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i

The reasonable man adapts himself to the world; the unreasonable one
persists in trying to adapt the world to himself. Therefore all progress de-
pends on the unreasonable man.

George Bernard Shaw (1856 - 1950)



Abstract

From a sustainable development perspective, the newly developed automatic controllers
for building services are very promising in that they increase energy efficiency and re-
duce commissioning and maintenance costs. But a major problem has appeared as the
automatic building control systems have been implemented:the user rejection of this
kind of system is quite high. This is mainly due to a lack of user considerations in the
controllers. An integrated blind, electric lighting and heating control system that adapts
to user wishes on a long-term basis has been developed in thiswork to deal with this issue.

The adaptation of the control system to user wishes was achieved by means of Ge-
netic Algorithms. They have been seen to be the most appropriate optimization method
for this task. They ensure a 100% convergence whereas standard search methods such
as Gauss-Newton and Nelder-Mead converge in less than 25% ofthe time and Simulated
Annealing method converges in about 75% of the time. In addition, simulations with a
consistent virtual user have shown that the user adaptive controller is capable of anticipa-
tion.

Nine months of experimental tests were carried out in 14 office rooms of the LESO
building with a total of 23 users concerned. Three controllers were compared: a manual
control system, an automatic controller without user adaptation and an automatic con-
troller with user adaptation. Tests were conducted in a similar fashion asclinical random-
ized trialsare carried out: control systems are randomly attributed torooms and users do
not know which system they have (single-blind study).

Results show that the automatic control rejection percentage is greatly reduced with
the user adaptive system. Indeed, after four weeks with an automatic control, 25% of the
users with the non-adaptive system reject the automatic control, whereas only 5% of the
users with the user adaptive system reject it. These percentages depend neither on age
or gender of the user, nor on the number of occupants in a room.Moreover, the energy
savings due to automatic control (26% compared to a manual system) are not reduced by
the user adaptation. These large energy savings are mainly due to the predictive feature of
the heating controller and to the efficient control of electric lighting. In addition, indoor
comfort is slightly improved by the automatic controllers for both thermal and visual as-
pects. The indoor comfort is even slightly more improved by the user adaptive control
compared to the non-adaptive one.

The user adaptation has not converged properly in the mechanical workshop, a space
used by several persons and also considered in the experiments. It has been concluded
that user adaptive systems are probably not appropriate forplaces with irregular users,
such as workshops, libraries, corridors and all public spaces.
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Dans une perspective de développement durable, les récents progrès réalisés dans les
systèmes de régulation des installations techniques du bâtiment permettent d’envisager,
aujourd’hui, d’importantes réductions de consommation d’énergie ainsi que des coûts de
mise en service et de maintenance. Malheureusement, le défaut des systèmes actuels est
qu’ils ne tiennent pas compte, à long terme, des voeux des utilisateurs. Ainsi, les systèmes
de contrôle sont souvent rejetés par ces derniers, les nombreux avantages de la régulation
automatique étant ainsi perdus. Dans ce travail, un système de contrôle intégrant les
stores, la lumière artificielle et le chauffage et s’adaptant aux voeux des usagers a été
développé, en vue de remédier à ces difficultés.

L’adaptation a été réalisée en utilisant des Algorithmes Génétiques. Cette méthode
d’optimisation s’est révélée être plus performante que les méthodes standards, comme les
algorithmes de Gauss-Newton et Nelder-Mead et le recuit simulé. Alors que la conver-
gence vers une solution satisfaisante est assurée pleinement par les Algorithmes Génétiques,
les méthodes standards n’ont convergé que dans 25% des caset le recuit simulé dans 75%
des cas. De plus, une simulation avec un usager virtuel a mis en évidence une propriété
d’anticipation du système adaptatif.

Une validation expérimentale a été menée dans 14 locauxde bureau du bâtiment
LESO et a concerné 23 utilisateurs au total. Trois différents systèmes de régulation ont
été comparés: un contrôle manuel et deux contrôles automatiques, l’un avec adaptation à
l’utilisateur et l’autre sans. Une attribution aléatoiredes systèmes par pièce ainsi qu’une
procédure simple-aveugle ont garanti des résultats non biaisés.

Les résultats obtenus démontrent que l’adaptation à l’utilisateur permet de réduire
fortement le rejet du système de contrôle automatique. Après quatre semaines, 25%
des occupants munis d’un système non adaptatif le rejettent, alors que ce pourcentage
n’est que de 5% pour les occupants bénéficiant d’un système adaptatif. Ces résultats
ne dépendent ni de l’âge ou du sexe de l’utilisateur, ni du nombre d’occupants dans la
pièce. De plus, les économies d’énergie obtenues grâceau contrôle automatique (26%
par rapport au système manuel) ne sont pas réduites par l’adaptation à l’utilisateur. Ces
économies d’énergie sont principalement dues à l’aspect prédictif du contrôleur de chauffage,
ainsi qu’à la gestion plus efficace de la lumière artificielle. D’autre part, le confort ther-
mique et visuel a été amélioré par les dispositifs de régulation automatique, en particulier
par le système adaptatif, en comparaison avec le système manuel.

Enfin, il a été observé que l’adaptation à l’utilisateura échoué dans l’atelier du LESO,
un local particulier avec de nombreux usagers différents.Il apparaı̂t donc que les systèmes
adaptatifs à l’utilisateur ont vraisemblablement moins d’intérêt pour des espaces occupés
de manière irrégulière, comme par exemple, des ateliers, bibliothèques, couloirs et en
général tous les espaces publics.
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Chapter 1

Introduction

“History is the version of past events that people have decided to agree upon.”
(Napoleon Bonaparte)

During the main part of the history of man, “housing conditions” have been one of his
main concerns. From prehistory to now, man has discovered and invented a tremen-
dous number of techniques related to his comfort in dwellings. This chapter gives some
milestones of this evolution, first regarding the building services and then regarding the
automatic controllers in buildings. The last section showshow the thesis contributes to
this evolution.

1.1 Origins of Building Services

As man became a biped and started discovering tools (during the Old Stone Age, 2.5 mil-
lions years ago), he was already looking for some comfort andprotection in caves and had
even begun to build crude shelters. Substantial evidence ofprimitive dwellings coincide
with the use of fire, discovered 400’000 years ago. Fire was used for cooking food and
scaring animals away from shelters but also for keeping warm, as well as for lighting. It
was the first heating and lighting system.

Historians have shown that fire was moved to different parts of a dwelling, and various
schemes were tried to improve the draft of the fire by using stones. However, even the best
open fire is 20% efficient, with most of the heat escaping with the smoke. Using larger
stones heat was accumulated and re-emitted later, which wasthe premise of the radiant
heating system. But, open fires still were only capable of warming very small spaces and
required constant attention.

The discovery of the duct (probably in Mesopotamia 10’000 years ago for water ma-
nipulation, and in China during the 7th century B.C. for air manipulation) brought the
solution (see Figure 1.1). Distributed heating systems appeared around 220 A.D., when
the Roman Emperor Heliogabalus is said to have a palace warmed by air. A stove was
placed in a brick chamber under the rooms. Outdoor air was conducted into the chamber
under the stove, the heated air then flowing through openingsinto the rooms above. The

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1:Clay heating ducts embedded in the wall of a house, Pompeii

remaining drawback of such a system was the low specific heat value of the air that pre-
vented proper heating of distant rooms.

The Industrial Revolution, which had brought new iron technologies, allowed to re-
place air by water with its larger specific heat value in ducts. At this point (towards the
end of the 18th century) water distributed heating systems were realized using large pipes
and a simple boiler. They operated by gravity, cold water being denser fell back to the
boiler through pipes forcing the lighter warm water to rise to the radiators.

At the same time, cooling systems were rare because they werepenalized by the prob-
lematic storage of ice. Nevertheless, some cooling systemswere developed and a few of
them are still in use after more than a century of service (forinstance in the Hungarian
Parliament building). Ice was simply placed in air ducts to cool and dehumidify warm air
blown by fans.

During the 1920’s in England and USA, use of water for heat transport gives impetus
to the development of new heating systems. Heat distribution was not anymore limited to
radiators but radiant ceiling and floor were used as well. Moreover, water solar collectors
appeared and therefore supplied control opportunities in active solar homes, that was an
interesting advantage over the older1 but less flexible passive solar systems.

1The ancient Greeks, in the 5th century B.C., already planned whole cities in Greece and Asia Minor,
such as Priene, to allow every homeowner access sunlight during winter to warm their homes.
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In parallel, the long story of the artificial lighting systemwas going. Fire had been
portable from the beginning (the first torch was a simple burning piece of wood) but it was
not convenient and lighting autonomy was limited. During the Early Bronze Age (3’000-
2’000 B.C.), the invention of the oil lamp in the Middle-Eastsolved these problems and
was widely spread. But despite the invention of the candle (around 100 B.C), the draw-
backs of these lighting systems persisted: they only provided very low lighting levels and
they produced ill-smelling smoke. Nearly two thousands years later, in 1784, use of coal
gas as lighting fuel provided the solution for efficient lighting. Early in the 19th century,
most cities in the United States and Europe had streets that were lit by gas. Nevertheless,
the necessary gas pipes were quite inconvenient and the discovery of electricity provide
an alternative system: the light bulb. Edison invented it in1879 and it improved drasti-
cally artificial lighting capabilities. This also allowed the development of electric lighting
control. Finally, first fluorescent lamps appeared in 1939, more than thirty years after the
process had been demonstrated.

Concerning daylighting, the first system was the simple opening covered with animal
skins of the Homo Habilis primitive dwellings. Real improvement come with the use of
natural transparent stones that provided daylighting while preventing cold air to come in.
The discovery of glass (around 3’000 B.C.) enabled the manufacturing of windows and
thus rendered them thin and convenient. But the high cost of glass delayed the propaga-
tion of windows until the Middle Ages.

Since daylight entered rooms, solar protections became essential. First, fixed solar
protections were used, like the Arabic Moucharrabieh (see Figure 1.2) that appeared dur-
ing the 14th century. They let daylight enter the room but cut the direct solar radiation.
In countries where the external temperature varies over a large range depending on the

season, fixed solar protections were inconvenient. Hence, in Italy, movable shading de-
vice such as roller blinds and venetian blinds appeared during the 18th century, providing
control opportunities.

1.2 Ancestors of the Automatic Building Control Systems

The first known automatic regulators were developed in orderto have an accurate mea-
surement of time, which was a major concern in Antiquity. TheGreek Ktesibios in about
270 B.C. was the first inventor of a float regulator to improve the accuracy of water clocks
(clepsydras).

The field of automation really appeared much later, during the first part of the Indus-
trial Revolution (1705-1830). All of Western Europe industrialized rapidly, but it was in
England that the process was most highly accelerated. There, the realization of the first
modern steam engine by Thomas Newcomen (in 1705) started theseries of James Watts
inventions. In particular, his first automatic regulator system for stabilizing the rotational
speed of steam engines (patented in 1788) could be considered as the birth of the modern
automation field.
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Figure 1.2:Example of an Arabic Moucharrabieh

Concerning automatic control applied in buildings, the first automatic heating control
systems appeared in the middle of the 19th century with the invention of the bimetal ther-
mostat (invented by Andrew Ure in 1830). With the coming of the Age of Electronics
and especially the discovery of the “positive feedback amplifier” by Armstrong in 1912,
major improvements in feedback control became possible. Thus, only ten years later,
the famous Proportional-Integral-Derivative controllerwas introduced by Minorsky [Mi-
norsky, 1922]. Then, the optimal control theory appeared with its numerous techniques:
dynamic programming [Bellman, 1957], Kalman filters [Kalman, 1960] and Stochastic
control [Aström, 1970]. Finally, alternative methods such as fuzzy logic control [Zadeh,
1965] and expert systems (many examples since 1970’s) enlarged the building automation
field.

1.3 Remaining Challenge

This evolution in building automation is clearly not ended:all around the world, numer-
ous research laboratories are still involved in the field of Building Physics.

Because of the oil crisis in the 1970s, research in building control systems during
these last decades was mainly centered on the energy point ofview, neglecting to a cer-
tain extent the real user needs. The goal was to save energy while keeping a priori indoor
comfort conditions. Nevertheless, some researchers beganat the same period to provide
innovative methods for comfort assessment (e.g. Fanger forthermal [Fanger, 1982] and
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Guth [Guth, 1966] for visual aspects). But it is actually shown (see Chapter 2) that each
user has specific needs and wishes towards his indoor environment.

The new challenge is then to develop innovative control strategies in buildings, that are
still energy efficient and fulfill better at the same time the user specific requirements. To
achieve this, these new automatic control systems should learn and integrate the behaviour
and wishes of the user. In the context of this thesis, such a system has been developed.
The main “soft computing techniques” namely Fuzzy Logic, Neural Networks and Ge-
netic Algorithms were used to implement the necessary adaptive feature and to realize
this system.

This thesis is formed of 5 main chapters. First, the statement of the problem and the
actual available solutions are given in Chapter 2. Then, Chapter 3 gives a comprehensive
description of the building control system. In Chapter 4, the method of adaptation to the
user is shown. Finally, Chapters 5 and 6 deal with the experimental tests with real users
and the validation of the proposed method .
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Chapter 2

Problem Statement

“ I can’t understand why people are frightened of new ideas. I’m frightened of the
old ones.” (John Cage)

Automatic controllers for building services are more and more used. But they do not take
into account user wishes on a long-term basis. As a consequence, symptoms of the “sick
building syndrome” (SBS) may appear together with their financial and social costs. The
first section of this chapter states more precisely, througha literature review, the causes of
the low user acceptance of automatic building controllers.The state of the art in advanced
control systems is then described in the second section. Afterwards, outline of solutions
are given and justified.

2.1 Limitations of Automatic Building Controllers

From a sustainable development perspective, automatic controllers for building services
provide large improvements potential. The newly developedautomatic controllers of-
fer very promising possibilities to increase energy efficiency and to reduce commission-
ing and maintenance costs. But a major problem has appeared together with the auto-
matic building control system spreading: the user acceptance of this kind of system is
quite low as it has been shown in several studies [Elder and Tibbott, 1981, Vine et al.,
1998, Guillemin and Morel, 2001]. In the Elder study, for instance, more than 400 em-
ployees were considered and the dissatisfaction assessed through questionnaires reached
up to 80% regarding the heating control.

Explanations of the low user acceptance have to be found in the fact that current
automatic controllers in energy efficient buildings are still not really user-oriented and
only deal with comfort through norms (temperatures, illuminances, etc.) that come from
statistical assessment (e.g. Fanger’s theory for thermal comfort [Fanger, 1982]). Yet, a
study [Begemann et al., 1997] in Netherlands with 170 subjects has shown a large range
of individual preferences, and this rejects the idea of applying norms for comfort condi-
tions. Moreover, the lack of user considerations in building control explains in part the
appearance of the “sick building syndrome” (SBS) [LHC, 1990]. Indeed, McIntyre and
Sterling denotes six building features strongly associated with SBS, two of them being

7
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directly linked to energy efficient control: application ofenergy conservation measures
and lack of individual control opportunity over environmental conditions [McIntyre and
Sterling, 1982].

The level of individual control is also mentioned as being strongly related to SBS
symptoms in the book on workplace performances of Aronoff and Kaplan [Aronoff and
Kaplan, 1997] and in the work of Willey, who says that “restrictions on occupant control
of the environment in building is an ongoing cause of SBS” [Willey, 1997]. Substan-
tial evidences of users suffering from the lack of individual thermal control in energy
efficient building were shown by de Dear through his large database [de Dear, 1998] pro-
duced from the analysis of 12 offices in Australia. For automatic lighting systems, Vine et
al. compared the user response with and without override facility of the same automatic
lighting controllers (concerning both electric lighting and shading device). Through ques-
tionnaires, the study shows that more people (78% compared to 57%) felt lighting com-
fortable in the case with the override facility than in the other case [Vine et al., 1998].
And more recently, Moore et al. have found that people place ahigh level of importance
on being able to control lighting. On a 5-point scale, 1 representing unimportant and 5
important, the mean response of the 410 subjects was 4.2 [Moore et al., 2002].

A very large study in England, PROBE (Post-Occupancy Reviewof Buildings and
their Engineering), including a user survey in almost 50 buildings with more than 100
subjects in each building, brings very interesting clues related to the user rejection of
automatic systems. The authors of the study conclude that “the environmental systems
designs and controls often seem to have reduced the adaptiveopportunity, which seems
to be at the root of occupants’ higher tolerance” [Bordass and Leaman, 1997]. In particu-
lar, the study shows that frequently automatic control was used without manual override
facilities, which irritates and in some case infuriates users. In the same study, Leaman
and Bordass go one step further assuming that users get frustrated as soon as they are
unable to achievespeedyandeffectiveresponse from their own actions or from the con-
trol systems [Leaman and Bordass, 2001]. Vine et al. confirmsthis, saying that delays in
feedback create an erroneous impression that the system is not working [Vine et al., 1998].

On a financial point of view, SBS related problems have huge consequences. Their
costs may be divided into two contributions: a part of the work related health problems,
estimated to be around 26 billion dollars per year in USA [Leigh et al., 1997] and a loss
of the potential improved productivity estimated to be from40 to 250 billion dollars per
year [Fisk and Rosenfeld, 1997]. Independently, Wyon concludes following a review of
the literature that “published experimental data indicatethat conventionally acceptable in-
door working environments may be affecting human performance by various mechanisms
by as much as 5% to 15%” [Wyon, 1996].

It is interesting to notice the dates of these different publications: during the last five
years, a deep consciousness of the lack of user consideration in automatic building con-
trol has been established. But only very few authors try to propose concrete solutions.
Bordass and Leaman explain that “it is vital to make controlscomprehensible, effective,
responsive, and in the right place” [Bordass and Leaman, 1997]. Willey proposes a possi-
ble way for reintroducing a more human-oriented control system: a simulation of expert
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Figure 2.1:The predictive control

human control actions should be introduced as the strategy underlying automatic con-
trol [Willey, 1997]. But actually, no such systems have beendeveloped.

2.2 State of the Art

The history of automatic control systems in buildings has shown that they were mainly
concerned by the energy savings, while trying to keep standard indoor comfort condi-
tions. The typical example of this kind of controllers is theoptimal control [Burghes and
Graham, 1980]. Given a certain function that expresses energy consumption and user
discomfort (assessed through Fanger’s theory, for instance) from a set of variables, these
systems try to find the minimum of this function, applying different strategy of control (for
instance, for Heating Ventilation Air-Conditioning (HVAC) systems). The optimization
may be achieved in different ways, depending on the knowledge of the system: matrix
inverse calculation, gradient descent or global minimization techniques such as Genetic
Algorithms (GAs). The work of Lam is an example of the application of GAs in optimal
control for air-conditioning system [Lam, 1993].

Even though optimal control was first using instantaneous cost function, predictive
aspects became quickly a major concern: predictive controlwas born. Its principle (see
Figure 2.1) is to anticipate future disturbances (as solar gains, user presence, etc.) and
to control the heating plant accordingly. It has been shown that it may improve thermal
comfort mainly by reducing overheating risk [Nygard, 1990]. And thanks to its great
efficiency in energy savings, this kind of control is still widely used by researchers in
building control [Chen, 2001, Kummert et al., 2000].

The adaptive control, an other important field of control, has become important be-
cause building control systems, which do not adapt to the building characteristics and to
the climate conditions, have a severe drawback. They require to do the commissioning
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of the building services in a very careful way; otherwise a large increase of energy con-
sumption could result. Conversely, a self-adapting systemwould not need such a careful
tuning, and would progressively adapt itself to the building and climate characteristics.
Since a dozen years, the adaptive control is well known and used successfully in plenty of
domains: in robotics [Timofeyev and Yusupov, 1996], in medical engineering [Takahara
and Wakamatsu, 1997], in energy production [Gelinas et al.,2001] and so on. But in
the building domain, only rare authors have applied directly adaptive techniques to learn
the building and environmental characteristics. Teeter and Chow, in USA, described a
functional neural network approach to perform a HVAC thermal dynamic system identi-
fication [Teeter and Chow, 1998]. Chow et al. have improved this system by adding a
genetic-based optimization [Chow et al., 2002]. Huang and Lam have shown a successful
implementation of GAs in a simulation tool for automatically tune of PID controllers for
HVAC systems [Huang and Lam, 1997].

The most promising way for adaptive control in buildings seems to be the adaptive
fuzzy logic controller [Shoureshi et al., 1992, Fraisse et al., 1997, Kolokotsa et al., 2001].
Foundations of fuzzy logic were set by Lotfi Zadeh in 1965, andsince then, comprehen-
sive studies and applications have been undertaken [Zimmermann, 1991]. The main inter-
est of fuzzy logic is the possibility to easily integrate expert knowledge into controllers.
Moreover, it exists plenty of adaptation procedures for fuzzy logic controller using dif-
ferent techniques such as “standard” ones [Arabshahi et al., 1993], neural ones [Harris
et al., 1993] and especially the GAs ones that are the most explored [Herrera et al.,
1995b, Dadone and Vanlandingham, 1998, Abbod et al., 1998, Pham and Karaboga,
1998]. Nevertheless, fuzzy logic controllers in buildingsadapted using GAs have al-
most never been developed. Only Pargfrieder in Austria [Pargfrieder, 2001] has realized
such a controller.

In addition to this approach, an automatic building controller developed in a Swiss
research project gathers the predictive and adaptive aspects. This system named NEU-
ROBAT [Krauss et al., 1998, Morel et al., 2001] have been tested experimentally in two
occupied office rooms during a complete heating season and the obtained energy savings
are almost 13% compared to a conventional controller (open loop control depending on
outdoor air temperature and with an adaptive start-stop algorithm) while thermal comfort,
assessed through the Fanger’s PMV model is slightly improved [Bauer, 1998].

At the Massachusetts Institute of Technology, Rodney Brooks, a famous specialist in
Artificial Intelligence, works with his team since 1997 on the “intelligent room project”,
which focuses more on the user and domestic services interaction. That means to put
cameras and microphones in order to provide voice control, person tracking and ges-
tures recognition. The first applications proposed of such asystem are in a command and
control center for disaster relief and in an interactive space for virtual tours of the MIT Ar-
tificial Intelligence Laboratory [Brooks, 1997]. This new branch of research has brought
an innovative way of dealing with building control systems:the controllers in the differ-
ent rooms are considered as “distributed software agents” [Coen, 1997]. This artificial
intelligence technique distributes the information on small entities, called agents, each
one being very simple, and allows intelligence to emerge through the agents connections
and interactions [Minsky, 1986]. Sharples et al. have developed a mock-building us-
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ing a multi-agent architecture for intelligent building and sensing control [Sharples et al.,
1999]. Yet, no results are apparently available until now.

Nearly none of the here mentioned controllers deal with blinds control because heating
and daylighting are almost never considered together. Nevertheless, some studies address
the blinds control issue. The first comprehensive work on shading devices control was
done in Japan in 1988 [Inoue et al., 1988]. The authors studied four high rise office build-
ings in Tokyo and developed an optimal control from their investigations. In particular,
they found that beyond a vertical solar radiation of 50 W/m2 onto a facade, blinds closing
was proportional to the depth of sunlight penetration into the room. More recently, Lee
et al. have developed a prototype of a venetian blinds controller successfully, monitored
workplane illuminance being above 90% of the design level for 98% of the year [Lee
et al., 1999].
Bauer et al. propose to separate the blinds control issue into two parts: the thermal as-
pects and the visual aspects [Bauer et al., 1996]. In particular, their blinds controller
named DELTA uses two different fuzzy rule bases, one for the user present case and the
other for the user absent case. Meanwhile, in a survey involving 63 private offices in a
university building in Wisconsin, USA, Pigg et al show the importance of the glare prob-
lems in the blinds control. Indeed, 37% of the users stated that they used blinds to reduce
glare on their computer screen [Pigg et al., 1996]. This gavethe idea to Guillemin and
Morel not to only divide the blinds control in thermal and visual aspects but also to divide
the visual part into two sections: one dealing with the illuminance and the other dealing
with glare problems. It was implemented in an integrated control system [Guillemin and
Morel, 1999], that has been proven to lead to large energy savings (20% compared to
conventional systems) while improving visual comfort conditions [Guillemin and Morel,
2002b].

In the literature, only the work of Mozer mentioned a building control system that
tries to adapt to the user [Mozer, 1998]. It is known as the “Neural Network House”. This
house is located near Boulder in Colorado and is equipped with several sensors and ac-
tuators that allow observing the inhabitant behaviour and desires, and controlling electric
lighting, ventilation and heating to fulfill these needs. But no blinds control is included in
this study and no results are apparently available today.

2.3 Outline of Solutions

The aim of the present work is to realize a user-oriented and energy efficient building con-
trol system. This task should not have been difficult since users were shown as being quite
tolerant with indoor comfort conditions [Fanger, 1982]. For instance, up to 2◦C of devi-
ation on the air temperature may be easily tolerated [Nicol and Humphreys, 2002]. This
rather large range of tolerance comes from the adaptation capability of the users. Indeed,
thermal adaptation of the users can be attributed to four different processes (compiled
from [Heerwagen and Diamond, 1992] and [Brager and de Dear, 1998]):

• Changes in behaviour (clothes adjustment, go outdoors, etc.)
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• Environmental alterations (open a window, close blinds, etc.)

• Psychological processes (try to ignore the problem, etc.)

• Physiological acclimatization (changes in the settings ofthe physiological ther-
moregulation system)

So, why people become suddenly intolerant, despite these adaptation features?

Different authors [Leaman and Bordass, 2001, Nicol and Humphreys, 2002] recently
reported that this adaptation process is absent when users have not the control on their
environment. Thus, when there is an automatic control in thebuilding, only two things
may occur when users are not satisfied with their environmental conditions, depending on
the override possibility:

Override possible Users switch off the automatic system and are satisfied, but all
the energy savings may be lost (for instance, the electric lighting is not switched off
by the user when leaving the room).

Override not possible Users become unsatisfied and frustrated, and symptoms of
SBS may appear.

The capability of adaptation to the user preferences seems to be the necessary condition
to lead to a wide acceptance of the automatic building control systems among the users
and to keep an energy efficient control. An adaptation to users through the observation
of their interactions and behaviours should be possible thanks to the fact that people are
consistent in their way of reacting [Reinhart and Voss, 2002, Begemann et al., 1997].
Some researchers have tried to modelize user behaviour and interaction using stochastic
models [Scartezzini et al., 1990, Nicol, 2001, Reinhart, 2001]. But the obtained results
are not sufficiently precise to be implemented in a strategy of control that must be efficient
and accepted by every user.

In the domain of computer and web-based applications, several methods for learning
user preferences and profiles have been successfully implemented. Meyer et al. describe
two intelligent agents that are able to learn human behaviour, to anticipate next actions
and then act accordingly in a web-based application [Meyer et al., 1997]. Cuenca and
Heudin have developed an agent system for learning profiles in broadcasting applications
on the internet [Cuenca and Heudin, 1997]. Other studies in the same domain have
shown more universal results applying the Theory of Reasoned Action (a person’s atti-
tude toward a behaviour is determined by that individual’s beliefs about the behaviour’s
consequences). Their authors [Liker and Sindi, 1997, Morris and Dillon, 1997] have ex-
tracted many factors that influences user acceptance of expert systems, and Birnbaum et
al. have summarized the three key principles for successfulintegration of intelligent con-
trol in expert systems [Birnbaum et al., 1997]. These principles may be translated into
our building control vocabulary as follows:

• The user must keep the control on the whole control system (i.e. he/she must keep
the priority over the values provided by the control system).

• The system must be responsive, providing always appropriate indoor comfort what-
ever the outdoor conditions and the changes in the user environment are.
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• The system must take into account the user actions, which provide a “free” infor-
mation to the system.

In conclusion, an automatic building control system that adapts itself to the user spe-
cific characteristics remains to be elaborated. It should not be based on a user model but
should preferably adapt control parameters to fulfill the observed user needs while keep-
ing the most possible energy efficient control strategy. Moreover, the development of the
system should rely on the three key principles mentioned above, especially concerning
the override facilities, which should always be provided.
Thanks to this user adaptation, the newly developed controller would increase the accep-
tance of automatic control systems. Therefore, it would bring better indoor environment
conditions, and consequently, reduce the SBS symptoms and increase the productivity.
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Chapter 3

Comprehensive Control System
Description

“Automatic simply means that you can’t repair it yourself.” (Mary H. Waldrip)

This chapter gives a detailed description of the automatic controllers for the blind, elec-
tric lighting and heating systems used within this work. First, some preliminary studies
related to the development of these controllers are described. Then, the governing basic
principles and the data handling are explained. In the thirdand four sections, the final
controllers and the needed adaptive models (concerning theenvironment, the building
and the devices) are given.

3.1 Preliminary Studies for Blinds Control

The development of an efficient strategy for blinds control is very critical. The mix of
direct (visual) and mid-term (thermal) consequences of thecontrol variables is particular
to this field. A way to address this problem was proposed by Bauer et al. in the DELTA
project [Bauer et al., 1996]. The DELTA blind controller is divided into two cases, de-
pending on whether the user is present or not in the room. Whenthe user is present, the
blind controller primarily provides optimal visual conditions in the room; otherwise, only
thermal considerations are taken into account to minimize heating energy consumption.
This section presents the preliminary studies carried out for the development of an effi-
cient blind controller. First, the thermal impact of blind control is assessed using a simple
model of the window and blind, and then different blind controllers are tested by numeri-
cal simulations for both user present and absent cases.

3.1.1 Thermal Impact of Blinds Control

In order to quantify the thermal impact of solar protections, a simple model of a window
and a blind has been defined. Assuming the independence of theenergetic transmission
coefficients of the blind and of the window, the steady-stateheat balance of the model
described on Figure 3.1 may be calculated as follows:

15
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Figure 3.1:Thermal static model for a window and a blind system

Pw = Gv gw α + Gv gw gb (1 − α) −
(

U α + U (1 − α)/(1 + R U)
)

(Tind − Tout)

Where Pw: Specific power balance of the opening (W/m2)
Gv: Global vertical illuminance on facade (W/m2)
gw: Window energetic transmission coefficient (-)
gb: Blind energetic transmission coefficient (-)
α: Blind position, 0≤ α ≤ 1, α = 1 : blind fully open,

α = 0 : blind fully closed
U : Thermal transmittance of window (W/m2K)
R: Thermal resistance of blind (m2K/W)
Tind: Indoor temperature (K)
Tout: Outdoor temperature (K)

For the calculation, physical values for the window are assumed to correspond to
a typical double-glazing with a thermal transmittance of 2.5 W/m2K, and an energetic
transmission coefficient of 0.7. Regarding blinds, physical values correspond to a tissue
blind with a thermal resistance of 0.15 m2K/W and an energetic transmission coefficient
of 0.1.

This equation is applied to different cases: in summer and winter and for sunny and
cloudy days. A global vertical irradianceGv equal to 800 W/m2 is assumed for a sunny
day and a value of 100 W/m2 for a cloudy day. A winter outdoor temperature is assumed
at 5◦C (corresponding more or less to Switzerland conditions), asummer outdoor temper-
ature at 25◦C and the indoor temperature is kept at 20◦C.

For each case, the visual optimization and the thermal optimization are compared.
The thermal optimization applied the most efficient strategy for blinds control (close com-
pletely the blind during a sunny day in summer,α = 0) while visual optimization makes a
compromise with visual aspects (blind only half closed during a sunny day in summer,α
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= 0.5, in order to keep sufficient daylight in the room). In Table 3.1, the heat power bal-
ance for the window is given in the visual optimization case and the thermal optimization
case. They are values per square meter of window. They take into account the solar gains
through window and the heat losses due to the difference of temperature between indoor
and outdoor.

Summer Winter
Sunny day Cloudy day Sunny day Cloudy day

Visual Optimization 319 (0.5) 83 (1.0) 276 (0.5) 33 (1.0)
Thermal Optimization 65 (0.0) 16 (0.0) 523 (1.0) 33 (1.0)

Difference [W/m2] 254 67 −247 0

Table 3.1:Heat power balance of a window for different cases (in brackets the corre-
sponding blind positions (α) are given)

The results show the difference, in power per square meter ofwindows, that exists
between the visual and the thermal optimization cases. As expected, there is potentially
more thermal energy to save (or reject) during the sunny day.
In summer, during a sunny day, the thermal aspects lead to close the blind and the visual
ones give a half-closed blind position. The difference between the two power balances is
more than 250 W/m2. It could be interesting to close the blind more than that thevisual
aspects ask for. For instance, if one would choose a positionof the blind of 0.2 instead of
0.5, it has been calculated that 150 W/m2 of solar heating (and its associated overheating)
may be avoided.
During a sunny day in winter, the thermal aspects allow a gain250 W/m2 of heating power
with a blind completely open instead of a half-closed blind position. But in this case, it
is more questionable to consider a blind more open than that the visual aspects ask for,
because of the high risk of glare that could occur.
During a cloudy day in winter, the same kind of strategies maybe done so as to consider
also thermal aspects, but the gain will be limited at about 50W/m2. In winter during a
cloudy day, the visual aspects lead to the same blind position as the thermal aspects.

Thus, it is sometimes possible to save heating/cooling energy by considering some
thermal aspects also during a visual optimization period (user present). To have an idea
of the amount of energy saved during one year, let us considerthe following calculation:
150 W/m2 for a window of 4 m2 during 5 hours/day for 50 sunny days in a year: 150· 4 ·
5 · 3600· 50 = 540 MJ. In comparison, the total thermal energy consumption of an office
room of the LESO building is 2500 MJ. In conclusion, it may be very beneficial to also
consider some thermal aspects during the visual optimization.

3.1.2 User Present

When the user enters the room, the controller switches to thevisual optimization mode.
Several algorithms for blind control have been studied in this preliminary study. First, the
most promising algorithm (calledSun-Position) is explained. It consists of two parts, one
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determining a maximum blind opening in order to avoid glare (using a fuzzy rule base)
and the second one trying to find the blind position (below themaximum value) that leads
to appropriate indoor illuminance. Then, the other algorithms are briefly presented and
compared through simulations.

3.1.2.1 Sun-Position Algorithm: Maximum Blind Opening

The first part of theSun-Positionalgorithm is a fuzzy inference system1 consisting of
25 rules, four inputs (direct outdoor horizontal illuminance, season, solar altitude and
azimuth) and one output (maximum blind position). The main principles used to design
the rules are:

• Priority is to avoid glare. The system tries however to reduce heating/cooling needs
by differentiating the rules depending on the season. In winter, during the day solar
gains are maximized (in accordance to visual aspects) and during the night blinds
are closed so as to increase the thermal insulation and reduce the heat losses through
the window. In summer, the opposite behaviour is applied.

• A position of the sun near the horizon leads to close blinds ifthe direct solar radia-
tion is high enough to disturb the user (typically higher than 100 W/m2).

• In absence of direct solar radiation on the facade, there is no restriction on the
maximum opening of the blind.

The innovative idea of the algorithm is to take into account not only the solar incidence
angle on the facade (which was one limitation of the DELTA blind controller) but both
solar altitude and azimuth relative to the facade (see Appendix A.1). This allows different
behaviours for different sunlight penetration scenarios (see Figure 3.2). In this example,
if the sun is in the south-west direction and illuminates theeast wall in front of the user 2
or is in the south-east direction and illuminates the user 2 directly, the algorithm may give
different maximum blind openings although the incidence angle is similar in both cases.
The two sun positions are equivalent for the user 1.

3.1.2.2 Sun-Position Algorithm: Blind Position According to Indoor Illuminance

The final position of the blind is calculated through a simplified illuminance model. This
model links the indoor horizontal illuminance (Ehin) to the outdoor vertical illuminance
(Evout). It depends linearly2 on the blind position (α) and it uses two coefficientsc andd.

Ehin = (c · α + d) · Evout

Setting the indoor horizontal illuminance (Ehin) equal to the required illuminance and
solving this equation forα, a final position of the blind can be determined. The unique

1Detailed explanations about fuzzy logic can be found in the book of Zimmermann [Zimmermann,
1991]

2An improved model that varies exponentially with the blind position is used in the final version of the
controller (see Section 3.4.2).
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Figure 3.2:Example of an office room layout

constraint is that blind position must be lower than the maximum blind opening previously
determined. If the indoor illuminance is too low, electric lighting is switched on to meet
the setpoint defined by the user. The measurement of the indoor illuminance is not used
directly (it should however be used for adapting continuously the c, d parameters of the
model), the benefits being:

• Oscillations (that could appear with a closed-loop control) are avoided.

• An appropriate behaviour of the controller is kept even if the sensor gives a tempo-
rary wrong value (in cases of paper on the sensor, sensor failure, etc.).

• Blind position may be predicted as soon as a prediction ofEvout is available (pre-
dicted blind position is used by the heating controller).

3.1.2.3 Algorithms Comparison

Three other algorithms were considered within this preliminary study.

TheReferencealgorithm is the one used by the DELTA blind controller [Bauer et al.,
1996]; it is a simple fuzzy logic open-loop controller that uses the vertical direct illumi-
nance on the facade and the solar incidence angle.

TheVariation algorithm is different from the others in that the fuzzy logic rule base
provides a step-variation of the blind position and not directly the blind position. Depend-
ing on a calculated glare risk, the blind move is applied or not.

TheI-Ratioalgorithm uses three luxmeters for the control. One monitors the horizon-
tal illuminance and two monitor illuminances on the walls. From these three measure-
ments a value of “contrast” (ratio of illuminances) may be calculated, and the algorithm
looks for a blind position that provides appropriate illuminance on workplane while keep-
ing the contrast at a reasonable level. The benefit of this method using three luxmeters
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is that it is possible to take into account some glare aspects. The drawback is that the
positioning of the luxmeters is very difficult to define. Simulations have not tested the
algorithm behaviour with different values of the contrast input variable; it was chosen
constant.

In order to compare the algorithms, the toolbox Simulink of the MATLAB R© pro-
gram was used to carry out the simulations. Each algorithm was tested during one week
with synthetic values of external weather conditions produced by the METEONORM pro-
gram [MeteoTest, 1996]). Simulations were made for the period that corresponds to the
first seven days of July. Different weather conditions were represented (sunny and cloudy
days). During the night (from 21h00 to 7h00), the user was considered as absent, so the
tested algorithm was stopped (no blind movements, no electric lighting).
The physical model of the room (that plays the role of the realroom for the simulations)
used for the calculation of the indoor illuminance is simplythe global illuminance on the
facade multiplied by a fixed coefficient (0.05 in our case) anda blind transmission factor.
This illuminance blind transmission factor depends linearly on the blind position between
a value of 1 (blind completely open) and 0.2 (blind completely closed).
The outputs of simulations are the extreme values of indoor illuminance reached in the
room, the difference between the setpoint value and the current value of illuminance inte-
grated on the period of the presence of the user, the electrical power consumption of the
electric lighting system and the total number of blind movements during the simulation
(see Table 3.2).

Algorithm Indoor illuminance
extrema [lux]

Integrated differ-
ence [lux]

Electric lighting
consumption [MJ]

Number of blind
movements

Reference 400 - 1500 690 13.6 16
Variation 400 - 600 80 22.3 52
Sun-position 380 - 800 230 13.5 42
I-Ratio 380 - 960 490 11.2 36

Table 3.2:Visual optimization algorithms comparison

All algorithms have reasonable performances, without too many blind movements or
too large electric lighting consumption. Concerning the indoor illuminance, they all keep
a value not too far (difference< 300 lux) from the setpoint value (fixed at 600 lux), except
theReferencealgorithm. From a quantitative point of view, none of the tested algorithms
gives really poor results. But, qualitatively, some interesting comments can be made.

• Reference: In addition to the large difference between the illuminances provided
and aimed (due to its open-loop control strategy), a major drawback is the necessity
of a precise adjustment of the algorithm parameters for eachroom configuration.

• Variation: This algorithm leads to nearly perfect visual conditions (concerning illu-
minance) in the room. But this very small value of integrateddifference in illumi-
nance is due, in fact, to a low position of the blind and an extensive use of electric
lighting. Indeed, since the position of blind is quite low, the illuminance is not
much influenced by the outdoor conditions and can be kept veryconstant using a
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large amount of electric light. Moreover, the possible blind positions are predefined
and fixed, which avoids recurrent blind movements but leads to a lack of flexibility.
An other drawback of this algorithm is the fact that it deals with blind variation
instead of blind position and it is not really compatible with the nested loop con-
trol principle chosen for the final controller (levels 1 and 2are not anymore clearly
separated, see Section 3.2.1).

• I-Ratio: This algorithm gives a continuous blind position and sinceit works in a
dynamic way, the blind moves until a balance is found. Thus, the blind would
move continuously if no discretization were applied to the output of the algorithm
(a simple discretization by step was used for the simulations). Unfortunately, it
was observed that the necessary discretization was nearly impossible to do without
largely spoiling the quality of the algorithm.

To sum up, the comparison of the three newly developed algorithms with theRefer-
encealgorithm (coming from a project especially dedicated to blind control) shows that
all the new algorithms give comparable or better simulationresults than theReference
algorithm. The most promising controller is theSun-Positionalgorithm. Its results are
good and it combines well with the nested loop control. In addition, it considers both
solar altitude and azimuth, which allows different behaviours for different penetration of
the sun in the room.

3.1.3 User Absent

When the user is not present for a certain amount of time (typically for 15 minutes at
least), the control system switches from the visual optimization to the thermal optimiza-
tion algorithm. In this preliminary study, different controllers have been developed and
compared to the DELTA controller (see [Bauer et al., 1996]).

3.1.3.1 Algorithms Definition

The basic idea is taken from the DELTA project. There are two main heat exchanges
through a window: one is due to the transmitted solar radiation (direct gain), the other to
the heat losses caused by the difference between indoor and outdoor temperatures. Con-
sidering both contributions, which depend on the blind position, a window heat balance is
calculated (see the model presented in Section 3.1.1). The idea is that the fuzzy controller
does not directly provide a blind position but a is aiming towards a “desired window heat
balance” (DWHB). A positive (respectively negative) valueof the DWHB corresponds to
the desired heat gains (respectively losses) for the room. The position of blind that gives
a window heat balance as near as possible to this DWHB is calculated knowing the physi-
cal parameters of the window and the blind (energetic transmission coefficients, heat-loss
coefficients).

Nine different blind controllers were developed and tested. They are classified accord-
ing to the inputs of the fuzzy inference system. Two controllers, calledOnly heating, have
only the heating power as input and the fuzzy rule base is given in the Table 3.3. Three
controllers, calledOnly season, have only the season as input (see Table 3.4). Finally,
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the last four controllers, calledBoth, have both heating power and season as inputs (see
Table 3.5). The main ideas used to build these tables of ruleswere:

• The blind controller should always contribute to reduce theheating/cooling needs.

• In winter, solar gains should be maximized.

• In summer, solar gains should be rejected as often as possible.

• In mid-season, the situation being unclear, several possibilities are considered.

The blind controllerOnly heating v2provides a negative value of DWHB when the
heating power is zero, since it is more expensive, on an energy point of view, to cool than
to heat a room. Moreover, when there is no cooling system available, a negative value of
DWHB prevents overheating due to solar gains.
The difference between the controllersOnly season v1andOnly season v2is the width
of the fuzzy variable mid-season, which has been enlarged inthe version 1. Indeed, The
fuzzy variable “season” is not determined on the basis of theperiod of the year but on the
average outdoor temperature during the last 24 hours. Its membership functions are given
in Figure 3.3. The width of the mid-season fuzzy membership function in the controller
Only season v1goes from 5◦C to 15◦C instead of the 8◦C to 12◦C applied in the other
controllers. The mid-season fuzzy membership function is centered on 10◦C3. At this
temperature, heating loads are null for the LESO building. It is called thenon-heating
temperature.

The unique difference between versions 2 and 3 of the controllers Both is the value
“positive low” in mid-season. InBoth v2, 200 W/m2 are aimed for DWHB whereas only
100 W/m2 are aimed inBoth v3.

3.1.3.2 Algorithms Comparison

The simulation tests were carried out with Simulink (MATLABR© Toolbox), for a period
of one week during three different periods of the year (winter (days 52-59), mid-season
(days 100-107), summer (days 192-199) with climate data of Lausanne. The weather
conditions are synthetic values produced by the METEONORM program [MeteoTest,
1996]. In these simulations, the thermal model of the room isa two-nodes model (a sim-
ilar model is described in Section 3.4.4). One node corresponds to the indoor air (with
also the furniture) and the other corresponds to the massivepart of the rooms (walls, etc.).
For each period, the controllers are tested with a heating/cooling system and with a heat-
ing only system. Both heating systems are predictive (inspired from the NEUROBAT
project [Krauss et al., 1998, Morel et al., 2001]).

In summer, energy consumption of all controllers is null andthere are absolutely no
differences in the results between the different controllers. The reason is that all blind
controllers work in the same way during summer, they reject all solar gains: because of
input “season = summer” for controllersBothandOnly season, and because of the input

3For standard buildings, a value of 12◦C for the non-heating temperature should be assumed.
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Controller version Current heating/cooling power
Negative Zero Positive

Only heating v1 DWHB = negative DWHB = zero DWHB = positive
Only heating v2 DWHB = negative DWHB = negative DWHB = positive

Table 3.3: Fuzzy rule base for the lighting controllers “Only heating”. DWHB is the
desired window heat balance.

Controller version Season
Winter Mid-season Summer

Only season v1 DWHB = positive DWHB = zero DWHB = negative
Only season v2 DWHB = positive DWHB = zero DWHB = negative
Only season v3 DWHB = positive DWHB = positive low DWHB = negative

Table 3.4: Fuzzy rule base for the lighting controllers “Only season”.DWHB is the
desired window heat balance.

Season Current heating power
Negative Zero Positive

Winter DWHB = negative DWHB = positive DWHB = positive
Mid-season DWHB = negative DWHB =∗ DWHB = positive
Summer DWHB = negative DWHB = negative DWHB = positive
∗depends on version : “zero” for v1, “positive-low” for v2,v3and “negative” for v4.

Table 3.5: Fuzzy rule base for the lighting controllers “Both”. DWHB isthe desired
window heat balance.
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Figure 3.4:Thermal optimization algorithms comparison during the winter period

“heating power = zero” for the controllersOnly heating. Moreover, the weather data used
(typical from the Switzerland’s climate) correspond to conditions not warm enough to
have the usefulness of a cooling system.
In winter, all controllers with the season as input maximizethe solar gains and yield very
similar results. The two controllersOnly heatingreject solar gains as soon as the heating
power is zero, and this lead to an increase of 15% to 25% of the heating energy con-
sumption in winter. Results relatively to the controllerOnly heating v1are depicted in
Figure 3.4 for the case with no cooling system (the other caseis rather identical because
of the uselessness of the cooling system for the Swiss climate).
In mid-season, there are more differences between controllers. The results are given in
Figure 3.5. Excepting the two controllersOnly heating, the worst controller isBoth v4,
which gives a negative DWHB in mid-season when the heating system is off. The simi-
lar poor results for the controllerBoth v1(that gives a zero DWHB in mid-season when
heating is zero) confirm the importance of having a positive DWHB in mid-season when
the heating system is off.

TheOnly season v2andOnly season v3controllers are more efficient than theOnly
season v1. This comes from the fact that the fuzzy variable mid-seasonis narrower in
these two cases and thus the variable winter has more effect during the simulation. Solar
gains are larger and the power consumption is reduced. But opposite results could also
have occurred: if the fuzzy mid-season membership functionis not properly defined (e.g.
does not correspond accurately to the non-heating average outdoor temperature and is
slightly lower), the variable summer could be match more often and the solar gains would
be too often rejected, that would lead to higher power consumption. So, it is hazardous
to shrink the variable mid-season in order to have better results, without an accurate def-
inition of the non-heating temperature. Moreover, the efficiency of a positive DWHB in
mid-season is proven again by the better results of theOnly season v3(with positive value
of DWHB in mid-season) compared to theOnly season v2(with a zero value of DWHB).

Three controllers are more efficient than others:Only season v3, Both v2andBoth v3,
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the latter two differentiated by their positive DWHB duringmid-season when heating is
zero. But there is no particular interest of finding the optimal value of DWHB, because
heating energy consumption seems not to be very sensitive tothe exact value. Moreover,
it completely depends of the room and heating device characteristics.

Thus, the main conclusions of these simulations are:

• The differences between controllers are particularly visible during the mid-season
period.

• The fuzzy variable season is essential to improve the efficiency blind controller.

• It is more advantageous to have a positive DWHB in mid-seasonwhen the heating
power is zero.

• Shrinking the mid-season membership functions may only be interesting when the
non-heating average outdoor temperature is accurately determined (which could be
achieved through the adaptation process).

• Three controllers are clearly more energy efficient than others:Both v2, Both v3and
Only season v3(the three controllers have a positive DWHB value in mid-season).

TheOnly season v3controller seems to be the most appropriate controller for the user
absent case. Although it is not exactly the optimal one regarding the heating energy con-
sumption, it does not use the heating power variable and therefore avoids a cross coupling
heating-lighting, which could lead to instabilities. Indeed, the heating controller would
have needed the blind position produced by the blind controller (so as to predict the future
indoor temperature), whereas the blind controller would have needed the heating power
variable produced by the heating controller.
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Figure 3.6:Principle block diagram of the three nested control loop levels

3.2 Basic Principles

Integrating all the different controllers in one unique system would have been very dif-
ficult and inefficient if there were no underlying principles. This section describes the
basic principles used for the whole control system. It also explains how some additional
physical data are prepared.

3.2.1 Integration Aspects

Three different device categories are considered for the control: the heating/cooling sys-
tem, the blinds (shading devices) and the electric lighting. Ventilation was not taken into
account since the LESO building (in which the experiments have been undertaken) has no
mechanical ventilation system installed. Nevertheless, the chosen controller architecture
allows implementing easily additional control devices4. The integrated system is built on
the principle of three nested control loop levels (see Figure 3.6).

• Level 1 performs the translation from physical values (heating power, blind posi-
tion, etc.) into electrical signals for field actuators (to modify the heating system
valve position, to raise or lower the blind, etc.). The European Installation Bus
(EIB) is used for this task (see Section 5.3.1).

• Level 2 control loop includes the domain knowledge. It is based on expert fuzzy
inference systems and uses adaptive models for thermal and lighting aspects in
order to produce an efficient global control strategy. The different fuzzy controllers
are described later in this chapter. The outputs of this level are the physical values
that are the inputs of the level 1 control loop.

• Level 3 ensures the long-term adaptation of the level 2 algorithms. The adaptation
is performed in a continuous way to take into account all the long-term changes of
the building and device characteristics (see Section 3.4).Moreover, an adaptation
task using Genetic Algorithms is undertaken in order to optimize the system from
both user and energy efficiency points of view (see Chapter 4).

4The possibility of an efficient ventilation integration in this architecture had been proven in a previous
European project named EDIFICIO [Priolo et al., 2001].
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Figure 3.7:Preprocessing phase

The level 1 is specific to each building but both levels 2 and 3 are very easily adjustable
to any kind of controller device. The self-adaptation of thesystem leads to simplified com-
missioning and efficient working without complicated parameter adjustment.

The system provides also an interface that allows the user tochange set-points or other
operative conditions (see Section 4.1). This gives the maximum flexibility to the system,
user actions always keeping the first priority over the automatic control.

3.2.2 Data Handling

The control system requires some variable that are not directly available through the sen-
sors, but that have to be generated by preprocessing blocks described in the figure 3.7.
The first block provides the average outdoor temperature during the last 24 hours, includ-
ing the current outdoor temperature. It is used essentiallyto derive the current season as
a fuzzy variable.

The second block provides all the needed illuminances for the controllers and provides
also the solar altitude and solar azimuth relative to the facade. Its inputs are the time and
the global horizontal radiation. Furthermore, four parameters are needed for the block
calculations. The longitudeλ, the latitudeφ, the time zoneTz of the building location and
the facade orientationa0.
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3.2.2.1 Solar Angles

First, the solar angles (namely the solar azimuth and altitude angles) are determined.
Many references [Duffie and Beckman, 1974] provide the following expressions5:

sin h = sin δ · sin φ + cos δ · cos φ · cos ω (3.1)

sin a =
sin ω · cos δ

cos h
(3.2)

Where h: Solar altitude, the angle between the sun direction and itsprojection on
a horizontal plane (positive when the sun is above the horizontal plane)

a: Azimuth angle of the sun, the angle between the south direction and the
direction of the sun projected on a horizontal plane (positive towards
the east direction)

φ: Latitude (positive towards the north)
ω: Hour angle, 0◦ at noon and± 180◦ at midnight (positive in the morning

and negative in the afternoon)
δ: Declination, the angular position of the sun at solar noon with respect

to the equator plane (positive towards the north)

The equations forδ andω are:

δ = 23.45 · sin
(360 · (284 + n)

365

)

[deg] (3.3)

ω = 15 ·
(

12 − Solar time
)

[deg] (3.4)

Solar time= Legal time+ ∆H + (λ/15) − Tz [hours]

Where n: Day number of the year (coming from the Time input)
∆H: “Time equation” [hour] that integrates both the ellipticity of the move-

ment of the earth around the sun and the declination
Tz: Time zone [hour] (0 for Greenwich Mean Time, positive towards East)
λ: Longitude [deg] (0 at Greenwich, positive towards East)

So, the solar altitudeh (used in the control algorithm) is simply given by:

h = arcsin
(

sin δ · sin φ + cos δ · cos φ · cos ω
)

Since the solar azimutha can be greater than 90◦ or smaller than -90◦, an additional
condition is needed depending on whether or not the sun is behind a south-facing vertical
surface. That condition is given by the critical hour angleωs:

cos ωs =
tan δ

tanφ
∀ ωs verifying 0 < ωs < 180

Thus, the azimutha is depending onsin a andω, which were given in Equations 3.2
and 3.4. The azimutha is given in the table below:

5Warning: not all textbooks assume the same angle conventions. Depending on the author, some signs
might differ, therefore it is not advisable to take an equation from one textbook and mix it with an equation
from an other textbook.
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ω a
|ω| < ωs a = arcsin(sin a) morning:a > 0, afternoon:a < 0
ω = ωs a = 90 sun at east
ω = −ωs a = −90 sun at west
ω > ωs a = 180 − arcsin(sin a) morning (sun between east and north)
ω < −ωs a = −180 − arcsin(sin a) evening (sun between west and north)

Finally, the solar azimuth relative to the facade (ar), which is used in the control algo-
rithm, is given by:

ar = a − a0

Where a0: Facade orientation (angle between the perpendicular to the facade and
the south direction, positive towards the east)

3.2.2.2 Illuminances Determination

After the determination of the solar angles, the required illuminances and irradiances are
calculated. Assuming an isotropic diffuse component, the Liu and Jordan correlation [Liu
and Jordan, 1960] allows to calculate the direct and diffusecomponent from the global ir-
radiance (Gh) on a horizontal surface. The direct (Ghdir) and diffuse (Ghdiff ) horizontal
irradiances are given by:

Ghdir = Gh · (1 − fdiff )

Ghdiff = Gh · fdiff

With
fdiff = 1.0045 + 0.04349 · f − 3.5227 · f 2 + 2.6313 · f 3

Where
f = limit of (Gh/Ghext, 0, 0.75)

And

Ghext = 1353 · [1 + 0.034 · cos(
2π · n
365

) + 0.001 · sin(
2π · n
365

)] · sin h

Ghext being the extraterrestrial solar radiation on an horizontal surface.

The first term corresponds to the average extraterrestrial solar radiation on the earth
(1353 W/m2). The second term takes into account the ellipticity of the earth’s orbit around
the sun and the third one deals with the orientation of the horizontal plane considered to-
wards the sun direction.
Once the two components of the solar radiation are availableon a horizontal surface, they
can be calculated on a vertical surface of any orientation.

For the diffuse component:

Gvdiff = 0.5 · Ghdiff + 0.5 · Gh · r
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The albedor is due to ground reflection is assumed to be equal to 0.3, whichis a reason-
able value for concrete surfaces and grass.

For the direct component, the following expression is applied depending on the sun posi-
tion6:

If 5◦ < h ≤ 90◦ and−90◦ < ar < 90◦

Gvdir = Ghdir · cos h · cos ar/ sin h

Else
Gvdir = 0

The last step is to translate the irradiance values into illuminances. Assuming a con-
stant luminous efficacy for different irradiance, Winkelmann and Selkowitz [Winkelmann
and Selkowitz, 1985] give the two following correlations:

Edir[lux] = 93 · Gdir[W/m2]

Ediff [lux] = 111 · Gdiff [W/m2]

Thus, the last three outputs of the preprocessing block (used in the control algorithm)
are:

Global radiation on facade:Gvglob = Gvdir + Gvdiff

Direct vertical illuminance:Evdir = 93 · Gvdir

Global vertical illuminance:Evglob = 93 · Gvdir + 111 · Gvdiff

3.3 Controllers

Three controllers are considered in this work: a shading device controller, an electric
lighting controller and a heating controller. Each one is integrated in the whole system
via the nested loops architecture (see Section 3.2.1). The present section deals only with
the level 2 of the different controllers.

6Whenh (solar altitude) is below 5◦, the building receives nearly no direct solar radiation. This assump-
tion avoids numeric problems that could occur with very small value ofsin h.
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Figure 3.8:Overall diagram of the blinds controller operation

3.3.1 Shading Device

The shading device control system described here deals onlywith tissue blinds, since
the available blinds in the LESO building are of this type. Nevertheless, a controller for
venetian blinds was developed (with both vertical positionof the blind and slats angle
regulated). Its description can be found in Appendix B.

In this section, the tissue blind control system is presented: first the controller for the
case where the user is present, and then the controller for the case where the user is absent.

3.3.1.1 User Present

From the preliminary study in Section 3.1.2, the main criteria of a blind controller in the
visual case have been established:

• Priority is to avoid glare.

• Thermal aspects should also be considered.

• Both solar altitude and azimuth should be used to be able to provide different control
strategy for different user positions in the room.

• There should not be a closed-loop control with indoor illuminance measurement.

The final controller presented here, is inspired by theSun-Positionalgorithm described
in Section 3.1.2. It keeps the distinction between glare andilluminance considerations.
The main difference is that the thermal aspects have been shifted from the “Glare” fuzzy
rule base to the “Illuminance” fuzzy rule base. This was donebecause eyes adapt easily
to a wide range of illuminances whereas they have low tolerance towards contrast. Thus,
compromises may done more readily between solar gains and illuminances than between
solar gains and glare hazard.
Figure 3.8 shows the overall diagram of the blinds controller and the different included
function blocks.

First, a maximum valueαmax for the blind position is calculated through a fuzzy rule
base in order to avoid glare. At the same time, a blind position depending on the illumi-
nance setpointαill is also determined. This last calculation is achieved usingfuzzy logic
inference systems, which is different from theSun-Positionalgorithm that determined the
illuminance through a simple illuminance model (see Section 3.1.2.2). Then, the final
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value for the blind positionαfin is determined: it corresponds to the minimum value of
the two blind positionsαmax andαill. A blind movement filter depending on the current
position of blindαcur prevents from moving the blinds too often, which could irritate the
user.

The final controller architecture has been chosen for the following reasons:

• It is a simple and flexible system, containing only few rules,and therefore only few
parameters have to be tuned by the adaptation process (see Chapter 4).

• The glare aspect is very important: a dedicated fuzzy inference system (“Glare”) is
used to deal with this problem.

• Providing a perfect illuminance is not aimed, because humaneyes have a very low
sensitivity towards the variation of illuminance. Moreover, the “Illuminance” fuzzy
inference system allows finding a compromise between the illuminance and the
thermal impact of solar gains. For instance, opening the blinds wider in winter in
order to increase solar gains is quite acceptable for the user, as long as no glare
occurs.

• The vertical direct illuminanceEvdir on the facade is more relevant than the hori-
zontal one to address glare problems.

In addition, the fuzzy membership function mid-season is removed in the final con-
troller in order to optimize it on the thermal aspects. In fact, the preliminary study has
shown the necessity of providing an accurate value for the non-heating temperature (see
Section 3.1.3) in order to make the controller very energy efficient. Since this value is pro-
vided by the adaptive heating system (see Section 3.3.3), thermal optimization consists
simply in deciding to maximize (in winter) or reject (in summer) solar gains. The fuzzy
transition between winter and summer is probably sufficientto deal with mid-season.
Thus, it has been decided to remove rules related to the mid-season, even it makes the
control system less flexible for this period.
The fuzzy rule bases are given in the Appendices A.1 and A.2.

The “Movement filter” is made of two consecutive filters: a time dependent filter and
a minimum step filter.
The time filter prevents too frequent blind movements by forbidding a blind movement
when the precedent one has been applied less than 15 minutes ago. The time elapsed
is reset to 0 even when the blinds do not move but would have moved towards down if
the minimum step filter was not applied. This is done to prevent the blinds moving pe-
riodically (each time the 15 minutes pause is ended) during aday with an intermediate
sky (sunny-cloudy). Moreover, the movements that lower theblinds are not concerned by
the time filter, in order to avoid glare problems during thesesunny-cloudy days. A blind
position slightly too low is thus preferred to a position slightly too high.
When the blind movement is accepted by the time filter, it enters the minimum step filter:
the movement is applied only if it is larger than a fixed minimum value∆α (in our case,
∆α = 0.3, i.e. 30% of the movement between totally closed and totally open). This value
is reduced by half when there is a risk of glare (i.e. whenαmax < αcur).
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The control algorithm presented here deals only with one blind but in the LESO build-
ing there are two blinds to control per room (see Section 5.2). The idea is to control
independently the two blinds with two similar algorithms. The unique difference7 is in
the fuzzy rule base “Illuminance” of the lower blind. A minimal opening of 0.4 is kept in
order to allow visual contact with the outdoor environment,which has been clearly shown
as an important criteria for user acceptance [Elder and Tibbott, 1981].

3.3.1.2 User Absent

The preliminary study in Section 3.1.3 has shown two interesting facts about the thermal
blind controller.

• Energy efficiency of the blind controller largely depends onthe use of the variable
season.

• Providing a positive window heat balance in mid-season is the most efficient strat-
egy.

The final controller for the user absent case is largely inspired by the controller named
Only season v3described in Section 3.1.3. The distinctive characteristic of this controller
is to only consider the current season (which is defined through the average of the outdoor
temperature on the last 24 hours, see Figure 3.3, page 23) to determine the blind position.
The basic idea is to use the window and blind system as a control of the incoming solar
gains, which have to be minimized in summer and maximized in winter. The critical point
is to have an accurate value of the temperature that delimitsthe heating season and the
non-heating season. Thus, this value is adapted every monthto the latest measurements
(see Section 3.4.4).

The controllerOnly season v3has been slightly improved to avoid overheating or over-
cooling with an extreme blind position. Briefly, the blind controller tries to cool (reject
solar gains, increase thermal losses through window) in summer and to heat (maximize
solar gains, decrease thermal losses through window) in winter. But when the indoor
temperature is really too low or too high compared to the temperature setpoint, the con-
troller takes temporarily the opposite behaviour in order to attenuate the overheating or
overcooling.
The fuzzy rule base is given in the Appendix A.4.

Two steps have been taken to minimize the number of movements(and prevents early
mechanical wear). The first reduction of the number of blind movements is realized with
a minimum step filter (similar to the one used in the user present controller) that allows
moving blind only if the movement is large enough (larger than 40% of the movement
between totally closed and totally open). The other reduction is done through the use of
the two blinds (in the LESO building, see Section 5.2) in a sequential way, that means to
consider the two blinds as only one larger blind. In the LESO building, one blind is above
the other and a sequential control seems to be a natural solution.
The idea is to use a parameter calledBi that describes the importance of blinds regarding

7In fact, the two blind controllers will be more differentiated thanks to the adaptation to the user’s
preferences.
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the illuminance provided.

0 < Bi < 1

UsingBi and theα value given by the controller, the blind position of the upper blind
α1 and the lower blindα2 are calculated as follows:

If α ≥ Bi then:

α1 =
α − Bi

1 − Bi

and α2 = 1 (completely up)

If α ≤ Bi then:

α1 = 0 (completely down) and α2 =
α

Bi

TheBi parameter is continuously adapted together with the RI model adaptation (de-
scribed in Section 3.4.2).

3.3.2 Electric Lighting System

The electric lighting is used as a complement of the indoor illuminanceEind (provided
by the RI model, see Section 3.4.2) in order to reach the illuminance setpointEset. A
hysteresis control is applied to avoid too frequent switches on or off:

If Eind

Eset
< 0.75 the electric lighting system is switched on.

If Eind

Eset
> 1.0 the electric lighting system is switched off.

But prior to switching on, the system tries to raise the blinds, as far as the user has
not interacted with them. Thus, only in very special cases the electric lighting may be
switched on with blinds being closed at the same time.
The calculation of the exact power fraction (Pal ∈ [0,1]) applied to the dimming control is
performed using the electric lighting model described in Section 3.4.3 and the difference
between the indoor illuminance and the illuminance setpoint:

aP 4
al + bP 3

al + cP 2
al + dPal + Eset − Eind = 0

Wherea, b, c andd are the parameters of the electric lighting model.

The electric lighting power is the root of this equation. It has to be noted that the
solutionPal may be negative or higher than 1 but in the controller non-physical values are
rejected and replaced by the nearest physical value.

In a post-occupancy evaluation of seven energy efficient buildings in USA, Heerwa-
gen and Diamond had shown that users did not like the automatic daylight and electric
light controls because they were distracting and disturbing [Heerwagen and Diamond,
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Figure 3.9:Effect of the “smoother” feature on the electric lighting control

1992]. Therefore, an electric lighting “smoother” have been developed and implemented.
It varies the electric lighting power by maximum steps of 2% that are not noticed by
occupants. Each time an event occurs and the main control module is called (see Sec-
tion 5.4.2.3), a variation step of electric lighting is done, if needed, in the latest calculated
direction (increasing or decreasing power).

Figure 3.9 shows the effect of the “smoother” compared to a lighting control strat-
egy without the smoothing feature during a measurement day in January. The time range
depicted corresponds to about one hour and a half. First, it prevents the frequent and
very disturbing switching on or off as it occurred at time 30.34. Second, it avoids sud-
den large variations of electric lighting power as it occurred around times 30.37 and 30.38.

Larger steps of variation are permitted when users enters orleaves the room and if
the current electric lighting power is really too low compared to the calculated power
(difference larger than 50% of maximum power).

3.3.3 Heating System

An efficient heating controller should have predictive and adaptive features. Unfortu-
nately, available controllers such as NEUROBAT [Krauss et al., 1998] consume too much
computational time. Indeed, optimization of a cost function (grouping discomfort and
energy consumption) is unsuited to our experiments with 15 office rooms and 15 heating
controllers to run. Thus, a simpler empirical heating controller has been developed, that
nevertheless has both predictive and adaptive features.

A simple proportional control that takes into account the predicted solar gains and
the predicted presence is used. Its parameters are automatically adjusted to the room and
heating device characteristics. The heating controller isdefined as follows, with physical
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limitations:

Ph = limit



Kp
Tset − Tind

(

ξ
Psun,pred

Psun,max
+ 1

) , [0, 1]



 (3.5)

Where Ph: Heating power fraction [-]
Tset: Setpoint of indoor temperature [◦C]
Tind: indoor temperature [◦C]
Kp: Gain parameter of the proportional control [◦C−1]
ξ: Solar effect coefficient [-]
Psun,pred: Average solar irradiance predicted on the next 6 hours [W/m2]
Psun,max: Average maximum theoretical solar irradiance on the next

6 hours [W/m2]

When large solar gains are predicted, the denominator of Equation 3.5 increases, lead-
ing to the reduction of heating power. This way of integrating solar gains ensures a re-
liable control even with inaccurate prediction of solar gains, because the controller still
gives coherent command: it heats less, but it still heats to some extent.

The default value for the temperature setpoint (applied as long as the user does not
interact) is set at 21◦C. This value has been chosen because it was much easier (due to
technical reasons) to implement it compared to a standard temperature setpoint of 20◦C.

In addition, the heating power depends on the current presence, the presence predicted
one hour later, and the presence predicted six hours later (see Section 3.4.5). The idea is
to reduce the temperature setpointTset in Equation 3.5 of a value∆Tred that depends on
the different presence predictions.∆Tred is determined through a fuzzy logic rule base,
given in Table 3.6. Lower probability of presence leads to larger reduction of the temper-
ature setpoint and conversely, higher probability leads tosmaller reduction.

Current Presence PresenceAssociated
presence in1 hour in6 hours ∆Tred

0 0 0 −3
0 0 1 −2
0 1 0 −1
0 1 1 −0.5
1 0 0 −0.5
1 0 1 −0.5
1 1 0 0
1 1 1 0

Table 3.6:Fuzzy rule base for reducing the temperature setpoint depending on current
and predicted presence

An exception to this behaviour of the heating system is that it is stopped if a window
is open, in order not to needlessly heat.
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Kp and ξ are two adjustable parameters of Equation 3.5. Their valuesat commis-
sioning are set to 2 and 10 respectively. On the one hand, the gain parameterKp of the
proportional controller depends on the physical characteristics of the room and thus its
adaptation procedure relies on the thermal room model adjustment (see Section 3.4.4).
On the other hand, the solar effect coefficientξ is directly adjusted from the real measure-
ments and the procedure is described below.

Only the measurements during whichξ acts effectively are considered for the adapta-
tion process. That means only when there were some solar gains and heat power applied
to the room during the last six hours. Moreover, the temperature setpoint have to be con-
stant on the last hour, in order not to consider transitionalstate cases.

A simplified model of the relative solar energy transmissiong through the “window
and blind” system has been used, which simply relates the energy transmitted to the blind
positionαt at timet considering a blind solar transmission coefficient of 0.2:

g(t) = 0.2 + 0.8 · αt

The empirical following rules are applied to adaptξ from the current (t) and six hours ago
(t0) measurements:

∆T = Tind(t0) − Tset(t0)

If ∆T > 0◦C then :

∆ξ =
g (t0) · Gv(t0) + g (t) · Gv(t)

2Gvmax
∆T

If −0.25◦C < ∆T < 0◦C then :
∆ξ = 0

If ∆T < −0.25◦C then :

∆ξ =
g (t0) · Gv(t0) + g (t) · Gv(t)

2Gvmax
∆T

With Gv: Global vertical irradiance [W/m2]
Gvmax: Average of maximum theoretical global vertical irradiance [W/m2]

In the first case there is some overheating, thereforeξ is increased to lower the heating
power in similar cases. Larger solar gains and thus strongerξ parameter’s effect cause
adaptation ofξ to be more important.
In the second case, indoor temperature is very near from the setpoint and no adaptation of
ξ is needed.
In the last case, the heating power was not sufficient and indoor temperature was too low.
So,ξ is lowered to increase heating power in such cases. And once again, adaptation is
more important if solar gains were important.
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3.4 Adaptive Models

The different controllers being defined, the adaptive models used by them are described
in the present section. All these models are adapting at a room level. Only the weather
data prediction model is achieved at the building level.

3.4.1 Weather Data Prediction Model

The vector of solar irradiance predicted over the six next hours on the horizontal plane
is needed by the control system. Such data could have been provided by public weather
forecast service but in this case the information supplied is often averaged over several
hours and is not directly usable for a six hours ahead prediction. Moreover, the necessary
solar radiation sensor is already available in our system because it is required for the light-
ing and thermal controllers. Thus, a solar irradiance predictor is used within this work.

The approach used was developed and verified in the NEUROBAT project [Krauss
et al., 1998, Morel et al., 2001]. It was there shown that artificial neural networks (see the
book of Haykin [Haykin, 1999] for comprehensive explanations of ANNs) are the most
effective method for the prediction of the horizontal global solar irradiance8. A new ver-
sion of a similar feed-forward network has been re-developed. The same structure with
one hidden layer of four neurons has been taken. Due to its convergence capabilities,
the Levenberg-Marquart training algorithm was used. For the activation function of the
neurons, the tangent hyperbolic was chosen due to its non-linearity, continuity and deriv-
ability. The training data were relative values because they were divided by the theoretical
maximum solar irradiance, i.e. the solar irradiance with anatmospheric transmission fac-
tor of 1.0.

The Artificial Neural Network (ANN) used for the solar radiation predictor has four
normalized inputs:

Grel(k): Relative solar irradiance at current timek
Grel(k − 1): Relative solar irradiance at timek − 1 (one hour ago)
Grel(k + 6 − 24): Relative solar irradiance 24 hours before the time of prediction
Gmax(k + 6): Computed maximum solar irradiance at the time of prediction

And one normalized output:

Grel(k + 6): Relative solar radiation at the time of prediction

The newly developed predictor (called “new ANN”) is compared with the one used
in the NEUROBAT project, with a reference model that uses thecurrent measurement of
the relative solar irradiance as the prediction value and with a more recent meteorologi-
cal physical model (MRM) developed by Muneer et al. [Muneer et al., 1998]. Weather

8It was confirmed by Kemmoku et al. [Kemmoku et al., 1999] for the prediction of daily integrated solar
irradiation
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Figure 3.10:Comparison of measured and predicted value of horizontal solar irradiance

data used for the comparison are synthetic values generatedby the METEONORM pro-
gram [MeteoTest, 1996] (except the results of the Muneer model that have been obtained
with real weather data). Training is performed on the six first months of the year, and
evaluation is performed on the last six months. Results are given in Table 3.7. Both ANN
models give better results than the reference one, which shows that it is worth using ANN
for prediction. The accuracy of the new ANN model is confirmedby its results quite
similar to the NEUROBAT ones. Moreover, results of ANN models are even better than
the ones of MRM. But it should be mentioned that the latter come from real weather data,
which is maybe detrimental.

Model Mean error [W/m2] Standard deviation [W/m2]
Referencea 72.8 160.6
ANN NEUROBATa -6.7 82.6
New ANN -9.1 80.9
MRMb 12 - 54 39 - 112
avalues coming from the NEUROBAT final report [Krauss et al., 1998]
bvalues from [Muneer et al., 1998] in lux translated in W/m2 with the Winkelmann and

Selkowitz correlations [Winkelmann and Selkowitz, 1985]

Table 3.7: Mean values and standard deviations of the 6-hours prediction error of the
horizontal global solar radiation for different models

Even with ANN models, standard deviation is quite large, which attests to the diffi-
culty of solar radiation prediction. Qualitative results of the prediction with the new ANN
model are depicted on Figure 3.10. They are sufficiently accurate to provide valuable
information to the heating system about future solar gains.
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Figure 3.12: Illuminance ratio (horizon-
tal indoor / vertical outdoor illuminances)
measured for three sky conditions

3.4.2 Illuminance Ratio Model

The RI model calculates the horizontal indoor illuminance on the workplane from the
measurement of the vertical outdoor illuminance. Some experiments have shown that the
use of the vertical outdoor illuminance gives better and more consistent results than the
standard use of the horizontal outdoor illuminance (equal to a daylight factorfor over-
cast sky) when comparing with horizontal indoor illuminance for different blind positions
(both upper and lower blinds are moved together). Figures 3.11 and 3.12 show the results
for both cases. The case with vertical outdoor illuminance (RI model) clearly leads to less
scattered results than the case with horizontal outdoor illuminance (“Extended daylight
factor”). Hence, the RI model will give better results for different sky conditions. Note
that sensors for indoor illuminance measurements were protected from direct solar radia-
tion.

Three RI models have been compared. First, a simple exponential model (see Equa-
tion 3.6) that was shown to be better suited than a linear model9, then an artificial neural
network model and finally a model that mixes the exponential and the ANN models. The
latter model first fits the data with an exponential model and then tries to fit the remaining
error∆E via an ANN model (see Equation 3.7).

Ehind = a · exp(b · α) · Evout (3.6)

Ehind = a · exp(b · α) · Evout + ∆E (3.7)

WhereEhind is the indoor horizontal illuminance,Evout the outdoor vertical illumi-
nance,α the blind position anda, b the model parameters.

9It probably comes from the fact that luminances of the sky arelarger for higher altitudes, and their
relative contributions to indoor illuminance are thus moreimportant for larger blinds opening.
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The fit of the exponential model is performed using the nonlinear least-squares Gauss-
Newton method (MATLABR© toolbox). The ANN models are feed-forward networks with
six neurons in the hidden layer and with the same two inputs: the blind positionα and the
outdoor vertical illuminanceEvout.
The three models are fitted (trained on 100 epochs for the ANN)on experimental mea-
surements of the whole month of August and evaluated on the measurements of the month
of September, provided that there were no electric lightingand no saturation of the indoor
illuminance sensor (values below 3500 lux). The results aregiven in table 3.8. The two
models with the exponential characteristic are clearly giving more accurate results than
the simple ANN model. The combination of the two models givessimilar results to the
simple exponential model in accuracy but it necessitates much more computational time.
The corresponding ANN model does not improve the exponential model and requires too
much computational time for a real implementation. Thus, the chosen RI model is the
exponential model.

Model Standard deviation CPU time [s]
Exponential model 416 3
ANN model 494∗ 110∗

Exponential + ANN model 417∗ 99∗
∗average value out of ten runs

Table 3.8:RI models comparison

The RI model is continuously adapted to the new monitored data of the day via the
same procedure described above. It allows to take into account changes in the environ-
ment (trees in their winter dress, new building in the vicinity, etc.). So, every night the
two parameters of the RI model and theBi parameter (for the two blinds case, see Sec-
tion 3.3.1.2) are fitted on the measurements of the indoor andoutdoor illuminances during
the last 15 days.

An additional feature related to the RI model is the shading mask detection. Indeed,
shading from neighboring buildings and trees may largely affect the indoor illuminance.
Thus, the system tries to detect shading cases in a room by calculating the indoor illu-
minance using the diffuse component of the vertical outdoorilluminance instead of the
global one in the RI model. If the result is closer to the indoor illuminance measurement
without the direct component, it is assumed that there is actually shading on the windows
of the room and that it is better to only use the diffuse component. Figure 3.13 shows
the RI model results during a sunny morning in January compared to the measurements.
Thanks to the shading mask detection, the model provides good values even when direct
solar radiation is cut by obstacles. At time about 7.42, there is no more shading and the
RI model goes properly back to the no shading mask mode.

In addition, if a shading mask is detected, the calculated value of the vertical direct
outdoor illuminance (see Section 3.2.2) is set to zero. Thishas repercussions on the blind
and electric lighting controls, which need either RI model calculations or vertical illumi-
nance data.
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Figure 3.13:Effect of the shading mask detection in the RI model - measurements have a
relative error of 15%

3.4.3 Electric Lighting Model

This model relates the illuminance provided by the electriclighting system to the elec-
trical power applied. The variables to consider are the electrical power fraction (of the
maximum power) applied to the electric lighting system (Pal ∈ [0,1]), and the corre-
sponding provided illuminanceEal ([lux]).

Every night during the user’s absence, illuminances are measured for five different
power fractions (0.2, 0.4, 0.6, 0.8 and 1). In order to reducethe impact of an adaptation
with wrong measurements, they are averaged with the old ones. And if the values are
clearly too low (monitored illuminance is lower than 50 lux with electric lighting power
at full power), which could occur if a paper is on sensor or in case of sensor failure, the
adaptation is postponed.

A fourth order polynomial is fitted to the five measurements, using the nonlinear least-
squares Gauss-Newton method:

Eal = aP 4
al + bP 3

al + cP 2
al + dPal

WhereEal is the illuminance measured,Pal the fraction of power applied anda, b,
c, d the parameters of the model. This model forces to give a zero value of illuminance
when no electric lighting power is applied.

A fourth order model was chosen because it properly describes the typical character-
istic of the electric lighting with only four parameters, asshown by the example depicted
on Figure 3.14 (measurement values have a relative error of 15%).
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Figure 3.14:Electric lighting model compared to measurements

3.4.4 Room Thermal Model

A physical model (2-nodes) of the room has been developed. The Figure 3.15 described
the model, with one floating node for the temperature of the indoor air and furniture (node
1), and an other floating node for the temperature of the thermal mass of the room such as
walls, floor, ceiling (node 2). The outdoor temperature is considered as a fixed node.

The mathematical expression of this model comes from the following assumption on
each floating node:

∑

on node
Hg−l = C · dT

dt

Where Hg−l: Heat gains and losses (W)
C: Thermal capacity of node (J/K)
T : Temperature of node (K)
t: Time (s)

The free internal gainsPint (users, electrical appliances, etc.) and the heating power
Ph are only delivered on the indoor air temperature node. The solar gains are separated
into two fractions depending on a constantfsun: Psun · fsun is applied to the first node
and(Psun · 1 − fsun) is applied to the second node. One obtains the two followingsbasic
equations:

Node 1:

Ph − Gout−1(T1 − Tout) − G1−2(T1 − T2) + AequfsunPsun + Pint = C1
dT1

dt
(3.8)
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Figure 3.15:Thermal 2-node model of the room

Node 2:

−Gout−2(T2 − Tout) − G1−2(T2 − T1) + Aequ(1 − fsun)Psun = C2
dT2

dt
(3.9)

Where Gout−1: Thermal conductance between indoor and outdoor air (W/K)
Gout−2: Thermal conductance between outdoor air and thermal mass(W/K)
G1−2: Thermal conductance between indoor air and thermal mass (W/K)
Aequ: Equivalent solar collection area (m2)
C1: Thermal capacity of the indoor air and furniture (J/K)
C2: Thermal capacity of the thermal mass (J/K)
T1: Indoor air and furniture temperature (K)
T2: Thermal mass temperature (K)
Tout: Outdoor air temperature (K)

These expressions are integrated betweent1 andt2 and divided by∆t = t2 − t1.

Node 1:

P h−Gout−1(T 1−T out)−G1−2(T 1−T 2)+AequfsunP sun +P int =
C1

∆t

(

T1(t2)−T1(t1)
)

Node 2:

−Gout−2(T 2 − T out) − G1−2(T 2 − T 1) + Aequ(1 − fsun)P sun =
C2

∆t

(

T2(t2) − T2(t1)
)

With the following notation:

X =

∫ t2
t1

X(t)dt

∆t
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A supplementary hypothesis is assumed:T1 and T2 varies linearly on the interval
[t1, t2]. Thus:

Ti(t) = at + b ⇒
∫ t2

t1
Ti(t)dt =

Ti(t2) + Ti(t1)

2
∆t for i = 1, 2

The following index notation is defined:

Tij = Ti(tj)

Thus, for node 1:

P h + AequfsunP sun + P int + Gout−1T out + T11

(C1

∆t
− Gout−1 + G1−2

2

)

+ T21
G1−2

2
=

= T12

(C1

∆t
+

Gout−1 + G1−2

2

)

− T22
G12

2

And for node 2:

Aequ(1 − fsun)P sun + Gout−2T out + T11
G12

2
+ T21

(C2

∆t
− Gout−2 + G1−2

2

)

=

= T12(−G12) + T22

(C2

∆t
+

Gout−2 + G1−2

2

)

These two equations may be expressed in a matrix form:
[

T12

T22

]

= A
−1 · B ·

[

T11

T21

]

+ A
−1 ·

[

P h

0

]

+ A
−1 · C

With:

A =

[

C1

∆t
+ Gout−1+G1−2

2
−G1−2

2

−G1−2

2
C2

∆t
+ Gout−2+G1−2

2

]

B =





C1

∆t
− Gout−1+

G1−2

2

2
G1−2

2
G1−2

2
C2

∆t
− Gout−2+G1−2

2





C =

[

AequfsunP sun + P int + Gout−1T out

Aequ(1 − fsun)P sun + Gout−2T out

]

Thus, the evolution ofT1 andT2 may be calculated as soon as the parametersGout−1,
Gout−2, G1−2, Aequ, C1, C2 andfsun are known. Every month, the adjustment of these
parameters is performed using the measurements of the longest available period. The
necessary monitored data are the timet, the heating powerPh, the global solar irradiance
Psun and the temperatures of the two available nodes (T1 andTout). The optimal set of
parameters is found through an optimization based on the Gauss-Newton method, with
the quadratic error to minimize defined as follows:

E =
1

n

n
∑

j=1

(

T1,j − Tmeas,j

)2
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Where T1,j: Indoor air temperature given by the model at timej
Tmeas,j: Indoor air temperature measured at timej
n: Number of time step considered

Once these parameters are adjusted, an optimal value for thegain parameter of the
proportional heating controller (see Section 3.3.3) may befound. In fact, proportional
controllers lead always to a steady state error, which may bequite important. Higher gain
parameter yields lower offset value, but too high a gain parameter leads to an unstable
control. Thus, it has been chosen to tolerate an offset value∆Tmax of 0.5K, which is
quite sufficient to avoid problems of stability, while keeping a suitable level of thermal
comfort. Using the thermal model Equations 3.8 and 3.9 at steady state, one obtains using
measurement values averaged on the last 24 hours:

T 2 =
Gout−2T out + G1−2T 1 + Aequ(1 − fsun)P sun

Gout−2 + G1−2

Ph,steady = Gout−1(T 1 − T out) + G1−2(T 1 − T 2) − AequfsunP sun − P int

Then, knowing the maximum heating powerPh,max of the system, the proportional
gain parameterKp is given by:

Kp =
Ph,max · ∆Tmax

Ph,steady

Similarly, the non-heating average outdoor temperature (see Section 3.3.1.2) is calcu-
lated, assumingPh = 0 and also using Equations 3.8 and 3.9 at steady state and forvalues
averaged on the last 24 hours:

T out =
(Gout−1 + G1−2)T 1 − G2

1−2
T 1+G1−2Aequ(1−fsun)P sun

Gout−2+G1−2
− AequfsunP sun − P int

Gout−1 + G1−2Gout−2

Gout−2+G1−2

This temperature is then included in the fuzzy rule base of the blind controller for the
user absent case.

3.4.5 User Presence Prediction Model

The heating controller needs the prediction of the user presence, in one hour and in six
hours. At the beginning of the project, no set of presence data was available to de-
velop and test a reliable predictor (using Artificial Network, for instance). Only frag-
mented data from two office rooms were recorded during the EDIFICIO European re-
search project [Priolo et al., 2001].
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Thus, a simple occupancy schedule has been used for the presence prediction: rooms
are supposed to be occupied from 8 am to 18 pm during weekdays.

However, recent work [Scherz, 2003] shows that presence prediction using ANNs
outperforms schedule prediction and may lead to large improvements for both comfort
and heating energy consumption. Thus, a further improvement of the heating controller
used in this work would be to develop and implement an advanced presence predictor.

3.5 Lighting Self-Commissioning

Each time a new automatic controller is applied in a room, a self-commissioning for
lighting aspects is carried out. The goal of this procedure is to provide reasonable start-
ing values for the parameters of the different adaptive models used by the controllers. It
concerns the RI model, the electric lighting model and the blinds controller. This com-
missioning is only run when the global irradiance is higher than 50 W/m2.

No commissioning is carried out regarding the heating, because a correct adjustment
of parameters needs data on several days (to deal with inertial aspects of room character-
istics) and these data are not always available.

3.5.1 RI Model

Two measurements are taken during the commissioning in order to provide reasonable
values for the RI model parameters (see Section 3.4.2): illuminances (outdoor and indoor)
with blinds completely open, and illuminances with blinds completely closed.
With the blinds closed (α = 0), the RI model gives:

Ehind,closed = a · Ehout

Then the commissioned value ofa is calculated as:

a =
Ehind,closed

Ehout

And with the blinds completely open (α = 1):

Ehind,open = a · exp(b) · Ehout

Then

b = log

(

Ehind,open

a · Ehout

)

This commissioning allows to have directly decent values ofindoor illuminance avail-
able through the RI model for the control, but a more accurateadaptation of the model is
ensured by the daily adaptation procedure (see Section 3.4.2).
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3.5.2 Electric Lighting Model

When blinds are completely closed, the electric lighting isswitched on at full power and
the indoor illuminance is measured. This value is then subtracted by the measurement
of the indoor illuminance when the electric lighting was off(also with blinds completely
closed). The additional illuminance provided by the electric lighting at full power is thus
obtained and it replaces the initial default value. A fit of the fourth order model is under-
taken with this new value and the four other default values (illuminances at 20%, 40%,
60% and 80% of maximum power, see Section 3.4.3). Measuring only the value at 100%
is sufficient to obtain a reasonable electric lighting modelused by the controller, and from
the following night adaptation, the model will be more accurate.

In addition, the start value for the illuminance setpoint isfixed depending on the value
of illuminance provided by the electric lighting system at full power (defined asEsys). As-
suming that the system was designed to provide sufficient light during night, a reasonable
start value for the illuminance setpointEset is determined as follows:

Eset =
Esys

2

It has been observed that the average value ofEsys among the offices is equal to about
330 lux. That means the start value for illuminance setpointin an office is, in average,
equal to 165 lux. This value is probably too low, but it is surely more energy efficient to
start with too low a value than too high a value for the setpoint. It forces the user to react
and thanks to the biased adaptation (biased towards lower illuminances, see Section 4.2.1),
the minimal value of setpoint (that satisfies the user) may bereached. Otherwise, user may
not react with high illuminances, even if a lower value wouldalso be satisfying.

3.5.3 Blinds Controller

The second fuzzy rule base (“Illuminance” rule base) of the blinds controller deals with
indoor illuminance (see Section 3.3.1.1). Thanks to the commissioned RI model, it is
possible to provide values of blinds position better suitedto the reality.

For the rules in winter, the goal is to find blind positions that let enter the most possible
solar gains, and thus a value of 2500 lux (considered as bearable by specialists in visual
ergonomics) is aimed for indoor illuminance. For the rules in summer, a lower value of
400 lux is aimed in order to reject a maximum of solar gains.
For each season two rules are considered for this commissioning, that are the ones match-
ing with vertical outdoor illuminance is highandvertical outdoor illuminance is mid.
With the last rule,vertical outdoor illuminance is low, the corresponding blind positions
are kept at 1.0 (completely open) (see Appendix A.2).
For the lower blind, a minimal opening of 0.4 is preserved to allow visual contact with
the outdoor environment.



Chapter 4

Adaptation to User

“They are in you and in me; they created us, body and mind; and their preservation
is the ultimate rationale for our existence. . . they go by thename of genes, and we
are their survival machines.” (Richard Dawkins)

Several strategies are applied to make the automatic controllers adapted to user wishes.
This chapter first explains how the system deals with the userinteractions. Then, the adap-
tation to user concerning the electric lighting and heatingsystems is detailed. Afterwards,
the functioning of Genetic Algorithms is described and its application to the shading de-
vice controller is provided. Finally, the adaptation process using GAs is tested on some
set of synthetic wishes and its efficiency is compared to other optimization methods such
as gradient descent and Simulated Annealing.

4.1 User Interactions

Chapter 2 has pointed out the necessity of overriding facilities to increase the acceptance
of automatic controllers. In this work, standard interfacemodules were provided with the
European Installation Bus that equipped the LESO building (see Chapter 5). Thus, there
was no need to install additional interfaces for our purpose. A great benefit of this, is
the fact that occupants were already used to this interface and introduction of automatic
control was thus less disturbing. Moreover, using standardinterfaces may, in some cases,
avoid a kind of “Big Brother” fear that could appear when people feel being watched. The
interface modules are described in Section 5.3.4.

User interactions have always a direct effect on the considered system in order to give
the user the feeling thathecontrols his environment:

Electric lighting system Users may switch on or off the lights, or may precisely
choose the electric lighting level.

Heating systemUsers may change the temperature setpoint, and an increase of the
setpoint will immediately start the heating system as far asthe indoor temperature
is below this setpoint.

Blinds Users may choose any blind position they desire, blinds willalways react
to their interaction.

49
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An additional interaction opportunity is thetemporary override selector. It allows
the user to stop the automatic control (regarding electric lighting and blind systems) as
long as somebody stays in the room. Thissleep modegives the user the opportunity to
have particular environmental conditions during exceptional situations (e.g. completely
closing the blinds and switching off the lights during a slide show, completely opening
the blinds for cleaning of windows, switching on the lights at full power for a temporary
and special task, etc.). Interactions done when the automatic control is in thesleep mode
are not considered for the user adaptation.

4.2 Electric Lighting and Heating Control Adaptation

The adaptation to user regarding electric lighting and heating is carried on immediately
after a user interaction. These adaptation processes are described in this section.

4.2.1 Electric Lighting Control Adaptation

When the user interacts with the electric lighting system, the illuminance setpoint de-
sired (Ewish) is determined by using the RI model and the electric lighting model (see
Sections 3.4.2 and 3.4.3) with the current values of blind positions and electric lighting
power. This desired setpoint is stored and the control is suspended during three minutes
in order to let the user chooses exactly the illuminance. Three cases are eliminated and
not taken into account for the adaptation:

• If the automatic control was in thesleep mode.

• If the user switches off the lights and the desired setpoint is higher than the current
setpoint (because of a high daylight illuminance for instance).

• If the user switches off the lights and leaves the room.

If none of these cases appear, the adaptation takes place immediately after the three min-
utes timeout (this adaptation process takes less than one second of CPU time).

First, the desired illuminanceEwish is averaged with the current illuminance setpoint
Eset, in order to smooth the adaptation and to reduce the impact ofan erroneous wish:

Ewish,av =
Ewish + Eset

2

At this point, two situations exist: either the new setpointEwish,av is lower than the
current one, or the new setpoint is higher than the current one. The goal is to integrate
this new setpoint in the electric lighting control system, while trying to limit at maximum
the electrical energy consumption. Thus, if the new setpoint is lower than the current one,
the adaptation process simply replaces the old setpoint by the new one. But on the other
hand, if the new setpoint is higher than the current one, the adaptation process tries to
prevent reaching too high an illuminance setpoint, while still providing the possibility to
reach any setpoint level if the user insists.
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A method for limiting the adaptation towards high illuminance setpoint is to rely on
the illuminance provided by the electric lighting system atfull power (Esys). If the current
setpoint is already at this value, that means the illuminance has reached the upper limit of
the electric lighting system, and one may assume that the system was designed to provide
sufficient light during night. Thus:

• Additional increasing of the setpoint should be strongly held back and a maximum
increase of 20% (fixed arbitrarily) of the current value is tolerated whenEset =
Esys.

• Higher current illuminance setpoint should lead to tolerate smaller change towards
higher setpoint.

• Inversely, lower current setpoint should tolerate greatervariation, up to a certain
limit.

These three requirements are obtained with a function that has the behaviour depicted on
Figure 4.1. A reasonable function, which included these requirements, is given by the
following mathematical expressions:

When Eset >
√

0.2 Esys then ∆Emax =
0.2 (Esys)

2

Eset

When Eset ≤
√

0.2 Esys then ∆Emax =
√

0.2 Esys

The figure shows the∆Emax in function of the current setpointEset, assuming an ex-
ample value of 200 lux forEsys. For lower values of current setpoint, the adaptation may
be large (up to 90 lux), but with higher values of current setpoint the maximum adaptation
decreases quickly. WhenEset = Esys, the aimed 20% of variation are reached (40 lux).

Finally, the new setpoint appliedEnewset is equal to:

Enewset = min(Ewish,av , Eset + ∆Emax)

4.2.2 Heating Control Adaptation

When the user chooses a new temperature setpoint via the interface, a new calculation of
heating power (see Section 3.3.3) is carried out. Thus, the heating controller is adapted
directly to user wishes without using any override feature.

Providing such control opportunity seems in principle to besufficient to satisfy the
users regarding thermal comfort. In fact, assuming a metabolic activity of 1.2 met (typical
for an office work activity), a clothing value of 1.1 clo (typical for winter inside clothing),
an air velocity of 0.1 m/s and a relative humidity of 50% Fanger’s equation [Fanger, 1982]
allows to calculate a PPD (predicted percentage of dissatisfied people) lower than 10%
for a difference of± 2.5◦C from the optimal indoor temperature (20◦C in this case). That
shows that the temperature range considered as comfortableis quite large. Thus, more
accurate adaptation procedures are probably not necessary.
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Figure 4.1:Maximum increasing adaptation value in function of the current illuminance
setpoint (Esys = 200 lux)

4.3 Genetic Algorithms

Among the numerous optimization techniques, Genetic Algorithms have become quite
popular thanks to their robustness and their capabilities over a broad range of problems.
This section presents a brief history of GAs and describes how they work through the
different genetic operators. A mathematical justificationof GAs is then provided.

4.3.1 History

In 1967, Bagley first used the phrase “Genetic Algorithm” in his dissertation [Bagley,
1967]. He studied adaptive systems and introduced Genetic Algorithms (GAs) to solve
problems of game theory. But the history of GAs is most commonly traced to Holland’s
work. Holland conducted studies on cellular automata at theUniversity of Michigan, and
his text “Adaptation in Natural and Artificial Systems”, published in 1975, is generally
acknowledged as the beginning of the research in GAs.

At the beginning, during the 1970s, the main works was related to fixed length binary
representation for function optimization such as Hollstien’s work that provides detailed
analysis of the effect that different selection methods andmating strategies have on the
performance of a GA. Another famous author, De Jong, attempted to define the features
of the adaptive mechanisms in the family of Genetic Algorithms that leads to a robust
search procedure. But the research in GAs was still mainly theoretical, with very few real
applications.

The situation changed in the early 1980s with the appearanceof an abundance of ap-
plications in many domains. This brought a new perspective to the theory and several
performance improvements were achieved by specializing the GA operators. Further-
more, new findings regarding the applicability, robustnessand tuning of GA parameters



4.3. GENETIC ALGORITHMS 53

became available [Goldberg, 1989].

Nowadays, many researchers still work on GAs development but many more are ap-
plying them in numerous domains. In engineering, in sciences and in the business world,
GAs are applied for plenty of problems as data mining, routing, scheduling, time series
prediction and of course optimization problems.

4.3.2 Basic Principles

Genetic algorithms are inspired from biological evolution(natural selection) and are an
elegant way for finding optimal solutions (in GAs consideredas the individuals) of a given
problem space (the individuals’ environment). Three basicprinciples:

• There is a population of individuals

• Each individual is represented by a finite string of symbols,known as the chromo-
some

• A chromosome encodes a possible solution in a given problem space (search space)

As in biology, the following definitions are used:genotype, which is the genetic com-
position of an individual, i.e. the information contained in the chromosome andpheno-
type, which is the expressed traits of an individual.

The genotype gives rise to the phenotype, which in turn is used to determine how well
the individual is adapted to his environment, via a “fitness”function. This function allows
to evaluate and classify the individuals on a performance point of view. It is specific to
one problem, and its determination is one of the major challenges of the use of GAs.

The standard Genetic Algorithm works as follows:

1. Generate an initial population (at random, for example)

2. Each individual is then decoded and evaluated according to some predefined quality
criteria, by using a fitness function

3. A new population is formed (corresponding to the next generation) using genetic
operators:

• Selection: individuals are selected in accordance to theirfitness values

• Crossover (recombination) : individuals are recombined

• Mutation : small changes are randomly applied to individuals

The steps 2 and 3 are repeated until the “fitness” of an individual is good enough or
over a certain number of generations.
In fact, natural selection ensures that chromosomes with the higher fitness will propagate
themselves into next generations and genetic operators allow to explore the whole search
space.
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Figure 4.2:Demonstration of a Genetic Algorithm over one generation

A simple example is given in Figure 4.2 to illustrate the algorithm. It shows the transi-
tion from one generation to the next. The population consists of six individuals, each one
represented by an artificial chromosome containing six genes. A gene can take on one
of two values (marked by black and white boxes). In this simple example, the fitness of
an individual equals the number of black boxes (genes) in itschromosome (fitness values
are displayed below the chromosomes). Selection (reproduction) is here performed in a
probabilistic way: the higher an individual’s fitness is, the better is its chance of being
selected. Thus, some parents are selected more than once while others are never selected.
Each selected pair of parents is recombined to produce two offspring, an operation known
as crossover. This is done by exchanging all genes to the right of a randomly selected
crossover point. Mutation is then applied with low probability by simply flipping the
gene’s value.
The application of the genetic operators on the population of the generation X has yielded
a perfect individual, with a fitness value of 6, at generationX+1. Furthermore, the average
fitness of the population, computed over all individuals, has been increased (from 3.0 to
3.7 in this example).

In this example, the individuals (chromosomes) are very simple (containing only six
binary genes), and there are no differences between the concepts of phenotype and geno-
type. There are complicated mappings of genotype/phenotype, but within this work, phe-
notype will simply refer to a genotype evaluated through thefitness function. Moreover
this example does not show the difficulty of encoding the potential solutions of a specific
problem in the chromosome, which is the main issue of the application of GAs.
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4.3.3 Genetic Operators

GAs work thanks to the combination of three type of operators(selection, crossover and
mutation), each of them being inspired by a biological process. They are individually
described below. The mathematical description of all operators presented here can be
found in the book of Mitchell [Mitchell, 1996].

4.3.3.1 Selection

A very important aspect is to decide which individuals should be chosen as parents for
the reproduction process. A probabilistic selection is performed based upon the fitness
of the individuals. It gives the better individuals a higherchance of being selected. An
individual may be selected more than once while others will never be chosen to reproduce
in the next generation. Several schemes of the selection process exist:

Roulette wheelIt chooses the offspring by using a roulette wheel with each indi-
vidual’s slot sized according to its fitness. The probability of choosing an individual
is then proportional to the individual’s fitness.

Elitism The best individual (or a few best individuals) is copied to the new popula-
tion. The rest are chosen in a classical way. Elitism prevents losing the best found
solution to date.

Tournament A set of n individuals is randomly selected and then the fittest is
taken.n is often equal to 2. This method of selection applies an additional selective
pressure over roulette wheel selection.

Ranking methods When the different fitnesses differ greatly the roulette wheel
selection will not work properly (certain slots would be extremely large compared
to others). The idea is to rank the population and then replace the fitness of the
individuals by their ranking.

Only few works have tried to compare the different selectionmethods, but during the
last decade ranking methods have gained increasing popularity and are thought to be the
best method, which seems to be confirmed by a recent study [Zhang and Kim, 2000].

Thus, the normalized geometric ranking method [Houck et al., 1995] was chosen. It
assigns the following probabilityPi to solutioni when all solutions have been sorted:

Pi =
q

1 − (1 − q)N
· (1 − q)r−1

Where Pi: Probability of selecting theith individual
q: Probability of selecting the best individual
r: Rank of the individual, where 1 is the best
N : Population size
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4.3.3.2 Crossover

The crossover operator is the prime distinguishing factor of a Genetic Algorithm from
other optimization algorithms and its role is to spread the advantageous traits of individ-
uals throughout the population.
Once two parents have been selected, the Genetic Algorithm combines them to create
two new offspring. This recombination is performed by the crossover operator. Differ-
ent crossover operators exist: the simple crossover, arithmetic crossover and heuristic
crossover.
Let us denote the two parents ass-dimensional vectorsX andY. The simple crossover
generates a random numberζ uniformly distributed over the interval [1,s] and creates the
two new offspringX′ andY

′ as follows:

x′
i =

{

xi if i < ζ
yi otherwise

y′
i =

{

yi if i < ζ
xi otherwise

The arithmetic crossover is similar but produces two complimentary linear combina-
tions of the parents depending on a uniform random valuer = U(0, 1):

X
′ = rX + (1 − r)Y

Y
′ = (1 − r)X + rY

The heuristic crossover is slightly different, because it produces a linear extrapolation
of the two individuals. If the new individual is outside the solution boundaries, a new
extrapolation is done until the individual is feasible. Theextrapolation is performed as
follows, assumingX is better thanY in terms of fitness:

X
′ = X + r(X −Y)

Y
′ = X

In this work, the simple crossover was chosen for its simplicity.

4.3.3.3 Mutation

The last operator in the Genetic Algorithm is the mutation algorithm. The effect of mu-
tation is to prevent the population from stagnating at any local optimum. With mutated
genes, the GAs may be able to arrive at better individuals than was previously possible.
Three main mutation operators are used:

Boundary mutation It replaces the value of a gene with either the upper or lower
bound for that gene (chosen randomly).

Uniform mutation It replaces the value of a gene with a uniform random value
selected between upper and lower bounds specified by the user.
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Non-uniform mutation It replaces the value of a gene with a non-uniform random
value selected between upper and lower bounds specified by the user. It increases
the probability of having smaller mutation as the evolutiongets to its later stages.

The non-uniform mutation operator is the more sophisticated one, and it has been seen
to work well for our purpose. It randomly selects (using a uniform distribution) one gene
located at thej position on the chromosome and sets it equal to a non-uniformrandom
number:

x′
i =



















xi + (vi − xi)
(

r2

(

1 − G
Gmax

))b
if i = j and r1 < 0.5

xi − (xi + ui)
(

r2

(

1 − G
Gmax

))b
if i = j and r1 ≥ 0.5

xi otherwise

Where ui, vi: Lower and upper bounds for genei
r1, r2: Uniform random number in the interval [0,1]
G: Current generation number
Gmax: Maximum number of generations
b: Shape parameter

4.3.4 The Schema Theorem as a Mathematical Justification

Intuitively, it seems obvious that Genetic Algorithms workand may be considered as an
optimization method. But it is quite hard to formally conceptualize GAs and thus only a
few theories are available. A mathematical justification, first given by Holland [Holland,
1975], for the simple GA exists all the same.

This theory, detailed in the Goldberg’s book [Goldberg, 1989], is based upon the def-
inition of aschema. A schema is a template for a bit string of lengthl. Schema are made
of ones and zeros (this demonstration only deals with a binary encoding GA) and asteriks
(∗) that act as wild cards within the string. So, the schema

H = 1 ∗ 0 1 ∗

represents the four followings bit strings:1 0 0 1 0, 1 0 0 1 1, 1 1 0 1 0, 1 1 0 1 1 which
are calledinstancesof the schemaH.

Two important definitions:

Theorder of a schema is the number of defining positions it contains, that means
the number of non∗ bits. In the above example, the ordero(H) is 3.

Thedefining lengthof a schema is the distance between leftmost and rightmost de-
fined bits inH. In the example, the outmost defined positions are the 1st and the
4th. So, the defining lengthδ(H) is 3.
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Let us suppose that there arem instances of the schema H at timet in a population
of n individuals. This is denoted bym(H, t). In addition,Si defines a set of bit strings
(i = 1, 2, . . . , n). Applying the first genetic operator (roulette wheel selection), a bit string
Sj containing the schemaH is selected according to the probabilitypj:

pj =
fj
∑

i fi

(4.1)

wherefi is the fitness of the individuali.

The number of instances of the schemaH at timet + 1 is given by the sum of all the
selection probabilities of bit strings containing the schemaH, multiplied by the number
of selections applied (size of the populationn):

m(H, t + 1) = n ·
∑

j

fj
∑

i fi

= n ·
∑

j fj
∑

i fi

(4.2)

Definingf(H) as the average fitness of instances of H, one obtains:
∑

j

fj = m(H, t) · f(H) (4.3)

Thus, using 4.2 and 4.3:

m(H, t + 1) = m(H, t) · n · f(H)
∑

i fi
(4.4)

Since the average fitness of the population is given byf =
∑

i
fi

n
, Equation 4.4 becomes:

m(H, t + 1) = m(H, t) · n · f(H)

f
(4.5)

Let us suppose that a schema H remains above the average of a quantityc · f with c being
a strictly positive constant. Equation 4.5 is now:

m(H, t + 1) = m(H, t) · (f + c · f) · 1

f
= (1 + c) · m(H, t) (4.6)

Thus, beginning att = 0 and aftert generations, one obtains:

m(H, t + 1) = m(H, 0) · (1 + c)t (4.7)

This clearly shows that selection leads to an exponentiallyincreasing of the number of
individuals having a schema with above average fitness.
Now, let us calculate the probabilityps of our scheme H to survive a crossover operator.
It depends on the defining length of the schema and of the totallengthl of the individual’s
chromosome:

ps = 1 − δ(H)

l − 1
(4.8)

If the crossover occurs with the probabilitypc, the survival probability becomes:

ps = 1 − pc ·
δ(H)

l − 1
(4.9)
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The selection operator and the crossover operator can be considered independent, so they
can be gathered together and Equation 4.5 becomes1:

m(H, t + 1) ≥ m(H, t) · n · f(H)

f
·
(

1 − pc ·
δ(H)

l − 1

)

(4.10)

The last step is to consider the mutation operator. The probability of a gene to survive to
the mutation is1 − pm, with pm being the mutation probability. With the ordero(H) of
the schema, the probability thatH survives the mutation operator is(1−pm)o(H). Finally,
including this probability in Equation 4.10:

m(H, t + 1) ≥ m(H, t) · n · f(H)

f
·
(

1 − pc ·
δ(H)

l − 1

)

· (1 − pm)o(H) (4.11)

This result, known as theSchema Theorem, shows that short, low order and above
average schema have a large survival probability and that they will grow exponentially
with the number of generations. But there are several limitations of the Schema Theorem.
In particular, it does not apply to schema with real numbers,and other operators such as
the fitness ranking cannot be rigorously explained with the original interpretation of the
theorem.

Moreover, the inexactitude of the inequality is such that ifone were to try to use the
Schema Theorem to predict the representation of a particular hyperplane over multiple
generations, the resulting predictions would in many casesbe useless or misleading.

However, an important information should be pointed out: during the encoding pro-
cess (see Section 4.4.1), one has to take care to build a chromosome that enables robust
and efficient schema to appear. This also deals withepistasis, the process in which a gene
is expressed or suppressed due to the interaction between genes in the expression of the
genotype [Rochet, 1997]. An example of this is when a certaingene can turn on or off the
expression in the phenotype of other genes.

4.4 Shading Device Control Adaptation

The adaptation process for the blind controller occurs eachnight assuming that at least
one wish has been expressed during the day. Expressing a wishmeans raising or lowering
the blind. Since the system does not immediately learn user wishes (but only once a day),
the automatic system is temporarily switched off (typically during one hour) when the
user expresses a wish, in order not to interfere with the blind position decided by the user.

In addition, at the end of the week an adaptation process is carried out taking into
account all wishes expressed during the week, starting fromthe original controller (de-
fault one). If the individual found via this method is betterthan the current controller,
it replaces it. This additional adaptation process is performed in order to ensure that the

1The inequality is due to the possibility of generating a schemaH from two schema not containingH .
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optimal controller is currently running. For instance, considering several wishes of the
user together may allow to determine if they were due to glareproblems or illuminance
preferences, and thus adapting and anticipating in the right way (see Section 4.5.8).

The adaptation has two aims with regard to the shading devicecontroller: it has to
learn the new user wishes concerning the blind position and it has to keep the accumu-
lated experience concerning the previous learned wishes and the energy efficient control.
Therefore, the GAs are applied on two bases, the so-called “wishbase”, which contains
the latest wishes expressed by the user, and the “contbase”,which contains the outputs
of the current controller. The “wishbase” allows to adapt the controller to the new user
preferences and the “contbase” prevents forgetting the information already learned and
contained in the current controller.

During the adaptation process, the system remains efficientfrom an energetic point
of view for two reasons: the system is energy efficient beforethe first adaptation (the
original rules lead to an energy efficient controller) and the wish filter prevents learning
energetically bad wishes, as long as these wishes are not repeated by the user.

In the case where there are two (or more) blinds per room, two (or more) similar
and independent controllers are used. The independence of the different controllers is
the unique way to ensure a total adaptation to user wishes forboth blinds. The same
adaptation process is carried out independently for each blind.

4.4.1 Encoding

There are two main ways to adapt fuzzy system by using GAs [Herrera et al., 1995a].
The first consists in generating a set of fuzzy rules that covers the set of examples, and
the second consists in tuning membership function parameters of a pre-existing fuzzy rule
base. Since we already have an efficient and expert fuzzy rulebase, the second solution
is applied.

Generally, tuning fuzzy rule bases using GAs is achieved through the modification of
the parameters of the different membership functions. And in order to reduce the number
of parameters to be adjusted, not each membership function is described with a set of
parameters but only few parameters are sufficient to describe the whole fuzzy variable, as
depicted in Figure 4.3.
In this example, the mean temperatureTm of the mid-season (transition between winter
and summer) and a width∆Tm are sufficient to describe the whole variable.

But given the fact that there are only crisp values as outputsin our fuzzy system (see
Appendix A), a simpler set of parameters is used in the adaptation process. The point is
to only encode the crisp outputs of the fuzzy system for the user adaptation using GAs.
For instance, in the rule

If “Season is winter” and “Evglob is high” then “α = 0.6”



4.4. SHADING DEVICE CONTROL ADAPTATION 61

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

Outdoor temperature averaged


on last 24h [˚C]

M
em

b
er

sh
ip

 f
u
n
ct

io
n
 v

al
u
e

Winter Summer 

∆Tm

Tm

Figure 4.3:Adaptation on membership function parameters

the output blind position (hereα = 0.6) is the parameter that will be adjusted by the adap-
tation process.

Thus, since there are 10 and 8 rules in the two fuzzy rule basesof the blinds controller
(see Appendix A), there are 18 parameters to adjust.Variationsof these parameters are
represented as genes on a chromosome. Each individual (or chromosome) will consist of
18 genes encoding the 18 variations. The genes arereal numbersthat can take any value
between -1 and 1. Thus, each gene characterizes a change in one fuzzy rule of the con-
trollers and each chromosome corresponds to one controllerfor one blind. One advantage
of such an encoding is that no additional constraint (the only constraint is to have values of
blind position between 0 and 1) is needed because the logic ofthe rules is kept in any case.

The 18 genes are not randomly located on the chromosome. In order to enable ro-
bust and efficientschemato appear, some precautions have to be taken. Even if we do
not know in advance which kind of schema may be interesting, some basic rules should
however be applied.

First, genes related to the same fuzzy rule base should be gathered together. Thus, the
first 10 genes of the chromosome concern the glare fuzzy rule base and the last 8 genes
concern the illuminance fuzzy rule base.

Second, genes related to similar rules should be neighbors,since in fuzzy logic the
output comes from the aggregation of matching (and therefore similar) rules. But, in fact,
all rules are similar to some other rules, and it has to be decided which kind of variables
should be linked together. For instance, in the fuzzy glare system, two main variables
appear in the rules: the solar altitude and azimuth. Here, ithas been chosen to group the
rules in order to facilitate the tuning of the controller behaviour depending on the azimuth.
Then, the genes related to different azimuth (and the same solar altitude) are grouped to-
gether, and schema containing efficient combinations of blind positions depending on
azimuth will have a larger probability of survival.
The azimuth variable was chosen because it concerns the sun penetration direction and



62 CHAPTER 4. ADAPTATION TO USER

  

 

Is the 

attenuation too 

large ?

 WishbaseBad wish 

No 

Yes 

No 

Yes

Any 

similar bad 

wishes ? 

Wish is 

attenuated 
 

 

Wish = 

Filtered 

 Wish = 

System output

 Wish = 

Unfiltered 

Figure 4.4:Operation diagram of the “wish pre-processing filter”

allows to tune the blind position precisely depending on howthe sun illuminates the user
(towards his face, his back or his profile), whereas the altitude is used to roughly determi-
nate the blind position in order to control the sun penetration depth.

Regarding the fuzzy illuminance system, it was chosen to facilitate the tuning of the
fuzzy rules depending on the global vertical illuminance instead of the season. This choice
comes from the fact that it is more important to precisely control the blind position de-
pending on the outdoor vertical illuminance rather than on the season, which is only used
to detect if it is currently the heating period or not.
The encoding details are given in Appendix A.3.

4.4.2 Wishbase

Each time the user expresses a wish regarding the blind, the current conditions and the
corresponding desired blind position are stored in the “wishbase” matrix (see Table 4.1).
In addition, the last column provides the oldness of the wish, i.e. the number of adaptation
steps encountered. The original value of oldness is set at 1,and at every adaptation step,
this value is increased by 1. A wish older than 10 is removed from the “wishbase”.

Conditions Expressed Oldness of
user wishes wishes

Season Evdir Evglob Solar altitude azimuth Blind position Steps
[◦C] [lux] [lux] [deg] [deg] [-] [-]
17 1000 13′000 17 −85 0.5 1
21 34′000 58′000 64 −12 0.8 2

Table 4.1:Example of a “wishbase” matrix

Every night, all the new wishes expressed during the day are filtered before the adap-
tation is undertaken. If a wish can lead to very negative consequences from an energetic
point of view, the wish is “attenuated” in order to become energetically better. The overall
diagram of this pre-processing filter is given in Figure 4.4.

The new wishes are compared to the wishes of the last ten days,and the energetically
“bad wishes” are only attenuated if no similar wishes have already been expressed. This
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method ensures that the “wrong” wishes (not firmly desired bythe user, expressed only
once) will be filtered, while the “special” wishes (particular taste of the user, expressed
several times) will remain unfiltered and thus strongly taken into account.

There are two situations in which wishes could lead to very negative consequences
from an energetic point of view. In summer, when the global vertical illuminance (Evglob)
is high, a large opening of the blinds could lead to overheating in the room. In winter, also
when the vertical illuminance is high, closing the blinds too much corresponds to a loss
of free solar gains, which would have greatly reduced the heating load of the day. The
“attenuation” (∆α) is thus calculated through a simple fuzzy rule base summarized below:

If “Season is winter” and “Evglob is high” and “α is closed” then “∆α = +0.25”

If “Season is summer” and “Evglob is high” and “α is widely open” then “∆α = -0.25”

If “Other conditions” then “∆α = 0”

In some rare cases, the “attenuation” applied is too large and the filtered wish goes
in the opposite direction of the unfiltered wish relatively to the position provided by the
automatic system (see Section 4.5.4). In these cases, the wish value is set equal to the
blind position value provided by the current control system, and this disables the wish.
That means, it becomes useless for the adaptation process, but it is still stored as a wish.
So, if a similar wish is expressed, it remains unfiltered.

When all the wishes have been filtered, the “wishbase” is ready to be used by the
Genetic Algorithms.

4.4.3 Contbase

The second aim of the adaptation is to keep the accumulated experience from the previous
learned wishes and the energy efficiency of the controller. The “contbase” is used for this
task; it contains the blind positions given by the current controller in different conditions
(season, outdoor illuminances, sun position).

The main difficulty is to choose the set of different conditions in order to fill at best the
space of all the possible situations. Thanks to the fact thatthe GAs are just adapting the
output values of the fuzzy rules (see Section 4.4.1) and are not changing the membership
functions, it is possible to define a fixed set of values for each input of the fuzzy systems in
order to have every fuzzy membership functions individually matching. For instance, the
fuzzy variable “vertical global illuminance” has a fuzzy set of three membership functions
(low, mediumandhigh), so only 3 correctly chosen values are necessary to completely
cover the space of this variable. Likewise, 2 values of season (summer and winter), 2
values of “direct vertical illuminance”, 3 solar altitudesand 3 solar azimuths are needed.
They are given in Table 4.2. The total number of combinationsis 3 · 2 · 2 · 3 · 3 = 108.
Two supplementary conditions are added, one for a summer night and one for a winter
night. Thus, the complete chosen set of values contains 110 different conditions.
The structure of “Contbase” is similar to that of “wishbase”(see Table 4.3).
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Fuzzy variable Corresponding set of values
Season 0◦C 20◦C
Evdir 1000 lux 30′000 lux
Evglob 5000 lux 40′000 lux 80′000 lux
Solar altitude 10◦ 30◦ 70◦

Solar azimuth −60◦ 0◦ 60◦

Table 4.2:Values of fuzzy variables chosen for the contbase definition

Conditions Controller
outputs

Season Evdir Evglob Solar altitude Solar azimuth Blind position
[◦C] [lux] [lux] [deg] [deg] [-]
0 1000 5000 10 −60 1.0
0 1000 40′000 10 −60 0.4
...

20 30′000 80′000 70 60 0.6

Table 4.3:The “contbase” matrix

Since the controller is adapted and therefore modified everynight, this “contbase”
should be re-filled daily with the latest controller before carrying out the GAs adaptation.

In addition to the use of the “contbase”, a bias in the original population has been im-
plemented to keep the experience accumulated in the currentcontroller through the previ-
ous adaptations: at the beginning of the adaptation process75% of the individuals of the
initial population are randomly generated (using a uniformdistribution) and the remain-
ing 25% correspond to the current controller (individual with chromosome = [0 0 . . . 0]).
This biased population generation has been defined in order to speed up the convergence
and not to accidentally lose the genotype of the current controller.

4.4.4 Fitness Function

Once the two bases (“wishbase” and “contbase”) have been prepared, the adaptation using
GAs is carried out. In order to select the best individuals a measure of how efficient an
individual is, has to be defined. This is done via the fitness function.
The fitness of an individual (i.e. a tested controller) is calculated using both bases. An ef-
ficient individual should give good results both on the “contbase” (difference between the
values given by the old controller and the tested individual) and on the “wishbase” (dif-
ference between the blind position provided by the tested individual and the one desired
by the user). The fitness of the controllerci is thus defined as follows:

fitness(ci) = 1

/





∑

j

(αj (ci) − αj (contbase))2 + W
∑

k

(αk (ci) − αk (wishbase))2

√
oldness(αk)





Where αj(ci): Blind position given by controllerci in contbase conditionj
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αj(contbase): Blind position given by old controller in contbase conditionj
αk(ci): Blind position given by controllerci in wishbase conditionk
αk(wishbase): Wish numberk, expressed in wishbase conditionk
oldness(αk): Number of adaptation steps encountered by the wishk
W : Weight parameter

Importance of old wishes is slightly reduced in comparison to new wishes. This is
achieved by using the square root of the oldness of a wish in the denominator of the sec-
ond term of the fitness.

Moreover, since there are normally much less wishes expressed than the 110 different
conditions contained in “contbase”, a weightW larger than 1 is necessary to ensure a
good adaptation to user wishes even if there are only few wishes expressed. The weight
parameter has been chosen equal to 20, which is balancing to aratio 5/1 the relative im-
portance of “contbase” on “wishbase”. That means, since 5 wishes are expressed during
a day2, the two bases have the same importance in the fitness function. The effect of the
weight parameter is more precisely described in Section 4.5.6.

Later in this chapter, in Section 4.6, GAs will be compared with other optimization
methods minimizing an “error” valueEr = 1/fitness. In order to assess and compare
their performances, two different criteria (moderateandsevere) are defined and related to
a blind position error.

Themoderatecriterion is an errorEr of an individual equivalent to a controller that
gives perfect blind positions for all “contbase” conditions and only one blind position
wrong of 0.5 in the “wishbase” conditions. That means this individual completely fulfills
the “contbase” conditions but does not fulfill only one wish,providing a blind position
0.5 higher or lower than the desired position (expressed in conditionk′ by the user).

The lower limit of this errorEr of the controllerci may be determined as follows:

Er(moderate) = 1/fitness=

=





∑

j

(αj (ci) − αj (contbase))2 + W
∑

k

(αk (ci) − αk (wishbase))2

√
oldness(αk)





But since
∑

j

(αj (ci) − αj (contbase))2 ≥ 0

One obtains

Er(moderate) ≥ W
∑

k

(αk (ci) − αk (wishbase))2

√
oldness(αk)

≥ W
(αk′ (ci) − αk′ (wishbase))2

√
oldness(αk′)

With αk′ (ci) − αk′ (wishbase) = 0.5 and assuming oldness(αk′) = 1

2The value of 5 wishes per day is about the maximum number of daily interactions with blinds observed
during the experiments.
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One finally has:

Er(moderate) ≥ W · 0.52

√
1

= 5

The more demandingseverecriterion corresponds to one wrong blind position of 0.1, and
the errorEr is similarly obtained:

Er(severe) ≥ W · 0.12

√
1

= 0.2

4.4.5 Genetic Algorithms Characterization

This subsection first deals with the setting of the differentparameters of the Genetic Al-
gorithms and then, the relative effect of the genetic operators is studied.

The whole adaptation module has been implemented on a MATLABR© platform, using
the GA toolbox [Houck et al., 1995] developed by Houck et al. at the North Carolina State
University (USA). Thanks to the convenience and flexibilityof this toolbox, the code was
easily modified to fulfill our needs.

4.4.5.1 Parameters Settings

Parameters settings is a major concern in GAs. The optimal set of parameters depends
on each problem, and generally the setting is done by using some rules of thumb. In this
work, a study of the most important parameters has been carried out extensively. The
studied parameters are namely: the number of crossovers (10, 40 or 100) and mutations
(10, 40 or 100) at each generation, the population size (40 or80 individuals) and the
shape parameter (2 or 3). All the possible combination of parameters have been tested,
which corresponds to 3· 3 · 2 · 2 = 36 different combinations. For each combination,ten
simulations were run with a set of 32 real wishes observed during a mid-season period.
These wishes are taken as they were expressed in only one day.This test is quite complex
because all genes are involved and should be changed by GAs.

Some other parameters have been empirically chosen such as the maximum number of
generations fixed at 50, to ensure a reasonable time for the optimization and the selection
function parameter fixed at 0.08, which is the default value for the probability of selecting
the best individual.

First, a matrix of correlations3 has been calculated from the results of the simulations
to check the influence of the different parameters on the GAs convergence characteristic.
Table 4.4 shows the calculated correlations.

The time needed for the optimization depends quite obviously on the number of mu-
tations and crossovers per generation (mutations are slightly more time consuming than
crossovers). Higher number of operations leads to longer computational time. Moreover,
as it could be expected, the shape parameter does not influence computing time (it re-
quires no supplementary calculation). Surprisingly, a larger population does not lead to
a higher time of computation (it even tends to be the opposite). This may come from the

3A reminder of basic statistics definitions is provided in Appendix C.
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Number of Number of Shape Population
crossovers mutations parameter size

Correl. with CPU time 0.59 0.75 0.02 −0.14
Correl. withEr

∗ −0.34 −0.58 0.02 −0.28
∗Er = 1/fitness

Table 4.4:Correlations of Genetic Algorithm parameters with the computational time and
the errorEr

fact that the computational time is mainly due to the mutation and crossover processes
(that do not depend on population size) and not from the selection process (that largely
depends on population size).

The results quality (Er) mainly depends on the mutation operator, a bit less on the
crossover operator and again a bit less on the population size. The shape parameter does
not seem to influence the results.
The relative importance of the mutation and crossover operators are studied more thor-
oughly in the next section.

Table 4.5 shows a summary of the results obtained. A very encouraging point is that
GAs have converged for all set of parameters to sufficient results, themoderatecriterion
being always satisfied (∆Er < 5) compared to the best result (lowestEr) obtained.

Number of Number of Population Er Standard CPU time
crossovers mutations size deviation [sec]

LowerEr 40 100 80 43.6 0.4 50.7
Longer CPU time 100 100 40 43.9 0.4 87.2
Shorter CPU time 10 10 80 45.2 1.0 5.4
HigherEr 10 10 40 45.7 1.3 6.1

Table 4.5:Summary of results

Nevertheless, the set of parameters that gives the lowestEr is quite time consum-
ing and a compromise has to be found between quality of resultand computational time.
Since the considered computational times are not really excessive4, the idea is to be rather
tolerant with them by setting a “cost function” that gives anequivalent contribution to
10 seconds of calculation or an additional error corresponding to theseverecriterion
(∆Er = 0.2). The “cost” for each set of parameters has been calculated and the re-
sults are given in Table 4.6. The best set found was chosen forthe implementation of
the adaptation process. It has, in addition, the fair advantage of balancing the number of
mutations and crossovers.

To summarize, the chosen Genetic Algorithm engine has the following specifications:

• The size of the population is set to 80 individuals.

4The tests have been performed on a 800 Mhz computer with 512 MBRAM.
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Rank “cost” Nb of Nb of Population Er Standard CPU time
value crossovers mutations size deviation [sec]

1st 0.688 40 40 80 43.8 0.5 27.3
2nd 0.745 10 100 80 43.7 0.4 35.8
3rd 0.758 40 10 80 44.2 0.6 10.2
4th 0.770 100 40 80 43.7 0.4 39.8
5th 0.776 10 40 80 44.1 0.5 15.8
...
36th 2.35 100 100 40 44.3 0.5 86.3

Table 4.6:Parameters set classified depending on a “cost function” that groups together
the errorEr and the CPU time
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Figure 4.5:Average and higher fitness evolution over the generations

• The selection function used is the “normalized geometric ranking” method with a
probability of selecting the best individual (parameterq) set to 0.08.

• At each generation, 40 simple crossovers and 40 non-uniformmutations (whose
amplitudes are decreasing generation after generation) are performed.

• After a maximum number of 50 generations, the algorithm is stopped and the best
individual found over the whole process is kept as the “best chromosome”.

With these parameters and the same set of 32 real wishes, the fitness progresses over
the generations as depicted in Figure 4.5. Both the average and higher fitness obtained
at every generation are shown. The average fitness tends to apparently progress in a
logarithmic way with a saturation at the end, whereas the best fitness progresses more by
steps depending on the appearance of efficientschemain population. These behaviours
are quite standard and confirm the correctness of the chosen set of parameters.
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4.4.5.2 Genetic Operators Relative Effects

In order to quantify the effects of mutation and reproduction in the optimization perfor-
mance, additional simulations have been carried out. In these simulations, the two oper-
ators have been alternatively inactivated by setting to zero their number of occurrences
at each generation. When an operator is inactive, the computational time is reduced.
Therefore, additional simulations were carried out with anextended number of remaining
operator occurrences at each generation so as to keep, at best, a computational time equal
to the one of the original algorithm. These results are denoted as “extended” (in opposi-
tion to the “normal” number of operator occurrence) in tables of results. If the crossover
operator is inactivated, “extended” means that 85 mutations were performed at each gen-
eration instead of 40. If the mutation operator is inactivated, “extended” means that 220
crossovers were performed instead of 40. The values for extended calculations have been
roughly estimated from the “normal” simulations results.

Simulations were carried out again on the same sets of real wishes previously used.
Table 4.7 shows the results, that are average onfifty runs.
The results show that the mutation operator is more important than the crossover operator.
Missing crossover leads to slightly worse results,∆Er exceeding by 5 times thesevere
criterion (∆Er < 0.2) compared to original GAs, whereas missing mutation drastically
reduces results quality,∆Er exceeding by 16 times theseverecriterion.
The “extended” version manages partly to recover convergence percentage in the case of
missing mutation, whereas it does not improve results in thecase of missing crossover.
This is due to the fact that mutation is more time consuming than crossover (missing
mutation leads to 85% less computational time whereas missing crossover leads to only
50% less), and thus the extended version in missing mutationcase has more substantial
possibilities to make improvements.

Version Percentage of Mean Standard CPU time Student
convergence∗ (Er) deviation t-test value

GA original 100 44.12 0.52 30.2 undefined
No crossover, “normal” 100 45.08 0.98 13.8 6.12
No crossover, “extended” 100 44.72 0.68 29.2 4.96
No mutation, “normal” 8 47.26 0.58 4.6 −
No mutation, “extended” 54 47.13 0.89 31.5 −
∗Considering themoderatecriterion

Table 4.7:Comparison of mutation and crossover missing effects

A Student test (see Appendix C) has been applied on the results concerning the case
without crossover, in order to ensure that the differences in Er with the original GAs are
significant. As soon as the t-test value is higher than 3.5 (level of significance 0.001),
the hypothesis:Er(no − crossover) > Er(original) is verified and the difference is
considered as “highly significant”. Then, in both cases (“normal” and “extended”), the
case without crossover is clearly leading to worse results.This showsthe necessity and
usefulness of every operator and their combinationto get the most efficient optimization.
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4.4.6 Sensitivity Filter

At the end of the GA process, a “best chromosome” corresponding to the best controller is
obtained. A sensitivity filter is applied on this new chromosome in order to remove some
inaccuracy in the GAs optimization method. Indeed, it was observed that sometimes after
the adaptation process, certain genes gave variations verynear to zero (less than 0.01) that
were useless. These small errors could have introduced somebiases in the results if they
were piled up.

The filter tests each gene of the new chromosome separately byforcing the value of the
gene to zero and re-evaluating the fitness. If the resulting fitness is higher (or equal) than
the fitness with the new gene, the value of the gene is kept at zero. Once the sensitivity
filter has been run on all the genes, the new chromosome is finally applied to the current
controller to obtain the new and adapted controller.

4.5 Verification through Simulations

This section presents the adaptation process operation with different synthetic wishes.
The complexity of the wishes is increasing through examples. These different examples
will show that the concerned genes are found and changed correctly by the adaptation
process, and that the others are protected from unwanted modifications. Finally, results
of a simulation on a year time basis with a consistent user arepresented. The content of
this section has already been published in [Guillemin et al., 2001, Guillemin and Molteni,
2002, Guillemin and Morel, 2002a].

4.5.1 Simple Example

Winter night is a quite particular condition for the adaptation system, since one gene is
dedicated to this situation. The example wish is described in the Table 4.8.

Conditions Synthetic wish
Season Evdir Evglob Solar altitude Solar azimuth Blind position

[◦C] [lux] [lux] [deg] [deg] [-]
0 0 0 −12 110 0.00

Table 4.8:Wish expressed during a winter night

The wish pre-processing filter has no effect on the wish because the corresponding
conditions (in particular the absence of solar radiation onthe facade) cannot lead to very
negative consequences from an energetic point of view and the adaptation is applied di-
rectly using the original wish (see Table 4.9).

The second column of Table 4.10 shows the chromosome of the best individual ob-
tained after this adaptation process. Only gene 11 (relatedto the rule “winter night” in the
“Illuminance” fuzzy system) has to be changed, and the GA haseasily managed to find
the right gene to change. It is interesting to note that gene 10, which described the rule
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Blind position [-]
Controller output before adaptation 1.00
Wish before pre-processing filter 0.00
Wish after pre-processing filter 0.00
Controller output after adaptation 0.04

Table 4.9:Controller output and wish in winter night conditions

“Evdir is low” in the “Glare” fuzzy system could also have been changed: this would have
fulfilled the wish, but it would have changed the outputs of the controller also in other sit-
uations (in summer nights for instance). This last solutionwould have been unsatisfactory
and the GAs have found a better one.

Gene Simple Contradictory Ordinary Sensitivity Sensitivity Weight effect Weight effect Multiple
number example wishes wish filter (before) filter (after) (sol.1) (sol.2) wishes

Genes concerning the “Glare” fuzzy system

1 0 0 0 0 0 0 -0.6 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0.36 0 0 0 0 0.26
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 -0.47 0
7 0 0 0.07 0.16 0 0 -0.4 0.19
8 0 0 0 0.2 0 0 -0.4 0
9 0 0 0 0.02 0 0 0 0
10 0 0 0 0 0 0 0 0

Genes concerning the “Illuminance” fuzzy system

11 -0.96 -0.73 0 0 0 0 0 -0.73
12 0 0 0 0 0 0 0 0
13 0 0 0.16 0 0 -0.16 0 0.06
14 0 0 0 -0.34 -0.34 -0.25 0 -0.42
15 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0
17 0 0 0 0 0 -0.13 0 -0.19
18 0 0 0 0 0 -0.24 0 -0.33

Table 4.10:Values of the 18 genes of the best individual obtained after the GA adaptation
process for each example

4.5.2 Contradictory Wishes

In order to understand how the adaptation module proceeds with contradictory wishes,
the previous simple example (winter night conditions) is taken and a similar wish is added
with a different value of the blind position.

The controller, after the adaptation process (see the thirdcolumn of Table 4.10 for the
best chromosome obtained and Table 4.11 for the results), provides the average value of
the contradictory wishes, thanks to the squaring of the differences in the fitness function.
If there was no squaring (but only absolute values for instance), a large difference would
not have been more penalized than a sum of two smaller differences, and the adaptation
could have given any value in the range [0,0.5]. In the case where the wishes are not
expressed the same day, the system will favor the latest wish.
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Blind position [-]
Controller output before adaptation 1.00
Wishes before pre-processing filter 0.00, 0.50
Wishes after pre-processing filter 0.00, 0.50
Controller output after adaptation 0.27

Table 4.11:Controller output and “contradictory” wishes

4.5.3 Ordinary Wish

This example (see Table 4.12) shows the adaptation process for a wish in ordinary condi-
tions. Results are given in Table 4.13.

Conditions Synthetic wish
Season Evdir Evglob Solar altitude Solar azimuth Blind position

[◦C] [lux] [lux] [deg] [deg] [-]
0 30000 40000 35 60 0.00

Table 4.12:Ordinary wish expressed during a winter day

Blind position [-]
Controller output before adaptation 0.60
Wishes before pre-processing filter 1.00
Wishes after pre-processing filter 1.00
Controller output after adaptation 0.96

Table 4.13:Controller output and “ordinary” wish

The chromosome corresponding to the best found individual is shown in the fourth
column of Table 4.10 and its analysis allows us to understandthe GAs operation. Gene
13 (that most corresponds to the wish conditions in the “Illuminance” fuzzy system) has
been changed to fit to the user wish. But since the “Glare” fuzzy system prevents to raise
the blinds high enough, the corresponding rules in “Glare” also need to be increased,
which is done by adjusting the genes 4 and 7.

4.5.4 Wish Attenuation Effect

These two examples (see Table 4.14) show the wish pre-processing filter effect on ener-
getically bad wishes in the case of an adequate “attenuation” and in the case of too large
an “attenuation” (i.e. when the attenuated wish goes in the opposite direction of the orig-
inal wish).

In the adequate case, the “attenuation” is applied by the wish filter and the system
learns the wish. In the inadequate situation, the “attenuation” is not applied and the wish
is disabled (the value of the wish is set equal to the value of the controller output).
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Blind position with Blind position with
a bad wish that leads to a bad wish that leads to
adequate “attenuation” inadequate “attenuation”

Controller output before adaptation 0.57 0.57
Wish before pre-processing filter 0.90 0.70
Wish after pre-processing filter∗ 0.65 (0.65) 0.57 (0.49)
Controller output after adaptation 0.61 0.57
∗wishes with the “attenuation” that would have been applied are given in brackets

Table 4.14:Controller output and wishes for the “wish attenuation” effect

4.5.5 Sensitivity Filter Effect

At first, the sensitivity filter was developed to deal with theinaccuracy of the GAs op-
timization method, but an other effect is also addressed with this filter: in some cases,
certain genes (only the ones concerning the “Glare” fuzzy system) may become inactive
when the blind positions provided by the “Illuminance” fuzzy system are always lower
than the ones provided by “Glare”. That means that if the blind positions asked by the
user are always low enough, the risk of glare may completely disappear and some rules
of the first part of the fuzzy controller may become useless.

This phenomenon (influence of certain genes on others) is calledepistasis. The sensi-
tivity genes filter, as previously designed, prevents randomly changing this kind of genes,
and keeps them at their old values ensuring an adequate behaviour of the controller in
case these genes are re-activated. This example (see Table 4.15) illustrates this feature,
because it leads to three inactive genes (genes 7, 8 and 9).

Blind position [-]
Controller output before adaptation 1.00
Wish before pre-processing filter 0.50
Wish after pre-processing filter 0.50
Controller output after adaptation 0.66

Table 4.15:Controller output and wish for the “sensitivity filter” case

In the fifth and sixth columns of Table 4.10, the chromosome ofthe best individual
obtained by the GAs is shown before and after the sensitivitygenes filter. Genes 7, 8
and 9 have become inactive, because gene 14 has been greatly reduced, and they may
take any positive value without having any influence on the outputs of the shading device
controller. The sensitivity genes filter has detected theseinactive genes and has forced
them to zero.

4.5.6 Weight Parameter Effect

Two different aims have to be balanced in the adaptation process: adapting the controller
to user wishes and keeping the experience integrated in the controller. Depending on the
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weightW applied to the “wishbase” in the equation of the fitness function (see page 64)
either the system can perfectly learn the wishes and lose theexperience integrated in the
controller (large weight) or the system can slightly adapt to user wishes and keep the ex-
perience (small weight). It is very critical to carefully adjust the weight. It is particularly
risky to choose too large a value for the weight: in this case,GAs only look for a solution
that satisfies the wishes and completely forget the “contbase” examples. Moreover, since
the mutation width is necessarily decreasing during the GA search, GAs can never find
the optimal solution if they take a wrong way at the beginning. The following example
(see Table 4.16) illustrates this problem with a large weight (W=200), which is ten times
larger than the weight normally used (W=20). This wish is particularly complex to fit, be-
cause it was chosen to match a large number of rules in the two fuzzy controllers (“Glare”
and “Illuminance”).

Blind position [-]
Controller output before adaptation 0.59
Wish before pre-processing filter 0.00
Wish after pre-processing filter 0.00
Controller output after adaptation (solution 1) 0.13
Controller output after adaptation (solution 2) 0.16

Table 4.16:Controller output and wish for the “weight effect” case

The adaptation process has been run several times and on average, it leads in 60%
of the situations to the solution 1 and in 40% to the solution 2(see columns 7 and 8 of
Table 4.10 for the corresponding chromosomes of these two solutions). Now, solution
2 should be avoided because it is a local minimum of the searchspace. The problem is
that when solution 2 is first found by GAs, the system is no longer able to come back
to solution 1, because of the too large weight (this local minimum is near the global
minimum). In fact, solution 1 only changes the genes concerning the “Illuminance” fuzzy
system and disturbs less the conditions that are not concerned by the wish. When the
weight is 20, solution 1 is found every time. The weight finally chosen is equal to 20 and
it has been seen to be a good compromise between the two aims ofthe adaptation.

4.5.7 Multiple Wishes

This example groups together the previous wishes describedin “contradictory wish”, “or-
dinary wishes”, “sensitivity genes filter effect” and in “weight parameter effect” as if they
were all expressed during the same day (see Table 4.17).

It shows that all wishes are taken into account, almost partly, even in case of a com-
bination of them. The system still finds an adequate overall solution when several wishes
are expressed together. The last column of Table 4.10 shows the chromosome of the best
individual obtained.
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Blind position Blind position Blind position Blind position
“contradictory” “ordinary” “filter” “weight effect”

Output before adaptation 1.00 0.60 1.00 0.59
Wishes before filter 0.00 and0.50 1.00 0.50 0.00
Wishes after filter 0.00 and0.50 1.00 0.50 0.00
Output after adaptation 0.27 0.86 0.56 0.39

Table 4.17:Controller outputs and wishes for the “multiple wishes” case

4.5.8 Virtual User on an Extended Period

In the previous examples, the system was tested with severalsets of synthetic wishes
and has shown a powerful ability to find solutions, even with acomplex combination of
wishes. But in order to test the learning capability of the system on a yearly basis, a sim-
ulation was performed with a virtual user whose wishes are consistent and only season
dependent.

The hypothetical user requests the blind to be almost completely closed (α = 0.2)
in winter and almost completely open (α =0.8) in summer. During the simulation all the
different possible conditions (defined by the membership functions of the fuzzy logic con-
troller) are encountered. Figures 4.6 to 4.8 show that the conditions go fromwinter with
glare risk and low solar radiationto summer with no glare risk and high solar radiation.
Each area on the figure defined by the vertical lines includes nine different conditions
that correspond to nine different sun positions relativelyto the facade. The simulation
is run sequentially on the different conditions by step of three conditions. That means it
works as if there are three conditions encountered per day with three associated wishes
expressed by the virtual user. The adaptation process occurs at each step (i.e. each day)
considering these three wishes. Figures 4.6 to 4.8 describethe effect of the adaptation
and the associated evolution of the controller at differenttimes during the simulation. The
bar at the top of the graphics spreads over the cases where an adaptation has already been
carried out.

Figure 4.6 shows that thanks to the GA adaptation, the systemhas widely learned what
the user wants in the encountered conditions (the controller after adaptation curve is very
close to the simulated user wishes in comparison with the original controller dots) and has
kept the original controller in the not encountered conditions. There is only one exception
for the not encounteredwinter with no glare risk and low solar radiation, which has also
been changed by the adaptation. This behaviour may be explained as follows: the system
has “understood” that the user did not react towards a glare risk since his reactions were
not related to the sun position (same value of blind positiondesired for every sun posi-
tion). Thus, if the user is consistent, the system assumes that the user should react in the
same way in similar conditions (at least when the solar radiation is low) without glare risk.

Figure 4.7 confirms the extrapolation capability of the system. After 27 encountered
wishes, all theglare riskconditions in winter have been encountered and the system has
extrapolated the user wishes to all the possible conditionsin winter. Even for a few condi-
tions in summer, the system begins to (wrongly) extrapolate. But it should be noticed that
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at this point, it was really plausible that the user wanted the same blind position during
the whole year.

Figure 4.8 shows that, at this stage, the system has perfectly learned user wishes in
winter, and has corrected the wrong extrapolation in summer. Moreover, the system has
again adequately extrapolated to the unencounteredno glare riskconditions. At the end
of the simulation, the results are quite similar to the ones shown in Figure 4.8. The small
discrepancy between the user wishes and the adapted controller comes from the wish pre-
processing filter (described in Section 4.4.2). It tries to reduce overheating in summer
(lower blind positions) and to maximize solar gains in winter (higher blind positions).
The effect of this filter is strongly reduced in this simulation because the user has of-
ten repeated the wishes in similar conditions. Several other simulations were performed
with more complex, but always consistent, user behaviours,and the system has always
managed, at least in the end, to almost perfectly learn user wishes.

4.6 Adaptation Performances Comparison

The choice of Genetic Algorithms for the adaptation procedure regarding blinds has to be
justified. The present section briefly introduces alternative methods for optimization task
and compares their performances with GAs through simulations. These methods cover a
wide range in the optimization domain, going from SimulatedAnnealing to direct search
algorithm and gradient descent methods. For the performance assessment, both real and
synthetic sets of wishes are used.

4.6.1 Standard Search Methods

The so-called “standard” search methods may be broadly categorized in terms of the
derivative information that is, or not, used. The ones that do not use derivative informa-
tion are calleddirect search methodsand the others are calledderivative-based methods.

4.6.1.1 Direct Search Methods

Direct search methods may be defined as minimization algorithms that only use function
evaluations to look for the minimum. No gradient information is needed by this kind of
algorithm. The Nelder-Mead algorithm, also known as the simplex method, is a typical
example of a direct search algorithm [Lagarias et al., 1998]. The algorithm is based on an
initial design ofk + 1 trials, wherek is the number of variables. Ak + 1 geometric figure
in ak-dimensional space is called a simplex. It works simply withtwo main rules:

• First rule is to reject the trial with the least favorable response value in the current
simplex. A new trial is calculated, by reflection, opposite to the undesirable result.

• Second rule is never to return to a variable that has just beenrejected, in order to
avoid oscillations.

Even if this method is widely and happily used by practitioners since 1965, it was
proved to be unreliable and inefficient in several cases, particularly when there are many
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independent variables [Wright, 1995]. Moreover, the lack of theoretical sounded back-
ground imply using it with care.

4.6.1.2 Derivative-Based Methods

The methods using gradient information find the way to traveldown on search space
surfaces, like a marble rolling freely through a surface of hills and valleys. Among the
derivative-based methods, the most favored is the unconstrained Quasi-Newton method.
This algorithm is used when the Hessian matrix (matrix of partial second derivatives)
is difficult or time-consuming to evaluate. Instead of obtaining the Hessian matrix at
every steps, this method gradually build up an approximation of this matrix by using
gradient information from the previous iterations. The approximation procedure used
in this work is the well known BFGS formula [Fletcher, 1980] provided by Broyden,
Fletcher, Goldfarb and Shanno.

4.6.2 Simulated Annealing

Simulated Annealing (SA) was originally inspired by the annealing process in metallurgy:
a piece of metal is heated (atoms are given thermal agitation), and then left to cool slowly.
This slow and regular cooling allows the atoms to slide progressively in their most stable
(corresponding to a minimal energy) positions. On the opposite, a rapid cooling would
have frozen the atoms in whatever position they had at that time.
In 1983, Kirkpatrick et al. showed the analogy between this process and the optimization
of parameters in combinatorial problems [S. Kirkpatrick and Vecchi, 1983].

4.6.2.1 Simulated Annealing Parameters Definition

The method is based on a random walk through the space at successively decreasing tem-
peratures, looking for points with low energies. From the current solutionx (or from a
random initialx0), the algorithm works as follows:

First a random walk is generated depending on thestep lengthkl:

x(t + 1) = x(t) + kl · xd

xd being a uniform random deviation of the vector solutionx. Larger value ofkl leads to
larger deviation from the previous solution. The energy of asolution (E(t)) is evaluated
through the function to minimize. In our case, the energy corresponds to the errorEr

defined in Section 4.4.4.

The difference between the energy levels at timest and t + 1 is denoted as∆E =
E(t + 1) − E(t). The new solution is accepted according to a Boltzmann distribution
probabilityp, whereT describes a kind of “thermal agitation”:

p =

{

1 if ∆E < 0

e−
∆E
T otherwise
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Accepting steps that lead to higher energy gives the algorithm the opportunity to get
out from local minima. The higher the temperatureT is, higher is the probability of get-
ting out of a local minimum. This method is proven to find the global minimum of a
function with very slow temperature cooling schedule [Geman and Geman, 1984]. Un-
fortunately, this cooling schedule is too slow to be of practical use. Nevertheless, a usual
way is to use a fixed rateκ of temperature cooling, such as follows:

T (t + 1) = κ · T (t) with 0 < κ < 1

Simulated Annealing is widely used as a global optimizationmethod, but its draw-
backs are well-known and are comparable to the ones of GAs: risk of obtaining sub-
optimal solutions, no explicit management of constraints,empirical parameters adjust-
ment.

4.6.2.2 Simulated Annealing Parameters Optimization

Four parameters have to be carefully tuned: the initial temperature of the systemT0, the
cooling rateκ, the maximum number of iterationsNmax and the step lengthkl.

All the simulations described below were performed on a set of 32 real wishes ob-
served during a mid-season period. Each wish is taken independently, so that results pre-
sented here are averaged value on 32 different simulations.Dealing with the 32 wishes
independently ensures to optimize parameters on a wide range of wishes conditions and
not only on one particular case. But since every simulationslead to different values ofEr

(varying from 1 to 100), the results are given relatively to GAs errorEr for every wishes
in order to make results values comparable.

First, several simulations have been carried out to determine an optimal initial value
for temperature (T0). It should be not too high, in order to avoid useless large variation in
the system state, and not too low in order to allow every initial conditions to converge5.
The goal is to delimit a region where the energy (the error) ofthe system begins to frankly
decrease in a simulation with too high a value of initial temperature.

Figure 4.9 shows an example of this determination: during a simulation with an initial
temperature of 5 and a cooling rate of 0.998, around step 1000a decreasing energy trend
becomes clear. Thus, the optimal value ofT0 is calculated as follows:

T0 = 0.9981000 · 5 ≈ 0.25

Then, an optimal value for the step lengthkl is roughly assessed using a simulation
with default values for the cooling rate (set to 0.998) and for the maximum number of
iterations (set to 10’000). Simulations have been performed with eight different values of
step length, from 0.001 to 1. Figure 4.10 depicts the resultsof these simulations. They
show that standard deviation is particularly high, which isdue to the fact that SA some-
times does not converge. Nevertheless, three step lengths are better than others: 0.01, 0.05
and 0.1. They are rather equivalent in term of mean, but standard deviation, which char-
acterizes the non-convergence percentage, is lower (2.09± 2.00) whenkl = 0.1. Thus,

5Actually, the initial state is randomly defined.
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Figure 4.9:Example ofT0 determination on a Simulated Annealing run

the latter has been chosen for the following simulations.

The maximum number of iterationsNmax and cooling rateκ are closely related. So,
they have been optimized together through different combinations. Three values forNmax

and nine forκ have been evaluated. Results are presented successively for the three values
of Nmax (in ascending order) in Figures 4.11 to 4.13.

The first figure presents results for the case with few iterations (Nmax = 1000) and
for all values ofκ. Once again, standard deviation is high but it informs aboutnon-
convergence frequency. A clear trend is obtained for valuesof κ near 1.0: SA gives worse
results (higher energy) and standard deviation is also getting larger, which denotes clearly
that temperature decreased not sufficiently.
On the opposite, low values ofκ also lead to slightly worse results, which means that
temperature is decreasing probably too quickly in these cases and consequently, SA get
more often stuck in local minima. An optimal value ofκ for this case seems to be 0.975.
Both mean and standard deviation are minimal. Thus, for the next and higher value of
Nmax, the optimalκ should be higher or equal to 0.975.

In Figure 4.12 results forκ values from 0.975 to 0.9999 are shown. Except a strange
behaviour forκ = 0.998, similar conclusions may be found about the extreme values ofκ.
The optimal value seems to be 0.995 and thus, for the largest value ofNmax (10’000), an
optimalκ value higher or equal to 0.995 has been expected.
Results depicted on Figure 4.13, lead to conclude similarlyto an optimal value ofκ equal
to 0.9995.

The three optimal results found for the three values ofNmax are summarized in Ta-
ble 4.18. First, results give some hints about the superiority of GAs on SA, since SA
results are worse (> 1) in any case. This will be more detailed in the next section.Con-
sidering mean and standard deviation, the optimal obtainedset is, as expected, the one
with largestNmax. Concerning computational time, astonishingly, the worstis the one
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Figure 4.10:Results for the step length rough determination
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Figure 4.11:Results forNmax andκ optimization, case withNmax = 1000
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Figure 4.12:Results forNmax andκ optimization, case withNmax = 5000
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with Nmax = 5000. In fact, it has been observed that simulations with value of κ very
close to 1.0 (i.e.κ = 0.999, 0.9995 or 0.9999) lead to shorter computational time. This is
probably due to the combination of two facts:

• Low cooling rate involves many solution rejections.

• It is probably less time consuming to simply reject a solution than to accept it and
replace the current system state.

Nmax κ Mean of relative Standard Relative CPU time
results deviation for one adaptation

1000 0.975 6.2 8.7 0.28
5000 0.995 2.7 6.7 1.36
10000 0.9995 2.0 3.4 1.31

Table 4.18:Relative results (to GAs) for the three optimal cooling rateκ

Since the major drawback of SA is the low quality of results and not the computa-
tional time, the set of parametersNmax = 10’000 andκ = 0.9995, which leads to results
of highest quality without regarding the computational time, has been chosen. Besides,
its corresponding time for one adaptation is not excessive in comparison with GAs.

Finally, with the new obtained set of parameters, additional simulations for optimizing
one more time the step length value are carried out. They wereperformed once again with
eight different values of step length, from 0.001 to 1. Figure 4.14 presents the results. A
value ofκ of 0.05 is clearly the optimal for both mean and standard deviation.

In order to assess the effect of the undertaken SA parametersoptimization, ten runs
of simulations were finally performed taking into account the 32 wishes all at once. Ta-
ble 4.19 gives the results of these simulations.

Nmax κ kl Percentage of Mean Standard CPU time
convergence∗ of Er deviation [sec]

Before opt. 10000 0.998 0.1 70 46.18 1.56 69
After opt. 10000 0.9995 0.05 90 43.84 0.47 67
∗Considering themoderatecriterion

Table 4.19:Simulated Annealing parameters optimization effects

The new obtained set of parameters is not very different fromthe initial values. Nev-
ertheless, the improvements are quite noticeable. Convergence, mean value and standard
deviation have all been improved without increasing computational time.

4.6.3 Comparison Results using a Synthetic Wish

Standard search methods and Simulated Annealing (with the optimized set of parameters)
were compared with GAs in a case of a particular synthetic wish. This wish has been de-
signed to force the adaptation process to act on two genes regarding two rules in the two
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Figure 4.13:Results forNmax andκ optimization, case withNmax = 10000

10
−3

10
−2

10
−1

10
0

1

2

3

4

5

6

7

8

9

Step length k
l

E
ne

rg
y 

(r
el

at
iv

el
y 

to
 G

A
s 

re
su

lt)

Mean              
Standard deviation

Figure 4.14:Results for the step length final determination
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Figure 4.15:Search space for the synthetic wish

different fuzzy inference systems (one concerning glare and the other concerning illumi-
nance). In fact, it concerns a sunny day in winter with sun localized at the medium-right
position (see Appendix A), and the desired blind position iscompletely up. The adapta-
tion should first change the gene (gene 12) related to the “Illuminance” fuzzy rule base
up to a value of 1.0. Then, in order for this change to take effect, the maximum blind
position provided by the glare fuzzy system in these conditions should also be modified
to 1.0 (gene 4).

This wish is not particularly hard to be learned by the adaptation process but it illus-
trates well the limitations of standard search methods. In Figure 4.15, the space search is
depicted. A large flat region and a wide valley near the optimum make the optimization
hard for standard search methods.

Optimization procedures are carried out only on concerned genes. In this work, the
MATLAB R© implementations of the simplex and Quasi-Newton methods were used. The
exit conditions of these two algorithms were set to stop whenchange in the solution is
smaller than 10−6. Supplementary simulations have shown that decreasing this value to
10−10 does not influence results by more than 10−4, whereas it dramatically increases the
computational time.

The search methods are very sensitive to the initial point, therefore optimizations have
been performed from a grid of 441 (21· 21) initial points on the range [-1,1] for each gene.
The grid step is 0.1 for both dimensions. Figures 4.16 and 4.17 represent the convergence
results for the different initial points. An algorithm is said to have converged when these-
verecriterion is fulfilled, i.e. when the difference with the lowest errorEr (here 1.441) is
less than 0.2 (see Section 4.4.4). In these figures, when algorithms have strongly diverged
the corresponding results have been set to 2 for clarity.

Table 4.20 gives a summary of results. Convergence is alwaysensured with GAs,
whereas it is the main drawback of the two standard search methods. Nelder-Mead is
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Figure 4.16: Convergence results depending on initial conditions of theNelder-Mead
algorithm with the synthetic wish test
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Figure 4.17:Convergence results depending on initial conditions of theQuasi-Newton
algorithm with the synthetic wish test
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better than Quasi-Newton both in convergence percentage (24% of the time compared to
16%) and in quality of results. However, it takes twice as much time, but still is very low
(about 1 second, which is much lower than the 28 seconds needed by GAs).

Optimization Percentage of Mean ofEr Standard CPU time for
method convergence∗ (when converged) deviation one adaptation [s]
Nelder-Mead 24 1.443 < 10−4 1.16
Quasi-Newton 16 1.447 0.016 0.51
SA 72 1.448 0.004 63.8
GAs 100 1.445 0.002 28.1
∗Considering theseverecriterion

Table 4.20:Comparison results for a synthetic wish

The results for Nelder-Mead and Quasi-Newton methods were not improved with
lower exit conditions and a larger optimization time. Thus,depending on the initial con-
ditions, these algorithms often get stuck in local optima and do not succeed in getting out
of them. This major observed drawback confirms the inadequacy of this kind of method
for our task.

Regarding SA, the convergence percentage is 72%, with a computational time twice
more than GAs. Thus, even if SA results (when SA converges) are equal to those of GAs,
the overall SA performance is less. In the following section, a more detailed comparison
of SA and GAs is made.

4.6.4 Comparison Results using a Complex Set of Wishes

For this comparison, the methods were tested on a set of 80 synthetic wishes and on the
same set of 32 real wishes used for the SA parameters optimization (see Section 4.6.2.2).

All these 112 wishes are taken independently, which ensuresa comparison on a wide
range of wishes conditions. And unlike the comparison usingone synthetic wish, the as-
sessment of the two methods cannot be achieved through mean and standard deviation:
they have no sense when each value come from a different distribution. Thus, convergence
percentages are used for comparison and then, the difference between the two methods is
calculated at each point and averaged.

The search space has 18 dimensions, each one with a range [-1,1]. Two examples of
2-D slices of search space are given. First, in Figure 4.18, ausual search space is depicted,
with flat regions, discontinuity and suboptimal valley, allcharacteristics that would have
made optimization really hard for gradient and direct search methods. In Figure 4.19, an
interesting and unusual situation occurs with a basin with some steep walls around, which
is not the global minimum. Probably due to anepistasiseffect (see Section 4.5.5), the
influence of gene 8 is suppressed by gene 16 for certain valuesand the global minimum
of the 2-D search space is located at the whole bottom of the valley.
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Table 4.21 presents the GAs and SA convergence percentage. Both moderateand
severecriteria have been applied to determine the percentage of convergence of each
method. Since the objective value is not known, the reference value for the criteria is the
minimum of the two methods obtained at each point.

Method Convergence percentage CPU time for
severecriterion moderatecriterion one adaptation [s]

SA 75 99 79
GAs 99 100 34

Table 4.21:Simulated Annealing results for the two different sets of wishes

SA has greater difficulty in finding solutions. In 25% of the cases, SA did not man-
age to fulfill theseverecriterion. That means GAs outperform SA considerably in 25%of
the cases. Moreover, in one case, SA result is really poor (moderatecriterion not fulfilled).

In comparison, GAs always provide satisfactory results (moderatecriterion always
reached) and manage almost always to fulfill theseverecriterion.

Considering only the cases where both methods converged (severecriterion), a differ-
ence∆Er between GAs and SA errors is calculated at each remaining point. It gives:

Mean(∆Er) = −0.0296 and Standard deviation(∆Er) = 0.0656

It may so be concluded that if both methods converge they leadto very similar results.
Even if the obtained mean value may show that SA gives very slightly better results, the
difference is far less than themoderatecriterion and may be considered as negligible.

Thus, even with a computational time 2.3 times greater than GAs, SA does not reach
GAs overall performance. It is very probable that if one largely increases the maximum
number of iterationsNmax and changes accordingly the cooling rateκ, SA will be able to
provide better results than the ones presented here. However, this will also surely requires
much more computational time and will not allow SA to outperform GAs. In conclusion,
GAs seem to be definitely more appropriate to our purpose thanSA.



Chapter 5

Experimental Set-up

“An experiment is a question which science poses to Nature, and a measurement is
the recording of Nature’s answer.” (Max Planck)

Field experiments such as the one carried out within this work require dealing with many
different issues: experimental procedures definition, rooms and hardware set-up, software
development and monitoring installation. This chapter describes the solutions applied for
each one of these issues.

5.1 Experimental Procedure

The goal of the experiments is to study the effect of the user adaptation on the acceptance
of automatic control systems and to quantify the cost in energy of such an adaptation.
Therefore, three systems are compared: manual control, automatic control without user
adaptation and automatic control with user adaptation.
This section details the difference between the compared systems and then describes the
programme of experiments and some important experimental precautions that have been
taken.

5.1.1 Systems Compared

The manual control system corresponds to the default control of the LESO experimental
building running through the EIB network. This system has only two automatic features:

• If a room is unoccupied during more than 15 minutes, electriclighting is switched
off.

• The heating system is driven by the default EIB control system, which is a proportional-
integral controller without night setback.

The automatic control system with adaptation corresponds to the one described in
Chapters 3 and 4.

It should be noticed that the default parameters of this system were defined to make
the whole original system very energy efficient. Hence, the automatic control without user

89
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adaptation has some differences (in addition to the user adaptation missing feature) com-
pared to the automatic control with user adaptation. They partly make the automatic con-
trol without user adaptation more user-friendly. The following points are thus changed:

Delay The time after a user interaction during which the automaticcontrol for
blinds is stopped, is increased from one hour to two hours.

Blinds (user present) There is no user adaptation, so values given at commission-
ing for blinds position depending on season should be less severe (see Section 3.5)
to be accepted by a larger number of users. In winter, the blind position is deter-
mined so to provide an illuminance of 2000 lux instead of 2500lux. In summer, the
value aimed is 500 lux instead of 400 lux.

Blinds (user absent) The limitation of blinds thermal effect when indoor temper-
ature is too low or too high (see Section 3.3.1.2) is inactivated. That means only
energy aspects are taken into account and thermal comfort atthe user’s arrival is
not considered (i.e. the temperature setpoint is absolutely not taken into account for
controlling blinds when the user is absent).

Electric lighting There is no user adaptation, so illuminance setpoint is fixedat
400 lux. International norms concerning workplace illuminance for general tasks
in offices are spread on a wide range: from 150 to 1000 lux depending on the
country [Mills and Borg, 1999]. The value chosen is the average of the values
recommended in Switzerland [ASE8912, 1977] for office general work (500 lux)
and for visual display terminal task (300 lux). As for blinds, a user interaction
stopped the automatic control for two hours.

5.1.2 Experimental Programme

The total duration of experiments is nine months, from 1st June 2002 to 1st March 2003.
The goal is that every rooms have the three control systems during three different seasons.
Thus, three periods have been defined as follows:

Summer period corresponding to “June, July, August”
Mid-season period corresponding to “September, October, November”
Winter period corresponding to “December, January, February”

The experiments were conducted in a similar way thatclinical randomized trialsare
carried out [Jadad, 1998]: attribution of systems per room is randomly done with the
constraint of having every system in every season in each room. Users do not know
which system they have (single-blind study) in order to avoid any bias that could occur.
A double-blinded study (experimenter does not know which system is applied in each
room) was impossible to realize in this work, but interaction between users and experi-
menter was very limited (survey questionnaires appeared automatically on their computer,
no intervention inside rooms was needed to start and stop control systems, etc.).

An additional constraint for the control systems attribution was to group together
rooms with common energy consumption measurements i.e. rooms 101 and 102 and
rooms 105 and 106 (see Section 5.2). Table 5.1 gives the attribution sequence of the
different control systems in every room considered for the field study.
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Room June July Aug. Sept. Oct. Nov. Dec. Jan. Febr.

001 man aut+ad aut man aut+ad aut aut+ad man aut
002 aut aut+ad man aut aut+ad man aut+ad aut man
005 man aut aut+ad man aut aut+ad aut man aut+ad
101 aut+ad man aut aut+ad man aut man aut+ad aut
102 aut+ad man aut aut+ad man aut man aut+ad aut
103 man aut+ad aut man aut+ad aut aut+ad man aut
104 aut+ad aut man aut+ad aut man aut aut+ad man
105 man aut aut+ad man aut aut+ad aut man aut+ad
106 man aut aut+ad man aut aut+ad aut man aut+ad
201 aut man aut+ad aut man aut+ad man aut aut+ad
202 aut man aut+ad aut man aut+ad man aut aut+ad
203 aut aut+ad man aut aut+ad man aut+ad aut man
204 aut aut+ad man aut aut+ad man aut+ad aut man
205 man aut+ad aut man aut+ad aut aut+ad man aut

“man” = manual system (no automatic control)
“aut” = automatic system without user adaptation
“aut+ad” = automatic system with user adaptation

Table 5.1:Attribution sequence of control systems per room

5.2 Building Description

This section presents the LESO building considered for the experimental assessment of
the automatic control systems. Important rooms characteristics such as sensors locations,
temperature stratification and luminance distribution areprovided.

5.2.1 The LESO Experimental Building

The LESO building is a small office building with about 20 office rooms, hosting the
activities of the Laboratory of Solar Energy and Building Physics located on the EPFL
(Swiss Federal Institute of Technology in Lausanne) campus. Its south facade was used
for several years for experimenting various solar facade technologies. In 1999, it was
retrofitted with a new facade conforming to the criteria of the sustainable development.
The whole facade has been replaced by a new wooden facade sketched in Figure 5.1. The
office rooms are all equipped with an anidolic (non-imaging)daylighting device [Courret
et al., 1998] that is very effective for providing daylight to the user, but requires an addi-
tional blind and window area.

Figure 5.2 gives a view of the south facade from outside, showing the anidolic and
conventional windows provided for each office room. Each facade element (for one typi-
cal office room) has two blinds: one for the lower (normal) window, and one for the upper
(anidolic) fixed window. Both blinds are controlled independently.

The building is heavy, with a very well insulated envelope and large passive solar
gains through the (dominant) south facade. A previous study[Altherr and Gay, 2002]
pointed out interesting features of the LESO building:
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Figure 5.1:Vertical section through the southern facade, showing the anidolic system

Figure 5.2:South facade view of the LESO experimental building
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• The total yearly energy intensity (heat and electricity) ofthe building is equal to
232 MJ/m2, which is almost four times lower than the swiss average of comparable
building.

• This total energy intensity corresponds to a consumption of42 MJ/m2 for lighting
and 76 MJ/m2 for heating. The remaining 114 MJ/m2 correspond to computers and
other electrical appliances.

• Solar gains cover 75% of the heat needs for the building.

The building is made of 9 thermally insulated “units” (3 units per floor), each unit
including one or two rooms. Figures 5.3 to 5.5 shows the plan of the three floors. In these
figures, North is towards the top.

5.2.2 The Rooms Considered

Fourteen rooms of the twenty available are considered for the experiments. Two of them
are geometrically different from others in the way that theyare equivalent to two office
rooms grouped together. One of these rooms is the workshop (room 005) of the labora-
tory and the other is an office room with three users (room 205). Table 5.2 gives more
information about every room and shows the chosen rooms. There are 21 users in the
chosen rooms.

Electric convective heaters are used in all rooms, except for corridors and rooms 001,
200 and 206 that have water radiators. Energy consumption groups together the electrical
heating energy, the electric lighting energy and all other electrical appliances.

5.2.2.1 Room dimensions and Sensors Locations

The following descriptions deal with the standard rooms.

Room size:

• Floor area of a room: 15.7 m2

• Room height: 2.8 m

Walls and slabs1:

• Facade wall (to South): 5.4 m2, light wall (1 cm plaster panel + 12 cm thermal
insulation + 1 cm wood) + windows (see below)

• Rear wall (to North, circulation space): 7.0 m2, heavy partition wall (12 cm concrete
bricks + 8 cm thermal insulation + 12 cm concrete brick) + 3.0 m2, door (2 cm
wood)

• Wall to neighbor unit: 13.3 m2, heavy partition wall (12 cm concrete bricks + 8 cm
thermal insulation + 12 cm concrete bricks)

1All layers of the construction elements are given starting from inside the room; “thermal insulation” is
either glasswool, polystyren or polyurethan, with a thermal conductivity equal to 0.04 W/mK.
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Figure 5.3:Ground floor plan of the LESO building
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Figure 5.4:First floor plan of the LESO building
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Figure 5.5:Second floor plan of the LESO building
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Room Nb of Energy consumption Remarks Standard room Chosen
users availability configuration room

001 2 − √ √

002 2 − √ √

003 1
√

Used for an other project
√ −

004 1
√

Used for an other project
√ −

005 -
√

Workshop − √

100 - − Computers room − −
101 2

√
∗

√ √

102 2
√

∗
√ √

103 1
√ √ √

104 1
√ √ √

105 1
√

∗
√ √

106 2
√

∗
√ √

107 - − Printers room −
200 2 − − −
201 1

√ √ √

202 2
√ √ √

203 1
√ √ √

204 1
√ √ √

205 3
√ − √

206 - − Library − −
∗Energy consumption is grouped for two adjacent rooms

Table 5.2:List of all office rooms of the LESO building and choice of the rooms considered
for the present work
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• Wall to neighbor room of the same thermal unit: 13.3 m2, light partition wall (1 cm
plaster panel + 4 cm thermal insulation2 + 1 cm plaster panel)

• Floor: 15.7 m2 (1 cm rubber coating + 6 cm screed + 6 cm thermal insulation + 25
cm concrete slab)

• Ceiling (towards roof): 15.7 m2 (25 cm concrete slab + 16 cm thermal insulation +
10 cm concrete and roof gravel)

Windows:

• Standard window: 2.1 m2 net area (double glazing with IR coating, U-value 1.4
W/m2K)

• Anidolic window: 1.7 m2 net area (double glazing with IR coating, U-value 1.4
W/m2K)

• Frame area (total for the facade of one room): 0.9 m2, U-value 2 W/m2K

Figure 5.6 depicts a room configuration with the sensors and user interfaces locations.
The presence and luminance sensors are placed on the ceilingas shown on Figure 5.7.
Figures 5.8 and 5.9 shows the interfaces localization.

5.2.2.2 Daylight Factor Assessment

Assessment of Daylight Factor (DF) was performed in a standard room (room 004) in or-
der to characterize the room behaviour according to daylighting concerns. DF is defined,
with overcast sky conditions, as the ratio between indoor horizontal illuminance and out-
door horizontal illuminance. For this measurement blinds were completely open and
outdoor horizontal illuminance was about 6’000 lux (overcast sky conditions). DF have
been measured at 8 different distances from the window in a range of 0.8 m to 4.3 meters
by steps of 0.5 meter, on three row (A, B, C) differently distanced from the east wall (1,
2 and 3 meters). Measurements were done 0.85 meter above ground. Figure 5.6 depicts
precisely the locations of the different measuring points.The user interfaces, the VNR
data acquisition system and the EIB communication bus are explained later in Section 5.3.

Results of this measurements are given in Figure 5.10. Missing points are due to
obstacles preventing measurements at these positions. Results show that DF decreases as
the distance from the windows increases. DF value varies from 5% to about 1.5%, which
are quite usual values.

In addition, some luminance measurements (see Figure 5.11)provide information
about the visual environment in the rooms. They were measured under clear sky con-
ditions, with an external horizontal illuminance varying from 31’000 to 33’000 lux.

2In certain rooms the 4 cm thermal insulation is replaced by a simple air layer of also 4 cm.
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Figure 5.6:Room configuration and location of sensors and user interfaces

Figure 5.7:Presence and luminance sensors on ceiling
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Figure 5.8:EIB interface localization

Figure 5.9:Blinds interface localization
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Figure 5.10:Daylight factor assessment in a standard room

Figure 5.11:Luminance measurements in a standard room, with external horizontal il-
luminance of 32’000 lux (values in [cd/m2]) - Importance of daylight provided by the
anidolic system is visible on the wall and the ceiling
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Figure 5.12:Thermal stratification in two rooms during two different seasons

5.2.2.3 Temperature Stratification Assessment

Measurements of temperature at different heights were taken to characterize the thermal
stratification for two different rooms in winter and summer.Results, which are presented
in Figure 5.12, show that stratification exists in all cases,but seems to be more room
dependent than season dependent. In room 101, thermal stratification leads to less than
1◦C of difference between upper and lower position in both seasons, while difference is
up to 3◦C in both seasons in room 105. Such different stratificationsare due to different
windows opening occurrence and depend on if the door is kept open or closed.

Difference between seasons is visible in the average of temperatures that are lower in
winter than in summer in both rooms.

5.3 Hardware Set-up

Hardware issues are presented in this section. First the building communication bus used
in the experiments is introduced and then some sensors calibration procedure and results
are presented.

5.3.1 The European Installation Bus

The use of a building management bus allows an easy access to all sensors and actuators,
and the sharing of the available information between all thepartial control systems, mak-
ing the integration of the different controllers easier (see Section 3.2.1). Several building
buses types are available. Choosing a well-supported standard (for instance, European
Installation Bus or LonWorks bus) provides wider choice of sensors and actuators from
various manufacturers, which should be freely interoperable. The development work can
be focused on the controller itself, instead of re-developing sensors and actuators that are
already available on the market. A building management bus also makes easier the ca-



5.3. HARDWARE SET-UP 101

 

EIB Building Bus 

Ethernet LESO Network  

EIB-PC 

(Linux) 

RS 232 

 

Heating 
 

room1 

 
 

room1 

Blind 
control 

 

Sensors  
& user 
room1 

Sensors  
& user 
room2 

Blind 
control 
room2 

Art. light 
control 
room2 

Heating 
control 
room2 







room1

Art. light
control

control





Figure 5.13:EIB Overall diagram

bling between sensors, actuators and controller, thanks tothe standardization.

The whole building has been equipped with an EIB (European Building Bus) net-
work, provided by Siemens. The heating system, the electriclighting and the blinds are
connected on this bus.

Figure 5.13 gives the arrangement of the bus for two rooms. All rooms and the com-
mon circulation spaces are equipped in a similar way. For each room, sensors monitoring
the presence, the air temperature, the window opening and the illuminance are available.
A computer named EIB-PC is also depicted on the diagram: it allows other computers to
communicate with EIB through the Ethernet network (see Section 5.4.2).

Every devices connected on the bus may theoretically exchange information with all
other devices. Indeed, the work principle of the communication bus is to send and read
telegramscontaining a header that indicate to which device it is addressed, and the in-
cluded message for the device. Thus, every devices are permanently “listening” to others,
but take into account the included message only when they areconcerned.

5.3.2 VNR Data Acquisition System

A monitoring system was already installed in the LESO building since 1981. It allowed
to monitor several data (temperatures, heat flows, energy consumption) individually for
each room. Due to its age, the VNR system is suffering today from a lack of reliability
and stability. Nevertheless, the system still provides accurate measurements of weather
data such as outdoor temperature and solar irradiance.

5.3.3 Sensors and Calibration

Many sensors are needed for monitoring for both outdoor and indoor conditions assess-
ment. They are presented in Table 5.3. In addition, blind positions are not measured
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directly but calculated by the EIB-PC using the duration of blind movements.

Physical value Type of sensors EIB/VNR Calibrated/verified
in this work

Per room

Air temperature for control Pt100 EIB
√

Air temperature for monitoring Pt100 VNR
√

Presence infrared EIB
√

Workplane illuminance luminancemeter EIB
√

Window opening 0/1 magnetic EIB −
Common for the whole building

Outdoor air temperature Pt100 VNR −
Global horizontal irradiance pyranometer VNR

√

Wind speed anemometer VNR
√

Wind direction weather vane VNR −

Table 5.3:List of available sensors in the LESO building

The table shows that many calibration and verification have been performed. Only
the calibration regarding the most important values for comfort assessment (namely the
indoor temperature and illuminance) are detailed in the following sections.

5.3.3.1 Temperature Sensors

All temperature sensors available (from EIB and VNR) have been preliminary calibrated
using a mercury thermometer with precision of± 0.1◦C. It consisted in measuring the
real temperature with the mercury thermometer and adjusting coefficients in VNR and
EIB systems in order to obtain a similar value of temperature. This calibration was lim-
ited to a zero-order adjustment (constant correction value).

In order to assess the accuracy of the available calibrated temperature sensors, they
have been compared with a measurement of the operative temperature on a period of ten
days:

T-operative It measures the temperature really feels by user, which depends of the
heat losses of human body due to convection and radiation. Itthus combines the
mean radiant temperature with the air temperature depending on air velocity. For
instance, if air velocity is near zero, the operative temperature may be approximated
by the average of the mean radiant and air temperatures. A specific calibrated de-
vice was used for this measurement. It was located at the centre of the room at the
height of 1 meter.

T-EIB These temperature sensors (Pt100 type) are connected on EIBand embed-
ded in the EIB interface (see Section 5.3.4), which is located near the door3.

3Exact locations of EIB and VNR sensors are indicated in Figure 5.6 on page 97.
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Figure 5.14:EIB and VNR temperature measurements compared to the operative temper-
ature

T-air These sensors (Pt100 type) are connected to the VNR datalogger (see Sec-
tion 5.3.2). There are sensors protected from radiation by achrome cylinder, that
let air passing vertically through it. Since radiation component is avoided, it should
essentially measure the air temperature. They are located on walls (fixed 3 cm in
front of the wall) and 1.5 meter above ground.

Figure 5.14 shows results of the ten days measurements. T-EIB measurement is clearly
influenced by the fact it is embedded in the EIB interface box.The whole box should first
be at the ambient temperature and then the sensor is getting to the air temperature. Inertial
behaviour may also be explained by the fact this box is fixed directly on the wall, and is
surely influenced by the wall surface temperature.

The T-air measurement is very near to the operative temperature, which indicates a low
influence of the mean radiant temperature. However, some surprising inertial behaviour
seems to appear for the T-air measurement compared to the operative temperature. A
plausible explanation is that cylinders are influenced by wall proximity, and are measur-
ing temperature of theair layer against the wall.

Hence, available sensors (from VNR and EIB) provide unbiased but less responsive
measurements because of their contact with walls. This effect is particularly important
for the EIB measurement, which are used for the thermal control of the room. It makes
probably the system weakly responsive, which was indirectly confirmed by the fact that
some users were complaining about the upper limitation and others about the lower limi-
tation. To solve this problem, the default range provided bythe temperature interface has
been doubled from -2◦C to +2◦C, to -4◦C to +4◦C. It therefore corresponds to a range of
17◦C to 25◦C, assuming a basic temperature of 21◦C.
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5.3.3.2 Luminance Sensors

The EIB luminance devices installed in each room, translatethe luminance measured by
their sensor in a corresponding illuminance. Therefore, itis particularly important to
properly calibrate these devices.

The sensor field of view is not circular but elliptic. The larger angle (38 degrees) has
been set to correspond to the larger dimension of the room (from South to North) and the
smaller angle (20 degrees) to correspond to the smaller dimension (East to West).

Calibrations are performed using a dedicated application program that has to be down-
loaded in the device. They have all been carried out during night with electric lighting,
in order to have the most possible steady illuminance conditions. Moreover, since our
system needs to know precisely the illuminance value mainlyfor electric lighting control,
the calibration was achieved with values of illuminance between 200 and 400 lux. All
EIB luminance sensors have been calibrated following the procedure described below:

1. The “calibration program” is downloaded in the luminancedevice.

2. The measured value of illuminance on the work plan is keyedin the parameters of
the “calibration program”.

3. Thecalibration parameteris read from the device.

4. The original “illuminance program”, which measures the illuminance, is re-downloaded
in the device.

5. Thecalibration parameteris keyed in the “illuminance program”

Figure 5.15 shows the results of the luminance calibration for room 001. The values
given by the calibrated EIB luminance sensor are compared tothe ones given by a LMT
luxmeter (± 1.9% accuracy) used as a reference. Estimated error bars of 15% are indi-
cated for the EIB measurements. Accuracy of EIB sensor is sufficient under 500 lux (that
corresponds to values considered for calibration process), but overestimate illuminance
above 500 lux. This non-linear behaviour seems to be due to the sensor characteristic,
each of them tending to overestimate above 500 lux. It has been decided to apply a linear
correction at each sensor as follows:

Ecorrected =

{

E if 0 ≤ E ≤ 500 lux
500 + 0.85 · (E − 500) if E > 500 lux

Figure 5.16 shows the results with the corrected EIB output.All results are thus close
to the reference, that means being less than 15% wrong. Nevertheless, these results show
that the applied correction is maybe a bit too low, but being conservative is safer.

Since every device has already gone through the calibrationprocess, it was too huge a
work to assess in each room, which correction coefficient should be applied. Thus, it has
been chosen to apply the same coefficient to each sensor. Figure 5.17 depicts results of
all sensors with the correction and calibration applied. Two measurements per room with
different blind positions have been taken during a sunny day. Almost all discrepancies
observed are below 15%. This accuracy is quite sufficient forour purpose, given the fact
that human eye is not very sensitive towards illuminance variations.
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Figure 5.15:Illuminance values given by the calibrated EIB sensor and a reference (LMT)
in room 001 - The black line represents equivalence between the two measurements
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Figure 5.16:Illuminance values given by the calibrated and corrected EIB sensor and
a reference (LMT) in room 001 - The black line represents equivalence between the two
measurements

0
 500
 1000
 1500
 2000
 2500
 3000
 3500

0


500


1000


1500


2000


2500


3000


3500


LMT measurements [lux]


E
IB

 c
o
rr

ec
te

d
 m

ea
su

re
m

en
ts

 [
lu

x
]


Figure 5.17:Illuminance values given by the calibrated and corrected EIB sensors and a
reference (LMT) in all rooms
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Figure 5.18:Picture of the EIB interface for temperature and electric lighting controls

5.3.4 User Interface Modules

Two standard interface modules were provided with the European Installation Bus. One is
related to the electric lighting control and the temperature setpoint and the other is related
to the blinds position control.

The main interface module is depicted on Figure 5.18. It mainly deals with the electric
lighting control and is generally located near the door, in order to be able to switch on/off
the lights at arrival/departure (see Figure 5.8 on page 98 tosee the exact localization in
the room). A short press on the upper part of the button switchon the lights at full power.
A short press on the lower part of the button switch off the lights. Long pressures allow
dimming (up or down) the electric lighting from 1% up to 100% of maximum power.

This interface provides also a control on the indoor temperature setpoint. The user can
choose an offset value for the temperature setpoint from -4◦C to +4◦C by step of 2◦C. The
last control opportunity of this device is a temporary override selector and since it only
concerns automatic control, it was not active before the experiments take place. It allows
the user to stop the automatic control (for electric lighting and blind systems) as long as
somebody stays in the room. There are two positions available, the activated one being
indicated by a red LED. If the upper LED is switched on, that means the automatic control
is running as usual. If the lower LED is switched on that meansthe concerned automatic
controllers are temporarily stopped (sleep mode). It lets the user the opportunity to have
particular environmental conditions during exceptional situations: completely closing the
blinds and switching off the lights during a slide show, completely opening the blinds for
windows cleaning or switching on the lights at full power fora temporary and special task.

The other interface module deals only with the blinds control. It is located near the
window, on the wood shelf (see Figure 5.9 on page 98). It simply consists of buttons for
raising or lowering the blinds. Since there are two blinds per room in the LESO building,
there are two pairs of buttons for blinds control, as depicted on Figure 5.19.
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Figure 5.19:Picture of the command buttons for blinds

5.4 Overall System Description

Field experiments involve not only hardware setup but also numerous software develop-
ments and integrations in an overall structure. This section describes how the different
software systems are interconnected and explains the role of each component.

5.4.1 Overall Architecture

The main purpose of the proposed architecture is to enable the Control-PC, which holds
the automatic controllers presented in Chapter 4, to communicate with EIB for both ac-
quisition of sensors measurements and sending commands to actuators.

The final chosen architecture is described in Figure 5.20. Three computers are needed,
one being the Control-PC, an other that is able to communicate directly with EIB (EIB-
PC) and one for the monitoring system (VNR-PC). They are all connected to the Ethernet
LESO Network. Control-PC is the central node for the experiments; it contains different
softwares that enables communication with the VNR data logger and with EIB.

5.4.2 Components Description

The components mentioned in Figure 5.20 are explained in this section. First, the roles
of VNR-PC and EIB-PC are described and then a detailed description of Control-PC is
given through its different software.

5.4.2.1 VNR-PC

This computer, running under Windows, is the pre-existing monitoring facility of the
LESO building. Sensors connected to VNR and used in the experiment are listed in
Table 5.3 on page 102. Every two seconds, new measurements ofall these VNR sensors
become available through a text file in the computer VNR-PC.
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Figure 5.20:Overall architecture of control system

5.4.2.2 EIB-PC

A computer able to connect itself to EIB has been developed. It is a PC running under
Linux4, which is permanently connected to the communication bus through a RS-232
connection, and analyzes all telegrams passing through thebus (all telegrams are visible
by all devices, see Section 5.3.1). EIB-PC contains a memoryof all available variables in
EIB and the values of these variables are continuously updates thanks to the fact that all
telegrams are analyzed.
So, EIB-PC works as a server: when a client requests the valueof a variable, the server
provides this value without sending a telegram on the bus to ask the concerned device the
current value of this variable. In addition, EIB-PC may alsosend telegrams to actuators,
if it is requested by a client. It deals with all control algorithms concerning level 1 of the
nested control loop structure (see Section 3.2.1).

5.4.2.3 Control-PC

This PC, running under Windows, contains four important softwares: the MATLABR©

module, the remote EIB Java server, the VNR Datalog server and EDITIME.

The MATLAB R© module is the central control part. It collects the all needed variables
(from VNR and EIB), it calculates the controllers outputs and it deals with all adaptation
aspects.
This implementation has been designed to make the system event-oriented, i.e. new calcu-
lations are only performed if an event occurs. This is done thanks to thehot link features
provided by the remote EIB Java Server (see below). Ahot link is established with every
important variables for control, and thus each time one of these variables changes, the
module receives an event from the remote EIB server. Table 5.4 summarizes the different
possible events.

4At the beginning, the EIB-PC server was running under Windows, but approximately every week the
computer crashes. Therefore, a more reliable solution had to be developed.



5.4. OVERALL SYSTEM DESCRIPTION 109

Variable modified Corresponding event effect

Time Scheduled tasks (heating, user adaptation, model optimization)
Global horizontal irradiance New control calculation (forblinds and electric lighting)
Presence New control calculation (for blinds and electric lighting)
External temperature Update value
Indoor temperature Idem
Indoor illuminance Idem
Wind-alarm Raise up blinds and deactivate blinds control
User interactions

On electric lighting Effect described in Section 4.1
On blinds position Idem
On temperature setpoint Idem
Onsleep mode Idem

Table 5.4:Effects in the MATLABR© module of “hot linked” variables modification.

The remote EIB Java server provides the same services as the ones provided by the
EIB-PC server. It may gives values of variables, and receives command that should be
send to EIB. It has been designed to only run under Windows (DDE protocol does not
exist in Linux operating system) and to connect itself to an instance of the Linux EIB-PC
server via a RMI connection through the Ethernet LESO network. Doing so, the hard
job of serial port communication and telegram analysis is achieved by the EIB-PC server
on a computer, which works under a more stable operating system. Thus, the Windows
computer hosting the controller only needs to run this lightremote EIB Java server and
can choose to get events regarding only pre-selected rooms.
Two types of DDE link may be established by the client with theremote EIB Java server:

Cold link It allows communicating data in both ways: client to server,via apoke
command and server to client, via arequestcommand. Communication event only
occurs on client demand.

Hot link It makes the server sending values whenever they change. Communica-
tion is only possible from server to client.

In our case, the unique client for this server, is the MATLABR© module.

The VNR Datalog server allows communicating through the Windows DDE (Dy-
namic Data Exchange) protocol, between a client (the MATLABR© module in our case)
and the VNR data logger station. In fact, this server read every second the text file in
the VNR-PC that contains latest sensors values and make themavailable through DDE
connection for every clients on the Control-PC.

The last software is EDITIME, which is the time master for thewhole system. It is
a very simple DDE server that provides time through DDE communication. Eithercold
or hot link communication may be established. In this work, the MATLABR© module
establishes ahot link connection with EDITIME, and the latter sends the current time
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every minute (the elapsed time between two time events may bechanged via a DDE
command).

5.5 Monitoring

Two main issues should be assessed in this experiment: energy efficiency of the automatic
controllers and acceptance of them by the users. The first issue requires to record all
values concerned by controllers and the second one requiresan additional survey method,
namely questionnaires. This section gives an exhaustive list of all variables recorded
and describes the questionnaires used for assessing the users acceptance of the automatic
system.

5.5.1 Recorded Variables

The MATLAB R© module is the central node of the whole system. Thus, almost every in-
teresting variables are directly available in this module.In fact, every time an event occurs
(see Section 5.4.2.3), the system stores all relevant variables. Table 5.5 lists the whole set
of recorded variables within the module. In average, there are two events per minute (and
at least one since EDITIME sends an event every minute) that leads to about 90’000 sets
of variables per room recorded in one month. In addition, models and controllers param-
eters are stored every night after the adaptation process, in order to assess their evolution
over the time.

Nevertheless, two kinds of variables are not directly available in the MATLABR© mod-
ule: the energy consumption and the additional indoor temperatures, both measured by the
VNR data logger. So, every 5 minutes, these variables are getby a dedicated MATLABR©

instance through the VNR datalog software and stored locally on the Control-PC. Energy
consumption is available for almost each room (see Table 5.2); it groups together the heat-
ing energy and indoor temperatures are available for each room except room 005, which
is a workshop. These temperatures coming from VNR are also recorded because they
are more accurate than the ones provided by EIB (see Section 5.3.3.1) and because some
redundancy may be useful (in case of sensor failure or to confirm measured values).

5.5.2 Questionnaires

In order to assess the user acceptance of the automatic controllers, a survey using ques-
tionnaires is carried out. These questionnaires are largely inspired by the ones developed
by Hygge and Löfberg [Hygge and Löfberg, 1997] to address building’s occupants ap-
praisal towards daylighting system. They have been modifiedto mainly concern user
response towards automatic control. They are divided into three type:

Personal QuestionnaireFilled once at the beginning and once at the end of the
experiments, these questionnaires allow to classify usersdepending on personal
information (age, gender, wear glasses or not, etc.). They also allow to compare
opinion of the users about automatic control before and after the experiments.
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Recorded variables in the MATLABR© module Units

Day of the year (fractional value) [1 - 366]
Outdoor temperature [◦C]
Indoor temperature [◦C]
Indoor temperature setpoint [◦C]
Reduction of the temperature setpoint (for heating energy savings) [◦C]
Heat power fraction [0 - 1]
Presence (for the controller, timeout of 10 minutes) [0, 1]
Presence (given by the sensor) [0, 1]
Ambiance [1 normal, 2 fixed]
Global hor. irradiance measured [W/m2]
Vertical global illuminance on the facade calculated [lux]
Vertical direct illuminance on the facade calculated [lux]
Daylight indoor illuminance calculated (from RI model) [lux]
Daylight indoor illuminance measured [lux]
Illuminance setpoint [lux]
Flag “mask detected on the window” (no more direct sunlight) [0, 1]
Blind anidolic position [0 - 1]
Blind normal position [0 - 1]
Blind anidolic user flag [0, 1]
Blind normal user flag [0, 1]
Time of last blind move (fractional value) [1 - 366]
Electric light user flag [0, 1]
Electric light power fraction [0 - 1]
Electric light power fraction (not updated with user interactions) [0 - 1]
East window switch [0 closed, 1 open]
West window switch [0 closed, 1 open]
Flag wind danger [0, 1]

Table 5.5:List of recorded variables in the MATLABR© module



112 CHAPTER 5. EXPERIMENTAL SET-UP

Twice-Monthly User SatisfactionThis questionnaire appears automatically twice
a month on the computer screen of the users at startup. It has been found to be
a less disturbing way for users compared to paper questionnaires, and it ensures
a large proportion of filled questionnaires. These questionnaires concern the user
satisfaction regarding automatic control installed in hisoffice room.

Daily Comfort Twice a day, a very short questionnaire appears automatically on
user computer screen. It asks three questions about currentvisual and thermal com-
fort in the room. It can be filled in less than 3 seconds, since user remembers the
questions.

The three questionnaires are given in Appendix D.



Chapter 6

Experimental Results

“ I have had my results for a long time: but I do not yet know how I am to arrive at
them.” (Karl Friedrich Gauss)

The goal of the field experiments was to study the effect of theuser adaptation on the
acceptance of automatic control systems and to quantify thecost in energy of such an
adaptation. Results are given and discussed in this chapter. First, energy consumptions
of the three compared control systems are detailed per season. Then, thermal and visual
comfort assessed through questionnaires is analyzed depending on the control system.
Afterwards, evidences of effect of the adaptation to user are pointed out. The user accep-
tances of the two automatic controllers are then compared and the impact of the adaptation
on acceptance is studied. Finally, some additional resultsrelated to the RI model perfor-
mance are given.

Experiments should have covered nine months but at the end, only eight months
of measurements are available. In fact, during November (considered as a mid-season
month), the EIB-PC server (see Section 5.4.2) has crashed five times. A new version
of the main software that should solve several remaining bugs (mainly regarding blinds
control) had been installed in the beginning of November. Unfortunately, this new ver-
sion was unstable and experiments were stopped several times until a more stable version
was obtained. Hence, the adaptation processes (to user wishes and room characteristics)
have not managed to converge properly during this month and,in addition, only frag-
mented data were available. It has been finally decided not totake into account the whole
November month. Thus, results presented in this chapter cover all months but November.

6.1 Energy Consumptions

One major issue of the experiments was to assess the differences in energy consumptions
between the three different systems (manual control, automatic control without user adap-
tation and automatic control with user adaptation).

113
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6.1.1 Monitored Results

In order to compare the energy consumptions, some indicators were developed.

Let Cixj denotes the energy consumption in roomi with a controller of typex during
monthj. Four energy consumption indicators are thus defined:

Cx
tot =

∑

j

∑

ix

Cixj [MJ/(m2·month)]

Cx
rel =

∑

j

∑

ix Cixj
∑

x

∑

j

∑

ix Cixj
[−]

Cx
rel/room =
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ix

(
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∑

x

∑

j Cixj

)/

I [−]
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j

(
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x

∑

ix Cixj

)/

J [−]

with I andJ the total number of rooms and months, respectively.

Cx
tot is the total energy consumed during the experimental periodby the controller of

typex, expressed in [MJ/(m2·month]. Cx
rel is the fraction of the total energy consumed

during the experimental period by the controller of typex. Cx
rel/room is the average frac-

tion of total energy consumed per room by the controller of type x. Cx
rel/month is the

average fraction of total energy consumed per month by the controller of typex. The
error margins mentioned are the standard deviation calculated on all rooms/months.

Table 6.1 shows the values of the different indicators of energy consumption for the
whole experimental period. The three relative indicators give precisely the same relative
values, which shows that there is no bias due to the room allocation or to differences
in month: 40.4% of the total energy consumption is due to the manual control system,
29.7% is due to the automatic control system without adaptation and 29.9% is due to the
automatic control system with adaptation. In other words, automatic controllers reduce
the total energy consumption by about 26% compared to manualcontrol. This confirms
the result obtained in a similar study carried out only in twooffice rooms of the LESO
building [Guillemin and Morel, 2001], which had shown that an integrated automatic
controller allows 25% of energy savings on the total energy consumption compared to a
conventional system (identical to the manual control system used in the present study).

Controller type Cx
tot Cx

rel Cx
rel/room Cx

rel/month

[MJ/(m2·month)] [-] [-] [-]
Manual 11.6 0.404 0.402 ± 0.069 0.405 ± 0.249
Automatic without user adapt. 8.5 0.297 0.290 ± 0.058 0.293 ± 0.115
Automatic with user adapt. 8.6 0.299 0.308 ± 0.058 0.302 ± 0.163

Table 6.1:Energy consumptions on the whole experimental period
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The other very important result shown in this table, is the fact that the adaptation
to user does not significantly increase energy consumption.Two Studentt-tests have
been applied to the values ofCx

rel/room that have lower standard deviation than values of
Cx

rel/month (there are less energy consumption differences between rooms than between
seasons). The first test confirms that the energy consumptionof the manual system is
higher than the energy consumption of the automatic controllers (difference ishighly
significant):

t-value> qt26(99.5%) i.e. 3.72 > 2.78

The second test shows that the difference in energy consumption between the user
adaptive and non-adaptive controllers is notsignificant:

t-value< qt26(95%) i.e. 0.67 < 1.71

This surprising result (it was expected that adaptation to user makes the automatic
controller less energy efficient) is explained in the next section.

6.1.2 Analysis per Season

An analysis of energy consumption of the different systems is done depending on the
season.

6.1.2.1 Winter

Table 6.2 shows relative energy consumption for winter months. It confirms the two re-
sults already mentioned: automatic controllers reduce theenergy consumption of 26%
compared to the manual control and differences between the two automatic controllers
are not significant.

Controller type Cx
tot Cx

rel Cx
rel/room Cx

rel/month

[MJ/(m2·month)] [-] [-] [-]
Manual 20.3 0.407 0.412 0.395
Automatic without user adaptation 14.7 0.295 0.289 0.294
Automatic with user adaptation 14.9 0.298 0.299 0.311

Table 6.2:Energy consumptions in winter

A previous study [Guillemin and Morel, 2002b] has determined that the implementa-
tion of a night setback in the conventional controller only reduces the total energy con-
sumption by 5% for standard room of LESO. These rather low benefits may be explained
by the fact that heating energy represents only 30% of the total energy consumption in
the LESO building (see Section 5.2), while appliances and electric lighting represent the
remaining 70%. So, energy savings concerning the heating system do not much influence
the total energy consumption even if the heating system is very efficient. Moreover, the
thermal mass of the building being large, a night setback applied to the heating system
may only lead to a limited reduction of the heating energy consumption.
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Table 6.3 gives different average measurements on the winter period and provides in-
teresting clues to explain the remaining 21% of energy savings.

Controller Indoor Anidolic blind Normal blind Windows opening
type temperature [◦C] position [-] position [-] [time fraction]
Manual 20.6 0.94 0.96 0.012
Automatic without u. a. 20.5 0.93 0.95 0.008
Automatic with u. a. 20.5 0.86 0.90 0.007

Blind position = opening fraction [0;1]

Table 6.3:Averaged measurements over the winter period

Surprisingly, blind positions provided by the automatic controllers are lower than the
ones chosen by users with the manual control. Thus, the difference in energy consumption
between automatic and manual control systems may not be explained by a more extensive
use of solar gains. On the other hand, the prediction capability of the heating controller
(see Section 3.3.3) allows to reduce the heating power during the night and the morning
when solar gains are predicted to provide a large amount of solar energy in the afternoon.
Thus, heating energy consumption is reduced and overheating are avoided. This last point
is confirmed by the fact that windows are more often open in rooms with manual control
than in rooms with automatic controllers. Moreover, these windows opening may lead to
additional heating loads if users let the windows open during a too long time and let the
indoor temperature falling too low.

An other interesting fact is shown by Table 6.3. The automatic controller with user
adaptation provides blind position lower than the one without user adaptation. This dif-
ference was mainly observed when user is absent, which is an evidence of the effect of the
limitation introduced in the blind controller for the user absent case. This limitation was
set to prevent the blind controller to accept too large solargains when indoor temperature
is already high (see Section 3.3.1.2). Histograms of temperatures for both controllers are
shown in Figures 6.2 and 6.3. The effect of the limitation is clearly visible: the histogram
is narrower in the case with the user adaptive controller.

Comparing these histograms with the one measured with the manual control system
(see Figure 6.1), shows that overheatings around 23◦C are much more frequent with the
latter system, confirming the usefulness of predictive systems.

6.1.2.2 Mid-Season

Table 6.4 shows relative energy consumption for the mid-season months. The indicator
Cx

rel/room gives very different results from the others. This shows that results are biased
by the room allocation.

The higher energy consumption of the manual controller can be explained by the fact
that rooms with higher average energy consumption have beenallocated to the manual
controller and not to the automatic controller without useradaptation. This bias is un-
fortunately due to the missing November month. For mid-season (from September to
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Figure 6.1:Histogram of temperatures for the manual control system in winter
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Figure 6.2: Histogram of temperatures for the automatic control systemwithout user
adaptation in winter
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Figure 6.3:Histogram of temperatures for the automatic control systemwith user adap-
tation in winter
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Controller type Cx
tot Cx

rel Cx
rel/room Cx

rel/month

[MJ/(m2·month)] [-] [-] [-]
Manual 7.4 0.469 0.300 0.463
Automatic without user adaptation 3.7 0.233 0.338 0.235
Automatic with user adaptation 4.7 0.298 0.362 0.302

Table 6.4:Energy consumptions in mid-season

Controller Indoor Anidolic blind Normal blind Presence
type temperature [◦C] position [-] position [-] [time fraction]
Automatic without u. a. 21.3 0.70 0.83 0.234
Automatic with u. a. 22.2 0.68 0.78 0.284

Table 6.5:Averaged measurements over the mid-season period

November) not all controllers have been applied to all rooms. Thus, it is harder to draw
conclusions about energy consumptions. Nevertheless, thefour indicators are in accor-
dance to show that the automatic controller with user adaptation leads to higher energy
consumption than the one without user adaptation. Table 6.5provides a possible explana-
tion. The averaged indoor temperature is higher in the case of the user adaptive controller,
which could be explained by a higher user presence, and therefore a higher setpoint of
temperatures (when user is absent the heating controller reduce the temperature setpoint
of at least 0.5◦C, see Section 3.3.3). In mid-season, some heating energy may occasion-
ally be needed, and a higher temperature setpoint is leadingto larger energy consumption
during this period.

The observed discrepancy in user presence may come from the fact that controllers
were not applied to the same rooms, and thus different presence patterns may have been
encountered by them.

6.1.2.3 Summer

In summer, there is no heating energy used and energy consumption only involves appli-
ances and electric lighting.

Table 6.6 gives the energy consumption during the summer months for the different
controllers. The different indicators do not fully correspond concerning the manual and
automatic without user adaptation systems.Cx

tot andCx
rel show that the energy consumed

by the automatic system was higher than the one consumed by the manual system. But

Controller type Cx
tot Cx

rel Cx
rel/room Cx

rel/month

[MJ/(m2·month)] [-] [-] [-]
Manual 5.6 0.349 0.410 0.376
Automatic without user adaptation 5.5 0.344 0.294 0.330
Automatic with user adaptation 4.9 0.307 0.296 0.294

Table 6.6:Energy consumptions in summer
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Cx
rel/room andCx

rel/month indicate the opposite and this shows that results are probably bi-
ased by the rooms allocation. That means the automatic system was applied in rooms that
consume more energy (probably rooms with users present later in the evening or sooner
in the morning) during months that lead to higher energy consumption (probably months
with less daylighting available in the morning and evening). Nevertheless, histograms of
workplane illuminances during the summer months (see Figures 6.4 and 6.5) seem to ex-
plain a higher energy consumption of the automatic system; indeed the histogram of the
manual control system shows a higher occurrence of very low indoor illuminance (0-80
lux), whereas the histogram of the automatic without adaptation shows that indoor illu-
minance is almost never lower than 240 lux. The automatic control of electric lighting
thus leads to an extensive use of electric lighting energy, since it switches on the lights
in conditions where users would have not acted so, in case of amanual control system.
Moreover, the benefit of the automatic control that switchesoff the lights, as soon as the
user leaves the room, does not appear anymore since this feature is also implemented in
the manual control system.

The user adaptive system seems to be a good compromise, sinceit also provides an
automatic control for electric lighting but with a lower setpoint (observed in average at
165± 70 lux) compared to the one of the automatic control without user adaptation (con-
stant at 400 lux). This is confirmed by the different histograms of illuminances (see the
second slot corresponding to illuminances from 80 to 160 luxin Figures 6.5 and 6.6).

Finally, the lower energy consumption of the automatic control with user adaptation
compared to the manual control system may be explained by a more efficient management
of the electric lighting: with the manual system, user may switch on the lights on arrival
and “forgets” to switch them off when daylighting becomes sufficient. Thus, electric
lighting remains uselessly switched on or at a too high power.

6.1.2.4 Summary

Automatic controllers allow 26% of energy savings comparedto the manual system,
mainly due to the prediction capability of the heating controller and a more efficient man-
agement of electric lighting. On the whole experimental period, the energy consumption
of the user adaptive system is not significantly higher than the one of the non-adaptive
system.

6.2 Users Comfort

The users comfort has been assessed through daily questionnaires (see Section 5.5.2). A
total amount of 3367 daily questionnaires have been filled byusers during the monitoring
period. This section presents the results of analysis for both thermal and visual comfort.

6.2.1 Thermal Comfort

Since energy consumption was reduced by using automatic controllers (see Section 6.1),
it is important to check if thermal comfort was maintained. Figure 6.7 shows the user
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Figure 6.4:Histogram of illuminances (when user present) for the manual control system
in summer - each slot corresponds to 80 lux
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Figure 6.5:Histogram of illuminances (when user present) for the automatic control sys-
temwithout user adaptation in summer - each slot corresponds to 80 lux
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Figure 6.6:Histogram of illuminances (when user present) for the automatic control sys-
temwith user adaptation in summer - each slot corresponds to 80 lux



6.2. USERSCOMFORT 121

thermal votes on the Fanger’s scale for the whole experimental period, depending on the
controller installed. The comfort votes for all controllers are very similar. On the whole
period, the automatic controllers have provided conditions that user felt as comfortable as
the ones with the manual control. Even a slight improvement is noticeable for the auto-
matic controller with user adaptation (Higher frequency ofvotes 0). This is mainly due to
a reduction of the overheating occurrence (less votes +1 and+2 compared to the manual
system).

Analyzing comfort per season shows that the narrower distribution of temperature in
winter provided by the user adaptive controller (see Section 6.1.2.1) do not improve the
thermal comfort felt by users (see the similarity of the three controllers in Figure 6.8).
In the other hand, the main advantage of the automatic controllers is pointed out in mid-
season, where a better management of solar gains reduces perceptibly the overheating
(see Figure 6.9). In summer, automatic controllers also avoid overheating in comparison
to the manual system, but it sometimes leads to a slight cold discomfort (see votes -1 on
Figure 6.10). The automatic controller with user adaptation avoids temperature to be too
low and then gives slightly better results than the controller without user adaptation.

To summarize, more than 90% of votes are within the range [-1,+1] for all controllers,
except in summer where significant overheating (+2 and +3) appears for all controllers.
In mid-season, the overheating is often avoided by automatic controllers compared to
the manual system. In winter, the comfort is comparable for all controllers, even if the
automatic controller with user adaptation provides a narrower distribution of temperature.
On the whole period, automatic controllers can be considered as comfortable for thermal
aspects (and even slightly better for the one with user adaptation) as the manual control
system.

6.2.2 Visual Comfort

Visual comfort is assessed using both glare and illuminanceaspects. First, results of the
daily questionnaires are presented for the whole experimental period on Figure 6.11 for
glare and Figure 6.12 for illuminance. Considering glare aspects, the three controllers
have quite similar results, with a slight reduction of glareby the automatic controllers.
This obsrvation is a bit disappointing since avoiding glareshould be a main benefit of the
automatic blinds controller. It may be explained by the factthat users with the manual con-
trol system move blinds sufficiently often to cut direct solar radiation (see Section 6.3.1.1).
Concerning illuminance, the automatic controller with user adaptation provides the most
comfortable conditions, mainly by avoiding too high workplane illuminances.

Results for the winter months only (see Figures 6.13 and 6.14) show that the auto-
matic controller with user adaptation and the manual control system give identical results
for both glare and illuminance. The automatic control without user adaptation manages
to avoid some “low glare” votes compared to the other systemsand slightly reduces the
number of “too dark” votes . The latter point is easily explained by its relatively high
setpoint of the electric lighting system.

Figures 6.15 and 6.16 confirm that, in mid-season, the controller with user adaptation
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Figure 6.7: Thermal comfort votes on a
Fanger’s scale for the whole period
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Figure 6.8: Thermal comfort votes on a
Fanger’s scale for the winter period
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Figure 6.9: Thermal comfort votes on a
Fanger’s scale for the mid-season period
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Figure 6.10:Thermal comfort votes on a
Fanger’s scale for the summer period
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Figure 6.11:Glare perception votes on the
whole experimental period
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Figure 6.12: Illuminance votes on the
whole experimental period
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Figure 6.13:Glare perception votes on the
winter period
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Figure 6.14:Illuminance votes on the win-
ter period
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Figure 6.15:Glare perception votes on the
mid-season period
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Figure 6.16: Illuminance votes on the
mid-season period
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Figure 6.17:Glare perception votes on the
summer period
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Figure 6.18: Illuminance votes on the
summer period
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provides sometimes too low illuminances, and also that its management of glare issue is
not fully appropriate.

In summer, Figures 6.17 and 6.18 show that the situation is inverted, the automatic
controller with user adaptation is quite better than the onewithout user adaptation for
both glare and illuminance. Regarding illuminance, the automatic controller without user
adaptation is even worse than the manual control system.

In summary, visual comfort conditions provided by the automatic controllers are sim-
ilar or slightly better than the ones with the manual system on the whole experimental
period, but some significant differences appear depending on the season: in summer, the
automatic controller with user adaptation performs betterthan the one without user adap-
tation whereas in mid-season the situation is inverted. It seems to indicate that the user
adaptation has particularly well performed in summer and not in mid-season. The next
section deals with this issue.

6.3 Effect of the Adaptation to User

The effect of the adaptation to user (extensively describedin Chapter 4) is studied in
this section, through the evolution of the number of interactions with blinds and electric
lighting over a month. In addition, evolution of the illuminance and temperature setpoints
is also analyzed.

6.3.1 Number of Interactions Evolution during a Month

The number of interactions with the system may indicate if the automatic controller has
adapted to user wishes. If the adaptation is efficient and conditions correspond better and
better to the ones desired by the user, the number of interactions should decrease over the
month.
First, interactions with the blinds are studied and then interactions with electric lighting
are discussed.

6.3.1.1 Shading Device Controller

Figures 6.19 to 6.24 plot the number of interactions with blinds during the different sea-
sons. In general, the number of interactions is higher with the automatic controller than
with the manual system. It shows that users do not agree with the blind positions provided
by the automatic controllers and consequently move them.

Due to technical problems, the number of interactions at theend of the month is not
available for the manual system during summer months.

Concerning the anidolic blind, the number of interactions clearly decrease in the sec-
ond half of the month during winter and summer when the user adaptive system is applied.
In summer, the number of interactions with anidolic blinds is even lower than the ones
with the manual system. It indicates that the user adaptation is working efficiently. In the
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other hand, in mid-season, the number of interactions do notdecrease during the month.
The adaptation seems not to converge, which may explained the disappointing results
obtained by the user adaptive controller regarding visual comfort in mid-season (see Sec-
tion 6.2.2).

Concerning the lower blind (normal window), conclusions are not so obvious. Nev-
ertheless, in winter and summer, during the first part of the month the user adaptive con-
troller leads to more interactions (blind positions do not suit users) but in the second part
the number of interactions tends to decrease and to become lower than the ones with the
non-adaptive controller. Again in mid-season, adaptationseems not to work properly.

The difficulty of the adaptation is probably due to the fact that there are no specific
rules for mid-season in the controllers (see Section 3.3.1.1). Thus, the adaptation process
has to act on values related to summer and winter conditions in order to learn user wishes:
this makes the adaptation task very difficult. But results show that even it was probably
fair regarding energy consumption, removing mid-season rules prevents a correct control
during these months, and therefore prevents a correct adaptation to user.

Since user adaptation process is daily carried out, it was expected that user wishes
would be learned in few days as soon as different sky conditions were encountered. But
the number of interactions shows that it takes at least one ortwo weeks for the system
to learn user wishes. Thus, applying the control system onlyduring one month is just
sufficient to show a significant difference between automatic controllers.

6.3.1.2 Electric Lighting Controller

Figure 6.25 shows the cumulated number of interactions withthe electric lighting sys-
tem during a month (average on the whole experimental period). Automatic controllers
drastically reduce the total number of interactions compared to the manual system. This
shows that it is easier to fulfill user needs and wishes dealing with electric lighting than
the ones dealing with blinds (number of users interactions with blinds were not reduced
by automatic controllers).

The user adaptive controller leads to less user interactions compared to the non-
adaptive one. This is not due to an adaptation effect as it canbe seen on Figure 6.26:
the largest part of interactions consists of switch off interactions. Since the user adaptive
electric lighting system has a lower illuminance setpoint (see next section) than the non-
adaptive system, the electric lighting system is less oftenswitched off by users with the
adaptive controller. Moreover, this explanation is confirmed by the fact that number of
switches on is higher with the adaptive system, surely because users experienced too low
illuminances in their office.

The effect of the adaptation is not visible on these figures: lines related to the user
adaptive system do not show any decreasing trend at the end ofthe month.
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Figure 6.19:Evolution of the number of
interactions with anidolic blind in winter
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Figure 6.20:Evolution of the number of
interactions with normal blind in winter
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Figure 6.21:Evolution of the number of
interactions with anidolic blind in mid-
season

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Day of the month

C
u
m

u
la

te
d
 n

b
 o

f 
in

te
ra

ct
io

n
s 

Non-adaptive system 
User adaptive system
Manual control

Figure 6.22:Evolution of the number of
interactions with normal blind in mid-
season
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Figure 6.23:Evolution of the number of
interactions with anidolic blind in sum-
mer
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Figure 6.24:Evolution of the number of
interactions with normal blind in summer
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Figure 6.25:Evolution of the number of
interactions with electric lighting on the
whole experimental period
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Figure 6.26: Evolution of the number
of interactions (depending on the action)
with electric lighting on the whole experi-
mental period

6.3.2 Setpoints Evolution during a Month

An other way to see the user adaptation effect is to observe the evolution of the different
setpoints over a month.

First, the illuminance setpoints evolution (averaged on the different corresponding
months and on the different rooms) are given in Figures 6.27 to 6.29 for each season. In
winter and summer, the illuminance setpoints do not much vary and have the same kind
of lower (about 75 lux) and upper (about 400 lux) limits. In average, the setpoint value
is higher in winter (195± 70 lux) than in summer (165± 70). This difference is not
significant according to a Studentt-test with a level of significance of 0.05. Nevertheless,
it is quite probable that the season has an effect on the setpoint desired by the user. In
particular, it is possible that users compensate the usual darkness of winter months by
requesting higher illuminance setpoint.

During mid-season, the average setpoint value shows a clearincreasing trend, con-
firmed by an associated increasing of the maximum setpoint value. First, it should be
noticed that the average values at the end of the month (255± 120 lux) is absolutely not
excessive and far below the setpoint applied in the rooms without adaptive system (400
lux). Secondly, this behaviour confirms the fact that user adaptation do not converge to a
satisfactory configuration during mid-season.

The evolution of the temperature setpoint over a month1 is given in Figure 6.30. These
results are the average on the whole experimental period butthe standard deviations given
remain quite large. The plots for the season taken individually have higher standard devi-
ation and are not given here.

1The setpoint of temperature is also used in summer for the management of solar gains (see Sec-
tion 3.3.1.2).
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Figure 6.27: Illuminance setpoint evolu-
tion during winter months (values on all
rooms)
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Figure 6.28: Illuminance setpoint evolu-
tion during summer months (values on all
rooms)
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Figure 6.29: Illuminance setpoint evolution during mid-season months (values on all
rooms)
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Figure 6.30:Temperature setpoint evolution during a month, averaged onthe whole ex-
perimental period
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Even if standard deviations are quite large, the setpoints seem to be kept constant over
the month. At least, no clear trend is shown by these results.Moreover, no differences
are noticeable between the user adaptive and non-adaptive controllers.

6.4 Users Acceptance of Automatic Controllers

The users acceptance of automatic controllers have been assessed through the twice-
monthly questionnaires (see Section 5.5.2). 270 questionnaires are usable for the analysis.

6.4.1 Users Description

There are 23 users who have participated to the field study, 8 women and 15 men. 10
users wear glasses, 13 not. 6 users are less than thirty yearsold, 8 are between thirty and
thirty-nine, 3 between forty and forty-nine and 6 are more than fifty years old.

In order to have a better statistic, users are grouped in two age classes: 14 users less
than thirty-nine years old and 9 users are older than forty.

Three different room occupancy exist in the LESO offices: 1 person per room (6
concerned users), 2 persons per room (13 concerned users) and 3 persons per room (3
concerned users). In offices with several users, questionnaires show that the blind po-
sition and electric lighting power are chosen on the basis ofa compromise between all
occupants.

6.4.2 Overall Results

The last question of the twice-monthly questionnaire is:

After the last two weeks, do you prefer to come back to the manual system or
keep the current control system you have?

The proposed answers are:
© © ©

No more automatic control(reject) keep current system(accept) No opinion

Table 6.7 gives results related to this question for both automatic controllers (with and
without user adaptation).

After two weeks, a difference between controllers appear: the percentage of rejection
is lower with the user adaptive system (about 13%) than with the non-adaptive system
(about 20%). The acceptance percentage is also slightly larger for the user adaptive sys-
tem (68% compared to 64%).

After four weeks, the difference is drastically enlarged: the percentage of unsatisfied
people with the non-adaptive system is increased and reaches 25% whereas only 5% of
the users remain unsatisfied with the adaptive system.
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System type Reject Accept No opinion Nb of questionnaires

After two weeks with the system

Non-adaptive 20.5% 63.6% 15.9% 44
User adaptive 12.8% 68.1% 19.1% 47

After four weeks with the system

Non-adaptive 25.0% 55.0% 20.0% 40
User adaptive 4.8% 71.4% 23.8% 42

Table 6.7:Users acceptance of the automatic controllers after two andfour weeks

A Chi-Squared test (see Appendix C) for 2 degrees of freedom confirms, with a signif-
icance level of 0.05, that the variables “controller” and “acceptance” are not independent:

Pobs > qχ2
2(95%) , (11.36 > 5.99)

Thus, acceptance is proven to be significantly and positively influenced by the user
adaptation feature.

Then, several Chi-Squared tests are performed in order to assess the independence of
the answers percentage with other variables (room occupancy, gender, age). Results of the
tests on all questionnaires (both after two and four weeks) are summarized in Table 6.8.
It shows that acceptance of the automatic controllers does not depend on the room occu-
pancy. This proves that the user adaptive controller is alsovery beneficial with several
users in a room. In particular, the fact that users choose theindoor conditions based on
a compromise with all occupants in a room make their interactions consistent and this
allows the adaptive system to converge to a suitable controlstrategy.

Pobs rejection acceptance no opinionChi test degree Chi-Squared value
answers answers answers of freedom (kL) qχ2

kL
(95%)

Occupancy 1.39 2.82 1.68 2 5.99
Gender 0.81 0.00 0.04 1 3.84
Age 0.01 5.24 0.93 1 3.84

Table 6.8:Chi-Squared independence test values with different variables - Variables are
independent when values are lower than the last column

There is no relation between gender and acceptance. Women and men accept and re-
ject the automatic controllers in the same way.

Therejectionof automatic controllers is not related to the age, but a significant depen-
dence exist between theacceptanceof a controller and the age. The same Chi-Squared
test applied only on the questionnaires after four weeks show that the dependence is not
anymore significant (Pobs = 0.79). Tables 6.9 and 6.10 show the acceptance percentage of
both classes of age after two weeks and after four weeks with the control system.
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Non-adaptive User adaptive
controller controller

Age< 40 46% 70%
Age≥ 40 85% 65%

Table 6.9:Acceptance percentage after
two weeks

Non-adaptive User adaptive
controller controller

Age< 40 50% 71%
Age≥ 40 63% 71%

Table 6.10:Acceptance percentage after
four weeks

These tables show that opinion of “young” users (less than 40years old) about au-
tomatic controllers is already established after two weeksand do not change afterwards.
They definitely accept more easily the controller with user adaptation than the one with-
out user adaptation. On the opposite, “older” users (more than 40 years old) change their
opinion towards automatic control during the month. They accept more largely the non-
adaptive controller after the two first weeks, but they prefer the user adaptive system in
the questionnaires after four weeks. In particular, the acceptance percentage of the non-
adaptive system strongly decreases between two and four weeks (from 85% to 63%).

At the beginning, “older” users are more tolerant towards the non-adaptive controller
compared to “young” users, who seem to be quite demanding. But at the end, both classes
of age agree; they accept more the user adaptive control system.

Since it is shown in the next section that the adaptation effect is perceived by the users,
results may be interpreted as follows: “young” users are more receptive to new features.
As soon as they perceive the adaptation effect, they accept the control system even if it
has not perfectly learned their wishes. In the other hand, “older” users also perceive the
adaptation effect, but do not accept the control system until it has largely adapted to their
wishes.

6.4.3 Users Perception of the Adaptation Effect

One question of the twice-monthly questionnaire allows assessing the user perception of
the adaptation effect. The results are given in Figure 6.31 per type of control (blinds,
electric lighting or heating system).

Concerning daylighting (blinds control), users strongly perceive the adaptation effect:
Cumulating answers percentage for “completely” and “largely” adapted, a value of 55%
is obtained for the user adaptive system and only 35% for the non-adaptive system.

For electric lighting, users also perceive the adaptation effect (50% for the adaptive
system compared to 35% for the non-adaptive one, with cumulated “completely” and
“largely” answers). But regarding the temperature, differences in the users perception
are not significant. As mentioned in Section 6.2.1, the differences between automatic
controllers in temperature conditions provided are too small to have an impact on thermal
comfort and thus, they are not significantly perceived by users.
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Figure 6.31:User assessment of the adaptation effect

6.4.4 Reasons of Rejection

Questions 6,7 and 8 of the twice-monthly questionnaires (see Appendix D) provide clues
about reasons of rejection of the automatic controllers. Table 6.11 summarized the results
for the rejection reasons.

System type Answer percentage
“ineffective” “stupid” “irritating” “going against my wishes”

Blinds controller

Non-adaptive 8.2% 7.1% 21.2% 28.2%
User adaptive 4.5% 7.9% 12.4% 18.0%

Electric lighting control

Non-adaptive 5.9% 7.1% 11.8% 17.7%
User adaptive 3.3% 2.3% 5.6% 6.7%

Heating control

Non-adaptive 1.2% 0% 0% 2.4%
User adaptive 2.3% 0% 0% 2.3%

Table 6.11:Reasons of rejection

Two answers are mostly cited by users to describe the negative aspects of the auto-
matic control for both blinds and electric lighting installed in their room: it “goes against
my wishes” and it is “irritating”. Concerning blinds, both answers are cited more than
20% of time with the non-adaptive control but these percentages are almost divided per
two for the user adaptive system. Concerning electric lighting control, conclusions are
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Figure 6.32:User negative opinions on the automatic control

similar, the adaptive control system reducing even more largely the answers percentage.
Thus, the main reasons of rejection (system “goes against mywishes” and “is irritating”),
were largely reduced by the adaptive control system and thisexplains the lower rejection
percentage of the user adaptive system.

Concerning the heating control, all percentages are very low, attesting sufficient ther-
mal comfort conditions in the rooms.

Figure 6.32 summarizes negative answers of question 9, which deals with general
opinions about the controller installed in the room. The main drawback of automatic con-
trollers is confirmed, users found that automatic controllers go against their wishes mainly
when the controller installed is not adaptive (43% comparedto 27% for user adaptive).

There is less than 5% of the users who feel being watched with both type of con-
trollers. That excludes this aspect from the reasons of rejection.

6.4.5 Reasons of Acceptance

Questions 6,7 and 8 of the twice-monthly questionnaires (see Appendix D) provide also
clues about the reasons of acceptance of the automatic controllers. Table 6.12 summa-
rized the results for the acceptance reasons.

The answer mostly cited for all control types is clearly the “proper working” of the
automatic control system. Regarding blinds control, the user adaptation has a strong ef-
fect on the answers percentages. Every positive aspects is enhanced with the user adaptive
system. In particular, the answer “adapted to my wishes” is cited two times more with the
user adaptive system together with the answer “intelligent”. This confirms the user per-
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System type Answer percentage
“work properly” “intelligent” “pleasant” “adapted to my wishes”

Blinds controller

Non-adaptive 49.4% 16.5% 17.7% 15.3%
User adaptive 62.9% 30.3% 21.4% 27.0%

Electric lighting control

Non-adaptive 51.8% 11.8% 10.6% 17.7%
User adaptive 52.8% 25.8% 15.7% 16.9%

Heating control

Non-adaptive 43.5% 8.2% 5.9% 8.2%
User adaptive 44.9% 8.0% 2.3% 7.9%

Table 6.12:Reasons of acceptance

ception of the user adaptation feature. For electric lighting also, the answer “intelligent”
is cited two times more with the adaptive system. But in this case, the adaptive system is
not felt more “adapted to my wishes” by users, which may be explained by the fact that
electric lighting setpoint has probably not sufficiently converged to the value desired by
user (see Section 6.3.1.2).

For the heating control, no noticeable difference exist between controllers.

Considering all types of control (heating, lighting and blinds), about 50% of the users
answer that the system “work properly”, but only 8% to 20% answer that the system is
“adapted to their wishes”. This may be explained by the fact that users probably consider
a system “working properly” as soon as it acts in a way they understand, and consider a
system “adapted to their wishes” only when it acts in the sameway as they would have
acted. Thus, in order to get a system accepted (instead of a “no opinion” answer), a
“proper working” is probably sufficient and it does not necessarily need to be “adapted to
my wishes”.

Figure 6.33 summarizes positive answers of question 9, which deals with general
opinions about the controller installed in the room. It shows additional reasons of accep-
tance of the automatic controllers: energy savings, reduction of the number of interactions
and improvement of comfort are all considered as existing aspects of the controllers they
have (more than 60% of agreement). Moreover, the reduction of number of interaction
and the improvement of comfort are clearly enhanced with theuser adaptive system. The
improvement of comfort with the user adaptive system confirms the slight effect observed
in the daily comfort questionnaires (see Section 6.2) for both thermal and visual comfort.
Regarding the reduction of the number of interactions, it has been actually observed that
the adaptive system reduces it compared to the non-adaptivesystem. But for blinds, even
the adaptive control system increases the number of interactions compared to the manual
control (see Section 6.3.1.1). Nevertheless, the fact thatautomatic controllers largely re-
duce the number of interactions with electric lighting system seems to compensate, for
users opinion, the corresponding increase number of interactions with blinds.
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Figure 6.33:User positive opinions on the automatic control

6.4.6 Users Opinion Evolution

Personal questionnaires (see Section 5.5.2) have been submitted before and after the ex-
perimental period. Analysis of answers pointed out some differences that show evidence
of an evolution of the user opinion.

Some questions ask the user to choose the three most relevantanswers and classify
them from 1 to 3. In the questionnaires analysis, a weight of 3is given to the most relevant
answer, a weight of 2 for the second one and a weight of 1 for thethird one. Answers
not chosen have a weight of 0. Then, the sum of all weights for an answer is divided by
the total sum of all weighted answers for the considered question, in order to obtain a
“relative weighted number of answers”.

First, Figure 6.34 gives the user opinion before and after the experiments about the
most important characteristics to make a room to his liking.“Efficient lighting” and
“view of outside” are definitely more cited after the experiments. Indeed, introduction of
automatic control has particularly an effect on lighting conditions, because of the blinds
and electric lighting control. Moreover, some users realize that view of outside is very
important, since they have observed that automatic blinds control may prevent it (at least
when they enter the room with closed blinds in summer).

In Figures 6.35 and 6.36 the main positive and negative aspects of automatic con-
trollers given by users are detailed before and after experiments. Concerning positive
aspects, only slight differences in opinions are visible. Answers “increase of comfort”
and “reduction of number of interactions” are more cited after the experiments, which
shows that experiments have strengthened these positive opinions among users about au-
tomatic controllers. “Energy savings” and especially “control is funny” are considered
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Figure 6.34:Users opinion about the main characteristics to make a room to their liking

relatively less relevant after experiments. The latter point shows a kind of demystification
of automatic controllers after experiments.

About the negative aspects, the importance of “control goesagainst wishes” is almost
doubled after the experiments and reaches more than 50%. This shows one more time that
the main drawback and the main reason of rejection of automatic controllers is that they
do not take into account user wishes. This also confirms and validates the opportunity of
the present work.

Figure 6.37 shows the self-evaluation of the users concerning their sensitivity to glare
before and after experiments. The same percentage of users consider themselves partic-
ularly and not particularly sensitive to glare. The situation is identical after experiments,
except the fact that the number of users without opinion is clearly lower. The introduction
of automatic control in their room probably gives users the feeling that an entity decides
for them if situation is comfortable or not. Thus, they become more aware of what com-
fort means for themselves and which needs they have.

At the end of experiments, users could choose which system they wanted to be applied
in their office rooms in the future. 21 users have requested the best available automatic
system (i.e. the adaptive one) and 2 have requested the manual control. One of these
two answers is related to the workshop (which have been observed to give disappointing
results, see Section 6.5.2), so only one user in a standard office still rejects all automatic
systems after the experiments. This corresponds to about 5%of the users who would
probably reject automatic control in all forms.
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Figure 6.35:User opinions evolution about the main positive aspects of automatic control
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6.5 Additional Results

This section discusses the quality of the RI model results and explains the user adaptation
problem observed in a special room of the LESO building.

6.5.1 RI Model Assessment

This section provides a comparison between measurements ofindoor illuminance and
values given by the RI model (described in Section 3.4.2).

Figure 6.38 shows a histogram of the relative error of the RI model in all rooms, the
relative error being defined as:

RI model relative error=
model value− measurement

measurement

Relative error is centered on zero but a high peak exists for arelative error equal to
-1 and no relative errors appear below -1. This is explained by the fact that the RI model
cannot give negative values. Indeed, the worst cases (casescorresponding to a relative
error equal to -1) are when the RI model calculates a zero value for illuminances when
measured values are not zero.

Frequencies observed in the range [-1,-0.5] are not equal tofrequencies in the sym-
metric positive range [0.5,1]. This may indicate some casesin which RI model underes-
timates illuminances. It is discussed later in this chapter.

Table 6.13 shows the percentage of observed values for different boundaries. For this
determination, null values of the RI model are removed (i.e.the peak at -1 in Figure 6.38
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Figure 6.38:Histogram of relative error of the RI model on all rooms

is not taken into account). It is observed that only 40% of values provided by the RI model
are comprised in the relative error boundaries of± 0.15, which is the assumed relative
error of the measured illuminances. The ratio reaches 65% when boundaries are enlarged
to ± 0.3 and 83% with boundaries of± 0.5. It means that in 17% of the cases values
calculated by the RI model are more than 50% different from measurements. Some ex-
planations of this discrepancy may be found in Figure 6.39. It depicts the RI model error
in function of the illuminance measured in a standard room. At high illuminances (above
1500 lux) a trend of underestimation by the RI model is visible. This underestimation may
be partly explained by the overestimation of illuminance ofthe EIB sensors. Even if these
sensors were calibrated and an attempt to correct this overestimation was performed, they
still gave slightly overestimated values (see Figure 5.16 on page 105).

Relative error boundaries ±0.15 ±0.30 ±0.50 ±1.00

Percentage of observed values40% 65% 83% 97%

Table 6.13:RI model error assessment

A malfunctioning of the RI model is visible on Figure 6.40, which depicts the RI
model error in function of the illuminance measured in a not standard room. This room
(room 205) is a large room grouping two standard rooms together with two illuminance
sensors (with two associated and independent RI models) andfour blinds to control. In
this room, the RI model gives sometimes largely overestimated values when the measured
values are around 750 lux. It indicates that the RI model is sometimes misleaded by the
additional illuminance coming from the other windows of thedouble-room. For instance,
it fits some measurements with blinds of the other windows completely open and then
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Figure 6.39:RI model error in function of the illuminance, in a standard room (room 201)
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Figure 6.40:RI model error in function of the illuminance, in a “special”room (room
205)
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overestimates indoor illuminances when blinds of the otherwindows are closed.

To summarize, the RI model is not very accurate (less than 40%of values comprised
in the 0.15 of measurement relative errors) but provides reasonable values (relative errors
less than 0.5) in 83% of the cases. Larger errors appear in non-standard rooms, and when
the illuminance is high (RI model underestimate values measured by the EIB sensors).

6.5.2 Special Case of Workshop

The field study also included the workshop of the LESO building. This room (room 005)
has two particularities: it is a large room grouping two standard rooms together and up to
10 different persons were working occasionally in this room. Questionnaires were filled
by the main user of the workshop. At the end of experiments, itwas obvious that the
adaptive system proposed was not appropriate to the workshop case. Since a room with
the same configuration (room 205) has given satisfactory results regarding acceptance,
the difficulty should have come from the large number of users. In fact, different reasons
explain why the user adaptation has failed in this room:

• Many different indoor conditions are irregularly requested, since users vary and
are not regularly present. This lack of regularity preventsthe adaptive system to
converge.

• Various tasks were performed in the workshop, requesting very different indoor
lighting conditions: tasks involving computers (requiring dark indoor conditions),
general tasks such as readings (mainly requiring to avoid glare) and high preci-
sion manufacturing tasks (requiring high illuminance). The adaptive system do not
manage to find a compromise between all these requirements.

• The electric lighting setpoint was not adapted correctly. It was observed that the
adapted setpoint tends to be too low. In fact, frequent wrongadaptations occur
when a user switches off the lights at his departure and when an other user enters
the workshop just afterwards. Thus, the adaptive system considers that user is still
present and that the switch off was a wish for lower illuminance.

Extrapolating from this result, it may be assumed that user adaptive systems are prob-
ably not appropriate for places with irregular users, such as workshop, library, corridors
and in general all public spaces.
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Chapter 7

Conclusions

“The best way to predict the future is to invent it.” (Alan Kay)

7.1 Achievements

The objective of this work was to develop and test user adaptive controllers for blinds,
electric lighting and heating. For this purpose, an integrated control system that adapts
to the environment and building characteristics was developed and successfully imple-
mented. This system was built on three nested control loops:level 1 translating physical
values into actuator commands, level 2 being the fuzzy logiccontrollers and level 3 deal-
ing with adaptation aspects.

User adaptation was achieved by means of Genetic Algorithmsthat optimize param-
eters of the fuzzy logic controllers. GAs have been seen to bethe most efficient opti-
mization method for this task. They ensure a 100% convergence whereas standard search
methods such as Gauss-Newton and Nelder-Mead converge in less than 25% of the time
and the Simulated Annealing converges in about 75% of the time.

Simulations with a consistent virtual user (who permanently requires an opening frac-
tion of blind of 20% in winter, and 80% in summer) have shown that the user adaptive
controller is capable of anticipation. The control system manages to provide blind posi-
tions desired by the user in conditions not yet encountered.

The experimental tests were carried out in the LESO building, in 14 rooms with a to-
tal of 23 users. Three controllers were compared: a manual control system, an automatic
controller without user adaptation and an automatic controller with user adaptation. Tests
were conducted in a similar fashion asclinical randomized trialsare carried out: control
systems are randomly attributed to rooms and users do not know which system they have
(single-blind study). The most important results are summarized in Table 7.1.

The main benefit of automatic controllers is the reduction ofthe total energy consump-
tion: 26% energy savings compared to the manual control system. These large energy
savings are reached without impairing indoor comfort. The thermal comfort is kept at a
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Controller type Energy Thermal comfort Visual comfort∗ Rejection after
savings satisfaction satisfaction 4 weeks

Manual 0% 84% 86% −
Non-adaptive system 26% 84% 88% 25%
User adaptive system 26% 86% 89% 5%
∗ average values for both glare and illuminance assessment

Table 7.1:Results on the whole experimental period

high level and visual comfort is even slightly improved by the automatic controllers.

The most interesting result is the large reduction of the automatic control rejection
percentage with the user adaptive system. Indeed, after four weeks with an automatic
control, 25% of the users with the non-adaptive system rejected the automatic control,
whereas only 5% of the users with the user adaptive system rejected it. Moreover, energy
savings were not reduced by the user adaptive system.

It has been shown that the rejection percentages of automatic control do not depend
on the gender or number of occupants in a room. On the other hand, an interesting depen-
dence has been found between the age and the acceptance percentage. After two weeks,
“older” users (more than 40 years old) are more likely to accept the non-adaptive system
than the adaptive one. They only change their mind after fourweeks and at the end, both
classes of age agree: they prefer the user adaptive control system.

The main reason for rejection has been determined to be the fact that automatic con-
trol may go against user wishes. This validates the aim of thepresent work, which was to
take into account user wishes on a long-term basis. Indeed, users with an adaptive control
system complain considerably less about the control systemgoing against their wishes.

An other interesting result is that the user adaptive control system slightly improves
both thermal and visual comfort compared to the non-adaptive system. The performance
of the user adaptive control would probably be even better ifthe adaptation performed
better in mid-season. Indeed, during mid-season it has beenobserved that the adaptation
does not properly converge for both electric lighting and blinds control. The reason for
this is probably that there are no specific rules for mid-season in the controllers. Thus,
the adaptation process has to act on rules set for summer and winter in order to correctly
learn user wishes. This makes the adaptation task very difficult. An important improve-
ment may thus be to include mid-season specific rules in the control system.

In addition, it was noticed that the user adaptive system didnot converge properly
in the case of a workshop, probably because of the numerous different users and tasks
involved. It has been concluded that user adaptive systems are probably not appropriate
for places with irregular users, such as public spaces.
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7.2 Outlook

This work has shown that the user adaptation process takes quite a long time to be effec-
tive. For instance, at least one or two weeks are needed to seean effect on the number of
interactions. Moreover, it has been noticed that the differences in user acceptance between
the adaptive and non-adaptive control systems were only significant after four weeks with
the control system.

In fact, there are no clues that adaptation has finished converging. Experiments should
be carried out during several months with the same control system, in order to assess the
user adaptation over a longer period. An extended period might lead to even better results,
with a rejection percentage even lower than 5% and with better comfort conditions. On
the other hand, adaptation might also become unstable and spoil the results obtained dur-
ing the first month. Only experiments over a longer period would answer these questions.

An other promising approach is the integration of user presence prediction in the con-
trol system. When the user is absent, additional energy savings and better management of
solar gains may be expected with an accurate presence prediction. For instance, the du-
ration of the predicted absence may determine the management of solar gains: for a long
absence, mainly thermal aspects are considered but for a shorter absence a compromise
between thermal and comfort aspects should be made, in orderto provide fair thermal
comfort conditions at the user’s arrival.

Finally, in order to investigate commercial applications,a more global approach to the
building is needed. Interactions between rooms should be studied (in relation with ther-
mal aspects or localization within the building), users should be recognized in different
rooms (for instance using smart cards) and security aspectsmight also be considered (fire
or intrusion detection). The most promising way is to combine the integrated control con-
cept presented in this work with the Distributed Artificial Intelligence technique, which
allows intelligence to be distributed among devices throughout the building.

Hence, several improvements can still be expected in the field of automatic control in
buildings. However, this work has shown that the addition ofan user adaptive feature was
a very important step, and user needs should therefore always remain a major concern in
any further development.
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Appendix A

Shading Device Fuzzy Logic Controllers

A.1 User Present, “Glare” Fuzzy Rule Base

The innovative idea to take into account not only the incidence angle of the solar radia-
tion on the facade but the exact position of the sun relatively to the facade. It is depicted
on Figure A.1. This allows having different behaviours for different kind of direct sun
penetration. In particular, it gives the opportunity to adapt the system (through the user
wishes) depending on the user position in the room.

Inputs (fuzzy values):

• Direct vertical illuminance (Evdir)

• Solar altitude (Altitude)

• Solar azimuth (relative to the facade orientation) (Azimuth)

Output (crisp value):

• Maximum blind position (αmax)
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Figure A.1:Sun position relatively to the facade
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Complete rule base (10 rules):

1. If “ Evdir is high” and “Altitude is low” and “ Azimuth is right” then “ αmax = 0.4”

2. If “ Evdir is high” and “Altitude is low” and “ Azimuth is center” then “αmax = 0.4”

3. If “ Evdir is high” and “Altitude is low” and “ Azimuth is left” then “αmax = 0.4”

4. If “ Evdir is high” and “Altitude is mid” and “Azimuth is right” then “ αmax = 0.6”

5. If “ Evdir is high” and “Altitude is mid” and “Azimuth is center” then “αmax = 0.6”

6. If “ Evdir is high” and “Altitude is mid” and “Azimuth is left” then “αmax = 0.6”

7. If “ Evdir is high” and “Altitude is high” and “Azimuth is right” then “ αmax = 0.8”

8. If “ Evdir is high” and “Altitude is high” and “Azimuth is center” then “αmax = 0.8”

9. If “ Evdir is high” and “Altitude is high” and “Azimuth is left” then “αmax = 0.8”

10. If “Evdir is low” then “αmax = 1”

Fuzzy input variables are depicted on Figures A.2 to A.4. Theoutput crisp variableαmax is shown
in Figure A.5.
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Figure A.2:Fuzzy variableEvdir
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Figure A.3:Fuzzy variableAltitude
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Figure A.4:Fuzzy variableAzimuth
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A.2 User Present, “Illuminance” Fuzzy Rule Base

Inputs (fuzzy values):

• Global vertical illuminance (Evglob)

• Outdoor average temperature on the last 24 hours (Season)

Output (crisp value):

• Maximum blind position (αill)

Complete rule base (8 rules):

1. If “Season is winter” and “Evglob is night” then “α = 1”

2. If “Season is winter” and “Evglob is high” then “α = 0.6”

3. If “Season is winter” and “Evglob is mid” then “α = 0.8”

4. If “Season is winter” and “Evglob is low” then “α = 1”

5. If “Season is summer” and “Evglob is night” then “α = 1”

6. If “Season is summer” and “Evglob is high” then “α = 0.3”

7. If “Season is summer” and “Evglob is mid” then “α = 0.5”

8. If “Season is summer” and “Evglob is low” then “α = 0.7”

Fuzzy variables are depicted on Figures A.6 and A.7.
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Figure A.6:Fuzzy variableEvglob
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A.3 Genetic Algorithms Encoding

The encoding of the two fuzzy rule bases for Genetic Algorithms is realized by regrouping the
two fuzzy rule bases in one individual, whose genes are representing variations of the crisp output
values. An individual (chromosome) is built as follows:

“Glare” fuzzy rule number “Illuminance” fuzzy rule number
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8

The rules numbers are given in previous sections.

A.4 User Absent Fuzzy Rule Base

Inputs (fuzzy values):

• Outdoor average temperature on the last 24 hours (Season)

• Horizontal global solar radiation (Qhglob)

• Difference between current room temperature and setpoint temperature (Tdiff )

Output (crisp value):

• Blind position (α)

Complete rule base:

If “Season is winter” and “Qhglob is night” and “Tdiff is zero” then “α = 0”

If “Season is winter” and “Qhglob is shinyday” and “Tdiff is zero” then “α = 1”

If “Season is summer” and “Qhglob is night” and “Tdiff is zero” then “α = 1”

If “Season is summer” and “Qhglob is shinyday” and “Tdiff is zero” then “α = 0”

If “ Qhglob is night” and “Tdiff is too cold” then “α = 0”

If “ Qhglob is night” and “Tdiff is too hot” then “α = 1”

If “ Qhglob is shinyday” and “Tdiff is too cold” then “α = 1”

If “ Qhglob is shinyday” and “Tdiff is too hot” then “α = 0”

If “ Qhglob is darkday” then “α = 1”

The last rule is not quite optimal for thermal aspects but it allows to illuminate corridors with
daylight when office doors are open. It has been seen to reducethe use of electric lighting in
corridors during dark day. Fuzzy variables are depicted on Figures A.8 and A.9. The fuzzy
variableTdiff is less severe with too high temperature than too low temperature. It is due to the
fact that it is less energy consuming to cool an office in winter (i.e. opens the windows) if there is
overheating than to heat an office in summer (i.e. applies heating power) if there is overcooling. It
would not be the case if a cooling system was installed in the LESO-PB building.
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Figure A.8:Fuzzy variableQhglob
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Appendix B

Venetian Blinds Controller

Controlling venetian blinds is more complex than tissue blinds since it deals with two variables:
the vertical position (α) and the slats angle (β).

The venetian blinds controller developed in this work is divided into two controllers depending
on whether the user is present or not (similarly to the standard blinds controller). If the user is
absent the automatic control is performed identically to the tissue blind control system (the slats
are simply closed and only the vertical position is regulated). The controller for the user present
case is different and is described below.

The main difference compared to the tissue blind controllerpresented in Section 3.3.1.1 lies in the
fact that the additional slats regulation is performed in a way to just completely cut the direct solar
radiation. Thus, the main task is to determine thecritical slats anglethat just obstruct sufficiently
the visible sky in order to cut the direct solar radiation.

Let x denotes the slat width,y the distance between two slats,β the slats angle as defined on
Figure B.1 andθ the solar altitude projected on the vertical plan perpendicular to the facade.

Figure B.1 shows an illustration of two slats of a venetian blind.
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Figure B.1:Lateral view of two slats of a venetian blind

Defined on the figure,p andq can be easily calculated:

p = x · cos β · tan θ

q = x · sinβ
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In addition, one has:

y = p + q

So,

y = x · (sin β + cos β · tan θ)

Then, definingd = y/x, the solar radiation is just cut when:

d = sinβ + cos β · tan θ for β = βc

with βc being the critical slats angle.

Finally, using the relative azimutha (angle between the perpendicular to the facade and the direc-
tion of the sun projected on a horizontal plane, positive towards the East direction) and the real
solar altitude of the sunh instead of the projected sun heightθ, it comes:

tan θ =
tan h

cos a

and

d = sin β + cos β · tan h

cos a
for β = βc

This equation is solved forβc using the Matlab Symbolic Calculation Toolbox. There are two
solutions, only one of them has a physical meaning:

βc =





1 −
√

1 + tan h
cos a − d2

tan h
cos a + d





Sinceβc is determined, the venetian blind controller works as the tissue blind controller. With the
slats regulated to reach the critical slats angleβc, the vertical positionα of the blind is determined
using the “Glare” and “Illuminance” fuzzy rule bases as explained in Section 3.3.1.1.

A version of this venetian blind controller has been successfully implemented in the LESO build-
ing during an other research project, dealing with blind control, called SMARTWINDOW [Bakker
et al., 2001].



Appendix C

Statistics Definition Reminder

The different definitions presented here are extensively discussed in the book of Morgenthaler [Mor-
genthaler, 1997].

C.1 Basic Definitions

Given a distribution of a variablex, theexpected valueof a functionf(x) is defined as:

〈f(x)〉 ≡
∑

x

f(x)P (x)

with P (x) being the probability that a trialX takes on the valuex.

Thearithmetic meandenotedµ, commonly calledmeanor average, is defined by:

µx ≡ 〈x〉 =
∑

x

xP (x)

For N samples of a variablex having a distribution with a known meanµx, thevarianceis defined
as follows:

var(x) ≡ 〈(x − µx)
2〉 = 〈x2〉 − µx

2

Note that thestandard deviationdenotedσ is simply equal to:

σ ≡
√

var(x)

Thecovarianceof two variablesx andy, with their associated meansµx andµy, is defined as:

cov(x, y) ≡ 〈(x − µx)(y − µy)〉 = 〈xy〉 − 〈x〉〈y〉

Finally, thestatistical correlationof two variablesx andy is given by:

cor(x, y) ≡ cov(x, y)

σxσy

This value gives the strength of the relationship between variables.
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C.2 Student t-Test for Two Samples

This test is used for comparing the means of two samples. These samples may be correlated or not.

Let x andy denotes two variables from two normal distributions with meanµx, µy and standard
deviationσx, σy, respectively. And letm andn be the sample sizes for variablesx andy, respec-
tively.

Let assume that hypothesisH0 is µy ≤ µx and thus alternative hypothesisH1 is µy > µx.

First, the two standard deviations are combined:

σ2
p =

(m − 1)σ2
x + (n − 1)σ2

y

m + n − 2

Then, thet-value is defined as:

t-value=
µy − µx

√

σ2
p(m + n)/(m n)

for testingH0

Thus,H0 is rejected at a significance level of 0.05 if

t-value> qtn+m−2(95%)

Whereqtn+m−2(95%) is thet-value in at-table forn + m − 2 degrees of freedom with a signifi-
cance level of0.05.

A significance levelof 0.05 indicates that the probability of the observed data being due to pure
chance is less than 5%. Theconfidence levelis often mentioned in statistical tests. It is simply
related to the significance level as follows:

confidence level= (1 − significance level)

If H0 is rejected, the meansµy is significantly higherthanµx.

C.3 Chi-Squared Test

This test allows to assess if two variables are independent or related. It is equivalent to the cor-
relation but with variables that are categorical or ordinal. It is often used in questionnaires analysis.

Let observe a sample ofn couple of discrete variables (Y ,Z). Possible values forY andZ are
y1, . . . , yi, . . . , yI andz1, . . . , zj , . . . , zJ . Thus, there areI · J possible couples of values (Y ,Z),
that may be arranged in acontingency table, with I lines andJ columns, each cell (xi,yj) display-
ing the number of occurrencenij.

AssumingY andZ independent, one may calculate the probabilitypij observing each couple of
values:

pij = P{Y = yi andZ = zj} = P{Y = yi} · P{Z = zj}
With

P{Y = yi} =

∑J
j=1 nij

∑I
i=1

∑J
j=1 nij
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P{Z = zj} =

∑I
i=1 nij

∑I
i=1

∑J
j=1 nij

Then, a theoretical contingency table (ifY andZ were really independent) may be determined,
each cell filled with:

n · P{Y = yi} · P{Z = zj}
Now, the independence test may be applied depending on a Chi-Squared distribution. The Pearson
statistic test valuePobs is the sum of theI ·J squared differences between theoretical and observed
values in the contingency table, each squared difference being divided by the theoretical value.

The degree of freedomkL is equal to(I − 1) · (J − 1).

Finally, the hypothesis of independence is rejected if

Pobs > qχ2
kL

(95%)

Whereqχ2
kL

(95%) is the test value forkL degrees of freedom in a Chi-Squared distribution with
a level of significance of 0.05.
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D.2 Twice-Monthly User Satisfaction
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D.3 Daily Comfort
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