missions. Each Architecture is described by an Achitectural Description. An Achitectural 

Description is organized into one or more constituents called architectural Views and one or 
more Models; it allows one to select one or more Viewpoints and to identify many Concerns and 
many Stakeholders. 

A Viewpoint may have at most one source, called Library Viewpoint; it addresses a set of 
Stakeholders and covers many Concerns. A Viewpoint establishes the rules by which Models com-
posing a View are created, depicted and analyzed. The View must conform to the Viewpoint. A 
Concern can be relevant to many Stakeholders and a Stakeholder may have many Concerns.

Figure 3.1: Conceptual Framework of IEEE-Std-1471 (from [IEEE00])
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3.1.2 General Conformance Requirements

An architectural description conforms to IEEE-Std-1471 if it comprises the following ele-
ments:

Overview of architectural documentation.  This includes the identification information, 
summary, context, glossary, change of history, and references.

Identification of stakeholders and concerns.  The standard gives a minimum list of stake-
holders and concerns that must be identified by any conforming architectural description.

Architectural viewpoints. Selected viewpoints must be identified. Each identified view-
point must be specified by:

• the viewpoint name 
• the stakeholders to be addressed by the viewpoint 
• the concerns to be addressed by the viewpoint
• the language, modeling techniques, or analytical methods to be used
• a rationale for the selection of each viewpoint, and
• other additional information, including consistency and completeness checks, evalua-

tion techniques, heuristics, patterns, or any useful guideline can be incorporated.

Architectural views. Each view must correspond to the specification of exactly one view-
point. The architectural models included in that view must fulfill the specification of the 
corresponding viewpoint.

A record of every inconsistency among all views.  This includes an analysis of inconsis-
tencies among the architectural views all together.

Architectural rationale. This includes the rationale for the architectural concepts selected, 
if possible together with evidence of the consideration of alternatives and the rationale for 
the choices made.

3.1.3 IEEE-Std-1471 Lacks Realizations

Despite the importance of the IEEE-Std-1471, the software industry still lacks automated 
and systematic architectural approaches that enable effective production of architecture 
descriptions conforming to the conceptual framework of IEEE-Std-1471.

Furthermore, according to the conceptual framework, an architecture represents a set 
of abstractions that is manifested by an architecture description, which is itself a set of con-
crete software artifacts. A viewpoint (i.e., abstraction) is similarly related to a view (i.e., 
concrete artifact). Remarkably, an architecture description is organized into multiple views, 
but an architecture is not related to multiple viewpoints, although the standard says that 
each architecture should be built or “viewed” from various viewpoints. 
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The Unified Modeling Language
Without a relationship between architecture and viewpoints, we cannot relate a given 
architecture to various sets of stakeholders' concerns. Lacking such a relationship compli-
cates any realization of the IEEE-Std-1471 that enables producing concern-oriented archi-
tecture descriptions. Thus, software architects cannot develop and describe architectures of 
software-intensive systems in a concern-oriented way.

3.2 The Unified Modeling Language

The Unified Modeling Language (UML) is the result of an effort that was instantiated by 
three prominent (object-oriented) methodologists, Booch, Jacobson, and Rumbaugh 
[BRJ98][RJB98]. UML has been submitted to and approved by the Object Management 
Group (OMG) as a standard [Omg01]. The standardization of UML not only provides a bet-
ter possibility for tool compatibility, but it also joins research on improving expressiveness 
and preciseness of a single language. UML is process independent and therefore it does not 
prescribe how its notations should be used.

Using UML notations provides several advantages, including: 
• UML offers a common language, uniting different development methods in terms of 

notation and vocabulary, and allowing tool interoperability between different vendors. 
• UML provides a rich set of notations that can be used to describe various aspects of a 

software-intensive system. It offers eight diagram types: activity diagrams, imple-
mentation diagrams (component and deployment diagrams), interaction diagrams 
(sequence and collaboration diagrams), statechart diagrams, class diagrams, and use 
case diagrams.

• UML provides built-in extension mechanisms (stereotypes, constraints and tagged 
values) that can be selectively applied to model elements. These extension mecha-
nisms assist methodologists in defining new model elements that are not found in 
standard UML and which are required for some particular purpose. For example, we 
proposed in previous work [KS00a] a UML-based approach to software architecture 
description using the IEEE-Std-1471, which focused on incorporating key abstrac-
tions, found in nearly all-existing ADLs, into UML.

• UML provides a textual constraint language known as OCL, the Object Constraint 
Language [WK98]. OCL is a formal language based on set theory and first-order 
predicate logic that is used for describing expressions. OCL can be used in different 
ways to increase preciseness of UML models beyond the limitations of the graphical 
diagrams. Typically, it can be used to define a set of constraints, to define the proper-
ties of a stereotype, or to express invariants of systems, and the pre- and postcondi-
tions for operations.

• UML provides a metamodel that is itself defined in UML and which describes, 
together with different sets of OCL constraints, the semantics of the language itself.
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3.2.1 UML Is Not Concern-Oriented

Because of its origin in object-oriented methods, UML has a bias towards software decom-
position along multiple kinds of concerns (see next section). UML was not intended for 
modeling software architectures; however, various constructs have been incorporated that 
are convenient for describing architectures. 

Architecture descriptions resulting from existing UML-based approaches are not con-
cern-oriented: although these approaches enable implicitly the “reification of stakeholders’ 
concerns into software”, software architects cannot identify the model elements into which 
individual concerns have been reified; architects using UML are not aware of the process of 
reifying the stakeholders’ concerns (outside the software) into the architectural models they 
build (inside the software). Consequently, using current UML-based approaches makes val-
idation of software architectures against the stakeholders’ concerns very difficult.

3.3 Multi-Dimensional Separation of Concerns

A major goal of separation of concerns [Par72] is to lessen the amount of complexity soft-
ware developers must contend with, while reducing significantly the impact of change. 
Multidimensional separation of concerns (MDSOC) provides a conceptual framework for 
advanced separation of concerns. It was first introduced by Tarr et al. [TOW+99] and calls 
attention to a set of mechanisms for composition and decomposition throughout the soft-
ware life cycle, including architecture. 

The MDSOC introduces a number of concepts and issues that are useful for under-
standing the organization of concerns in software and for supporting advanced separation of 
concerns appropriately across different software engineering approaches; however, the con-
cepts and issues defined in MDSOC are independent of any specific approach. MDSOC 
describes a set of goals and requirements that must be fulfilled by any specific approach 
realizing it.

3.3.1 Conceptual Framework of MDSOC

The notion of concern space forms the foundation of the conceptual framework. It provides 
a locus for expressing the concern structure for multiple systems. A concern space consti-
tutes a kind of “multi-dimensional repository” within which the body of software—includ-
ing all artifacts belonging to the software development effort and the product of the 
software development process itself—can be explored, selected, analyzed, combined or oth-
erwise manipulated. 

Figure 3.2 illustrates an overview of the conceptual framework for MDSOC that is 
shown as a software concern space. The concern space consists of a set of artifacts written 
in different languages. As example, the figure shows two models mi and mj that consist each 
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of two diagrams Di1 and Di2, and Dj1 and Dj2, respectively. While built separately, both mod-
els are used in the same documents Doc1 and Doc2 (indicated by the lines between models 
and documents). Other software artifacts related to the models, including the source code 
implementing each model, can be stored in different databases shown as DB1 and DB2. The 
models, their diagrams and the program code realizing each model are made up of various 
units that work together to achieve the goals of the software system under development. 
Units of the same or different kinds can be combined in various ways to address concerns of 
importance to one or more developers. Concerns that are significant to developers can be of 
different kinds, and developers need to distinguish such kinds of concerns from one another 
to facilitate the development tasks.

The key concepts and issues that make up the conceptual framework for MDSOC are 
defined as follows:

Software artifact. Software is made of artifacts that consist of descriptions in appropriate 
artifact languages. Artifacts represent a major part of the body of software; they comprise 
all kinds of documents of interest in software development.

Artifact language. An artifact language is a formalism for describing software. It includes 
programming languages, specification languages and standard modeling languages, such as 
Java, AspectJ, UML, OCL, etc.

Unit in software. A unit is an identifiable portion of software within an artifact. Criteria for 
determining the nature of a unit are dictated by the artifact language and the level of granu-
larity at which the unit can be used.

Kinds of units. Units may be of different kinds. Some units, called compound units, can be 
obtained through the composition of other units. The composite units that cannot be decom-

Figure 3.2: An Overview of the Conceptual Framework for MDSOC
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posed are referred to as primitive units. Some units can be defined within the context of 
other units; they are said to be contextual units.

Area of interest in a body of software. Different stakeholders may have different areas of 
interest in a given concern space. Each area of interest can be seen as a specific concern that 
pertains to the needs of a particular stakeholder. 

Mapping between concerns and units . Stakeholders interested in different areas of inter-
est need to focus on different artifacts to address different concerns, including configura-
tion, use cases, security, features, etc. Each individual concern has a set of units that pertain 
to it. A concern is defined as a predicate of units. The units in a given set are “affected” by 
the concern corresponding to that set. 

Dimensions of concern. A dimension of concern is a way of/or an approach to decompos-
ing software according to one particular kind of concerns. Each dimension of concern corre-
sponds to one kind of concern. For example, UML allows one to decompose software along 
classes, use cases, diagrams, components, or subsystems. 

Separation of concerns along multiple dimensions. Separation of concerns along multi-
ple, arbitrary dimensions allows one to keep the units pertaining to different concerns sepa-
rate from one another. A collection of units that pertains to the same concern is called a 
module. The module is said to encapsulate that concern. 

On-demand remodularization. Developers may recognize the need for a new decomposi-
tion that was not foreseen when they started a software project. On-demand remodulariza-
tion allows one to achieve such decomposition without invasive change.

3.3.2 Concern-Space Modeling Schema

A concern-space modeling schema, known as Cosmos [SR02], has been proposed by Sutton 
and Rouvellou to define a concern space as a structured representation of concerns and their 
relationships. A Cosmos schema complements MDSOC; however, in contrast, it focuses 
explicitly on matters of interest pertaining to a body of software rather than the software 
itself. The authors of Cosmos have argued for the need of explicit concern-space modeling 
that goes far beyond the production of software artifacts, giving emphasis to the intent of 
artifacts.

According to [SR02], a general-purpose concern-space modeling schema should pro-
vide support for:

• representing arbitrary kinds of concerns
• representing composite concerns
• representing arbitrary relationships among concerns
• associating concerns with arbitrary software units, work products, or system elements
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• modeling of concerns independently of any specific methodology, programming lan-
guage, development formalism or stage of the software lifecycle

Figure 3.3 shows the Cosmos perspective of a software concern-space. It complements 
figure 3.2 through an explicit representation of a set of related concerns, shown as c0, c1, 
…c14. These concerns are referred to as logical concerns: they represent the concepts in 
which stakeholders are interested with respect to a system or artifact. On the other hand, 
physical concerns represent the system elements or software artifacts which stakeholders 
need to work with; this category of concerns also includes artifacts or system elements to 
which logical concerns can be applied.

3.3.3 General Requirements for Achieving MDSOC

For now, we focus on the general requirements for realizing MDSOC in any software engi-
neering approach. According to [TO00], in order to achieve MDSOC, developers must:

• be able to identify multiple concerns and dimensions (i.e., kinds of concerns), simul-
taneously. “Tyrant” (predominant) dimensions must not be allowed to disqualify 
decomposition of software along other kinds of concerns;

• be able to identify further concerns and dimensions of importance, incrementally, at 
any time, all through the software life cycle;

• not be forced to take into account concerns that do not pertain to their needs;
• be able to represent and manage overlapping and interacting concerns, and to identify 

the points of interaction and maintain proper relationships across the interacting con-
cerns;

• be able to integrate separate concerns and to raise new ones;

Figure 3.3: The Cosmos Perspective of the Software Concern-Space
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• be able to accomplish on-demand remodularization: that is, to impose new decompo-
sitions on existing software, without invasive change, explicit refactoring, re-engi-
neering, etc.;

• be able to choose, at any time, the best modularization for the development task at 
hand without, perturbing the existing ones.

3.3.4 Existing Realizations of MDSOC

So far, the most popular realization of MDSOC has been developed by its authors them-
selves. Their realization is known as an aspect-oriented software development approach 
called hyperspaces [TO00]; the tool supporting the hyperspaces for Java is called HyperJ
[Hyp03].

The hyperspaces approach takes the premise that each concern of importance has a 
collection of software units pertaining to it. This is an important characteristic of a concern 
space as it allows one to distinguish between “reifiable” and “non-reifiable”1 concerns. 
Non-reifiable concerns are those for which the pertaining set of units is empty. Currently, 
the hyperspaces approach only supports multidimensional separation of concerns for Java. 
Hyperspaces support for UML is still lacking.

3.3.5 Units Are Inside Software, But Not the Concerns

As an advanced principle and technique of software engineering, MDSOC provides supe-
rior mechanisms for separation of concerns, but what it really achieves is separation of mul-
tiple units along multiple dimensions, at multiple stages of the software lifecycle. MDSOC 
deals with units explicitly, while remaining rather silent on concerns.
Units are identifiable pieces of software that can be composed using an artifact language. A 
particular composition of units can be relevant to a particular concern, in which case the 
composition of units is said to provide the reification of the given concern into software. 
However, it is critical to understand that concerns are not inside of software; instead, they 
are part of the stakeholder’ world, which is external to software. MDSOC focuses on new 
mechanisms for separating concerns, but indeed the notion of concern itself is implicitly 
defined—as a general predicate over a set of units—within the conceptual framework of 
MDSOC. Without mechanisms supporting explicit identification of concerns independently 
of the units that encapsulate them, software architects will not be able exploit the power of 
MDSOC. Lacking clear separation between units and concerns, MDSOC becomes ineffi-
cient in developing and describing concern-oriented software architectures.

1. Note that the terms “reifiable” and “non-reifiable” concerns are new notions introduced in this dissertation; 
they are not part of MDSOC, Hyperspaces or HyperJ.
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3.4 Aspect-Oriented Software Development

Aspect-oriented software development (AOSD) [AOSD] aims at identifying, encapsulating, 
and explicitly representing characteristics of software that are very difficult, or even impos-
sible, to capture with object-oriented software development approaches, including 
approaches based on UML. Such characteristics typically involve concerns cutting across 
the boundaries of several model elements and modules, for example, security, logging, trac-
ing, etc. 

An essential awareness in aspect-oriented software development is that the bound-
aries of stakeholders' concerns hardly ever correspond to the boundaries of the modules 
reflecting those concerns in software systems. Based on this awareness, the AOSD commu-
nity has recognized that the ability to understand, to model and to reason about concerns, 
cutting across both structure and behavior of components, is critical to the design of any 
complex software system.

A major contribution of AOSD to software engineering is multidimensional separa-
tion of concerns. A different contribution of AOSD is a recent programming paradigm, 
called aspect-oriented programming (AOP) [KHH+01], which provides mechanisms for 
implementing crosscutting concerns as separate modules. 

Another (emerging) contribution of AOSD to the model-driven software engineering 
community is aspect-oriented modeling. Aspect-oriented modeling (AOM) is an up-and-
coming area of aspect-oriented software development that aims at providing techniques, 
principles, and mechanisms for identifying, analyzing, managing, and representing cross-
cutting concerns in software design and architecture [AOM03]. A major objective of AOM 
consists of filling the gap between aspect-oriented requirements engineering (AORE) 
[RMA03] and aspect-oriented programming (AOP).

So far, diverse approaches using UML built-in extension mechanisms have been pro-
posed to support the description of aspects at design level [CW00][KKS02][SHU02]. How-
ever, these approaches suffer from both the limitations of the built-in UML extension 
mechanisms [GH02], and the inflexible hierarchical structure of the UML metamodel (more 
details on this can be found in section 3.2). Without appropriate support for modeling con-
cerns in UML, we will not be able to understand, model and reason about crosscutting con-
cerns at any other level of abstraction that is higher than the program code. Moreover, 
lacking UML support for concern modeling, model-driven software developers will not be 
able to benefit from the advantages of the aspect-oriented technology.

3.4.1 Aspect-Oriented Concepts

In a similar way as object-orientation allows us to encapsulate “commonly localizable” con-
cerns (data store and computation) into objects, aspect-orientation provides a mechanism, 
called aspect, for modularizing crosscutting concerns in software.
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Major aspect-oriented concepts include a join point model, support for aspectual 
behavior, and support for structural amendment—or introductions:

• A join point model: This model allows one to potentially select any execution point in 
a program, thus providing a flexible approach to defining the dynamic structure of 
crosscutting concerns of importance;

• Support for aspectual behavior: This mechanism provides a means for adding aspec-
tual (crosscutting) behavior at various execution points captured by the related join 
point model;

• Support for structural amendment: This support provides a means for modifying the 
structure (hierarchy, feature declarations, etc.) of existing software artifacts.
While the focus of this thesis is rather on aspect-oriented modeling, our work is based 

on lessons learned from aspect-oriented programming, including HyperJ and AspectJ. We 
consider the AspectJ programming language for two reasons: 1) it is the most popular pro-
gramming language that supports aspect-oriented concepts explicitly and we believe that 
raising the concepts of AOP to the level of aspect-oriented modeling is beneficial; 2) sup-
porting multidimensional separation of concerns at the modeling level provides flexible 
mechanisms for composing and decomposing elements of UML models that can be refined 
to support both AspectJ and HyperJ programs.

AspectJ realizes explicitly the aspect-oriented concepts mentioned above by provid-
ing different language constructs, such as, pointcut, advice, and introduction. All these con-
structs can be declared within another construct that is called aspect, and materializes the 
conceptual aspect mechanism for encapsulating crosscutting behavior.

3.4.2 Issues in Aspect-Oriented Modeling 

Although the number of researchers and practitioners working on various issues of aspect-
oriented modeling [AOM03] is increasing, many problems related to the design-level 
description still remain to be solved.

An essential issue in aspect-oriented modeling consists of separately expressing base
elements and aspectual elements. We consider base elements as the fundamental elements 
of standard UML that are typically defined in the foundation package of the metamodel, 
such as ModelElement, Classifier, Namespace, etc. Aspectual elements are rather treated in 
UML as second class citizens, which are usually named, but not specified explicitly. This 
work uses the term perspectival element rather than aspectual element. Examples include 
roles (e.g., Association Roles, Classifier Roles, Association End Roles) in addition to other 
kinds of features that can crosscut the boundaries of a group of classes and objects of differ-
ent types.

UML was not originally designed with modeling support for crosscutting concerns in 
mind, but research has demonstrated that the built-in extension mechanisms of UML can be 
used to address issues of aspect-oriented modeling [AEB03][CW00][SHU02]. However, 
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experience has shown that simply using built-in UML extension mechanisms for attaching a 
set of constraints, tagged values, or a stereotype to a model element does not make it sup-
port modeling of some concerns of importance to developers [AKH02][BGJ99][GH02]. In 
addition, extending UML to support aspectual elements other than the predefined ones—
i.e., those that are already part of the standard UML—is problematic: built-in extension 
mechanisms should be carefully declared, and used only if the concerns they encapsulate 
cannot be adequately expressed using any other elements of UML [GH02].

3.5 Final Remarks

This chapter introduced two conceptual frameworks, IEEE-Std-1471 and concern spaces, 
and the Unified Modeling Languages to serve as a basis for the concern-oriented approach 
to software architecture.

IEEE-Std-1471 provides a mechanism for separating the set of architecturally signifi-
cant concerns involved in a software system along multiple viewpoints; however, it does not 
support separation of concerns along other dimensions (than just viewpoints). Moreover, it 
does not specify how an architect should identify and categorize the concerns that pertain to 
individual viewpoints. To serve as a recommended practice of general interest, IEEE-Std-
1471 remains intentionally silent on a number of issues, including the following:

• the way an architecture relates to a viewpoint (note that an architecture description 
consists of a composition of many architectural views)

• the way of representing concerns in architectural views
• how to deal with concerns that crosscut viewpoints
• how to verify that a view conforms to its viewpoint

Clearly, the notion of concern is central to achieving these goals. However, for the sake of 
generality, MDSOC does not provide a standard definition for the concept of concern. This 
is beneficial as it allows one to consider MDSOC as a domain-independent conceptual 
framework that can be implemented in different ways and for various purposes. 

Existing realizations of MDSOC focus on aspect-oriented programming; they do not 
have explicit support for modeling concern-oriented software architectures. Without sup-
port for concern-oriented software architecture modeling, it becomes very difficult to apply 
aspect-oriented software development in the context of large-scale software systems—
developers need software architecture documentation to understand, elaborate, implement 
and reason about the key properties of any large-scale system. Moreover, lacking support 
for concern-oriented software architecture modeling, tool vendors will not be able to imple-
ment MDSOC mechanisms in their products and users will be unable to fully apply the 
AOSD technology when building large-scale software systems.

Research on modeling crosscutting concerns is ongoing; however, there is no consen-
sus on how to express an aspect using existing modeling languages, including UML. While 
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some researchers argue that UML is well suited for modeling aspects, many others believe 
that UML lacks appropriate mechanisms for addressing crosscutting concerns [AOM03]. 
We believe that much research is still required to find out what is the most appropriate way 
to model crosscutting concerns in UML. Aspect-oriented modeling as addressed in this the-
sis is an integral part of the concern-oriented approach to software architecture.

Realizing the conceptual frameworks, IEEE-Std-1471 and concern spaces, using 
UML allows one to benefit from the advantages of both architecture description and multi-
dimensional separation of concerns when developing complex software. Throughout this 
dissertation, we illustrate how UML can be used for implementing IEEE-Std-1471 and mul-
tidimensional separation of concerns. To do so, we provide a new mechanism called UML 
Space, which realizes the notion of concern space, while allowing one to flexibly and effi-
ciently support advanced separation of concerns in UML.
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Chapter 4:

Concerns and Software Architecture

This chapter introduces a new perception of concerns in relationship to software architec-
ture. The first part of the chapter considers and discusses several definitions of the notion of 
concern and presents a definition used by this dissertation. It introduces concern categories 
and gives several examples of concerns from both a given requirements definition and a 
software development problem. The second part of the chapter introduces the concern-ori-
ented approach to software architecture as a general methodology that can be realized in 
different ways to achieve architectural design by concerns.

4.1 Concerns

Every software engineer is familiar with some mechanisms for separating concerns in ana-
lyzing existing software systems or architecting, designing or programming new systems. 
However, few software engineers are fully aware of the nature of the concerns they deal 
with in their everyday jobs. Most of them concentrate on concrete artifacts which they can 
directly manipulate in software. Existing approaches to software architecture typically do 
not consider concerns as abstract “things” existing outside the computer, but rather as con-
cepts which software engineers need to reify into elements of software systems. To explain 
what we mean by that, let us first take a look at different definitions given to the notion of 
concern; we proceed from a general concern definition to that introduced purposely by this 
work.

1. A concern is a “... matter that engages a person's attention, interest or care” 
[Web97]. This is a dictionary definition (from Random House Webster’s Dictionary) 
which helps get some idea of what a concern is; but it is far too general for software 
development needs.

2. A concern is an “... area of interest in a body of software (e.g., artifacts, aspects, 
etc.)”[TO00]. This definition clearly focuses on software artifacts representing con-
ceptual “things” in software rather than the conceptual “things” themselves.

3. A concern is “... any matter of interest in a software system”[SR02]. This definition 
is specific to the needs of software development; however, it concentrates on what 
exists in the computer (i.e., both software and hardware). Also, the definition does not 
consider a concern as a “matter of interest” that is outside of the software system.

4. Concerns are “... those interests which pertain to the system’s development, its opera-
tion or any other aspects that are critical or otherwise important to one or more 
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stakeholders. Concerns include system considerations such as performance, reliabil-
ity, security, distribution, and evolvability” [IEEE00]. This definition is close to our 
needs, since it focuses on stakeholders' needs relative to the development and opera-
tion of the system. However, it lacks any mention of the problem to be addressed.

5. A concern is “... an aspect of a problem demanding the developer's attention”
[Jack01]. This is the closest definition to what we are looking for; we adopt it as a 
basis for this work and enhance it to cover the needs not only of developers, but also 
of other software project participants.

4.1.1 Our Definition of a Concern

When we use the notion of concern in this document, we do not mean any concrete artifact 
that software engineers can directly manipulate, but the following:

 A concern is an aspect of a problem that is critical or otherwise important to one or 
more stakeholders.

Though an “aspect of a problem” can be seen as a sub-problem (or a problem) itself, we pre-
fer to use the term “aspect” to give emphasis to the projection of a problem rather than a 
partition of it. Moreover, our definition offers two essential components that need to be kept 
in mind when talking about concerns: aspect of a problem (problem) and interest to stake-
holders (goal). Both components define what we mean by concern. By putting these two 
components together, it should be possible to formulate any concern in terms of a question 
that may be answered by an architectural design solution (or by a low-level design solution 
or an implementation) [Hil01].

To make this clear, let us take a look at what is not a concern. Consider the following:

1. A subsystem X in a given software system:
• Does the subsystem X represent an aspect of a problem? No, as the subsystem X is 

part of the software solution, it cannot be a problem.
• Is the subsystem X of interest to some stakeholders of the system? Yes, because any 

part of a system must be of interest to at least one stakeholder.
• As a result, the subsystem X is not a concern. This also confirms what we have men-

tioned before that: an artifact is not a concern.

2. Refactor the design of the software application Y, using the strategy design pattern.
• Does refactoring represent an aspect of a problem? Yes.
• Is it of interest to some stakeholders? Yes.
• Refactoring is a concern. However, the software application Y and the strategy design 

pattern are both artifacts, not concerns.
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4.1.2 Discussion

Concerns are often confused with requirements [TD97], though they are different. Usually 
requirements reflect some aspects of a software development problem, but not all. Some 
aspects of the problem existed earlier or will exist later than requirements and others may 
occur throughout the software life cycle. For example, when developing object-oriented 
software, problems may arise at different stages: analysis, design, implementation, etc. The 
solution of an analysis problem can trigger a design problem, which in turn can cause an 
implementation problem. Aspects of such problems, particularly those of design and imple-
mentation problems, are certainly not reflected in the requirements, though they are con-
cerns themselves.

Concerns have also been considered as non-functional or crosscutting considerations 
[RMA03]. Compared to our definition, this view of concerns is somewhat restrictive for the 
following reasons:

• Non-functional considerations are common parts of requirements, and as discussed 
above, not all concerns are requirements.

• Limiting concerns to non-functional considerations prevents functional consider-
ations from being concerns themselves; however, in reality, functionality is the very 
kind of concern that software engineers understand the most. 

With our concern definition, one cannot achieve much separation of concerns using existing 
formalisms, such as UML, because we regard a concern as an abstract concept which devel-
opers cannot directly deal with. 

For example, UML does not provide support for adequately modeling software devel-
opment problems, nor does it allow one to focus explicitly on various aspects of develop-
ment problems. Researchers have argued that concern modeling should be achieved at a 
different level than what UML can currently offer [SR02][ST02]. However, it is a goal of 
this thesis to establish a bridge between UML and concern-oriented architecture documen-
tation.

4.2 Concern Categories

A software project typically involves many concerns of different kinds, which for various 
reasons can be categorized in different ways. There is no consensus on how to categorize 
concerns in software development. This thesis distinguishes between four categories of con-
cerns: architectural, non-architectural, reifiable and non-reifiable concerns. 

Our decision for choosing these four categories was based on the fact that they are 
general enough to cover more detailed classifications of concerns. However, it is not the 
goal of this thesis to provide such a detailed classification of concerns. A good example of 
concern classification is given by Cosmos [SR02].
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4.2.1 Architectural Concerns 

An architectural concern is an aspect of a problem of interest to stakeholders that globally 
affects a software system. Architectural concerns usually include quality attributes and most 
kinds of crosscutting concerns.

The notion of crosscutting, as used in this context, is relative to the system’s decom-
position approach and to the level of abstraction considered. For instance, what is crosscut-
ting in a procedural system’s decomposition is not necessarily crosscutting in a modular 
decomposition (where a module is similar to the Modula-2 language concept), and vice 
versa. What you call crosscutting in a process-oriented decomposition may not be crosscut-
ting in an object-oriented decomposition, and vice versa. Or what is crosscutting in a com-
ponent-based decomposition may be well localized in an aspect-oriented decomposition. 
Further examples of architectural concerns include the forces of an architectural pattern that 
apply to the pattern as whole, while cutting across the boundaries of various pattern roles. 
Moreover, what is crosscutting for a group of objects and components might be local to a 
subsystem; but also, concerns that crosscut a group of subsystems might be local to a sys-
tem. Examples of architectural concerns include security, performance, adaptation, etc.

4.2.2 Non-Architectural Concerns

A non-architectural concern is an aspect of a problem that can be reified into a localizable 
part of a software system. Non-architectural concerns include many kinds of non-crosscut-
ting concerns that can be projected onto a single part of a system. Typical examples of non-
architectural concerns include: computation, data store, responsibilities, etc.

4.2.3 Reifiable concerns

Tangible concerns are those concerns that can be reified into software through a non-empty 
set of model elements. These include architectural and non-architectural concerns that have 
explicit representations in software. For example, a computation concern can be addressed 
by means of its reification into operations (described in interfaces), methods (in classes) or 
functions (in modules); a persistence concern can be addressed by being reified into a cross-
cutting module.

4.2.4 Non-reifiable concerns

Non-reifiable concerns are those concerns that cannot be reified into software (at least not 
in the software under construction). The set of model elements that pertains to such con-
cerns is empty. Examples include many aspects of software development, such as usability, 
time-to-market, costs reduction, etc.
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4.3 Relationship between Concerns

Due to the multitude of the kinds of concerns encountered in software development, we do 
not have a predefined set of relationships among concerns. Relationships among non-reifi-
able concerns are non-reifiable themselves, whereas relationships among reifiable concerns 
are reifiable. We consider that because each reifiable concern can be reified into a collection 
of model elements, the relationships among such concerns can be reified into model ele-
ments as well. 

4.4 Examples of Concerns

The following sections present two examples of concerns, from a given requirements defi-
nition for an architecture description language and from the video surveillance software 
development problem.

4.4.1 Concerns in the Requirements on ADLs

This section shows an example of concerns obtained from the requirements on architecture 
description languages. In [SG96], Shaw and Garlan have identified general concerns in an 
architecture description problem (they call them characteristics of an ideal ADL). These 
concerns are: composition, abstraction, reusability, configuration, heterogeneity, and analy-
sis. 

We consider the general architecture description problem as a set of different sub-
problems, which each in turn can have various aspects, as shown below: 

Composition problem. “It should be possible to describe a system as a composition of 
independent components and connections” [SG96].
Aspects of the composition problem can be shown as follows:

• The ability to decompose complex systems hierarchically into smaller, convenient 
components and conversely, while allowing one to compose a system from its constit-
uent elements;

• The ability to modularize each individual element; 
• The ability to separate externally visible properties of individual elements from 

implementation details.

Abstraction problem. “It should be possible to describe the components and their interac-
tions within software architecture in a way that clearly and explicitly prescribes their 
abstract roles in a system” [SG96].
Key aspects of the abstraction problem can be considered as:
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• The ability to support abstract roles as first-class abstractions to represent multiple 
kinds of components, interactions among those components, and architectural pat-
terns.

• The ability to characterize roles in terms of obligations, permissions and prohibitions.

Reusability problem. “It should be possible to reuse components, connectors and archi-
tectural patterns in different architectural descriptions, even if they were developed outside 
the context of the architectural system” [SG96].
Aspects of the reusability problem can be defined by the following concerns:

• The ability to reuse the abstract roles of individual components and connectors, not 
the components and connectors themselves;

• The capability to reuse collections of those roles of components and connectors that 
together characterize the architectural patterns that designers can reuse.

Configuration problem. “Architectural descriptions should localize the description of sys-
tem structure, independently of the elements being structured. They should also support 
dynamic configuration” [SG96].
Aspects of the configuration problem can be defined by the following concerns:

• The ability to bind individual roles to individual components and connectors;
• The ability to bind a collection of roles to a collection of components and connectors.

Heterogeneity problem. “It should be possible to combine multiple, heterogeneous archi-
tectural descriptions” [SG96].
Aspects of the heterogeneity problem can be defined by the following concerns:

• The capability to combine various kinds of components and connectors into different 
architectural patterns within a particular system;

• The capability to integrate various kinds of components into a system;
• The ability to manage co-existence of multiple kinds of architectural concerns 

Analyzability problem. “It should be possible to perform rich and varied analyses of 
architectural descriptions” [SG96].
Aspects of the architectural analysis problem can be defined by the following concern:

• The ability to support reasoning about architectural descriptions.

4.4.2 Concerns in the Video Surveillance Problem

This section shows another example of concerns that are obtained from the description of 
the video surveillance problem in section 2.1.1 on page 15. 

To facilitate understanding of the concerns, let us recall the video surveillance service 
problem:

When the number of crimes increases in society and security becomes a concern, it is often 
necessary to make use of new technologies to control the situation. A video surveillance ser-
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vice can be useful in such a situation. For this purpose, a collection of geographically dis-
tributed video cameras is to be controlled and monitored by security agents from a central 
video surveillance station. Each video camera captures images and produces a video 
stream that is transmitted to the central surveillance station. In case of an emergency, the 
security agents alert the police; for analysis purposes, security agents can command the 
surveillance system to store the sequence of images related to the urgent situation in a data-
base of emergencies. Moreover, the police can ask for the video stream produced from a 
particular location and in a specific time period.

Figure 4.1 shows an example of key aspects of the video surveillance service problem. To 
identify the important aspects of the given problem description, we performed an experi-
ment with different software engineers. The outcome of this experiment is a set of concerns 
listed in the following figure. 

An alternative to the concern list shown above is presented in figure 4.2.

Figure 4.1: Concerns in the video surveillance service problem in Version 1
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4.5 Towards Concern-Oriented Software Architectures 

The Concern-oriented approach to software architecture (COSA approach) aims at provid-
ing a solid foundation for concern-oriented software architectures. The COSA approach 
introduces a new methodology for building architectures, which is driven by a set of con-
cerns of interest to stakeholders. A key idea in this methodology consists of relating individ-
ual concerns to the model elements representing them in software, just as, in a similar way, 
an architecture is related to its description.

Concerns are aspects of a problem that are critical or otherwise important to one or 
more stakeholders; the model elements are artifacts or concrete work products that capture 
the concerns in the body of software. Concerns are abstract things outside the computer, 
whereas model elements representing them are rather concrete work products that com-
monly exist inside the computer. Moreover, according to IEEE-Std-1471, an architecture is 
“the fundamental organization of a system embodied in its components, their relationships 
to each other, and to the environment, and the principles guiding its design and evolution”. 
An architecture description is “a collection of products to document an architecture”. 

Figure 4.2: Concerns in the video surveillance service problem in Version 2
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By establishing an analogy between the mutual relationships of an architecture and its 
description on one hand, and of a concern and its representation on the other, we can make 
the following observation: every organization of a system embodied in components and 
their relationships to each other reflects a certain combination of different concerns that are 
relevant to some stakeholders. The concerns can be seen as projected on the elements of the 
system (i.e., its components and their relationships) in order to facilitate a description of the 
system structure and reasoning about its essential properties. Different perspectives of the 
system’s organization might reflect different or overlapping combinations of concerns. Each 
combination of concerns results in a particular set of concerns that characterizes a specific 
viewpoint. A viewpoint is the specification of a view, that is, a view expresses an architec-
ture of the system from the perspective of that viewpoint (i.e., a set of related concerns).

Figure 4.3 shows a modified version of the IEEE-Std-1471 conceptual framework. As 
we see in this conceptual framework, a view is a component of an architecture description. 
Such a relationship between a viewpoint and an architecture is lacking in the original IEEE-
Std-1471 conceptual framework. However, based on the analogy between architecture vs. 
architecture description and concern vs. model elements, we believe that an architecture is a 
composition of viewpoints, in the same way as an architecture description is a composition 
of views. We illustrate this by adding a new aggregation relationship between Architecture and 
Viewpoint in figure 4.3. This addition implies another, similar relationship between Architecture

and Concern. However, we have decided not to add such a second relationship for two rea-
sons: 1) because its effect can be achieved indirectly via Viewpoint; and 2) because view-
points allow one to separate the concerns involved in the architecture along multiple 
perspectives. Given that different concerns are relevant from different perspectives, this 
decision provides more flexibility to architects in organizing the stakeholders' concerns in a 
“software space” realizing the conceptual framework. 

Figure 4.3: Conceptual Framework of IEEE-Std-1471 (modified)
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We refer to the resulting composition of concerns as concern-oriented software archi-
tecture. A concern-oriented software architecture is an architecture whose development is 
essentially driven by a set of concerns of interest to stakeholders. On the other hand, it is 
important to notice that the extension made to the conceptual framework is an enhance-
ment; it in no way contradicts the standard.

4.5.1 Objectives of the COSA Approach

A major objective of the concern-oriented approach to software architecture is to provide a 
methodology for overcoming the limitations of existing architectural approaches as identi-
fied in section 1.2 on page 2 and section 1.3 on page 8. This methodology should be suit-
able: for developing and describing architectures of software-intensive systems; for 
improving separation of concerns in the design, construction and evolution of such systems; 
and for integrating architectural descriptions with modern software development artifacts. 
The ultimate goal of this new methodology is to provide support for achieving design by 
concerns all through the development and description of software architectures.

4.5.2 Characteristics and Requirements of the COSA Approach

To build a software architecture in a concern-oriented way, it is important to understand that 
a software architecture is a multidimensional concern structure that provides a conceptual 
but reusable solution to a software decomposition problem. 

Naturally, concerns exist outside of the computer. Therefore, the multidimensional 
concern structure characterizing the architecture of a software system cannot subsist inside 
the software system itself. However, such a multidimensional concern structure can be 
described from multiple perspectives. Each perspectival description represents a particular 
view of the concern organization. 

Different architects can produce different collections of views depending on the needs 
of stakeholders. Each collection of views can be implemented in different ways to build a 
different system. Thus, a system consists of a set of (physical and concrete) artifacts that 
implement an architecture description. An architecture description consists of a collection of 
work products, which together reify the (abstract and logical) concerns in the multidimen-
sional structure.

Perceiving software architecture in a concern-oriented way, we believe that the archi-
tecture is outside the system, but its implementation exists inside the system. This perception 
has two advantages: 1) it provides a clear distinction between an architecture and an archi-
tecture description; and 2) it facilitates the evaluation of a software system against its archi-
tecture. 

Distinguishing between architecture and architecture description, and facilitating soft-
ware architecture evaluation are key characteristics of any concern-oriented software archi-
tecture. To help address these characteristics, we have identified a set of minimal 
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requirements that need to be fulfilled by every concern-oriented software architecture 
approach. A concern-oriented approach to software architecture must provide support for:

1. Realizing the IEEE-Std-1471 Conceptual Framework. It should be possible to pro-
duce architecture descriptions that conform to the IEEE and ANSI standard for archi-
tectural descriptions, ANSI/IEEE-Std-1471-2000.

2. Reifying concerns. It should be possible to address individual concerns at different 
levels of abstraction simultaneously, while distinguishing each concern from the soft-
ware development artifacts reifying it.

3. Realizing an architecture concern-space. It should be possible to achieve multidimen-
sional separation of concerns in software architecture through the realization of an 
architecture concern-space. This requires a mechanism for reifying a software archi-
tecture into an architecture description that can be implemented by different systems 
built from the same architecture concern-space.

4. Achieving architectural design by concerns. It should be possible to clearly separate 
the software architecture of a system from its description, while achieving architec-
tural design by concerns from multiple perspectives, not just a single viewpoint.

5. Integrating architecting with common software development. The creation of software 
architectures should not be addressed in isolation—i.e., it is not sufficient to have 
“one specific” level or phase for software architecture development—instead, archi-
tecting can and should be performed at multiple stages within the global context of the 
software life cycle.

6. Using UML. It should be possible to integrate the resulting concern-oriented architec-
ture descriptions with other architectural descriptions written in standard modeling 
languages, such as UML; this includes, for example, UML support for key ADL con-
structs: components, connectors, styles, systems and properties.

4.6 Final Remarks

It is essential to comprehend that concerns are aspects of the problems we, the humans, con-
sider when we start building software. These problems are outside of the computer (both 
hardware and software) [Jack01]. Therefore, the computer cannot distinguish one concern 
from another, and it cannot identify the relationships between different concerns. It is the 
job of software engineers to identify the concerns and their relationships, to reify them into 
both model elements and code, and to manipulate concerns via their representations.

The relationship between concerns and model elements is similar to the relationship 
between an architecture and an architecture description.

We believe that what makes a concern is: 1) its significance to stakeholders and 2) the 
level of abstraction at which it can be reified. For example, a given problem may have many 
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aspects, but only the most significant ones are considered to be concerns of interest. Fur-
thermore, the concerns in the video surveillance service problem exist at a completely dif-
ferent level of abstraction than those of the architecture description problem.

The concerns shown in figure 4.1 and figure 4.2 build together what we refer to as 
problem space. As discussed in chapter 2, such a problem space is required for building 
software architectures effectively. The thesis argues that building software architectures 
should be driven by the concerns of interest to the stakeholders, not by a specific artifact 
language or modeling technique. This is the very objective of the concern-oriented software 
architecture approach introduced as a general methodology for achieving architectural 
design by concerns. An example of realization for the COSA approach is the subject of the 
next chapter.
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Chapter 5:

The PCS Framework

This chapter introduces the PCS Framework, a particular methodology implementing the 
concern-oriented approach to software architecture. The PCS Framework uses UML to 
combine the realizations of the conceptual frameworks of MDSOC and IEEE-Std-1471, and 
it presents a fulfillment of the general requirements on concern-oriented approaches to soft-
ware architecture. The framework also introduces new mechanisms, such as projections and 
UML Space, to support integrating software development into the building of software 
architectures.

5.1 Introduction

In simple terms, a Perspectival Concern-Space (PCS) represents a technique of depicting 
concerns of multiple kinds (or dimensions) in an architectural view consisting of one or 
more models and diagrams. A perspective is a “way of looking” at a multidimensional 
space of software concerns from one specific viewpoint. Similar to model orientation 
[Ross78], every perspective has an orientation. The orientation of a perspective is deter-
mined by a set of related concerns, and by a purpose, a context and a viewpoint.

More specifically, a PCS represents the perspective of a particular viewpoint together 
with a mechanism needed for reifying a set of related concerns (relevant to the given view-
point) into the body of software. The PCS Framework is one implementation of the con-
cern-oriented approach to software architecture that provides a means for composing and 
decomposing different PCSs. 

5.1.1 Goals, Principles and Key Concepts 

A major goal of the PCS Framework is to provide mechanisms for building, describing and 
implementing concern-oriented software architectures in a flexible and incremental way. It 
allows one to identify, separate, modularize and integrate various software artifacts that per-
tain to different kinds of concerns.

An important principle for the PCS Framework is the recursive separation of con-
cerns along multiple dimensions—that is, the capability to separate concerns along multiple 
dimensions called viewpoints, so that the set of related concerns viewed from the perspec-
tive of a viewpoint can be separated recursively into further (sub)viewpoints. This is the 
result of our interpretation of the IEEE-Std-1471. With this interpretation, we consider 
viewpoints to be an architectural mechanism for separating stakeholders’ concerns into dif-
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ferent sets of related concerns; each view expresses only those aspects of the system that 
can be “seen” from the perspective of a given viewpoint: when new problems arise, aspects 
thereof may be grouped to define a new perspective of the system at hand.

Figure 5.1 gives a general idea of the key concepts used in the PCS Framework and 
summarizes the combination of the realizations of the conceptual frameworks for MDSOC 
and IEEE-Std-1471, and UML.

Figure 5.1 illustrates the notion of perspectival concern-space as a projection of a concern-
space that involves a set of related concerns, their reifications into models, and the realiza-
tions of these models. Essentially, the PCS Framework represents a composition of multiple 
Perspectival Concern-Spaces that work together to support integration of software develop-
ment with building software architectures.

Moreover, the PCS Framework provides a means to overcome many of the problems 
identified in section 1.2 and section 1.3.

Finally, the realization of the IEEE-Std-1471 Conceptual Framework for the PCS 
Framework is shown as an Architecture Concern-Space. Further details on the concern 
space are given in section 5.4.
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Figure 5.1: A Perspectival Concern-Space in Overview
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5.1.2 Fulfilling the Requirements of COSA

Essentially, the PCS Framework fulfills the general requirements on concern-oriented 
approaches to software architecture by providing a UML-based linguistic toolkit, called 
UML Space, which combines the realizations of the conceptual frameworks of IEEE-Std-
1471 and MDSOC. The PCS Framework achieves the requirements for fulfilling the COSA 
approach in the following steps:

1. The PCS Framework realizes the IEEE-Std-1471 Conceptual Framework through its 
concept of viewpoint schema. 

2. The reification of concerns is achieved by means of the projection mechanism.
3. The realization of an architecture concern-space is achieved through the notion of 

UML Space—the PCS Framework uses standard UML to create a UML Space which 
architects need to use to develop and apply various viewpoint languages at will.

4. The PCS Framework achieves “architectural design by concerns” through concern-
oriented modeling using one or more viewpoint languages.

5. The integration of the building of software architectures with common software 
development is achieved through a combination of MDSOC with IEEE-Std-1471 and 
UML.

The following sections describe in more detail how the PCS Framework fulfills of the 
requirements of COSA.

5.2 Realizing the IEEE-Std-1471 Conceptual Framework

To realize the IEEE-Std-1471 Conceptual Framework, we premise that a software architec-
ture is multidimensional in nature. That is, when constructing complex software, an archi-
tect should represent the system at hand from multiple perspectives in order to be able to 
understand, communicate and reason about its important properties. Each representation of 
the system is considered as a different view of the system’s software architecture, and each 
view consists of one or more architectural models. Each architectural model reflects some 
aspects of the system relevant to the view at hand, while hiding other aspects that pertain to
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other views. An overview of our realization of the IEEE-Std-1471 Conceptual Framework 
for the PCS Framework is illustrated in figure 5.2.

Figure 5.2 illustrates some key concepts of IEEE-Std-1471, including architectural view-
points, views, models and concerns, and shows how these concepts relate to each other. The 
relationships among the concepts conform to the description given in section 3.1.1, together 
with the extensions discussed in section 4.5 (see also figure 4.3).

Figure 5.2 shows two examples of viewpoints, a Service-Oriented Viewpoint and an Aspect-

Oriented Construction Viewpoint (see “Service-Oriented PCS” on page 109 and “Aspect-Oriented 
Construction PCS” on page 83). For example, stakeholders who are interested in the system 
from the perspective of the service-oriented viewpoint will need to focus on different 
aspects of the software development problem at hand than those interested in the system 
from the perspective of another viewpoint. Considering the service-oriented viewpoint, 
each aspect of the problem is documented as a separate concern, called C1, C2, C3, C4, C5, C6

or C7. 
Concerns can be grouped into separate dimensions to define new viewpoints, recur-

sively. For instance, C3, C5 and C7 are shown as three different Configuration concerns that are 
grouped into one kind of concern, called the dimension D1. Similarly, the Behavior concerns 
(C2 and C6), and the Static Structure concerns (C1 and C4) are separated into a behavioral dimen-
sion (D2) and into a structural dimension (D3), respectively.

The Service-Oriented View of the software architecture of a system (unnamed in the fig-
ure) represents a partial architecture description of the system. Such a partial description 
can be further transformed and represented in different ways, for different reasons. As an 
example, in order to focus on the architectural dimensions introduced above, we decided to 
transform (or refine) the Service-Oriented View into three different architectural models shown 
as Static Model, Behavior Model and Configuration Model. Each of these architectural models per-

Figure 5.2: Overview of the IEEE-1471 Realization for the PCS Framework 
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tains to the concerns in a corresponding dimension. Such models need to express only the 
concerns at hand and nothing more. We refer to them as concern-oriented models. 

As a result, architectural models can be transformed into other models (or diagrams) 
in a “concern-oriented way”. We call this process concern-oriented model transformation.
For example, the Static Model is transformed into further models shown in two diagrams, the 
service description diagram (SD) and perspectival association diagram (PD). Each descrip-
tive unit in a view (i.e., a view element depicted as “x”) consists of a collection of one or 
more model elements.

5.2.1 Viewpoint Schema

A summarized description of the template for a viewpoint schema is shown in figure 5.3.

To allow architects to produce architecture descriptions that conform to the IEEE-Std-1471, 
the PCS Framework has introduced the notion of viewpoint schema, which: 

• defines a unique name for the viewpoint at hand; 
• identifies a set of stakeholders along with a set of various kinds of concerns that per-

tain to those stakeholders;
• provides an approach to facilitate the definition of a viewpoint language; 

Figure 5.3: A Viewpoint Schema in Overview
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• identifies the associated architectural view that represents the stakeholders’ concerns 
in one or more architectural models; 

• provides the sources for key information used in or related to the viewpoint definition. 
The PCS Framework provides a template for defining viewpoint schemas. In addition, it 
allows one to state the rationale for a viewpoint and to provide some relationships between 
the different kinds of concerns to be addressed, using a viewpoint schema. 

5.3 Reifying Concerns

Besides the key elements of the IEEE-Std-1471 Conceptual Framework, figure 5.2 illus-
trates the notion of reification of concerns. The lines between the concerns ({Ci}, i = 1..10), and 
the view elements (the x’s) illustrate the reification of the stakeholders’ concerns into view-
point language elements. The mechanism supported by the PCS Framework to address con-
cern reification is the projection.

A concern that is relevant to a viewpoint is reified into an architecture description by 
means of its projection onto one or more view elements. The PCS Framework supports two 
kinds of projections: projections between descriptive units and projections between con-
cerns and descriptive units.

1. Projections between descriptive units are concern-oriented model transformations that 
transform a set of descriptive units into another. Examples of such concern-oriented 
model transformations are given in the previous section, showing transformations of 
an architectural view into concern-oriented models, and of a model into diagrams.

2. Projections between concerns and descriptive units are different as they address the 
reification of a given concern (or set of concerns) into a set of descriptive units. For 
example, when designing a system using UML, you might need to reify a given 
responsibility (concern) into one or more methods (descriptive units) encapsulated in 
one or more classes (composite descriptive units).

Essentially, a projection is an architectural abstraction that defines the relationship between 
a viewpoint and a view—or between a view and a set of models. It consists of a set of rules 
that specifies how to reify (one or more) concerns into (zero or more) descriptive units, 
which are typically model elements. Projections must take into account that some concerns 
might not have adequate representations in the description language at hand. 

A descriptive unit can be simple or composite. A simple descriptive unit can be, for 
example, any basic UML element, such as a link, attribute, parameter, etc. Examples of 
composite descriptive units include classes, subsystems, packages, and any type of UML 
diagrams. Basically, a projection can be any set of rules that specifies how to decompose, 
organize, and structure software according to a specific dimension. Projections can be used, 
simultaneously, at different levels of abstraction. Different projections along different 
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dimensions result in different models, but also different projections along the same dimen-
sion may result in the same or different models. All sets of rules defining projections are 
defined and maintained as parts of the concern space.

Supporting the projection in the PCS Framework makes it possible to reify, and con-
currently separate concerns into different artifacts, at various levels of abstraction, while 
distinguishing each concern from the software artifacts reifying it.

5.4 Realizing an Architecture Concern-Space for UML

The requirement of concern-oriented models to express the concerns at hand, and nothing 
else, increases the need to have flexible viewpoint languages. In practice, UML seems to be 
a good candidate for documenting software architectures from multiple perspectives 
[HNS99][CBB+02]. On the contrary, using “members” of the UML family of languages 
(i.e., languages for expressing the different diagram types) as viewpoint languages can be 
very problematic. For example, the notion of software connector as found in ADLs does not 
exist in standard UML [KS00a], and introducing it into UML is complicated, as 1) UML 
lacks adequate support for modeling roles as first-class citizens and expressing roles is crit-
ical to connector modeling, and 2) extending UML suffers from the X-Syndrome
(section 5.4.2).

5.4.1 UML Lacks Adequate Support for Modeling Roles

The UML notation used to model roles is part of the UML language family called Collabora-

tion. The metamodel describing the meaning of this language is shown in figure 5.4. 
This metamodel is written itself in UML, using the notation for class diagrams. Each 

class in this diagram is a meta-class that represents a concept defined in the Collaboration lan-
guage. An association between two meta-classes is a meta-association. The meta-classes 
shown in gray are linguistic concepts borrowed from other members of the UML language 
family. For instance, Action is borrowed from the BehavioralElements::Actions language and all 
the other concepts in gray are from the Core language.
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The Collaboration language, as it stands, is very useful for modeling interactions among 
objects and components, as long as there is no need 1) to have a specific locus of definition 
for the interaction (i.e., the interaction is scattered among the participants), and 2) to sepa-
rate collaboration roles from the entities playing such roles. Otherwise, using the UML Col-

laboration is not appropriate.
As shown in the metamodel, roles (i.e., AssociationRole, AssociationEndRole and Classifier-

Role) inherit from their base meta-classes (i.e., Association, AssociationEnd and Classifier), respec-
tively: that is, roles cannot be separated from their base entities. Thus, every model element 
that is not a Classifier, an Association or an AssociationEnd cannot play a role in UML. This makes 
it impossible to use UML for composing interactions, associations, collaborations, features, 
etc. 

However, it should be possible to define a collaboration role by what base elements 
fulfilling that role must, must not or may accomplish (i.e., obligations, prohibitions and per-
missions).

5.4.2 The X-Syndrome

As mentioned earlier, UML provides built-in extension mechanisms which assist methodol-
ogists in defining new model elements that are not found in the standard specification of the 
language and which are required for some particular purpose. However, using built-in 
extension mechanisms of UML can be problematic to such a point that it may turn the atten-
tion of methodologists and software architects from their goals; thus, methodologists and 

Figure 5.4: UML Metamodel for Collaboration
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architects are often forced to deal with linguistic issues that have little or nothing to do with 
their concerns: if we do not provide a solution to this problem, model-driven software engi-
neering cannot be successful and using UML (both as it is and in its upcoming version 
UML 2.0 [Omg03]) will rather lead to the distraction and frustration of modelers.

Through research and practical work we have done over the last five years, we 
observed a syndrome characterizing the distraction and frustration of both architects and 
methodologists using UML. Our experience was gained from work in two different areas: 
1) in using, teaching and enhancing UML-based methodologies, and 2) in developing new 
UML extensions and profiles for structural architecture descriptions [KMP+98][KCS+02]
as well as for aspect-oriented modeling [KKS02]. 

We have identified a pattern of activity in modeling that tends to occur repeatedly 
whenever modelers try to extend UML. This pattern of activity is not a useful software pat-
tern; it is an anti-pattern that we describe to help architects and methodologists avoid frus-
tration and distraction when using standard UML to create architectural models or models 
resulting from a software development process. We call this anti-pattern the X-Syndrome or 
“Extension Hell Syndrome” of UML.

The X-Syndrome anti-pattern represents a group of symptoms that together character-
ize a large number of problems related to using current UML's extensibility mechanisms. 

The X-Syndrome can be best observed whenever you try to model a new kind of con-
cern in UML that is not already supported. A typical process for extending UML looks like 
the following:

1. You find a model element that is most similar to the kind of construct you would like 
to support in UML

2. You extend this model element (e.g., by defining a new stereotype)
3. You neutralize or “deactivate” all features you do not need (e.g., by defining OCL1

constraints—using OCL you can only restrict; however, does this cover all your neu-
tralizations?)

4. You add all the additional features you wish to have (e.g., by defining new tagged val-
ues)

5. Eventually, you get a new model element that resembles what you are looking for, but
you might not succeed in getting exactly what you want!

Summing up, UML currently forces modelers to inherit from elements that contain features 
they don’t need. 

We believe that the X-syndrome is a direct consequence of the rigid hierarchy of the 
UML metamodel. In UML, primitive model elements and groups thereof suffer from the 
predominance of Classifiers and predefined diagram types: elements of the UML meta-
model can be composed and decomposed along a few dominant dimensions only; composi-
tions and decompositions along other dimensions are not supported. 

1.The Object Constraint Language, described in the UML specification [Omg01].
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5.4.3 UML Space — Overcoming the X-Syndrome

In addition to the problem described above, it is also difficult to use and understand the 
standard UML specification [Omg01]. Even experienced users of UML cannot easily find 
out the exact meaning of certain model elements from the standard specification, because 
the information pertaining to a specific element is scattered throughout the whole document 
(which is about 700 pages). Typically, information on a meta-class is found in different dia-
grams, associations, and parent meta-classes, etc.

Figure 5.5 shows an example of the kind of information an experienced user of UML 
would need to decide whether a specific model element is appropriate for his/her modeling 
needs or not. 

This example describes the Classifier meta-class, including its attributes, parents, scope 
of definition, children, meta-diagrams by which it used, as well as the roles it plays. 

Classifier

     has attribute
          - association
          - classifierInState
          - classifierRole

          - collaboration
          - feature
          - instance
          - objectFlowState

          - powertypeRange
          - specifiedEnd
          - typedFeature

          - typedParameter
     is child of
          - GeneralizableElement
          - Namespace

     is owned by
          - Core Package
     is parent of

          - Actor
          - Artifact
          - Class
          - ClassifierInState

          - ClassifierRole
          - Component
          - DataType
          - Interface

          - Node
          - Signal
          - Subsystem

          - UseCase
     is used by
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          - Activity Graphs Package
          - Collaborations Package - Interactions

          - Collaborations Package - Roles
          - Common Behavior Package - Instances
          - Common Behavior Package - Signals

          - Core Package - Backbone
          - Core Package - Classifiers
          - Core Package - Relationships
          - Model Management Package

          - Use Cases Package
          
      acts as (roles)

          - base
  - classifier
  - owner
  - participant

  - powertype
  - representedClassifier
  - specification

  - type

Normally, this information about the Classifier meta-class is scattered across many pages of 
the standard specification document, and there is no way to gather it quickly and efficiently. 
Techniques and tools are needed to facilitate the exploration and navigation within the space 
of UML concepts. 

UML Space is the PCS Framework mechanism for realizing an architecture concern 
space. In general terms, a concern space represents a conceptual repository that contains all 
relevant information related to a set of different viewpoints. A concern space takes a set of 
viewpoint schemata as an input and refines the information contained in each individual 
viewpoint schema to help define its viewpoint language. 

Using an architecture concern space, the PCS Framework allows one to organize, 
recursively and incrementally along different dimensions, the set of all concerns from the 
perspectives of multiple viewpoints; it also allows one to specify the relationships between 
the dimensions and maintain changes in the concern structure. Therefore, we consider a 
concern space as a tool for reifying a software architecture into a “multi-dimensional model 
of systems”—that is, the set of all systems that can be built from the same software architec-
ture.

5.4.3.1 How to Create a UML Space

Creating a UML Space allows one to overcome many problems related to development of 
extensions to UML [BGJ99][GH02], including the X-Syndrome. UML Spaces provide an 

Figure 5.5: The Description of the UML Metaclass Classifier
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effective and flexible approach to supporting domain-specific modeling in UML, and devel-
oping different viewpoint languages and profiles of UML. We found useful to go along the 
following steps when developing a UML Space: 

1. Create a conceptual repository to which you can add the UML metamodel
2. Provide support for exploring and navigating across the UML Space 
3. Fragment the UML metamodel to get independent units of manipulation; this allows 

you to achieve multidimensional separation of concerns, by acquiring the necessary 
flexibility to combine units of the metamodel along multiple dimensions of concern

4. Compose different units contained in the UML Space to build the viewpoint language 
which you wish to have

5. Defragment the resulting metamodel (i.e., recompose the units) to build the model 
elements or meta-classes of your new language

6. Inherit from the smallest element of UML to make your viewpoint language become a 
variant or profile of UML

7. Store the new metamodel as an extension to UML or a new UML profile
To validate this approach, we have developed a UML Space for Aspect-Oriented Modeling 
that is used to model component interactions. See “Aspect-Oriented Construction PCS” on 
page 83. Furthermore, to provide support for exploring and navigating across the UML 
Space, we have developed a Topic Map for UML 1.5 that will be available very soon to the 
UML community at the Internet address given in [US03]. As an example, the Classifier 
description shown in figure 5.3 was generated from this Topic Map for UML.

Because of their extensive use of units in the UML metamodel, we believe that UML 
Spaces provide a good linguistic toolkit to integrate concern-oriented architecture descrip-
tions with standard UML models, including UML extensions to support ADL constructs.

5.5 Achieving Architectural Design by Concerns

The suitability of any formalism to support concern-oriented architecture description 
depends on its capabilities to facilitate separation, representation, and reasoning about mul-
tiple kinds of concerns involved in software development.

To address the achievement of architectural design by concerns, this section concen-
trates on two points: mechanisms for separating architectural concerns and linguistic sup-
port for expressing those concerns.

5.5.1 Mechanisms for Separating Architectural Concerns

Up to now, we have introduced viewpoints as a mechanism for separating architectural con-
cerns. We have also demonstrated the use of viewpoints in a recursive and incremental way. 
This approach provides a great flexibility to produce architectural models from a given 
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viewpoint and to transform these models into further models, incrementally and in a con-
cern-oriented way. However, it does not address adequately the representation of those con-
cerns that crosscut multiple viewpoints, causing consistency problems among views (recall 
that in IEEE-Std-1471, each view conforms only to one viewpoint).

To solve this problem, we need more flexible mechanisms for separating concerns in 
software architecture. This leads us to examine the role of multidimensional separation of 
concerns in software architecture. 

An important goal of multidimensional separation of concerns is to allow support for 
“ilities” throughout the software lifecycle. Thus, it represents a compelling means for 
achieving architectural qualities (as introduced by [BCK98]). Examples of “ilities” sup-
ported by MDSOC, and which are referred to as architectural qualities, are the following:

Understandability.  Lack of understanding what concerns are relevant to a software archi-
tecture is the cause of the failure in most software projects. Good understanding of architec-
tural design involves comprehension of various concerns of importance to an architect. 
Using MDSOC, software architects can focus on one concern at a time and document its 
representation in an architecture description. This facilitates achievement of architectural 
design by concerns.

Reusability.  Achieving architectural design by concerns allows one to produce concern-
oriented models of the software architecture and to reuse them at will, when constructing 
large-scale systems.

Traceability.  Traceability between concerns and the elements (or units) in the body of soft-
ware that represent those concerns [CHO+99]; using MDSOC, developers can find, at any 
time, all units that are relevant for a given concern.

Modifiability.  Modifiability is essentially a function of the locality of any change 
[BCK98]. It defines the circumstances under which an architect has to limit the impact of 
change. MDSOC helps provide means for restricting the impact of change in software.

Evolvability.  Limitation of change allows architects to address new concerns in their soft-
ware architectures or change the design of existing concerns by modifying the correspond-
ing concern-oriented models.

Integrability.  Integrability is an important driving force in any concern-oriented software 
architecture, because it stands for the ability to make separately developed concern-oriented 
models work together. MDSOC refers to this as a mechanism for composing different mod-
ules.

While these advantages are critical to building software architectures, realizations of 
separation of concerns found in software architecture practice are very limited. There is a 
complete lack of mechanisms for advanced separation of concerns in the software architec-
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ture community. Software architects should learn from work done in the aspect-oriented 
software development community. 

The path we follow in this dissertation is aligned with an important observation by 
Clements and Northrop: “aspect-oriented programming is an architectural approach 
because it provides a means for separating concerns that would otherwise affect a multitude 
of components that were constructed to separate a different, orthogonal set of concerns 
([CN02], pp.68).” 

Furthermore, the implementation of MDSOC for software architecture, as proposed 
by the PCS Framework, goes beyond aspect-oriented programming. We adopt aspect-ori-
ented modeling (AOM) and extend it to cover the notion of reification of concerns into soft-
ware. Thus, our work does not just address AOM to complement object-oriented modeling 
techniques with aspects. Instead, the PCS Framework focuses on the idea of design by con-
cerns which leads to an extension of AOM to cover concern-oriented modeling.

5.5.2 Linguistic Support for Expressing Architectural Concerns

As mentioned in section 5.4, UML is quite inflexible. Achieving multidimensional separa-
tion of concerns for UML requires one to break the tyranny of dominant decompositions. 
This can be achieved by model fragmentation/de-fragmentation to create more flexible 
design languages (See “UML Space — Overcoming the X-Syndrome” on page 74.) What 
we need now is to focus on design by concerns. 

5.5.2.1 Tyranny of Dominant Decompositions in UML

Current UML allows one to separate certain kinds of concerns along individual dimensions 
to achieve unidimensional separation of concerns. For example, using UML you can dis-
criminate different responsibility concerns and reify them into different Classifiers (e.g., 
Classes, Interfaces and Use Cases). 

Using Classifiers, a modeler is able to separate the specification of a given responsi-
bility concern from its realization, by means of reification of the given concern into model 
elements—an interface and a class realizing that interface. Such model elements can be 
described at two different levels of abstraction, specification and realization (covering both 
design and implementation). If we consider the specification, design and implementation as 
three different levels of abstraction, then we can say that the given responsibility concern 
pertains to all three levels, but what does this mean? Does this responsibility concern cross-
cut the levels? 

Indeed, responsibility is a dimension of concern; it should not be confused with the 
individual concerns that belong to it. Examples of specific responsibility concerns include: 
CUSTOMER MANAGEMENT, BOOK MANAGEMENT, and TRADING. These concerns can be rei-
fied into descriptive units.
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Figure 5.6 shows an example of how the TRADING concern can be reified into the pub-
lic operations, buy() and sell(). The reification of the CUSTOMER/PRODUCT MANAGEMENT con-
cern is more complicated because the concern itself can be seen as a problem with two 
aspects: ASSORTMENT and PERSISTENCY. These aspects represent each different concern that 
can be addressed separately.

 

As exemplified in figure 5.6, the ASSORTMENT concern is reified into two operations: 
select(), exclude(); the PERSISTENCY concern is also reified into store() and retrieve().

To realize design by concern, the descriptive units reifying each of the concerns 
(TRADING, ASSORTMENT and PERSISTENCY) must be encapsulated separately. This is 
achieved by organizing the units into three different interfaces called Trader, Collection and 
Storage, respectively. This is concern-oriented modeling in the context of unidimensional 
separation of concerns. 

While concern-oriented modeling can be achieved in this context, using standard 
UML, it does not work in many other situations where we have to deal with multiple dimen-
sions. A well-known example of a development method based on unidimensional separa-
tion of concerns is the Responsibility-Driven Design method [WWW90]. 

One problem with concern-oriented modeling for unidimensional separation of con-
cerns is scattering and tangling.

5.5.2.2  Scattering of Concerns

Consider the example of figure 5.6. Through the realization relationships between the inter-
faces (Trader, Collection and Storage) and the design classes (Bookstore, Warehouse, University, and 
Pharmacy), the realizations of the responsibilities separated previously are scattered across 
all classes. Consequently, if for some reason, an argument within a signature of an operation 
declared in one of the interfaces changes, the change may become invasive, leading to 
maintenance problems.

Figure 5.6: Unidimensional Separation of Concerns Across Different Levels
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5.5.2.3 Tangling of Concerns

In the example of figure 5.6, scattered responsibility concerns overlap and become entan-
gled with each other and with the features of the design classes.

5.5.2.4 Crosscutting Concerns

Figure 5.7 shows a different view of the scattering and tangling discussed above. It moti-
vates the need for concern-oriented modeling, while demonstrating the inability of UML to 
support advanced separation of concerns. This expresses the crosscutting effect that results 
from the unidimensional separation of concerns achieved through the use of responsibility-
driven design.

To realize multidimensional separation of concerns in UML, we need to make UML support 
the notion of perspectival elements. We refer to such perspectival model elements as model 
slices that can be created by using a UML Space. Model slices can be used for representing 
the reifications of individual (crosscutting and non-crosscutting) concerns in concern-ori-
ented models. Many concrete examples of model slices are given in the next chapters.

5.6 Integrating Architecting and Software Development

The PCS Framework addresses integration between software architecture building and soft-
ware development through the realization of a general-purpose software engineering 
approach (MDSOC), a standard recommended practice for architecture description (IEEE-
Std-1471) and a standard modeling language (UML). By combining these elements to sup-
port separation of concerns at multiple levels, simultaneously, the PCS Framework shows 
that the creation of software architectures should not be addressed in isolation. Software 
architectures are created, described and elaborated from different perspectives at the same 
time. The combination of MDSOC, UML and IEEE-Std-1471 has been extensively dis-
cussed throughout this chapter with several examples. More practical examples are shown 
in the validating chapters.

The description of any particular PCS is based on the use of a viewpoint schema as 
shown in figure 5.3 (see for example, “Aspect-Oriented Construction PCS”).
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5.7 Using UML

As you might have observed, we have been using UML notions throughout this chapter. In 
particular, supporting the UML Space within the PCS Framework allows one to effectively 
use UML to quickly create viewpoint languages and use them to provide concern-oriented 
descriptions of software architectures.

5.8 Final Remarks

This chapter introduced the PCS Framework. It provided an approach to implement two 
conceptual frameworks, the IEEE-Std-1471, and multi-dimensional separation of concerns 
(MDSOC). The PCS Framework provides means for integrating these two frameworks by 
using the Unified Modeling Language (UML). Furthermore, it introduces the notion of con-
cern-oriented modeling to support the paradigm of architectural design by concerns. The 
concern space realization proposed by the PCS Framework is called UML Space.
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Chapter 6:

Aspect-Oriented Construction PCS

This chapter presents the concern-oriented approach to software architecture from the per-
spective of aspect-oriented software development, using multi-dimensional separation of 
concerns (MDSOC). It describes a perspectival concern-space, called Aspect-Oriented 
Construction PCS. This specific PCS demonstrates how MDSOC helps deal with software 
complexity by supporting the composition of independent software components along differ-
ent interaction concerns. The chapter introduces a UML Space for Aspect-Oriented Model-
ing.

6.1 Viewpoint Name

Aspect-Oriented Construction Viewpoint

6.2 Sources

Overview Information. The Aspect-Oriented Construction viewpoint provides the ability 
to compose software components that have been separately implemented using, possibly, 
different technologies.

Summary. This viewpoint presents an aspect-oriented technique to create software connec-
tors based on modeling different kinds of interaction.

Context. This viewpoint is part of the Aspect-Oriented Construction PCS.

References. [GMW97] [MMP00]

History of change. None.

Glossary. None.

6.3 Concerns

The major concerns for the Aspect-Oriented Construction PCS are the following:
Interaction, modifiability, reusability, understandability and decoupling.
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6.4 Stakeholders

The stakeholders include: architects, maintainers, designers, developers and programmers.

6.5 Rationale

1. Developing software systems by composing existing independent components. Archi-
tects have to reuse existing components to build new systems.

2. Enterprises need to adopt component-based software development to build new com-
ponents faster. The architecture must allow one to: 

• plug-in new components into existing environments
• respect time-to-market constraints

3. Managers said: We need to adopt the aspect-oriented software development along 
with software architecture.

6.6 Architectural Problems

6.6.1 Incentive Aspects

To explain our approach to achieving multidimensional separation of concerns in UML, 
consider the notion of collaboration as defined in standard UML: “a Collaboration contains 
a set of ClassifierRoles and AssociationRoles, which represent the Classifiers and Associa-
tions that take part in the realization of the associated Classifier or Operation. The Collab-
oration may also contain a set of Interactions that are used for describing the behavior 
performed by Instances conforming to the participating ClassifierRoles.”[Omg01]

The structure resulting from this definition can be illustrated as shown in figure 6.1. 
The figure contains two ClassifierRoles, each of which is connected to an AssociationRole

through an AssociationEndRole. However, the UML metamodel is based on object-oriented 
modeling techniques. In object-orientation, things that happen within objects can be 
described and reasoned about. But what occurs between objects is not well understood. For 
instance, UML does not allow associations between classes to exist independently of the 
classes between which they establish a relationship. This enslavement of Associations in 
UML is reflected on AssociationRole because of the inheritance relationship between both 
(page 2-113 in [Omg01]). Furthermore, while AssociationEndRole and ClassifierRole represent 
two metaclasses, the relationship between them is treated as a second-class citizen. There-
fore, the attachment between these roles cannot be expressed. 

We believe that if we understand how to attach ClassifierRoles to AssociationEndRoles—
which are part of an AssociationRole—we can express ClassifierRoles and AssociationRoles inde-
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pendently from one another, and treat both as first-class citizens in Collaborations. Lacking 
support for expressing ClassifierRoles and AssociationRoles independently, we will not be able to 
understand the behavior that cuts across the boundaries of Classifiers and Associations playing 
these roles respectively.

Supporting explicit separation between ClassifierRoles and AssociationRoles would allow us to 
reify computation and data store concerns within ClassifierRoles, and reify interaction con-
cerns by means of AssociationRoles. Unfortunately, AssociationRole is based on (i.e., inherits 
from) Association, and Association inherits from GeneralizableElement and Relationship, which in 
turn extend ModelElement. This leads to the X-Syndrome, as it forces an AssociationRole to take 
over all the features from all the super meta-classes including those that are not desired. To 
avoid this, another perspective on AssociationRoles is required.

6.6.2 Towards Perspectival Associations

We believe that taking another perspective on an AssociationRole will allow one to understand 
what happens between instances of different Classifiers, and thus to express various aspects of 
an interaction among them. Figure 6.2 addresses the structural crosscutting shown in 
figure 6.1 and figure 5.7. 

Figure 6.2 describes a collaboration between two instance-level ClassifierRoles, Client

and Storage. In particular, it focuses on what happens at the ends of and within the links that 
connect the ClassifierRoles. For example, the point at which a Client invokes the retrieve()

method on an instance of a Classifier (bs, wh, and ph) playing the role Storage (1) joins the 
point at which the retrieve() method starts executing within one of these instances (2). The 
call on the retrieve() method made at (1) can be executed at several points (2). As a conse-
quence, the concept of perspectival associations allows us to understand and express how 
individual calls can crosscut the boundaries of different links as well as instances of Classifi-

ers attached to those links. 
The point at which to get the value of a variable (i.e., an attribute) (3) joins the point at 

which that variable is de-referenced (4). Also, the point at which to set a value to a variable 
(5) joins the point at which the value is assigned to that variable (6).

Similarly, the point at which software causes, raises or throws an exception (7) joins 
the point at which that exception is handled (8). The points through which the control flow 
passes illustrate our join point model which is based on the cause-effect principle. For 
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Figure 6.1: Structural Illustration of Key Elements within a UML Collaboration
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example, a call (a cause) triggers an execution (an effect). In this model, we distinguish 
between implicit and explicit join points. An explicit join point is a point in the software at 
which a new branch of the control flow starts. An implicit join point is the point at which 
the newly created branch of the control flow ends.

6.6.3 Decisional Aspects

The decisional aspects for the Aspect-Oriented Construction PCS are:
• The need for a mechanism to support concern-oriented software composition
• The need for supporting aspect-oriented modeling
• The need for a mechanism to support reifying interaction concerns

6.6.4 Resultant Aspects

The resultant aspects for the Aspect-Oriented Construction PCS are:
• The ability to reify interaction concerns into software connectors is satisfactory
• The ability to compose interaction concerns without using the aspect mechanism is 

unsatisfactory
• The ability to support aspect-oriented modeling is satisfactory
• The ability to support model fragmentation and de-fragmentation is noteworthy. Tool 

support is very much required
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Figure 6.2: Behavioral Illustration of Key Elements of a UML Collaboration
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6.6.5 UML Extensions for Aspect-Oriented Modeling

The UML extensions for aspect-oriented modeling presented in this section are based on the 
use of MDSOC in building the UML Space. As mentioned in section 5.4.3, we copy the 
UML metamodel into the UML Space and fragment it into primitive units (attributes, ele-
ments, features, etc), which we compose to build new model elements for aspect-oriented 
modeling.

The new model elements are defined within the package called AOM Foundation (figure 6.3). 
This package is decomposed into two subpackages called AOM Core and AOM Data Types.

The figure further illustrates the relationships between the AOM Foundation and the 
UML Foundation packages. It also shows the internal structure of each of those packages. All 
relationships between the packages shown in this diagram are UML dependency relation-
ships.

The AOM Core package specifies the basic AOM constructs necessary to model aspect-
oriented software. The AOM Data Types package defines basic data types.

We will first give a broad overview of the extension packages, followed by a detailed 
description of the abstract syntax of the new model elements. 

6.6.5.1 AOM Core: The Aspect-Oriented Construction Viewpoint Language

This package is a fundamental subpackage that composes the AOM Foundation package. It 
defines the basic metamodel constructs needed for the development of aspect-oriented mod-
els, and can be extended as the AOM community gains more experience.

The following section presents very briefly the abstract syntax. The well-formedness 
rules and detailed semantics of the AOM Core package have been left out for space reasons.
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Figure 6.3: High-Level Package View of the UML Space for AOM
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6.6.5.2 Abstract Syntax

The abstract syntax for the AOM Core package is expressed in graphical notation, and is 
decomposed into three different diagrams. For readability reasons, the model elements are 
described in alphabetical order just after the diagram that contains them. Figure 6.4 shows 
the model elements that form the AOM Core metamodel. This metamodel includes two sub-
diagrams that are represented each in a separate slice (dynamic and static crosscutting 
slices)

PerspectivalAssociation.  A perspectival association is a mechanism for representing inter-
action aspects among a group of collaborating parts. It is similar to an AssociationRole viewed 
from a specific perspective that focuses on identifying and reifying crosscutting concerns 
into a separate module. To avoid the X-Syndrome, PerspectivalAssociation extends the UML 
meta-class Element, which is the smallest element within UML. Moreover, it consists of a 
collection of ConnectionPoints, PerspectivalBehavior, and Introductions. It may also declare features 
and inner types. A PerspectivalAssociation can be related with another PerspectivalAssociation in 
precedence or inheritance relationships.

ConnectionPoint.  A ConnectionPoint is an element of a PerspectivalAssociation that provides a 
mechanism for composing JoinPoints to which PerspectivalBehavior can be added. A Connection-

Point exposes its context in terms of Parameters that can be used in the body of the associated 
PerspectivalBehavior. 

Attachment. An Attachment is a mechanism for applying the specification of a ConnectionPoint

to the context of an associated ClassifierRole. This context is obtained from the relationship 

Figure 6.4: The UML Space for AOM — A Low-Level View of AOM Core
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between the ClassifierRole and its base Classifiers. We use this because UML does not treat roles 
as explicit types.

PerspectivalBehavior.  PerspectivalBehavior defines crosscutting behavior that can be exe-
cuted at the associated ConnectionPoints. The additional behavior can be executed at different 
points in time (before, after, or around) relative to the moment at which the associated Con-

nectionPoint is reached.

Introduction. An Introduction provides support for structural amendments. For example, it 
allows one to declare supplementary behavioral and structural features, and to modify an 
existing hierarchy.

6.7 Resultant View

The resultant view is a partial description of a software architecture. This is best explained 
by means of an example: the Traffic Light Control System.

The following describes a running example of an application of the UML Space for 
AOM. It presents an aspect-oriented solution to the traffic light problem:

This problem consists of developing a software system that should be built by com-
posing different types of components developed at different times by different people: four 
traffic lights, and a timer. The requirements of the system are quite simple:

• The timer component is responsible for triggering an event at regular time intervals
• A traffic light component should always switch on the same light as its opposite peer
• A traffic light component should never show the same light as its direct neighbors
• A traffic light component should not maintain any knowledge of the state of its peers

An important dimension of the design addressed in the solution to this problem is the inter-
action among individual components. The solution does not describe the components them-
selves; it rather focuses on the roles played by those components within the context of the 
interaction. Figure 6.5 shows a perspectival association between components’ roles that is 
based on the architectural configuration model shown in figure 6.7. It describes an aspect-
oriented model for an event connector. This event connector consists of two Classifier-
Roles, called Producer and Consumer, that are attached via two ConnectionPoints (shown as 
black circles), named as newState and newConsumer. This event connector provides a flexible 
way of making components communicate without any coupling between them. This is 
achieved by modeling the EventConnector as a PerspectivalAssociation (shown as a dashed 
ellipse) that modularizes the interaction concerns among the participating components. 
These interaction concerns are mainly related to the adaptation of components to be com-
bined and configured to build a new application. They include the establishment of inter-
connections among components, the maintenance of those interconnections, and the 
mediation of the events exchanged between the participating components
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The connector model shown in figure 6.5 allows us to overcome the limitations stated in 
section 5.5.2 for two reasons. First, it allows one to modularize multiple interaction con-
cerns; and second, the use of roles instead of components allows us to overcome the limita-
tions stated in section 5.5.2.

6.7.1 Identifying Causes and Effects for the EventConnector

The EventConnector mediates events among the interacting components based on the cause-
effect principle introduced earlier.

Figure 6.6 shows a table that illustrates the cause-effect principle applied on the example of 
the traffic light system. The content of the table can be interpreted as follows: When a com-
ponent playing the Producer role triggers an event (at predefined time intervals), each of the 
components playing the Consumer role is instructed to change its internal state. In order to 
deliver events to components playing the Consumer role, references to those components 
must be obtained at their creation time.

6.7.2 Designing the EventConnector

An aspect-oriented way of accomplishing the causes and effects identified in section 6.7.1
consists of the following two steps: 1) using ConnectionPoints to capture the causes; and 2) 
realizing the effects within the body of the PerspectivalBehaviors associated to the Connec-
tionPoints.

Figure 6.7 describes the main structure of the EventConnector. It provides an elabo-
rated view of the model (depicted in figure 6.5) that gives details on both the Connection-

Figure 6.5: A Perspectival Association between the Component Roles
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Figure 6.6: The Cause-Effect Principle Applied on the EventConnector
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Points (previously shown as black circles), and the PerspectivalAssociation (previously 
shown as a dashed ellipse)

6.7.2.1 Capturing the Causes

Capturing the causes drives the design of the ConnectionPoints. The EventConnector has two 
ConnectionPoints that are: newState and newConsumer. The structure of a ConnectionPoint is 
shown with the <<ConnectionPoint>> stereotype and has two compartments: one for exposing 
the context, and another one containing the JoinPoint composition. We use the AspectJ 
notation as language for expressing the JoinPoint composition.

A major reason for designing the newState ConnectionPoint is to capture the exact 
moment at which the state changes within the Producer (i.e., when the updateState() method is 
invoked). Similarly, the newConsumer ConnectionPoint detects the creation of components 
playing the Consumer role, and it exposes a reference to that new component within its con-
text. 

6.7.2.2 Realizing the Effects

The realization of the effects drives the design of the PerspectivalBehavior. This is mainly 
achieved by determining: 1) when the body of this PerspectivalBehavior should be exe-
cuted; and 2) which ConnectionPoint is associated with this PerspectivalBehavior. Right 
now, we are using the AspectJ notation for advice as language for expressing the signature 
of a PerspectivalBehavior.

Figure 6.8 shows two pieces of Java code implementing the bodies of the Perspectiv-
alBehaviors associated with the newState and the newConsumer ConnectionPoints.

Note that the body of the perspectival behavior is not shown on the design illustrated 
in figure 6.7, as it is an implementation artifact.

Figure 6.8 shows the piece of Java code describing the notification of Consumers on state 
changes within the body of the perspectival behavior associated with newState.

Figure 6.7: Static Structure of the EventConnector
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Figure 6.8: Body of the Perspectival Behavior Associated with newState

java.util.Iterator it = consumers.iterator();
while (it.hasNext()) {
    ((Consumer) it.next()).changeState();
}
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Similarly, figure 6.9 shows the Java code within the body of the perspectival behavior asso-
ciated with newConsumer. It describes how to store the reference to the newly created Consum-

ers into an internal list container.

6.7.2.1 Refining the Design of the Connector Model

Figure 6.10 presents a detailed design of the connector model given in figure 6.5. This fig-
ure shows explicitly the attachments between the ConnectionPoints and ClassifierRoles. 
The attachment relates the specification of a given ConnectionPoint with a component via 
the role played by that component. For example, the attachment to the left uses the Join-
Point composition of the newState ConnectionPoint in the contextual relationship between 
components and their Consumer roles.

Additional information in figure 6.10 is the declaration of the list container needed by 
the EventConnector to store the Consumers.

6.7.3 Mapping the Aspect-Oriented Model to an AspectJ Program

This section describes how to map our connector model onto an aspect (as defined in 
AspectJ) and introduces a running example that evaluates our contribution. An important 
issue in the mapping of the connector model onto an AspectJ program is to describe how to 
express the Producer and Consumer roles in the program code. One way to address this issue 
consists of allowing arbitrary components to play these two roles. This is currently done by 
hand.

To map the connector design to an AspectJ program, we proceed as follows: each 
ConnectionPoint is mapped onto a pointcut with the same name as shown in the code of 
figure 6.10. Each PerspectivalBehavior is realized by a separate advice whose bodies con-

Figure 6.9: Body of the Perspectival Behavior Associated with newConsumer

if (cons != null) {
        consumers.add(cons);
    }

Figure 6.10: The Complete Design of the EventConnector
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tain the code given in figure 6.8. Finally, the PerspectivalAssociation itself is mapped onto 
an aspect named EventConnector that contains the pointcuts and advice declared above, as 
well as a private list member.

aspect EventConnector {
    private java.util.List consumers = new java.util.LinkedList();

    pointcut newConsumer (Consumer cons) :
        this(cons) &&
        execution(Consumer.new(..));

    pointcut newState () :
        execution(* * Producer.updateState());

    after (Consumer cons) : newConsumer(cons) {
        if (cons != null) {
            consumers.add(cons);
        }
    }

    after () : newState() {
        java.util.Iterator it = consumers.iterator();
        while (it.hasNext()) {
            ((Consumer) it.next()).changeState();
        }
    }
}

6.8 Final Remarks

This chapter presented a case study on software composition by interaction concerns. It 
introduced an approach to building complex software systems by using aspect-oriented con-
nectors. It provided a UML Space for aspect-oriented modeling which allows us to model 
interaction aspects for adapting independent components to a new environment. The 
approach proposed in this chapter allows us to express different aspects of software interac-
tions into aspect-oriented models. However, one of the limitation of this approach is related 
to the composition of interaction aspects themselves. Further research is required to come 
out with a more appropriate language for modeling PerspectivalBehavior.

Another limitation is related to the assignment of roles to components. This is cur-
rently done manually; the provision of mechanisms for enabling dynamic assignment of 
roles to component requires further research..

Figure 6.11: Implementation View of the EventConnector Aspect
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Chapter 7:

On-Demand Remodularization PCS

This chapter presents an approach to implementing MDSOC for UML using the projection 
mechanism for reifying concerns into software in order to achieve remodularization of soft-
ware on-demand. It introduces techniques for achieving architectural design by concerns,
using concern-oriented modeling. Moreover, the chapter describes a concern-oriented pat-
tern, called On-Demand Remodularization pattern.

7.1 Viewpoint Name

On-Demand Remodularization Viewpoint

7.2 Sources

Overview Information. The On-Demand Remodularization (ODR) viewpoint provides the 
ability to remodularize a software-intensive system according to new architectural con-
cerns, non-invasively, and without eliminating encapsulations based on prior decomposi-
tions.

Summary. The ODR viewpoint presents a software architecture recovery approach that 
aims at reconstructing a view on the Java Drag’n’Drop architecture as-built. This viewpoint 
is part of the On-Demand Remodularization PCS. Using this viewpoint allows us to focus 
on two aspects of software architecture recovery: 

• evaluating the usability of the Java Drag’n’Drop architecture 
• remodularizing various architectural concerns without invasive change

Context. This viewpoint is part of the On-Demand Remodularization PCS.

References. [TOW+99] [TO00]

History of change. None.

Glossary. None.

7.3 Concerns

The major concerns for the On-Demand Remodularization PCS are the following:
Integrability, modifiability, reusability, usability, understandability and decoupling.
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7.4 Stakeholders

The stakeholders include: architects, managers, maintainers, designers, application develop-
ers and programmers.

7.5 Rationale

1. Analysis of the system reveals the need for evolution in the software architecture. 
Architects have recognized maintenance problems

2. New organization of the system without invasive change. The architecture must allow 
one to: 

• Add new concerns without worrying about existing modularization  
• Preserve existing relationships among concerns

3. Managers said: It is time for major challenges in the enterprise

7.6 Architectural Problems

This section describes different aspects of an architectural modeling problem. These aspects 
are described in the following sub-sections.

7.6.1 Incentive Aspects

The incentive aspects for the On-Demand Remodularization PCS are:
• The need for representing concerns before they can be populated with units
• The need for representing concerns together with the units that pertain to them
• The need for expressing interactions among units pertaining to a particular concern as 

a separate model slice 
• The need for expressing the static structure of a group of units pertaining to a particu-

lar concern as a separate model slice
• The need for expressing an aspect mechanism as a concern-oriented model

7.6.2 Decisional Aspects

The decisional aspects for the On-Demand Remodularization PCS are:
• The need for a mechanism to support model fragmentation and de-fragmentation
• The need for a mechanism to support concern reification
• The need for expressing relationships among concerns
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7.6.3 Resultant Aspects

The resultant aspects for the On-Demand Remodularization PCS are:
• The ability to reify concerns into units is satisfactory
• The ability to compose concerns without using the aspect mechanism is unsatisfactory
• The ability to support on-demand remodularization of existing software systems is 

satisfactory
• The ability to support model fragmentation and de-fragmentation is noteworthy. Tool 

support is very much required

7.7 Relationships Among Concerns

None.

7.8 Resulting View

This On-Demand Remodularization view is a collection of concern-oriented models that 
provide a partial description of the Java Drag’n’Drop architecture. These concern-oriented 
models can be used to express concerns at different levels: 

Concern at the viewpoint level. This shows a concern representation that contains only the 
name of the concern. Reifications are not shown at this level, but additional documents 
might be attached to give more description of the concern. Figure 7.1 shows an example of 
such a concern representation.

Concern at the view level. This shows only reifications of concerns into units. There are 
three options to show concerns at this level. These are shown in what follows. 

Figure 7.2 shows the variant that provides a solution to the limitations of UML as 
described in figure 5.7. The names of the concerns (e.g., TRADING) are shown together 
with the units that reify them. 

Figure 7.1: Concern-Oriented Model as a Means for Concern Representation

PERSISTENCYPERSISTENCY
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Figure 7.3 shows model slices that together build a concern-oriented model. Several exam-
ples of slices are given below. Model slices are UML-based hyperslices [TO00]. Similarly 
to hyperslices, model slices must be declaratively complete: that is, they must declare all the 
units they use. This allows one to reuse model slices in different design contexts.

Finally, Figure 7.4 shows a concern-oriented model as an aspect-oriented mechanism. It 
builds on the notation introduced in the previous chapter.

The language constructs introduced above are the main elements used in the On-Demand 
Remodularization PCS. The On-Demand Remodularization view can be best explained by 
means of a concrete example. The next example presents the case of the Java Drag'n'Drop 
architecture.

7.9  The Java Drag & Drop Architecture Case Study

This section presents an application of the On-Demand Remodularization PCS on the Java 
Drag & Drop Architecture.

According to some computer users, Drag’n’Drop is one of the most user-friendly 
inventions in software. Every time it is used, the Drag’n’Drop  operation happens between 

Figure 7.2: Concern-Oriented Model as a Means for Concern Reification
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two software components that are referred to as source and target components. The source 
component is the component on which a drag operation is initiated, while the target compo-
nent is the one on which a drop operation is performed. The goal of a Drag’n’Drop opera-
tion is to transfer an object from one point (the source component) to another (the target 
component). This goal is usually achieved by using a pointing device, such as a mouse, for 
selecting the element to be transferred, and dragging it towards the target component where 
it should be dropped to perform the operation.

Because of its importance to users of computers, most programming languages and 
systems provide support (i.e., application programming interfaces or APIs) for facilitating 
the realization of the Drag'n'Drop operation in software applications. For example, using the 
Java language, all Swing components have the ability to act as source or target compo-
nents—that is, they may provide an element to be dragged, or receive a dropped element. 

According to the Java Drag’n’Drop architecture [LEW+02], Drag’n’Drop operations 
are carried out by means of collaborations among helper components, called TransferHandlers. 
The source and target components must be associated to a TransferHandler (via the setTrans-

ferHandler() method call) in order to be able to transfer and/or receive transferable elements. 
In contrast to users of applications supporting Drag’n’Drop operations, designing a 

Drag’n’Drop architecture is less user-friendly. For example, the internal machinery of the 
Java Drag’n’Drop architecture is quite complicated: it spans over several software layers 
(from the native operating system layer up to the application programmer’s layer). It is not 
the intention of this thesis to provide an exhaustive insight into the original design of the 
Java Drag’n’Drop architecture. We prefer to take a maintainer's perspective of the architec-
ture as-built.

This On-Demand Remodularization view is a collection of concern-oriented models 
that provide a partial description of the Java Drag’n’Drop architecture.

7.9.1 Drag Support Initialization Concern

This section presents two model slices, called structural model slice and behavioral model 
slice, which describe together the Drag Support Initialization concern.

Figure 7.5 shows a behavioral model slice that describes the Interaction pertaining to 
the Drag Support Initialization concern. It shows the interaction that takes place on the side of the 
source component when a drag operation is initiated by invoking exportAsDrag() on the Trans-

ferHandler of the source component. First, the TransferHandler creates a DragHandler that will 
manage the drag operation on behalf of the source component (1). 

The TransferHandler then creates a component that is able to recognize dragging ges-
tures, and tracks the state of those gestures on the side of the source component (2). The ges-
ture recognizer builds an entity responsible for the initiation of the Drag’n’Drop operation, 
called DragSource (2.1). Upon successful creation of the gesture recognizer, the TransferHandler

triggers a gesture operation on the recognizer (3).
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This causes the recognizer to fire a DragGestureEvent that is dispatched to the DragHan-

dler listening to such events (3.1, 3.2). The DragHandler retrieves the transferable element 
from the TransferHandler (4), and passes it over to the DragGestureEvent (5), which in turn prop-
agates the start of the dragging operation to the DragSource component (5.1).

The DragSource then creates a native component for keeping contextual information 
during the drag'n'drop operation (6), associates it with a Java-level context component (7), 
and starts the drag operation on the native layer (8). The contextual component is responsi-
ble for notifying its associated DragHandler when drag events occur within the system, and 
for providing the transferable element when the drag operation is about to terminate. When 
the pointing device is dragging a transferable element over Swing components, the native 
layer is notified (9), and the notification percolates up to the DragHandler responsible for han-
dling that event (9.1, 9.1.1).
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Figure 7.5: Behavioral Model Slice for the Drag Support Initialization Concern
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The context of the interaction shown in the behavioral model slice for the Drag Support Initial-

ization Concern is described as a separate structural model slice for the same concern. This is 
a concern-oriented context diagram shown in figure 7.6 which contains all the information 
about the reference structure pertaining to the Drag Support Initialization Concern. This concern-
oriented diagram is different from the standard UML class diagram designed for a particular 
concern in that it is declaratively complete and contains no hidden features that belong to 
other concerns. 

Figure 7.6: Structural Model Slice for the Drag Support Initialization Concern

sun.awt.dndsun.awt.dnd

java.awt.dnd.peer

javax.swingjavax.swing

java.awt.dndjava.awt.dnd

DragSource

+ startDrag()

DragSource

+ startDrag()

SunDragSourceContextPeer

+ startDrag()
+ dragEnter()

SunDragSourceContextPeer

+ startDrag()
+ dragEnter()

<<interface>>
DragSourceContextPeer

+ startDrag()
+ dragEnter()

<<interface>>
DragSourceContextPeer

+ startDrag()
+ dragEnter()

DragSourceContextDragSourceContext

DragHandler

+ dragEnter()
+ dragGestureRecognizer()

DragHandler

+ dragEnter()
+ dragGestureRecognizer()

DragGestureEvent

+ startDrag()

DragGestureEvent

+ startDrag()

TransferHandler

+ exportAsDrag()
+ createTransferHandler()

TransferHandler

+ exportAsDrag()
+ createTransferHandler()

SwingDragGestureRecognizer

+ gestured()

SwingDragGestureRecognizer

+ gestured()

DragSupportInitialization DragSupportInitialization 
102



On-Demand Remodularization PCS
7.9.2 DropTarget Installation Concern

This section presents the behavioral model slice and the structural model slice for the 
DropTarget Installation Concern.

Figure 7.7 illustrates the few steps that are necessary to set up the Drag’n’Drop on any 
Swing components.

The only thing that is required from the developer is to install a TransferHandler on the 
target component via the method call setTransferHandler(). When this method is invoked, the 
component will create a DropTarget for listening to drop operations on the associated compo-
nent. The DropTarget internally builds a DropTargetContext for holding contextual information 
during a Drag’n’Drop operation (1.1), and a DropHandler to which it delegates the handling of 
all events received during a Drag’n’Drop operation (1.2). At this point, the target component 
is able to handle and manage a Drag’n’Drop operation.

Figure 7.7: Behavioral Model Slice for the DropTarget Installation Concern
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Figure 7.8 illustrates the context of the interaction among the units pertaining to the 
DropTarget Installation Concern. This figure describes in a concern-oriented model the 
structure of a class model that has only those units that pertain to the DropTarget Installation 
concern. 

7.9.3 Drop Event Interception Concern

Another interesting part of a Drag’n’Drop operation is depicted in figure 7.9. The figure 
illustrates what happens when a transferable element is dropped on a receiving component 
during a Drag’n’Drop operation. First, a DropTargetDropEvent is created to hold the state of the 
drop operation until the drop completes (10). Once the DropTargetContext is retrieved from the 
drop event, we can obtain the DropTarget from that context (11) and initiate the drop operation 
on it (12). The handling of the drop operation is delegated to the DropHandler component (13). 
The latter retrieves the DropTargetContext (13.1), obtains the target component from that con-
text (13.2), asks the target component for its TransferHandler (13.3), and acquires the element to 
be transferred from the DropTargetDropEvent (13.4, 13.4.1, 13.4.2). The transferred object is then 
imported into the TransferHandler of the receiving component, thereby terminating the whole 
Drag’n’Drop operation.

Figure 7.8: Structural Model Slice for the DropTarget Installation Concern
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Figure 7.9: Behavioral Model Slice for the Drop Event Interception Concern
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As for the previous concerns, figure 7.10 illustrates the context of the interaction among the 
units that are relevant to the Drop Event Interception Concern.

When designing the above concerns, we deliberately decided not to show all the pack-
ages of the original Java Drag’n’Drop architecture (depicted in gray, for example the 
java.awt.dnd package). Instead, we tried to make clear where the individual concerns are 
located within the different architectural models. Another reason for this decision was to

Figure 7.10: Structural Model Slice for the Drop Event Interception Concern

sun.awt.dndsun.awt.dnd

javax.swingjavax.swing

java.awt.dndjava.awt.dnd

JComponent

+ setTransferHandler()

JComponent

+ setTransferHandler()

DropTargetContextDropTargetContext

SwingDropTarget

+ drop()

SwingDropTarget

+ drop()

<<dynamic>>

<<dynamic>>

<<dynamic>>

TransferHandler

+ importData()

TransferHandler

+ importData()

DropTarget

+ drop()

DropTarget

+ drop()

DropHandler

+ drop()

DropHandler

+ drop()

<<interface>>
DropTargetListener

+ drop()

<<interface>>
DropTargetListener

+ drop()

<<dynamic>>

DropTargetContext

+ getTransferable()
+ getComponent()

DropTargetContext

+ getTransferable()
+ getComponent()

SunDropSourceContextPeer

+ getTransferable()

SunDropSourceContextPeer

+ getTransferable()

<<interface>>
DropTargetEvent

+ getContext()
+ getTransferable()

<<interface>>
DropTargetEvent

+ getContext()
+ getTransferable()

<<dynamic>>

<<interface>>
DropTargetDropEvent

+ getContext()
+ getTransferable()

<<interface>>
DropTargetDropEvent

+ getContext()
+ getTransferable()

java.awt.dnd.peerjava.awt.dnd.peer

<<interface>>
DropSourceContextPeer

+ getTransferable()

<<interface>>
DropSourceContextPeer

+ getTransferable()

DropEventInterceptionDropEventInterception
106



On-Demand Remodularization PCS
give information about the layered architectural style adopted by the Java Drag’n’Drop 
architecture team. Clearly, one can observe how the usability concerns lead to the produc-
tion of more and more layers. Following this reasoning, we can state to some extent usabil-
ity has a negative impact on complexity and even performance. These are relationships 
among concerns which we could not address earlier (for instance, not when we were filling 
the viewpoint schema).

Figure 7.11 and figure 7.12 illustrate a more complete architecture recovery view of the 
Java Drag’n’Drop architecture. These two figures can be seen as the superposition of all the 
other architectural models shown previously.

Figure 7.11: Interaction Model for using the Java Drag & Drop API
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13.2: c:=getComponent()

13.3: th:=getTransferHandler()

13.1: cxt:=getContext()
13.4: t:=getTransferable()

13.4.1: t:=getTransferable()

14: importData(c,t)

13.4.2: t:=getTransferable()

10: dtde:=new

th:TransferHandler

1.1: new

sun.awt.dnd
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7.10 On-Demand Remodularization Pattern

This section introduces a concern-oriented pattern which we refer to as the On-Demand 
Remodularization Pattern, ODR Pattern in short. This pattern is the mechanism we propose 
for supporting On-Demand Remodularization (as stated in section 7.6.3).

Like all patterns, the ODR pattern provides a solution for recurring design problems; 
however it is the one with a specific focus on remodularizing existing software without 
invasive change; and as a concern-oriented pattern it can be used at both low-level design 
and architectural level. When to use it as design pattern or architectural pattern depends on 
the kind of concern you need to remodularize.

7.10.1 Motivation

To motivate the use of this pattern, we consider one of the major problems that could not be 
addressed by the “Aspect-Oriented Construction PCS” on page 83. In the following, we 
present the solution provided by the ODR pattern to that problem.

Figure 7.12: Static Structure Model for using the Java Drag & Drop API
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7.10.2 Structure of the Pattern

The ODR pattern consists of three model slices that help remodularize an existing system 
into a more coherent, maintainable one:

• a managing model slice
• an enabling model slice
• a binding model slice 

The structure of the managing model slice is normally described as a composition (as 
shown in figure 7.13) of a perspectival association and one or more interface type declara-
tions. These types represent roles that are fundamental for instantiating the pattern. Further-
more, they may declare behavior (e.g., methods) that must be provided by components to 
which the roles they represent will be bound. The managing model slice may also contain 
any other utility types, such as classes, that would help the perspectival association perform 
its job. In the managing model slice, the perspectival association is responsible for defining 
the interaction protocol among the roles defined previously as interface types.

The enabling model slice is mainly in charge of attaching the pattern instance to a part 
of a system at hand. We say that this model slice enables the remodularization of a system 
by binding existing components to the roles defined in the managing model slice. This bind-
ing is achieved by introducing the interface type that defines a role to be played by a com-
ponent into the inheritance tree of that component, and giving the component appropriate 
behavior for playing that role. In Java terms, we make the component implement the inter-
face type. In short, the enabling model slice is the glue that allows one to apply the ODR 
pattern to an existing system.

Figure 7.13: Structure of the On-Demand Remodularization Pattern
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The binding model slice is responsible for customizing and fine-tuning the behavior 
of components whose parent has already been adapted in the enabling model slice. This 
model slice can be made optional when the behavior of the parent component is perfectly 
suitable for its children, and does not necessitate any amendments.

The structure that results from the instantiation of the ODR pattern on the Traffic 
Light Control System is shown in figure 7.14. The diagram shown in this figure is different 
from the one depicted in figure 6.5 in that the binding between the roles and the components 
are explicitly shown (e.g., the Timer plays the Producer role). 

This example demonstrates the integration between the Aspect-Oriented Construction 
PCS and the On-Demand Remodularization PCS.

7.10.3 Achieving Design by Concerns with the ODR Pattern

In section 7.9, we have applied the On-Demand Remodularization PCS on the Java 
Drag’n’Drop example to support concern-oriented modeling by providing different slices 
(structural and behavioral) for the same concern and combining those slices to build larger 
models. However, concern-oriented modeling as addressed in this example does not support 
modeling of dynamically changing roles (e.g., when a component changes its role from 
source to target and vice versa, dynamically). In the same way, the solution provided above 
in section 7.9 is not desirable when roles are entangled with one another. Dynamically 
changing roles and tangling of roles are major problems when architecting software sys-
tems, especially for remodularizing existing systems. 

The ODR pattern plays a key role in capturing dynamically changing roles and entan-
gled roles. An application of the ODR pattern on the Java Drag’n’Drop architecture is illus-
trated in figure 7.15, and described in what follows.

In the Drag’n’Drop example, the three model slices are named, respectively, DnDMan-

ager, DnDEnabler, and DnDBinder. The DnDManager model slice contains a perspectival associa-
tion called DnDManagement, and an interface type called DnDParticipant. DnDParticipant defines 
the behavior any component willing to participate in a Drag'n'Drop operation has to pro-
vide. A brief overview of each method declared in the DnDParticipant interface is given below:

• initDnD(): sets up a participating component for a future Drag'n'Drop operation
• getTransferable(): returns an object to be transferred when a Drag'n'Drop operation has 

been initiated on a participating component
• setTransferable(Object): provides the object that has been dropped on (transferred to) a 

participating component

Figure 7.14: Instantiation of ODR for the Traffic Light Control System
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• acceptTransferable(Flavor): returns a boolean indicating whether the participating compo-
nent accepts the current object (denoted by its flavor or type) being transferred

• getDropLocation(): returns the exact point on the component where the transferred object 
has been dropped.

• setDropLocation(): sets the location where the transferred object has been dropped.

In addition, DnDManagement defines a connection point that will detect when a new DnDPartic-

ipant is created within the system. When such a creation is underway, the perspectival associ-
ation invokes initDnD() upon the participant in order to set it up for upcoming Drag'n'Drop 
operations. 

The DnDEnabler model slice contains the DnDEnabling perspectival association whose 
primary goal is to allow any JComponent (of javax.swing) to participate in a Drag'n'Drop 
operation by giving to it the capability of playing the DnDParticipant role (defined in the DnD-

Manager model slice). Furthermore, DnDEnabling injects into JComponent behavior that shall be 
common to any JComponent (i.e., getDropLocation(), and setDropLocation()). All other methods 
need specific implementation that cannot be factored out into this model slice.

Figure 7.15: ODR Applied on the Java Drag’n’Drop Architecture
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The task of the DnDBinder model slice is precisely to bridge that gap, and to introduce 
into subclasses of JComponent specific behavior for each of the remaining methods (i.e., 
initDnD(), getTransferable(), setTransferable(), and acceptTransferable()). The DnDBinding perspectival 
association achieves this by inserting the implementation of an appropriate behavior, speci-
fied by the interface type DnDParticipant, into each of the participant components, such as
JTree, JTable or JList. This is necessary because these components may realize the same role 
in different ways. For instance, a JList does not handle the drop of an object the same way as 
a JTable or a JTree. 

In summary, the DnDManager model slice defines the interaction protocol between 
components engaged in a Drag’n’Drop operation (playing the DnDParticipant role). The DnDE-

nabler model slice applies the pattern instance to a system at hand by making components 
play the DnDParticipant role defined in the DnDManager model slice. Finally, the DnDBinder

model slice customizes the Drag’n’Drop behavior to each participating component. It is 
worth noting that this Drag’n’Drop ODR instance encloses all Drag’n’Drop concerns; there 
are no other places in the system where Drag’n’Drop concerns are being handled.

7.11 Final Remarks

This chapter presented the On-Demand Remodularization PCS by defining a viewpoint lan-
guage and using that viewpoint language to remodularize concerns in the Java Drag’n’Drop 
architecture.

The notations used in this chapter provide an example based on the use of the UML 
Space as proposed by the PCS Framework. Beyond the notations, the On-Demand Remod-
ularization PCS contributed a concern-oriented pattern, called ODR pattern. Clearly, this 
pattern can be applied at both levels: architectural level and design level. However, when 
applied at the programming level, using for example AspectJ, it is important to notice that 
programmers must provide additional elements that must inherit from the legacy part to be 
remodularized. This is due to the current limitations of the aspect-oriented programming 
language AspectJ, as it does not allow one to make introductions into legacy components.
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Chapter 8:

 The Service-Oriented PCS

This chapter presents an integration of the Service-Oriented PCS with a well-known View-
point-Oriented approach to documenting software architectures. This chapter uses the 
Video Surveillance System example introduced in chapter 2 to show the applicability of the 
PCS Framework on other architectural description approaches.

8.1 Introduction

This chapter presents an example of how the PCS Framework supports architectural docu-
mentation based on other well-accepted practices. To validate the PCS Framework with 
well-known software architecture documentation approaches other than the IEEE-Std-1471, 
we have decided to apply a viewpoint-oriented approach as described in [CBB+02]. The 
example we use is based on the motivating case study introduced in chapter 2.

Using PCS, we have developed a service-oriented view of the video surveillance ser-
vice development problem. The approach taken to document the software architecture of 
the video surveillance service is based on the notation of the UML profile for structural 
descriptions [KS00a].

The service-oriented view is documented, using a view documentation template. The 
view documentation template consists of the following parts: 

• The primary presentation
• The element catalog
• A context diagram
• A variability guide
• An architecture background (with rationale, results of analysis, and assumptions 

made)
• The related view packets
• Other information

Figure 8.1 summarizes our mapping strategy relating the view documentation template to 
the PCS Framework. Details of the mapping strategy are demonstrated in applying the Ser-
vice-oriented PCS on the example of video surveillance service.
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8.2 Main Model of the Service-Oriented View

Figure 8.2 depicts the main model of the video surveillance service architecture. This dia-
gram documents the video surveillance service from a bird's-eye-view. The main model 
involves three essential elements: the service component types CameraDevice and Surveil-

lanceStation, and the connector type VSServiceConnector. The relationships among these ele-
ments are shown as attachments between component types and the connector type: to be 
exact, relationships represent the attachments between realizations of the component types 
and connector roles.

In this figure and in the remainder of the chapter, a key for icons or diagram elements 
is placed below each diagram that explains the meaning of symbols used.

Viewtype Documentation Template Service-Oriented PCS 

Primary presentation Main architectural model 

Element catalog 
Static structure model 
Behavioral specification model 
Perspectival elements 

Context diagram 
Configuration model 

• Context of the configuration 

Variability guide 

Configuration model 
• Configuration manual 

o Base configuration 
o Perspectival configuration 

Architecture background (rationale, results of 
analysis, and assumptions made) Textual descriptions 

Related view packets Models, diagrams or textual descriptions 

Other information Textual descriptions 

 
Figure 8.1: Mapping Between a Viewtype and the PCS Framework

Figure 8.2: Main Model of the Service-Oriented Architectural View 
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8.3 Static Structure Model

In this section, the service-oriented model elements are described in more details; it pro-
vides a documentation of the elements and their properties, relations and their properties, 
element interfaces and element behavior.

8.3.1 Component Structure Specification

The documentation of the architectural component types and their properties is depicted in 
figure 8.3; this figure describes the service component types CameraDevice and SurveillanceSta-

tion.

The service component types documented in figure 8.3 do not show properties. However, 
some properties of component types can be shown as attributes (e.g., the format of video 
streams produced) in the first unnamed compartment. Other properties can be shown as 
operations that describe, for example, certain life-cycle management responsibilities of the 
component type; such responsibilities are usually shown in the second unnamed compart-
ments. In addition, the interaction-related properties can be described in the last three com-
partments with the names: Operational, Signal and Stream.

Component Interface Elements

The following sub-section documents the interface elements of the component types present 
in the architecture. 

Figure 8.4 presents three standard UML interfaces, CamConfiguror, CamController and 
Alarm. Each of these UML interfaces must be either provided or required by realizations of 
the SurveillanceStation and CameraDevice component types.

The interface CamConfiguror consists of a set of operations that allow one to configure 
various video cameras. CamController specifies the operations allowing one to control realiza-

Figure 8.3: Component Structure Specification 

<<service>>
CameraDevice

Operational

Signal

Stream

<<service>>
CameraDevice

Operational

Signal

Stream

<<service>>
SurveillanceStation

Operational

Signal

Stream

<<service>>
SurveillanceStation

Operational

Signal

Stream

Key  for Icons:

Component type
115



Connector Structure Specification
tions of camera devices. The Alarm interface specifies the mechanisms required for alerting 
and informing the police in an emergency situation.

8.3.2 Connector Structure Specification

The connector type specifies the connector instances that mediate interaction among com-
municating components according to different interaction protocols. As an example, the 
structural specification of the VSServiceConnector is shown in figure 8.5. According to this 
figure, a significant property of the VSServiceConnector is that each interaction protocol must 
be applied to interconnect at least two or more Connectionpoints of the following types: 
CamConfiguration, StreamEndPointSignaling, CamControl, VideoStream and StreamConnectionMgmt. 
Each Connectionpoint type is presented as a small circle on the boundary of the connector 
type. A more elaborated description of these five Connectionpoint types is given in 
figure 8.6.

Each interaction mediated by an instance of the connector type VSServiceConnector must enter 
that connector through a specific connection point, which conforms to one of the Connec-
tionpoint types listed above.

Connector Interface Elements

Figure 8.6 presents the static structure of the connector type VSServiceConnector, together 
with its interface elements, i.e., its Connectionpoint types. In this figure, VSServiceConnector

Figure 8.4: Component Types’ Interface Elements
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Figure 8.5: The VSServiceConnector Structure Specification 
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is documented as a composition of various Connectionpoint types: CamConfiguration, Strea-

mEndPointSignaling, CamControl, VideoStream and StreamConnectionMgmt. 
The keyword “Connector::” preceding the name of a Connectionpoint type indicates the 

scope of that Connectionpoint type. This allows one to document the locus of definition of 
individual Connectionpoint types. 

CamConfiguration defines all configuration related interactions that can take place between the 
video surveillance station and compatible camera devices. This Connectionpoint type docu-
ments the types of possible configuration calls that are exchanged between the interacting 
parties.

StreamConnectionMgmt specifies the Connectionpoint for mediating interactions for initi-
ating and finishing the negotiation procedure in point to point multimedia connections. It 
describes how to control and coordinate the connection activities that are particular to 
stream connections between multimedia devices. Moreover, StreamConnectionMgmt deter-
mines the interactions related to the control of individual flow endpoints composing a 
stream endpoint. It also describes how to control and manage flow connections between 
multimedia devices.

VideoStream describes a Connectionpoint type that defines a set of multimedia data 
flows, where each flow represents a continuous sequence of objects in a specific direction. 
This Connectionpoint type defines the continuous media transfer between components and 
describes the quality of service constraints that are related to it.

The Connectionpoint type StreamEndPointSignaling is needed to mediate a set of signals 
for the establishment and release of stream connections (in a nonsophisticated wide area or 
local network).

Figure 8.6: Interface Elements of VSServiceConnector
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Finally, the CamControl Connectionpoint type represents an extension of the CamControl-

ler interface (shown in figure 8.4) and specifies the operations allowing one to control real-
izations of camera devices. In contrast to the CamController interface, the CamControl

Connectionpoint type provides the ability to specify calls on operations that are provided 
(i.e., calls defined within the provides compartment) and required (i.e., calls defined within 
the requires compartment) by a participant component.

8.4 Behavioral Specification Model

In this section, the behavioral specification model for the Video Surveillance System is pre-
sented.

8.4.1 Component Behavior Specification

No component behavior was defined for this case study.

8.4.2 Connector Behavior Specification

The behavior of an architectural element can be described by using different types of UML 
diagrams, including activity, collaboration, sequence and statecharts diagrams. 

Figure 8.7 presents an example of protocol state machine, shown in a statechart dia-
gram, that describes the interaction protocol between two conjugated connection points; 
both connection points are specified by the Connectionpoint type StreamEndPointSignaling, as 
shown in figure 8.6.

The protocol state machine of StreamEndPointSignaling describes the allowable sequences of 
signal events that are related to the establishment and release of stream connections 
between two communicating components. 

The initiating component must be in the state idle to send an instance of the signal type 
ConnectRequest (e.g., the signal ConnectRequest), which results in the request signal. When the 
ConnectRequest signal arrives at the connection point on the site of the receiver, an indication

signal (entry event of announcing state, not shown) occurs. 

Figure 8.7: Protocol State Machine for StreamEndPointSignaling
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The receiver component gets a ConnectIndication signal announcing that a component wants to 
connect to it. Then the receiver component may send the ConnectResponse signal to tell 
whether it wants to accept or reject the pending connection request. During this period, the 
initiating component will be in the state waitingForConfirmation. If the connection request is 
accepted, the response signal occurs at the connection point on the site of the initiating com-
ponent. This results in the arrival of the ConnectConfirm signal at the interface of the compo-
nent issuing the connection request. In both the announcing and waitingForConfirmation states, it 
is possible that the process restarts when the timeOut signal occurs. In the waitingForConfirmation

state, the connection is deleted when the destroy signal occurs. 
Figure 8.8 provides another view on the interaction protocol shown in figure 8.7. In 

addition, it focuses on the messages exchanged between the connection points.

8.5 Perspectival Elements

In this section, the perspectival elements for the Video Surveillance System are presented.

8.5.1 Structural Specification of Perspectival Elements

Figure 8.9 shows a static structure diagram that focuses on the attachments between the 
CameraDevice and SurveillanceStation, as well as the properties of these attachments.

Figure 8.8: Protocol Sequence Diagram for StreamEndPointSignaling
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Each of the component types is documented as a set of interaction roles shown in the Opera-

tional and Signal compartments. The interaction roles (named controlReceptions, inSig, controlCalls

and outSig) do not belong to the design-time structures of the CameraDevice and SurveillanceSta-

tion, respectively; instead, they are assigned to the component types when attachments are 
introduced. Similarly, the perspectival attributes ss (of type SurveillanceStation) and cd (of type 
CameraDevice) are “woven” (i.e., added) into the Connectionpoint types, CamControl and Strea-

mEndPointSignaling.
Figure 8.9 shows four attachments; each attachment is represented by a perspectival 

association, i.e., the connection, that is navigable from the Connectionpoint types to the 
component types and vice versa. By adding attachments between the Connectionpoint types 
and the component types, you connect the component types with the interaction roles and 
you weave perspectival elements dynamically into both types. In this case, the description 
of the weaving rules must be part of the documentation of the perspectival association, i.e., 
the connection.

8.5.2 Behavioral Specification of Perspectival Elements

None.

Figure 8.9: Perspectival Associations and their Properties
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8.6 Configuration Model

In this section, the configuration model for Video Surveillance System is presented.

8.6.1 Context of the Configuration

Figure 8.10 depicts the context diagram for the video surveillance service architecture. This 
diagram draws up the boundaries of the developers’ tasks; it is useful for describing the Vid-

eoSurvellanceSystem for stakeholders who are interested in the externals of the system rather 
than the internals. Thus, the context diagram allows you to answer questions like: What 
belongs to the system of focus? What does not belong to it? How does the system communi-
cate with its environment?

In the context diagram, VideoSurveillanceSystem is our system of focus; it is modeled as a Clas-
sifier role that represents a container for the configuration which encloses a collection of 
realizations of the component types and the connector type shown in section 8.3 as elements 
of the architecture. The system of focus is colored in gray to indicate that details on the 
internal structure of the configuration are not relevant for the purpose of this diagram; these 
are documented in the next section.

SecurityInformationSystem is another Classifier role that describes a placeholder for the 
information system of the police that will receive and handle all alerts sent by the video sur-
veillance system. Although SecurityInformationSystem is an important part of the video surveil-
lance service architecture, it is not considered as the system of focus in this context. The 
SecurityInformationSystem is said to be a part of the environment, it would become the system 
of focus in another context.

Figure 8.10: The System Context Diagram
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VideoSurveillanceSystem communicates with its environment through the Connection-
point alarm, that is specified by the Connectionpoint type WarningGate (the specification of 
this type has been left out). alarm, on one hand, represents the point of contact through which 
the VSServiceConnector transfers alerts to the police via the SecurityInformationSystem; on the 
other hand, it represents the point through which the system can receive queries from the 
police, concerning the video sequences it requires.

Ideally, once the interaction between the VideoSurveillanceSystem and the SecurityInforma-

tionSystem has been documented, architects and developers can concentrate on the system at 
hand to perform further development tasks. For example, a developer team could be in 
charge of providing an internal design and implementation of the VideoSurveillanceSystem; 
another team could be responsible for testing it, while a third team could be responsible for 
developing the SecurityInformationSystem.

8.6.2 Configuration Manual

This section examines variation points in the component-and-connector view of the video 
surveillance service architecture. When working out the variation points, we found it useful 
to try to achieve variability around the attachments between the roles and the realizations of 
the types specified in the architecture. 

 The following two variants of configuration show examples of systems that fulfill the 
Classifier role representing the system of focus (i.e., VideoSurveillanceSystem).

Base Configuration
This variant of configuration is shown in figure 8.11. It identifies and characterizes a varia-
tion point within the VideoSurveillanceSystem which is surrounded by the following three Con-
nection points: outStream, controlReceptions and inSig. 

 Figure 8.11 shows a configuration of the system that consists of two instances of the 
component types, SurveillanceStation and CameraDevice. Each instance fills a placeholder repre-
senting an expected realization for a particular component type. The component type 
instances (realizations) shown in the figure are unnamed. The placeholders are shown by 
the Classifier roles, named DigitalCamera and Station.

The realization of each component type is attached not only to its Classifier role (Digi-

talCamera or Station), but also to three different Connectionpoints of types: CamControl, Video-

Stream and StreamEndPointSignaling. For example, the realization CamDev of the component 
type CameraDevice fulfills the Classifier role DigitalCamera. This is expressed as CamDev/Digital-

Camera:DigitalCamera, by following the notation “realization name/Classifier role name: Clas-
sifier name”. (Note that this notation is not part of standard UML, it is an extension specific 
to the structural profile for software architecture descriptions). Moreover, the realization 
CamDev is attached to the Connectionpoints outStream, controlReceptions and inSig. Morover, 
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every Connectionpoint is linked to its conjugate via a duct. We took the concept of "conju-
gated" elements from B. Selic et al. in [SR98] and [SGW94].

A conjugate Connectionpoint is an end point of an interconnection that is compatible 
with the other end point (i.e., both have the Connectionpoint type), but one end point is the 
inverse of the other.

The types of the interconnections involved in the static system configuration depend 
on the types of the Connectionpoint (or the form of communications) supported by the 
VSServiceConnector. The Connection Points depicted in the figure determine the interconnec-
tions involved in the VSServiceConnector.

There are two issues to be addressed by the diagram shown in figure 8.11: 
First, what are the elements affected by this variant? Well, to remain simple, the con-

figuration of the system leaves this open. The elements affected are not documented. No 
dynamism is observable. The configuration is rather static and less variable. However, this 
option can be seen as defining an implicit variation point, because it allows you to replace a 
simple realization of a component type by another, possibly a more complex one. For exam-
ple, when considering the placeholder for realizations of the Component type CameraDevice

as a variation point, various systems (or applications) can be built, based on the same archi-
tecture. 

Second, what is the binding time of this variant? Clearly, binding in this case can be 
achieved at low-level design time, implementation time or at initial load time. The notion of 

Figure 8.11: Base Configuration Diagram
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binding, as defined by the authors of the viewtype model ([CBB+02], p. 209), refers to “the 
decisions that will be made by a member of a development team prior to system deploy-
ment”. 

Perspectival Configuration
This documents the configuration of the VideoSurveillanceSystem from a fault tolerance per-
spective. The diagram shown in figure 8.12 describes a perspectival configuration that is 
structured in two parts.

One part of the configuration (on the right hand side) remains the same as in variant 1. It 
includes the component type’s placeholder, named station, as well as all its attached Connec-
tionpoints. The other part of the configuration shows some variability. 

In this variant, we identify and characterize the variation point explicitly, by applying 
the Component Configurator design pattern on the “portion of the design space” surround-
ing the three Connection points mentioned in variant 1 (OutStream, ControlReceptions and InSig). 
The Classifier role Configurator contains two different realizations of the Component type 
CameraDevice, playing the roles PrimaryDigitalCamera and SecondaryDigitalCamera, respectively. 

The Classifier role Configurator essentially describes a placeholder for a Configurator 
component type that is responsible for realizing the following configuration services: 

1. Configure the components into various processes without having to shut down and re-
start the running application processes.

2. Link and unlink the application components dynamically at runtime, without modify-
ing, recompiling or relinking them.

Figure 8.12: A Perspectival Configuration Diagram
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Some questions that come to mind are:
• How can we combine the configuration model shown in section 8.6 with the Compo-

nent Configurator pattern introduced in chapter 2?
• What are the elements affected by the options? 

The variation point is explicit; it is represented by the unnamed classifier role Config-
urator. The elements affected by this variation point are shown in figure 8.11. Dyna-
mism is observable within the variation point. The introduction of the Configurator in 
the design makes the configuration more complex, but it also becomes more dynamic 
and more variable. 
The elements affected by the variation point are explicitly shown within. This makes 
the configuration simple, less variable and static.

• What is the binding time of an option? 
Binding cannot be completed at low-level design or implementation time; it must be 
achieved at runtime. Examples of runtime bindings include the interconnections 
between connection points: OutStream is bound to PoutStream, OutStream is bound to 
SOutStream, etc.

8.6.3 Architecture Background

Roles are the placeholders for the realizations of component types and Connectionpoint 
types in a configuration. Each role represents a variation point within a particular configura-
tion of the software architecture; a specific role can be attached to different realizations of 
different types to build different systems: what makes up the system depends on how you 
attach a realization of a specific type to a specific role. The use of roles to deal with vari-
ability allows one to flexibly design and document different configurations from the same 
architecture.

8.6.3.1 Design Rationale

• Interfaces shown in Figure 8.4 are potential candidates for defining ports of the com-
ponents at configuration time.

• In figure 8.10, the architecture was left unbound to the design decision on the exact 
description of the duct between the Connectionpoint, Alarm, and the unnamed Classi-
fier role, SecurityInformationSystem. The decision is left to the good judgment of lower-
level designers and implementers, as the sis (SecurityInformationSystem) port is missing.

8.6.3.2 Analysis Results

• Configuration is a system-level concern that can be designed along an architectural 
dimension, called configurability. However, as shown in figure 8.11 and figure 8.12, 
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useful analyses of the configurability dimension depend on several other architectural 
dimensions, including simplicity, complexity, variability and dynamism. 

• While characterizing the variation points, section 8.6.2 evaluates four architectural 
dimensions against each other: simplicity versus complexity, and variability versus 
dynamism.

8.6.3.3 Assumptions

At realization time, the interfaces CamConfiguror, CamController, shown in figure 8.4, will be 
provided by the CameraDevice component type and used by the SurveillanceStation component 
type. The interface Alarm, in contrast, will be provided by the SurveillanceStation and used by 
the system itself. Each of these interfaces can be seen as a specification of a static port with 
the same name that provides a particular view of the service component type.

8.6.4 Other Information

None.

8.6.5 Related View Packets

None.

8.7 Final Remarks

The approach presented in this chapter is similar to the IEEE-Std-1471; however, it does not 
address the concerns as first-class elements that determine the way large-scale software sys-
tems should be designed. In addition, though it provides good support for architecture 
description languages, it does not support expressing crosscutting concerns in software 
architecture. Moreover, it lacks mechanisms for building systems from an architecture con-
cern-space.

A lesson learned from this case study is that a software architecture is a design solu-
tion, but not every design solution is a software architecture. Developing a software archi-
tecture requires decision making and trade-offs that affect and guide the tasks of developers 
at different stages in the software life cycle. The decisions made and the trade-offs have a 
positive impact on some aspects of the software development problem at hand, but they 
negatively affect other aspects. Consequently, the question of making the right decision dur-
ing an architecting process depends primarily on the concerns—or aspects of the problem—
of importance.

Here again, this demonstrates the need to complement ADL-based approaches with 
concern-oriented modeling techniques. Relying solely on the use of ADLs to solve architec-
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tural problems makes one think of a situation in which someone tries to develop a solution 
for a given problem without knowing exactly what the different aspects are of the problem 
to be solved, which aspects of the problem are of importance, and how the different aspects 
affect each other.

Of course, lacking knowledge about key aspects of a problem, one can provide per-
haps solutions that work somehow for the given problem, but such solutions are certain not 
to be the ones a customer is willing to pay for; they may be applicable to some other prob-
lems, but perhaps not to the one for which we are being asked to find a solution.
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Chapter 9:

Integrating the Structural PCS with SADL

This chapter presents the case of a compiler architecture to validate the integration of Con-
cernBASE, an early structural PCS, with SADL, which is a software architecture descrip-
tion language based on architectural refinement.

9.1 Introduction

This chapter introduces the ConcernBASE approach to software architecture description. 
The development of this approach was influenced by our experience that most ADLs pro-
vide support for describing structural aspects of software architecture. Thus, ConcernBASE 
defines first a structural viewpoint that supports the key concepts of ADLs. To validate this 
viewpoint, we discuss how to map a ConcernBASE structural description of software archi-
tecture, written in UML, onto an architectural description developed in a particular ADL, 
called SADL (Structural Architecture Description Language)[MR97]. The mapping to 
SADL was motivated on one hand by its explicit focus on structural aspects of system 
descriptions, and on the other hand by the verification capabilities of SADL tools for Con-
cernBASE. The mapping has been validated in ConcernBASE Modeler, a UML-based tool 
prototype that supports the ConcernBASE approach and its integration with SADL tools 
[CKS+01].

9.2 Structural Viewpoint

This section presents an example that illustrates the benefits of the ConcernBASE approach 
by applying its techniques to a well known compiler example. Figure 9.1 depicts an infor-
mal representation of a Level-3 Compiler architecture taken from [MR97][MR97], which 
uses the reference model for compiler construction.

Despite the box-and-arrow architecture representation, figure 9.1 shows that the com-
piler has a batch-sequential architectural style. The Main component coordinates the correct 
execution sequence of the components composing the compiler system. First, it transfers 
the control to the LexicalAnalyzer, then to the Parser, then to the AnalyzerOptimizer, and finally, 
to the CodeGenerator. The rounded-edge components, SymbolTable and Tree, are shared-
memory components. The former holds binding information and makes it available to the 
LexicalAnalyzer and AnalyzerOptimizer. The latter keeps abstract syntax trees and is accessed 
by the Parser, AnalyzerOptimizer and CodeGenerator. Note that some components have read 
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and write access, while others are only granted read or write access. The Parser component 
is directly receiving tokens from the LexicalAnalyzer via the unidirectional pipe relating them 
and not through shared-memory components.

9.2.1 Structural View of the Compiler System

Figure 9.2 depicts the set of significant architectural elements that define the structural view 
of the compiler system. It contains six components: LexicalAnalyzer, Parser, AnalyzerOpti-

mizer, CodeGenerator, SymbolTable and Tree, which are all connected via a complex connec-
tor, named CompilerConnector. As shown below, the connector plays a central role in this 
example. It mediates different kinds of communications between the components of the sys-
tem and encapsulates all the communication paths. The CompilerConnector also coordinates 
the interactions among participant components. Therefore, it may enforce a particular com-
munication protocol among the components.

Figure 9.1: Compiler Architecture: taken from [MR97]
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Figure 9.2: Structural View of the Compiler System
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9.2.1.1 Static Model

The static structure of the LexicalAnalyzer component is shown in figure 9.3. Its component 
interface is composed of five interface elements, where each element defines a logical inter-
action point between the component and its environment. The ExecutionControl interface ele-
ment provides the operation start with the meaning that another component can activate the 
LexicalAnalyzer, i.e. can start it by implementing this interface. The MemoryAccessControl

interface element requires two operations: read and write. This means that the LexicalAnalyzer

requires these operations to be provided by another component. The ControlFlowSignaling

interface element declares incoming and outgoing signals necessary to control the execution 
of the LexicalAnalyzer, while the MemoryFlowSignaling interface element enumerates signals 
needed for communication with the shared-memory components.

Lastly, the Dataflow interface element defines two streams produced by the LexicalAna-

lyzer, namely a stream of tokens and a stream of bindings, as well as two consumed streams 
conveying characters and bindings. It is important to remark that bindings can be produced 
and consumed by the component. For example, as shown in figure 9.3, the LexicalAnalyzer

component reads and writes bindings, i.e. produces and consumes them. All the interface 
elements shown in figure 9.3 are involved in a composition relationship with the LexicalAna-

lyzer component that realizes them. The interface elements are externally visible parts of the 
component.

The use of communication-specific interface elements clearly exhibits separation of 
concerns when defining specialized interaction points (referred to as static ports in the con-
figuration model), since each interface element type is responsible for a particular commu-
nication type.
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9.2.1.2 Configuration Model

The configuration model of the compiler system is illustrated in figure 9.4, which consists 
of an instance of the LexicalAnalyzer component type, an instance of the Parser component 
type and three simple connector instances that interconnect the ports and mediate the com-
munication between the components. Instantiating a component type means to instantiate 
all its interface elements that are required in the configuration model. In figure 9.4, one con-
nector instance is depicted to interconnect the conjugated <<operational>> static ports, 
named ExecutionControl and ExecutionControl~ together; a second one is shown to link the 
<<stream>> Dataflow and Dataflow~ ports; and finally, a third connector is used to intercon-
nect the <<signal>> ControlFlowSignaling and ControlFlowSignaling~ ports.

 

 Figure 9.3: Static Structure Model of the LexicalAnalyzer Components Type
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Figure 9.4: Configuration Model of the Compiler System
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9.2.2 Overview of SADL

This section gives a brief introduction to the concepts of the Structural Architecture 
Description Language (SADL). SADL is a particular ADL that focuses on understanding, 
specifying and refining the representation of structural concerns in complex software sys-
tems. SADL is different from other ADLs, such as Wright [ABV92], as it supports struc-
tural decomposition at multiple levels. This is called refinement of high-level system 
structures in the SADL terminology. However, SADL is only capable of providing support 
for structural decomposition along a limited number of dimensions (e.g., components, con-
nectors, configurations). The SADL support for behavioral modeling is very restricted.

 Figure 9.5 shows a portion of the architecture description of the compiler_L1 example 
in SADL. The topmost section of an SADL architectural description declares the imported 
and exported architectural elements. This is achieved by using the keyword IMPORTING, 
indicating where the definitions can be found. In our example, IMPORTING Function FROM 

Functional_Style tells us that the Function construct is imported from an SADL style named 
Functional_Style.

The next section, called ARCHITECTURE, encloses further lower-level SADL sec-
tions. We can see that an architecture section is referenced by the identifier compiler_L1. The 
architecture description given after the ARCHITECTURE keyword includes data exchanged 
with its environment using input and output ports. The compiler_L1 has an input port, named 
chars_iport, and an output port, called code_oport. chars_iport receives a sequence of charac-
ters (Finite_Stream(character)), and code_oport sends code data.

An SADL architecture description contains three different sections dealing with vari-
ous aspects of its software architecture, namely COMPONENTS, CONNECTORS and CON-

FIGURATION. The first and the second sections contain the declaration of the components 
and connectors, respectively, whereas the third section describes constraints on the configu-
ration of the architectural elements defined in the first and second sections.

The COMPONENTS section contains mainly elements like ARCHITECTURE, Function, 
Variable and Operation. In SADL, all of these elements are considered as being components. 
The ARCHITECTURE section allows us to define sub-architectures that can be contained in a 
higher-level architecture. For instance, in figure 9.5, lexicalAnalyzerModule is a sub-architec-
ture contained in the compiler_L1 architecture. Note that through this feature, SADL pro-
vides support for modularization. 

Functionality of architectures can be expressed through the definition of Function

components. As an architecture element, a Function component may have input and output 
ports through which data can be received or sent. In figure 9.5, the sub-architecture lexi-

calAnalyzerModule contains a function called lexicalAnalyzer representing the main function-
ality of the sub-architecture.

In SADL, Operation and Function components have similar meanings. The difference 
between them lies in the fact that the input ports of an Operation are seen as the parameters 
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and the output port as the return value of the operation. However, the number of output 
ports of an Operation component is limited to one.

Variable components are used to hold different types of data and make them available 
to other components in the sense of shared-memory, which is local to a sub-architecture. 
One Variable component is able to keep only a single type of data, which means that we need 
different Variable components for different types of data. For instance, the lexicalAnalyzer-

Module contains three different Variable components (character-, token- and bindingVariable), 
the only three that are used by the sub-architecture.

The CONNECTORS section contains the definitions of different kinds of connectors, 
e.g., Pipe. Connectors enable communication among components. A Pipe connector carries 
data from an output port of one component to an input port of another. The transmitted data 
must be of the same type supported by the related output and input ports. An Enabling_Signal

connector mediates signal communication that is likely to occur between two components.
136



Integrating the Structural PCS with SADL
The CONFIGURATION section defines the configuration constraints on the previously 
described components and connectors. These constraints may state, for instance, which 
Function or Operation component has read/write access to a Variable component, which com-
ponent sends a signal, which component receives it, the direction of the data flow between 
two components, and from which component an Operation is called. We use two different 
types of statements, namely CONNECTION and CONSTRAINT (examples of constraints are 
shown at the bottom of figure 9.8 and figure 9.9). The former defines data flow connections 
and the latter specifies all other kinds of constraints.

IMPORTING Function FROM Functional_Style

...

compiler_L1 : ARCHITECTURE [ chars_iport : Finite_Stream(Character) -> code_oport : Finite_Stream(code)]

BEGIN

  COMPONENTS

    lexicalAnalyzerModule : ARCHITECTURE

       [chars_iport : Finite_Stream(Token), bind_iport: Finite_Stream(Binding) ->

        bind_oport: Finite_Stream(Binding), token_oport : Finite_Stream(Token)]

    BEGIN

       COMPONENTS

          lexicalAnalyzer : Function

 [chars_iport : Finite_Stream(Token), bind_iport: Finite_Stream(Binding) ->

         bind_oport: Finite_Stream(Binding), token_oport : Finite_Stream(Token)]

          characterVariable : Variable(Character)

          tokenVariable : Variable(Token)

          bindingVariable : Variable(Binding)

       CONNECTORS

          ...

       CONFIGURATION

          token_read  : CONSTRAINT = Reads(lexicalAnalyzer, tokenVariable)

          token_write : CONSTRAINT = Writes(lexicalAnalyzer, tokenVariable)

          ...

     END

     ...

  CONNECTORS

     tokenPipe : Pipe[Finite_Stream(Token)]

     ...

  CONFIGURATION

     tokenFlow : CONNECTION = Connects(tokenPipe,lexicalAnalyzerModule!token_oport,parserModule!token_iport)

     ...

END

Figure 9.5: Extract of the Level-3 Compiler SADL Specification
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9.2.3 Mapping ConcernBASE to SADL

This section presents our approach for translating a ConcernBASE architectural description 
written in UML into a textual form written in SADL. 

The mapping consists of 5 steps. The first step identifies all data types utilized in the 
ConcernBASE architectural description and maps them to SADL. The second step requires 
that all the architectural components be found and mapped to SADL. The third step requires 
that all the interface elements of each architectural component be found and mapped to 
SADL. The fourth step identifies data flow connections and maps them to SADL. And 
finally, the fifth step puts the pieces together.

9.2.3.1 Mapping Data Types

To perform this task, we use an SADL feature that allows SADL styles to be defined any-
time [MR97]. Figure 9.6 shows an SADL style which defines the data types used in the 
level-3 compiler (see section 9.2.2). 

 

EXPORT ALL
Compiler_Ty
BEGIN

Token
Chara
Bindi
Ast :
Code 

END

LexicalAnalyzer Parser AnalyzerOptimizer

CodeGenerator SymbolTable Tree ⇒

Figure 9.6: Compiler_Types.sadl

EXPORT ALL
Compiler_Types : STYLE
BEGIN

Token : TYPE
Character : TYPE
Binding : TYPE
Ast : TYPE
Code : TYPE

END

⇒
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Basically, we define a new style that consists of all data types contained in the current 
architectural description. To do this, we have to look at every stream interface in the static 
model of all the components and connectors. Then we build up the data types list by gather-
ing every data type supported by the different streams. Then we simply define a new style 
having the name of the current architecture appended with the suffix Types in a file having 
the name of the style with the extension “.sadl”.

9.2.3.2 Mapping Architectural Components

Before mapping ConcernBASE components to SADL, we look at the structural view and 
identify all the architectural components that are contained in the system. 

We translate every architectural component (subsystem) as an SADL sub-architecture 
with the suffix Module and declare it in the COMPONENTS section of the main architecture. 
We then declare a Function component with the same name as the component and the same 
input and output ports. The Function represents the main functionality of the sub-architec-
ture and will be referred to as the sub-architecture's main component. However, this map-
ping strategy does not exclude that other UML artifacts (for instance, high-level connectors) 
can be modeled as components. Such artifacts will be discovered during the next steps. Fig-
ure 9.7 shows how the structural view is translated into SADL.

 

⇒

...
COMPONENTS

lexicalAnalyzerModule : ARCHITECTURE
[ ... -> ... ]

BEGIN
COMPONENTS

lexicalAnalyzer : Function
[ ... -> ... ]

END

parserModule : ARCHITECTURE
[ ... -> ... ]

BEGIN
COMPONENTS

parser : Function
[ ... -> ... ]

END
CONNECTORS
...

Figure 9.7: Translating Architectural Components
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9.2.3.3 Mapping Component Interfaces

To translate the component interface, we have to look at its static model. The component 
interface is composed of three different interface element types, each of which supports a 
different communication pattern. 

Stream Interface Type

Clearly, the <<stream>> interface element type is the easiest type to map, since it is equiva-
lent to an SADL port. A stream interface element may produce and consume different kinds 
of streams, e.g., video and audio streams. Each stream declared in the Produces and Con-

sumes compartments is translated into an output and an input port of the component, respec-
tively. Figure 9.8 illustrates this idea. 

Also, we declare a Variable component in the COMPONENTS section of the sub-architecture 
for every different type of stream. A Variable component simply holds the data and acts as a 
shared-memory component within the sub-architecture. Moreover, it should only be 
accessed by internal components of the sub-architecture that owns it, using Reads/Writes 

predicates. These are configuration constraints that need to be specified in the sub-architec-
ture itself. The reason for doing so is to differentiate between functional and data-holding 
concerns of components. Thus, all data consumed by a component is stored within an inter-

Figure 9.8: Translating Stream Interface Type

⇒

...
COMPONENTS

parserModule : ARCHITECTURE
[tokens_iport : Finite_Stream(Token)->
 asts_oport : Finite_Stream(Ast)]

BEGIN
COMPONENTS
   parser : Function

 [tokens_iport : Finite_Stream(Token)->
   asts_oport : Finite_Stream(Ast)]

   tokenVariable : Variable(Token)
    astVariable : Variable(Ast)

CONFIGURATION
   ...Reads(parser,tokenVariable)
   ...Writes(parser,tokenVariable)
   ...Reads(parser,astVariable)
   ...Writes(parser,astVariable)

END 
CONNECTORS
...
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nal Variable component (that belongs to the sub-architecture) that deals with the correspond-
ing data type.

Operational and Signal Interface Types

SADL lacks precise formalism for the definition of operational connectors, i.e. connectors 
that mediate operation calls between two components. However, the SADL style, 
Procedural_Style, contains the definition of the Called_From predicate taking the invoked 
Operation and the calling COMPONENT as parameters. For instance, Called_From(B!start,A)

means that the component A calls the operation start implemented by component B. Note 
that start is declared as an Operation in the COMPONENTS section of the sub-architecture B.

The Outgoing compartments of the <<signal>> interfaces of a component allow us to 
identify the set of signals defined by that component. We therefore declare the signals in the 
CONNECTORS section of the sub-architecture representing the architectural component. To 
retain their behavior, we have to translate the ordering constraints on the signals. To do this 
we analyze the behavioral model, which provides all the information we need to get the cor-
rect sequencing of signals.

Figure 9.9 shows the translation of the behavior of a component into SADL with respect to 
the mediation of signal and operational communication. The static model is helpful for 
identifying operations and signals, while the behavioral model helps discover the temporal 
ordering of signals and operation calls.

Figure 9.9: Translating Behavioral Aspects

/^sig1
A

sig2/op1^sig3
B

⇒

...
COMPONENTS

c1Module : ARCHITECTURE
[ ... -> ... ]

BEGIN
COMPONENTS
   c1 : Function

 [ ... -> ... ]
   op1 : Operation

 [ ... -> ... ]
CONNECTORS
   sig1, sig3 : Enabling_Signal

END
CONNECTORS
CONFIGURATION

...Sender(c1Module!sig1,c1Module)

...Receiver(c1Module!sig1,c2Module)

...Sender(c2Module!sig2,c2Module)

...Receiver(c2Module!sig2,c1Module)

...Called_From(c1Module!op1,c1Module)

...Sender(c1Module!sig3,c1Module)
...
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Furthermore, C1 sends the signal sig1 and enters state B. The component C2 (not 
shown in the figure) receives sig1 and immediately sends sig2, which is in turn received by 
C1. Upon reception of sig2, C1 calls the operation op1 and sends the signal sig3. The order-
ing is translated by means of SADL predicates (Sender, Receiver, Called_From) indicating 
the kind of relationships existing between the predicate's arguments. For instance, 
Sender(c1Module!sig1, c1Module) means that c1Module is the sender of the signal sig1. Outgo-
ing signals are declared within the sub-architecture. The constraints that specify the correct 
sequencing of the signals are declared in the CONFIGURATION section of the main architec-
ture.

Translating the behavior of connectors is another very important thing that has to be 
taken into account in order to retain the semantics of the source model. ConcernBASE and 
SADL differ on the fact that connectors may have behavior, too. We cannot specify the 
behavior of a connector in SADL. In section 9.2.3.2, we mentioned that we may have to 
create an additional SADL component to represent a ConcernBASE connector with behav-
ior. For instance, in the level-3 compiler, the CompilerConnector is responsible for control-
ling the execution flow of the components that are part of the compiler system. In SADL, 
we would model this feature as a component that would transfer the control to each compo-
nent in a sequential manner (see the main component in figure 9.1). This simply means that 
we create an SADL sub-architecture for each simple ConcernBASE connector that has 
behavior. To achieve this, we have to find all state machines of a connector that do not 
transfer signals and operation calls further. Such an SADL component, standing for a Con-
cernBASE connector, has no precise functionality and therefore does not own any internal 
component (Functions, Operation or Variable component). This new component is only 
responsible for transferring the control to other components, much like a main procedure 
calling other sub-procedures to delegate different sequential sub-tasks.

9.2.3.4 Mapping Connections

In the SADL formalism, a connection represents a data link between two components. It is 
further specified as being a CONNECTION constraint relating an output port of a component 
with an input port of another component via a data connector (e.g., a Pipe). 

The identification of SADL ports has been shown under the heading Stream Interface 
Type on page 140. Now let us have a look at the interconnection between the ports that sup-
port data exchange among the components. This is described in the configuration model 
shown in figure 9.10. This figure illustrates the instantiation of a simple stream connector 
type between two components c1 and c2. The component c1 produces a finite stream of 
characters that are consumed by c2. The connector between the static ports (with the 
<<stream>> stereotype) is the carrier of the character stream. Both the connector and the 
connection are respectively declared in the CONNECTOR and the CONFIGURATION sections 
of the main architecture.
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9.2.3.5 Putting It All Together

The last task consists of composing all the partial descriptions that result from the previous 
steps, and adding IMPORTING and EXPORTING statements. An excerpt of the resulting 
description is shown in figure 9.11. 

Conceptually, this figure corresponds to the illustration of the structural view as 
shown in figure 9.2. It represents a significant result that validates the ConcernBASE pro-
file for structural descriptions, by allowing us to define architectural models in the Concern-
BASE profile of UML and to translate them into SADL for analysis. Unfortunately, the 
translation from SADL descriptions back into ConcernBASE models is not supported yet.

C1 C2

⇒

c1Module : ARCHI
[ -> chars_o

BEGIN
COMPONENTS
CONNECTORS

END
c2Module : ARCHI

[ chars_ipor
BEGIN

COMPONENTS
CONNECTORS

END
CONNECTORS

streamPipe : Pip
CONFIGURATION

streamFlow : CON
Connects(str

c2M
...

⇒

...
COMPONENTS

c1Module : ARCHITECTURE
[ -> chars oport : Finite Stream(Character) ]

BEGIN
COMPONENTS
CONNECTORS

END
c2Module : ARCHITECTURE

[ chars iport : Finite Stream(Character) -> ]
BEGIN

COMPONENTS
CONNECTORS

END
CONNECTORS

streamPipe : Pipe<Finite_Stream(Character)>
CONFIGURATION

streamFlow : CONNECTION =
Connects(streamPipe,c1Module!chars_oport,

c2Module!chars_iport)
...

Figure 9.10: Translating Data Connections
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9.3 Tool Support

The ConcernBASE Modeler is an integrated tool for developing architectural descriptions 
using the ConcernBASE approach. The tool allows one to translate UML architectural mod-
els into SADL descriptions, providing at the same time a new and elegant way to supply 
verification support for UML models using the existing SADL tools. Tool pro-activeness 
supports the developers in their modeling tasks because it actively handles the consistency 
between different overlapping models. For instance, when the user wants to instantiate a 
component type in the configuration model, the tool proposes a list of components that have 
already been defined in the structural view. When the user is modeling the behavior of 
architectural elements by means of state machines, the trigger and call event lists are popu-
lated with signals and operations that already exist, i.e. that have been defined in the corre-
sponding interface elements. These features reduce erroneous editions and maintain 
consistency between different aspects of the same model. Figure 9.12 illustrates a usage 
view of the ConcernBASE Modeler tool.

The software is single-project based, which means that it only allows one architecture 
to be modeled at a given time. One project may contain several model files depicting the 
architecture. The structural view is shown as a high-level model that can be refined by 
defining more detailed models; each architectural element declared in the structural view 
has its own static model and behavioral model; the configuration structure is also defined as 
a separate model. All models are stored on disk using the standard XMI file format.

The graphical user interface is simple, ergonomic and intuitive. It has a menu bar that 
provides different options, a tool bar containing frequently-used functions, a left pane dis-

Figure 9.11: Putting Everything Together

IMPORTING Character,Binding,Ast,Token,Code FROM Compiler_Types
IMPORTING Function FROM Functional_Style
IMPORTING Operation,Called_From FROM Procedural_Style
IMPORTING Sender,Receiver,Before,Enabling_Signal FROM Control_Transfer_Style
IMPORTING Pipe,Finite_Stream FROM Process_Pipeline_Style
IMPORTING Variable,Reads,Writes FROM Shared_Memory_Style
compilerL3 : ARCHITECTURE [ ... -> ... ]
BEGIN
COMPONENTS

lexicalAnalyzerModule : ARCHITECTURE [ ... -> ... ]
BEGIN

COMPONENTS
lexicalAnalyzer : Function [ ... -> ... ]
start : Operation [ ... -> ... ]
tokenVariable : Variable(Token)
...

END
CONNECTORS
...
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playing a structured view of the architecture, a right pane allowing one to graphically mod-
ify architectural diagrams, and a message pane keeping the user informed of what is going 
on within the system. The interface is completely event-driven and all resources, i.e. labels, 
texts, messages, images, etc., are internationalized; this means that the aspect of the inter-
face can be changed and localized without having to rebuild the system. A complete built-in 
help system offers information on the system itself, its functionalities, and its application 
domain (ConcernBASE and SADL).

9.4 Final Remarks

In this chapter, we have proposed a particular way of establishing a bridge between an 
ADL, UML and the IEEE-Std-1471.

ADLs provide expressive notations that many architects would like to integrate with 
UML. A contribution of ConcernBASE was to facilitate such an integration by implement-
ing two conceptual frameworks: the IEEE-Std-1471 and MDSOC.

The chapter described a method for translating ConcernBASE models using UML 
into SADL specifications. This translation enabled us to make use of SADL verification 
tools and integrate them with the ConcernBASE Modeler tool. Although the example of 
integration shown was based on SADL, the ConcernBASE approach is general and allows 

Figure 9.12: A Screenshot of the ConcernBASE Modeler
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one to define various viewpoints and viewpoint languages to represent different aspects of 
software architecture. 

We distinguish consistency between the views and models (both described by model 
elements) from consistency between viewpoints (characterized by a set of concerns). There-
fore, support for consistency between viewpoints could not be achieved. Also, it would be 
nice to integrate other ADLs and to have a backward mapping from SADL to UML, so that 
we do not have to learn SADL when using the ConcernBASE Modeler tool.

Finally, the ConcernBASE approach and the tool supporting it are both undergoing 
refinement and improvement, but they are already being applied in projects. Although the 
tool is not yet complete, one can already develop models, translate them to SADL, edit and 
syntax-check the resulting SADL descriptions and save the models to disk.
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Chapter 10:

Conclusions

This chapter provides concluding remarks. It also presents some limitations of concern-ori-
ented approaches to software architecture and the PCS Framework, and it indicates some 
directions in which research in the new area of concern-oriented software architecture 
could be pursued.

10.1 Summary

This thesis studied the feasibility and suitability of a concern-oriented approach for devel-
oping and describing architectures of software-intensive systems. It proposed improve-
ments for separation of concerns and in the design, construction and evolution of such 
systems, and for integrating their architectural descriptions with modern software develop-
ment artifacts.

10.2 Contributions

The thesis has argued for the necessity to comprehend that concerns are aspects of the prob-
lems we, the humans, consider when we start building software. These problems are outside 
of the computer (both hardware and software) [Jack01]. Therefore, the computer cannot dis-
tinguish one concern from another, and it cannot identify the relationships between different 
concerns. It is the job of software engineers to identify the concerns and their relationships, 
to reify them into both model elements and code, and to manipulate concerns via their rep-
resentations.

The relationship between concerns and model elements is shown to be similar to the 
relationship between an architecture and an architecture description.

The dissertation presented two elements that makes up a concern: 1) its significance 
to stakeholders—that is, there must be a goal for a stakeholder—and 2) a characteristic that 
makes it appear as an aspect of a problem—it must characterize a problem to be solved. Put-
ting these two elements together, it should be possible to formulate any concern in terms of 
a question that may be answered by an architectural design solution (or by a low-level 
design solution or an implementation).
Moreover, this thesis argues that building software architectures should be driven by the 
concerns of interest to the stakeholders, not by a specific artifact language or modeling tech-
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nique. This is the very objective of the concern-oriented software architecture approach 
introduced as a general methodology for achieving architectural design by concerns.

This work introduced the PCS Framework as an approach to implement two concep-
tual frameworks, the IEEE-Std-1471, and MDSOC. The PCS Framework provides means 
for integrating these two frameworks by using the Unified Modeling Language (UML). It
introduced the notion of building model slices, a new concern-oriented modeling technique, 
which aims at supporting the paradigm of architectural design by concerns. The thesis also 
proposes the concept of UML Space as a new mechanism for achieving multidimensional 
separation of concerns in UML, and for realizing the notion concern space as part of the 
PCS Framework to develop concern-oriented architectures.

The thesis also presented numerous case studies. It describes an On-Demand Remod-
ularization PCS by defining a viewpoint language and using that viewpoint language to 
remodularize concerns in the Java Drag’n’Drop architecture. The On-Demand Remodular-
ization PCS contributed the ODR pattern, which can be applied at both levels: architectural 
and low-level design. 

Moreover, this work also demonstrated how to achieve software composition by 
focusing only on interactions—i.e., not on components that interact; thus, it introduced a
new approach for rapidly building software systems by means of aspect-oriented connec-
tors.

An example has been provided which shows how to create a UML Space for aspect-
oriented modeling. This allows us to model interaction aspects for adapting independent 
components to a new environment. The connector modeling approach proposed in this the-
sis supports the expression of different aspects of software interactions in aspect-oriented 
models.

10.3 Advantages and Limitations

One of the limitations of this concern-oriented approach to software architecture is related 
to the composition of interaction aspects themselves. Further research is required to figure 
out more appropriate languages for supporting reification of concerns into model elements.
Another limitation is related to the assignment of roles to components when applying the 
ODR pattern to an existing software system. The ability to assign roles to components is 
currently not supported. Though this assignment is similar to connecting aspects with 
classes, reasoning on composition of roles is still unexplored. This is also similar to the 
composition of aspects and requires further research.

The basic idea of this thesis is that software architectures need to be developed in a 
similar way as the software that implements an architecture. However, there are many direc-
tions in which research in this new area of concern-oriented software architecture could be 
pursued, including tools for UML Spaces, and new techniques for identifying and reifying 
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concerns into software at all levels of abstraction. Another research direction is concern-ori-
ented software development, which includes concern-oriented patterns, concern-oriented 
web services, concern-oriented analysis, concern-oriented design, concern-oriented pro-
gramming, concern-oriented testing, etc.
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