A CONCERN-ORIENTED APPROACH TO
SOFTWARE ARCHITECTURE

THESE N° 2796 (2003)

PRESENTEE A LA FACULTE INFORMATIQUE ET COMMUNICATIONS
Institut des systémes informatiques et multimédias

SECTION D'INFORMATIQUE
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Mohamed Mancona KANDE

Diplom-Ingenieur, Technische Universitat Berlin, Allemagne
de nationalité suisse et originaire de Bale (BS)

acceptée sur proposition du jury:

Prof. A. Strohmeier, directeur de thése
Prof. S. Ducasse, rapporteur
Prof. R. France, rapporteur
Prof. R. Keller, rapporteur
Prof. A. Wegmann, rapporteur

Lausanne, EPFL
2003

Abstract

A major cause of many complications in the field of software architectures is the lack of
appropriate abstractions for separating, combining and encapsulating concerns of various
kinds in architectural descriptions.

Architectures of most complex software-intensive systems involve concerns that
inherently crosscut the natural boundaries of the elements composing the architecture
descriptions. Crosscutting concerns intersect the common modularity of systems as pre-
scribed by their architecture descriptions, by traversing both the components and connec-
tors, i.e., the relationships among the components. Crosscutting concerns are critical aspects
of many architectural problems. However, architectural descriptions written in special-pur-
pose languages (ADLSs) like Wright, Darwin, Rapide and Acme should support descriptions
of multiple structures, which include diagrams, models and views, that intentionally address
different kinds of concerns. ADLs should show how various concerns affect each other in
architectural designs; they should also allow one to identify, analyze and elaborate architec-
tural concerns that cut across several software components, such as transactions, security,
load balancing, synchronization, reuse, customization, scalability, etc.; they should, but they
do not.

This dissertation presents a new approach to software architecture that is suitable for
supporting concern-oriented development and documentation of architectures for software-
intensive systems. This approach allows for creating and documenting a multidimensional
software structure that is referred to as concern-oriented software architecture; it provides
new mechanisms for encapsul ating individual concerns into independent architectural con-
structs. The ultimate goal of this new approach is to provide support for achieving design by
concerns al through the development and description of software architectures. Moving
towards this goal, we present a particular concern-oriented architectural framework called
Perspectival Concern-Spaces (PCS). The PCS Framework offers a flexible and extensible
means a) for supporting advanced separation of concernsin architectural design, and in the
construction and evolution of software-intensive systems; and b) for filling the gap between
architectural descriptions and modern software development artifacts.

To show the feasibility of the proposed approach, we provide new modeling tech-
niques that are used to describe and apply an aspect-oriented architectural pattern, called the
On-demand Remodularization pattern. We give severa examples of how the PCS Frame-
work can be used to integrate concern-oriented architectural documentations with main-
stream software devel opment artifacts.

Kurzfassung

Wenn softwareintensive Systeme komplizierter werden, gewinnt die Softwarearchitektur an
Bedeutung als vitales Element fur den Bau solcher Systeme. Eines der Zieleim Gebiet der
Softwarearchitektur ist die Verbesserung der Art, wie komplexe Softwareinfrastrukturen so
organisiert werden konnen, dass die K osten der Softwareproduktion sinken. Ein anderes der
vielféltigen Ziele ist die Forderung von Software-Bauelementen, die wiederverwendbar,
stabil und entwicklungsféhig sind.

Eine der Hauptursachen der vielen Schwierigkeiten bei der Verfolgung dieser Ziele ist das
Fehlen von geeigneten Abstraktionen, um verschiedenartige Anliegen (concerns) in
Architekturbeschreibungen zu trennen und zu kombinieren. Querlaufende Anliegen sind in
manchen Architekturproblemen von kritischer Bedeutung. Allerdings sollten Architekturen,
die in Spezialsprachen (ADLs) wie z.B. Wright, Darwin, Rapide und Acme geschrieben
sind, die Darstellung von multiplen Strukturen mit Diagrammen, Modellen und Ansichten
(views) unterstiitzen, die beabsichtigen, verschiedenartige Anliegen zu erfassen. ADL's
sollten zeigen, wie in Architekturbeschreibungen unterschiedliche Anliegen sich
gegenseitig beeinflussen; sie sollten auch erméglichen, Architekturanliegen zu identifi-
zieren, zu analysieren und Architekturanliegen auszuarbeiten, die quer durch mehrere Soft-
warekomponenten gehen, wie z.B. Sicherheit, load balancing, Synchronisierung,
Wiederverwendung, Anpassung an Kundenbediirfnisse, Skalierbarkeit etc; sie sollten das
tun, aber sie tun es nicht.

Diese Dissertation zeigt eine Anliegen-orientierte Vorgehensweise in der Software-
architektur, die geeignet ist sowohl die Entwicklung wie auch die Beschreibung von
Architekturen fur softwareintensive Systeme zu unterstiitzen. Diese Vorgehensweise,
Anliegen-orientierte Softwarearchitektur (Concern-oriented Software Architecture)
genannt, ermdglicht es, multidimensionale Softwarestrukturen zu schaffen und bes-
chreiben. Sie bietet neue Mechanismen, um spezifische Anliegen in eigensténdige
Architekturkonstrukte einzubauen. Das oberste Ziel dieser Vorgehensweise ist, Unterstit-
zung fir das anliegen-orientierte Design (design by concerns) wahrend der ganzen Entwick-
lung und Beschreibung von Softwarearchitekturen zu gewahrleisten.

Ich lege ein spezielles anliegen-orientiertes Framework vor, das Perspectival Con-
cern-Spaces (PCS) genannt wird. Das PCS offeriert eine flexible und erweiterungsfahige
Maglichkeit, um a) die héhere Trennung von Anliegen im A chitekturdesign sowie den Bau
und die Entwicklung von softwareintensiven Systemen zu unterstitzen; und b) die Licke
zwischen Architekturbeschreibungen und modernen Softwareentwicklungs-Artefakten zu
schliessen. Das PCS-Framework erméglicht es, Softwarearchitektur als eine multidimensio-
nae Struktur zu behandeln, die einen “Vorrat an Konzepten” anbietet, aus denen ein oder
mehrere Softwaresysteme gebaut werden kénnen. Eine solche multidimensionale Software-
struktur wird Architektur-Anliegenbereich, (architecture concern-space) genannt. Dank

ihrer Fahigkeit, die Schaffung von Architektur fir multiple Softwaresysteme zu unter-
stitzen, ist ein Architektur-Anliegenbereich (architecture concern-space) fir Softwarearch-
itekten das, was ein Anwendungsframework (application framework) fur die Entwickler
von Softwareanwendungen ist.

Um die Realisierbarkeit des vorgeschlagenen Vorgehens zu zeigen, gebe ich
Beispiele, die zeigen, wie das PCS-Framework zur Integration von Architekturbeschreibun-
gen in mainstream Softwareentwicklungsartefakte benutzt werden kann und wie die Unter-
scheidung (Trennung) verschiedener Anliegen im Design und bel der Konstruktion und
Entwicklung von softwareintensiven Systemen gefordert werden kann.

To Bettina, Fatou and Aicha

Acknowledgements

Acknowledgements

Different people have contributed in different ways to help me complete this work over the
years. It isnow time to express my gratitude to al of them, including those persons whom |
might forget to mention. First of al, | would like to thank Alfred Strohmeier for accepting
to be my thesis supervisor and allowing me to perform my work at the Software Engineer-
ing Lab. He made it possible for me to visit various international conferences, and the
Advanced Enterprise Middleware Group at Thomas J. Watson Research Center, |1BM
Research, where | had the opportunity to work with top-quality researchers. He often asked
me many challenging questions, which | believe to be very interesting for exploring the new
area of concern-oriented software architecture. Alfred, thank you for all the support you
gaveme.

Secondly, | would like to thank all the jury members: Stefan Ducasse, Robert France,
Rudolf Keller, and Alain Wegmann for having taken the time and effort to review my thesis
and to serve on my examination board. Their comments have improved the quality of the
final manuscript.

Third, | am deeply indebted to Stefan Tai. His careful comments on my work were
enormously constructive and have improved the quality of this thesis. | would aso like to
thank Isabelle Rouvellou, Stanley Sutton and Peri Tarr for encouraging me and supporting
my work on multidimensional separation of concerns (MDSOC) in software architecture.
Isabelle, thank you very much for giving me the opportunity to have so many heated, but
very nice discussions on MDSOC and UML with your team at Watson, especially with Ste-
fan and Stan.

| am truly grateful to Rich Hilliard. Rich always found time to review my work and a
part of thisthesis. His thorough comments on the IEEE standard, | EEE-Std-1471, were par-
ticularly helpful and have improved the quality of the thesis.

| would like to thank my “roomi€” and “predecessor-in-line of PhDs’ Shane Sendall
for making my time at the |ab enjoyable and nice. | thank Shane for discussions on various
topics of my work and new ideas. | would like to thank him also for his review and useful
comments on this thesis.

Special thank to Valentin Crettaz for his implementation work on numerous tools we
have developed together to validate this research. Valentin started convincing me to pro-
mote my research through the realization of tool support when he was an undergraduate stu-
dent. | first was the assistant responsible for supervising Valentin's diplomawork, then his
colleague and now we are associates and research partners.

Also, | would like to thank the many students that | had the pleasure to work closely
with: Marcos Perez Jurado, Mounir Jarrai, Jean-Philippe Pellet and Grégoire Kréhenbiihl.

And | would like to thank the other members of the Software Engineering Laboratory
(LGL), Anne Crettaz Schlageter, Benjamin Barras, Raul Silaghi, David Hirrzeler, Stanislav

Vii

Acknowledgements

Chachkov, Adel Besrour, Xavier Caron, Sandro Costa, Rodrigo Garcia-Garcia, Slavisa
Markovic, Jarle Hulaas, and Thomas Baar for a pleasant atmosphere at the lab. | would also
like to thank past members who made the effort to welcome me and who assisted me in
early times. Didier Buchs, Jorg Kienzle, Thomas Wolf, Enzo Grigio, Nicolas Guelfi,
Mathieu Buffo, Cécile Peraire, and Giovanna Di Marzo. Also, | would like to thank the
EPFL computer science third year students of the past four years. They taught me many
things about the requirements for making good development tools.

Fourth, I would like to thank my parents-in-law Mary and Fritz Stéhelin for support-
ing us, me and my little family, through all this time. Special thanks to Mary for proofread-
ing the English of thisthesis and giving me many constructive comments.

| also would like to thank my parents Manian and Sékou and my brothers and sisters.
They have always been a stable support to me through my life.

Finally, I would like to thank my wife Bettina and our daughters Fatou and Aicha.
Bettina has been a wonderful physical and mental support. Her support throughout both the
good and the difficult situations was very significant to me. Bettina, you have always been
there for me. | did it! Thanks, Bettina. Now | look forward to being with you hand-in-hand
and with the kids.

viii

Table of Contents

Table of Contents

F N 0 i = ot AR OSSPSR i

L0 7 =1 o USRS iii

ACKNOWIEAGEMENES ..ot ane e Vii

TahIE OF CONLENES ..ottt st aene e iX

List of Figures XV

O 1 11 o [Tox 1 ' o OO 1

1.1 My Thess.... w1

111 Setting the SCEeNe.......coeovveirrirnieieeeeesniees w1

1.2 Critical Evaluation of Architectural Trends and Practices.... w2

12.1 ADL-based Software ArchiteCtures..........ccovveeerereresesneneneerenennens 3

1211 REVIEW..o.oeiceiieeieeseetetee ettt 3

1.2.0.2 EVAUBLION....cuiiiieeieiie et nnne s 4

12.2 View-Oriented Software ArchiteCturesc.ccevvvrenenesesesienene, 4

1221 REVIEW....ocviiiiitinctecte et 4

12.3 Pattern-Oriented Software ArchiteCtures..........covevvveeveeeveernnens 6

1231 REVIBW ..ottt enassnne s 6

1.3 TheProbleM .. .o 8

1.4 Main CONtrIDULIONScccueriiriiinrceiret et 9

1.5 Structure of the DiSSErtationccccvveereeererieerne e eeenes 10
Part I: Motivation & Background

2 Motivating Case StUAY ...t 15

2.1 Informa Software Architecture Documentation.............oceeeveerererereeeerennnnns 15

211 Software Development Problem — The Video Surveillance Service 15

212 Documenting the Problem Space..........ccccovivinninnicinncnce 16

2.1.3 Documenting Requirements on the Solution Spacec.cccceueee. 16

2.2 Formal Software Architecture Documentation...........ccoceceeeveereveneerereeenens 20

22.1 Documenting Architectural Structurein Wrightccccceevvvevennne. 21

2.2.2 Documenting Architectural Behavior in Wrightcccecvveenne. 22

223 REMAIKSooiieeiiiirrcete et 24

2.3 Pattern-Oriented Software Architecture Documentation...........cccceeeereeeenene. 24

23.1 Documenting Requirements on the Pattern-Oriented Architecture 24

2.3.2 AnApplication of Architectural and Design Patterns.................... 26

2.3.2.1 Rationalefor Applying the Observer Design Pattern 26

Table of Contents

2.3.2.2 Documenting An Observer Pattern Occurrence.................... 26

2.3.2.3 Rationae for Applying the Component Configurator Pattern 28

2.3.2.4 Instantiating the Component Configurator Pattern 29

2.3.25 Rationalefor Applying the Pipe-and-Filter Pattern 31

2.3.2.6 Ingtantiating the Pipe-and-Filter Architectural Pattern......... 31

2.3.3 Documenting an Architecture for a Family of Software Systems.. 32

2.4 Concluding REMAIKS.........cccuruiiiieerieieieeese st aste e eneens 34
REBEEA WOTK ...ttt 37
3.1 |IEEE Recommended Practice for Architectural Description............cc.ccu...... 37
311 |IEEE-Std-1471 Conceptual Frameworkccovreerieveneecreennene 37
3.1.2 General Conformance RequiremMents.........cccocvevuerireerereeeseeresenennss 39
3.1.3 |EEE-Std-1471 Lacks RealizationsSccccceveiienieieniecieseee e 39

3.2 TheUnified Modeling Language...........ccevvuerereerrennieereeesseeseeeenee e 40
321 UML IsNot Concern-Oriented.........cocverinnerreenreseenerinesieeenienens 41

3.3 Multi-Dimensional Separation of CONCEIMNScccoerverereeerneerereseeieeeenenns 41
3.3.1 Conceptua Framework of MDSOCcccceceveeerereneneneeieeseenens 41

3.3.2 Concern-Space Modeling Schema...........c.cocoviciiicinnicciccnins 43

3.3.3 Genera Requirements for Achieving MDSOC..........ccooerrieninenne. 44

3.3.4 Existing Realizations of MDSOC.........cccoocvereeveerereneneseenereeeneenes 45

3.3.5 UnitsAre Inside Software, But Not the Concerns............cccoeuveueene 45

3.4 Aspect-Oriented Software Development ... 46
34.1 Aspect-Oriented CONCEPLS......ccerrriririereeireeerieesiere e enennes 46

34.2 Issuesin Aspect-Oriented MOdEling......cccoveveevreerieereneneceeneene 47

3.5 FiNA REMAIKSciiiieiieeiriisice ettt 48

Part I1: Building & Describing Concer n-Oriented Softwar e Architectures

4

Concerns and Software ArchiteCture..........ooceeececeeeececeseesee e 53
O T o = 1 1 TSRS 53
4.1.1 Our Definition of @CONCEMNceeieeieirieiesese e 54
412 DISCUSSION.....ccuiiiitieiitiee st eeste e ste e ste st seetasaeaese e se e e eaeeraens 55
4.2 CONCEIN CAOQONIES.cveeeeeeerereeeeneruesessesesaeeseesesessesessesessensesesessesessssessssenees 55
421 Architectural CONCEIMS........cccueeueeeeeieieeietie ettt 56
422 Non-Architectural CONCEINS.........ccceiveeveeiieireeeeeceere et 56
423 Refiabl@ CONCEINS......ccoooieieiciccecece e 56
424 Non-reifiable CONCENS.........ccoueieieeeeceeeece e 56
4.3 Relationship between CONCEINS.........covrverereeereerireseeresieseseesereeesesseseeseseesenens 57
4.4 EXamples Of CONCEIMNSccerureeririerieeeieieesterestesessesesaeesesseses e sassessssessesesens 57
441 Concernsinthe Requirements on ADLScccocevrvenceneneeninienn 57

Table of Contents

442 Concernsin theVideo Surveillance Problem...........c.cococevinennns 58

4.5 Towards Concern-Oriented Software ArchiteCtures...........ocoveveeeneenienens 60
451 Objectives of the COSA APProach.........ccoeeeeereerseseeseeieesnenns 62

45.2 Characteristics and Requirements of the COSA Approach............ 62

4.6 FiNAl REMAKS.....cociiiiricrrc ettt 63
ThePCSFrameworK.........o e eesesssssseseeesenseens 65
B.1 INErOQUCHION ...ttt 65
51.1 Goals, Principles and Key CONCEPLS...........ceereeermeeerieneneeieeicennes 65

5.1.2 Fulfilling the Requirements of COSAccccvovirreneneneerireeeennn 67

5.2 Redlizing the IEEE-Std-1471 Conceptual Frameworkccceceeeeevrnnene. 67
52.1 Viewpoint SChEMa......c.cccviiiiieieseireeeeeee e 69

5.3 ReIfYING CONCAIMNS ..ottt 70
5.4 Realizing an Architecture Concern-Space for UML.......cccccovevvvcvneecnnnnn. 71
54.1 UML Lacks Adequate Support for Modeling Roles....................... 71

542 TheX-SyNArOmME......ccccvreiririirenerieieeeressesesesesseseeseessesessssesessenes 72

54.3 UML Space— Overcoming the X-Syndrome............cceevveevrvervennnn. 74
5.4.3.1 How to Create aUML SPaCE......cccernririrerieereeriresiesieieeens 75

5.5 Achieving Architectural Design by CONCENSccoveeeenererenereieneseneneens 76
55.1 Mechanisms for Separating Architectural Concerns...................... 76

55.2 Linguistic Support for Expressing Architectural Concerns............ 78
55.2.1 Tyranny of Dominant Decompositionsin UML 78

55.2.2 Scattering of CONCEMNS......covviiverrieieirene e 79

5.5.2.3 Tangling of CONCEINS.......cccverireerereerieeresesireeseseeneeeesenenns 80

5.5.2.4 Crosscutting CONCEINS........c.crvreerereeereereressesereeseneeneesenessesenes 80

5.6 Integrating Architecting and Software Developmentc.coccovererecvnriene 80
B.7 USING UML ettt 81
5.8 FiNAl REMAIKS......ooiiveiiiiiriiitceter e 81
Aspect-Oriented Construction PCS..........coiinreneneeneeeneeeenns 83
6.1 VIeWPOINt NAME....ceiiereieieeeriiisieresese e eeseese et se s eee e sassessnsessesessesennnns 83
5.2 SOUMCES.....eeeetieeeteit ettt ettt b et b e s b n e s bbb s 83
6.3 CONCEINS ...ttt bbbt 83
6.4 SEAKENOIAEIS. ..o 84
6.5 RAIONAIEcuiiiieeieicte bbb 84
6.6 Architectural Problems...........cccoviiiiiiiiniccccs e 84
6.6.1 INCENLIVE ASPECES.....coiieiiieiiirie ettt 84

6.6.2 Towards Perspectival ASSOCIAtioNScccveeereerererieneneeeeeeenens 85

6.6.3 DECISIONAl ASPECES...cceiveiieriereerereesireeseree s seree s ee e ssnnesees 86
6.6.4 RESUIANt ASPECES.....coviveeieiiieeereetesiree ettt ene e 86

Xi

Table of Contents

6.6.5 UML Extensionsfor Aspect-Oriented Modelingccccoevvrvervennee. 87
6.7 RESUIANT VIBW ..ot . 89
6.7.1 Identifying Causes and Effects for the EventConnector..............ccccoce.... 90
6.7.2 Designing the EventConnector 90
On-Demand Remodularization PCS.........cccoonnneirnnincsssnes 95
7.1 VIieWPOINt NAME....ciieiieeeerieesieeeseese e seesesseseseesesee e eee e ssesesassessesssseseneens 95
T2 SOUMCES....otieeueresteeietee ettt r et b et r e er e e 95
7.3 CONCEINS ...ttt bbb bbb st e 95
T4 SEBKENOIAEIS. ..o 96
7.5 RAIONAIE ..ottt 96
7.6 Architectural ProblemS ..o 96
7.6.1 INCENIVE ASPECES. ..ottt 96
7.6.2 DeCiSIONal ASPECES....cccueiieiiiriereriesiriereeie et eere s 96
7.6.3 RESUIANt ASPECES.....covieeeierieeee s sseeseeee e seee e nene e 97
7.7 Relationships AMONG CONCEIMNS.....c.ccovreeriereerereenereeereeresessesesseseseeessesessssees 97
7.8 RESULING VIBW....cceciiiceieeieece ettt 97
7.9 TheJavaDrag & Drop Architecture Case Studycoeereeereeeeneeeennnenn. 98
79.1 Drag Support Initialization CONCEIMN......cccvveerrerieeeserereecee e 99
79.2 DropTarget Installation CONCEMNccvvereverererererieierese e 103
7.9.3 Drop Event Interception CONCEINceeereeersesierereeeeseseseneenes 104
7.10 On-Demand Remodularization Pattern...........cocoveereennennieneeeeseesieens 108
7201 MOtV ON. ...ttt 108
7.10.2 Structure Of the Pattern ..o 109
7.10.3 Achieving Design by Concerns with the ODR Pattern................... 110
7. 11 FiNAl REMAIKS....ccriieeiieeiiriinicieee ettt eb e 112
The Service-Oriented PCS.........coooeereeeseieeeeee e 113
8.1 INrOQUCTION ...ttt et 113
8.2 Main Model of the Service-Oriented VIEWcovrrrenucienerneneeeieens 114
8.3 StatiC StruCture MOGE!ooveueeiiiiririeee e 115
8.3.1 Component Structure SpeCifiCationccecvreereereneneiciene, 115
8.3.2 Connector Structure SpecCifiCation.........cccovevrvereeneiereceseeeens 116
8.4 Behavioral Specification MOGEccoeveervnrerreeeres s 118
8.4.1 Component Behavior Specification........ccccceveceerevseneseririeienn, 118
8.4.2 Connector Behavior SpeCification..........coeevreencineneneeiccenn, 118
8.5 Perspectival EIEMENES......ccovvuiiieirieieniecer st 119
85.1 Structura Specification of Perspectival Elements...........ccccoeeneeee. 119
85.2 Behavioral Specification of Perspectival Elements............ccee.... 120
8.6 Configuration MOEcccuruiirieerieieiereee st 121

Xii

Table of Contents

8.6.1 Context of the Configurationccceeeeervrercenererrerereeesee s 121

8.6.2 Configuration Manualccceeereeeeenenresene e 122

8.6.3 Architecture Background............ccceeveereiernesieieeseeseseseeseseesseenes 125
8.6.3.1 DesgnRationale...........ccoceirinririciiiniiicnes s 125

8.6.3.2 ANAYSISRESUILS.....ccoiiirieiiirieeecec e 125

8.6.3.3 ASSUMPLIONS....c.coireeuereeririrresieieseeeree e eee e eene s 126

8.6.4 Other INfOrMatioNcccceriruririecinireriei et 126

8.6.5 Related View PacketScooueiieeeiieieiriciesie e 126

8.7 FiNAl REMAIKS......ooviieiiiiiiriist ettt 126

Part I11: Other Related Work and Conclusions

9 Integrating the Structural PCSwith SADL ..o, 131
9.1 INErOQUCTION ...ttt 131

9.2 StrUCtUral VIEWPOINE.....c.eeeeeeeeeerireesieieeeeeseeseseeseseenesee e ses e sesseneesesessnsenes 131
9.2.1 Structura View of the Compiler System........ccccoeevvevereieeeesnennns 132

9.2.1.1 Static MOEovieeeiieeceeeceee e 133

9.2.1.2 Configuration MOdEccoerereeereieinene e 134

9.2.2 OVEVIEW OF SADL ..cocuiiiiiiricitceresee et 135

9.2.3 Mapping ConcerNBASE t0 SADL.....cccceeieerrresieeseeeeees e 138

9.2.3.1 Mapping Data TYPES.....cceerrerireeririeiieiereeie e seeee e 138

9.2.3.2 Mapping Architectural COmMpoNents...........cocveveeereeieernnenns 139

9.2.3.3 Mapping Component INterfaces..........ccovververveneeieresnnenn 140

9.2.3.4 Mapping CONNECLIONS........cceerireerereereeerereneesereeeneeesseneseneenes 142

9.2.3.5 Putting It All TOGELhErc.oveveieeieeecre e, 143

9.3 TOO! SUPPOIT ...ttt sttt 144

9.4 FiNAl REMAIKS.....ooviveiiriiriini et 145

L0 CONCIUSIONS.....cooiiieereinrcieeee et ear ettt 147
LO.1 SUMMEY .ottt sttt ettt sbe s e ebesaeebessebesbesbesaetessebesseneeseeneans 147

10.2 CONIIBULIONS......cvieieiirieit e 147

10.3 Advantages and LimitationScccocevrierieienieicneiesene s 148
Part IV: Annexes

A BibliOgrapny ... 153
CUMTICUIUM VITAE ...ttt 163

xiii

Table of Contents

Xiv

List of Figures

List of Figures

Chapter 1: Introduction
Chapter 2: Motivating Case Study

Figure2.1: AnInformal Documentation of the Problem Space............ccco.e...... 16
Figure2.2: Architecture Development Activity Diagram.........ccccceevvevevennnn. 17
Figure2.3: Anlllustration of Requirements on the Solution Space.................. 18
Figure2.4: A Wright Description of the Video Surveillance Architecture....... 21
Figure2.5: Informal Reg. Diagram for the Video Surveillance Architecture... 25
Figure2.6: A Higher-Level Description of the Observer Pattern Instance........ 27

Figure2.7: An Observer Pattern Instance with Focus on Connection Points.... 27
Figure2.8: An Observer Pattern Instance with Focus on the Interconnection.. 28

Figure2.9: Structural Instance of the Component Configurator Pattern........... 30
Figure2.10: Behavioral Instance of the Configurator Design Pattern 31
Figure2.11: A High-Level Structure of a Pipe-and-Filter Instance........ 32
Figure2.12: A Structura Instance of the Component Configurator Pattern....... 33
Figure2.13: Behavioral Instance of the Component Configurator Pattern......... 33
Chapter 3: Related Work
Figure3.1: Conceptual Framework of |[EEE-Std-1471 (from [IEEEQQ]) 38
Figure3.2: An Overview of the Conceptual Framework for MDSOC 42
Figure3.3: The Cosmos Perspective of the Software Concern-Space.............. 44

Chapter 4: Concerns and Software Architecture
Figure4.1: Concernsinthe video surveillance service probleminVerson1.. 59
Figure4.2: Concernsin the video surveillance service probleminVersion2.. 60

Figure4.3: Conceptual Framework of |IEEE-Std-1471 (modified) 61
Chapter 5: The PCS Framework
Figure5.1: A Perspectival Concern-Spacein OVENVIEWccocceeveeeeeeevrenennn. 66
Figure5.2: Overview of the IEEE-1471 Redlization for the PCS Framework.. 68
Figure5.3: A Viewpoint Schemain OVEIVIEW.........c.ccoveeerrernienieeeneeeesennens 69
Figure5.4: UML Metamodel for Collaboration...........ccovvveeereevereeensnsnicneneenes 72
Figure5.5: The Description of the UML Metaclass Classifier...........oceevrererenenne. 75
Figure5.6: Unidimensional Separation of Concerns Across Different Levels. 79
Figure5.6: Structural CroSSCULLING.........cevrverirveeeeieeicisie st 80

Chapter 6: Aspect-Oriented Construction PCS
Figure6.1: Structura Illustration of Key Elements within a UML Collaboration 85
Figure6.2: Behaviora lllustration of Key Elements of aUML Collaboration. 86
Figure6.3: High-Level Package View of the UML Space for AOM................ 87

XV

List of Figures

Figure6.4: TheUML Space for AOM — A Low-Level View of AOM Core. 88

Figure6.5: A Perspectival Association between the Component Roles............ 90
Figure6.6: The Cause-Effect Principle Applied on the EventConnector............... 90
Figure6.7: Static Structure of the EventConnectorocuvrerreerieeeseeeesnnenns 91

Figure6.8: Body of the Perspectival Behavior Associated with newstate.......... 91
Figure6.9: Body of the Perspectival Behavior Associated with newConsumer .. 92
Figure 6.10: The Complete Design of the EventConnectorccovveeveeerveereeeenenns 92
Figure 6.11: Implementation View of the EventConnector Aspect 93

Chapter 7: On-Demand Remodularization PCS
Figure7.1: Concern-Oriented Model asaMeansfor Concern Representation. 97
Figure7.2: Concern-Oriented Model as aMeans for Concern Reification....... 98
Figure7.3: Concern-Oriented Model as a Means for Representing Model Slices 98
Figure7.4: Concern-Oriented Model as a Means for Representing a Mechanism 98
Figure7.5: Behaviora Model Slice for the Drag Support Initialization Concern....... 101

Figure7.6: Structural Model Slice for the Drag Support Initialization Concern........ 102
Figure7.7: Behavioral Model Slice for the DropTarget Installation Concern.......... 103
Figure7.8: Structural Model Slice for the DropTarget Installaton Concern............ 104
Figure7.9: Behaviora Model Slice for the Drop Event Interception Concern......... 105
Figure 7.10: Structural Model Slice for the Drop Event Interception Concern 106
Figure7.11: Interaction Model for using the Java Drag & Drop API 107
Figure 7.12: Static Structure Model for using the Java Drag & Drop API.......... 108
Figure 7.13: Structure of the On-Demand Remodularization Pattern.................. 109
Figure7.14: Instantiation of ODR for the Traffic Light Control System.. .. 110
Figure7.15. ODR Applied on the Java Drag' n’ Drop Architecture..................... 111
Chapter 8: The Service-Oriented PCS
Figure8.1: Mapping Between a Viewtype and the PCS Framework................ 114
Figure8.2: Main Model of the Service-Oriented Architectural View............... 114
Figure8.3: Component Structure SpecifiCationcccoeevvrvrrerenneieceenenns 115
Figure8.4: Component Types' Interface Elements..........cccovevrvereeereeieesnnnnns 116
Figure8.5: The VSSenviceConnector Structure Specification............ccccvvveeevreeenn. 116
Figure8.6: Interface Elements of VSSenviceConnector..........ccvvvervreereeeeneeercennenn. 117
Figure8.7: Protocol State Machine for StreamEndPointSignaling..........cevevereeeeeenn. 118
Figure8.8: Protocol Sequence Diagram for StreamEndPointSignaling 119
Figure8.9: Perspectival Associations and their Properties..........cccccovvveeeveenene. 120

Figure 8.10: The System Context Diagramc.coecveeirirerrenneeneeeseeeesneene
Figure 8.11: Base Configuration Diagram..........ccoverreireeennenneeneeeeeseeeseneenes
Figure8.12: A Perspectival Configuration Diagram

XVi

List of Figures

Chapter 9:
Figure9.1:
Figure9.2:
Figure 9.3:
Figure 9.4
Figure 9.5:
Figure 9.6:
Figure9.7:
Figure 9.8:
Figure 9.9:
Figure 9.10:
Figure9.11:
Figure 9.12:

Compiler Architecture: taken from [MRIO7]cccceeevvevverceneninennns 132
Structural View of the Compiler Systemccccvevvevevreecereennnnens 132
Static Structure Model of the Lexical Analyzer Components Type 134
Configuration Model of the Compiler System..........ccoceevveveeeienne 134
Extract of the Level-3 Compiler SADL Specification.................... 137
Compiler_TYPeS.SAl......ccccueeeierireiresesseserie e eens 138
Translating Architectural ComponNENtS...........ccoevererierireereneenennens 139

Translating Stream INterface TYPe.....cocvvverreerreresesrenee s 140
Translating Behavioral ASPECEScvovereerereeieneereseseneeeseseneneens 141
Translating Data CoONNECLIONS..........covevrreiererieieeesesesiseeseeseeseenens 143
Putting Everything TOQEthercco.eoeveeveeiesenese e 144

A Screenshot of the ConcernBASE Modeler..........coeeeeveeceecrennnen. 145

Xvii

List of Figures

Xviii

Introduction

Chapter 1:
Introduction

There is no point in using exact methods where there is no clar-
ity in the concepts and issues to which they are to be applied.

John von Neumann

1.1 My Thesis

A concern-oriented approach to software architecture is feasible and suitable for devel oping
and describing architectures of software-intensive systems, for improving separation of
concernsin the design, construction and evolution of such systems, and for integrating their
architectural descriptions with modern software development artifacts.

1.1.1 Setting the Scene

Major goals of software architecture [PW92][SG96] are to improve the way of organizing
complex software infrastructures, while reducing costs of software production; and to facil-
itate software construction that fosters reuse, maintai nability and evolution. Other important
goals are to provide the ability to make descriptions of software architectures that serve as
vehicles for communication among the stakeholders (i.e., participants) of software develop-
ment projects, for manifesting the earliest design decisions in those projects, and for repre-
senting reusable and transferabl e abstractions of the systems under construction [BCK98].

To achieve these goals, research in the software architecture community has shown
that software-intensive systems—i.e., systems whose design, construction, deployment and
evolution are essentially influenced by software [| EEEOO]—should not be developed from
scratch. Instead, they should be constructed, based on well-defined architectural descrip-
tions that allow software engineers to understand how to combine various components;
such components are possibly developed at different times, using different technologies.
However, putting the result of thisresearch into practice has several implications, especially
when supporting component-based software engineering [Szy98].

One key implication is the following: when building a complex software system by
composition, the components you select will be required to fulfill some “roles’ anticipated
in the software architecture of the system under construction. A particular component may
fulfill one or more roles in order to achieve some stakeholders' concerns. In redlity, the
same concerns can pertain to one or more aspects of the system under construction. Some
aspects of the system can be relevant to a specific stakeholder who considers the composi-
tion problem from a particular perspective; but also, different stakeholders may have differ-

Critical Evaluation of Architectural Trends and Practices

ent concerns which pertain simultaneously to various perspectives. On the other hand, a
given role defined by the architecture can be fulfilled by many components of the system at
the same time or at different times; an individual concern can affect many roles, but also a
role may have an effect on the realization of many concerns. Thus, it becomes rapidly diffi-
cult to understand and reason about the software system’s composition if we cannot repre-
sent and manipul ate, adequately, the roles involved in the software architecture.

At this stage, a fundamental issue to be addressed is how to relate the stakeholders'
concerns, belonging to the composition problem, to the roles in the architecture (i.e.,
abstract and reusabl e solution to the problem). Providing the capability to properly address
thisissue will have agreat benefit for both software architecture and component-based soft-
ware engineering. Lacking such a capability will result in a number of complications that
hinder accomplishing the goals of software architecture and make component-based soft-
ware engineering difficult to achieve. For example, developers of individual software com-
ponents will have to provide mechanisms for implementing not only the concerns that
crosscut many components playing different roles, but also they will have to offer tech-
niques for supporting individual roles that affect the realization of multiple concerns. Both
cases are very tricky and require appropriate means for separating concerns, at different lev-
els.

1.2 Critical Evaluation of Architectural Trends and Practices

To begin with, we have to admit that there is no agreement on what is called software archi-
tecture, and that there is no single, accepted framework for codifying architectural concepts.
This lack of agreement does not facilitate the emergence of common practices in software
architecture and their controlled evolution [IEEEQQ]. However, the diversity in the realm of
software architecture stems from the variety of issues that reflect the concerns of the
authors.

When producing architecture descriptions in software projects, most practitioners (in
the recent area of software architecture) prefer to draw diagrams consisting of boxes and
lines with vaguely defined meanings, if they are defined at all. The diagrammatic notations
used in this practice are typicaly informa and ad hoc, i.e, based on the whiteboard
approach. However, the software architecture community has become aware of the prob-
lems caused by the use of informal notations for architecture descriptions, and there is an
agreement on the need for proper notations and modeling techniques for software architec-
tures [PW92][SG96]. Modern notations are either formal, i.e., based on formal and special-
purpose modeling languages, caled Architecture Description Languages (ADLS)
[GMW9O7][MTOQ][CIe96], or they are positioned somehow between informal and formal
notations, i.e., based on semi-formal modeling languages. Semi-formal modeling languages
present an aternative to using informal and forma modeling techniques and notations, but

Introduction

semi-formal languages also complement both. Examples of languages supporting semi-for-
mal techniques and notations include OMG's standard, the Unified Modeling Language
(UML) [Omg01]. Semi-formal and formal languages are both being used in different ways,
following different trends.

The following subsections summarize some of the most important trends and prac-
tices in software architecture: ADLs (architecture description languages), multiple views
and pattern-oriented software architecture.

1.2.1 ADL-based Software Architectures

1.2.1.1 Review

To encourage calling off the popular practice based on the whiteboard approach, numerous
ADLSs have been specifically designed to support representing, analyzing and reasoning
about key characteristics of software systems. This goal of ADLs is mainly achieved by
providing linguistic constructs, such as components, connectors, properties, styles and sys-
tems, which aim at supporting the encapsulation of certain kinds of architectural concerns.
A typical ADL alows one to encapsul ate architectural concernsinto linguistic constructs or
units model elements. computations and data store (into components), interactions (into
connectors), constraints (into properties), reusability of collections of design elements and
the conditions for reusing such collections (into styles) and configurations (into systems).
The ADL trend, essentialy driven by academics, is motivated by the creation and
improvement of ADL-based approaches to software architecture, including associated
tools; to this practice belongs the promotion of ADLs as suitable languages for solving
architectural problems. ADLs have the advantage of being mathematically founded, facili-
tating analysis of architectural models. However, due to their formal nature, architectures
described in existing ADLSs can be hard to understand and to use as a vehicle for communi-
cation among the stakeholders of a project. For instance, developers in need of ADL-based
software architectures will have to learn the corresponding mathematical models.
Furthermore, the lack of integration of ADL-based descriptions with other artifacts
commonly used by software developers |leads to considerable obstacles in the promotion of
software architecture as a new field. This is perhaps a reason why ADLSs are not so widely
used in industry. Having become aware of these obstacles recently, ADL specialists and oth-
ers have started a development effort which addresses mapping strategies allowing for inte-
gration between specific ADLs and well-accepted description languages, for instance, UML
[RMR+98][GKOQ][CK S+01], and XML [Sch01]. This is a valuable approach to achieve
integration of ADLs with modern software technologies, however, it still remains insuffi-
cient, as ADLs address only alimited number of kinds of architectural concerns. For exam-
ple, ADLs generally lack support for representing crosscutting concerns; as a result, ADL-
based architecture descriptions are difficult to maintain and adapt once they are developed.

View-Oriented Software Architectures

1.2.1.2 Evaluation

Major problems encountered with ADLs are related to their lack of flexibility. Architectural
descriptions made in special-purpose languages (ADLs) like Wright [AllI97], Darwin
[MDE+95], Rapide [LAK+95] and Acme [GMW97] should support descriptions of multi-
ple structures, including diagrams, models and views, that intentionally address different
kinds of concerns. ADLs should show how various concerns affect each other in architec-
tural designs; they should also allow you to identify, analyze and elaborate architectural
concernsthat cut across several software components at the same time, such as transactions,
security, load balancing, synchronization, reuse, customization, scalability, etc.; they
should, but they do not.

ADLSs do, however, allow architects to achieve good support for non-crosscutting
concerns. They provide significant means to represent, analyze and manipulate non-cross-
cutting or “naturally localizable” kinds of concerns through encapsulation in particular lin-
guistic constructs found in most existing ADLs. But, they failed to alow architects to
achieve support for “non-localizable” concerns; though, a good ADL should also alow
architects to provide descriptions that address compositions of both crosscutting and non-
crosscutting concerns.

1.2.2 View-Oriented Software Architectures

1.2.2.1 Review

View-oriented software architecture practice, especialy driven by practitioners in the soft-
ware industry, is motivated by the idea that an architecture involves multiple structures
which, considered from different perspectives, present different aspects of the system. An
important characteristic of this trend isits ability to represent an architecture as a collection
of diagrammatic descriptions that can be depicted by different views and at different levels
of abstraction; each view can address its own set of concerns and allow for further elabora-
tion of its elements in various ways. This provides the capability to create multiple struc-
tures simultaneously, while allowing mechanisms for repeatedly refining each structure; it
aso includes the facility to integrate architectural descriptions with modern software devel -
opment artifacts.

View-oriented approaches allow you to express different aspects of an architecture in
different views and to compose these aspects to build the system structure as a whole.
Unlike ADL-based approaches, view-oriented approaches are not just limited to afew kinds
of architectural concerns; instead, they allow oneto address all significant kinds of concerns
involved in a software architecture. View-oriented approaches are usually based on semi-
formal notations.

Examples of approaches following the view-oriented trend include the Krutchen 4+1
Views [Kru95] and the Siemens Four Views [HNS99]. Further examples include applica-

Introduction

tions of the ISO Reference Model for Open Distributed Processing (RM-ODP) [ISO95]
with UML in areas such as telecommunications [KTM97][KMP+98].

While multiple views allow one to focus on different structures of a system, individ-

ual views do not address stakeholders' concerns explicitly. Therefore, it is difficult to know
precisely whether an architecture description resulting from a view-oriented approach has
addressed clearly all the concerns of importance to the stakeholders; it is most important to
know how views and concerns relate to each other.

1.2.2.2 Evaluation

Essential problems encountered in using multiple views of a software architecture include:

Lack of support for associating architectural concerns to individual views. What is
missing in existing view-oriented approaches is a clear understanding of the kinds of
architectural concerns that pertain to the structures represented in individua views.
Certain kinds of architectural concerns (e.g., functionality and feature) will have an
effect on one or many representational units or model elements. Other kinds of archi-
tectural concerns (e.g., performance, interaction, configuration and security) will not
only affect several linguistic constructs in one partial description, but they will also
crosscut many elementsin various partial descriptions: diagrams, models and views.
Lack of appropriate support for software connectors. Mechanisms used to encapsu-
late interaction among components, as described in most architectural views, do not
support modularization and reuse of connectors. However, inadequate modul arization
of interactions increases mai ntenance costs and complicates reasoning about architec-
tural concerns, such as security policies and synchronization.

Lack of consistency check between views. Current approaches do not have the ability
to check consistency among multiple views, since there is no mechanism to support a
“conceptua repository” that encompasses al elements of all different views, models
and diagrams, and allows checking for consistency among the elements.

Lack of separation between architectural viewpoints and architectural views. The
view-oriented software architecture approaches mentioned above support each only a
few, limited number of viewpoints and views; they do not clearly define the distinc-
tion between architectural viewpoints and views. The ANS| |EEE Recommended
Practice for Architectural Description (known as ANSI/IEEE-1471-2000 standard
[IEEEQQ]), in contrast, alows for distinguishing architectural viewpoints from archi-
tectural views, and for creating and using an arbitrary number of views. Unfortu-
nately, implementations of the ANSI/IEEE-1471-2000 standard are still missing. (|
will return to this point in section 1.4.)

Pattern-Oriented Software Architectures

1.2.3 Pattern-Oriented Software Architectures

1.2.3.1 Review

A well-known approach in the style- or pattern-oriented architectural practiceis pattern-ori-
ented software architecture [BMR+96][SSR+00]. The principa idea of this approach is
based on the (re-)use of patterns for developing software architectures. A pattern for soft-
ware architecture addresses a specific recurring design problem, which occurs in particular
design contexts and offers awell-understood general solution schema. The solution schema
describes the constituent components, their responsibilities and relationships, as well as the
collaboration among those components.

An important characteristic of a pattern-oriented approach to software architecture is
its ability to cross several levels of abstraction. Such approaches do not focus on design-
level patterns only; instead, they cover consistently system-level or architectural patterns,
including design patterns [GHV+95] and low-level idioms. Another characteristic of this
approach is the selection of appropriate architectural patterns. Selecting an architectural pat-
tern requires early decision-making that is significant to the design, construction and evolu-
tion of the system at hand; the selected architectural pattern will affect not only the
fundamental organization of the system, but also the architecture of its subsystems and their
interconnections.

The pattern-oriented software architecture approach supports a new mechanism for
separation of concerns, called pattern systems. Pattern systems are containers of heteroge-
neous patterns that allow software architects to separate collections of patterns according to
various criteria. When following this approach, design patterns are required to structure
individual subsystems and relationships among them, but they have no effect on the organi-
zation of the system itself.

Another critical element in an architecture description is a style [SG96]. According to
Dwayne E. Perry and Alexander L. Wolf [PW92], “an architectural style defines afamily of
software systems in terms of their structural organization. An architectura style expresses
components and the relationships between them, with the constraints of their application,
and the associated composition and design rules for their construction”. Architectural pat-
terns are very similar to architectural styles, but they have some differences.

However, according to [BMR+96], every architectural style can be described as an
architectural pattern; but to achieve this, it is important to observe the following distinc-
tions:

« There are no dependencies among architectural styles, but patterns do relate to each
other. As mentioned above, when applying the pattern-oriented software architecture
approach, various design patterns can be used to structure the individual subsystems
and the relationships among them; these can, in turn, make use of idioms in their

Introduction

implementations, etc. The dependency relationships between patterns (from architec-
tural patterns via design patterns to idioms) can be documented in pattern systems.
Architectural styles are less problem-oriented than architectural patterns. An archi-
tectural styleisahigh-level design mechanism that is intended to prescribe a software
system'’s organi zation independently of the context of a particular design problem. In
contrast, a pattern addresses a specific recurring design problem which occurs within
aparticular design context and offers a well-understood generic solution schema.
Architectural styles only describe the global organizational structures of a system.
However, they do not care about the detailed design structures for individual compo-
nents and interconnections of the system. On the other hand, architectura patterns
involve not only the overall system organization, they also affect the design of diverse
subsystems and their interconnections.

Architectural styles include reference models, but architectural patterns do not. Ref-
erence models are system organizations that impose rules for constructing applica-
tions in some particular domains. Examples include: the reference model for open
distributed systems, RM-ODP [1S095], that prescribes the rules for building open dis-
tributed applications; the ISO Open Systems Interconnection reference model which
recommends the 7-layer model for communication networks [Tan92]; and the refer-
ence model for compiler construction [PW92]. In effect, the level of abstraction for
using architectural patterns is not the same as for reference models; but one or more
architectural patterns can be applied when using a reference model.

1.2.3.2 Evaluation

Major difficulties with the pattern-oriented approach are:

Lack of support for identifying forces in the solution scheme. Architectural patterns do
not have means for identifying and reasoning about the relations between individual
forces of recurring problems and the associated generic solution schemes. Without
this support, instantiation and reuse of patterns remain difficult; thisis particularly the
case when the concerns related to individual forces crosscut various components,
interconnections, and associated design patterns or idioms.

Lack of support for crosscutting roles. Patterns describe their reusable elements in
terms of roles rather than concrete components. However, most pattern descriptions
do not provide mechanisms for encapsulating interactions and properly addressing
dynamically changing roles. Roles that change dynamically are frequently found in
complex interactions; they often cut across many components at the same time.

The Problem

1.3 The Problem

A major cause of many complications in software architecture is the lack of abstraction for
separating and combining concerns of various kinds in architectural descriptions. A given
concern might cut across many elements of an architecture description. Crosscutting con-
cerns are critical aspects of the software composition problem.

However, despite the large amount of ongoing good research in software architecture,
many of the difficulties in the creation of software compositions are related to deficiencies
in addressing crosscutting concerns. The representation of crosscutting concerns is very
limited in current practices; for example, interactions are difficult to modularize and reason
about. Existing software architecture approaches either require that interactions be scattered
across the participant components, or they concentrate on just a few kinds of interaction
concerns, such as the protocol of communication among components. This makes it easier,
perhaps, to design special-purpose description languages to support architectural represen-
tations. However, it also complicates considerably the creation of software connectors
[SG96] that can combine more than one kind of interaction concern. Thus, it becomes diffi-
cult to promote connectors as first-class citizens in software architecture and to describe
them as a specification of interaction. Unfortunately, the software architecture community
still continues to neglect the importance of crosscutting concerns, athough existing
approaches have failed to address them appropriately.

Without new techniques to explicitly address crosscutting concerns at system-level,
software architects are condemned to produce descriptions in which crosscutting and non-
crosscutting concerns will be entangled. When fulfilling unanticipated technological con-
straints during implementations, developers will have to customize and elaborate descrip-
tions that are already intertwined. As a result, developers will likely produce software that
cannot be tested for conformance to the architecture. Lacking conformance between archi-
tecture and its realization will continue to limit considerably the benefits of software archi-
tecture.

We believe that focusing on only non-crosscutting concerns impedes attaining major
goals of software architecture: it inhibits communication among the stakeholders of a soft-
ware development project, restrains the manifestation of the earliest design decisionsin the
project, and limits the ability to reuse and transfer the abstraction of a software-intensive
system. New approaches are required to improve the current situation in order to achieve
the goals of software architecture.

Introduction

1.4 Main Contributions

The main contribution of this thesis to solving the above problem is a new approach for
developing and documenting software architectures, called the concern-oriented software
architecture approach—or the COSA Approach.

The concern-oriented software architecture approach provides new mechanisms for
encapsulating individual concerns into independent architectural constructs. It introduces
concern-oriented modeling techniques to encourage software architects to address their sys-
tems' requirements in a “concern-oriented way”. The COSA Approach alows one to
achieve:

< Integration of architecting activities with common software development. This capa
bility enables the creation of software architectures in non-isolated ways—that is,
COSA supports architecture development at multiple stages within the global context
of the software life cycle, not only at one particular stage or during a specific phase of
software devel opment.

« Reification of stakeholders concernsinto software. This ability allows one to address
individual concerns at different levels of abstraction simultaneously, while distin-
guishing each concern from the software devel opment artifacts reifying it.

¢ Architectural design by concerns. Practicing design by concerns allows one to clearly
separate the software architecture of a system from its description, and to ensure that
both the software architecture and its description address properly the stakeholders’
concerns and nothing more.

« Realization of an architecture concern-space. Realizing an architecture concern-space
provides support for developing software architectures, while applying mechanisms
of multidimensional separation of concerns (MDSOC).

* Realization of the IEEE-Sid-1471 Conceptual Framework. This allows oneto produce
architecture descriptions that conform to the IEEE and ANS| standard for architec-
tural descriptions, ANSI/IEEE-Std-1471-2000.

« Effective use of UML. The COSA approach is a new way of using UML that allows
one to integrate the resulting concern-oriented architecture descriptions with other
architectural descriptions written in standard modeling languages, such as UML; this
includes, for example, UML support for key ADL constructs: components, connec-
tors, styles, systems and properties.

Another key contribution of this thesis is a particular implementation of the COSA
approach, called the PCS Framework. The PCS Framework provides a UML-based linguis-
tic toolkit, called UML Space, and combines the redizations of |IEEE-Std-1471 and
MDSOC. Essentidly, the PCS Framework achieves the requirements for fulfilling the
COSA approach in the following steps:

Structure of the Dissertation

¢ The PCS Framework realizes the IEEE-Std-1471 Conceptual Framework through its
concept of aviewpoint schema.
¢ Thereification of concernsis achieved by means of the projection mechanism.
¢ The realization of an architecture concern-space is achieved through the notion of
UML Space—the PCS Framework uses standard UML to create a UML Space which
architects need to use to develop and apply various viewpoint languages at will.
¢ The PCS Framework achieves “architectural design by concerns” through concern-
oriented modeling using one or more viewpoint languages.
¢ The integration of the building of software architectures with common software
development is achieved through a combination of MDSOC with IEEE-Sd-1471 and
UML.
This thesis also provides three different Perspectival Concern-Spaces (PCS's) which
together build the current PCS Framework: an Aspect-Oriented Construction PCS, an On-
Demand Remodularization PCS, and a Service-Oriented PCS. The On-Demand Remodular-
ization PCS includes a new concern-oriented pattern, which we refer to as On-Demand
Remodularization pattern. Furthermore, the dissertation provides different examples, each
showing how to use an individual PCS.

1.5 Structure of the Dissertation

Part |- Motivation & Background

Chapter 2: Motivating Case Study

This chapter presents an introductory case study that shows the motivation for going a step
further. The case study shows how to apply current software architecture practices, based on
the example of a video surveillance service. The example includes an application of three
different approaches—an informal, aformal and a semi-formal approach. The chapter also
illustrates the limitations of these approaches and argues for a concern-oriented approach to
software architecture devel opment and documentation.

Chapter 3: Related Work

This chapter introduces the foundations of the concern-oriented approach to software archi-
tecture. It presents two conceptual frameworks: an architecture description framework
which is part of the ANSI |EEE standard for architecture documentation, called | EEE-Std-
1471; and an aspect-oriented software engineering framework, known as concern spaces,
which is part of Multidimensional Separation of Concerns (MDSOC). The Unified Model-
ing Language (UML) isintroduced as a linguistic framework that can be used to establish a
bridge between both conceptual frameworks. The chapter concludes with the needs for
implementing these frameworks using UML.

10

Introduction

Part | 1- Building & Describing Concern-Oriented Software Architectures

Chapter 4: Concerns and Software Architecture

This chapter introduces a new perception of concerns in relationship to software architec-
ture. Thefirst part of the chapter considers and discusses several definitions of the notion of
concern and presents a definition used by this dissertation. It introduces concern categories
and gives several examples of concerns from both a given requirements definition and a
software development problem. The second part of the chapter introduces the concern-ori-
ented approach to software architecture as a general methodology that can be realized in
different ways to achieve architectural design by concerns.

Chapter 5: The PCS Framework

This chapter introduces the PCS Framework, a particular methodology implementing the
concern-oriented approach to software architecture. It presents a fulfillment of the genera
reguirements on concern-oriented approaches to software architecture, which uses UML to
combine the realizations of the conceptual frameworks of MDSOC and |EEE-Std-1471.
The PCS Framework introduces new mechanisms, such as projections and UML Space, to
support integrating software development into the building of software architectures.

Chapter 6: Aspect-Oriented Construction PCS

This chapter presents the concern-oriented approach to software architecture from the per-
spective of aspect-oriented software development, using multi-dimensional separation of
concerns (MDSOC). It describes a perspectival concern-space, called Aspect-Oriented Con-
struction PCS. This specific PCS demonstrates how MDSOC helps deal with software com-
plexity by supporting the composition of independent components software along different
interaction concerns. The chapter introduces a UML Space for Aspect-Oriented Modeling.

Chapter 7: On-Demand Remodularization PCS

This chapter presents an approach to implementing MDSOC for UML with a specific focus
on on-demand remodul arization. It introduces techniques for achieving architectural design
by concerns with concern-oriented modeling. Moreover, the chapter describes a concern-
oriented pattern, called On-Demand Remodularization pattern.

Chapter 8: The Service-Oriented PCS

This chapter presents an integration of the Service-Oriented PCS with awell-known View-
point-Oriented approach to documenting software architectures. This chapter uses the
Video Surveillance System example introduced in chapter 2 to show the applicability of the
PCS Framework on other architectural description approaches.

11

Structure of the Dissertation

Part |11 - Other Related Work and Conclusions

Chapter 9: Integrating the Structural PCS with SADL

This chapter presents the case of a compiler architecture to validate the integration of Con-
cernBASE, an early structural PCS, with SADL, which is a software architecture descrip-
tion language based on architectural refinement.

Chapter 10: Conclusions

This chapter provides concluding remarks. It also presents some limitations of concern-ori-
ented approaches to software architecture and the PCS Framework, and it indicates some
directionsin which research in the new area of concern-oriented software architecture could
be pursued.

Part IV - Annexes

12

Part |

Motivation & Background

Motivating Case Study

Chapter 2:
Motivating Case Study

In describing the world, formalization and formal reasoning can
show only the presence of errors, not their absence.

Michael Jackson

This chapter presents an introductory case study that shows the motivation for going a step
further. The case study shows how to apply current software architecture practices, based
on the example of a video surveillance service. The example includes an application of
three different approaches—an informal, a formal and a semi-formal approach. The chap-
ter also illustrates the limitations of these approaches and argues for a concern-oriented
approach to software architecture devel opment and documentation.

2.1 Informal Software Architecture Documentation

As discussed in the previous chapter, there are many different approaches that might be
applied to document a system’s software architecture. But which of these approaches is
most appropriate for solving agiven problem? If thereis one at all, why isit the most appro-
priate? Frankly, there is no simple answer to such questions; in reality, each particular
approach has its advantages and limitations. This section helps get an idea of what an infor-
mal architecture documentation approach can be good for and for what it is not appropriate.
It shows the example of an informal problem description and presents cases of documenting
the problem space and documenting the requirements on the solution space for that prob-
lem. The following section presents the software development problem that we consider
throughout the motivating case study.

2.1.1 Software Development Problem — The Video Surveillance Service

When the number of crimesincreases in society and security becomes a concern, it is often
necessary to make use of new technologies to control the situation. A video surveillance
service can be useful in such a situation. For this purpose, a collection of geographically
distributed video cameras is to be controlled and monitored by security agents from a cen-
tral video surveillance station. Each video camera captures images and produces a video
stream that is transmitted to the central surveillance station. In case of an emergency, the
security agents alert the police; for analysis purposes, security agents can command the sur-
veillance system to store the sequence of images related to the urgent situation in a database

15

Documenting the Problem Space

of emergencies. Moreover, the police can ask for the video stream produced from a particu-
lar location and in a specific time period.

2.1.2 Documenting the Problem Space

Creating a software architecture for the video surveillance service is a central part of the
development task, but the importance of the architecture depends on how much it facilitates
the job of stakeholders. For example, developers will much appreciate it if they can find
swiftly all the information they need to know about an architecture in order to develop soft-
ware that conforms to that architecture. A good way to achieve this objective consists in
providing clear and systematic documentation of the software architecture.

However, before you can document a software architecture, it must first be devel oped.
The remainder of this section is about documenting the problem space. Creating a docu-
mentation of a problem space allows for better understanding of the software development
problem at hand. The elements of the problem space should provide an idea of what is
present in the problem description and must be realized in the solution space.

Digital Video
Cameras

Figure 2.1: An Informal Documentation of the Problem Space

Figure 2.1 shows an informal illustration of a problem space that helps understand and
explore the video surveillance service problem,; it describes the problem space as a network
of elements. An element in a problem space is either a collaborating part (i.e., surveillance
station, video cameras or police station) or an interconnection among those parts. Each ele-
ment of the problem space must be relevant to understand and design the solution.

2.1.3 Documenting Requirements on the Solution Space

Documenting requirements on the solution space is about determining a set of constraints
that must be fulfilled by an architectural solution before that solution is actually devel oped.
This alows us to examine how to put into software architecture practice a notion similar to

16

Motivating Case Study

the popular rule of extreme programming [Beck99], known as “ code the unit test first”, and
which can be re-formulated as: “document the requirements on the solution space first”.

What Architecture Development Processis Needed?

To motivate the use of the aboverule, let us have alook at an architecture development pro-
cess depicted in figure 2.2. This figure shows an approach that helps ensure that the video
surveillance service will fulfill the stakeholders needs, as it allows you to evaluate the soft-
ware architecture against the expectations of the stakehol ders.

Architectural Solution Space

Develop your architectural solution

v

h J

:Software_Architecture [incomplete]
T

Document your architectural solution

:Software Architecture Documentation

Analyze the architectural solution

:Software_Architecture_Analysis_Document

Evaluate your architectural solution

1 2
‘ :Software Architecture Evaluation Document

Key:

Activity :Class | Document Swimlane
[state]

@ Start of the overall activity ==~ Document flow 9 Transition

Figure 2.2: Architecture Development Activity Diagram

Figure 2.2 depictsa UML activity diagram describing the development process followed by
many architects when building software architectures. Each step in this process is repre-
sented by an activity that takes place at one particular stage of the software architecture
development process. As shown in the figure, the processitself is documented as part of the
architectural solution space (which is represented by the swimlane). The architecture devel -
opment activity diagram should be interpreted as follows: 1) develop an architectural solu-

17

Documenting Requirements on the Solution Space

tion for the video surveillance problem to be part of the software architecture; 2) document
your architectural solution to produce a handbook that is useful for different stakeholders to
perform their tasks, respectively, within the project; 3) use this handbook as an input for
analyses and reasoning about the essential properties of the video surveillance service; and
4) evaluate your architectural solution against the needs of the stakeholders and against the
realizations of the elements introduced in the problem space.

In fact, how practical is such an architecting process? First of all, creating agood soft-
ware architecture (that is useful for devel opers and maintainable over time) requires alot of
effort and practical experience. Therefore, waiting to evaluate the software architecture at
the end of an architecting processisrisky. For instance, following the transition back—from
the evaluation step to develop another solution or improve an existing one—can be very
expensive. As time and budget are both major concerns that are so relevant to software
architects, they can be seen as important decision factors which may lead to the success or
failure of a software project.

Which Constructs are Needed in the Architectural Solution?

The following presents an example of informal documentation of requirements on the solu-
tion space. Figure 2.3 focuses on fundamental constructs required to explicitly document
the video surveillance service architecture.

Point Point

Component Connector

Component

Figure 2.3: An Illustration of Requirements on the Solution Space

Figure 2.3 depicts a set of architectural elements: they are, CameraDevice, SurveillanceStation,
SecuritylnformationSystem and VSServiceConnector. The video cameras interact with a control sta-
tion over a particular communication platform. The first three architectura elements
embody each an architectural abstraction reified as a Component, that is, akind of represen-

18

Motivating Case Study

tational construct. The last architectural element represents another kind of representational
construct, called a Connector.

Both kinds of architectural constructs are equally required when documenting soft-
ware architectures. a Component represents a location for computation and data store
within a system, while a Connector represents alocation for interactions among the compo-
nents. The dashed boxes are used as graphical symbols for both kinds of constructs and for
the elements they are composed of. Each dashed box visually encapsulates the realization of
a specific element of the problem space, i.e., the picture contained in the box.

A major requirement of the architectural solution consists of providing specifications
for the different types of representational constructs. For example, to fulfill the require-
ments asillustrated in figure 2.3, the architectural solution for the video surveillance service
could specify the component type CameraDevice as an abstract representation of individual,
geographically distributed video cameras. The SurveilanceStation could be an abstraction for
that part of the system that remotely controls the cameras and continuously receives the
video streams from the CameraDevice. Similarly, the SecurityinformationSystem could abstract the
information system of the police that interacts with the SurveilanceStation. The VSServiceCon-
nector could specify an abstraction for the communication platform; it could have connection
points and a protocol of interaction between these connection points, as shown by the nested
elements.

Each connection point could represent an interface element for the connector that a
component will require to interact with other components. But in order to be able to partici-
pate in a communication mediated by a connector, a component must implement a mecha-
nism to connect to the connector interface element; the component interface element must
match the interface element of the connector. The implementation of such a mechanism
might be achieved in software or in hardware; however, the architecture abstracts above any
specific implementation details. For instance, in figure 2.3, the two circuit boards, which
implement the interface of the connector to the camera device and the video control station,
are each encapsulated in a separate connection point.

The protocol of interaction specifies the way to perform the communication between
the connection points. For example, an architectural solution for the Video Surveillance Ser-
vice should specify what element in the architecture realizes the notion of the duct carrying
the control/data and protocol information exchanged between the components (i.e., the
hardware part of the protocol of interaction, shown as cable in figure 2.3). In addition, the
dashed cloud shows what is required to realize the software part of the interaction protocol.
The bi-directional dashed arrows binding the components to the connector illustrate the
connections. Connections are required to associate (connect) the elements of a component
interface with the connection points of the connector in order to build concrete systems
from a Video Surveillance architecture.

19

Formal Software Architecture Documentation

2.1.4 Remarks

The description given above is only a small sample of a type of informa documentation.
However, an essential goal of the previous two sectionsisto motivate the need of filling the
gap between the specification of software development problems [Jack01] and the descrip-
tion of software architectures [MTOQ].

A magjor difficulty with the presented approach for documenting the requirements on
the solution space is the lack of means for automating the software architecture evaluation
process. Finding an appropriate architecture description language that can be integrated
with different software architecture evaluation methods and tools is another problem
[CKKO02]. A key question is: how to make the idea “ document the requirements on the solu-
tion spacefirst” become areality in the field of software architecture?

At this stage, formal methods and techniques cannot help much since it is very diffi-
cult, or even impossible, to formalize descriptions of early requirements on an architectural
solution before developing the actual solution itself.

The informal documentation produced above lacks preciseness. It highlights the need
for more precise formalisms that can serve as a basis for communication among stakehold-
ersand for performing analyses on the architectural decisions or properties when document-
ing software architectures. For example, when considering figure 2.3, it is very difficult to
understand how the components interact, or in which sequence they communicate; it is dif-
ficult to know what the interaction points for individual components are, or how to specify
the connection points precisely.

2.2 Formal Software Architecture Documentation

This section introduces an architecture description language, called Wright [ABV92],
which exemplifies aformal software architecture documentation.

Wright is atypical architecture description language that allows one to focus explic-
itly on the formal specification of a software architecture. Architectures described in Wright
are centered around the following ADL constructs. components, connectors, properties,
systems and styles. Wright formally represents the notions of component as computation,
connector as pattern of interaction, property as constraints, system as configuration, and
style as a collection of reusable architectural elements. Thus, describing architectures in
Wright allows you to distinguish from one another different kinds of architectural concerns,
such as computation/data store, interaction, constraint, configuration, and reuse. Moreover,
Wright permits separating the structure of a system from its behavior. For example,
figure 2.4 shows a Wright specification of a software architecture that provides a formal
solution to the video surveillance problem; this solution addresses separately the structural
aspects and behavioral aspects of the system.

20

Motivating Case Study

Describing software architectures with Wright requires one to make use of extensions
to the CSP notation [MPW92], in order to distinguish events that are initiated (i.e., sent) by
aspecific type of component from those that are observed (i.e., received). In Wright, acom-
ponent type describes alocalized, independent computation. A Wright connector type spec-
ifies interactions among a collection of components. The aim of an explicit use of
connectors in Wright specifications is to enhance reuse of recurring patterns of interaction
not only in one specific situation, but in many different contexts of communication: connec-
tors allow for decoupling of components.

2.2.1 Documenting Architectural Structure in Wright

The Wright specification of the video surveillance service has two essential parts, called
Syle and Configuration. Figure 2.4 shows both parts. Style represents the declaration of a
set of properties that need to be fulfilled by any concrete video surveillance service that
implements VSSenviceArchitecture. Configuration embodies the declaration of one particular
instantiation of the VSSenviceArchitecture style; this is named VideoSurveillanceSystem.

Style VSServiceArchitecture

Component SurveillanceStation
Port ssp = videostreamrequest — start » ssp 1§
Computation = internalCompute - ssp.videostreamrequest - ssp.start — Computation 1§

Component CameraDevice
Port cdp = videostreamrequest — start - cdp 0 §
Computation = videostreamrequest — p.internalCompute — cdp.start ~ Computation 1 §

Connector VSServiceConnector
Role sink = videostreamrequest — start - sink 1§
Role source = videostreamrequest — start — source 1§
Glue = source.videostreamrequest — sink.videostreamrequest - Glue
0 sink.start - source.start - Glue
0§

Constraints

Oss : Components, Ocd : Components
® Type(cd) = CameraDevice [] Type(ss) = SurveillanceStation = connected(cd,ss)

EndStyle

Configuration VideoSurveillanceSystem

Style VSServiceArchitecture

Instances station : SurveillanceStation;
digitalCamera : CameraDevice;
vssConnector : VSServiceConnector

Attachments station.ssp as vssConnector.sink;
digitalCamera.cdp as vssConnector.source

EndConfiguration

Figure 2.4: A Wright Description of the Video Surveillance Architecture

21

Documenting Architectural Behavior in Wright

The structure of the vSServiceArchitecture style is described by three kinds of architectural ele-
ments. Component, Connector and Constraints.

Two component types are described in figure 2.4 which are named SurveillanceStation
and CameraDevice. To keep the Wright specification of the architecture simple, we deliber-
ately left out the component type SecurityinformationSystem and its interaction with the vSSer-
viceConnector.

Component (i.e., the component type description) is structured in two parts, the inter-
face and the computation. An interface consists of numerous Ports. Each Port represents a
point of collaboration at which a component may participate in some interaction. Computa-
tion specifies what the component does and what it requires to work (i.e., what the compo-
nent expects from the environment which it interacts with).

The Connector consists of two parts: a set of roles and the glue. Roles indicate what is
expected of a component that will participate in an interaction mediated by the connector.
The Glue describes how the participants collaborate to create an interaction. For example,
the VSSenviceConnector provides two roles (source and sink).

A style description in Wright supports the declaration of properties that must be
obeyed by any particular configuration. In the example of the VSSenviceArchitecture style, the
predicate specified in the Constraints clause indicates that there must exist a component
instance of type SurveilanceStation, that is named ss. This component instance must be con-
nected to all digital cameras (i.e., every instance CameraDevice) contained in the system.

The component and connector instances of a Wright description must be composed
within a configuration in order to provide a complete description of a particular system; a
configuration must conform to a given architectural style. For example, the configuration
VideoSurveillanceSystem i s described as a collection of instances of two component types. Sur-
veillanceStation and CameraDevice (called station and digitalCamera); ports of component of those
types (i.e., ssp and cdp) are attached to two roles (sink and source) of the connector instance
vssConnector. The declarations in the Attachments clause describes how to assemble different
architectural elements to build a particular system; having this as a separate clause alows
one to focus on the topology of a configuration for that system. According to figure 2.4,
attaching “station.ssp as vssConnector.sink” specifies that the station component will fulfill the
sink role in the interaction mediated by the vssConnector; the station component will play this
role while engaged in communication through the port called ssp. To be exact, al of the
information that station outputs to port ssp will be delivered to any component that plays the
sink role of the vssConnector. “ digitalCamera.cdp as vssConnector.source” should be interpreted in a
similar way.

2.2.2 Documenting Architectural Behavior in Wright

The Wright specification for the behavior of the Video Surveillance architecture provides an
architecture documentation describing: 1) a set of significant events that can be processed

22

Motivating Case Study

by the components of the system at hand, and 2) the sequences in which these events occur.
The notation for behavioral description indicates the direction of the interaction; this allows
one to explicitly distinguish events that are initiated by a sending component (overlined
events) from those that are observed by receiving components (not overlined).

To describe the behavior of component and connector types, Wright allows us to spec-
ify aprocess for each of the following elements: port, role, computation and glue.

In figure 2.4, the computational behavior description for the component type Surveil-
lanceStation shows that an instance of SurveillanceStation first performs some internal computa-
tion (while engaged in internalCompute); then it repeatedly initiates an ssp.videostreamrequest
event on the port called ssp and waits to observe an ssp.start event on the same port, “or” it
terminates successfully; the successful termination is indicated by the § symbol. “ Or” means
an internal choice; it indicates that the SurveillanceStation will decide by itself (without any
external influence) whether it should make another request or terminate. An internal choice
in the behavior is represented by the symbol Ii. The computational behavior of the CameraDe-
vice component type is similarly defined. But, in contrast to the SurveilanceStation component
type, the specification of the computational behavior of CameraDevice makes use of an exter-
nal choice. Thisisindicated by the symbol [}, which means that the computation process is
expected to reply to each request, and is not allowed to terminate in advance.

Furthermore, using Wright, you can assign the port of a component to a particular
CSP process. This capability allows one to specifically define alocal interaction protocol
for a particular port. In figure 2.4, the local interaction protocol for the ssp port covers the
same behavioral pattern as defined in the computation process of SurveillanceStation, except
theinternal part (specified by the internalCompute event).

A separate CSP process is required to specify each of the connector roles (source and
sink) played by the participant components. In the example, the source and sink roles are
deliberately kept simple to allow you to easily comprehend the behavior of the roles, and to
explain the matching required between ports and roles when describing Configuration.

In the example, the description of Configuration shows how to attach the port ssp of
the station component instance to the connector role, VSServiceConnector.sink, and how to attach
the cdp port of the digitalCamera component instance to the VSSenviceConnector.source role; these
attachments are significant parts of the construction of the particular system, called VideoSur-
veillanceSystem.

Finally, the Glue process specifies the protocol of interaction among the roles of a
connector type. The behavior of the Glue process shown in figure 2.4 can be explained as
follows: the SurveillanceStation initiates a videostreamrequest event (via the ssp port) to request
video streams from a CameraDevice; the request is mediated by the connector as sink.video-
streamrequest; it is observed by a CameraDevice as source.videostreamrequest event; the response
of that CameraDevice is mediated back as source.start and received as sinkstart by the Survei-
lanceStation component.

23

Remarks

2.2.3 Remarks

Wright provides good support for formal expression of the architectural abstractions intro-
duced in figure 2.3. However, the Wright mechanism for separating “the structure” of asys-
tem from its behavior suffers from the lack of support for visually modeling multiple kinds
of system-level structures; architecture involves more than just one structure.
Moreover, for a connector to mediate interaction among various components, two

conditions must be fulfilled:

1. The ports of the components must match the connector roles

2. Both the ports and roles must adhere to the interaction protocol that is specified by the

Glue.

Fulfilling these conditions allows one to treat software connectors as first-class citizens in
architecture descriptions, and thus to support analysis and reasoning about interaction
among components. But requiring protocol adherence in which each port has to be perfectly
matched to (at least) arole leads to inflexible software architectures, because perfect match-
ing is hard to achieve when evolution is a relevant architectural concern. Typically, when
requirements change, the architecture must evolve: some ports will have to match many
connector roles and vice-versa; thus, maintaining perfect matching becomes problematic.
To reduce maintenance effort, software architects might anticipate as many changes as pos-
sible in their designs; however, thisis not feasible because it complicates the architecture
and the devel opment of software that conforms to that architecture. One consequence could
be that the project might not finish on time.

2.3 Pattern-Oriented Software Architecture Documentation

This section presents an example of pattern-oriented documentation for the video surveil-
lance service architecture. It starts with documentation of requirements on the pattern-ori-
ented software architecture; then it demonstrates how to apply simultaneously two
additional design patterns—the Observer pattern ((GHV+95]) and the Component Configu-
rator ([SSR+00]) pattern. Finally, the section introduces an application of the Pipe-and-Fil-
ter architectural pattern ([BMR+96][SG96]) on the entire video surveillance service, and
discusses problems related to combining different instances of multiple patterns in a soft-
ware architecture.

2.3.1 Documenting Requirements on the Pattern-Oriented Architecture

Figure 2.5 presents an informal requirements diagram consisting of a set of constraints to be
filled by architectural constructs required: 1) for early evaluation of an architectural solu-
tion applied to the problem at hand and 2) for documenting the architectural solution so that
it allows one to understand the composition of design and architectural patterns. The

24

Motivating Case Study

regquirements diagram also shows a separation of concerns that is reified in the distinction
between “base” and “perspectival” constructs.

—————————————————————————————— ' P LRI L LT LT
Connection Interaction ~ Connection |
! i i Point Protocol Point i :

i 3 control
P Port —{ Role |\ i Role
P <

VSServiceConnector ‘ SurveillanceStation |

Port

V

noduLU0D

Filter Pipe Filter
! Component Subject Component
Observer
i Channel
Configurator
Repository

PEREEES |
H | Base Construct l:l ival construct rep i i concerns

D ival construct i jzable concems Video stream
Figure 2.5: Informal Reg. Diagram for the Video Surveillance Architecture

Connection

Base constructs represent the basic architectural elements that should be globally visible to
all stakeholders and from all perspectives. Base constructs should be described in any struc-
tural documentation of a software architecture; they are “objective’ in nature. The base con-
structs shown in figure 2.5 include the two component types, the connector type and the
system; these are depicted by the dashed boxes.

A perspectival construct represents afacet of a base construct—or an aspect of a col-
lection of base constructs. Perspectival constructs have a “subjective” nature; they do not
need to be globally visible; instead, they should be relevant to some particular kinds of con-
cerns that are significant from certain perspectives, but irrelevant from others. Indeed, the
most significant constructs for understanding, documenting and reusing the video surveil-
lance service architecture are not the base constructs (i.e., the components and connectors)
themselves. Instead, the architectural elements of focus are the perspectival constructs that
encapsulate the externally visible properties of base constructs. Examples of perspectival
constructs include: the roles played by the components and connectors (shown as Ports and
Roles), the protocol of interaction between the Roles, and the connections between Ports and
Roles.

Clearly, the notion of role as used in the requirements diagram is general and it
includes the interface elements of the component types and the connector type. The names
shown below the dashed boxes in the requirement diagram designate the roles defined by

25

An Application of Architectural and Design Patterns

the selected patterns. Each pattern role should be assigned/realized by one or more perspec-
tival constructs in the architectural solution. For example, the pattern roles named Filter and
Component should be realized by the ports of the CameraDevice and SurveillanceStation compo-
nent types. The pattern roles called Pipe, Subject, Observer, and Channel should be realized by
the connector roles and the interaction protocol of the VSServiceConnector. The configuration
roles named Configurator and Repository should be fulfilled by the VideoSurveillanceSystem.

The lines between the component ports and connectors indicate the requirement for a
mechanism to connect the ports of components to the roles of connectors. Finaly, the trans-
parent arrow (from the CameraDevice to the SurveilanceStation) exemplifies the need for a
means to document the direction of the video stream flowing through the VSServiceConnector.

2.3.2 An Application of Architectural and Design Patterns

This section documents a software architecture for the video surveillance service that
applies three different patterns—the Observer design pattern, the Component Configurator
design pattern and the Pipe-and-Filter architectural pattern.

2.3.2.1 Rationale for Applying the Observer Design Pattern

The rationale for this design decision is to enable a one-to-many interconnection between
the connection points so that when one connection point changes, all the related connection
points are notified and updated automatically.

2.3.2.2 Documenting An Observer Pattern Occurrence

The following shows an example that documents an Observer pattern occurrence used to
model the VSServiceConnector as a “ pattern” of interaction utilizing the Observer protocol.

A pattern occurrence (or instance) binds Classifier Rolesto Classifiers. Asdepicted in
figure 2.6, a pattern occurrence can be modeled by a named UML Collaboration which is
described by a set of roles: Classifier Roles and Association Roles. A Classifier Role repre-
sents a placeholder for a specific Classifier within a concrete system. Subject and Observer are
two examples of Classifier Roles. Classifiers involved in the pattern occurrence are called
participants. For example, the Classifiers Publisher and Subscriber are two participants of the
Observer pattern occurrence shown in figure 2.6. A Classifier that fulfills a specific role
(called Classifier Role) is said to be bound to that role. A binding is shown as a dashed line
drawn from the pattern to the Classifiers.

The bindings between the Classifier Roles and the Classifiers should be interpreted as
described below.

¢ Publisher is bound to Subject: the Publisher Classifier must satisfy the Subject Classifier

Role (i.e., the Publisher must realize the corresponding responsibilities of Observer pat-

tern role, as defined in [GHV +95]);

26

Motivating Case Study

¢ Subscriber is bound to Observer: the Subscriber Classifier must fulfill the Observer Classi-
fier Role;
Using Classifiers, we have more flexibility in the design: for example, the design of the
VSSenviceConnector leaves open whether Publisher and Subscriber will be modeled as classes,
subsystems or interfaces. The specifications of the Classifier Roles are taken from the pat-
tern description (in the catalogue).

Subject ,” . -\ Observer
Publisher ______I___{ <<observerPattern>> \Observer
_ VSServiceConnector _/
~

Figure 2.6: A Higher-Level Description of the Observer Pattern Instance

So far, the structural description of the Observer pattern application shown at this stage does
not address the connection points. The next design step concentrates on the connection
points.

Figure 2.7 presents arefinement of the above instance of the Observer design pattern.
It shows the specifications of both Classifier Roles (Subject and Observer) and describes how
they are associated with one another. The relationship between the Classifier Rolesisrepre-
sented by an unnamed Association Role. This Association Role can be dynamically bound
to associations among Classifiers.

/Subject 0.1
s:subjectState publisher subscriber /Observer
+notify() +update()
+setData()
+getData()

Figure 2.7: An Observer Pattern Instance with Focus on Connection Points

publisher and subscriber each represent an endpoint of the unnamed Association Role, whichis
referred to as the Association-end Role; these Association-end Roles specify the connec-
tions between the Classifier Roles Subject and Observer, and the unnamed Association Role as
shown in figure 2.7. The multiplicities attached to the Association-end Roles (0.1 and *)
indicate that at most one “publishing” connection point can be interconnected with many
“subscription” connection points.

The features of the Classifier Roles are defined in the two compartments below the
name compartment. Having a definition of features in the Classifier Role means that all
Classifiers acting as a Subject will have to provide an attribute to keep the subject state; Any
Classifier that acts as a Subject must also provide the capability to publish notifications, to
read and write the subject state attribute. On the other hand, all the potential Observers must
be able to receive the notifications and to perform updates.

Figure 2.7 shows a facet of the instantiation of the Observer pattern and is useful doc-
umentation if your goal is to understand and represent the connection points. But it is less

27

An Application of Architectural and Design Patterns

useful when your goal is to describe and reason about the protocol of interaction between
the connection points.

/Subject:Publisher 0.1 .

s:subjectState /Observer:Subscriber
+notify() publisher 04 +update()
+setData() 0..1 subscriber
+getData() duct | * 0.1
/EventChannel:Duct -
IObserver:ConcreteSubscriber
s: Subscriber
+update()
+attach() +doSomething()
+detach()
+notify()

public class Duct implemems‘ o
private Subscriber subscriber;
public void setSubscriber (Subscriber s) {
subscriber = s;
}
public void notify() {
subscriber.update();
}
}

Figure 2.8: An Observer Pattern Instance with Focus on the Interconnection

Figure 2.8 provides more details on realizing the different roles involved in the connector
design. These include the unnamed Association Role specifying the interconnection
between the connection points and the Classifier Roles that specify the connection points
themselves. The figure shows the static structure of the Observer pattern occurrence that
consists of the Classifier Roles Subject, Observer, and EventChannel, and the Classifiers Pub-
lisher, Duct, Subscriber and ConcreteSubscriber. The Subscriber connection point is modeled as an
abstract Classifier to allow developers of the connector to define various ConcreteSubscribers
that can be needed for different purposes.

The interconnection is explicitly modeled by the Duct Classifier to alow for explicit
specification of the event propagation behavior. There must be only one instance of the
Classifier Duct that can act as an event channel interconnecting two connection points. This
instance is visible by the publisher only; it must be bound to the Association-end Role called
duct. The note attached to the Duct shows an exampl e of Java code describing how the notifi-
cation events are propagated along the interconnection. This piece of Java code implements
the Duct Classifier asaclass.

2.3.2.3 Rationale for Applying the Component Configurator Pattern

We will now use the Component Configurator Design Pattern to address the configurability
dimension of the software architecture. A major motivation for instantiating the Component

28

Motivating Case Study

Configurator [SSR+00] in this example is to help understand and document two architec-
tural concerns:

1. How to configure the components of the video surveillance service into various pro-
cesses without having to shut down and re-start the running application processes.
2. How to link and unlink application components dynamically at runtime, without mod-
ifying, recompiling or relinking them.
Each of the concerns presents a different facet of the configuration problem addressed by
the pattern: one facet of the problem is the configuration of components, and the second one
is the configuration of interconnections among components.

2.3.2.4 Instantiating the Component Configurator Pattern

The documentation of the Component Configurator pattern instance can be separated in two
parts: structural documentation and behavioral documentation.

Structural Documentation

The structural documentation of a Component Configurator instance describes a partial
solution to our configuration problem; this solution is depicted in figure 2.9 as a UML col-
laboration diagram. The diagram shows the structural characteristics required to configure
individual components of the system?.

The system is represented by the Classifier, called VideoSurveilanceSystem, which
involves two Classifier Roles, Repository and Configurator. The Classifier VideoSurveilanceSystem
is said to play both Classifier Roles and each of the roles must be bound to some concrete
elements of the system. The Classifier Roles Repository and Configurator are implicitly bound,
that is, theinternal Classifiers of the system to be bound to the roles are either hidden in this
diagram or the architect has not decided yet which of the internal Classifiers will play the
givenroles.

An essentia condition for the VideoSurveillanceSystem to act as repository (i.e., to play
the Repository rol€) is to be able to add different configurable components to its “configura-
tion space”; it should provide support for initialization, termination, suspension, and
resumption of the components; VideoSurveillanceSystem should also allow one to get informa-
tion about each of the components present in the repository. The part of the system that
plays the Repository role must be able to store all the configurable component types Surveil-
lanceStation and CameraDevice. Both component types and their abstract super type Configurable
(written in italic) are modeled as Classifiers.

1. Theterm “system”, asused here, refers to a software application rather than a system in the sense of ADLs
(asused in section 2.2).

29

An Application of Architectural and Design Patterns

VideoSurveillanceSystem
Configurable

. - *
/Repository e element nit)

<<dynamic>> fini()
contains suspend()

resume()
/Configurator info()

‘ CameraDevice ‘ ‘ SurveillanceStation

Figure 2.9: Structural Instance of the Component Configurator Pattern

The Classifier Role Configurator is shown as a placeholder for a specific software infrastruc-
ture that should allow you to load existing components from the repository, to configure
those components individual ly, and to compose them for the purpose of generating new sys-
tems.

The Association Role between the Classifier Roles, Repository and Configurator, denotes
adynamic relationship, which indicates that every configurator must have its own configu-
ration space (or repository) that holds the configurabl e elements.

Behavioral Documentation
The way the system interacts with its components to achieve the configuration is shown as
UML sequence diagram in figure 2.10.
The interaction among the VideoSurveillanceSystem and its components is achieved in
three phases:
¢ Phase 1: Component initialization. This initializes each individual component that
can be sel ected from the Repository and added to the Configurator.
¢ Phase 2: Component processing. Once added to the Repository (temporary configura-
tion space), the services provided by one component can be used by another compo-
nent.
¢ Phase 3: Component termination. Thisinvolves the selection of components and their
removal from the Repository.
The diagram shown in this figure addresses another facet of the configuration problem
which focuses on the dynamic structure of the pattern occurrence. It documents the mes-
sages (e.g., init(), insert(), etc.) that are exchanged among the instances of the participant Clas-
sifiers.

30

Motivating Case Study

/Configurator IRepository
:SurveillanceStation :CameraDevice
init()
insert()
init() -
Phasel 'l—; insert()
init() ‘J]
g insert()
Phase2
notify()
1 r]
=L
fini()
remove()
Phase3 fini()]
remove()
fini() |
‘-; remove()

Figure 2.10: Behavioral Instance of the Configurator Design Pattern

The sequence of interactions required to configure the components of the VideoSurveillance-
System isindicated by the timelines (the vertical lines). The vertical rectangles placed on the
timelines show the activation boxes that indicate when instances are involved in some com-
putation. The underline indicates that the model elements are instance-level elements.
Instances are represented by the boxes containing some text in the following format: “ Classi-
fier name/Classifier Role:Classifier” . This text format expresses an explicit bindings between Clas-
sifiers and Classifier Roles.

2.3.2.5 Rationale for Applying the Pipe-and-Filter Pattern

According to [BMR+96], the Pipe-and-Filter architectural pattern provides an organization
for afamily of systems that process stream of data. Such systems are essentially composed
of two kinds of elements: pipes and filters. Applying this architectural pattern to the the
video surveillance system allows one to encapsulate each processing step into a component
filter and to convey video streams through the pipes between neighboring filters.

2.3.2.6 Instantiating the Pipe-and-Filter Architectural Pattern

The Pipe-and-Filter pattern instantiation, shownin figure 2.11, provides three elements: two
component types, the CameraDevice and the SurveillanceStation, and the connector type VSSer-
viceConnector. Each component type has a port that represents a filter. From the connector

31

Documenting an Architecture for a Family of Software Systems

point of view, each processing element is encapsulated in aFiter role (i.e., component port).
Thus, video streams can be passed through the pipe positioned between the filters.

/Pipe:VSServiceConnector

sink|
" <<dynamic>> <<dynamic>> .

[Filter Y [Filter

X . /Streamin | 1 & 1| /StreamOut X . .

:CameraDevice 0.1 0.1 - 0.1 0..1] :SurveillanceStation

source

Figure 2.11: A High-Level Structure of a Pipe-and-Filter Instance

The connector type VSSenviceConnector itself provides two kinds of roles—static roles and
dynamic roles. Static roles (e.g., Streamin and StreamOut) were previously referred to as con-
nector roles; they are part of the structure of the connector type. The dynamic roles (e.g.,
source and sink) are rather behavioral; they are transient representations of the participantsin
an interaction.

The Classifier CameraDevice is bound to the Fitter Classifier Role; it must act as a stream
producer port that is connected (i.e., attached) to the connector role Streamin. Similarly, the
filter on the SurveillanceStation side must behave as a stream consumer port that is connected
to the connector role StreamOut. The connections between the component ports and the con-
nector roles are modeled as dynamic associations.

2.3.3 Documenting an Architecture for a Family of Software Systems

As mentioned earlier, the description shown in figure 2.9 is practical for describing an indi-
vidual software application, but it is not viable for an architecture that can serve as a means
for communication among stakeholders in the construction of a family of applications. To
describe a family of applications, Configurable should not be modeled as a Classifier; instead,
it should be modeled as a Classifier Role—i.e., a placeholder for the configurable elements,
such as SurveillanceStation and CameraDevice.

This solution provides more flexibility: it alows one to decide a will how and when
to bind the Configurable Classifier Role to the different Classifiers (i.e., the component types)
of the applications. The relationship stereotyped with <<bind>> represents the bindings
between Configurable, SurveillanceStation and CameraDevice. A documentation of this solution is
depicted in figure 2.12.

In contrast to the previous design, this solution provides an architectural model that
applies to afamily of systems; it can be realized in different ways (by using different bind-
ings) to create different software applications.

32

Motivating Case Study

VideoSurveillance System

, | /Configurable
IRepository | clement —

«dynamic» fini()
contains suspend()
resume()
/Configurator info()
«bind» NN «bind»
i i
‘ /Configurable:CameraDevice ‘ ‘ /Configurable:SurveillanceStation ‘

Figure2.12: A Structural Instance of the Component Configurator Pattern

The sequence diagram shown in figure 2.10 can be easily updated to fit the new architec-
tural model documenting the Component Configurator pattern instance. To achieve this, we
just need to add the Configurable Classifier Role in the interaction diagram and remove the
Classifiers, asshownin figure 2.13.

[Configurator /Repository

[Configurable ‘

/Configurable ‘

T .
nit
nit0 H] insert()
init()
Phasel [H insert()
init() J]
g insert()
Phase2 notify()
[L|; >]
fini()
L VN
remove()
Phase3 fini() —
LH remove()
fini()
é;‘ remove()
\

Figure 2.13: Behavioral Instance of the Component Configurator Pattern

In figure 2.13, the messages are exchanged among the objects of classes playing the Classi-
fier Roles: that is, Classifier Roles become more important in the architecture documenta-
tion than Classifiers. As a consequence, the participant components themsel ves (represented
by the Classifiers) are not first-class citizens of the architectural description.

Instantiating a pattern at the design or architectural level of abstraction is a very
human-intensive process; therefore, providing good instantiation of a pattern depends
strongly on the experience of the developer or architect. This makes it difficult to know
when and at which level of abstraction a pattern should be used.

33

Concluding Remarks

2.4 Concluding Remarks

The motivating example presented in this chapter shows how informal notations, architec-
ture description languages, and design and architectural patterns can be used to document
different characteristics of an architecture. The example highlights some complementarity
between the existing trends in software architecture; the view-oriented software architecture
trend has not yet been presented.

The problem presented in this chapter has many different aspects that a software
architect needs to separate from one another. Some of the aspects have architectural signifi-
cance and others do not. Throughout the case study, we have referred to the architecturally
significant aspects of the video surveillance problem as architectural concerns, and we
observed that those architectural concerns are relevant to both the problem space and the
solution space.

The informal approach taken in section 2.1 provides the software architect with an
idea of what is required to express the structural characteristics of an architecture before
starting to build that architecture. The approach shows that informal descriptions can be
helpful to establish a bridge between a given problem and an architectural solution to that
problem. It demonstrates how informal descriptions help get an idea about various kinds of
abstractions that are required to formally describe an architecture.

As mentioned in section 2.2.3, following the ADL-based trend to address other kinds
of concernsisrather problematic. An ADL such as Wright hinders the identification, under-
standing and separation of multiple kinds of concerns [KCS+02]. For example, problems
related to the use of Wright areiits:

« inability to localize information about interaction concerns other than protocols of
interaction
¢ lack of mechanisms for describing crosscutting aspects of both components and con-
nectors (e.g., synchronization and security)
« lack of support for integrating architecture descriptions with common software devel -
opment artifacts.
Applying patterns in architectural descriptions can hardly be achieved with formal nota-
tions. Pattern applications have been documented by using combinations of both informal
and semi-formal notations. While using formal notations, section 2.3.1 motivated the dis-
tinction between base constructs and perspectival constructs.

A major requirement on perspectival constructsis to provide the capability to support
explicit representations of roles and the binding of such roles to concrete components and
connectors in different architecture descriptions. Specifically, this capability involves sup-
port for:

¢ representing and instantiating pattern roles appropriately, and
« complementing an ADL-based solution

34

Motivating Case Study

A lesson we have learned from the example presented in section 2.3.3 is that a design pat-
tern can be intentionally applied to structure individual elements of a software architecture.
If the application of the pattern has no crosscutting effects, then the resulting design can be
referred to as “non-architectural”. Otherwiseiit is said to be architectural, that is:
« the design pattern instance involves a crosscutting structure which might be relevant
to the software architect. For example, the Observer protocol behavior has a crosscut-
ting effect on the participant components, because it governs the rules for mediating
the interaction among the components.
¢ thedesign pattern instance addresses kinds of concerns that are known to be architec-
tural in nature. For example, the application of the Component Configurator design
pattern addresses two facets of the configuration problem, though configuration is an
architectural concern.
The approaches presented in this chapter complement each other; each approach is best
suited to understand and describe only some particular characteristics of software architec-
tures, not all. Each approach presented has focused on the description of the software archi-
tecture of the video surveillance service: none of the approaches supported the distinction
between the software architecture and its description; and none of them has alowed one to
explicitly address, simultaneoudly, individua concerns, at different levels of abstraction.

While the solutions presented throughout this chapter have implicitly addressed vari-
ous concerns, it is not possible to localize any of these concerns in the architecture. Conse-
quently, we cannot find out whether the concerns of importance to the problem at hand have
been addressed in the software architecture. For instance, all we know from the presented
descriptions is that the software architecture addresses a number of generic architectural
concerns, such as configuration, interaction, reuse, etc. What about the concerns that are
specific to the given problem? We believe that in order to build software architectures that
address a problem at hand, we need a concern-oriented approach to software architecture
that supports the design by concerns paradigm.

35

Concluding Remarks

36

Related Work

Chapter 3:
Related Work

This chapter introduces the foundations of the concern-oriented approach to software
architecture. It presents two conceptual frameworks: an architecture description framework
which is part of the ANS |EEE standard for architecture documentation, called IEEE-Sd-
1471-2000; and an aspect-oriented software engineering framework, known as concern
spaces, which is part of Multidimensional Separation of Concerns (MDSOC). The Unified
Modeling Language (UML) is introduced as a linguistic framework that can be used to
establish a bridge between both conceptual frameworks. The chapter concludes with the
needs for implementing these frameworks using UML.

3.1 IEEE Recommended Practice for Architectural Description

The IEEE recommended practice for architectural description for software-intensive sys-
tems was first developed as an |IEEE standard known as | EEE-Std-1471-2000 [IEEEQQ]. It
has also been called ANSI/IEEE-Std-1471-2000 since its adaptation by ANSI (American
National Standards Institute). We will refer to this standard as |[EEE-Std-1471 in the remain-
der of this dissertation.

The purpose of the IEEE-Std-1471 is to facilitate the expression and communication
of architectures. It puts emphasis on the creation, analysis, and sustainment of architectures
of software-intensive systems, and the recording of such architectures in terms of architec-
tural descriptions. Essentially, the recommendations of IEEE-Std-1471 focus on two pro-
posals: a conceptua framework for architectural description, and a pronouncement of what
is required to eval uate the conformance of an architecture description to the standard | EEE-
Std-1471.

3.1.1 |EEE-Std-1471 Conceptual Framework

The conceptual framework of the |EEE-Std-1471 establishes several terms and concepts
that are relevant to the content and use of architectural descriptions; it also includestherela
tionships among the concepts. Especially, the conceptual framework defines the term archi-
tecture as “the fundamental organization of a system embodied in its components, their
relationships to each other and to the environment, and the principles guiding its design and
evolution”. In addition, it refers to an architecture description as “a collection of products to
document an architecture”. By these definitions, |EEE-Std-1471 makes clear the distinction
between an architecture description and an architecture of a software-intensive system.

37

|EEE-Std-1471 Conceptual Framework

According to |EEE-Std-1471, a viewpoint is a specification of the conventions for con-
structing and using a view, while aview is a representation of a whole system from the per-
spective of a related set of concerns. Concerns are those interests which pertain to the
system development, its operation, or any other aspectsthat are critical or otherwise impor-
tant to one or more stakeholders. Concerns can be abstract or logical concepts from acertain
domain, but they may also include system considerations such as performance, reliability,
security, distribution, and evolvability.

In this framework, the terms architectural viewpoints and views are first-class citi-
zens. Figure 3.1 illustrates in a UML class diagram a summary of the conceptual frame-
work. In this diagram, each class stands for an element of the conceptual framework. Every
association has two roles that are optionally named. The name of arole played by aclassin
an association is shown on the opposite side of the association. The associations in the dia-
gram are unnamed. Each role nameindicates the direction in which an association should be
read. Each role has a multiplicity that is optionally shown. Multiplicities are one-to-one if
not otherwise written.

» |establishes methods for Environment Mission
- inhabits fulfills [1.+
Rationale

influences

consists of

aggregates | 1.*
i in provides

Architectural Description

organized by |1, *

described by

Architecture System ‘

selects

identifies [1..*
used to cover

Concemn

Viewpoint

conforms to
0..1] has source
LibraryViewpoint

Figure 3.1: Conceptual Framework of |EEE-Std-1471 (from [IEEEQQ])

Stakeholder

participates in “'has isimportantto

identifies | 1..*

is addressed to

Figure 3.1 should be interpreted as follows: Every System has an Architecture, an Environment,
and one more Missions. Each Architecture is described by an Achitectural Description. An Achitectural
Description is organized into one or more constituents called architectural Views and one or
more Models; it allows one to select one or more Viewpoints and to identify many Concems and
many Stakeholders.

A Viewpoint may have at most one source, called Library Viewpoint; it addresses a set of
Stakeholders and covers many Concerns. A Viewpoint establishes the rules by which Models com-
posing a View are created, depicted and analyzed. The View must conform to the Viewpoint. A
Concemn can be relevant to many Stakeholders and a Stakeholder may have many Concemns.

38

Related Work

3.1.2 General Conformance Requirements

An architectural description conforms to |EEE-Std-1471 if it comprises the following ele-
ments:

Overview of architectural documentation. This includes the identification information,
summary, context, glossary, change of history, and references.

I dentification of stakeholdersand concerns. The standard givesaminimum list of stake-
holders and concerns that must be identified by any conforming architectural description.

Architectural viewpoints. Selected viewpoints must be identified. Each identified view-
point must be specified by:

¢ the viewpoint name

« the stakeholders to be addressed by the viewpoint

 the concerns to be addressed by the viewpoint

« the language, modeling techniques, or analytical methods to be used

« arationale for the selection of each viewpoint, and

« other additional information, including consistency and completeness checks, evalua-

tion techniques, heuristics, patterns, or any useful guideline can be incorporated.

Architectural views. Each view must correspond to the specification of exactly one view-
point. The architectural models included in that view must fulfill the specification of the
corresponding viewpoint.

A record of every inconsistency among all views. This includes an analysis of inconsis-
tencies among the architectural views al together.

Architectural rationale. This includes the rationale for the architectural concepts selected,
if possible together with evidence of the consideration of alternatives and the rationale for
the choices made.

3.1.3 |EEE-Std-1471 Lacks Realizations

Despite the importance of the |IEEE-Std-1471, the software industry still lacks automated
and systematic architectural approaches that enable effective production of architecture
descriptions conforming to the conceptua framework of |EEE-Std-1471.

Furthermore, according to the conceptual framework, an architecture represents a set
of abstractions that is manifested by an architecture description, which isitself a set of con-
crete software artifacts. A viewpoint (i.e., abstraction) is similarly related to a view (i.e.,
concrete artifact). Remarkably, an architecture description is organized into multiple views,
but an architecture is not related to multiple viewpoints, although the standard says that
each architecture should be built or “viewed” from various viewpoints.

39

The Unified Modeling Language

Without a relationship between architecture and viewpoints, we cannot relate a given
architecture to various sets of stakeholders' concerns. Lacking such a relationship compli-
cates any realization of the IEEE-Std-1471 that enables producing concern-oriented archi-
tecture descriptions. Thus, software architects cannot develop and describe architectures of
software-intensive systems in a concern-oriented way.

3.2 The Unified Modeling Language

The Unified Modeling Language (UML) is the result of an effort that was instantiated by
three prominent (object-oriented) methodologists, Booch, Jacobson, and Rumbaugh
[BRJ98][RIBI8]. UML has been submitted to and approved by the Object Management
Group (OMG) as astandard [OmgO01]. The standardization of UML not only provides a bet-
ter possibility for tool compatibility, but it also joins research on improving expressiveness
and preciseness of asingle language. UML is process independent and therefore it does not
prescribe how its notations should be used.
Using UML notations provides several advantages, including:

* UML offers acommon language, uniting different development methods in terms of
notation and vocabulary, and allowing tool interoperability between different vendors.

* UML providesarich set of notations that can be used to describe various aspects of a
software-intensive system. It offers eight diagram types: activity diagrams, imple-
mentation diagrams (component and deployment diagrams), interaction diagrams
(sequence and collaboration diagrams), statechart diagrams, class diagrams, and use
case diagrams.

¢ UML provides built-in extension mechanisms (stereotypes, constraints and tagged
values) that can be selectively applied to model elements. These extension mecha-
nisms assist methodologists in defining new model elements that are not found in
standard UML and which are required for some particular purpose. For example, we
proposed in previous work [KS00a] a UML-based approach to software architecture
description using the |IEEE-Std-1471, which focused on incorporating key abstrac-
tions, found in nearly all-existing ADLs, into UML.

« UML provides a textua constraint language known as OCL, the Object Constraint
Language [WK98]. OCL is a formal language based on set theory and first-order
predicate logic that is used for describing expressions. OCL can be used in different
wayss to increase preciseness of UML models beyond the limitations of the graphical
diagrams. Typically, it can be used to define a set of constraints, to define the proper-
ties of a stereotype, or to express invariants of systems, and the pre- and postcondi-
tions for operations.

¢« UML provides a metamodel that is itself defined in UML and which describes,
together with different sets of OCL constraints, the semantics of the language itself.

40

Related Work

3.2.1 UML Is Not Concern-Oriented

Because of its origin in object-oriented methods, UML has a bias towards software decom-
position along multiple kinds of concerns (see next section). UML was not intended for
modeling software architectures; however, various constructs have been incorporated that
are convenient for describing architectures.

Architecture descriptions resulting from existing UM L -based approaches are not con-
cern-oriented: although these approaches enable implicitly the “reification of stakeholders’
concerns into software”, software architects cannot identify the model elements into which
individual concerns have been reified; architects using UML are not aware of the process of
reifying the stakeholders' concerns (outside the software) into the architectural models they
build (inside the software). Consequently, using current UM L-based approaches makes val-
idation of software architectures against the stakeholders’ concerns very difficult.

3.3 Multi-Dimensional Separation of Concerns

A major goal of separation of concerns [Par72] is to lessen the amount of complexity soft-
ware developers must contend with, while reducing significantly the impact of change.
Multidimensional separation of concerns (MDSOC) provides a conceptua framework for
advanced separation of concerns. It was first introduced by Tarr et al. [TOW+99] and calls
attention to a set of mechanisms for composition and decomposition throughout the soft-
ware life cycle, including architecture.

The MDSOC introduces a number of concepts and issues that are useful for under-
standing the organization of concernsin software and for supporting advanced separation of
concerns appropriately across different software engineering approaches; however, the con-
cepts and issues defined in MDSOC are independent of any specific approach. MDSOC
describes a set of goals and requirements that must be fulfilled by any specific approach
realizing it.

3.3.1 Conceptual Framework of MDSOC

The notion of concern space forms the foundation of the conceptua framework. It provides
alocus for expressing the concern structure for multiple systems. A concern space consti-
tutes akind of “multi-dimensional repository” within which the body of software—includ-
ing al artifacts belonging to the software development effort and the product of the
software development process itself—can be explored, selected, analyzed, combined or oth-
erwise manipul ated.

Figure 3.2 illustrates an overview of the conceptual framework for MDSOC that is
shown as a software concern space. The concern space consists of a set of artifacts written
in different languages. As example, the figure shows two models mi and mj that consist each

41

Conceptual Framework of MDSOC

of two diagrams Di1 and Di2, and Dj1 and Dj2, respectively. While built separately, both mod-
els are used in the same documents Docl and Doc2 (indicated by the lines between models
and documents). Other software artifacts related to the models, including the source code
implementing each model, can be stored in different databases shown as bB1 and DB2. The
models, their diagrams and the program code realizing each model are made up of various
units that work together to achieve the goals of the software system under development.
Units of the same or different kinds can be combined in various ways to address concerns of
importance to one or more devel opers. Concerns that are significant to devel opers can be of
different kinds, and devel opers need to distinguish such kinds of concerns from one another
to facilitate the development tasks.

Figure 3.2: An Overview of the Conceptual Framework for MDSOC

The key concepts and issues that make up the conceptual framework for MDSOC are
defined asfollows:

Softwar e artifact. Software is made of artifacts that consist of descriptions in appropriate
artifact languages. Artifacts represent a major part of the body of software; they comprise
al kinds of documents of interest in software development.

Artifact language. An artifact language is a formalism for describing software. It includes
programming languages, specification languages and standard modeling languages, such as
Java, Aspectd, UML, OCL, etc.

Unit in software. A unit is an identifiable portion of software within an artifact. Criteriafor

determining the nature of a unit are dictated by the artifact language and the level of granu-
larity at which the unit can be used.

Kinds of units. Units may be of different kinds. Some units, called compound units, can be
obtained through the composition of other units. The composite units that cannot be decom-

42

Related Work

posed are referred to as primitive units. Some units can be defined within the context of
other units; they are said to be contextual units.

Areaof interest in a body of software. Different stakeholders may have different areas of
interest in agiven concern space. Each area of interest can be seen as a specific concern that
pertains to the needs of a particular stakehol der.

M apping between concer ns and units . Stakeholders interested in different areas of inter-
est need to focus on different artifacts to address different concerns, including configura-
tion, use cases, security, features, etc. Each individual concern has a set of unitsthat pertain
toit. A concernis defined as a predicate of units. The unitsin a given set are “affected” by
the concern corresponding to that set.

Dimensions of concern. A dimension of concern is away of/or an approach to decompos-
ing software according to one particular kind of concerns. Each dimension of concern corre-
sponds to one kind of concern. For example, UML alows one to decompose software along
classes, use cases, diagrams, components, or subsystems.

Separ ation of concerns along multiple dimensions. Separation of concerns along multi-
ple, arbitrary dimensions allows one to keep the units pertaining to different concerns sepa-
rate from one another. A collection of units that pertains to the same concern is caled a
module. The module is said to encapsul ate that concern.

On-demand remodularization. Developers may recognize the need for a new decomposi-
tion that was not foreseen when they started a software project. On-demand remodul ariza-
tion alows one to achieve such decomposition without invasive change.

3.3.2 Concern-Space Modeling Schema

A concern-space modeling schema, known as Cosmos [SR02], has been proposed by Sutton
and Rouvellou to define a concern space as a structured representation of concerns and their
relationships. A Cosmos schema complements MDSOC; however, in contrast, it focuses
explicitly on matters of interest pertaining to a body of software rather than the software
itself. The authors of Cosmos have argued for the need of explicit concern-space modeling
that goes far beyond the production of software artifacts, giving emphasis to the intent of
artifacts.
According to [SR02], a general-purpose concern-space modeling schema should pro-

vide support for:

* representing arbitrary kinds of concerns

* representing composite concerns

« representing arbitrary relationships among concerns

¢ associating concerns with arbitrary software units, work products, or system elements

43

General Requirements for Achieving MDSOC

* modeling of concerns independently of any specific methodology, programming lan-
guage, development formalism or stage of the software lifecycle

Figure 3.3 shows the Cosmos perspective of a software concern-space. It complements
figure 3.2 through an explicit representation of a set of related concerns, shown as co, ci,
...c14. These concerns are referred to as logical concerns: they represent the concepts in
which stakeholders are interested with respect to a system or artifact. On the other hand,
physical concerns represent the system elements or software artifacts which stakeholders
need to work with; this category of concerns aso includes artifacts or system elements to
which logical concerns can be applied.

Figure 3.3: The Cosmos Perspective of the Software Concern-Space

3.3.3 General Requirements for Achieving MDSOC

For now, we focus on the general requirements for realizing MDSOC in any software engi-
neering approach. According to [TOOQ], in order to achieve MDSOC, developers must:

« be able to identify multiple concerns and dimensions (i.e., kinds of concerns), simul-
taneoudly. “Tyrant” (predominant) dimensions must not be alowed to disqualify
decomposition of software along other kinds of concerns;

« be able to identify further concerns and dimensions of importance, incrementally, at
any time, al through the software life cycle;

« not be forced to take into account concerns that do not pertain to their needs;

« be ableto represent and manage overlapping and interacting concerns, and to identify
the points of interaction and maintain proper relationships across the interacting con-
cerns;

« be able to integrate separate concerns and to raise new ones,

Related Work

* be able to accomplish on-demand remodularization: that is, to impose new decompo-
sitions on existing software, without invasive change, explicit refactoring, re-engi-
neering, etc.;

« be able to choose, at any time, the best modularization for the development task at
hand without, perturbing the existing ones.

3.3.4 Existing Realizations of MDSOC

So far, the most popular realization of MDSOC has been developed by its authors them-
selves. Their realization is known as an aspect-oriented software development approach
called hyperspaces [TO00]; the tool supporting the hyperspaces for Java is called HyperJd
[HypO3].

The hyperspaces approach takes the premise that each concern of importance has a
collection of software units pertaining to it. Thisis an important characteristic of a concern
space as it allows one to distinguish between “reifiable” and “non-reifiable’! concerns.
Non-reifiable concerns are those for which the pertaining set of units is empty. Currently,
the hyperspaces approach only supports multidimensional separation of concerns for Java.
Hyperspaces support for UML is still lacking.

3.3.5 Units Are Inside Software, But Not the Concerns

As an advanced principle and technique of software engineering, MDSOC provides supe-
rior mechanisms for separation of concerns, but what it really achievesis separation of mul-
tiple units along multiple dimensions, at multiple stages of the software lifecycle. MDSOC
deals with units explicitly, while remaining rather silent on concerns.

Units are identifiable pieces of software that can be composed using an artifact language. A
particular composition of units can be relevant to a particular concern, in which case the
composition of units is said to provide the reification of the given concern into software.
However, it is critical to understand that concerns are not inside of software; instead, they
are part of the stakeholder’ world, which is external to software. MDSOC focuses on new
mechanisms for separating concerns, but indeed the notion of concern itself is implicitly
defined—as a genera predicate over a set of units—within the conceptual framework of
MDSOC. Without mechanisms supporting explicit identification of concerns independently
of the units that encapsulate them, software architects will not be able exploit the power of
MDSOC. Lacking clear separation between units and concerns, MDSOC becomes ineffi-
cient in developing and describing concern-oriented software architectures.

1. Notethat theterms“reifiable” and “non-reifiable” concerns are new notions introduced in this dissertation;
they are not part of MDSOC, Hyperspaces or HyperJ.

45

Aspect-Oriented Software Development

3.4 Aspect-Oriented Software Development

Aspect-oriented software development (AOSD) [AOSD] aims at identifying, encapsulating,
and explicitly representing characteristics of software that are very difficult, or even impos-
sible, to capture with object-oriented software development approaches, including
approaches based on UML. Such characteristics typically involve concerns cutting across
the boundaries of several model elements and modules, for example, security, logging, trac-
ing, etc.

An essential awareness in aspect-oriented software development is that the bound-
aries of stakeholders' concerns hardly ever correspond to the boundaries of the modules
reflecting those concernsin software systems. Based on this awareness, the AOSD commu-
nity has recognized that the ability to understand, to model and to reason about concerns,
cutting across both structure and behavior of components, is critical to the design of any
complex software system.

A major contribution of AOSD to software engineering is multidimensional separa-
tion of concerns. A different contribution of AOSD is a recent programming paradigm,
called aspect-oriented programming (AOP) [KHH+01], which provides mechanisms for
implementing crosscutting concerns as separate modules.

Another (emerging) contribution of AOSD to the model-driven software engineering
community is aspect-oriented modeling. Aspect-oriented modeling (AOM) is an up-and-
coming area of aspect-oriented software development that aims at providing techniques,
principles, and mechanisms for identifying, analyzing, managing, and representing cross-
cutting concerns in software design and architecture [AOMO3]. A major objective of AOM
consists of filling the gap between aspect-oriented requirements engineering (AORE)
[RMAO03] and aspect-oriented programming (AOP).

So far, diverse approaches using UML built-in extension mechanisms have been pro-
posed to support the description of aspects at design level [CWO00][KK S02][SHUO02]. How-
ever, these approaches suffer from both the limitations of the built-in UML extension
mechanisms [GHO02], and the inflexible hierarchical structure of the UML metamodel (more
details on this can be found in section 3.2). Without appropriate support for modeling con-
cernsin UML, we will not be able to understand, model and reason about crosscutting con-
cerns at any other level of abstraction that is higher than the program code. Moreover,
lacking UML support for concern modeling, model-driven software developers will not be
able to benefit from the advantages of the aspect-oriented technology.

3.4.1 Aspect-Oriented Concepts

In asimilar way as object-orientation allows us to encapsulate “ commonly localizable” con-
cerns (data store and computation) into objects, aspect-orientation provides a mechanism,
called aspect, for modularizing crosscutting concerns in software.

46

Related Work

Major aspect-oriented concepts include a join point model, support for aspectual
behavior, and support for structural amendment—or introductions:

¢ A join point model: This model allows one to potentially select any execution point in
a program, thus providing a flexible approach to defining the dynamic structure of
crosscutting concerns of importance;

« Support for aspectual behavior: This mechanism provides a means for adding aspec-
tual (crosscutting) behavior at various execution points captured by the related join
point model;

* Support for structural amendment: This support provides a means for modifying the
structure (hierarchy, feature declarations, etc.) of existing software artifacts.
Whilethe focus of thisthesisis rather on aspect-oriented modeling, our work is based

on lessons learned from aspect-oriented programming, including HyperJ and AspectJ. We
consider the AspectJ programming language for two reasons: 1) it is the most popular pro-
gramming language that supports aspect-oriented concepts explicitly and we believe that
raising the concepts of AOP to the level of aspect-oriented modeling is beneficial; 2) sup-
porting multidimensional separation of concerns at the modeling level provides flexible
mechanisms for composing and decomposing elements of UML models that can be refined
to support both AspectJ and HyperJ programs.

Aspect] realizes explicitly the aspect-oriented concepts mentioned above by provid-
ing different language constructs, such as, pointcut, advice, and introduction. All these con-
structs can be declared within another construct that is called aspect, and materializes the
conceptual aspect mechanism for encapsulating crosscutting behavior.

3.4.2 Issues in Aspect-Oriented Modeling

Although the number of researchers and practitioners working on various issues of aspect-
oriented modeling [AOMO3] is increasing, many problems related to the design-level
description still remain to be solved.

An essential issue in aspect-oriented modeling consists of separately expressing base
elements and aspectual elements. We consider base elements as the fundamental elements
of standard UML that are typically defined in the foundation package of the metamodel,
such as Model Element, Classifier, Namespace, etc. Aspectua elements are rather treated in
UML as second class citizens, which are usually named, but not specified explicitly. This
work uses the term perspectival element rather than aspectual element. Examples include
roles (e.g., Association Roles, Classifier Roles, Association End Roles) in addition to other
kinds of features that can crosscut the boundaries of a group of classes and objects of differ-
ent types.

UML was not originally designed with modeling support for crosscutting concernsin
mind, but research has demonstrated that the built-in extension mechanisms of UML can be
used to address issues of aspect-oriented modeling [AEBO3][CWO00][SHUOZ2]. However,

47

Final Remarks

experience has shown that simply using built-in UML extension mechanismsfor attaching a
set of constraints, tagged values, or a stereotype to a model element does not make it sup-
port modeling of some concerns of importance to developers [AKHO02][BGJI9][GHO02]. In
addition, extending UML to support aspectual elements other than the predefined ones—
i.e., those that are aready part of the standard UML—is problematic: built-in extension
mechanisms should be carefully declared, and used only if the concerns they encapsulate
cannot be adequately expressed using any other elements of UML [GHO2].

35 Final Remarks

This chapter introduced two conceptual frameworks, |EEE-Std-1471 and concern spaces,
and the Unified Modeling Languages to serve as a basis for the concern-oriented approach
to software architecture.

|EEE-Std-1471 provides a mechanism for separating the set of architecturally signifi-
cant concerns involved in a software system along multiple viewpoints; however, it does not
support separation of concerns along other dimensions (than just viewpoints). Moreover, it
does not specify how an architect should identify and categorize the concerns that pertain to
individual viewpoints. To serve as a recommended practice of general interest, |EEE-Std-
1471 remains intentionally silent on a number of issues, including the following:

« the way an architecture relates to a viewpoint (note that an architecture description

consists of acomposition of many architectural views)

« theway of representing concernsin architectural views

* how to deal with concerns that crosscut viewpoints

* how to verify that aview conforms to its viewpoint
Clearly, the notion of concern is central to achieving these goals. However, for the sake of
generality, MDSOC does not provide a standard definition for the concept of concern. This
is beneficia as it alows one to consider MDSOC as a domain-independent conceptual
framework that can be implemented in different ways and for vari ous purposes.

Existing realizations of MDSOC focus on aspect-oriented programming; they do not
have explicit support for modeling concern-oriented software architectures. Without sup-
port for concern-oriented software architecture modeling, it becomes very difficult to apply
aspect-oriented software development in the context of large-scale software systems—
developers need software architecture documentation to understand, elaborate, implement
and reason about the key properties of any large-scale system. Moreover, lacking support
for concern-oriented software architecture modeling, tool vendors will not be able to imple-
ment MDSOC mechanisms in their products and users will be unable to fully apply the
AOSD technology when building large-scale software systems.

Research on modeling crosscutting concerns is ongoing; however, there is no consen-
sus on how to express an aspect using existing modeling languages, including UML. While

48

Related Work

some researchers argue that UML is well suited for modeling aspects, many others believe
that UML lacks appropriate mechanisms for addressing crosscutting concerns [AOM03].
We believe that much research is still required to find out what is the most appropriate way
to model crosscutting concernsin UML. Aspect-oriented modeling as addressed in this the-
sisisan integral part of the concern-oriented approach to software architecture.

Realizing the conceptual frameworks, |IEEE-Sd-1471 and concern spaces, using
UML allows one to benefit from the advantages of both architecture description and multi-
dimensional separation of concerns when developing complex software. Throughout this
dissertation, weillustrate how UML can be used for implementing | EEE-Std-1471 and mul-
tidimensional separation of concerns. To do so, we provide a new mechanism caled UML
Space, which realizes the notion of concern space, while allowing one to flexibly and effi-
ciently support advanced separation of concernsin UML.

49

Final Remarks

50

Part |l

Building & Describing Con-
cern-Oriented Software
Architectures

Concerns and Software Architecture

Chapter 4:
Concerns and Software Architecture

This chapter introduces a new perception of concerns in relationship to software architec-
ture. Thefirst part of the chapter considers and discusses several definitions of the notion of
concern and presents a definition used by this dissertation. It introduces concern categories
and gives several examples of concerns from both a given requirements definition and a
software development problem. The second part of the chapter introduces the concern-ori-
ented approach to software architecture as a general methodology that can be realized in
different ways to achieve architectural design by concerns.

4.1 Concerns

Every software engineer is familiar with some mechanisms for separating concerns in ana-
lyzing existing software systems or architecting, designing or programming new systems.
However, few software engineers are fully aware of the nature of the concerns they deal
with in their everyday jobs. Most of them concentrate on concrete artifacts which they can
directly manipulate in software. Existing approaches to software architecture typically do
not consider concerns as abstract “things” existing outside the computer, but rather as con-
cepts which software engineers need to reify into elements of software systems. To explain
what we mean by that, let us first take alook at different definitions given to the notion of
concern; we proceed from a general concern definition to that introduced purposely by this
work.

1. A concern is a “... matter that engages a person's attention, interest or care’
[Webh97]. Thisis adictionary definition (from Random House Webster’s Dictionary)
which helps get some idea of what a concern is; but it is far too general for software
devel opment needs.

2. A concern is an “... area of interest in a body of software (e.g., artifacts, aspects,
etc.)"[TO00]. This definition clearly focuses on software artifacts representing con-
ceptual “things’ in software rather than the conceptual “things’ themselves.

3. A concernis“... any matter of interest in a software system” [SR02]. This definition
is specific to the needs of software development; however, it concentrates on what
existsin the computer (i.e., both software and hardware). Also, the definition does not
consider a concern as a“matter of interest” that is outside of the software system.

4. Concerns are “ ... those interests which pertain to the system’s development, its opera-
tion or any other aspects that are critical or otherwise important to one or more

53

Our Definition of a Concern

stakeholders. Concerns include system considerations such as performance, reliabil-
ity, security, distribution, and evolvability” [IEEEQQ]. This definition is close to our
needs, since it focuses on stakeholders needs relative to the devel opment and opera-
tion of the system. However, it lacks any mention of the problem to be addressed.

5. A concern is “... an aspect of a problem demanding the developer's attention”
[Jack01]. Thisiis the closest definition to what we are looking for; we adopt it as a
basis for this work and enhance it to cover the needs not only of developers, but also
of other software project participants.

4.1.1 Our Definition of a Concern

When we use the notion of concern in this document, we do not mean any concrete artifact
that software engineers can directly manipulate, but the following:

A concern is an aspect of a problem that is critical or otherwise important to one or

more stakehol ders.
Though an “aspect of a problem” can be seen as a sub-problem (or a problem) itself, we pre-
fer to use the term “aspect” to give emphasis to the projection of a problem rather than a
partition of it. Moreover, our definition offerstwo essential components that need to be kept
in mind when talking about concerns: aspect of a problem (problem) and interest to stake-
holders (goal). Both components define what we mean by concern. By putting these two
components together, it should be possible to formulate any concern in terms of a question
that may be answered by an architectural design solution (or by a low-level design solution
or an implementation) [Hil01].

To makethis clear, let ustake alook at what is not a concern. Consider the following:

1. A subsystem X in agiven software system:

¢ Does the subsystem X represent an aspect of a problem? No, as the subsystem X is
part of the software solution, it cannot be a problem.

¢ Isthe subsystem X of interest to some stakeholders of the system? Yes, because any
part of a system must be of interest to at least one stakeholder.

¢ Asaresult, the subsystem X is not a concern. This also confirms what we have men-
tioned before that: an artifact is not a concern.

2. Refactor the design of the software application Y, using the strategy design pattern.

« Doesrefactoring represent an aspect of a problem? Yes.

¢ Isit of interest to some stakeholders? Yes.

« Refactoring is a concern. However, the software application Y and the strategy design
pattern are both artifacts, not concerns.

54

Concerns and Software Architecture

4.1.2 Discussion

Concerns are often confused with requirements [TD97], though they are different. Usually
requirements reflect some aspects of a software development problem, but not all. Some
aspects of the problem existed earlier or will exist later than requirements and others may
occur throughout the software life cycle. For example, when developing object-oriented
software, problems may arise at different stages: analysis, design, implementation, etc. The
solution of an analysis problem can trigger a design problem, which in turn can cause an
implementation problem. Aspects of such problems, particularly those of design and imple-
mentation problems, are certainly not reflected in the requirements, though they are con-
cerns themselves.

Concerns have also been considered as non-functional or crosscutting considerations
[RMAO03]. Compared to our definition, thisview of concerns is somewhat restrictive for the
following reasons:

¢ Non-functional considerations are common parts of requirements, and as discussed
above, not all concerns are requirements.
¢ Limiting concerns to non-functional considerations prevents functional consider-
ations from being concerns themselves; however, in redlity, functionality is the very
kind of concern that software engineers understand the most.
With our concern definition, one cannot achieve much separation of concerns using existing
formalisms, such as UML, because we regard a concern as an abstract concept which devel-
opers cannot directly deal with.

For example, UML does not provide support for adequately modeling software devel -
opment problems, nor does it alow one to focus explicitly on various aspects of develop-
ment problems. Researchers have argued that concern modeling should be achieved at a
different level than what UML can currently offer [SR02][ST02]. However, it is a goal of
this thesis to establish a bridge between UML and concern-oriented architecture documen-
tation.

4.2 Concern Categories

A software project typically involves many concerns of different kinds, which for various
reasons can be categorized in different ways. There is no consensus on how to categorize
concernsin software development. This thesi s distinguishes between four categories of con-
cerns: architectural, non-architectural, reifiable and non-reifiable concerns.

Our decision for choosing these four categories was based on the fact that they are
general enough to cover more detailed classifications of concerns. However, it is not the
goal of thisthesisto provide such a detailed classification of concerns. A good example of
concern classification is given by Cosmos [SR02].

55

Architectural Concerns

4.2.1 Architectural Concerns

An architectural concern is an aspect of a problem of interest to stakeholders that globally
affects a software system. Architectural concerns usually include quality attributes and most
kinds of crosscutting concerns.

The notion of crosscutting, as used in this context, is relative to the system’s decom-
position approach and to the level of abstraction considered. For instance, what is crosscut-
ting in a procedural system’'s decomposition is not necessarily crosscutting in a modular
decomposition (where a module is similar to the Modula-2 language concept), and vice
versa. What you call crosscutting in a process-oriented decomposition may not be crosscut-
ting in an object-oriented decomposition, and vice versa. Or what is crosscutting in a com-
ponent-based decomposition may be well localized in an aspect-oriented decomposition.
Further examples of architectural concernsinclude the forces of an architectural pattern that
apply to the pattern as whole, while cutting across the boundaries of various pattern roles.
Moreover, what is crosscutting for a group of objects and components might be local to a
subsystem; but also, concerns that crosscut a group of subsystems might be local to a sys-
tem. Examples of architectural concerns include security, performance, adaptation, etc.

4.2.2 Non-Architectural Concerns

A non-architectural concern is an aspect of a problem that can be reified into a localizable
part of a software system. Non-architectural concerns include many kinds of non-crosscut-
ting concerns that can be projected onto a single part of a system. Typical examples of non-
architectural concernsinclude: computation, data store, responsibilities, etc.

4.2.3 Reifiable concerns

Tangible concerns are those concerns that can be reified into software through a non-empty
set of model elements. These include architectural and non-architectural concerns that have
explicit representations in software. For example, a computation concern can be addressed
by means of its reification into operations (described in interfaces), methods (in classes) or
functions (in modules); a persistence concern can be addressed by being reified into a cross-
cutting module.

4.2.4 Non-reifiable concerns

Non-reifiable concerns are those concerns that cannot be reified into software (at least not
in the software under construction). The set of model elements that pertains to such con-
cerns is empty. Examples include many aspects of software development, such as usability,
time-to-market, costs reduction, etc.

56

Concerns and Software Architecture

4.3 Relationship between Concerns

Due to the multitude of the kinds of concerns encountered in software development, we do
not have a predefined set of relationships among concerns. Relationships among non-reifi-
able concerns are non-reifiable themsel ves, whereas rel ationships among reifiable concerns
arereifiable. We consider that because each reifiable concern can bereified into a collection
of model elements, the relationships among such concerns can be reified into model ele-
ments as well.

4.4 Examples of Concerns

The following sections present two examples of concerns, from a given requirements defi-
nition for an architecture description language and from the video surveillance software
development problem.

4.4.1 Concerns in the Requirements on ADLs

This section shows an example of concerns obtained from the requirements on architecture
description languages. In [SG96], Shaw and Garlan have identified general concernsin an
architecture description problem (they call them characteristics of an ideal ADL). These
concerns are: composition, abstraction, reusability, configuration, heterogeneity, and analy-
sis.

We consider the general architecture description problem as a set of different sub-
problems, which each in turn can have various aspects, as shown below:

Composition problem. “ It should be possible to describe a system as a composition of
independent components and connections’ [SG96].
Aspects of the composition problem can be shown as follows:
¢ The ability to decompose complex systems hierarchically into smaller, convenient
components and conversely, while allowing one to compose a system from its constit-
uent elements;
« Theability to modularize each individual element;
¢ The ability to separate externaly visible properties of individual elements from
implementation details.

Abstraction problem. “ It should be possible to describe the components and their interac-
tions within software architecture in a way that clearly and explicitly prescribes their
abstract rolesin a system” [SG96].

Key aspects of the abstraction problem can be considered as:

57

Concernsin the Video Surveillance Problem

¢ The ability to support abstract roles as first-class abstractions to represent multiple
kinds of components, interactions among those components, and architectural pat-
terns.

* Theability to characterize rolesin terms of obligations, permissions and prohibitions.

Reusability problem. “ It should be possible to reuse components, connectors and archi-
tectural patternsin different architectural descriptions, even if they were developed outside
the context of the architectural system” [SG96].
Aspects of the reusability problem can be defined by the following concerns:
« The ability to reuse the abstract roles of individual components and connectors, not
the components and connectors themselves;
« The capability to reuse collections of those roles of components and connectors that
together characterize the architectural patterns that designers can reuse.

Configuration problem. “ Architectural descriptions should localize the description of sys-
tem structure, independently of the elements being structured. They should also support
dynamic configuration” [SG96].
Aspects of the configuration problem can be defined by the following concerns:

« Theability to bind individual roles to individual components and connectors;

« Theability to bind a collection of roles to a collection of components and connectors.

Heterogeneity problem. “ It should be possible to combine multiple, heterogeneous archi-
tectural descriptions’ [SG96].
Aspects of the heterogeneity problem can be defined by the following concerns:
¢ The capability to combine various kinds of components and connectors into different
architectural patterns within a particular system;
¢ The capability to integrate various kinds of components into a system;
« Theability to manage co-existence of multiple kinds of architectural concerns

Analyzability problem. “ It should be possible to perform rich and varied analyses of
architectural descriptions” [SG96].
Aspects of the architectural analysis problem can be defined by the following concern:

« Theability to support reasoning about architectural descriptions.

4.4.2 Concerns in the Video Surveillance Problem

This section shows another example of concerns that are obtained from the description of
the video surveillance problem in section 2.1.1 on page 15.

To facilitate understanding of the concerns, let us recall the video surveillance service
problem:

When the number of crimesincreases in society and security becomes a concern, it is often
necessary to make use of new technologies to control the situation. A video surveillance ser-

58

Concerns and Software Architecture

vice can be useful in such a situation. For this purpose, a collection of geographically dis-
tributed video cameras is to be controlled and monitored by security agents from a central
video surveillance station. Each video camera captures images and produces a video
stream that is transmitted to the central surveillance station. In case of an emergency, the
security agents alert the police; for analysis purposes, security agents can command the
surveillance systemto store the sequence of images rel ated to the urgent situation in a data-
base of emergencies. Moreover, the police can ask for the video stream produced from a
particular location and in a specific time period.

Figure 4.1 shows an example of key aspects of the video surveillance service problem. To
identify the important aspects of the given problem description, we performed an experi-
ment with different software engineers. The outcome of this experiment is a set of concerns
listed in the following figure.

Nunber of crimes

Security

Geogr aphi c distribution
Centralized nonitoring

| mage capture

(Video) Streamng

Secur e transm ssion

Police call

| mage sequence storage

Speci fic i mage sequence retrieval

Figure 4.1: Concerns in the video surveillance service problem in Version 1

An alternative to the concern list shown above is presented in figure 4.2.

59

Towards Concern-Oriented Software Architectures

Reduce crine (main goal)
d ose watch of locations by security agents
Centralization of security agents
Distribution of video careras
Capturing images and video streans and passing themto the centralized
station
The surveillance (is achi eved by)
(observation of the video stream
Reporting to police any problem
The police acting upon the report

TThe police review ng the correspondi ng video sequence

Figure 4.2: Concernsin the video surveillance service problem in Version 2

4.5 Towards Concern-Oriented Software Architectures

The Concern-oriented approach to software architecture (COSA approach) aims at provid-
ing a solid foundation for concern-oriented software architectures. The COSA approach
introduces a new methodology for building architectures, which is driven by a set of con-
cerns of interest to stakeholders. A key ideain this methodology consists of relating individ-
ual concerns to the model elements representing them in software, just as, in asimilar way,
an architecture is related to its description.

Concerns are aspects of a problem that are critical or otherwise important to one or
more stakeholders; the model elements are artifacts or concrete work products that capture
the concerns in the body of software. Concerns are abstract things outside the computer,
whereas model elements representing them are rather concrete work products that com-
monly exist inside the computer. Moreover, according to |EEE-Std-1471, an architecture is
“the fundamental organization of a system embodied in its components, their relationships
to each other, and to the environment, and the principles guiding its design and evolution™.
An architecture description is “acollection of products to document an architecture”.

60

Concerns and Software Architecture

Environment

‘ Mission ‘

1. |establishes methods for

consists of inhabits fulfills *
7| Mo Rationale ulflls 1.
aggregates | 1.+
i in provides influences
scribed by _ has an
Architectural Description | y \ J } System ‘

selects

organized by |1 identifies | 1.*

organized by
1.

used to cover

Concern

Viewpoint

conforms to
0..1] has source
LibraryViewpoint

Figure 4.3: Conceptual Framework of |EEE-Std-1471 (modified)

Stakeholder

" has

participates in

is important to is addressed to

identifies | 1..*

By establishing an analogy between the mutual relationships of an architecture and its
description on one hand, and of a concern and its representation on the other, we can make
the following observation: every organization of a system embodied in components and
their relationships to each other reflects a certain combination of different concerns that are
relevant to some stakeholders. The concerns can be seen as projected on the elements of the
system (i.e., its components and their relationships) in order to facilitate a description of the
system structure and reasoning about its essential properties. Different perspectives of the
system’s organization might reflect different or overlapping combinations of concerns. Each
combination of concerns results in a particular set of concerns that characterizes a specific
viewpoint. A viewpoint is the specification of a view, that is, aview expresses an architec-
ture of the system from the perspective of that viewpoint (i.e., a set of related concerns).

Figure 4.3 shows amodified version of the IEEE-Std-1471 conceptua framework. As
we see in this conceptual framework, aview is a component of an architecture description.
Such a relationship between a viewpoint and an architecture is lacking in the original IEEE-
Std-1471 conceptual framework. However, based on the analogy between architecture vs.
architecture description and concern vs. model elements, we believe that an architectureisa
composition of viewpoints, in the same way as an architecture description is a composition
of views. Weillustrate this by adding a new aggregation relationship between Architecture and
Viewpoint in figure 4.3. This addition implies another, similar relationship between Architecture
and Concem. However, we have decided not to add such a second relationship for two rea-
sons. 1) because its effect can be achieved indirectly via Viewpoint; and 2) because view-
points alow one to separate the concerns involved in the architecture along multiple
perspectives. Given that different concerns are relevant from different perspectives, this
decision provides more flexibility to architects in organizing the stakeholders' concernsin a
“software space” realizing the conceptual framework.

61

Objectives of the COSA Approach

We refer to the resulting composition of concerns as concern-oriented software archi-
tecture. A concern-oriented software architecture is an architecture whose development is
essentially driven by a set of concerns of interest to stakeholders. On the other hand, it is
important to notice that the extension made to the conceptua framework is an enhance-
ment; it in no way contradicts the standard.

45.1 Objectives of the COSA Approach

A major objective of the concern-oriented approach to software architecture is to provide a
methodology for overcoming the limitations of existing architectural approaches as identi-
fied in section 1.2 on page 2 and section 1.3 on page 8. This methodology should be suit-
able: for developing and describing architectures of software-intensive systems; for
improving separation of concerns in the design, construction and evolution of such systems;
and for integrating architectural descriptions with modern software development artifacts.
The ultimate goal of this new methodology is to provide support for achieving design by
concerns all through the development and description of software architectures.

45.2 Characteristics and Requirements of the COSA Approach

To build a software architecture in a concern-oriented way, it isimportant to understand that
a software architecture is a multidimensional concern structure that provides a conceptual
but reusable solution to a software decomposition problem.

Naturally, concerns exist outside of the computer. Therefore, the multidimensional
concern structure characterizing the architecture of a software system cannot subsist inside
the software system itself. However, such a multidimensional concern structure can be
described from multiple perspectives. Each perspectival description represents a particular
view of the concern organization.

Different architects can produce different collections of views depending on the needs
of stakeholders. Each collection of views can be implemented in different ways to build a
different system. Thus, a system consists of a set of (physical and concrete) artifacts that
implement an architecture description. An architecture description consists of a collection of
work products, which together reify the (abstract and logical) concerns in the multidimen-
sional structure.

Perceiving software architecture in a concern-oriented way, we believe that the archi-
tectureis outside the system, but its implementation exists inside the system. This perception
has two advantages: 1) it provides a clear distinction between an architecture and an archi-
tecture description; and 2) it facilitates the evaluation of a software system against its archi-
tecture.

Distinguishing between architecture and architecture description, and facilitating soft-
ware architecture evaluation are key characteristics of any concern-oriented software archi-
tecture. To help address these characteristics, we have identified a set of minimal

62

Concerns and Software Architecture

requirements that need to be fulfilled by every concern-oriented software architecture
approach. A concern-oriented approach to software architecture must provide support for:

1. Realizing the IEEE-Sd-1471 Conceptual Framework. It should be possible to pro-
duce architecture descriptions that conform to the |EEE and ANSI standard for archi-
tectural descriptions, ANSI/IEEE-Std-1471-2000.

2. Reifying concerns. It should be possible to address individual concerns at different
levels of abstraction simultaneously, while distinguishing each concern from the soft-
ware development artifacts reifying it.

3. Realizing an architecture concern-space. It should be possible to achieve multidimen-
sional separation of concerns in software architecture through the realization of an
architecture concern-space. This requires a mechanism for reifying a software archi-
tecture into an architecture description that can be implemented by different systems
built from the same architecture concern-space.

4. Achieving architectural design by concerns. It should be possible to clearly separate
the software architecture of a system from its description, while achieving architec-
tural design by concerns from multiple perspectives, not just a single viewpoint.

5. Integrating architecting with common software development. The creation of software
architectures should not be addressed in isolation—i.e., it is not sufficient to have
“one specific” level or phase for software architecture devel opment—instead, archi-
tecting can and should be performed at multiple stages within the global context of the
software life cycle.

6. Using UML. It should be possible to integrate the resulting concern-oriented architec-
ture descriptions with other architectural descriptions written in standard modeling
languages, such as UML; thisincludes, for example, UML support for key ADL con-
structs: components, connectors, styles, systems and properties.

4.6 Final Remarks

Itis essential to comprehend that concerns are aspects of the problems we, the humans, con-
sider when we start building software. These problems are outside of the computer (both
hardware and software) [Jack01]. Therefore, the computer cannot distinguish one concern
from another, and it cannot identify the relationships between different concerns. It is the
job of software engineers to identify the concerns and their relationships, to reify them into
both model elements and code, and to manipulate concerns viatheir representations.

The relationship between concerns and model elements is similar to the relationship
between an architecture and an architecture description.

We believe that what makes a concern is: 1) its significance to stakeholders and 2) the
level of abstraction at which it can bereified. For example, agiven problem may have many

63

Final Remarks

aspects, but only the most significant ones are considered to be concerns of interest. Fur-
thermore, the concerns in the video surveillance service problem exist at a completely dif-
ferent level of abstraction than those of the architecture description problem.

The concerns shown in figure 4.1 and figure 4.2 build together what we refer to as
problem space. As discussed in chapter 2, such a problem space is required for building
software architectures effectively. The thesis argues that building software architectures
should be driven by the concerns of interest to the stakeholders, not by a specific artifact
language or modeling technique. Thisis the very objective of the concern-oriented software
architecture approach introduced as a genera methodology for achieving architectural
design by concerns. An example of redization for the COSA approach is the subject of the
next chapter.

64

The PCS Framework

Chapter 5:
The PCS Framework

This chapter introduces the PCS Framework, a particular methodology implementing the
concern-oriented approach to software architecture. The PCS Framework uses UML to
combine the realizations of the conceptual frameworks of MDSOC and |IEEE-Sd-1471, and
it presents a fulfillment of the general reguirements on concer n-oriented approaches to soft-
ware architecture. The framework also introduces new mechanisms, such as projections and
UML Space, to support integrating software development into the building of software
architectures.

5.1 Introduction

In simple terms, a Perspectival Concern-Space (PCS) represents a technique of depicting
concerns of multiple kinds (or dimensions) in an architectural view consisting of one or
more models and diagrams. A perspective is a “way of looking” a a multidimensional
space of software concerns from one specific viewpoint. Similar to model orientation
[Ross78], every perspective has an orientation. The orientation of a perspective is deter-
mined by a set of related concerns, and by a purpose, a context and a viewpoint.

More specifically, a PCS represents the perspective of a particular viewpoint together
with a mechanism needed for reifying a set of related concerns (relevant to the given view-
point) into the body of software. The PCS Framework is one implementation of the con-
cern-oriented approach to software architecture that provides a means for composing and
decomposing different PCSs.

5.1.1 Goals, Principles and Key Concepts

A major goal of the PCS Framework is to provide mechanisms for building, describing and
implementing concern-oriented software architectures in a flexible and incremental way. It
allows oneto identify, separate, modularize and integrate various software artifacts that per-
tain to different kinds of concerns.

An important principle for the PCS Framework is the recursive separation of con-
cerns along multiple dimensions—that is, the capability to separate concerns along multiple
dimensions called viewpoints, so that the set of related concerns viewed from the perspec-
tive of a viewpoint can be separated recursively into further (sub)viewpoints. This is the
result of our interpretation of the |IEEE-Std-1471. With this interpretation, we consider
viewpoints to be an architectural mechanism for separating stakeholders’ concerns into dif-

65

Goals, Principles and Key Concepts

ferent sets of related concerns; each view expresses only those aspects of the system that
can be “seen” from the perspective of a given viewpoint: when new problems arise, aspects
thereof may be grouped to define a new perspective of the system at hand.

Figure 5.1 gives a general idea of the key concepts used in the PCS Framework and
summarizes the combination of the realizations of the conceptual frameworks for MDSOC
and |EEE-Sd-1471, and UML.

Doc2

2@
()
©
() (co | Doct
@@ r
Q N
Viewpoint Set of related concerns View, Models and diagrams Other artifacts

Figure5.1: A Perspectival Concern-Spacein Overview

Figure 5.1 illustrates the notion of perspectival concern-space as a projection of a concern-
space that involves a set of related concerns, their reifications into models, and the realiza-
tions of these models. Essentially, the PCS Framework represents a composition of multiple
Perspectival Concern-Spaces that work together to support integration of software develop-
ment with building software architectures.

Moreover, the PCS Framework provides a means to overcome many of the problems
identified in section 1.2 and section 1.3.

Finaly, the realization of the |IEEE-Std-1471 Conceptual Framework for the PCS
Framework is shown as an Architecture Concern-Space. Further details on the concern
space are given in section 5.4.

66

The PCS Framework

5.1.2 Fulfilling the Requirements of COSA

Essentialy, the PCS Framework fulfills the general requirements on concern-oriented
approaches to software architecture by providing a UML-based linguistic toolkit, called
UML Space, which combines the realizations of the conceptual frameworks of |EEE-Std-
1471 and MDSOC. The PCS Framework achieves the requirements for fulfilling the COSA
approach in the following steps:

1. The PCS Framework realizes the IEEE-Std-1471 Conceptual Framework through its
concept of viewpoint schema.

2. Thereification of concernsis achieved by means of the projection mechanism.

3. The realization of an architecture concern-space is achieved through the notion of
UML Space—the PCS Framework uses standard UML to create a UML Space which
architects need to use to develop and apply various viewpoint languages at will.

4. The PCS Framework achieves “architectural design by concerns’ through concern-
oriented modeling using one or more viewpoint languages.

5. The integration of the building of software architectures with common software
development is achieved through a combination of MDSOC with |IEEE-Sd-1471 and
UML.

The following sections describe in more detail how the PCS Framework fulfills of the
reguirements of COSA.

5.2 Realizing the IEEE-Std-1471 Conceptual Framework

To realize the |EEE-Std-1471 Conceptual Framework, we premise that a software architec-
ture is multidimensional in nature. That is, when constructing complex software, an archi-
tect should represent the system at hand from multiple perspectives in order to be able to
understand, communicate and reason about its important properties. Each representation of
the system is considered as a different view of the system’s software architecture, and each
view consists of one or more architectural models. Each architectural model reflects some
aspects of the system relevant to the view at hand, while hiding other aspects that pertain to

67

Realizing the | EEE-Std-1471 Conceptual Framework

other views. An overview of our realization of the IEEE-Std-1471 Conceptual Framework
for the PCS Framework isillustrated in figure 5.2.

Service-oriented A N ~ a 7
Viewpoint o 5,
Configuration: (XX | S’ar/c \O
D1 ={C3, C5, C7} \ .-) %,,e/ ;
} X X Sy :
] S I - 8, 3
Behavior: | XX , - ~ ©hay;

- S X < Wy, Vi, Y
D2 ={C2, C6} P X X - gy
Static Structure:) e X | ng, ’
D3 ={(C1, C4} Cod « S| Moge?

X Architecture ™
Aspect»oriented% ~ Concern-Space
Construction Viewpoint _ -

Ci= Architectural Concern
X = View Elements

Figure5.2: Overview of the IEEE-1471 Realization for the PCS Framework

Figure 5.2 illustrates some key concepts of IEEE-Std-1471, including architectural view-
points, views, models and concerns, and shows how these concepts relate to each other. The
relationships among the concepts conform to the description given in section 3.1.1, together
with the extensions discussed in section 4.5 (see also figure 4.3).

Figure 5.2 shows two examples of viewpoints, a Service-Oriented Viewpoint and an Aspect-
Oriented Construction Viewpoint (See “ Service-Oriented PCS” on page 109 and “ Aspect-Oriented
Construction PCS’ on page 83). For example, stakeholders who are interested in the system
from the perspective of the service-oriented viewpoint will need to focus on different
aspects of the software development problem at hand than those interested in the system
from the perspective of another viewpoint. Considering the service-oriented viewpoint,
each aspect of the problem is documented as a separate concern, called C;, Cy, Cs, Cy4, Cs, Cq
or C,.

Concerns can be grouped into separate dimensions to define new viewpoints, recur-
sively. For instance, C5, Cs and C; are shown as three different Configuration concerns that are
grouped into one kind of concern, called the dimension D1. Similarly, the Behavior concerns
(¢, and Cg), and the Static Structure concerns (C, and C,) are separated into a behavioral dimen-
sion (D2) and into a structural dimension (D3), respectively.

The Senvice-Oriented View of the software architecture of a system (unnamed in the fig-
ure) represents a partial architecture description of the system. Such a partial description
can be further transformed and represented in different ways, for different reasons. As an
example, in order to focus on the architectural dimensionsintroduced above, we decided to
transform (or refine) the Service-Oriented View into three different architectural models shown
as Static Model, Behavior Model and Configuration Model. Each of these architectural models per-

68

The PCS Framework

tains to the concerns in a corresponding dimension. Such models need to express only the
concerns at hand and nothing more. We refer to them as concern-oriented models.

As aresult, architectural models can be transformed into other models (or diagrams)
in a“concern-oriented way”. We call this process concern-oriented model transformation.
For example, the Static Model is transformed into further models shown in two diagrams, the
service description diagram (SD) and perspectival association diagram (PD). Each descrip-
tive unit in aview (i.e., a view element depicted as “x") consists of a collection of one or
more model elements.

5.2.1 Viewpoint Schema

A summarized description of the template for a viewpoint schemais shown in figure 5.3.

Viewpoint name An expressive identifier that reflects the architectural perspective
documented in an associated architectural view

Sources Sources for documents providing additional information related to the
viewpoint, including overview information, summary, context, references,
history of change, and glossary.

Concerns A list of critical aspects of the architectural problem(s) which:
1) need to be addressed by the present viewpoint, and
2) affect the context of the system, its development, operation,
maintenance or its stakeholders
Stakeholders An explicit record of who is interested in or needs what concern
Rationale A description that explains

the motivation for making decisions,

the decisions themselves,

the impact of the decisions, and

the degree of satisfaction achieved by a solution.

Incentive aspects A set of concerns that motivate the need for making new decisions

Decisional aspects A set of (helpers) concerns allowing one to specify what decisions to take

Architectural A set of concerns ch_ar_acterizing the degre_e of satisfac_tion with the
Problem (s) decisions taken, their impacts on the architecture. Options:

Resultant aspects Noteworthy — all observable/measurable results that characterize the

degree of satisfaction with the decisions, and the impacts of the

decisions

Unsatisfactory - dissatisfied with or indifferent to the decisions

Relationships among Concerns Describes how different concerns present in the viewpaoint relate to each
other

Resultant View A partial description of the software architecture of the system from the
perspective reflected in the viewpoint

Figure5.3: A Viewpoint Schemain Overview
To alow architects to produce architecture descriptions that conform to the |IEEE-Std-1471,
the PCS Framework has introduced the notion of viewpoint schema, which:
 defines aunique name for the viewpoint at hand;
« identifies a set of stakeholders aong with a set of various kinds of concerns that per-
tain to those stakeholders;
¢ provides an approach to facilitate the definition of a viewpoint language;

69

Reifying Concerns

 identifies the associated architectural view that represents the stakeholders' concerns
in one or more architectural models;
¢ providesthe sourcesfor key information used in or related to the viewpoint definition.
The PCS Framework provides a template for defining viewpoint schemas. In addition, it
allows one to state the rationale for a viewpoint and to provide some relationships between
the different kinds of concerns to be addressed, using a viewpoint schema.

5.3 Reifying Concerns

Besides the key elements of the IEEE-Std-1471 Conceptual Framework, figure 5.2 illus-
trates the notion of reification of concerns. The lines between the concerns ({C}, i-1_10), and
the view elements (the x's) illustrate the reification of the stakeholders' concerns into view-
point language elements. The mechanism supported by the PCS Framework to address con-
cern reification is the projection.

A concern that isrelevant to a viewpoint is reified into an architecture description by
means of its projection onto one or more view elements. The PCS Framework supports two
kinds of projections: projections between descriptive units and projections between con-
cerns and descriptive units.

1. Projections between descriptive units are concern-oriented model transformations that
transform a set of descriptive units into another. Examples of such concern-oriented
model transformations are given in the previous section, showing transformations of
an architectural view into concern-oriented models, and of amodel into diagrams.

2. Projections between concerns and descriptive units are different as they address the
reification of a given concern (or set of concerns) into a set of descriptive units. For
example, when designing a system using UML, you might need to reify a given
responsibility (concern) into one or more methods (descriptive units) encapsulated in
one or more classes (composite descriptive units).

Essentialy, a projection is an architectural abstraction that defines the relationship between
aviewpoint and a view—or between aview and a set of models. It consists of a set of rules
that specifies how to reify (one or more) concerns into (zero or more) descriptive units,
which are typically model elements. Projections must take into account that some concerns
might not have adequate representations in the description language at hand.

A descriptive unit can be simple or composite. A simple descriptive unit can be, for
example, any basic UML element, such as a link, attribute, parameter, etc. Examples of
composite descriptive units include classes, subsystems, packages, and any type of UML
diagrams. Basically, a projection can be any set of rules that specifies how to decompose,
organize, and structure software according to a specific dimension. Projections can be used,
simultaneously, at different levels of abstraction. Different projections along different

70

The PCS Framework

dimensions result in different models, but also different projections along the same dimen-
sion may result in the same or different models. All sets of rules defining projections are
defined and maintained as parts of the concern space.

Supporting the projection in the PCS Framework makes it possible to reify, and con-
currently separate concerns into different artifacts, at various levels of abstraction, while
distinguishing each concern from the software artifacts reifying it.

5.4 Realizing an Architecture Concern-Space for UML

The requirement of concern-oriented models to express the concerns at hand, and nothing
else, increases the need to have flexible viewpoint languages. In practice, UML seemsto be
a good candidate for documenting software architectures from multiple perspectives
[HNS99][CBB+02]. On the contrary, using “members” of the UML family of languages
(i.e., languages for expressing the different diagram types) as viewpoint languages can be
very problematic. For example, the notion of software connector as found in ADLs does not
exist in standard UML [KS00a], and introducing it into UML is complicated, as 1) UML
lacks adequate support for modeling roles as first-class citizens and expressing roles is crit-
ical to connector modeling, and 2) extending UML suffers from the X-Syndrome
(section 5.4.2).

5.4.1 UML Lacks Adequate Support for Modeling Roles

The UML notation used to model rolesis part of the UML language family called Collabora-
tion. The metamodel describing the meaning of thislanguageis shown in figure 5.4.

This metamodel is written itself in UML, using the notation for class diagrams. Each
classin this diagram is a meta-class that represents a concept defined in the Collaboration lan-
guage. An association between two meta-classes is a meta-association. The meta-classes
shown in gray are linguistic concepts borrowed from other members of the UML language
family. For instance, Action is borrowed from the BehavioralElements::Actions |anguage and all
the other conceptsin gray are from the Core language.

71

The X-Syndrome

Collaboration < .| +constrainingElement

*
IrepresentedClassifier: Classifier ‘ ModelElement ‘ ‘ Action ‘
| jrepresentedOperation: Operation
lusedCollaboration: Collaboration

1 +availableContents | » 1 [+action

[N

+context +predecessor +activator

1 . .
T +interaction| « ‘* *‘ * ‘ 0.1 ‘ *

AssociationRole

1f+interaction 1% /conformingStimulus:Stimulus

Association Imultiplicity: Multiplicity
0.1 *| jconformingLink: Link +tmessage
1 4 +base i .
1 0.1 — -
+communicationConnection * *
* 1 |+sender 1 +receiver
Classifier f] . ClassifierRole
Lk
+base /multiplic!ly: Multiplicity
T Iconforminglnstance: Instance
Attribute
) — +t * *
{ordered} +availableQualifier| ype |1 +ownedElement|1..
2..* |[+connection Q * 2.*[+connection

. AssociationEndRole —
AssociationEnd at

0.1
+base

+availableFeature

! Jcollaborationmultiplicity: Multiplicity *

Figure5.4: UML Metamodel for Collaboration

The Collaboration language, as it stands, is very useful for modeling interactions among
objects and components, as long as there is no need 1) to have a specific locus of definition
for the interaction (i.e., the interaction is scattered among the participants), and 2) to sepa-
rate collaboration roles from the entities playing such roles. Otherwise, using the UML Col-
laboration is not appropriate.

As shown in the metamodel, roles (i.e., AssociationRole, AssociationEndRole and Classifier-
Role) inherit from their base meta-classes (i.e., Association, AssociationEnd and Classifier), respec-
tively: that is, roles cannot be separated from their base entities. Thus, every model element
that is not a Classifier, an Association Or an AssociationEnd cannot play arolein UML. This makes
it impossibleto use UML for composing interactions, associations, collaborations, features,
etc.

However, it should be possible to define a collaboration role by what base elements
fulfilling that role must, must not or may accomplish (i.e., obligations, prohibitions and per-
missions).

5.4.2 The X-Syndrome

Asmentioned earlier, UML provides built-in extension mechanisms which assist methodol -
ogists in defining new model elementsthat are not found in the standard specification of the
language and which are required for some particular purpose. However, using built-in
extension mechanisms of UML can be problematic to such a point that it may turn the atten-
tion of methodologists and software architects from their goals; thus, methodologists and

72

The PCS Framework

architects are often forced to deal with linguistic issues that have little or nothing to do with
their concerns: if we do not provide a solution to this problem, model-driven software engi-
neering cannot be successful and using UML (both as it is and in its upcoming version
UML 2.0 [Omg03]) will rather lead to the distraction and frustration of modelers.

Through research and practical work we have done over the last five years, we
observed a syndrome characterizing the distraction and frustration of both architects and
methodologists using UML. Our experience was gained from work in two different areas:
1) in using, teaching and enhancing UM L-based methodologies, and 2) in developing new
UML extensions and profiles for structural architecture descriptions [KMP+98][KCS+02]
aswell as for aspect-oriented modeling [KKS02].

We have identified a pattern of activity in modeling that tends to occur repeatedly
whenever modelers try to extend UML. This pattern of activity is not a useful software pat-
tern; it is an anti-pattern that we describe to help architects and methodologists avoid frus-
tration and distraction when using standard UML to create architectural models or models
resulting from a software development process. We call this anti-pattern the X-Syndrome or
“Extension Hell Syndrome” of UML.

The X-Syndrome anti-pattern represents a group of symptoms that together character-
ize alarge number of problemsrelated to using current UML's extensibility mechanisms.

The X-Syndrome can be best observed whenever you try to model a new kind of con-
cernin UML that is not already supported. A typical process for extending UML looks like
the following:

1. You find amodel element that is most similar to the kind of construct you would like
to support in UML

2. You extend this model element (e.g., by defining a new stereotype)

3. You neutralize or “deactivate” all features you do not need (e.g., by defining OCL!
constraints—using OCL you can only restrict; however, does this cover al your neu-
tralizations?)

4. You add all the additional features you wish to have (e.g., by defining new tagged val-
ues)

5. Eventually, you get anew model element that resembles what you are |ooking for, but
you might not succeed in getting exactly what you want!

Summing up, UML currently forces modelers to inherit from elements that contain features
they don’t need.

We believe that the X-syndrome is a direct consequence of the rigid hierarchy of the
UML metamodel. In UML, primitive model elements and groups thereof suffer from the
predominance of Classifiers and predefined diagram types. elements of the UML meta-
model can be composed and decomposed along a few dominant dimensions only; composi-
tions and decompositions along other dimensions are not supported.

1.The Object Constraint Language, described in the UML specification [Omg01].

73

UML Space — Overcoming the X-Syndrome

5.4.3 UML Space — Overcoming the X-Syndrome

In addition to the problem described above, it is aso difficult to use and understand the
standard UML specification [Omg01]. Even experienced users of UML cannot easily find
out the exact meaning of certain model elements from the standard specification, because
the information pertaining to a specific element is scattered throughout the whole document
(which is about 700 pages). Typically, information on ameta-classis found in different dia-
grams, associations, and parent meta-classes, etc.

Figure 5.5 shows an example of the kind of information an experienced user of UML
would need to decide whether a specific model element is appropriate for hisher modeling
needs or not.

This exampl e describes the Classifier meta-class, including its attributes, parents, scope
of definition, children, meta-diagrams by which it used, aswell as therolesit plays.

Qassifier
has attribute
- association
- classifierlnState
- classifierRole
- collaboration
- feature
- instance
- obj ect Fl owSt at e
- power t ypeRange
- speci fi edend
- typedFeature
- typedPar arret er
is child of
- General i zabl eEl enent
- Nanespace
i's owned by
- Core Package
is parent of
- Actor
- Artifact
- dass
- QassifierlnState
- QassifierRol e
- Conponent
- DataType
- Interface
- Node
- Signal
- Subsyst em
- UseCase
is used by

74

The PCS Framework

- Activity G aphs Package

- Col | aborations Package - Interactions
- Col | aborations Package - Roles

- Common Behavi or Package - | nstances

- Common Behavi or Package - Signal s

- Core Package - Backbone

- Core Package - Qdassifiers

- Core Package - Rel ationshi ps

- Mbdel Managenent Package

- Use Cases Package

acts as (roles)
- base
- classifier
- owner
- partici pant
- powertype
- representedd assifier
- specification
- type

Figure 5.5: The Description of the UML Metaclass Classifier

Normally, this information about the Classifier meta-class is scattered across many pages of
the standard specification document, and there is no way to gather it quickly and efficiently.
Techniques and tools are needed to facilitate the exploration and navigation within the space
of UML concepts.

UML Space is the PCS Framework mechanism for realizing an architecture concern
space. In general terms, a concern space represents a conceptual repository that contains all
relevant information related to a set of different viewpoints. A concern space takes a set of
viewpoint schemata as an input and refines the information contained in each individua
viewpoint schemato help define its viewpoint language.

Using an architecture concern space, the PCS Framework allows one to organize,
recursively and incrementally along different dimensions, the set of all concerns from the
perspectives of multiple viewpoints; it also allows one to specify the relationships between
the dimensions and maintain changes in the concern structure. Therefore, we consider a
concern space as atool for reifying a software architecture into a“multi-dimensional model
of systems’—that is, the set of all systems that can be built from the same software architec-
ture.

5.4.3.1 How to Create a UML Space

Creating a UML Space alows one to overcome many problems related to development of
extensions to UML [BGJ99][GHO02], including the X-Syndrome. UML Spaces provide an

75

Achieving Architectural Design by Concerns

effective and flexible approach to supporting domain-specific modeling in UML, and devel -
oping different viewpoint languages and profiles of UML. We found useful to go along the
following steps when developing a UML Space:

1. Create a conceptual repository to which you can add the UML metamodel
2. Provide support for exploring and navigating across the UML Space
3. Fragment the UML metamodel to get independent units of manipulation; this allows
you to achieve multidimensional separation of concerns, by acquiring the necessary
flexibility to combine units of the metamodel along multiple dimensions of concern
4. Compose different units contained in the UML Space to build the viewpoint language
which you wish to have
5. Defragment the resulting metamodel (i.e., recompose the units) to build the model
elements or meta-classes of your new language
6. Inherit from the smallest element of UML to make your viewpoint language become a
variant or profile of UML
7. Sorethe new metamodel as an extension to UML or anew UML profile
To validate this approach, we have developed a UML Space for Aspect-Oriented Modeling
that is used to model component interactions. See “ Aspect-Oriented Construction PCS” on
page 83. Furthermore, to provide support for exploring and navigating across the UML
Space, we have developed a Topic Map for UML 1.5 that will be available very soon to the
UML community at the Internet address given in [US03]. As an example, the Classifier
description shown in figure 5.3 was generated from this Topic Map for UML.
Because of their extensive use of unitsin the UML metamodel, we believe that UML
Spaces provide a good linguistic toolkit to integrate concern-oriented architecture descrip-
tions with standard UML models, including UML extensions to support ADL constructs.

5.5 Achieving Architectural Desigh by Concerns

The suitability of any formalism to support concern-oriented architecture description
depends on its capabilities to facilitate separation, representation, and reasoning about mul-
tiple kinds of concerns involved in software development.

To address the achievement of architectural design by concerns, this section concen-
trates on two points. mechanisms for separating architectural concerns and linguistic sup-
port for expressing those concerns.

5.5.1 Mechanisms for Separating Architectural Concerns

Up to now, we have introduced viewpoints as a mechanism for separating architectural con-
cerns. We have also demonstrated the use of viewpointsin arecursive and incremental way.
This approach provides a great flexibility to produce architectural models from a given

76

The PCS Framework

viewpoint and to transform these models into further models, incrementally and in a con-
cern-oriented way. However, it does not address adequately the representation of those con-
cerns that crosscut multiple viewpoints, causing consistency problems among views (recall
that in IEEE-Std-1471, each view conforms only to one viewpoint).

To solve this problem, we need more flexible mechanisms for separating concerns in
software architecture. This leads us to examine the role of multidimensional separation of
concernsin software architecture.

An important goal of multidimensional separation of concernsis to alow support for
“ilities” throughout the software lifecycle. Thus, it represents a compelling means for
achieving architectural qualities (as introduced by [BCK98]). Examples of “ilities’ sup-
ported by MDSOC, and which are referred to as architectural qualities, are the following:

Understandability. Lack of understanding what concerns are relevant to a software archi-
tectureis the cause of the failure in most software projects. Good understanding of architec-
tural design involves comprehension of various concerns of importance to an architect.
Using MDSOC, software architects can focus on one concern at a time and document its
representation in an architecture description. This facilitates achievement of architectural
design by concerns.

Reusability. Achieving architectural design by concerns alows one to produce concern-
oriented models of the software architecture and to reuse them at will, when constructing
large-scale systems.

Traceability. Traceability between concerns and the elements (or units) in the body of soft-
ware that represent those concerns [CHO+99]; using MDSOC, developers can find, at any
time, all unitsthat are relevant for agiven concern.

M odifiability. Modifiability is essentially a function of the locality of any change
[BCK98]. It defines the circumstances under which an architect has to limit the impact of
change. MDSOC helps provide means for restricting the impact of change in software.

Evolvability. Limitation of change allows architects to address new concernsin their soft-
ware architectures or change the design of existing concerns by modifying the correspond-
ing concern-oriented models.

Integrability. Integrability is an important driving force in any concern-oriented software
architecture, because it stands for the ability to make separately devel oped concern-oriented
models work together. MDSOC refers to this as a mechanism for composing different mod-
ules.

While these advantages are critical to building software architectures, realizations of
separation of concerns found in software architecture practice are very limited. There is a
complete lack of mechanisms for advanced separation of concerns in the software architec-

77

Linguistic Support for Expressing Architectural Concerns

ture community. Software architects should learn from work done in the aspect-oriented
software development community.

The path we follow in this dissertation is aligned with an important observation by
Clements and Northrop: “aspect-oriented programming is an architectural approach
because it provides a means for separating concerns that would otherwise affect a multitude
of components that were constructed to separate a different, orthogonal set of concerns
([CNO2], pp.68).”

Furthermore, the implementation of MDSOC for software architecture, as proposed
by the PCS Framework, goes beyond aspect-oriented programming. We adopt aspect-ori-
ented modeling (AOM) and extend it to cover the notion of reification of concerns into soft-
ware. Thus, our work does not just address AOM to complement object-oriented modeling
techniques with aspects. Instead, the PCS Framework focuses on the idea of design by con-
cerns which leads to an extension of AOM to cover concern-oriented modeling.

5.5.2 Linguistic Support for Expressing Architectural Concerns

As mentioned in section 5.4, UML is quite inflexible. Achieving multidimensional separa-
tion of concerns for UML requires one to break the tyranny of dominant decompositions.
This can be achieved by model fragmentation/de-fragmentation to create more flexible
design languages (See “UML Space — Overcoming the X-Syndrome” on page 74.) What
we need now isto focus on design by concerns.

5.5.2.1 Tyranny of Dominant Decompositions in UML

Current UML allows one to separate certain kinds of concerns along individual dimensions
to achieve unidimensional separation of concerns. For example, using UML you can dis-
criminate different responsibility concerns and reify them into different Classifiers (e.g.,
Classes, Interfaces and Use Cases).

Using Classifiers, amodeler is able to separate the specification of a given responsi-
bility concern from its realization, by means of reification of the given concern into model
elements—an interface and a class realizing that interface. Such model elements can be
described at two different levels of abstraction, specification and realization (covering both
design and implementation). If we consider the specification, design and implementation as
three different levels of abstraction, then we can say that the given responsibility concern
pertainsto all three levels, but what does this mean? Does this responsibility concern cross-
cut the levels?

Indeed, responsibility is a dimension of concern; it should not be confused with the
individual concerns that belong to it. Examples of specific responsibility concerns include:
CUSTOMER MANAGEMENT, BOOK MANAGEMENT, and TRADING. These concerns can be rei-
fied into descriptive units.

78

The PCS Framework

Figure 5.6 shows an example of how the TRADING concern can be reified into the pub-
lic operations, buy() and sell(). The reification of the CUSTOMER/PRODUCT MANAGEMENT CON-
cern is more complicated because the concern itself can be seen as a problem with two
aspects: ASSORTMENT and PERSISTENCY. These aspects represent each different concern that
can be addressed separately.

TRADING ASSORTMENT PERSISTENCY

Trader Collection Storage

+buy() + select() + store()
+sell() + exclude() + retrieve()

Bookstore Warehouse University Pharmacy

+addCustomer() +addGoods() +addCourse() +processPrescription()
+getBook() +performStockTake() +createLab() +mixMedecin()

Figure5.6: Unidimensional Separation of Concerns Across Different Levels

As exemplified in figure 5.6, the ASSORTMENT concern is reified into two operations:
select(), exclude(); the PERSISTENCY concern is also reified into store() and retrieve).

To redlize design by concern, the descriptive units reifying each of the concerns
(TRADING, ASSORTMENT and PERSISTENCY) must be encapsulated separately. This is
achieved by organizing the units into three different interfaces called Trader, Collection and
Storage, respectively. This is concern-oriented modeling in the context of unidimensional
separation of concerns.

While concern-oriented modeling can be achieved in this context, using standard
UML, it does not work in many other situations where we have to deal with multiple dimen-
sions. A well-known example of a development method based on unidimensional separa-
tion of concernsis the Responsibility-Driven Design method [WWW90].

One problem with concern-oriented modeling for unidimensional separation of con-
cernsis scattering and tangling.

5.5.2.2 Scattering of Concerns

Consider the example of figure 5.6. Through the realization relationships between the inter-
faces (Trader, Collection and Storage) and the design classes (Bookstore, Warehouse, University, and
Pharmacy), the realizations of the responsibilities separated previously are scattered across
all classes. Consequently, if for some reason, an argument within asignature of an operation
declared in one of the interfaces changes, the change may become invasive, leading to
maintenance problems.

79

Integrating Architecting and Software Development

5.5.2.3 Tangling of Concerns

In the example of figure 5.6, scattered responsibility concerns overlap and become entan-
gled with each other and with the features of the design classes.

5.5.2.4 Crosscutting Concerns

Figure 5.7 shows a different view of the scattering and tangling discussed above. It moti-
vates the need for concern-oriented modeling, while demonstrating the inability of UML to
support advanced separation of concerns. This expresses the crosscutting effect that results
from the unidimensional separation of concerns achieved through the use of responsibility-
driven design.

Bookstore University Pharmacy
E;gmibiliti% +addCustomer(raCouse() || +processprescipion)
) +sell() :::ﬂ'g TRADING
ge?pscf:stilgliies I?;:ﬁﬁ‘d(lo 35&1%0 ASSORTMENT
If'e?,ﬁ?eo +refrieve() :f;?:ieeeeo +retrieve() PERSISTENCY

Figure5.7: Structural Crosscutting

To realize multidimensional separation of concernsin UML, we need to make UML support
the notion of perspectival elements. We refer to such per spectival model elements as model
slices that can be created by using a UML Space. Model slices can be used for representing
the reifications of individual (crosscutting and non-crosscutting) concerns in concern-ori-
ented models. Many concrete examples of model slices are given in the next chapters.

5.6 Integrating Architecting and Software Development

The PCS Framework addresses integration between software architecture building and soft-
ware development through the realization of a general-purpose software engineering
approach (MDSOC), a standard recommended practice for architecture description (IEEE-
Std-1471) and a standard modeling language (UML). By combining these elements to sup-
port separation of concerns at multiple levels, smultaneously, the PCS Framework shows
that the creation of software architectures should not be addressed in isolation. Software
architectures are created, described and elaborated from different perspectives at the same
time. The combination of MDSOC, UML and |EEE-Std-1471 has been extensively dis-
cussed throughout this chapter with several examples. More practical examples are shown
in the validating chapters.

The description of any particular PCS is based on the use of a viewpoint schema as
shown in figure 5.3 (see for example, “Aspect-Oriented Construction PCS”).

80

The PCS Framework

5.7 Using UML

As you might have observed, we have been using UML notions throughout this chapter. In
particular, supporting the UML Space within the PCS Framework allows one to effectively
use UML to quickly create viewpoint languages and use them to provide concern-oriented
descriptions of software architectures.

5.8 Final Remarks

This chapter introduced the PCS Framework. It provided an approach to implement two
conceptua frameworks, the |EEE-Std-1471, and multi-dimensional separation of concerns
(MDSOC). The PCS Framework provides means for integrating these two frameworks by
using the Unified Modeling Language (UML). Furthermore, it introduces the notion of con-
cern-oriented modeling to support the paradigm of architectural design by concerns. The
concern space realization proposed by the PCS Framework is called UML Space.

81

Final Remarks

82

Aspect-Oriented Construction PCS

Chapter 6:
Aspect-Oriented Construction PCS

This chapter presents the concern-oriented approach to software architecture from the per-
spective of aspect-oriented software development, using multi-dimensional separation of
concerns (MDSOC). It describes a perspectival concern-space, called Aspect-Oriented
Construction PCS. This specific PCS demonstrates how MDSOC helps deal with software
complexity by supporting the composition of independent software components along differ-
ent interaction concerns. The chapter introduces a UML Space for Aspect-Oriented Model-

ing.

6.1 Viewpoint Name

Aspect-Oriented Construction Viewpoint

6.2 Sources

Overview Information. The Aspect-Oriented Construction viewpoint provides the ability
to compose software components that have been separately implemented using, possibly,
different technologies.

Summary. This viewpoint presents an aspect-oriented technique to create software connec-
tors based on modeling different kinds of interaction.

Context. Thisviewpoint is part of the Aspect-Oriented Construction PCS.
References. [GMW97] [MMPOQ]
History of change. None.

Glossary. None.

6.3 Concerns

The major concerns for the Aspect-Oriented Construction PCS are the following:
Interaction, modifiability, reusability, understandability and decoupling.

83

Stakeholders

6.4 Stakeholders

The stakeholdersinclude: architects, maintainers, designers, developers and programmers.

6.5 Rationale

1. Developing software systems by composing existing independent components. Archi-
tects have to reuse existing components to build new systems.
2. Enterprises need to adopt component-based software development to build new com-
ponents faster. The architecture must allow oneto:
* plug-in new components into existing environments
* respect time-to-market constraints
3. Managers said: We need to adopt the aspect-oriented software development along
with software architecture.

6.6 Architectural Problems

6.6.1 Incentive Aspects

To explain our approach to achieving multidimensional separation of concerns in UML,
consider the notion of collaboration as defined in standard UML: “ a Collaboration contains
a set of ClassifierRoles and AssociationRoles, which represent the Classifiers and Associa-
tions that take part in the realization of the associated Classifier or Operation. The Collab-
oration may also contain a set of Interactions that are used for describing the behavior
performed by Instances conforming to the participating Classifier Roles.” [OmgO01]

The structure resulting from this definition can be illustrated as shown in figure 6.1.
The figure contains two ClassifierRoles, each of which is connected to an AssociationRole
through an AssociationEndRole. However, the UML metamodel is based on object-oriented
modeling techniques. In object-orientation, things that happen within objects can be
described and reasoned about. But what occurs between objectsis not well understood. For
instance, UML does not allow associations between classes to exist independently of the
classes between which they establish a relationship. This enslavement of Associations in
UML is reflected on AssociationRole because of the inheritance relationship between both
(page 2-113 in [OmgO01]). Furthermore, while AssociationEndRole and ClassifierRole represent
two metaclasses, the relationship between them is treated as a second-class citizen. There-
fore, the attachment between these roles cannot be expressed.

We believe that if we understand how to attach ClassifierRoles t0 AssociationEndRoles—
which are part of an AssociationRole—we can express ClassifierRoles and AssociationRoles inde-

84

Aspect-Oriented Construction PCS

pendently from one another, and treat both as first-class citizens in Collaborations. Lacking
support for expressing ClassifierRoles and AssociationRoles i ndependently, we will not be able to
understand the behavior that cuts across the boundaries of Classifiers and Associations playing
these roles respectively.

Behavioral AssociationRole (AR) Behavioral

— Crosscutting Crosscutting —
ClassifierRole ¥ L\ /I ¥ ClassifierRole

Attachment o Attachment
AssociationEndRole (AER)

Com putation Interaction Computation
Concerns Concerns Concerns

Figure 6.1: Structural Illustration of Key Elementswithin aUML Collaboration

Supporting explicit separation between ClassifierRoles and AssociationRoles would allow us to
reify computation and data store concerns within ClassifierRoles, and reify interaction con-
cerns by means of AssociationRoles. Unfortunately, AssociationRole is based on (i.e., inherits
from) Association, and Association inherits from GeneralizableElement and Relationship, which in
turn extend ModelElement. This leads to the X-Syndrome, as it forces an AssociationRole to take
over al the features from all the super meta-classes including those that are not desired. To
avoid this, another perspective on AssociationRoles is required.

6.6.2 Towards Perspectival Associations

We believe that taking another perspective on an AssociationRole will allow one to understand
what happens between instances of different Classifiers, and thus to express various aspects of
an interaction among them. Figure 6.2 addresses the structural crosscutting shown in
figure 6.1 and figure 5.7.

Figure 6.2 describes a collaboration between two instance-level ClassifierRoles, Client
and Storage. In particular, it focuses on what happens at the ends of and within the links that
connect the ClassifierRoles. For example, the point at which a Client invokes the retrieve()
method on an instance of a Classifier (bs, wh, and ph) playing the role Storage (1) joins the
point at which the retrieve() method starts executing within one of these instances (2). The
call on the retrieve() method made at (1) can be executed at several points (2). As a conse-
guence, the concept of perspectival associations allows us to understand and express how
individual calls can crosscut the boundaries of different links as well as instances of Classifi-
ers attached to those links.

The point at which to get the value of avariable (i.e., an attribute) (3) joins the point at
which that variable is de-referenced (4). Also, the point at which to set avalueto avariable
(5) joins the point at which the value is assigned to that variable (6).

Similarly, the point at which software causes, raises or throws an exception (7) joins
the point at which that exception is handled (8). The points through which the control flow
passes illustrate our join point model which is based on the cause-effect principle. For

85

Decisional Aspects

example, a call (a cause) triggers an execution (an effect). In this model, we distinguish
between implicit and explicit join points. An explicit join point is a point in the software at
which a new branch of the control flow starts. An implicit join point is the point at which
the newly created branch of the control flow ends.

| bs/Storage:
Bookstore
__| whistorage:
IClient Warehouse
ph/Storage:
Pharmacy
Key: R=§ = e Sy

Explicit Join Point Implicit Join Point Control flow relation between Join Points The join point model
(with Control passing through it)

Figure 6.2: Behavioral Illustration of Key Elements of a UML Collaboration

6.6.3 Decisional Aspects

The decisional aspects for the Aspect-Oriented Construction PCS are:
¢ Theneed for amechanism to support concern-oriented software composition
¢ Theneed for supporting aspect-oriented modeling
¢ Theneed for amechanism to support reifying interaction concerns

6.6.4 Resultant Aspects

The resultant aspects for the Aspect-Oriented Construction PCS are:
¢ Theability to reify interaction concerns into software connectors is satisfactory
« The ability to compose interaction concerns without using the aspect mechanism is
unsatisfactory
« Theability to support aspect-oriented modeling is satisfactory
« Theability to support model fragmentation and de-fragmentation is noteworthy. Tool
support is very much required

86

Aspect-Oriented Construction PCS

6.6.5 UML Extensions for Aspect-Oriented Modeling

The UML extensions for aspect-oriented modeling presented in this section are based on the
use of MDSOC in building the UML Space. As mentioned in section 5.4.3, we copy the
UML metamodel into the UML Space and fragment it into primitive units (attributes, ele-
ments, features, etc), which we compose to build new model elements for aspect-oriented

modeling.
7777777777777777777777 Extension
¢ore -~ >/ Mechanisms
N SN - 7
/

~ -
N - _ e

\ ~ - /
N \\\ /// e
N X\ pata Types s
\\ //
Foundation \, /

\ z

N s
N /

\ /
., /

\\\ _l ///
\[Aom [Aom
AOM Foundation Core Data Types

Figure 6.3: High-Level Package View of the UML Space for AOM

The new model elements are defined within the package called AOM Foundation (figure 6.3).
This package is decomposed into two subpackages called AOM Core and AOM Data Types.

The figure further illustrates the relationships between the AOM Foundation and the
UML Foundation packages. It also shows the internal structure of each of those packages. All
relationships between the packages shown in this diagram are UML dependency relation-
ships.

The AOM Core package specifiesthe basic AOM constructs necessary to model aspect-
oriented software. The AOM Data Types package defines basic data types.

We will first give abroad overview of the extension packages, followed by a detailed
description of the abstract syntax of the new model elements.

6.6.5.1 AOM Core: The Aspect-Oriented Construction Viewpoint Language

This package is a fundamental subpackage that composes the AOM Foundation package. It
defines the basic metamodel constructs needed for the devel opment of aspect-oriented mod-
els, and can be extended as the AOM community gains more experience.

The following section presents very briefly the abstract syntax. The well-formedness
rules and detailed semantics of the AOM Core package have been left out for space reasons.

87

UML Extensions for Aspect-Oriented Modeling

6.6.5.2 Abstract Syntax

The abstract syntax for the AOM Core package is expressed in graphical notation, and is
decomposed into three different diagrams. For readability reasons, the model elements are
described in alphabetical order just after the diagram that contains them. Figure 6.4 shows
the model elements that form the AOM Core metamodel. This metamodel includes two sub-
diagrams that are represented each in a separate slice (dynamic and static crosscutting
slices)

ClassifierRole Element
(from Collaborations) (from Core)

0.1
-]
Attachment * | child 0..1 | parent
|—| comnosi&ionl JoinPoint] PerspectivalAssociation N lissiien
- o (from Core)
——— 1 i
ConnectionPoint * ¥ innerType
perCP « | name:Name
isAbstract:Boolean augmented | 1.* + | introduced
isAbstract : Boolean 0.1 kind: InstantiationKind
0.1 isLeaf : Boolean
== [name : Name . O * O *
context | Parameter *
(from Core)
1 *
Y uses X
*
*
PerspectivalBehavior Feature
- (from Core)
body:ProcedureExpression *
when : ExecutionKind
LI
Dynamic crosscutting slice dominates Static crosscutting slice

Figure 6.4: The UML Spacefor AOM — A Low-Level View of AOM Core

Per spectivalAssociation. A perspectival association isamechanism for representing inter-
action aspects among agroup of collaborating parts. It is similar to an AssociationRole viewed
from a specific perspective that focuses on identifying and reifying crosscutting concerns
into a separate module. To avoid the X-Syndrome, PerspectivalAssociation extends the UML
meta-class Element, which is the smallest element within UML. Moreover, it consists of a
collection of ConnectionPoints, PerspectivalBehavior, and Introductions. It may also declare features
and inner types. A PerspectivalAssociation can be related with another PerspectivalAssociation in
precedence or inheritance relationships.

ConnectionPoint. A ConnectionPoint is an element of a PerspectivalAssociation that provides a
mechanism for composing JoinPoints to which PerspectivalBehavior can be added. A Connection-
Point exposes its context in terms of Parameters that can be used in the body of the associated
PerspectivalBehavior.

Attachment. An Attachment is a mechanism for applying the specification of a ConnectionPoint
to the context of an associated ClassifierRole. This context is obtained from the relationship

88

Aspect-Oriented Construction PCS

between the ClassifierRole and its base Classifiers. We use this because UML does not treat roles
as explicit types.

Per spectivalBehavior. PerspectivalBehavior defines crosscutting behavior that can be exe-
cuted at the associated ConnectionPoints. The additional behavior can be executed at different
pointsin time (before, after, or around) relative to the moment at which the associated Con-
nectionPoint is reached.

Introduction. An Introduction provides support for structural amendments. For example, it
allows one to declare supplementary behavioral and structural features, and to modify an
existing hierarchy.

6.7 Resultant View

The resultant view is a partial description of a software architecture. Thisis best explained
by means of an example: the Traffic Light Control System.

The following describes a running example of an application of the UML Space for
AOM. It presents an aspect-oriented solution to the traffic light problem:

This problem consists of developing a software system that should be built by com-
posing different types of components developed at different times by different people: four
traffic lights, and atimer. The requirements of the system are quite smple:

« Thetimer component is responsible for triggering an event at regular time intervals

« A traffic light component should always switch on the same light asits opposite peer

« A traffic light component should never show the same light asits direct neighbors

« A traffic light component should not maintain any knowledge of the state of its peers
An important dimension of the design addressed in the solution to this problem is the inter-
action among individual components. The solution does not describe the components them-
selves; it rather focuses on the roles played by those components within the context of the
interaction. Figure 6.5 shows a perspectival association between components’ roles that is
based on the architectural configuration model shown in figure 6.7. It describes an aspect-
oriented model for an event connector. This event connector consists of two Classifier-
Roles, called Producer and Consumer, that are attached via two ConnectionPoints (shown as
black circles), named as newState and newConsumer. This event connector provides a flexible
way of making components communicate without any coupling between them. This is
achieved by modeling the EventConnector as a Perspectival Association (shown as a dashed
ellipse) that modularizes the interaction concerns among the participating components.
These interaction concerns are mainly related to the adaptation of components to be com-
bined and configured to build a new application. They include the establishment of inter-
connections among components, the maintenance of those interconnections, and the
mediation of the events exchanged between the participating components

89

Identifying Causes and Effects for the EventConnector

- -~

/Producer IConsumer

EventConnector P
updateState(); No - changesState();

7 ~
newStale‘ <<persassociation>> \newConsumer

Figure 6.5: A Perspectival Association between the Component Roles

The connector model shown in figure 6.5 alows us to overcome the limitations stated in
section 5.5.2 for two reasons. First, it alows one to modularize multiple interaction con-
cerns; and second, the use of roles instead of components allows us to overcome the limita-
tions stated in section 5.5.2.

6.7.1 Identifying Causes and Effects for the EventConnector

The EventConnector mediates events among the interacting components based on the cause-
effect principle introduced earlier.

Cause Effect
When the producer triggers a state changeinform consumers to change their state.
When a consumer is created... ...keep areference on it.

Figure 6.6: The Cause-Effect Principle Applied on the EventConnector

Figure 6.6 shows atable that illustrates the cause-effect principle applied on the example of
thetraffic light system. The content of the table can be interpreted as follows. When a com-
ponent playing the Producer role triggers an event (at predefined time intervals), each of the
components playing the Consumer role is instructed to change its internal state. In order to
deliver events to components playing the Consumer role, references to those components
must be obtained at their creation time.

6.7.2 Designing the EventConnector

An aspect-oriented way of accomplishing the causes and effects identified in section 6.7.1
consists of the following two steps: 1) using ConnectionPoints to capture the causes; and 2)
realizing the effects within the body of the PerspectivalBehaviors associated to the Connec-
tionPoints.

Figure 6.7 describes the main structure of the Event Connect or. It provides an elabo-
rated view of the model (depicted in figure 6.5) that gives details on both the Connection-

90

Aspect-Oriented Construction PCS

Points (previously shown as black circles), and the PerspectivalAssociation (previously
shown as a dashed ellipse)

<< ConnectionPoint >> —@ << Persassociation >> "‘o << ConnectionPoint >> -9

newState EventConnector ~= newConsumer

Context 1 ConnectionPoint ! Context
n nsumer - IConsumer cons
newState

Composition PerspectivalBehavior pisg)%(()énposi[ion
" R this(cons;)
execution(* Producer.updateState()) after (Consumer c) : newConsumer(c) execution(Consumer.new(..)

after () : newState()

Figure 6.7: Static Structure of the EventConnector

6.7.2.1 Capturing the Causes

Capturing the causes drives the design of the ConnectionPoints. The EventConnector has two
ConnectionPoints that are: newState and newConsumer. The structure of a ConnectionPoint is
shown with the <<ConnectionPoint>> stereotype and has two compartments: one for exposing
the context, and another one containing the JoinPoint composition. We use the AspectJ
notation as language for expressing the JoinPoint composition.

A major reason for designing the newState ConnectionPoint is to capture the exact
moment at which the state changes within the Producer (i.€., when the updateState() method is
invoked). Similarly, the newConsumer ConnectionPoint detects the creation of components
playing the Consumer role, and it exposes a reference to that new component within its con-
text.

6.7.2.2 Realizing the Effects

The realization of the effects drives the design of the PerspectivalBehavior. Thisis mainly
achieved by determining: 1) when the body of this PerspectivalBehavior should be exe-
cuted; and 2) which ConnectionPoint is associated with this PerspectivalBehavior. Right
now, we are using the AspectJ notation for advice as language for expressing the signature
of a PerspectivalBehavior.

Figure 6.8 shows two pieces of Java code implementing the bodies of the Perspectiv-
aBehaviors associated with the newstate and the newConsumer ConnectionPoints.

Note that the body of the perspectival behavior is not shown on the design illustrated

infigure 6.7, asit is an implementation artifact.
java.util.lterator it = consumers.iterator();
while (it.hasNext()) {
((Consumer) it.next()).changeState();

}
Figure 6.8: Body of the Perspectival Behavior Associated with newState

Figure 6.8 shows the piece of Java code describing the notification of Consumers on state
changes within the body of the perspectival behavior associated with newState.

91

Designing the EventConnector

if (cons !=null) {
consumers.add(cons);

}
Figure 6.9: Body of the Perspectival Behavior Associated with newConsumer

Similarly, figure 6.9 shows the Java code within the body of the perspectival behavior asso-
ciated with newConsumer. It describes how to store the reference to the newly created Consum-
ers into an internal list container.

6.7.2.1 Refining the Design of the Connector Model

Figure 6.10 presents a detailed design of the connector model given in figure 6.5. This fig-
ure shows explicitly the attachments between the ConnectionPoints and ClassifierRoles.
The attachment relates the specification of a given ConnectionPoint with a component via
the role played by that component. For example, the attachment to the left uses the Join-
Point composition of the newstate ConnectionPoint in the contextual relationship between
components and their Consumer roles.

Additional information in figure 6.10 is the declaration of thelist container needed by
the EventConnector to store the Consumers.

/Producer IConsumer

updateState(); changeState();
O << atachment >»

| <<attachment>> EventConnector

<< ConnectionPoint >> -0 Field 1 << ConnectionPoint >> -9
newState -consumers: List newConsumer

Context ConnectionPoint Context

mer
newConsume Consumer cons
newState

Composition Composition
this(cons) &&

execution(Consumer.new(..))

PerspectivalBehavior
execution(* Producer.updateState()) after (Consumer c) : newConsumer(c)
after () : newState ()

Figure 6.10: The Complete Design of the EventConnector

6.7.3 Mapping the Aspect-Oriented Model to an AspectJ Program

This section describes how to map our connector model onto an aspect (as defined in
AspectJ) and introduces a running example that evaluates our contribution. An important
issue in the mapping of the connector model onto an AspectJ program is to describe how to
express the Producer and Consumer roles in the program code. One way to address this issue
consists of allowing arbitrary components to play these two roles. Thisis currently done by
hand.

To map the connector design to an AspectJ program, we proceed as follows: each
ConnectionPoint is mapped onto a pointcut with the same name as shown in the code of
figure 6.10. Each PerspectivalBehavior is realized by a separate advice whose bodies con-

92

Aspect-Oriented Construction PCS

tain the code given in figure 6.8. Finally, the Perspectival Association itself is mapped onto
an aspect named Event Connect or that contains the pointcuts and advice declared above, as
well asaprivate list member.

aspect EventConnector {
private java.util.List consumers = new java.util.LinkedList();

pointcut newConsumer (Consumer cons) :
this(cons) &&
execution(Consumer.new(..));

pointcut newState () :
execution(* * Producer.updateState());

after (Consumer cons) : newConsumer(cons) {

if (cons !=null) {
consumers.add(cons);

}
after () : newState() {
java.util.lterator it = consumers.iterator();

while (it.hasNext()) {
((Consumer) it.next()).changeState();

Figure 6.11: Implementation View of the EventConnector Aspect

6.8 Final Remarks

This chapter presented a case study on software composition by interaction concerns. It
introduced an approach to building complex software systems by using aspect-oriented con-
nectors. It provided a UML Space for aspect-oriented modeling which allows us to model
interaction aspects for adapting independent components to a new environment. The
approach proposed in this chapter allows us to express different aspects of software interac-
tions into aspect-oriented models. However, one of the limitation of this approach is related
to the composition of interaction aspects themselves. Further research is required to come
out with a more appropriate language for modeling PerspectivalBehavior.

Another limitation is related to the assignment of roles to components. This is cur-
rently done manually; the provision of mechanisms for enabling dynamic assignment of
roles to component requires further research..

93

Designing the EventConnector

%4

On-Demand Remodularization PCS

Chapter 7:
On-Demand Remodularization PCS

This chapter presents an approach to implementing MDSOC for UML using the projection
mechanism for reifying concerns into software in order to achieve remodularization of soft-
ware on-demand. It introduces techniques for achieving architectural design by concerns,
using concer n-oriented modeling. Moreover, the chapter describes a concern-oriented pat-
tern, called On-Demand Remodularization pattern.

7.1 Viewpoint Name

On-Demand Remodularization Viewpoint

7.2 Sources

Overview I nformation. The On-Demand Remodularization (ODR) viewpoint provides the
ability to remodularize a software-intensive system according to new architectural con-
cerns, non-invasively, and without eliminating encapsulations based on prior decomposi-
tions.

Summary. The ODR viewpoint presents a software architecture recovery approach that
aims at reconstructing aview on the Java Drag’' n’ Drop architecture as-built. This viewpoint
is part of the On-Demand Remodularization PCS. Using this viewpoint allows us to focus
on two aspects of software architecture recovery:

¢ evaluating the usability of the Java Drag’ n' Drop architecture

« remodularizing various architectural concerns without invasive change

Context. This viewpoint is part of the On-Demand Remodularization PCS.
References. [TOW+99] [TOO0Q]
History of change. None.

Glossary. None.

7.3 Concerns

The major concerns for the On-Demand Remodul arization PCS are the following:
Integrability, modifiability, reusability, usability, understandability and decoupling.

95

Stakeholders

7.4 Stakeholders

The stakeholdersinclude: architects, managers, maintainers, designers, application develop-
ers and programmers.

7.5 Rationale

1. Analysis of the system reveals the need for evolution in the software architecture.
Architects have recognized maintenance problems
2. New organization of the system without invasive change. The architecture must allow
oneto:
» Add new concerns without worrying about existing modularization
* Preserve existing rel ationships among concerns
3. Managers said: Itistime for major challenges in the enterprise

7.6 Architectural Problems

This section describes different aspects of an architectural modeling problem. These aspects
are described in the following sub-sections.

7.6.1 Incentive Aspects

The incentive aspects for the On-Demand Remodularization PCS are:

¢ Theneed for representing concerns before they can be populated with units

« Theneed for representing concerns together with the units that pertain to them

« Theneed for expressing interactions among units pertaining to a particular concern as
a separate model dlice

¢ Theneed for expressing the static structure of a group of units pertaining to a particu-
lar concern as a separate model slice

* Theneed for expressing an aspect mechanism as a concern-oriented model

7.6.2 Decisional Aspects

The decisional aspects for the On-Demand Remodul arization PCS are:
¢ Theneed for amechanism to support model fragmentation and de-fragmentation
¢ Theneed for amechanism to support concern reification
¢ Theneed for expressing relationships among concerns

96

On-Demand Remodularization PCS

7.6.3 Resultant Aspects

The resultant aspects for the On-Demand Remodul arization PCS are:
« Theability to reify concernsinto units is satisfactory
« Theability to compose concerns without using the aspect mechanism is unsatisfactory
¢ The ability to support on-demand remodularization of existing software systems is
satisfactory
¢ Theability to support model fragmentation and de-fragmentation is noteworthy. Tool
support is very much required

7.7 Relationships Among Concerns

None.

7.8 Resulting View

This On-Demand Remodularization view is a collection of concern-oriented models that
provide a partial description of the Java Drag' n’ Drop architecture. These concern-oriented
models can be used to express concerns at different levels:

Concern at the viewpoint level. This shows a concern representation that contains only the
name of the concern. Reifications are not shown at this level, but additional documents
might be attached to give more description of the concern. Figure 7.1 shows an example of
such a concern representation.

T
! PERSISTENCY |

Figure 7.1: Concern-Oriented Model as a Means for Concern Representation

Concern at the view level. This shows only reifications of concerns into units. There are
three options to show concerns at this level. These are shown in what follows.

Figure 7.2 shows the variant that provides a solution to the limitations of UML as
described in figure 5.7. The names of the concerns (e.g., TRADING) are shown together
with the units that reify them.

97

The Java Drag & Drop Architecture Case Study

TRADING i ! ASSORTMENT | ! PERSISTENCY E i
FeTTTTTTTTT [I |
1 +buy() ! | +select() ! | +store() |
1 +sell() ! | +exclude() ! | +retrieve() !
[} [} i I 1

Figure 7.2: Concern-Oriented Model as a Means for Concern Reification

Figure 7.3 shows model dlices that together build a concern-oriented model. Several exam-
ples of dices are given below. Model dices are UML-based hyperslices [TOO0]. Similarly
to hyperdlices, model slices must be declaratively complete: that is, they must declareall the
units they use. This allows one to reuse model dlicesin different design contexts.

Interaction slice | Structural slice |

——

Classl

+ml()
— g Class2

1.1:m2 ()

+m2()

Figure 7.3: Concern-Oriented Model as a Means for Representing Model Slices

Finally, Figure 7.4 shows a concern-oriented model as an aspect-oriented mechanism. It
builds on the notation introduced in the previous chapter.

TradingModel i

o ~< <<interface>>

- N
\I/ <<perassociation>> \‘H Trader
i 7
\ Trading Y uy0

——— +sell()

<<connectionpoint>>
newTradingPartner

|

Figure 7.4: Concern-Oriented Model as a Means for Representing a Mechanism

The language constructs introduced above are the main elements used in the On-Demand
Remodularization PCS. The On-Demand Remodularization view can be best explained by
means of a concrete example. The next example presents the case of the Java Drag'n'Drop
architecture.

7.9 The Java Drag & Drop Architecture Case Study

This section presents an application of the On-Demand Remodularization PCS on the Java
Drag & Drop Architecture.

According to some computer users, Drag'n’Drop is one of the most user-friendly
inventions in software. Every timeit is used, the Drag'n'Drop operation happens between

98

On-Demand Remodularization PCS

two software components that are referred to as source and target components. The source
component is the component on which a drag operation isinitiated, while the target compo-
nent is the one on which a drop operation is performed. The goal of a Drag’'n’ Drop opera-
tion is to transfer an object from one point (the source component) to another (the target
component). This goal isusually achieved by using a pointing device, such as a mouse, for
selecting the element to be transferred, and dragging it towards the target component where
it should be dropped to perform the operation.

Because of its importance to users of computers, most programming languages and
systems provide support (i.e., application programming interfaces or APIs) for facilitating
the realization of the Drag'n'Drop operation in software applications. For example, using the
Java language, al Swing components have the ability to act as source or target compo-
nents—that is, they may provide an element to be dragged, or receive a dropped element.

According to the Java Drag’ n’ Drop architecture [LEW+02], Drag’' n’ Drop operations
are carried out by means of collaborations among hel per components, called TransferHandlers.
The source and target components must be associated to a TransferHandler (viathe setTrans-
ferHandler() method call) in order to be able to transfer and/or receive transferable elements.

In contrast to users of applications supporting Drag’ n’ Drop operations, designing a
Drag'n’ Drop architecture is less user-friendly. For example, the internal machinery of the
Java Drag'n’ Drop architecture is quite complicated: it spans over severa software layers
(from the native operating system layer up to the application programmer’s layer). It is not
the intention of this thesis to provide an exhaustive insight into the origina design of the
Java Drag' n’ Drop architecture. We prefer to take a maintainer's perspective of the architec-
ture as-built.

This On-Demand Remodularization view is a collection of concern-oriented models
that provide a partial description of the Java Drag' n’ Drop architecture.

7.9.1 Drag Support Initialization Concern

This section presents two model slices, called structural model dlice and behavioral model
slice, which describe together the Drag Support Initialization concern.

Figure 7.5 shows a behavioral model slice that describes the Interaction pertaining to
the Drag Support Initialization concern. It shows the interaction that takes place on the side of the
source component when a drag operation is initiated by invoking exportAsDrag() on the Trans-
ferHandler of the source component. First, the TransferHandler creates a DragHandler that will
manage the drag operation on behalf of the source component (1).

The TransferHandler then creates a component that is able to recognize dragging ges-
tures, and tracks the state of those gestures on the side of the source component (2). The ges-
ture recognizer builds an entity responsible for the initiation of the Drag’' n’ Drop operation,
called DragSource (2.1). Upon successful creation of the gesture recognizer, the TransferHandler
triggers a gesture operation on the recognizer (3).

99

Drag Support Initialization Concern

This causes the recognizer to fire a DragGestureEvent that is dispatched to the DragHan-
dler listening to such events (3.1, 3.2). The DragHandler retrieves the transferable element
from the TransferHandler (4), and passes it over to the DragGestureEvent (5), which in turn prop-
agates the start of the dragging operation to the DragSource component (5.1).

The DragSource then creates a native component for keeping contextua information
during the drag'n'drop operation (6), associates it with a Java-level context component (7),
and starts the drag operation on the native layer (8). The contextual component is responsi-
ble for notifying its associated DragHandler when drag events occur within the system, and
for providing the transferable element when the drag operation is about to terminate. When
the pointing device is dragging a transferable element over Swing components, the native
layer is notified (9), and the notification percolates up to the DragHandler responsible for han-
dling that event (9.1,9.1.1).

100

On-Demand Remodularization PCS

Figure 7.5: Behaviora Model Slice for the Drag Support Initialization Concern

101

Drag Support Initialization Concern

javax.swing

DragSupportinitialization !

SwingDragGestureRecognizer TransferHandler DragHandler
+ gestured() + exportAsDrag() + dragEnter()
+ createTransferHandler() + dragGestureRecognizer()

java.awt.dnd

DragGestureEvent DragSourceContext DragSource

+ startDrag() + startDrag()

<<interface>>
DragSourceContextPeer

+ startDrag()
+ dragEnter()

SunDragSourceContextPeer

+ startDrag()
+ dragEnter()

Figure 7.6: Structural Model Slice for the Drag Support Initialization Concern

The context of the interaction shown in the behavioral model slice for the Drag Support Initial-
ization Concern is described as a separate structural model dlice for the same concern. Thisis
a concern-oriented context diagram shown in figure 7.6 which contains all the information
about the reference structure pertaining to the Drag Support Initialization Concern. This concern-
oriented diagram is different from the standard UML class diagram designed for a particul ar
concern in that it is declaratively complete and contains no hidden features that belong to
other concerns.

102

On-Demand Remodularization PCS

7.9.2 DropTarget Installation Concern

This section presents the behavioral model dice and the structural model slice for the
DropTarget Installation Concern.

javax.swing

setTransferHandler(th)
-
c:JComponent
+1: sdt:=new (this)

-
:DropHandler sdt:SwingDropTarget ‘

java.awt.dnd

* 1.1: new

:DropTargetContext

Figure 7.7: Behavioral Model Slice for the DropTarget Installation Concern

Figure 7.7 illustrates the few steps that are necessary to set up the Drag'n’Drop on any
Swing components.

The only thing that is required from the developer isto install a TransferHandler on the
target component via the method call setTransferHandler(). When this method is invoked, the
component will create a DropTarget for listening to drop operations on the associated compo-
nent. The DropTarget internally builds a DropTargetContext for holding contextual information
during a Drag’ n’ Drop operation (1.1), and a DropHandler to which it del egates the handling of
all eventsreceived during a Drag’' n’ Drop operation (1.2). At this point, the target component
is able to handle and manage a Drag’ n’ Drop operation.

103

Drop Event Interception Concern

javax.swing
e
dropTargetinstallation !
JComponent <<dynamic>> SwingDropTarget DropHandler
[1
+ setTransferHandler() + drop()
|
s
I java.awt.dnd ;
I
|
DropTargetContext <<dynamic>> DropTarget <<dynamic>>
| + drop()
1
1

Figure 7.8: Structural Model Slice for the DropTarget Installation Concern

Figure 7.8 illustrates the context of the interaction among the units pertaining to the
DropTarget Installation Concern. This figure describes in a concern-oriented model the
structure of aclass model that has only those units that pertain to the DropTarget Installation
concern.

7.9.3 Drop Event Interception Concern

Another interesting part of a Drag'n’Drop operation is depicted in figure 7.9. The figure
illustrates what happens when a transferable element is dropped on a receiving component
during a Drag’ n’ Drop operation. First, a DropTargetDropEvent is created to hold the state of the
drop operation until the drop completes (10). Once the DropTargetContext i S retrieved from the
drop event, we can obtain the DropTarget from that context (11) and initiate the drop operation
on it (12). The handling of the drop operation is delegated to the DropHandler component (13).
The latter retrieves the DropTargetContext (13.1), obtains the target component from that con-
text (13.2), asks the target component for its TransferHandler (13.3), and acquires the element to
be transferred from the DropTargetDropEvent (13.4, 13.4.1, 13.4.2). The transferred object is then
imported into the TransferHandler of the receiving component, thereby terminating the whole
Drag’'n’ Drop operation.

104

On-Demand Remodularization PCS

Figure 7.9: Behaviora Model Slice for the Drop Event Interception Concern

105

Drop Event Interception Concern

javax.swing

DropEventinterception !

JComponent <<dynamic>> SwingDropTarget <<dynamic>>

+ setTransferHandler() +drop() DropHandler TransferHandler

+ drop() + importData()

java.awt.dnd :
<<dynamic>> ﬁ

<<interface>>
DropTargetContext | <<dynamic>> DropTarget DropTargetListener
+drop() + drop()
DropTargetContext <<dynamic>>
+ getTransferable()
+ getComponent()
<<interface>> <<interface>>
DropTargetEvent DropTargetDropEvent
+ getContext() + getContext()
+ getTransferable() + getTransferable()

<<interface>>
DropSourceContextPeer
I
+ getTransferable()

SunDropSourceContextPeer
+ getTransferable()

Figure 7.10: Structural Model Slice for the Drop Event Interception Concern

Asfor the previous concerns, figure 7.10 illustrates the context of the interaction among the
units that are relevant to the Drop Event Interception Concern.

When designing the above concerns, we deliberately decided not to show all the pack-
ages of the original Java Drag'n’Drop architecture (depicted in gray, for example the
java.awtdnd package). Instead, we tried to make clear where the individual concerns are
located within the different architectural models. Another reason for this decision was to

106

On-Demand Remodularization PCS

give information about the layered architectural style adopted by the Java Drag'n’ Drop
architecture team. Clearly, one can observe how the usability concerns lead to the produc-
tion of more and more layers. Following this reasoning, we can state to some extent usabil-
ity has a negative impact on complexity and even performance. These are relationships
among concerns which we could not address earlier (for instance, not when we were filling
the viewpoint schema).

Component “source” side Component “target” side
javax.swin
1:dh := new * exportAsDrag() [s1s3 miqeﬂransfemamlero serTransferHand]ler(lh) 9
- ==
2: new(dh)) X *12: drop(dtde) %1! sdt=new(this) | th-TransferHandler
AL BBy 3: gestured Javax.swing
T -) sdt:SwingDropTarget
:SwingDr
) - dge:=, - java.awt.dnd
5.1: stanDragt, tis, dh) ¥ 3.3 dgemnenh) 1.2:new § | [$14: impordatatesy
- 13: drop(dtde)
32: cragGestureRecognized(dge]y
132 c:=getcumponento* * AEGED
f1: sdl.':gelepTarget()*
+ 4:t=
:DragHandler o Conex()
.1:| cxt:=get(ext(
7: dsc:= new(dscp, dge, t, dh) 9.1.1: "H 13.4] t:=93Transferable() ‘10: dtde:=new
» == [] —>
ds:D Dr \ttext vl pTargetDropi
4{ ! ‘ = = ! java.awt.dnd e Doy ey 13.4.1: t=get

Figure 7.11: Interaction Model for using the Java Drag & Drop AP

Figure 7.11 and figure 7.12 illustrate a more complete architecture recovery view of the
Java Drag’' n’ Drop architecture. These two figures can be seen as the superposition of all the
other architectural models shown previously.

107

On-Demand Remodularization Pattern

Component “source”’ side Component “target” side

SwingDropTarget

javax.swing

TransferHandler
DropHandler

| javax.swing

] | i
|

\Vi
<cinterface>>
DropTargetListener

DropTargetEvent

DropTarget

DropTargetContext

java.awt.dnd

DropTargetDragEvent

DragSource H DragSourceContext |—-:

java.awt.dnd

Connector “native system level crosscutting”

Figure 7.12: Static Structure Model for using the Java Drag & Drop API

7.10 On-Demand Remodularization Pattern

This section introduces a concern-oriented pattern which we refer to as the On-Demand
Remodularization Pattern, ODR Pattern in short. This pattern is the mechanism we propose
for supporting On-Demand Remodul arization (as stated in section 7.6.3).

Like all patterns, the ODR pattern provides a solution for recurring design problems;
however it is the one with a specific focus on remodularizing existing software without
invasive change; and as a concern-oriented pattern it can be used at both low-level design
and architectural level. When to use it as design pattern or architectural pattern depends on
the kind of concern you need to remodularize.

7.10.1 Motivation

To moativate the use of this pattern, we consider one of the major problems that could not be
addressed by the “Aspect-Oriented Construction PCS’ on page 83. In the following, we
present the sol ution provided by the ODR pattern to that problem.

108

On-Demand Remodularization PCS

7.10.2 Structure of the Pattern

The ODR pattern consists of three model slices that help remodularize an existing system
into a more coherent, maintainable one:

¢ amanaging model slice

¢ anenabling model slice

¢ abinding model slice

com.comp.mgrs.production

ProductionManager §
- <<connectpoint>>--~"" _ ~~~<__ <<connectpoint>> -
<<interface>> newState ~~ » ~< newConsumer <<interface>>
Producer " & <<persassociaton>> g™ Consumer
_ ProductionManagement]
updateState() N - changeState()
N
|
| <<applies>>
com.packl com.comp.mgrs.production | com.pack2
ProductionEnabler | /—»-J*——\\
""""""""""""""" i % - - \\\
] <<declares>> [<< ciation>> | <<declares>> T
7777777777 \\ ProductionEnabling / TrafficLight
N ///

Figure 7.13: Structure of the On-Demand Remodularization Pattern

The structure of the managing model dice is normally described as a composition (as
shown in figure 7.13) of a perspectival association and one or more interface type declara-
tions. These types represent roles that are fundamental for instantiating the pattern. Further-
more, they may declare behavior (e.g., methods) that must be provided by components to
which the roles they represent will be bound. The managing model slice may aso contain
any other utility types, such as classes, that would help the perspectival association perform
its job. In the managing model slice, the perspectival association is responsible for defining
the interaction protocol among the roles defined previously asinterface types.

The enabling model sliceis mainly in charge of attaching the pattern instance to a part
of asystem at hand. We say that this model dlice enables the remodularization of a system
by binding existing components to the roles defined in the managing model slice. This bind-
ing is achieved by introducing the interface type that defines arole to be played by a com-
ponent into the inheritance tree of that component, and giving the component appropriate
behavior for playing that role. In Java terms, we make the component implement the inter-
face type. In short, the enabling model dice is the glue that allows one to apply the ODR
pattern to an existing system.

109

Achieving Design by Concerns with the ODR Pattern

The binding model dice is responsible for customizing and fine-tuning the behavior
of components whose parent has already been adapted in the enabling model slice. This
model slice can be made optional when the behavior of the parent component is perfectly
suitable for its children, and does not necessitate any amendments.

The structure that results from the instantiation of the ODR pattern on the Traffic
Light Control System is shown in figure 7.14. The diagram shown in this figure is different
from the one depicted in figure 6.5 in that the binding between the roles and the components
are explicitly shown (e.g., the Timer plays the Producer role).

This example demonstrates the integration between the Aspect-Oriented Construction
PCS and the On-Demand Remodularization PCS.

7.10.3 Achieving Design by Concerns with the ODR Pattern

<<connectpoint>> -~~~ S~._ <<connectpoint>>

newState /<<persassocialinn>>\b newConsumer
IProducer:Timer [~ '.\ EventConnector ¥ /Consumer:TrafficLight
/

Figure 7.14: Instantiation of ODR for the Traffic Light Control System

In section 7.9, we have applied the On-Demand Remodularization PCS on the Java
Drag'n’ Drop example to support concern-oriented modeling by providing different slices
(structura and behavioral) for the same concern and combining those slices to build larger
models. However, concern-oriented modeling as addressed in this example does not support
modeling of dynamically changing roles (e.g., when a component changes its role from
source to target and vice versa, dynamically). In the same way, the solution provided above
in section 7.9 is not desirable when roles are entangled with one another. Dynamically
changing roles and tangling of roles are major problems when architecting software sys-
tems, especially for remodularizing existing systems.

The ODR pattern plays akey role in capturing dynamically changing roles and entan-
gled roles. An application of the ODR pattern on the Java Drag’ n’ Drop architectureisillus-
trated in figure 7.15, and described in what follows.

In the Drag’n’ Drop example, the three model slices are named, respectively, DnDMan-
ager, DnDEnabler, and DnDBinder. The DnDManager model slice contains a perspectival associa
tion called bnDManagement, and an interface type called DnDParticipant. DnDParticipant defines
the behavior any component willing to participate in a Drag'n'Drop operation has to pro-
vide. A brief overview of each method declared in the DnDParticipant i nterface is given below:

 initDnD(): Sets up a participating component for afuture Drag'n'Drop operation

* getTransferable(): returns an object to be transferred when a Drag'n'Drop operation has
been initiated on a participating component

 sefTransferable(Object): provides the object that has been dropped on (transferred to) a
participating component

110

On-Demand Remodularization PCS

acceptTransferable(Flavor): returns a boolean indicating whether the parti cipating compo-

nent accepts the current object (denoted by its flavor or type) being transferred

has been dropped.

getDropLocation(): returns the exact point on the component where the transferred object

setDropLocation(): Sets the location where the transferred object has been dropped.

ch.epfl.mgrs.dnd
DnDManager |
____________ . <<interface>> TransferHandler
______ DnDParticipant
e N ol initbnD()
/ <<persassociation>> \<<declares>>
1 b D‘:'lDManagement s g:g::g;;:::g::g " canimport(JComponent, DataFlavor{]):boolean
N S <<dynamic>> | ¢reateTransferable(JComponent):Transferable
S~ e acceptTransferable() k
—~——Q—" etDropLocation() getSourceActions(JComponent):int
. . 9 P - importData(JComponent, Transferable):boolean
<<connectionpoint>> setDropLocation()

newParticipant

A

<<applies>>

<<applies>>

ch.epfl.mgrs.dnd javax.swing

)
DnDEnabler f S |
- |

4 JComponent

4 N,

4 <<persassociation>>

\ DnDEnabling y
\. /

<<declares>>

ch.epfl.tools.mgrs.dnd
DnDBinder |

JTable

Figure 7.15: ODR Applied on the Java Drag’'n’ Drop Architecture

javax.swing

- ~.
% \,
u 4 <<persassociation>> \/_
N DnDBinding Y

In addition, bnDManagement defines a connection point that will detect when a new DnDPartic-
ipant is created within the system. When such a creation is underway, the perspectival associ-
ation invokes intdbnD() upon the participant in order to set it up for upcoming Drag'n'Drop
operations.

The DnDEnabler model slice contains the DnDEnabling perspectival association whose
primary goal is to alow any JComponent (of javax.swing) to participate in a Drag'n'Drop
operation by giving to it the capability of playing the DnDParticipant role (defined in the DnD-
Manager model slice). Furthermore, DnDEnabling injects into JComponent behavior that shall be
common to any JComponent (i.€., getDropLocation(), and setDropLocation()). All other methods
need specific implementation that cannot be factored out into this model slice.

111

Final Remarks

The task of the DnDBinder model slice is precisely to bridge that gap, and to introduce
into subclasses of JComponent specific behavior for each of the remaining methods (i.e.,
initbnD(), getTransferable(), setTransferable(), and acceptTransferable()). The DnDBinding perspectival
association achieves this by inserting the implementation of an appropriate behavior, speci-
fied by the interface type DnDParticipant, into each of the participant components, such as
JTree, JTable or JList. Thisis necessary because these components may realize the same role
in different ways. For instance, a JList does not handle the drop of an object the same way as
aJTable Or a JTree.

In summary, the DnDManager model dlice defines the interaction protocol between
components engaged in a Drag’ n’ Drop operation (playing the DnDParticipant rol€). The DnDE-
nabler model dice applies the pattern instance to a system at hand by making components
play the DnDParticipant role defined in the DnDManager model slice. Finally, the DnDBinder
model slice customizes the Drag'n’ Drop behavior to each participating component. It is
worth noting that this Drag’ n’ Drop ODR instance encloses all Drag’n’ Drop concerns; there
are no other placesin the system where Drag’' n’ Drop concerns are being handled.

7.11 Final Remarks

This chapter presented the On-Demand Remodularization PCS by defining a viewpoint lan-
guage and using that viewpoint language to remodularize concernsin the Java Drag’ n’ Drop
architecture.

The notations used in this chapter provide an example based on the use of the UML
Space as proposed by the PCS Framework. Beyond the notations, the On-Demand Remod-
ularization PCS contributed a concern-oriented pattern, called ODR pattern. Clearly, this
pattern can be applied at both levels: architectural level and design level. However, when
applied at the programming level, using for example AspectJ, it is important to notice that
programmers must provide additional elements that must inherit from the legacy part to be
remodularized. This is due to the current limitations of the aspect-oriented programming
language Aspect], as it does not allow one to make introductions into legacy components.

112

The Service-Oriented PCS

Chapter 8:
The Service-Oriented PCS

This chapter presents an integration of the Service-Oriented PCSwith a well-known View-
point-Oriented approach to documenting software architectures. This chapter uses the
Video Surveillance System example introduced in chapter 2 to show the applicability of the
PCS Framework on other architectural description approaches.

8.1 Introduction

This chapter presents an example of how the PCS Framework supports architectural docu-
mentation based on other well-accepted practices. To validate the PCS Framework with
well-known software architecture documentation approaches other than the IEEE-Std-1471,
we have decided to apply a viewpoint-oriented approach as described in [CBB+02]. The
example we use is based on the motivating case study introduced in chapter 2.

Using PCS, we have developed a service-oriented view of the video surveillance ser-
vice development problem. The approach taken to document the software architecture of
the video surveillance service is based on the notation of the UML profile for structural
descriptions [KS004] .

The service-oriented view is documented, using a view documentation template. The
view documentation template consists of the following parts:

¢ The primary presentation

¢ Theelement catalog

« A context diagram

« A variability guide

¢ An architecture background (with rationale, results of analysis, and assumptions

made)

e Therelated view packets

¢ Other information
Figure 8.1 summarizes our mapping strategy relating the view documentation template to
the PCS Framework. Details of the mapping strategy are demonstrated in applying the Ser-
vice-oriented PCS on the example of video surveillance service.

113

Main Model of the Service-Oriented View

8.2

Viewtype Documentation Template

Service-Oriented PCS

Primary presentation

Main architectural model

Element catalog

Static structure model
Behavioral specification model
Perspectival elements

Context diagram

Configuration model
« Context of the configuration

Variability guide

Configuration model
* Configuration manual
o Base configuration
o Perspectival configuration

Architecture background (rationale, results of
analysis, and assumptions made)

Textual descriptions

Related view packets

Models, diagrams or textual descriptions

Other information

Textual descriptions

Figure 8.1: Mapping Between a Viewtype and the PCS Framework

Main Model of the Service-Oriented View

Figure 8.2 depicts the main model of the video surveillance service architecture. This dia-
gram documents the video surveillance service from a bird's-eye-view. The main model
involves three essential elements. the service component types CameraDevice and Surveil-
lanceStation, and the connector type VSServiceConnector. The relationships among these ele-
ments are shown as attachments between component types and the connector type: to be
exact, relationships represent the attachments between realizations of the component types

and connector roles.

In this figure and in the remainder of the chapter, akey for icons or diagram elements

is placed below each diagram that explains the meaning of symbols used.

114

<<service>> o «connector» O ® N <<service>:
CameraDevice “_ vSServiceConnector J SurveillanceStat

Key for Icons:

m Component type ———- Attachment

O-® Connector type

Figure 8.2: Main Model of the Service-Oriented Architectural View

The Service-Oriented PCS

8.3 Static Structure Model

In this section, the service-oriented model elements are described in more details; it pro-
vides a documentation of the elements and their properties, relations and their properties,
element interfaces and element behavior.

8.3.1 Component Structure Specification

The documentation of the architectural component types and their propertiesis depicted in
figure 8.3; this figure describes the service component types CameraDevice and SurveillanceSta-
tion.

<<service>> <<service>>
CameraDevice D SurveillanceStation 4‘:5

Operational Operational

Signal Signal

Stream Stream

Key for Icons:

T & Component type

Figure 8.3: Component Structure Specification

The service component types documented in figure 8.3 do not show properties. However,
some properties of component types can be shown as attributes (e.g., the format of video
streams produced) in the first unnamed compartment. Other properties can be shown as
operations that describe, for example, certain life-cycle management responsibilities of the
component type; such responsibilities are usually shown in the second unnamed compart-
ments. In addition, the interaction-related properties can be described in the last three com-
partments with the names: Operational, Signal and Stream.

Component Interface Elements

The following sub-section documents the i nterface elements of the component types present
in the architecture.

Figure 8.4 presents three standard UML interfaces, CamConfiguror, CamController and
Alarm. Each of these UML interfaces must be either provided or required by realizations of
the SurveillanceStation and CameraDevice component types.

The interface CamConfiguror consists of a set of operations that allow one to configure
various video cameras. CamController Specifies the operations allowing one to control realiza-

115

Connector Structure Specification

tions of camera devices. The Alam interface specifies the mechanisms required for aerting
and informing the police in an emergency situation.

«interface»
«interface» CamController
CamConfiguror
Tstart() «interface»
+setFormat() +stop() Alarm
+setDeviceParams() +zoom()
+modifyQoS() +pan() +wam()
+configure() +ilt() +getLocation()

Figure 8.4: Component Types' Interface Elements

8.3.2 Connector Structure Specification

The connector type specifies the connector instances that mediate interaction among com-
municating components according to different interaction protocols. As an example, the
structural specification of the vSServiceConnector is shown in figure 8.5. According to this
figure, a significant property of the vSSeniceConnector is that each interaction protocol must
be applied to interconnect at least two or more Connectionpoints of the following types:
CamConfiguration, StreamEndPointSignaling, CamControl, VideoStream and StreamConnectionMgmt.
Each Connectionpoint type is presented as a small circle on the boundary of the connector
type. A more elaborated description of these five Connectionpoint types is given in
figure 8.6.

«signal»
StreamEndPointSignaling

«connector»

VSServiceConnector @ «signab

o)
«operational» ‘s, _~* CamControl
CamConfiguration ~~~~~c.

«stream»

————— «operational»
StreamC:

Key for Icons:

O—@ Connector type

Figure 8.5: The vSServiceConnector Structure Specification

Each interaction mediated by an instance of the connector type VSServiceConnector must enter
that connector through a specific connection point, which conforms to one of the Connec-
tionpoint types listed above.

Connector Interface Elements

Figure 8.6 presents the static structure of the connector type VSServiceConnector, together
with its interface elements, i.e., its Connectionpoint types. In this figure, VSServiceConnector

116

The Service-Oriented PCS

is documented as a composition of various Connectionpoint types. CamConfiguration, Strea-
mEndPointSignaling, CamControl, VideoStream and StreamConnectionMgmt.

The keyword “ Connector:” preceding the name of a Connectionpoint type indicates the
scope of that Connectionpoint type. This allows one to document the locus of definition of
individual Connectionpoint types.

/ «connector» O ® N\
\. VSServiceConnector
ol 0 el o
«Connector::operational» «Connector::signal» «Connector::operational» «Connector::stream>» «Connector::operational»
CamConfi { StreamEndPointSignaling CamControl VideoStream StreamConr
Requires Incoming Requires QualityOfService Requires
SetFormat () ConnectRequest () Start() pictureQoS: VideoQoS Init ()
SetDeviceParams () Ci i) Stop() soundQoS: AudioQoS Fini ()
ModifyQosS () Outgoing Zoom() flownum: NumberOfFlows ModifyQosS ()
Configure () ConnectConfirm () P?n() Produces (F;eques:(:onnecnon 0
[D 0 Pilt) picture: VideoFlowType D:;';';Zf‘e% 0
Provides Provides audio: AudioFlowType
Provides
Consumes
Key for Icons:
m Component type <@——> Composition relationship O-@ Connector type Operational connection point type
[signal connection point type [8] stream connection point type

Figure 8.6: Interface Elements of VSSenviceConnector

CamConfiguration defines all configuration related interactions that can take place between the
video surveillance station and compatible camera devices. This Connectionpoint type docu-
ments the types of possible configuration calls that are exchanged between the interacting
parties.

StreamConnectionMgmt Specifies the Connectionpoint for mediating interactionsfor initi-
ating and finishing the negotiation procedure in point to point multimedia connections. It
describes how to control and coordinate the connection activities that are particular to
stream connections between multimedia devices. Moreover, StreamConnectionMgmt deter-
mines the interactions related to the control of individual flow endpoints composing a
stream endpoint. It also describes how to control and manage flow connections between
multimedia devices.

VideoStream describes a Connectionpoint type that defines a set of multimedia data
flows, where each flow represents a continuous sequence of objects in a specific direction.
This Connectionpoint type defines the continuous media transfer between components and
describes the quality of service constraints that are related to it.

The Connectionpoint type StreamEndPointSignaling is needed to mediate a set of signals
for the establishment and release of stream connections (in a nonsophisticated wide area or
local network).

117

Behavioral Specification Model

Finally, the camControl Connectionpoint type represents an extension of the CamControl-
ler interface (shown in figure 8.4) and specifies the operations allowing one to control real-
izations of camera devices. In contrast to the CamController interface, the CamControl
Connectionpoint type provides the ability to specify calls on operations that are provided
(i.e., cals defined within the provides compartment) and required (i.e., calls defined within
the requires compartment) by a participant component.

8.4 Behavioral Specification Model

In this section, the behavioral specification model for the Video Surveillance System is pre-
sented.

8.4.1 Component Behavior Specification

No component behavior was defined for this case study.

8.4.2 Connector Behavior Specification

The behavior of an architectural element can be described by using different types of UML
diagrams, including activity, collaboration, sequence and statecharts diagrams.

Figure 8.7 presents an example of protocol state machine, shown in a statechart dia-
gram, that describes the interaction protocol between two conjugated connection points;
both connection points are specified by the Connectionpoint type StreamEndPointSignaling, as
shown in figure 8.6.

destroyed ©

destroy

waitingFor
Confirmation

Figure 8.7: Protocol State Machine for StreamEndPointSignaling

timeOut

& | announcing

timeOut

response

The protocol state machine of StreamEndPointSignaling describes the allowable sequences of
signa events that are related to the establishment and release of stream connections
between two communicating components.

Theinitiating component must be in the state idie to send an instance of the signal type
ConnectRequest (€.9., the signal ConnectRequest), which results in the request signal. When the
ConnectRequest signal arrives at the connection point on the site of the receiver, an indication
signal (entry event of announcing state, not shown) occurs.

118

The Service-Oriented PCS

The receiver component gets a Connectindication Signal announcing that a component wants to
connect to it. Then the recelver component may send the ConnectResponse signal to tell
whether it wants to accept or reject the pending connection request. During this period, the
initiating component will be in the state waitingForConfirmation. If the connection request is
accepted, the response signal occurs at the connection point on the site of the initiating com-
ponent. This resultsin the arrival of the ConnectConfirm signal at the interface of the compo-
nent issuing the connection request. In both the announcing and waitingForConfirmation states, it
is possible that the process restarts when the timeOut signal occurs. In the waitingForConfirmation
state, the connection is deleted when the destroy signal occurs.

Figure 8.8 provides another view on the interaction protocol shown in figure 8.7. In
addition, it focuses on the messages exchanged between the connection points.

C: InSig n C: OutSig o
R: StreamEndPointSignaling R: StreamEndPointSignaling
4 ConnectRequest() 4

Connectindication()

ConnectConfirmation()

ConnectResponse()

T T
Key:

C = Classifier Realization " " " " " " .
R = Classifier Role Component . Base signal connection point D Conjugated signal connection point

Figure 8.8: Protocol Sequence Diagram for StreamEndPointSignaling

8.5 Perspectival Elements

In this section, the perspectival elementsfor the Video Surveillance System are presented.

8.5.1 Structural Specification of Perspectival Elements

Figure 8.9 shows a static structure diagram that focuses on the attachments between the
CameraDevice and SurveillanceStation, as well as the properties of these attachments.

119

Behavioral Specification of Perspectival Elements

]

«Connector::operational»
CamControl

cd: CameraDevice

ss: Sur
«service» <<perspectival>> Requires <<perspectival>> «service»
CameraDevice) start() SurveillanceStation § &
stop()
Operational zoom() Operational
+ controlReceptions/ CamControl pan() + controlCalle/ CamControl
tilt()
Signal "
. — Provides Signal
+inSig/ StreamEndPointSignaling +outSig/ StreamEndPointSignaling
Stream Stream
«Connector:signal»
StreamEndPointSignaling
cd: CameraDevice
ss: SurveillanceStation
Incoming .
<<perspectival>> ConnectRequest () <<perspectival>>
Connectindication ()
Outgoing
ConnectConfirm ()
ConnectResponse ()
Key for Icons:
B Component type <>—— Connection O Signal connection point type @ Operational connection point type

Figure 8.9: Perspectival Associations and their Properties

Each of the component types is documented as a set of interaction roles shown in the Opera-
tional and Signal compartments. The interaction roles (named controlReceptions, inSig, controlCalls
and outSig) do not bel ong to the design-time structures of the CameraDevice and SurveillanceSta-
tion, respectively; instead, they are assigned to the component types when attachments are
introduced. Similarly, the perspectival attributes ss (of type SurveilanceStation) and cd (of type
CameraDevice) are “woven” (i.e., added) into the Connectionpoint types, CamControl and Strea-
mEndPointSignaling.

Figure 8.9 shows four attachments; each attachment is represented by a perspectival
association, i.e., the connection, that is navigable from the Connectionpoint types to the
component types and vice versa. By adding attachments between the Connectionpoint types
and the component types, you connect the component types with the interaction roles and
you weave perspectival elements dynamically into both types. In this case, the description
of the weaving rules must be part of the documentation of the perspectival association, i.e.,
the connection.

8.5.2 Behavioral Specification of Perspectival Elements

None.

120

The Service-Oriented PCS

8.6 Configuration Model

In this section, the configuration model for Video Surveillance System is presented.

8.6.1 Context of the Configuration

Figure 8.10 depicts the context diagram for the video surveillance service architecture. This
diagram draws up the boundaries of the developers’ tasks; it is useful for describing the vid-
eoSurvellanceSystem for stakeholders who are interested in the externals of the system rather
than the internals. Thus, the context diagram allows you to answer questions like: What
belongsto the system of focus? What does not belong to it? How does the system communi-
cate with its environment?

<<container>>
R: VideoSurveillanceSystem

C: Alarm
R: WamingGate~

R: SecuritylnformationSystem

Key:
D Container role representing the system of focus % Arbitrary role outside the area of focus

@l Connector role representing an operanonal connection point
Figure 8.10: The System Context Diagram

In the context diagram, VideoSurveillanceSystem is our system of focus; it is modeled as a Clas-
sifier role that represents a container for the configuration which encloses a collection of
realizations of the component types and the connector type shown in section 8.3 as elements
of the architecture. The system of focus is colored in gray to indicate that details on the
internal structure of the configuration are not relevant for the purpose of this diagram; these
are documented in the next section.

SecuritylnformationSystem is another Classifier role that describes a placeholder for the
information system of the police that will receive and handle al aerts sent by the video sur-
veillance system. Although SecurityinformationSystem is an important part of the video surveil-
lance service architecture, it is not considered as the system of focus in this context. The
SecuritylnformationSystem is said to be a part of the environment, it would become the system
of focus in another context.

121

Configuration Manual

VideoSurveillanceSystem communicates with its environment through the Connection-
point alarm, that is specified by the Connectionpoint type WamingGate (the specification of
thistype has been left out). alarm, on one hand, represents the point of contact through which
the vSSenviceConnector transfers alerts to the police via the SecurityinformationSystem; on the
other hand, it represents the point through which the system can receive queries from the
police, concerning the video sequencesit requires.

Ideally, once the interaction between the VideoSurveillanceSystem and the Securityinforma-
tionSystem has been documented, architects and developers can concentrate on the system at
hand to perform further development tasks. For example, a developer team could be in
charge of providing an internal design and implementation of the VideoSurveilanceSystem;
another team could be responsible for testing it, while a third team could be responsible for
developing the SecurityinformationSystem.

8.6.2 Configuration Manual

This section examines variation points in the component-and-connector view of the video
surveillance service architecture. When working out the variation points, we found it useful
to try to achieve variability around the attachments between the roles and the realizations of
the types specified in the architecture.

The following two variants of configuration show examples of systemsthat fulfill the
Classifier role representing the system of focus (i.e., VideoSurveilanceSystem).

Base Configuration

This variant of configuration is shown in figure 8.11. It identifies and characterizes avaria-
tion point within the VideoSurveillanceSystem which is surrounded by the following three Con-
nection points: outStream, controlReceptions and inSig.

Figure 8.11 shows a configuration of the system that consists of two instances of the
component types, SurveillanceStation and CameraDevice. Each instance fills a placeholder repre-
senting an expected redlization for a particular component type. The component type
instances (realizations) shown in the figure are unnamed. The placeholders are shown by
the Classifier roles, named DigitalCamera and Station.

The realization of each component type is attached not only to its Classifier role (Digi-
talCamera Or Station), but also to three different Connectionpoints of types. CamControl, Video-
Stream and StreamEndPointSignaling. For example, the realization CambDev of the component
type CameraDevice fulfills the Classifier role DigitalCamera. This is expressed as CamDev/Digital-
Camera:DigitalCamera, by foll owing the notation “realization name/Classifier role name: Clas-
sifier name”. (Note that this notation is not part of standard UML, it is an extension specific
to the structural profile for software architecture descriptions). Moreover, the realization
CambDev is attached to the Connectionpoints outStream, controlReceptions and inSig. Morover,

122

The Service-Oriented PCS

every Connectionpoint is linked to its conjugate via a duct. We took the concept of "conju-
gated" elementsfrom B. Selic et a. in [SR98] and [SGW94].

A conjugate Connectionpoint is an end point of an interconnection that is compatible
with the other end point (i.e., both have the Connectionpoint type), but one end point is the
inverse of the other.

The types of the interconnections involved in the static system configuration depend
on the types of the Connectionpoint (or the form of communications) supported by the
VSSenviceConnector. The Connection Points depicted in the figure determine the interconnec-
tionsinvolved in the VSServiceConnector.

<<container>>
R: VideoServeillanceSystem

C: Controller
R: CamControl~

C: ControlReceptions
R: CamControl
C: OutStream
R: VideoStream

C: Alarm
R: WarningGate~

<<service>>

C: CamDev
R: DigitalCamera
S: CameraDevice

<<service>>
C: SurStation
R: Station

0l

R: WamingGate

C: InStream
R Vi

S: Sur

C: InSig

C:0utSig
R: StreamEndPointSignaling

R: StreamEndPointSignaling~

Key:

<<stereotype name>>
C = Classifier Realization

R = Classflier Role Component
S = Classifier Specification
. Base signal connection point Base stream connection point u Base operational connection point
l:l Conjugated signal connection point @ Conjugated stream connection point @ Conjugated operational connection point
[] [
Signal interconnection g © | Stream inter Call interconnection

Figure 8.11: Base Configuration Diagram

There are two issues to be addressed by the diagram shown in figure 8.11:

First, what are the elements affected by this variant? Well, to remain simple, the con-
figuration of the system leaves this open. The elements affected are not documented. No
dynamism is observable. The configuration is rather static and less variable. However, this
option can be seen as defining an implicit variation point, because it allows you to replace a
simple realization of acomponent type by another, possibly a more complex one. For exam-
ple, when considering the placeholder for realizations of the Component type CameraDevice
asavariation point, various systems (or applications) can be built, based on the same archi-
tecture.

Second, what is the binding time of this variant? Clearly, binding in this case can be
achieved at low-level design time, implementation time or at initial |oad time. The notion of

123

Configuration Manual

binding, as defined by the authors of the viewtype model ([CBB+02], p. 209), refersto “the
decisions that will be made by a member of a development team prior to system deploy-
ment”.

Per spectival Configuration
This documents the configuration of the VideoSurveillanceSystem from a fault tolerance per-

spective. The diagram shown in figure 8.12 describes a perspectival configuration that is
structured in two parts.

<<container>>
R: VideoSurveillanceSystem

<< service >>
R: Configurator C: ControlReceptions
C:

: SInSig R: CamControl
C: SControlReceptions : §
R Camao el R: StreamEndPointSignaling [

(]
<<service>>
. C: CamDev
R: SecondaryD\glla\Camera
S: CameraDevice

C: SOutStream

C: Controller
R: CamControl~

<<service>>
C: SurStation
R: Station
S: SurveillanceStation

C: InStream|

o

C:Alarm
R: WarningGate~

C: POutStream
R:

-
L Bt
o

<<service>>
C: CambDev
R: PrimaryDigitalCamera|
S :CameraDevice

C: OutStream
C: PInsig R: VideoStream

R: StreamEndPointSignaling

C: PControlReceptions
R: CamControl C: InSig
R:

R: WarningGate

C:InSig
R

Key:

Composite state with hidden decomposition indicator icon

Figure 8.12: A Perspectival Configuration Diagram

One part of the configuration (on the right hand side) remains the same as in variant 1. It
includes the component type's placehol der, named station, as well as al its attached Connec-
tionpoints. The other part of the configuration shows some variability.

In thisvariant, we identify and characterize the variation point explicitly, by applying
the Component Configurator design pattern on the “portion of the design space” surround-
ing the three Connection points mentioned in variant 1 (OutStream, ControlReceptions and InSig).
The Classifier role Configurator contains two different realizations of the Component type
CameraDevice, playing the roles PrimaryDigitalCamera and SecondaryDigitalCamera, respectively.

The Classifier role Configurator essentially describes a placeholder for a Configurator
component type that is responsible for realizing the following configuration services:

1. Configure the componentsinto various processes without having to shut down and re-
start the running application processes.

2. Link and unlink the application components dynamically at runtime, without modify-
ing, recompiling or relinking them.

124

The Service-Oriented PCS

Some questions that cometo mind are:

How can we combine the configuration model shown in section 8.6 with the Compo-
nent Configurator pattern introduced in chapter 2?

What are the elements affected by the options?

Thevariation point is explicit; it is represented by the unnamed classifier role Config-
urator. The elements affected by this variation point are shown in figure 8.11. Dyna-
mism is observable within the variation point. The introduction of the Configurator in
the design makes the configuration more complex, but it also becomes more dynamic
and more variable.

The elements affected by the variation point are explicitly shown within. This makes
the configuration simple, less variable and static.

What is the binding time of an option?

Binding cannot be completed at low-level design or implementation time; it must be
achieved at runtime. Examples of runtime bindings include the interconnections
between connection points: OutStream is bound to PoutStream, OutStream is bound to
SOutStream, €fc.

8.6.3 Architecture Background

Roles are the placeholders for the realizations of component types and Connectionpoint
typesin a configuration. Each role represents a variation point within a particular configura-
tion of the software architecture; a specific role can be attached to different realizations of
different types to build different systems. what makes up the system depends on how you
attach arealization of a specific type to a specific role. The use of roles to deal with vari-
ability allows one to flexibly design and document different configurations from the same
architecture.

8.6.3.1 Design Rationale

Interfaces shown in Figure 8.4 are potential candidates for defining ports of the com-
ponents at configuration time.

« In figure 8.10, the architecture was left unbound to the design decision on the exact

description of the duct between the Connectionpoint, Alarm, and the unnamed Classi-
fier role, SecurityinformationSystem. The decision is left to the good judgment of lower-
level designers and implementers, as the sis (SecuritylnformationSystem) port is missing.

8.6.3.2 Analysis Results

« Configuration is a system-level concern that can be designed along an architectural

dimension, called configurability. However, as shown in figure 8.11 and figure 8.12,

125

Other Information

useful analyses of the configurability dimension depend on several other architectural
dimensions, including simplicity, complexity, variability and dynamism.

« While characterizing the variation points, section 8.6.2 evaluates four architectural
dimensions against each other: simplicity versus complexity, and variability versus
dynamism.

8.6.3.3 Assumptions

At realization time, the interfaces CamConfiguror, CamController, shown in figure 8.4, will be
provided by the CameraDevice component type and used by the SurveilanceStation component
type. The interface Alarm, in contrast, will be provided by the SurveillanceStation and used by
the system itself. Each of these interfaces can be seen as a specification of a static port with
the same name that provides a particular view of the service component type.

8.6.4 Other Information

None.

8.6.5 Related View Packets

None.

8.7 Final Remarks

The approach presented in this chapter is smilar to the |EEE-Std-1471; however, it does not
address the concerns asfirst-class elements that determine the way large-scale software sys-
tems should be designed. In addition, though it provides good support for architecture
description languages, it does not support expressing crosscutting concerns in software
architecture. Moreover, it lacks mechanisms for building systems from an architecture con-
cern-space.

A lesson learned from this case study is that a software architecture is a design solu-
tion, but not every design solution is a software architecture. Developing a software archi-
tecture requires decision making and trade-offs that affect and guide the tasks of developers
at different stages in the software life cycle. The decisions made and the trade-offs have a
positive impact on some aspects of the software development problem at hand, but they
negatively affect other aspects. Consequently, the question of making the right decision dur-
ing an architecting process depends primarily on the concerns—or aspects of the problem—
of importance.

Here again, this demonstrates the need to complement ADL-based approaches with
concern-oriented modeling techniques. Relying solely on the use of ADLsto solve architec-

126

The Service-Oriented PCS

tural problems makes one think of a situation in which someone tries to develop a solution
for a given problem without knowing exactly what the different aspects are of the problem
to be solved, which aspects of the problem are of importance, and how the different aspects
affect each other.

Of course, lacking knowledge about key aspects of a problem, one can provide per-
haps sol utions that work somehow for the given problem, but such sol utions are certain not
to be the ones a customer is willing to pay for; they may be applicable to some other prob-
lems, but perhaps not to the one for which we are being asked to find a solution.

127

Final Remarks

128

Part Il

Other Related Work and
Conclusions

Integrating the Structural PCS with SADL

Chapter 9:
Integrating the Structural PCS with SADL

This chapter presents the case of a compiler architecture to validate the integration of Con-
cernBASE, an early structural PCS with SADL, which is a software architecture descrip-
tion language based on architectural refinement.

9.1 Introduction

This chapter introduces the ConcernBASE approach to software architecture description.
The development of this approach was influenced by our experience that most ADLS pro-
vide support for describing structural aspects of software architecture. Thus, ConcernBASE
defines first astructura viewpoint that supports the key concepts of ADLs. To validate this
viewpoint, we discuss how to map a ConcernBA SE structural description of software archi-
tecture, written in UML, onto an architectural description developed in a particular ADL,
caled SADL (Structural Architecture Description Language)[MR97]. The mapping to
SADL was motivated on one hand by its explicit focus on structural aspects of system
descriptions, and on the other hand by the verification capabilities of SADL tools for Con-
cernBASE. The mapping has been validated in ConcernBASE Modeler, a UML-based tool
prototype that supports the ConcernBASE approach and its integration with SADL tools
[CKS+01].

9.2 Structural Viewpoint

This section presents an example that illustrates the benefits of the ConcernBA SE approach
by applying its techniques to a well known compiler example. Figure 9.1 depicts an infor-
mal representation of a Level-3 Compiler architecture taken from [MR97][MR97], which
uses the reference model for compiler construction.

Despite the box-and-arrow architecture representation, figure 9.1 shows that the com-
piler has a batch-sequential architectura style. The Main component coordinates the correct
execution sequence of the components composing the compiler system. First, it transfers
the control to the LexicalAnalyzer, then to the Parser, then to the AnalyzerOptimizer, and finally,
to the CodeGenerator. The rounded-edge components, SymbolTable and Tree, are shared-
memory components. The former holds binding information and makes it available to the
LexicalAnalyzer and AnalyzerOptimizer. The latter keeps abstract syntax trees and is accessed
by the Parser, AnalyzerOptimizer and CodeGenerator. Note that some components have read

131

Structural View of the Compiler System

and write access, while others are only granted read or write access. The Parser component

is directly receiving tokens from the LexicalAnalyzer via the unidirectiona pipe relating them
and not through shared-memory components.

T Main ’4
§ k -

AT
v |

toks, [v
LexicalAnalyzer #:’:T\‘ Parser

read(binding) p write(binding)
SymbolTable

— Pipe Connector
—>» Control transfer Connections @ outputport () Data Structure Component
9 Call connections /Ordering constraints (.} Inputport [_] Functional Component

|

b

P

\ A

CodeGenerator+ ‘ AnalyzerOptimizer
code

read(binding) read(ast)

Figure 9.1: Compiler Architecture: taken from [MR97]

9.2.1 Structural View of the Compiler System

Figure 9.2 depictsthe set of significant architectural elementsthat define the structural view
of the compiler system. It contains six components: LexicalAnalyzer, Parser, AnalyzerOpti-
mizer, CodeGenerator, SymbolTable and Tree, which are all connected via a complex connec-
tor, named CompilerConnector. As shown below, the connector plays a central role in this
example. It mediates different kinds of communications between the components of the sys-
tem and encapsulates all the communication paths. The CompilerConnector aso coordinates

the interactions among participant components. Therefore, it may enforce a particular com-
munication protocol among the components.

=-archComponents>> B2 ~-~archComponentx:> =]
Farzer AnalyzerOptimizer
T
==archComponent=:=- B2 - i <= h :
. - archComponents>i- B2
LexicalAnalyzer s -~ CodeGenerator
T -~
— ~, - —— -
T onnector=F T
'y -
ilerConnector
RS
- -
- S
- e
- s
rd
~~farch Componenti:>] ~archComponenti> B2
SwmbolTable Tree

Figure 9.2: Structural View of the Compiler System

132

Integrating the Structural PCS with SADL

9.2.1.1 Static Model

The dtatic structure of the LexicalAnalyzer component is shown in figure 9.3. Its component
interface is composed of five interface elements, where each element defines alogical inter-
action point between the component and its environment. The ExecutionControl interface ele-
ment provides the operation start with the meaning that another component can activate the
LexicalAnalyzer, i.e. can start it by implementing this interface. The MemoryAccessControl
interface element requires two operations: read and write. This means that the LexicalAnalyzer
requires these operations to be provided by another component. The ControlFlowSignaling
interface element declaresincoming and outgoing signals necessary to control the execution
of the LexicalAnalyzer, while the MemoryFlowSignaling interface element enumerates signals
needed for communication with the shared-memory components.

Lastly, the Dataflow interface element defines two streams produced by the LexicalAna-
lyzer, namely a stream of tokens and a stream of bindings, as well as two consumed streams
conveying characters and bindings. It isimportant to remark that bindings can be produced
and consumed by the component. For example, as shown in figure 9.3, the LexicalAnalyzer
component reads and writes bindings, i.e. produces and consumes them. All the interface
elements shown in figure 9.3 are involved in a composition relationship with the LexicalAna-
lyzer component that realizes them. The interface elements are externally visible parts of the
component.

The use of communication-specific interface elements clearly exhibits separation of
concerns when defining specialized interaction points (referred to as static ports in the con-
figuration model), since each interface element type is responsible for a particular commu-
nication type.

133

Structural View of the Compiler System

operationals x>
ExecutionContral

Provide s
start{String dev)

Requires

ol

i lex Merl Gerl

<-{computational=> E

Lexicaldnalyzer

==streami== B:l
Dataflow

Operational

+ilexMem Ctrl:MemoryAccessControl
+ilex Ctrl:Execution Contral

0Qos
no token lost
no character lost

Signal

+ilex CrlSig: ContralFlowsignaling
+/lexMemSig:MemoryFlowSignaling

Str -Jno binding lost

Produces

tokens:StreamToken

Stream
+/lex5tr; Dataflow

+ilex Crlsig

<<operational=> [

<<signalzr []

writelString mem, Stream kind)

MemoryAccessContraol ControlFlowsignaling
Provides Outgoing
Requires starthccepted(String dev)

read{String mem,Stream kind) Incoming

startRequestediString dewv)

+lexMemsig

bind=s:StreamBinding

Consumes

chars:Stream Character
bind=:5treamBinding

<<signalzr []
MemaryFlowaignaling

Outgoing
writeRequestiString dew, String mem)
readRequestiString dewv, String mem}

Incoming

writeAcceptediString dev)
readAccepted(String dev)

Figure 9.3: Static Structure Model of the Lexical Analyzer Components Type

9.2.1.2 Configuration Model

The configuration model of the compiler system isillustrated in figure 9.4, which consists
of an instance of the LexicalAnalyzer component type, an instance of the Parser component
type and three simple connector instances that interconnect the ports and mediate the com-
munication between the components. Instantiating a component type means to instantiate
all itsinterface elementsthat are required in the configuration model. In figure 9.4, one con-
nector instance is depicted to interconnect the conjugated <<operational>> static ports,
named ExecutionControl and ExecutionControl~ together; a second one is shown to link the
<<stream>> Dataflow and Dataflow~ ports; and finally, a third connector is used to intercon-

nect the <<signal>> ControlFlowSignaling and ControlFlowSignaling~ pOrts.

134

:MemoryAccesControl

Memor

<< computational >>

:ExecutionControl

Daxaﬂuw

LexicalAnalyzer

<< computatioral >>

:MemoryAccesControl

Ip: Parser

FlowSignaling ¢,

Figure 9.4: Configuration Model of the Compiler System

Integrating the Structural PCS with SADL

9.2.2 Overview of SADL

This section gives a brief introduction to the concepts of the Structural Architecture
Description Language (SADL). SADL is a particular ADL that focuses on understanding,
specifying and refining the representation of structural concerns in complex software sys-
tems. SADL is different from other ADLs, such as Wright [ABV92], as it supports struc-
tural decomposition at multiple levels. This is caled refinement of high-level system
structures in the SADL terminology. However, SADL is only capable of providing support
for structural decomposition along a limited number of dimensions (e.g., components, con-
nectors, configurations). The SADL support for behavioral modeling is very restricted.

Figure 9.5 shows a portion of the architecture description of the compiler_L1 example
in SADL. The topmost section of an SADL architectural description declares the imported
and exported architectural elements. This is achieved by using the keyword IMPORTING,
indicating where the definitions can be found. In our example, IMPORTING Function FROM
Functional_Style tells us that the Function construct is imported from an SADL style named
Functional_Style.

The next section, called ARCHITECTURE, encloses further lower-level SADL sec-
tions. We can see that an architecture section is referenced by the identifier compiler_L1. The
architecture description given after the ARCHITECTURE keyword includes data exchanged
with its environment using input and output ports. The compiler_L1 has an input port, named
chars_iport, and an output port, called code_oport. chars_iport receives a sequence of charac-
ters (Finite_Stream(character)), and code_oport sends code data.

An SADL architecture description contains three different sections dealing with vari-
ous aspects of its software architecture, namely COMPONENTS, CONNECTORS and CON-
FIGURATION. The first and the second sections contain the declaration of the components
and connectors, respectively, whereas the third section describes constraints on the configu-
ration of the architectural elements defined in the first and second sections.

The COMPONENTS section contains mainly elements like ARCHITECTURE, Function,
Variable and Operation. In SADL, al of these elements are considered as being components.
The ARCHITECTURE section alows us to define sub-architectures that can be contained in a
higher-level architecture. For instance, in figure 9.5, lexicalAnalyzerModule is a sub-architec-
ture contained in the compiler_L1 architecture. Note that through this feature, SADL pro-
vides support for modul ari zation.

Functionality of architectures can be expressed through the definition of Function
components. As an architecture element, a Function component may have input and output
ports through which data can be received or sent. In figure 9.5, the sub-architecture lexi-
calAnalyzerModule contains a function called lexicalAnalyzer representing the main function-
ality of the sub-architecture.

In SADL, Operation and Function components have similar meanings. The difference
between them lies in the fact that the input ports of an Operation are seen as the parameters

135

Overview of SADL

and the output port as the return value of the operation. However, the number of output
ports of an Operation component is limited to one.

Variable components are used to hold different types of data and make them available
to other components in the sense of shared-memory, which is local to a sub-architecture.
One Variable component is able to keep only asingle type of data, which means that we need
different variable components for different types of data. For instance, the lexicalAnalyzer-
Module contains three different Variable components (character-, token- and bindingVariable),
the only three that are used by the sub-architecture.

The CONNECTORS section contains the definitions of different kinds of connectors,
e.g., Pipe. Connectors enable communication among components. A Pipe connector carries
data from an output port of one component to an input port of another. The transmitted data
must be of the same type supported by the related output and input ports. An Enabling_Signal
connector mediates signal communication that islikely to occur between two components.

136

Integrating the Structural PCS with SADL

| MPCRTI NG Functi on FROMFuncti onal _Styl e

conpi ler L1 : ARCH TECTURE [chars_iport : Fnite StreanfCharacter) -> code_oport : Finite Strean{code)]
BEG N
CQOVPONENTS
| exi cal Anal yzer Mbdul e : ARCH TECTURE
[chars_iport : Fnite SreanfToken), bind_iport: Finite Srean{B nding) ->
bind oport: Fnite Strean{B nding), token oport : Finite Srean{Token)]
BEGN
QOVPONENTS
| exi cal Anal yzer : Function
[chars_iport : Finite Srean{Token), bind iport: Fnite Srean{B nding) ->
bind_oport: Fnite_Srean{Binding), token_oport : F nite StreanfToken)]
character Variable : Variabl e(Character)
tokenVari abl e : Vari abl e(Token)
bi ndi ngvariabl e : Variabl e(B ndi ng)
QONNECTCRS
QONF GRATI N
token read : QOONSTRAINT = Reads(| exi cal Anal yzer, tokenVariable)
token wite : OONSTRAINT = Wites(l exi cal Anal yzer, tokenVariable)

QONNECTCRS
tokenF pe : HF pe[A nite_Streanf Token)]

QO\F GRATT AN
tokenHA ow : GONNECTI ON = Connect s(t okenPi pe, | exi cal Anal yzer Mbdul e! t oken_oport, par ser Mbdul e! t oken i port)

Figure 9.5: Extract of the Level-3 Compiler SADL Specification

The CONFIGURATION section defines the configuration constraints on the previously
described components and connectors. These constraints may state, for instance, which
Function Or Operation component has read/write access to a Variable component, which com-
ponent sends a signal, which component receives it, the direction of the data flow between
two components, and from which component an Operation is called. We use two different
types of statements, namely CONNECTION and CONSTRAINT (examples of constraints are
shown at the bottom of figure 9.8 and figure 9.9). The former defines data flow connections
and the latter specifies al other kinds of constraints.

137

Mapping ConcernBASE to SADL

9.2.3

Mapping ConcernBASE to SADL

This section presents our approach for translating a ConcernBA SE architectural description
written in UML into atextual form writtenin SADL.

The mapping consists of 5 steps. The first step identifies all data types utilized in the
ConcernBASE architectural description and maps them to SADL. The second step requires
that all the architectural components be found and mapped to SADL . The third step requires
that all the interface elements of each architectural component be found and mapped to
SADL. The fourth step identifies data flow connections and maps them to SADL. And
finally, the fifth step puts the pieces together.

LexicaAnayzer Parser AnalyzerQptimizer
<estreamrx 8] <<stream=> [§] <<streamr> [§]
Dataflow Dataflow Dataflow

00§ 005 Qo8
no token lost no asts [ost no ast lost

no character lost
na binding lost

notokens lost

na binding lost

Produce s
tokens:StreamToken
bind=:StreamBinding

Consumes

chars:StreamCharacter
bind=:StreamBinding

Produce s

astz:StreamAst

Produces
asts:StreamAist

Consume s

tokens:StreamToken

Consumes

binds:5treamBinding

astz:Streamast

CodeGeregratar SymbolTable Tree
westreamxx [] wxstreamxx [§] <<streamr» [§]
Dataflow Dataflow Dataflow
Qo5 Q0§ QoS
no code lost no bind lost no ast lost
ofestlosy Produces Produce s
Produce s asts:Streamist

codes:Stream Code

Consume s

astz:StreamAst

binds:5treamBinding

Consumes

binds:5treamBinding

Consume s
astsitreamist

9.2.3.1 Mapping Data Types

EXPORT ALL

BE!

END

Conpi | er _Types :
Gl N

Token :

STYLE

TYPE

Character : TYPE
Bi nding : TYPE

Ast

Code :

TYPE
TYPE

Figure 9.6: Compiler_Types.sadl

To perform this task, we use an SADL feature that allows SADL styles to be defined any-
time [MR97]. Figure 9.6 shows an SADL style which defines the data types used in the
level-3 compiler (see section 9.2.2).

138

Integrating the Structural PCS with SADL

Basically, we define anew style that consists of all datatypes contained in the current
architectural description. To do this, we have to look at every stream interface in the static
model of all the components and connectors. Then we build up the data types list by gather-
ing every data type supported by the different streams. Then we simply define a new style
having the name of the current architecture appended with the suffix Types in afile having
the name of the style with the extension “.sadl”.

9.2.3.2 Mapping Architectural Components

Before mapping ConcernBA SE components to SADL, we look at the structural view and
identify all the architectural components that are contained in the system.

We translate every architectural component (subsystem) as an SADL sub-architecture
with the suffix Module and declare it in the COMPONENTS section of the main architecture.
We then declare a Function component with the same name as the component and the same
input and output ports. The Function represents the main functionality of the sub-architec-
ture and will be referred to as the sub-architecture's main component. However, this map-
ping strategy does not exclude that other UML artifacts (for instance, high-level connectors)
can be modeled as components. Such artifacts will be discovered during the next steps. Fig-
ure 9.7 shows how the structural view is trandated into SADL.

camCmponer 5 | exi cal Anal yzer Mbdul e . ARCH TECTURE

LexicalAnakyzer [coo “2 oao]

o BEG N
| L COMPONENTS
\ : | exi cal Anal yzer : Function
‘ 0 [... ->...]
A?callﬁct_nr;;‘;‘ H\D
ilerConnector A
4 par ser Mbdul e : ARH TECTURE
[... ->...]
| BEG N
-:-:archCompo‘nam:-:- ﬁ M\H\H-S o
Parser parser : Function
[... ->...]
=\D)
CONNECTARS

Figure9.7: Translating Architectural Components

139

Mapping ConcernBASE to SADL

9.2.3.3 Mapping Component Interfaces

To trandate the component interface, we have to look at its static model. The component
interface is composed of three different interface element types, each of which supports a
different communication pattern.

Sream Interface Type

Clearly, the <<stream>> interface element type is the easiest type to map, since it is equiva
lent to an SADL port. A stream interface element may produce and consume different kinds
of streams, e.g., video and audio streams. Each stream declared in the Produces and Con-
sumes compartmentsis trandlated into an output and an input port of the component, respec-
tively. Figure 9.8 illustrates thisidea.

GOMPONENTS
“<computational== E
Farser T par ser Mbdul e : ARCH TECTURE
AL [tokens_iport : F nite SreanfToken)->
Signal asts_oport : Fnite SreanfAst)]
Stream BEG N
+iparsitrDataflow 1 COMPONENTS
o parser : Function
+ parsstr - [tokens_iport : HFnite SreangToken)->
it asts oport : Finite SreanfAst)]
<sstreamz> [§] — tokenVariabl e : Vari abl e(Token)
Daraflow I ast\ariable : Variabl e(Ast)
QoS QON\H GLRATI ON
no ast lost ... Reads(par ser, t okenVeri abl e)
roltoksn=llost ... Wi tes(parser, t okenVari abl e)
Produce s ... Reads(par ser, ast Vari abl e)
astz:streamAst ... Wites(parser,ast Vari abl)
Consumes B\D
tokens:StreamToken QONNECTARS

Figure 9.8: Translating Stream Interface Type

Also, we declare a Variable component in the COMPONENTS section of the sub-architecture
for every different type of stream. A Variable component ssimply holds the data and acts as a
shared-memory component within the sub-architecture. Moreover, it should only be
accessed by internal components of the sub-architecture that owns it, using Reads/Writes
predicates. These are configuration constraints that need to be specified in the sub-architec-
ture itself. The reason for doing so is to differentiate between functional and data-holding
concerns of components. Thus, all data consumed by a component is stored within an inter-

140

Integrating the Structural PCS with SADL

nal Variable component (that bel ongs to the sub-architecture) that deal s with the correspond-
ing data type.

Operational and Signal Interface Types

SADL lacks precise formalism for the definition of operational connectors, i.e. connectors
that mediate operation calls between two components. However, the SADL style,
Procedural_Style, contains the definition of the Called_From predicate taking the invoked
Operation and the calling COMPONENT as parameters. For instance, Called_From(B!start,A)
means that the component A calls the operation start implemented by component B. Note
that start is declared as an Operation in the COMPONENTS section of the sub-architecture B.

The Outgoing compartments of the <<signal>> interfaces of a component allow us to
identify the set of signals defined by that component. We therefore declare the signalsin the
CONNECTORS section of the sub-architecture representing the architectural component. To
retain their behavior, we have to translate the ordering constraints on the signals. To do this
we analyze the behavioral model, which provides all the information we need to get the cor-
rect sequencing of signals.

L. S
N c1lMdul e : ARCH TECTURE
<<computational>> X} [S]
o ..
Operational BEG N
+ioperational: Operatienal QOVPONENTS
Signal . cl : Function
+izignalsignal
Stream o | [... ->...]
7T opl : Qperation
+isighal +foperational o) [... ->...1]
<=<signal=> D i} m\'\EC.I—%
- — g ﬁ sigl, sig3 : Enabling_Signal
Outgoing Provide s 7 END
s\g;g oplf QONNECTCRS
— BEmites CONFI GURATI ON
sig2) ... Sender (c1Modul e! si g1, c1Mbdul €)
... Recei ver (c1Mdul e! si g1, c2Mbdul €)
/nsi gl si g2/ oplsi g3 ... Sender (c2Mbdul e! si g2, c2Mbdul €)
»—»;»@ ... Recei ver (c2Mdul e! si g2, c1Mdul e)
... Call ed_Fron{clMdul e! opl, c1Mdul e)
.. Sender (c1Modul e! si g3, c1Modul €)

Figure 9.9: Trandating Behavioral Aspects

Figure 9.9 shows the trand ation of the behavior of a component into SADL with respect to
the mediation of signal and operational communication. The static model is helpful for
identifying operations and signals, while the behavioral model helps discover the temporal
ordering of signals and operation calls.

141

Mapping ConcernBASE to SADL

Furthermore, Cc1 sends the signa sigl and enters state B. The component c2 (not
shown in the figure) receives sigl and immediately sends sig2, which isin turn received by
C1. Upon reception of sig2, C1 calls the operation op1 and sends the signal sig3. The order-
ing is trandated by means of SADL predicates (Sender, Receiver, Called_From) indicating
the kind of relationships existing between the predicate's arguments. For instance,
Sender(c1Module'sigl, c1Module) means that c1Module is the sender of the signal sig1. Outgo-
ing signals are declared within the sub-architecture. The constraints that specify the correct
sequencing of the signals are declared in the CONFIGURATION section of the main architec-
ture.

Trandating the behavior of connectors is another very important thing that has to be
taken into account in order to retain the semantics of the source model. ConcernBASE and
SADL differ on the fact that connectors may have behavior, too. We cannot specify the
behavior of a connector in SADL. In section 9.2.3.2, we mentioned that we may have to
create an additional SADL component to represent a ConcernBASE connector with behav-
ior. For instance, in the level-3 compiler, the CompilerConnector is responsible for control-
ling the execution flow of the components that are part of the compiler system. In SADL,
we would model this feature as a component that would transfer the control to each compo-
nent in a sequential manner (see the main component in figure 9.1). This simply means that
we create an SADL sub-architecture for each simple ConcernBASE connector that has
behavior. To achieve this, we have to find all state machines of a connector that do not
transfer signals and operation calls further. Such an SADL component, standing for a Con-
cernBASE connector, has no precise functionality and therefore does not own any internal
component (Functions, Operation Or Variable component). This new component is only
responsible for transferring the control to other components, much like a main procedure
calling other sub-procedures to delegate different sequential sub-tasks.

9.2.3.4 Mapping Connections

In the SADL formalism, a connection represents a data link between two components. It is
further specified as being a CONNECTION constraint relating an output port of a component
with an input port of another component via a data connector (e.g., a Pipe).

The identification of SADL ports has been shown under the heading Stream Interface
Type on page 140. Now let us have alook at the interconnection between the ports that sup-
port data exchange among the components. This is described in the configuration model
shown in figure 9.10. This figure illustrates the instantiation of a simple stream connector
type between two components c1 and c2. The component c1 produces a finite stream of
characters that are consumed by c2. The connector between the static ports (with the
<<stream>> stereotype) is the carrier of the character stream. Both the connector and the
connection are respectively declared in the CONNECTOR and the CONFIGURATION sections
of the main architecture.

142

Integrating the Structural PCS with SADL

C1 Cc2
<<streamz> [%] <<stream=x> [%]
Dataflow Dataflow
CGoS5 Qo5
Produce 5 Produce s
chars:5treamChar C =

Consume s

chars:StreamChar

~=computation al>>

Hrel:icl

= Computational >

+rczicz

COVPONENTS
c1lModul e : ARCH TECTURE
[-> chars oport : Finite Strean{Character)]
BEG N
COVPONENTS
CONNECTORS
END
c2Modul e : ARCH TECTURE
[chars iport : Finite Strean{Character) ->]
BEG N
COVPONENTS
CONNECTORS
END
CONNECTCRS
streanPi pe : Pipe<Finite_Strean Character)>
CONFI GURATI ON
streanfl ow : OCNNECTI ON =
Connect s(st reanPi pe, c1Mbdul e! chars_oport,
c2Modul e! chars_i port)

Figure 9.10: Trandlating Data Connections

9.2.3.5 Putting It All Together

The last task consists of composing all the partial descriptions that result from the previous
steps, and adding IMPORTING and EXPORTING statements. An excerpt of the resulting
description is shown in figure 9.11.
Conceptually, this figure corresponds to the illustration of the structural view as
shown in figure 9.2. It represents a significant result that validates the ConcernBASE pro-
filefor structural descriptions, by allowing usto define architectural modelsin the Concern-
BASE profile of UML and to trandate them into SADL for analysis. Unfortunately, the
trandation from SADL descriptions back into ConcernBASE models is not supported yet.

143

Tool Support

| MPORTI NG Char act er, Bi ndi ng, Ast, Token, Code FROM Conpi | er _Types

| MPORTI NG Functi on FROM Functional _Style

| MPORTI NG Oper ati on, Cal | ed_From FROM Procedural _Styl e

| MPORTI NG Sender, Recei ver, Before, Enabl i ng_Si gnal FROM Control _Transfer_Style
| MPORTI NG Pi pe, Fi nite_Stream FROM Process_Pi peline_Style

| MPORTI NG Vari abl e, Reads, Wites FROM Shared_Menory_Style

conpilerL3 : ARCHITECTURE [... -> ...]
BEGI N
COMPONENTS
| exi cal Anal yzer Module : ARCHI TECTURE [... -> ...]
BEGI N
COMPONENTS
| exi cal Anal yzer : Function [... -> ...]

start : Operation [... -> ...
tokenVariable : Variabl e(Token)

END
CONNECTORS

Figure 9.11: Putting Everything Together

9.3 Tool Support

The ConcernBASE Modeler is an integrated tool for developing architectural descriptions
using the ConcernBA SE approach. Thetool alows oneto trandate UML architectural mod-
els into SADL descriptions, providing at the same time a new and elegant way to supply
verification support for UML models using the existing SADL tools. Tool pro-activeness
supports the developers in their modeling tasks because it actively handles the consistency
between different overlapping models. For instance, when the user wants to instantiate a
component type in the configuration model, the tool proposes alist of components that have
already been defined in the structural view. When the user is modeling the behavior of
architectural elements by means of state machines, the trigger and call event lists are popu-
lated with signals and operations that already exist, i.e. that have been defined in the corre-
sponding interface elements. These features reduce erroneous editions and maintain
consistency between different aspects of the same model. Figure 9.12 illustrates a usage
view of the ConcernBASE Modeler tool.

The software is single-project based, which means that it only allows one architecture
to be modeled at a given time. One project may contain several model files depicting the
architecture. The structural view is shown as a high-level model that can be refined by
defining more detailed models; each architectural element declared in the structura view
hasits own static model and behavioral model; the configuration structureis also defined as
a separate model. All models are stored on disk using the standard XM file format.

The graphical user interface is simple, ergonomic and intuitive. It has a menu bar that
provides different options, a tool bar containing frequently-used functions, a left pane dis-

144

Integrating the Structural PCS with SADL

playing a structured view of the architecture, a right pane allowing one to graphically mod-
ify architectural diagrams, and a message pane keeping the user informed of what is going
on within the system. The interface is completely event-driven and all resources, i.e. labels,
texts, messages, images, etc., are internationalized; this means that the aspect of the inter-
face can be changed and localized without having to rebuild the system. A complete built-in
help system offers information on the system itself, its functionalities, and its application
domain (ConcernBASE and SADL).

File Edit View SADL Help

=

[EEIEREICNEI YR o
© 1 NewArchitecture ald e
| << 1>
¢ % StructuralVienpaint % signat> [cecompumionslrx 6} <estreamen (8]
ControlFlowSignaling
® ¢ structuralConcernspace [| L Dataflow
@ & Staticview N O“'“‘;'"g Operational Qo3
3 LexicalAnalyzer [B] | |sartaceeptedt N2y 7 operati, ol no taksn lost
@ Parser u Incoming +ioperational Ex ecution Cantral - eam no character lost
&3 AnalyzerOptimizer startRequestediy Signal Produce s
3 CodeGeneraror +/zignal: ContralFlows ignaling tokens:streamToken
&3 symbolTable +1signal:MemoryFlows ignaling binds:StreamBinding
“+ CompilerConnector B Stream Consumes
3 Tree -+ straam:Dataflow chars:Stream Character
§ =2 BehavicralView s binds:StreamBinding
&3 LexicalAnalyzer 4pore e +] aperational
g A":‘Y“"Dp“m'“’ MemoryFlowSignaling coperationai> [
elcsatsesmey Outgoing
SymbolTable writeRequ estt ExscutionCantrol Provid
++ CompilerCannectar e Frovides rovides
m ? TFTEE d Vi Incoming start() Requires
CIERTEREMIET [writeacceptedt) Requires ;;T“‘-‘:{’)
L] readAcceptedd)
(] DI
4] []

Figure 9.12: A Screenshot of the ConcernBASE Modeler

9.4 Final Remarks

In this chapter, we have proposed a particular way of establishing a bridge between an
ADL, UML and the IEEE-Std-1471.

ADLSs provide expressive notations that many architects would like to integrate with
UML. A contribution of ConcernBASE was to facilitate such an integration by implement-
ing two conceptual frameworks: the IEEE-Std-1471 and MDSOC.

The chapter described a method for translating ConcernBASE models using UML
into SADL specifications. This translation enabled us to make use of SADL verification
tools and integrate them with the ConcernBASE Modeler tool. Although the example of
integration shown was based on SADL, the ConcernBASE approach is genera and alows

145

Final Remarks

one to define various viewpoints and viewpoint languages to represent different aspects of
software architecture.

We distinguish consistency between the views and models (both described by model
elements) from consistency between viewpoints (characterized by a set of concerns). There-
fore, support for consistency between viewpoints could not be achieved. Also, it would be
nice to integrate other ADL s and to have a backward mapping from SADL to UML, so that
we do not have to learn SADL when using the ConcernBASE Modeler tool.

Finally, the ConcernBA SE approach and the tool supporting it are both undergoing
refinement and improvement, but they are already being applied in projects. Although the
tool is not yet complete, one can aready develop models, translate them to SADL, edit and
syntax-check the resulting SADL descriptions and save the models to disk.

146

Conclusions

Chapter 10:
Conclusions

This chapter provides concluding remarks. It also presents some limitations of concern-ori-
ented approaches to software architecture and the PCS Framework, and it indicates some
directions in which research in the new area of concern-oriented software architecture
could be pursued.

10.1 Summary

This thesis studied the feasibility and suitability of a concern-oriented approach for devel-
oping and describing architectures of software-intensive systems. It proposed improve-
ments for separation of concerns and in the design, construction and evolution of such
systems, and for integrating their architectural descriptions with modern software develop-
ment artifacts.

10.2 Contributions

The thesis has argued for the necessity to comprehend that concerns are aspects of the prob-
lems we, the humans, consider when we start building software. These problems are outside
of the computer (both hardware and software) [Jack01]. Therefore, the computer cannot dis-
tinguish one concern from another, and it cannot identify the rel ationships between different
concerns. It is the job of software engineers to identify the concerns and their relationships,
to reify them into both model elements and code, and to manipulate concerns viatheir rep-
resentations.

The relationship between concerns and model elements is shown to be similar to the
relationship between an architecture and an architecture description.

The dissertation presented two elements that makes up a concern: 1) its significance
to stakeholders—that is, there must be a goal for a stakeholder—and 2) a characteristic that
makesit appear as an aspect of a problem—it must characterize a problem to be solved. Put-
ting these two elements together, it should be possible to formulate any concern in terms of
a question that may be answered by an architectural design solution (or by a low-level
design solution or an implementation).

Moreover, this thesis argues that building software architectures should be driven by the
concerns of interest to the stakeholders, not by a specific artifact language or modeling tech-

147

Advantages and Limitations

nique. This is the very objective of the concern-oriented software architecture approach
introduced as a general methodology for achieving architectural design by concerns.

This work introduced the PCS Framework as an approach to implement two concep-
tual frameworks, the IEEE-Std-1471, and MDSOC. The PCS Framework provides means
for integrating these two frameworks by using the Unified Modeling Language (UML). It
introduced the notion of building model slices, anew concern-oriented modeling technique,
which aims at supporting the paradigm of architectural design by concerns. The thesis also
proposes the concept of UML Space as a new mechanism for achieving multidimensional
separation of concerns in UML, and for realizing the notion concern space as part of the
PCS Framework to develop concern-oriented architectures.

The thesis also presented numerous case studies. It describes an On-Demand Remod-
ularization PCS by defining a viewpoint language and using that viewpoint language to
remodularize concerns in the Java Drag’ n’ Drop architecture. The On-Demand Remodular-
ization PCS contributed the ODR pattern, which can be applied at both levels: architectural
and low-level design.

Moreover, this work also demonstrated how to achieve software composition by
focusing only on interactions—i.e., not on components that interact; thus, it introduced a
new approach for rapidly building software systems by means of aspect-oriented connec-
tors.

An example has been provided which shows how to create a UML Space for aspect-
oriented modeling. This allows us to model interaction aspects for adapting independent
components to a new environment. The connector modeling approach proposed in this the-
sis supports the expression of different aspects of software interactions in aspect-oriented
models.

10.3 Advantages and Limitations

One of the limitations of this concern-oriented approach to software architecture is related
to the composition of interaction aspects themselves. Further research is required to figure
out more appropriate languages for supporting reification of concerns into model elements.
Another limitation is related to the assignment of roles to components when applying the
ODR pattern to an existing software system. The ability to assign roles to components is
currently not supported. Though this assignment is similar to connecting aspects with
classes, reasoning on composition of roles is till unexplored. This is also similar to the
composition of aspects and requires further research.

The basic idea of this thesis is that software architectures need to be developed in a
similar way as the software that implements an architecture. However, there are many direc-
tions in which research in this new area of concern-oriented software architecture could be
pursued, including tools for UML Spaces, and new techniques for identifying and reifying

148

Conclusions

concernsinto software at al levels of abstraction. Another research direction is concern-ori-
ented software development, which includes concern-oriented patterns, concern-oriented
web services, concern-oriented analysis, concern-oriented design, concern-oriented pro-
gramming, concern-oriented testing, etc.

149

Advantages and Limitations

150

Part IV

Annexes

Bibliography

[ABV92]

[AEBO3]

[All97]

[AKHO2]

[AOMO3]

[AOSD]
[BCK 98]

[Beck99]

[BGJ99]

[BRJOS]

[BMR*96]

Annex A: Bibliography

M. Aksit, L. Bergmans, and S. Vural. An object-oriented lan-
guage-database integration model: The composition-filters
approach. In Proc. ECOOR, pp. 372-395, 1992. LNCS 615S.

O. Aldawud, T. Elrad and A. Bader. A UML Profile for Aspect-
Oriented Software Development. Workshop on Aspect-Oriented
Modeling with UML, AOSD'2003, Boston, USA. (http://Igl-
www.epfl.ch/workshops/aosd2003/)..

R. Allen. A Formal Approach to Software Architecture. Ph.D.
Thesis, Carnegie Mellon University, School of Computer Sci-
ence, available as TR# CMU-CS-97-144, May (1997).

C. Atkinson, T. Kiihne, and B. Henderson-Sellers. Sereotypical
Encounters of the Third Kind. In J.-M. Jézéquel, H. Hussmann, S.
Cook (Eds.): UML2002 (Dresden, Germany, October 2002),
LNCS 2460, pp. 100-114.

AOM Website. http://Iglwww.epfl.ch/workshops/aosd2003/
links.html

AOSD Website: http://aosd.net

L. Bass, P. Clements, R. Kazman: Software Architecture in Prac-
tice. Addison-Wesley (1998).

K. Beck: Extreme Programming Explained: Embrace Change.
Addison-Wesley (1999).

S. Berner, M. Glinz, and S. Joos. A Classification of Sereotypes
for Object-Oriented Modeling Languages. In R. France, B.
Rumpe (Eds.): UML1999 (Fort Collins, Colorado, USA, October
1999), LNCS 1723, pp. 249-263.

G. Booch, J. Rumbaugh, 1. Jacobson: The Unified Modeling Lan-
guage User Manual. Addison-Wesley, 1998.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal:
Pattern-Oriented Software Architecture - A System of Patterns.
John Wiley and Sons Ltd (1996).

153

Bibliography

[CHO*99] S. Clarke, W. Harrison, H. Ossher, P. Tarr. Subject-Oriented
Design - Towards Improved Alignment of Requirements, Design
and Code. in Proc. of OOPSLA '99 (Denver, CO, Nov. 1999),
SIGPLAN Notices 34(10), 325-339.

[CwWO00] S. Clarke and R. J. Walker. Composition Patterns: An Approach
to Designing Reusable Aspects. Proceedings of the International
Conference on Software Engineering - ICSE'2001 (May 2001).

> Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,

[CBB*02] P.Cl F. Bach L.Bass, D. Garlan, J. | R. Littl
R. Nord and J. Stafford: Documenting Software Architectures —
Views and Beyond. SEI Seriesin Software Engineering. Addison-

Wesley (2002).

[CNO2] P. Clements, L. Northrop. Software Product Lines—Practices
and Patterns. SEI Series in Software Engineering. Addison-Wes-
ley (2002).

[Clegs] P. Clements. A Survey of Architecture Description Languages.

8th International Workshop on Software Specification and
Design, Germany, March, 1996.

[CKKO02] P. Clements, R. Kazman, M. Klein; Evaluating Software Archi-
tectures.Addison-Wesley (2002).
[Con03] ConcernBASE: http://Iglwww.epfl.ch/research/concernbase/
index.html
[CKS'01] V. Crettaz, M. M. Kandé, S. Sendall and A. Strohmeier. Integrat-

ing the ConcernBASE Approach with SADL. UML 2001 - The
Unified Modeling Language: Modeling Languages, Concepts
and Tools, Fourth International Conference, Toronto, Canada,
October 1-5, Martin Gogolla (Ed.), LNCS (Lecture Notes in
Computer Science), no. 2185, Springer Verlag, 2001, pp. 166-
181.

[Dij74] E. W. Dijkstra. EWD447: Ontherole of scientific thought (1974).
Reproduced in "Selected Wkitings on Computing: A Personal
Perspective", Springer Verlag 1982. SBN 0-387-90652-5.

[DR99] E. Di Nitto and D. Rosenblum. Exploiting ADLsto Specify Archi-
tectural Syles Induced by Middleware Infrastructures. Proceed-
ings of the International Conference on Software Engineering -
ICSE'99 (May 1999).

154

Bibliography

[EAK+01]

[Eng97]
[FPLP99]

[GHV™*95]

[Gar00]

[GKOO]

[GMW97]

[GRFOZ]

[GHOZ]

[GLO3]

[IEEEQQ]

T. Elrad, M. Aksit, G. Kiczales, K. Lieberherr, and H. Ossher.
Discussing Aspects of AOP. Communications of the ACM
44(10), pp. 33-38, October 2001.

R. Englander. Developing Java Beans. O’ Reilly (1997).

P. Fradet, D. Le Metayer, and M. Perin. Consistency Checking for
Multiple View Software Architectures. O. Nierstrasz, M. Lemoine
(Eds)): ESEC/FSE '99, LNCS 1687, pp. 410-428, (1999).

Springer-Verlag.

E. Gamma, R. Helm, J. Vlissides, R. Johnson: Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wes-
ley (1995).

D. Garlan. Software Architecture: A Roadmap. In The Future of
Software Engineering; Anthony Finkelstein (Ed). 22nd Interna-
tional Conference on Software Engineering, | CSE (2000).

D. Garlan and A. Kompanek. Reconciling the Needs of Architec-
tural Description with Object-Modeling Notations. In UML 2000
- The Unified Modeling Language: Advancing the Standard,
Third International Conference, S. Kent and A. Evans (Ed.),
York, UK, October 2-6, LNCS (Lecture Notes in Computer Sci-
ence), no. 1939, Springer Verlag, 2000, pp. 498-512.

D. Garlan, R. T. Monroe and D. Wile. ACME: An Architecture
Description Interchange Language. Proceedings of CASCON '97
(1997), pp. 169-183.

G. Georg, |. Ray and R. France. Using Aspectsto Design a Secure
System. In proceedings of ICECCS 2002, (2002).

M. Gogollaand B. Henderson-Sellers. Analysis of UML Sereo-
types within the UML Metamodel. In J.-M. Jézéquel, H. Hus-
smann, S. Cook (Eds.): UML2002 (Dresden, Germany, October
2002), LNCS 2460, pp. 84-99.

J. D. Gradecki, N. Lesiecki. Mastering AspectJ - Aspect-Oriented
Programming in Java. John Wiley Publishing, 2003.

The Ingtitute of Electrical and Electronics Engineers (IEEE)
Standards Board. Recommended Practice for Architectural
Description of Software-Intensive Systems (ANSI/IEEE-Std-
1471). September 2000.

155

Bibliography

[1S095]

[HO93]

[HMOO]

[Hil01]

[HIP*02]

[HNS99]

[Hyp03]
[Jack01]

[KCSs'02]

[KKS02]

[KMP*9g]

[K S004]

156

ISO/IEC 10746-1/2/3. Reference Model for Open Distributed
Processing - Part 1. Overview/Part2: Foundations/Part3:
Archictecture. |SO/IEC (1995).

W. Harrison, H. Ossher. Subject-Oriented Programming - A Cri-
tique of Pure Objects. In Proc. of OOPSLA'93 (‘Washington DC,
Oct. 1993), SIGPLAN Notices 28(10), 411428

S. Hermann and M. Mezini. PIROL: A Case Sudy for Multidi-
mensional Separation of Concernsin Software Engineering Envi-
ronments. In OOPSLA 2000 Proc. , (2002) pp.188-207.

R. Hilliard: Viewpoint modeling. ICSE Workshop on Describing
Software Architecture with UML (2001).

W.-M. Ho, J-M. Jézéquel, F. Pennaneac'h, N. Plouzeau. A toolkit
for weaving aspect oriented UML designs. In Proceedings of the
1st International Conference on Aspect-Oriented Software
Development - AOSD’ 2002 (April 2002).

C. Hoffmeister, R. Nord, D. Soni: Applied Software Architecture.
Addison-Wesley (1999).

HyperJ web site. http://www.al phaworks.ibm.com/tech/hyperj

M. Jackson. Problem Fames - Analyzing and structuring software
development problems. Addison-Wesley (2001).

M. M. Kandé, V. Crettaz, A. Strohmeier, S. Sendall. Bridging the
gap between IEEE 1471, an architecture description language,
and UML; in Journa on Software and Systems Modeling,
Springer-Verlag, ISSN: 1619-1366 (printed version), Volume 1
Issue 2 (2002); pp 113-129.

M. M. Kandg, J. Kienzleand A. Strohmeier. From AOP to UML.:
Towards an Aspect-Oriented Architectural Modeling Approach.
Technical Report, EPFL, http://ic2.epfl.ch/publications/docu-
ments/IC_TECH_REPORT_200258.pdf

M. M. Kandé, S. Mazaher, O. Prnjat, L. Sacks, and M. Wittig.
Applying UML to Design an Inter-Domain Service Management
Application. In proceedings of UML'98

M. M. Kande and A. Strohmeier. Towards an UML Profilefor
Software Architecture Descriptions. UML'2000 - The Unified

Bibliography

[K S00b]

[KTMO7]

[KKO3]

[KHH*01]

[KLM*97]

[Kru9s]

[LEW*02]

[LAK*95]

Modeling Language: Advancing the Standard, Third Interna-
tional Conference, York, UK, October 2-6, 2000, S. Kent, A.
Evans, B. Sdlic (Ed.), LNCS (Lecture Notes in Computer Sci-
ence), no. 1939, Springer Verlag, 2000, pp. 513-527.

M. M. Kande and A. Strohmeier. On The Role of Multi-Dimen-
sional Separation of Concernsin Software Architecture. Position
paper for the OOPSLA 2000 Workshop on Advanced Separation
of Concerns. (Online at http://Iglwww.epfl.ch/~kande/Publica-
tiong/role-of -mdsoc-in-swa.pdf)

M. M. Kandé, S. Tai, M. Wittig. On the Use of UML for ODP-
Viewpoint Modeling, OOPSLA'97 Workshop on Object-Oriented
Technology for Service, System and Network Management,
Atlanta, Georgia, U.S.A. (1997).

M. Katara, S. Katz. Architectural views of aspects. Proc. of the
2nd international conference on Aspect-oriented software devel-
opment - AOSD’ 2003 (March 03).

G. Kiczales, E. Hilsdale, J. Hugunin, K. Kersten, J. Palm and W.
G. Griswold. An Overview of AspectJ. in Proc. of ECOOP'01
(Budapest, Hungary, June 2001), LNCS 2072, 327-252.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-
M. Loingtier, and J. Irwin. Aspect-Oriented Programming. In M.
Aksit and S. Matsuoka (Eds.), 11th European Conference on
Object—Oriented Programming (ECOOP '97), Jyvéskyla, Fin-
land, LNCS (Lecture Notes in Computer Science) no 1241,
Springer Verlag, 1997, pp. 220 — 242.

P. B. Kruchten. The 4+1 view model of architecture. |EEE Soft-
ware, 12(6):42-50, (1995).

M. Loy, R. Eckstein, D. Wood, J. Elliott, B. Cole. Java Swing,
2nd Edition. O'Reilly Publishing (2002).

D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Vera, D. Bryan
and W. Mann. Secification and Analysis of System Architecture
Using Rapide. In |EEE Transactions on Software Engineering,
21(4):336-355, (April 1995).

157

Bibliography

[MDE*95]

[MTO0]

[MMPOO]

[MPW92]

[MR97]

[Omg01]

[Omgo3]
[OKLOZ]

[Par72]

[PW92]

[RMAO3]

158

J. Magee, N. Dulay, S. Eisenbach and J. Kramer. Soecifying Dis-
tributed Software Architectures. Proc. 5th European Software
Engineering Conf. (ESEC 95).

N. Medvidovic and R. N. Taylor. A Classification and Compari-
son Framework for Software Architecture Description Lan-
guages. |EEE Transactions on Software Engineering, Vol. 26,
No.1, January 2000, pp. 70-93.

N. Medvidovic, N. R. Mehtaand S. Phadke. Towards a Taxon-
omy of Software Connectors. Proceedings of the International
Conference on Software Engineering - ICSE'00 (May 2000), pp.
178-187.

R. Milner, J. Parrow, and D.Walker. A calculus of mobile pro-
cesses. Journal of Information and Computation, 100:1-77, 1992.

M. Moriconi and R. Riemenschneider. Introduction to SADL 1.0.
SRI Computer Science Laboratory, Technical Report SRI-C3L-
97-01, March 1997.

OMG Unified Modeling Language Revision Task Force. OMG
Unified Modeling Language Specification. Version 1.4 draft
(February 2001). http://www.omg.org.

http://www.omg.org/

J. Ovlinger, K. Lieberherr and D. Lorenz. Aspects and Modules
Combined. Technical Report, NU-CCS-02-03, Northeastern Uni-
versity, March 2002.

D. Parnas. Onethe criteria to be used in decomposing systems
into modules. In Communications of the ACM, volume 15, pages
1053-1058, 1972.

D. E. Perry and A. L. Wolf. Foundations for the Sudy of Soft-
ware Architecture. ACM SIGSOFT Software Engineering Notes,
17(4), (1992).

A. Rashid, A. Moreiraand J. Aratjo. Modularisation and compo-
sition of aspectual requirements. Proc. of the 2nd international
conference on Aspect-oriented software development - AOSD'
2003 (March 03).

Bibliography

[RMR*98]

[Ross78]

[RIBYS]

[Scho2]

[Scho1]

[SSR+00]

[SG96]

[SGW94]

[SR98]

[SHUO02]

[SR02]

J. E. Robbins, N. Medvidovic, D. F. Redmilesand D. S. Rosen-
blum: Integrating Architecture Description Languages with a
Sandard Design Method. In Proceedings of the 20th Interna-
tional Conference on Software Engineering (ICSE'98), pp. 209-
218, Kyoto, Japan, April 19-25 (1998).

D. T. Ross. Sructured Analysis (SA): a language for communi-
cating ideas. |EEE Transactions on Software Engineering, SE-
3(1), January 1977. Also appears in Programming methodology :
a collection of articles by members of IFIP WG2.3 edited by
David Gries. New York : Springer-Verlag (1978).

J. Rumbaugh, 1. Jacobson, G. Booch: The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, 1998.

S. R. Schach. Object-Oriented and Classical Software Engineer-
ing. Fith Edition. Mc Gray Hill (2002)

B. Schmerl. xAcme: CMU Acme Extensions to xArch. URL: http:/
www-2.cs.cmu.edu/~acme/pub/xAcme/guide.pdf.

D. C. Schmidt, M. Stal, H. Rohnert and F. Buschmann. Pattern-
Oriented Software Architecture: Patterns for Concurrent and
Networ ked Objects.Wiley and Sons, 2000.

M. Shaw and D. Garlan. Software Architecture: Perspectiveson
an Emerging Discipline. Prentice Hill (1996)

B. Selic, G. Gullekson and P. T. Ward. Real-Time Object-Ori-
ented Modeling. Wiley, (1994)

B. Selic, J. Rumbaugh. Using UML for Modeling Complex Real -
Time Systems. ObjecTime, (1998).

D. Stein, S. Hanenberg, and R. Unland. A UML-based Aspect-
Oriented Design Notation For AspectJ. In Proceedings of the 1st
International Conference on Aspect-Oriented Software Develop-
ment - AOSD’ 2002 (April 2002).

S. M. Sutton Jr. and |. Rouvellou. Modeling of Software Con-
cerns in Cosmos. In Proceedings of the 1st International Confer-
ence on Aspect-Oriented Software Development - AOSD’ 2002
(April 2002).

159

Bibliography

[STO2] S. M. Sutton, Jr. and P. Tarr. Aspect-Oriented Design Needs Con-
cern Modeling. Position paper in the Aspect-Oriented Design
workshop in conjunction with AOSD 2002, Enschede, The Neth-
erlands, April 2002.

[Szy98] C. Szyperski. Component Software - Beyond Object-Orented
Programming. ACM Press, New York, Adisson-Wesley, 1998.

[Tai9g] S. Tai. Constructing Distributed Component Architecturesin
Continuous Software Engineering. Wissenschaft und Technik
Verlag, Berlin (1999)

[Tan92] A. S. Tannenbaum. Computer netzworks, 4/e. Prentice Hall,
(2002).
[TOO00] P. Tarr and H. Ossher. Multi-Dimensional Separation of Con-

cerns and The Hyper space Approach. In Proceedings of the Sym-
posium on Software Architectures and Component Technology:
The State of the Art in Software Development. Kluwer (January
2000)

[TOW*99] PTarr, H. Ossher, W. Harrison, and S. Sutton Jr. N Degrees of
Separation: Multi-Dimensional Separation of Concerns. Pro-
ceedings of the International Conference on Software Engineer-
ing - ICSE'99 (May 1999), pp. 107-119.

[TD97] Thayer, R,. Dorfman, M. (Eds.), Software Requirements Engi-
neering (2nd Edition). IEEE Computer Society Press, 1997.
[USO3] UML Space Website: http://www.umlspace.org
[WK9g] J. Warmer, A. Kleppe. The Object Constraint Language: Precise
Modeling With UML. Addison-Wesley (1998).
[Web97] Random House Webster's College Dictionary, 2nd Edition. Ran-
dom House (1997).
[Wei00] O. Weigert (moderator). Panel: Modeling of Architectures with

UML. In UML 2000 - The Unified Modeling Language: Advanc-
ing the Standard, Third International Conference, S. Kent and A.
Evans (Ed.), York, UK, October 2-6, LNCS (Lecture Notes in
Computer Science), no. 1939, Springer Verlag, 2000, pp. 513-
527.

160

Bibliography

[WWW90] R. Wirfs-Brock, B. Wilkerson, L. Wiener: Designing Object-Ori-
ented Software, Prentice Hall (1990).

161

Bibliography

162

Curriculum Vitae

Mohamed Mancona Kandé
Dipl. Ing. Technische Informatik (M.Sc. in Computer Engineering)

1988
1988 - 1990
1992 - 1998

1996 - 1998
Summer 2001

1998 - 2003

1998 - 2003
Jan. 2003 —

May 2003 —

1998 - 2003

2000 - 2003

Education

Baccal auréat “ Sciences Mathématiques’.
Studies in Mathematics, Université de Conakry, Guinea.
Studies in Computer Engineering, Technische Universitét Berlin, Germany.

Research and Development

Fraunhofer Ingtitute for Open Communication Systems (FOKUS), Berlin,
Germany.

Visit to IBM Research, Thomas J. Watson Research Center, Advanced
Enterprise Middleware Group, New York, USA

Research Assistant at the Software Engineering Lab, School of Computer
and Communication Sciences, Swiss Federal Institute of Technology in Lau-
sanne (EPFL).

Ph.D. thesisin thefield of Software Architecture.

Project Manager for "Aspect-Oriented Software Design” (this project is sup-
ported by Soft[net], the Swiss National Innovation Program for Software
Technol ogy)

Senior Researcher at the Department of Management of Technology and
Entrepreneurship, EPFL

Teaching

Assistant responsible for the design phase of the Software Engineering
Course given by the Software Engineering Lab., EPFL.

Supervision

Supervision of numerous semester and diploma projects in software engi-
neering.

163

164

	Abstract
	Kurzfassung
	Acknowledgements
	Table of Contents
	Abstract i
	Kurzfassung iii
	Acknowledgements vii
	Table of Contents ix
	List of Figures xv
	1 Introduction 1
	Part I: Motivation & Background
	2 Motivating Case Study 15
	3 Related Work 37
	Part II: Building & Describing Concern-Oriented Software Architectures
	4 Concerns and Software Architecture 53
	5 The PCS Framework 65
	6 Aspect-Oriented Construction PCS 83
	7 On-Demand Remodularization PCS 95
	8 The Service-Oriented PCS 113
	Part III: Other Related Work and Conclusions
	9 Integrating the Structural PCS with SADL 131
	10 Conclusions 147
	Part IV: Annexes
	A Bibliography 153

	List of Figures
	Chapter 1: Introduction
	Chapter 2: Motivating Case Study
	Chapter 3: Related Work
	Chapter 4: Concerns and Software Architecture
	Chapter 5: The PCS Framework
	Chapter 6: Aspect-Oriented Construction PCS
	Chapter 7: On-Demand Remodularization PCS
	Chapter 8: The Service-Oriented PCS
	Chapter 9:

	Introduction
	1.1 My Thesis
	1.1.1 Setting the Scene

	1.2 Critical Evaluation of Architectural Trends and Practices
	1.2.1 ADL-based Software Architectures
	1.2.1.1 Review
	1.2.1.2 Evaluation

	1.2.2 View-Oriented Software Architectures
	1.2.2.1 Review

	1.2.3 Pattern-Oriented Software Architectures
	1.2.3.1 Review

	1.3 The Problem
	1.4 Main Contributions
	1.5 Structure of the Dissertation

	Motivating Case Study
	2.1 Informal Software Architecture Documentation
	2.1.1 Software Development Problem - The Video Surveillance Service
	2.1.2 Documenting the Problem Space
	Figure 2.1: An Informal Documentation of the Problem Space

	2.1.3 Documenting Requirements on the Solution Space
	Figure 2.2: Architecture Development Activity Diagram
	Figure 2.3: An Illustration of Requirements on the Solution Space

	2.2 Formal Software Architecture Documentation
	2.2.1 Documenting Architectural Structure in Wright
	Figure 2.4: A Wright Description of the Video Surveillance Architecture

	2.2.2 Documenting Architectural Behavior in Wright
	2.2.3 Remarks

	2.3 Pattern-Oriented Software Architecture Documentation
	2.3.1 Documenting Requirements on the Pattern-Oriented Architecture
	Figure 2.5: Informal Req. Diagram for the Video Surveillance Architecture

	2.3.2 An Application of Architectural and Design Patterns
	2.3.2.1 Rationale for Applying the Observer Design Pattern
	2.3.2.2 Documenting An Observer Pattern Occurrence
	Figure 2.6: A Higher-Level Description of the Observer Pattern Instance
	Figure 2.7: An Observer Pattern Instance with Focus on Connection Points
	Figure 2.8: An Observer Pattern Instance with Focus on the Interconnection

	2.3.2.3 Rationale for Applying the Component Configurator Pattern
	2.3.2.4 Instantiating the Component Configurator Pattern
	Figure 2.9: Structural Instance of the Component Configurator Pattern
	Figure 2.10: Behavioral Instance of the Configurator Design Pattern

	2.3.2.5 Rationale for Applying the Pipe-and-Filter Pattern
	2.3.2.6 Instantiating the Pipe-and-Filter Architectural Pattern
	Figure 2.11: A High-Level Structure of a Pipe-and-Filter Instance

	2.3.3 Documenting an Architecture for a Family of Software Systems
	Figure 2.12: A Structural Instance of the Component Configurator Pattern
	Figure 2.13: Behavioral Instance of the Component Configurator Pattern

	2.4 Concluding Remarks

	Related Work
	3.1 IEEE Recommended Practice for Architectural Description
	3.1.1 IEEE-Std-1471 Conceptual Framework
	Figure 3.1: Conceptual Framework of IEEE-Std-1471 (from [IEEE00])

	3.1.2 General Conformance Requirements
	3.1.3 IEEE-Std-1471 Lacks Realizations

	3.2 The Unified Modeling Language
	3.2.1 UML Is Not Concern-Oriented

	3.3 Multi-Dimensional Separation of Concerns
	3.3.1 Conceptual Framework of MDSOC
	Figure 3.2: An Overview of the Conceptual Framework for MDSOC

	3.3.2 Concern-Space Modeling Schema
	Figure 3.3: The Cosmos Perspective of the Software Concern-Space

	3.3.3 General Requirements for Achieving MDSOC
	3.3.4 Existing Realizations of MDSOC
	3.3.5 Units Are Inside Software, But Not the Concerns

	3.4 Aspect-Oriented Software Development
	3.4.1 Aspect-Oriented Concepts
	3.4.2 Issues in Aspect-Oriented Modeling

	3.5 Final Remarks

	Concerns and Software Architecture
	4.1 Concerns
	4.1.1 Our Definition of a Concern
	4.1.2 Discussion

	4.2 Concern Categories
	4.2.1 Architectural Concerns
	4.2.2 Non-Architectural Concerns
	4.2.3 Reifiable concerns
	4.2.4 Non-reifiable concerns

	4.3 Relationship between Concerns
	4.4 Examples of Concerns
	4.4.1 Concerns in the Requirements on ADLs
	4.4.2 Concerns in the Video Surveillance Problem
	Figure 4.1: Concerns in the video surveillance service problem in Version 1
	Figure 4.2: Concerns in the video surveillance service problem in Version 2

	4.5 Towards Concern-Oriented Software Architectures
	Figure 4.3: Conceptual Framework of IEEE-Std-1471 (modified)
	4.5.1 Objectives of the COSA Approach
	4.5.2 Characteristics and Requirements of the COSA Approach

	4.6 Final Remarks

	The PCS Framework
	5.1 Introduction
	5.1.1 Goals, Principles and Key Concepts
	Figure 5.1: A Perspectival Concern-Space in Overview

	5.1.2 Fulfilling the Requirements of COSA

	5.2 Realizing the IEEE-Std-1471 Conceptual Framework
	Figure 5.2: Overview of the IEEE-1471 Realization for the PCS Framework
	5.2.1 Viewpoint Schema
	Figure 5.3: A Viewpoint Schema in Overview

	5.3 Reifying Concerns
	5.4 Realizing an Architecture Concern-Space for UML
	5.4.1 UML Lacks Adequate Support for Modeling Roles
	Figure 5.4: UML Metamodel for Collaboration

	5.4.2 The X-Syndrome
	5.4.3 UML Space - Overcoming the X-Syndrome
	Figure 5.5: The Description of the UML Metaclass Classifier
	5.4.3.1 How to Create a UML Space

	5.5 Achieving Architectural Design by Concerns
	5.5.1 Mechanisms for Separating Architectural Concerns
	5.5.2 Linguistic Support for Expressing Architectural Concerns
	5.5.2.1 Tyranny of Dominant Decompositions in UML
	Figure 5.6: Unidimensional Separation of Concerns Across Different Levels

	5.5.2.2 Scattering of Concerns
	5.5.2.3 Tangling of Concerns
	5.5.2.4 Crosscutting Concerns
	Figure 5.7: Structural Crosscutting

	5.6 Integrating Architecting and Software Development
	5.7 Using UML
	5.8 Final Remarks

	Aspect-Oriented Construction PCS
	6.1 Viewpoint Name
	6.2 Sources
	6.3 Concerns
	6.4 Stakeholders
	6.5 Rationale
	6.6 Architectural Problems
	6.6.1 Incentive Aspects
	Figure 6.1: Structural Illustration of Key Elements within a UML Collaboration

	6.6.2 Towards Perspectival Associations
	Figure 6.2: Behavioral Illustration of Key Elements of a UML Collaboration

	6.6.3 Decisional Aspects
	6.6.4 Resultant Aspects
	6.6.5 UML Extensions for Aspect-Oriented Modeling
	Figure 6.3: High-Level Package View of the UML Space for AOM
	Figure 6.4: The UML Space for AOM - A Low-Level View of AOM Core

	6.7 Resultant View
	Figure 6.5: A Perspectival Association between the Component Roles
	6.7.1 Identifying Causes and Effects for the EventConnector
	Figure 6.6: The Cause-Effect Principle Applied on the EventConnector

	6.7.2 Designing the EventConnector
	Figure 6.7: Static Structure of the EventConnector
	Figure 6.8: Body of the Perspectival Behavior Associated with newState
	Figure 6.9: Body of the Perspectival Behavior Associated with newConsumer
	Figure 6.10: The Complete Design of the EventConnector
	Figure 6.11: Implementation View of the EventConnector Aspect

	On-Demand Remodularization PCS
	7.1 Viewpoint Name
	7.2 Sources
	7.3 Concerns
	7.4 Stakeholders
	7.5 Rationale
	7.6 Architectural Problems
	7.6.1 Incentive Aspects
	7.6.2 Decisional Aspects
	7.6.3 Resultant Aspects

	7.7 Relationships Among Concerns
	7.8 Resulting View
	Figure 7.1: Concern-Oriented Model as a Means for Concern Representation
	Figure 7.2: Concern-Oriented Model as a Means for Concern Reification
	Figure 7.3: Concern-Oriented Model as a Means for Representing Model Slices
	Figure 7.4: Concern-Oriented Model as a Means for Representing a Mechanism

	7.9 The Java Drag & Drop Architecture Case Study
	7.9.1 Drag Support Initialization Concern
	Figure 7.5: Behavioral Model Slice for the Drag Support Initialization Concern
	Figure 7.6: Structural Model Slice for the Drag Support Initialization Concern

	7.9.2 DropTarget Installation Concern
	Figure 7.7: Behavioral Model Slice for the DropTarget Installation Concern
	Figure 7.8: Structural Model Slice for the DropTarget Installation Concern

	7.9.3 Drop Event Interception Concern
	Figure 7.9: Behavioral Model Slice for the Drop Event Interception Concern
	Figure 7.10: Structural Model Slice for the Drop Event Interception Concern
	Figure 7.11: Interaction Model for using the Java Drag & Drop API
	Figure 7.12: Static Structure Model for using the Java Drag & Drop API

	7.10 On-Demand Remodularization Pattern
	7.10.1 Motivation
	7.10.2 Structure of the Pattern
	Figure 7.13: Structure of the On-Demand Remodularization Pattern

	7.10.3 Achieving Design by Concerns with the ODR Pattern
	Figure 7.14: Instantiation of ODR for the Traffic Light Control System
	Figure 7.15: ODR Applied on the Java Drag’n’Drop Architecture

	7.11 Final Remarks

	The Service-Oriented PCS
	8.1 Introduction
	Figure 8.1: Mapping Between a Viewtype and the PCS Framework

	8.2 Main Model of the Service-Oriented View
	Figure 8.2: Main Model of the Service-Oriented Architectural View

	8.3 Static Structure Model
	8.3.1 Component Structure Specification
	Figure 8.3: Component Structure Specification
	Figure 8.4: Component Types’ Interface Elements

	8.3.2 Connector Structure Specification
	Figure 8.5: The VSServiceConnector Structure Specification
	Figure 8.6: Interface Elements of VSServiceConnector

	8.4 Behavioral Specification Model
	8.4.1 Component Behavior Specification
	8.4.2 Connector Behavior Specification
	Figure 8.7: Protocol State Machine for StreamEndPointSignaling
	Figure 8.8: Protocol Sequence Diagram for StreamEndPointSignaling

	8.5 Perspectival Elements
	8.5.1 Structural Specification of Perspectival Elements
	Figure 8.9: Perspectival Associations and their Properties

	8.5.2 Behavioral Specification of Perspectival Elements

	8.6 Configuration Model
	8.6.1 Context of the Configuration
	Figure 8.10: The System Context Diagram

	8.6.2 Configuration Manual
	Figure 8.11: Base Configuration Diagram
	Figure 8.12: A Perspectival Configuration Diagram

	8.6.3 Architecture Background
	8.6.3.1 Design Rationale
	8.6.3.2 Analysis Results
	8.6.3.3 Assumptions

	8.6.4 Other Information
	8.6.5 Related View Packets

	8.7 Final Remarks

	Integrating the Structural PCS with SADL
	9.1 Introduction
	9.2 Structural Viewpoint
	Figure 9.1: Compiler Architecture: taken from [MR97]
	9.2.1 Structural View of the Compiler System
	Figure 9.2: Structural View of the Compiler System
	9.2.1.1 Static Model
	Figure 9.3: Static Structure Model of the LexicalAnalyzer Components Type

	9.2.1.2 Configuration Model
	Figure 9.4: Configuration Model of the Compiler System

	9.2.2 Overview of SADL
	Figure 9.5: Extract of the Level-3 Compiler SADL Specification

	9.2.3 Mapping ConcernBASE to SADL
	Figure 9.6: Compiler_Types.sadl
	9.2.3.1 Mapping Data Types
	9.2.3.2 Mapping Architectural Components
	Figure 9.7: Translating Architectural Components

	9.2.3.3 Mapping Component Interfaces
	Figure 9.8: Translating Stream Interface Type
	Figure 9.9: Translating Behavioral Aspects

	9.2.3.4 Mapping Connections
	Figure 9.10: Translating Data Connections

	9.2.3.5 Putting It All Together
	Figure 9.11: Putting Everything Together

	9.3 Tool Support
	Figure 9.12: A Screenshot of the ConcernBASE Modeler

	9.4 Final Remarks

	Conclusions
	10.1 Summary
	10.2 Contributions
	10.3 Advantages and Limitations

	Annex A: Bibliography
	Curriculum Vitae

