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The reasonable man adapts himself to the world; the unrestslerone
persists in trying to adapt the world to himself. Therefolepaogress de-
pends on the unreasonable man.

George Bernard Shaw (1856 - 1950)



Abstract

From a sustainable development perspective, the newlylajse@ automatic controllers
for building services are very promising in that they insea&nergy efficiency and re-
duce commissioning and maintenance costs. But a majorgmohbhs appeared as the
automatic building control systems have been implementbd:user rejection of this
kind of system is quite high. This is mainly due to a lack ofrusensiderations in the
controllers. An integrated blind, electric lighting andatiag control system that adapts
to user wishes on a long-term basis has been developed imdhgo deal with this issue.

The adaptation of the control system to user wishes was \athigy means of Ge-
netic Algorithms. They have been seen to be the most appitepsptimization method
for this task. They ensure a 100% convergence whereas stisearch methods such
as Gauss-Newton and Nelder-Mead converge in less than 2% tfme and Simulated
Annealing method converges in about 75% of the time. In a&ddisimulations with a
consistent virtual user have shown that the user adaptivieaiter is capable of anticipa-
tion.

Nine months of experimental tests were carried out in 14 effioms of the LESO
building with a total of 23 users concerned. Three contrsileere compared: a manual
control system, an automatic controller without user aalém@t and an automatic con-
troller with user adaptation. Tests were conducted in alairfashion aglinical random-
ized trialsare carried out: control systems are randomly attributeddms and users do
not know which system they have (single-blind study).

Results show that the automatic control rejection pergents greatly reduced with
the user adaptive system. Indeed, after four weeks with tomatic control, 25% of the
users with the non-adaptive system reject the automaticapwhereas only 5% of the
users with the user adaptive system reject it. These pegestdepend neither on age
or gender of the user, nor on the number of occupants in a rédoneover, the energy
savings due to automatic control (26% compared to a mans#sy are not reduced by
the user adaptation. These large energy savings are maiaiypdhe predictive feature of
the heating controller and to the efficient control of eliedighting. In addition, indoor
comfort is slightly improved by the automatic controllegs both thermal and visual as-
pects. The indoor comfort is even slightly more improved loy tiser adaptive control
compared to the non-adaptive one.

The user adaptation has not converged properly in the meaaiavorkshop, a space
used by several persons and also considered in the expésimehas been concluded
that user adaptive systems are probably not appropriatpldges with irregular users,
such as workshops, libraries, corridors and all public epac



Version Abrégee

Dans une perspective de développement durable, lestsépergres réalisés dans les
systemes de régulation des installations techniquesatdmént permettent d’envisager,
aujourd’hui, d’'importantes réductions de consommati@mergie ainsi que des colts de
mise en service et de maintenance. Malheureusement,datdéds systemes actuels est
gu’ils ne tiennent pas compte, a long terme, des voeux desateurs. Ainsi, les systemes
de contrdle sont souvent rejetés par ces derniers, lebmaxavantages de la régulation
automatique étant ainsi perdus. Dans ce travail, un systde contrdle intégrant les
stores, la lumiére artificielle et le chauffage et s’adap&ux voeux des usagers a été
développé, en vue de remédier a ces difficultés.

L'adaptation a été réalisée en utilisant des AlgoriésnGénétiques. Cette méthode
d’optimisation s’est révélée étre plus performante s méthodes standards, comme les
algorithmes de Gauss-Newton et Nelder-Mead et le recuitiléimAlors que la conver-
gence vers une solution satisfaisante est assurée plemear les Algorithmes Génétiques,
les méthodes standards n’ont convergé que dans 25% desleaecuit simulé dans 75%
des cas. De plus, une simulation avec un usager virtuel amévidence une propriété
d’'anticipation du systeme adaptatif.

Une validation expérimentale a été menée dans 14 lodaukureau du batiment
LESO et a concerné 23 utilisateurs au total. Trois difiesesystemes de régulation ont
été comparés: un controle manuel et deux controles@atiques, I'un avec adaptation a
I'utilisateur et l'autre sans. Une attribution aléataites systemes par piece ainsi qu'une
procédure simple-aveugle ont garanti des résultats rasés.

Les résultats obtenus démontrent que I'adaptation tli$ateur permet de réduire
fortement le rejet du systeme de contrdle automatiquere#é\guatre semaines, 25%
des occupants munis d'un systeme non adaptatif le refetidors que ce pourcentage
n'est que de 5% pour les occupants bénéficiant d'un sys@daptatif. Ces résultats
ne dépendent ni de I'age ou du sexe de l'utilisateur, ni domlore d’'occupants dans la
piece. De plus, les économies d’énergie obtenues graantrdle automatique (26%
par rapport au systeme manuel) ne sont pas réduites paptation a I'utilisateur. Ces
economies d’énergie sont principalement dues a I'agpédictif du contrdleur de chauffage,
ainsi qu’a la gestion plus efficace de la lumiére artifleieD’autre part, le confort ther-
mique et visuel a été amélioré par les dispositifs dgil@ion automatique, en particulier
par le systeme adaptatif, en comparaison avec le syst&neeh

Enfin, il a été observé que I'adaptation a I'utilisatawgchoué dans 'atelier du LESO,
un local particulier avec de nombreux usagers differdh#gparait donc que les systemes
adaptatifs a 'utilisateur ont vraisemblablement moitistérét pour des espaces occupés
de maniére irréguliere, comme par exemple, des ateligisfiotheéques, couloirs et en
général tous les espaces publics.
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Chapter 1

Introduction

“History is the version of past events that people have dddideagree upori.
(Napoleon Bonaparte)

During the main part of the history of man, “housing condisbhave been one of his
main concerns. From prehistory to now, man has discoverddramnted a tremen-

dous number of techniques related to his comfort in dwedlinthis chapter gives some
milestones of this evolution, first regarding the buildirgvces and then regarding the
automatic controllers in buildings. The last section shtww the thesis contributes to
this evolution.

1.1 Origins of Building Services

As man became a biped and started discovering tools (ddren@Id Stone Age, 2.5 mil-
lions years ago), he was already looking for some comformatiction in caves and had
even begun to build crude shelters. Substantial evidenpeimftive dwellings coincide
with the use of fire, discovered 400’000 years ago. Fire wasl fisr cooking food and
scaring animals away from shelters but also for keeping wasnwvell as for lighting. It
was the first heating and lighting system.

Historians have shown that fire was moved to different pdrstwelling, and various
schemes were tried to improve the draft of the fire by usingegoHowever, even the best
open fire is 20% efficient, with most of the heat escaping witheamoke. Using larger
stones heat was accumulated and re-emitted later, whichhegsremise of the radiant
heating system. But, open fires still were only capable ofwiag very small spaces and
required constant attention.

The discovery of the duct (probably in Mesopotamia 10’008rgeago for water ma-
nipulation, and in China during theé'"7century B.C. for air manipulation) brought the
solution (see Figure 1.1). Distributed heating systemeamgu around 220 A.D., when
the Roman Emperor Heliogabalus is said to have a palace wdoyair. A stove was
placed in a brick chamber under the rooms. Outdoor air wadwied into the chamber
under the stove, the heated air then flowing through operiimigshe rooms above. The

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1:Clay heating ducts embedded in the wall of a house, Pompeii

remaining drawback of such a system was the low specific lsdaéof the air that pre-
vented proper heating of distant rooms.

The Industrial Revolution, which had brought new iron temlbgies, allowed to re-
place air by water with its larger specific heat value in duéisthis point (towards the
end of the 18 century) water distributed heating systems were realizatguarge pipes
and a simple boiler. They operated by gravity, cold watendpelenser fell back to the
boiler through pipes forcing the lighter warm water to rigette radiators.

At the same time, cooling systems were rare because theypsasdized by the prob-
lematic storage of ice. Nevertheless, some cooling systezns developed and a few of
them are still in use after more than a century of serviceifstance in the Hungarian
Parliament building). Ice was simply placed in air ductsdol@and dehumidify warm air
blown by fans.

During the 1920’s in England and USA, use of water for heatspart gives impetus
to the development of new heating systems. Heat distribwt@s not anymore limited to
radiators but radiant ceiling and floor were used as well.dwer, water solar collectors
appeared and therefore supplied control opportunitiestimeasolar homes, that was an
interesting advantage over the oltlbut less flexible passive solar systems.

1The ancient Greeks, in thé'Scentury B.C., already planned whole cities in Greece and Agnor,
such as Priene, to allow every homeowner access sunligimgdwinter to warm their homes.
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In parallel, the long story of the artificial lighting systemas going. Fire had been
portable from the beginning (the first torch was a simple ingrpiece of wood) but it was
not convenient and lighting autonomy was limited. During Early Bronze Age (3'000-
2’000 B.C.), the invention of the oil lamp in the Middle-Eastlved these problems and
was widely spread. But despite the invention of the candieufad 100 B.C), the draw-
backs of these lighting systems persisted: they only pemlicery low lighting levels and
they produced ill-smelling smoke. Nearly two thousandsyésater, in 1784, use of coal
gas as lighting fuel provided the solution for efficient ligiy. Early in the 19' century,
most cities in the United States and Europe had streets #rat it by gas. Nevertheless,
the necessary gas pipes were quite inconvenient and theveigcof electricity provide
an alternative system: the light bulb. Edison invented it &79 and it improved drasti-
cally artificial lighting capabilities. This also allowekd development of electric lighting
control. Finally, first fluorescent lamps appeared in 1938renthan thirty years after the
process had been demonstrated.

Concerning daylighting, the first system was the simple ogecovered with animal
skins of the Homo Habilis primitive dwellings. Real imprenent come with the use of
natural transparent stones that provided daylightingeyieventing cold air to come in.
The discovery of glass (around 3’000 B.C.) enabled the natufing of windows and
thus rendered them thin and convenient. But the high costasEglelayed the propaga-
tion of windows until the Middle Ages.

Since daylight entered rooms, solar protections becanentak First, fixed solar
protections were used, like the Arabic Moucharrabieh (sgerE 1.2) that appeared dur-
ing the 14" century. They let daylight enter the room but cut the diretasradiation.

In countries where the external temperature varies overga lange depending on the
season, fixed solar protections were inconvenient. Hendéaly, movable shading de-
vice such as roller blinds and venetian blinds appeareddtiie 18" century, providing
control opportunities.

1.2 Ancestors of the Automatic Building Control Systems

The first known automatic regulators were developed in otmlérave an accurate mea-
surement of time, which was a major concern in Antiquity. Greek Ktesibios in about

270 B.C. was the first inventor of a float regulator to imprdweaccuracy of water clocks
(clepsydras).

The field of automation really appeared much later, durirdfitist part of the Indus-
trial Revolution (1705-1830). All of Western Europe indigdized rapidly, but it was in
England that the process was most highly accelerated. Tthereealization of the first
modern steam engine by Thomas Newcomen (in 1705) startesbthes of James Watts
inventions. In particular, his first automatic regulatostgyn for stabilizing the rotational
speed of steam engines (patented in 1788) could be condidetée birth of the modern
automation field.



4 CHAPTER 1. INTRODUCTION

T W

Figure 1.2:Example of an Arabic Moucharrabieh

Concerning automatic control applied in buildings, the fistomatic heating control
systems appeared in the middle of thé&"I&ntury with the invention of the bimetal ther-
mostat (invented by Andrew Ure in 1830). With the coming of #hge of Electronics
and especially the discovery of the “positive feedback &impl by Armstrong in 1912,
major improvements in feedback control became possiblaus;Tanly ten years later,
the famous Proportional-Integral-Derivative controlies introduced by Minorsky [Mi-
norsky, 1922]. Then, the optimal control theory appeareth t$ numerous techniques:
dynamic programming [Bellman, 1957], Kalman filters [Kaimd960] and Stochastic
control [Astrom, 1970]. Finally, alternative methods Bus fuzzy logic control [Zadeh,
1965] and expert systems (many examples since 1970'sped#ne building automation
field.

1.3 Remaining Challenge

This evolution in building automation is clearly not endedl:around the world, numer-
ous research laboratories are still involved in the field oildng Physics.

Because of the oil crisis in the 1970s, research in buildimgtrol systems during
these last decades was mainly centered on the energy poirgvgfneglecting to a cer-
tain extent the real user needs. The goal was to save eneitgykekping a priori indoor
comfort conditions. Nevertheless, some researchers twghe same period to provide
innovative methods for comfort assessment (e.g. Fangeéhéosmal [Fanger, 1982] and
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Guth [Guth, 1966] for visual aspects). But it is actually whqsee Chapter 2) that each
user has specific needs and wishes towards his indoor enveran

The new challenge is then to develop innovative controtegias in buildings, that are
still energy efficient and fulfill better at the same time tlseuspecific requirements. To
achieve this, these new automatic control systems shcald &nd integrate the behaviour
and wishes of the user. In the context of this thesis, suctstesyhas been developed.
The main “soft computing techniques” namely Fuzzy LogicuNé Networks and Ge-
netic Algorithms were used to implement the necessary adaf#gature and to realize
this system.

This thesis is formed of 5 main chapters. First, the stat¢wiethe problem and the
actual available solutions are given in Chapter 2. Thenp@ia gives a comprehensive
description of the building control system. In Chapter 4 thethod of adaptation to the
user is shown. Finally, Chapters 5 and 6 deal with the expartal tests with real users
and the validation of the proposed method .
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Chapter 2

Problem Statement

“l can’'t understand why people are frightened of new ideam ftfightened of the
old ones: (John Cage)

Automatic controllers for building services are more andengsed. But they do not take
into account user wishes on a long-term basis. As a consequsymptoms of the “sick
building syndrome” (SBS) may appear together with theirrfoial and social costs. The
first section of this chapter states more precisely, thrauliflerature review, the causes of
the low user acceptance of automatic building controll€re state of the art in advanced
control systems is then described in the second sectiorridirds, outline of solutions
are given and justified.

2.1 Limitations of Automatic Building Controllers

From a sustainable development perspective, automaticotiens for building services
provide large improvements potential. The newly develogetbmatic controllers of-
fer very promising possibilities to increase energy efficieand to reduce commission-
ing and maintenance costs. But a major problem has appeagethéer with the auto-
matic building control system spreading: the user acceptaf this kind of system is
quite low as it has been shown in several studies [Elder abdofi, 1981, Vine et al.,
1998, Guillemin and Morel, 2001]. In the Elder study, fortarsce, more than 400 em-
ployees were considered and the dissatisfaction assdssenlh questionnaires reached
up to 80% regarding the heating control.

Explanations of the low user acceptance have to be foundeirfatt that current
automatic controllers in energy efficient buildings ardl sibt really user-oriented and
only deal with comfort through norms (temperatures, illnarices, etc.) that come from
statistical assessment (e.g. Fanger’s theory for therorafart [Fanger, 1982]). Yet, a
study [Begemann et al., 1997] in Netherlands with 170 subjeas shown a large range
of individual preferences, and this rejects the idea of yipglnorms for comfort condi-
tions. Moreover, the lack of user considerations in bugdiontrol explains in part the
appearance of the “sick building syndrome” (SBS) [LHC, 1998deed, MclIntyre and
Sterling denotes six building features strongly assodiatéh SBS, two of them being

7
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directly linked to energy efficient control: application efiergy conservation measures
and lack of individual control opportunity over environnanconditions [MclIntyre and
Sterling, 1982].

The level of individual control is also mentioned as beingsyly related to SBS
symptoms in the book on workplace performances of Aronodf Kaplan [Aronoff and
Kaplan, 1997] and in the work of Willey, who says that “resiins on occupant control
of the environment in building is an ongoing cause of SBS”I[®Yi 1997]. Substan-
tial evidences of users suffering from the lack of indivitreermal control in energy
efficient building were shown by de Dear through his largeldase [de Dear, 1998] pro-
duced from the analysis of 12 offices in Australia. For autieori@ghting systems, Vine et
al. compared the user response with and without overridityaaf the same automatic
lighting controllers (concerning both electric lightingdashading device). Through ques
tionnaires, the study shows that more people (78% compargdy) felt lighting com-
fortable in the case with the override facility than in thbetcase [Vine et al., 1998].
And more recently, Moore et al. have found that people plduglalevel of importance
on being able to control lighting. On a 5-point scale, 1 reprn¢ing unimportant and 5
important, the mean response of the 410 subjects was 4.2rfMaa@l., 2002].

A very large study in England, PROBE (Post-Occupancy RewieBuildings and
their Engineering), including a user survey in almost 50digs with more than 100
subjects in each building, brings very interesting cludateel to the user rejection of
automatic systems. The authors of the study conclude thatéhvironmental systems
designs and controls often seem to have reduced the adapieetunity, which seems
to be at the root of occupants’ higher tolerance” [Bordasslamaman, 1997]. In particu-
lar, the study shows that frequently automatic control weeduvithout manual override
facilities, which irritates and in some case infuriatesrssén the same study, Leaman
and Bordass go one step further assuming that users getfadias soon as they are
unable to achievepeedyandeffectiveresponse from their own actions or from the con-
trol systems [Leaman and Bordass, 2001]. Vine et al. confiisssaying that delays in
feedback create an erroneous impression that the systemvisrking [Vine et al., 1998].

On a financial point of view, SBS related problems have hugseguences. Their
costs may be divided into two contributions: a part of thekvedated health problems,
estimated to be around 26 billion dollars per year in USA fjbeét al., 1997] and a loss
of the potential improved productivity estimated to be frdthto 250 billion dollars per
year [Fisk and Rosenfeld, 1997]. Independently, Wyon aghes following a review of
the literature that “published experimental data indi¢hét conventionally acceptable in-
door working environments may be affecting human perforcedyy various mechanisms
by as much as 5% to 15%” [Wyon, 1996].

It is interesting to notice the dates of these different alblons: during the last five
years, a deep consciousness of the lack of user considemtautomatic building con-
trol has been established. But only very few authors try tippse concrete solutions.
Bordass and Leaman explain that “it is vital to make contcolsiprehensible, effective,
responsive, and in the right place” [Bordass and Leamari7]19¥illey proposes a possi-
ble way for reintroducing a more human-oriented controtesys a simulation of expert



2.2. SIATE OF THEART 9

Heating [kW] Air Temperature [°C]
10 26
. 24
Conventional Control p .l
(Instantaneous Regulation) T 2
0 T T T T 18 : t
Solar irradiance [W/m’] 0 6 12 18 24| 0 8 16 24
1200
600 /\
0 Heating [kW] Air Temperature [°C]
0 8 16 24 10 23
Energy 21}
5 Saving
Predictive Control 9r
(Solar Gain Prediction) 0 |7
0 6 12 18 24 0 8 16 24

Figure 2.1:The predictive control

human control actions should be introduced as the strataggrlying automatic con-
trol [Willey, 1997]. But actually, no such systems have bdeweloped.

2.2 State of the Art

The history of automatic control systems in buildings hasnshthat they were mainly
concerned by the energy savings, while trying to keep stanid@oor comfort condi-
tions. The typical example of this kind of controllers is titimal control [Burghes and
Graham, 1980]. Given a certain function that expressesgggremnsumption and user
discomfort (assessed through Fanger’s theory, for insjdinom a set of variables, these
systems try to find the minimum of this function, applyingeiient strategy of control (for
instance, for Heating Ventilation Air-Conditioning (HVAGystems). The optimization
may be achieved in different ways, depending on the knovdaxfghe system: matrix
inverse calculation, gradient descent or global mininidzatechniques such as Genetic
Algorithms (GAs). The work of Lam is an example of the apgiica of GAs in optimal
control for air-conditioning system [Lam, 1993].

Even though optimal control was first using instantaneouss ftnction, predictive
aspects became quickly a major concern: predictive comtaslborn. Its principle (see
Figure 2.1) is to anticipate future disturbances (as saangy user presence, etc.) and
to control the heating plant accordingly. It has been shdwat it may improve thermal
comfort mainly by reducing overheating risk [Nygard, 199@Ind thanks to its great
efficiency in energy savings, this kind of control is stilldely used by researchers in
building control [Chen, 2001, Kummert et al., 2000].

The adaptive control, an other important field of controls bacome important be-
cause building control systems, which do not adapt to thkelimgj characteristics and to
the climate conditions, have a severe drawback. They reqaido the commissioning
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of the building services in a very careful way; otherwisergdaincrease of energy con-
sumption could result. Conversely, a self-adapting systeud not need such a careful
tuning, and would progressively adapt itself to the buiigamd climate characteristics.
Since a dozen years, the adaptive control is well known aed sisccessfully in plenty of
domains: in robotics [Timofeyev and Yusupov, 1996], in necatlengineering [Takahara
and Wakamatsu, 1997], in energy production [Gelinas e2@i01] and so on. But in
the building domain, only rare authors have applied diyeatlaptive techniques to learn
the building and environmental characteristics. Teeter @how, in USA, described a
functional neural network approach to perform a HVAC thdrdysmamic system identi-
fication [Teeter and Chow, 1998]. Chow et al. have improvasl $lgstem by adding a
genetic-based optimization [Chow et al., 2002]. Huang aamh have shown a successful
implementation of GAs in a simulation tool for automatigeline of PID controllers for
HVAC systems [Huang and Lam, 1997].

The most promising way for adaptive control in buildingsreego be the adaptive
fuzzy logic controller [Shoureshi et al., 1992, Fraissel etl®97, Kolokotsa et al., 2001].
Foundations of fuzzy logic were set by Lotfi Zadeh in 1965, sinde then, comprehen-
sive studies and applications have been undertaken [Zimarer, 1991]. The main inter-
est of fuzzy logic is the possibility to easily integrate expknowledge into controllers.
Moreover, it exists plenty of adaptation procedures fozjulngic controller using dif-
ferent techniques such as “standard” ones [Arabshahi 193], neural ones [Harris
et al.,, 1993] and especially the GAs ones that are the mosorexp[Herrera et al.,
1995b, Dadone and Vanlandingham, 1998, Abbod et al., 1988mPand Karaboga,
1998]. Nevertheless, fuzzy logic controllers in buildirggapted using GAs have al-
most never been developed. Only Pargfrieder in Austriagfifieder, 2001] has realized
such a controller.

In addition to this approach, an automatic building comérotieveloped in a Swiss
research project gathers the predictive and adaptive &sp€his system named NEU-
ROBAT [Krauss et al., 1998, Morel et al., 2001] have beeretbsixperimentally in two
occupied office rooms during a complete heating season anbtfained energy savings
are almost 13% compared to a conventional controller (opep tontrol depending on
outdoor air temperature and with an adaptive start-stoprigfgn) while thermal comfort,
assessed through the Fanger’'s PMV model is slightly impgt¢Bauer, 1998].

At the Massachusetts Institute of Technology, Rodney Bspakamous specialist in
Artificial Intelligence, works with his team since 1997 or thntelligent room project”,
which focuses more on the user and domestic services itiaracThat means to put
cameras and microphones in order to provide voice contexisgn tracking and ges-
tures recognition. The first applications proposed of susystem are in a command and
control center for disaster relief and in an interactivecgdfar virtual tours of the MIT Ar-
tificial Intelligence Laboratory [Brooks, 1997]. This newach of research has brought
an innovative way of dealing with building control systertise controllers in the differ-
ent rooms are considered as “distributed software age@tsérn, 1997]. This atrtificial
intelligence technique distributes the information on Breatities, called agents, each
one being very simple, and allows intelligence to emergeugn the agents connections
and interactions [Minsky, 1986]. Sharples et al. have dged a mock-building us-
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ing a multi-agent architecture for intelligent buildingdasensing control [Sharples et al.,
1999]. Yet, no results are apparently available until now.

Nearly none of the here mentioned controllers deal withdslicontrol because heating
and daylighting are almost never considered together. ftesless, some studies address
the blinds control issue. The first comprehensive work orstgadevices control was
done in Japan in 1988 [Inoue et al., 1988]. The authors dfdig high rise office build-
ings in Tokyo and developed an optimal control from theireistigations. In particular,
they found that beyond a vertical solar radiation of 50 \W¢émto a facade, blinds closing
was proportional to the depth of sunlight penetration it toom. More recently, Lee
et al. have developed a prototype of a venetian blinds chertrsuccessfully, monitored
workplane illuminance being above 90% of the design level9®% of the year [Lee
etal., 1999].

Bauer et al. propose to separate the blinds control issoewt parts: the thermal as-
pects and the visual aspects [Bauer et al., 1996]. In péatictheir blinds controller
named DELTA uses two different fuzzy rule bases, one for #&r present case and the
other for the user absent case. Meanwhile, in a survey im@I&3 private offices in a
university building in Wisconsin, USA, Pigg et al show thepiantance of the glare prob-
lems in the blinds control. Indeed, 37% of the users statettliey used blinds to reduce
glare on their computer screen [Pigg et al., 1996]. This ghedadea to Guillemin and
Morel not to only divide the blinds control in thermal andwéd aspects but also to divide
the visual part into two sections: one dealing with the illnamce and the other dealing
with glare problems. It was implemented in an integratedrobsystem [Guillemin and
Morel, 1999], that has been proven to lead to large energngs(20% compared to
conventional systems) while improving visual comfort citiechs [Guillemin and Morel,
2002b].

In the literature, only the work of Mozer mentioned a builglicontrol system that
tries to adapt to the user [Mozer, 1998]. It is known as theuffdeNetwork House”. This
house is located near Boulder in Colorado and is equipped seiteral sensors and ac-
tuators that allow observing the inhabitant behaviour agirds, and controlling electric
lighting, ventilation and heating to fulfill these needs.tBa blinds control is included in
this study and no results are apparently available today.

2.3 Outline of Solutions

The aim of the present work is to realize a user-oriented aedhg efficient building con-
trol system. This task should not have been difficult sinegsieere shown as being quite
tolerant with indoor comfort conditions [Fanger, 1982]r ftstance, up to 2C of devi-
ation on the air temperature may be easily tolerated [Nindlldumphreys, 2002]. This
rather large range of tolerance comes from the adaptatiwabdlity of the users. Indeed,
thermal adaptation of the users can be attributed to fodierdifit processes (compiled
from [Heerwagen and Diamond, 1992] and [Brager and de D&8g]}

e Changes in behaviour (clothes adjustment, go outdoor3, etc
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e Environmental alterations (open a window, close blinds,) et
e Psychological processes (try to ignore the problem, etc.)

e Physiological acclimatization (changes in the settingshef physiological ther-
moregulation system)

So, why people become suddenly intolerant, despite theggatibn features?

Different authors [Leaman and Bordass, 2001, Nicol and Hweys, 2002] recently
reported that this adaptation process is absent when uaeesriot the control on their
environment. Thus, when there is an automatic control irbthikeling, only two things
may occur when users are not satisfied with their environateohditions, depending on
the override possibility:

Override possible Users switch off the automatic system and are satisfied,lbut a
the energy savings may be lost (for instance, the elecgfititig is not switched off
by the user when leaving the room).

Override not possible Users become unsatisfied and frustrated, and symptoms of
SBS may appear.

The capability of adaptation to the user preferences seeins the necessary condition
to lead to a wide acceptance of the automatic building cbeyrstems among the users
and to keep an energy efficient control. An adaptation tosudepugh the observation
of their interactions and behaviours should be possiblekhi#o the fact that people are
consistent in their way of reacting [Reinhart and Voss, 2@&yemann et al., 1997].

Some researchers have tried to modelize user behaviountardgtion using stochastic
models [Scartezzini et al., 1990, Nicol, 2001, Reinharf)130 But the obtained results
are not sufficiently precise to be implemented in a stratégpotrol that must be efficient

and accepted by every user.

In the domain of computer and web-based applications, aenegthods for learning
user preferences and profiles have been successfully ireptech Meyer et al. describe
two intelligent agents that are able to learn human behaviowanticipate next actions
and then act accordingly in a web-based application [Meyal.e1997]. Cuenca and
Heudin have developed an agent system for learning profilesdadcasting applications
on the internet [Cuenca and Heudin, 1997]. Other studieténsame domain have
shown more universal results applying the Theory of Reatdwation (a person’s atti-
tude toward a behaviour is determined by that individuaddis about the behaviour’s
consequences). Their authors [Liker and Sindi, 1997, Mamid Dillon, 1997] have ex-
tracted many factors that influences user acceptance oftesymtems, and Birnbaum et
al. have summarized the three key principles for succesgkgration of intelligent con-
trol in expert systems [Birnbaum et al., 1997]. These pples may be translated into
our building control vocabulary as follows:

e The user must keep the control on the whole control systemKe/she must keep
the priority over the values provided by the control system)

e The system must be responsive, providing always appregridbor comfort what-
ever the outdoor conditions and the changes in the useroement are.
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e The system must take into account the user actions, whichide@ “free” infor-
mation to the system.

In conclusion, an automatic building control system thatpsd itself to the user spe-
cific characteristics remains to be elaborated. It shoutdbadased on a user model but
should preferably adapt control parameters to fulfill theeskied user needs while keep-
ing the most possible energy efficient control strategy. ddwer, the development of the
system should rely on the three key principles mentioned@bespecially concerning
the override facilities, which should always be provided.

Thanks to this user adaptation, the newly developed cdetrwbuld increase the accep-
tance of automatic control systems. Therefore, it woulddphetter indoor environment
conditions, and consequently, reduce the SBS symptomsarehise the productivity.
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Chapter 3

Comprehensive Control System
Description

“Automatic simply means that you can't repair it yoursel{Mary H. Waldrip)

This chapter gives a detailed description of the automaintrollers for the blind, elec-

tric lighting and heating systems used within this work.sEisome preliminary studies
related to the development of these controllers are destrilbhen, the governing basic
principles and the data handling are explained. In the third four sections, the final
controllers and the needed adaptive models (concerningritieconment, the building

and the devices) are given.

3.1 Preliminary Studies for Blinds Control

The development of an efficient strategy for blinds contsoléry critical. The mix of
direct (visual) and mid-term (thermal) consequences ottrerol variables is particular
to this field. A way to address this problem was proposed byeBatial. in the DELTA
project [Bauer et al., 1996]. The DELTA blind controller iavided into two cases, de-
pending on whether the user is present or not in the room. Whiesnser is present, the
blind controller primarily provides optimal visual conidis in the room; otherwise, only
thermal considerations are taken into account to minimésgihg energy consumption.
This section presents the preliminary studies carried autife development of an effi-
cient blind controller. First, the thermal impact of blinointrol is assessed using a simple
model of the window and blind, and then different blind cofiérs are tested by numeri-
cal simulations for both user present and absent cases.

3.1.1 Thermal Impact of Blinds Control

In order to quantify the thermal impact of solar protecticasimple model of a window
and a blind has been defined. Assuming the independence eh#rgetic transmission
coefficients of the blind and of the window, the steady-stedat balance of the model
described on Figure 3.1 may be calculated as follows:

15
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Figure 3.1:Thermal static model for a window and a blind system

Py =Gygua+Gygug(1—0a) = (Ua+U(1=a)/(1+RU))(Tia — Tou)

Where  P,: Specific power balance of the opening (Wjm
G,: Global vertical illuminance on facade (W#n
gw:  Window energetic transmission coefficient (-)
g»:  Blind energetic transmission coefficient (-)
«:  Blind position, 0< aw < 1, = 1: blind fully open,
« =0 blind fully closed
U:  Thermal transmittance of window (WAK)
R:  Thermal resistance of blind Gi</W)
Tina: Indoor temperature (K)
T,.:: Outdoor temperature (K)

For the calculation, physical values for the window are es=ilito correspond to
a typical double-glazing with a thermal transmittance & W/n?K, and an energetic
transmission coefficient of 0.7. Regarding blinds, phylsietues correspond to a tissue
blind with a thermal resistance of 0.17KIW and an energetic transmission coefficient
of 0.1.

This equation is applied to different cases: in summer amderiand for sunny and
cloudy days. A global vertical irradianeg, equal to 800 W/rhis assumed for a sunny
day and a value of 100 W/hior a cloudy day. A winter outdoor temperature is assumed
at 5°C (corresponding more or less to Switzerland conditionsjyramer outdoor temper-
ature at 25C and the indoor temperature is kept at@0

For each case, the visual optimization and the thermal apditon are compared.
The thermal optimization applied the most efficient strafieg blinds control (close com-
pletely the blind during a sunny day in summer: 0) while visual optimization makes a
compromise with visual aspects (blind only half closed ogia sunny day in summer,
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= 0.5, in order to keep sufficient daylight in the room). In [EaB.1, the heat power bal-
ance for the window is given in the visual optimization caseé the thermal optimization
case. They are values per square meter of window. They tékadgeount the solar gains
through window and the heat losses due to the differencengbeeature between indoor
and outdoor.

Summer Winter
Sunny day Cloudy day Sunny day Cloudy day
Visual Optimization | 319 (0.5) 83 (1.0) | 276 (0.5) 33 (1.0)
Thermal Optimization| 65 (0.0) 16 (0.0) 523 (1.0) 33 (1.0)
Difference [W/n?] 254 67 —247 0

Table 3.1:Heat power balance of a window for different cases (in bréskise corre-
sponding blind positionsx) are given)

The results show the difference, in power per square metesirafows, that exists
between the visual and the thermal optimization cases. psatgd, there is potentially
more thermal energy to save (or reject) during the sunny day.

In summer, during a sunny day, the thermal aspects lead $e the blind and the visual
ones give a half-closed blind position. The difference leetwthe two power balances is
more than 250 W/ It could be interesting to close the blind more than thatvisaal
aspects ask for. For instance, if one would choose a pogifitre blind of 0.2 instead of
0.5, it has been calculated that 150 W/af solar heating (and its associated overheating)
may be avoided.

During a sunny day in winter, the thermal aspects allow a Bathw/n? of heating power
with a blind completely open instead of a half-closed blimgipon. But in this case, it
is more questionable to consider a blind more open than lieatisual aspects ask for,
because of the high risk of glare that could occur.

During a cloudy day in winter, the same kind of strategies lmayone so as to consider
also thermal aspects, but the gain will be limited at about\BM?. In winter during a
cloudy day, the visual aspects lead to the same blind pasasahe thermal aspects.

Thus, it is sometimes possible to save heating/coolingggniey considering some
thermal aspects also during a visual optimization peri@(present). To have an idea
of the amount of energy saved during one year, let us considdpllowing calculation:
150 W/n? for a window of 4 n# during 5 hours/day for 50 sunny days in a year: 180
5-3600- 50 = 540 MJ. In comparison, the total thermal energy consiomoif an office
room of the LESO building is 2500 MJ. In conclusion, it may leewbeneficial to also
consider some thermal aspects during the visual optinoizati

3.1.2 User Present

When the user enters the room, the controller switches toithual optimization mode.
Several algorithms for blind control have been studied isipheliminary study. First, the
most promising algorithm (calleBun-Positiohis explained. It consists of two parts, one



18 CHAPTER3. COMPREHENSIVECONTROL SYSTEM DESCRIPTION

determining a maximum blind opening in order to avoid glarsir{g a fuzzy rule base)

and the second one trying to find the blind position (belowmtiaaimum value) that leads

to appropriate indoor illuminance. Then, the other aldgponis are briefly presented and
compared through simulations.

3.1.2.1 Sun-Position Algorithm: Maximum Blind Opening

The first part of theSun-Positionalgorithm is a fuzzy inference systémonsisting of
25 rules, four inputs (direct outdoor horizontal illumiran season, solar altitude and
azimuth) and one output (maximum blind position). The maingiples used to design
the rules are:

e Priority is to avoid glare. The system tries however to redueating/cooling needs
by differentiating the rules depending on the season. Inesjiduring the day solar
gains are maximized (in accordance to visual aspects) aridgdihe night blinds
are closed so as to increase the thermal insulation ande¢deteat losses through
the window. In summer, the opposite behaviour is applied.

e A position of the sun near the horizon leads to close blintisafdirect solar radia-
tion is high enough to disturb the user (typically highemti®0 Wi/n?).

e In absence of direct solar radiation on the facade, thera igestriction on the
maximum opening of the blind.

The innovative idea of the algorithm is to take into accowttanly the solar incidence
angle on the facade (which was one limitation of the DELTAIcontroller) but both
solar altitude and azimuth relative to the facade (see Agigef1). This allows different
behaviours for different sunlight penetration scenarsee (Figure 3.2). In this example,
if the sun is in the south-west direction and illuminatesehst wall in front of the user 2
or is in the south-east direction and illuminates the useretly, the algorithm may give
different maximum blind openings although the incidencgles similar in both cases.
The two sun positions are equivalent for the user 1.

3.1.2.2 Sun-Position Algorithm: Blind Position According to Indoor Illuminance

The final position of the blind is calculated through a sirfidl illuminance model. This
model links the indoor horizontal illuminanc&};,,) to the outdoor vertical illuminance
(Evoy). It depends linearfon the blind positiond) and it uses two coefficientsandd.

Eh’m = (C' o+ d) : Evout

Setting the indoor horizontal illuminanc&f,,) equal to the required illuminance and
solving this equation fow, a final position of the blind can be determined. The unique

1Detailed explanations about fuzzy logic can be found in thekbof Zimmermann [Zimmermann,
1991]

2An improved model that varies exponentially with the blirakjtion is used in the final version of the
controller (see Section 3.4.2).
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Figure 3.2:Example of an office room layout

constraint s that blind position must be lower than the mmaxn blind opening previously
determined. If the indoor illuminance is too low, electiighting is switched on to meet
the setpoint defined by the user. The measurement of theiitloninance is not used
directly (it should however be used for adapting continlptlige ¢, d parameters of the
model), the benefits being:

e Oscillations (that could appear with a closed-loop coneo avoided.

e An appropriate behaviour of the controller is kept evené sensor gives a tempo-
rary wrong value (in cases of paper on the sensor, sensoreaétc.).

e Blind position may be predicted as soon as a predictioAqf,; is available (pre-
dicted blind position is used by the heating controller).

3.1.2.3 Algorithms Comparison

Three other algorithms were considered within this prefeny study.

TheReferencalgorithm is the one used by the DELTA blind controller [Baaeal.,
1996]; it is a simple fuzzy logic open-loop controller thaes the vertical direct illumi-
nance on the facade and the solar incidence angle.

The Variation algorithm is different from the others in that the fuzzy logule base
provides a step-variation of the blind position and notdtisethe blind position. Depend-
ing on a calculated glare risk, the blind move is applied dr no

Thel-Ratioalgorithm uses three luxmeters for the control. One mosifoe horizon-
tal iluminance and two monitor illuminances on the wallgoifa these three measure-
ments a value of “contrast” (ratio of illuminances) may b&ukated, and the algorithm
looks for a blind position that provides appropriate illurance on workplane while keep-
ing the contrast at a reasonable level. The benefit of thifimdetising three luxmeters
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is that it is possible to take into account some glare aspéldte drawback is that the
positioning of the luxmeters is very difficult to define. Silations have not tested the
algorithm behaviour with different values of the contragtit variable; it was chosen
constant.

In order to compare the algorithms, the toolbox Simulink ld MATLAB® pro-
gram was used to carry out the simulations. Each algorithetested during one week
with synthetic values of external weather conditions prediby the METEONORM pro-
gram [MeteoTest, 1996]). Simulations were made for theoggktfiat corresponds to the
first seven days of July. Different weather conditions wepgesented (sunny and cloudy
days). During the night (from 21h00 to 7h00), the user wasitaned as absent, so the
tested algorithm was stopped (no blind movements, no adighting).

The physical model of the room (that plays the role of the reain for the simulations)
used for the calculation of the indoor illuminance is simihig global illuminance on the
facade multiplied by a fixed coefficient (0.05 in our case) afdind transmission factor.
This illuminance blind transmission factor depends lihean the blind position between
avalue of 1 (blind completely open) and 0.2 (blind completibsed).

The outputs of simulations are the extreme values of indagninance reached in the
room, the difference between the setpoint value and thetuvalue of illuminance inte-
grated on the period of the presence of the user, the elalcrever consumption of the
electric lighting system and the total number of blind moeets during the simulation
(see Table 3.2).

Algorithm Indoor illuminance Integrated differ- Electric lighting Number of blind
extrema [lux] ence [lux] consumption [MJ] movements
Reference 400 - 1500 690 13.6 16
Variation 400 - 600 80 22.3 52
Sun-position 380 - 800 230 135 42
I-Ratio 380 - 960 490 11.2 36

Table 3.2:Visual optimization algorithms comparison

All algorithms have reasonable performances, without tamyrblind movements or
too large electric lighting consumption. Concerning thaoior illuminance, they all keep
a value not too far (difference 300 lux) from the setpoint value (fixed at 600 lux), except
theReferencalgorithm. From a quantitative point of view, none of the¢esalgorithms
gives really poor results. But, qualitatively, some ingtilg comments can be made.

e Reference In addition to the large difference between the illuminesprovided
and aimed (due to its open-loop control strategy), a majgwback is the necessity
of a precise adjustment of the algorithm parameters for eamim configuration.

e Variation: This algorithm leads to nearly perfect visual conditiotsr(cerning illu-
minance) in the room. But this very small value of integradé@terence in illumi-
nance is due, in fact, to a low position of the blind and anmsitee use of electric
lighting. Indeed, since the position of blind is quite lowetilluminance is not
much influenced by the outdoor conditions and can be kept s@ngtant using a
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large amount of electric light. Moreover, the possible thjpositions are predefined
and fixed, which avoids recurrent blind movements but leadslack of flexibility.
An other drawback of this algorithm is the fact that it dealghvblind variation
instead of blind position and it is not really compatible wihe nested loop con-
trol principle chosen for the final controller (levels 1 andr2 not anymore clearly
separated, see Section 3.2.1).

e |-Ratio: This algorithm gives a continuous blind position and siitagorks in a
dynamic way, the blind moves until a balance is found. Thhbe, lilind would
move continuously if no discretization were applied to toipat of the algorithm
(a simple discretization by step was used for the simula)iotunfortunately, it
was observed that the necessary discretization was negphysisible to do without
largely spoiling the quality of the algorithm.

To sum up, the comparison of the three newly developed algos with theRefer-
encealgorithm (coming from a project especially dedicated fadkontrol) shows that
all the new algorithms give comparable or better simulatisults than th&keference
algorithm. The most promising controller is tiin-Positioralgorithm. Its results are
good and it combines well with the nested loop control. Initold, it considers both
solar altitude and azimuth, which allows different behavofor different penetration of
the sun in the room.

3.1.3 User Absent

When the user is not present for a certain amount of time ¢@tyi for 15 minutes at
least), the control system switches from the visual optatidn to the thermal optimiza-
tion algorithm. In this preliminary study, different coaliers have been developed and
compared to the DELTA controller (see [Bauer et al., 1996]).

3.1.3.1 Algorithms Definition

The basic idea is taken from the DELTA project. There are twanniheat exchanges
through a window: one is due to the transmitted solar rashd(ilirect gain), the other to
the heat losses caused by the difference between indoonaddar temperatures. Con-
sidering both contributions, which depend on the blind fasj a window heat balance is
calculated (see the model presented in Section 3.1.1).dEaei$ that the fuzzy controller
does not directly provide a blind position but a is aiming aoels a “desired window heat
balance” (DWHB). A positive (respectively negative) vabfehe DWHB corresponds to
the desired heat gains (respectively losses) for the rodma.pbsition of blind that gives
a window heat balance as near as possible to this DWHB isletécliknowing the physi-

cal parameters of the window and the blind (energetic trasson coefficients, heat-loss
coefficients).

Nine different blind controllers were developed and tesiétby are classified accord-
ing to the inputs of the fuzzy inference system. Two congrsl| calledOnly heating have
only the heating power as input and the fuzzy rule base isngivéhe Table 3.3. Three
controllers, calledOnly seasonhave only the season as input (see Table 3.4). Finally,
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the last four controllers, calleBoth, have both heating power and season as inputs (see
Table 3.5). The main ideas used to build these tables of wies:

e The blind controller should always contribute to reducettbating/cooling needs.
e In winter, solar gains should be maximized.

e In summer, solar gains should be rejected as often as pessibl

¢ In mid-season, the situation being unclear, several pitiisibare considered.

The blind controlletOnly heating v2rovides a negative value of DWHB when the
heating power is zero, since it is more expensive, on an gnerigt of view, to cool than
to heat a room. Moreover, when there is no cooling systeniedlaj a negative value of
DWHB prevents overheating due to solar gains.

The difference between the controllédsily season vandOnly season vis the width
of the fuzzy variable mid-season, which has been enlargéteirersion 1. Indeed, The
fuzzy variable “season” is not determined on the basis op#riod of the year but on the
average outdoor temperature during the last 24 hours. Itstreeship functions are given
in Figure 3.3. The width of the mid-season fuzzy memberstigtion in the controller
Only season vioes from 8C to 15C instead of the & to 12C applied in the other
controllers. The mid-season fuzzy membership functioreistered on 1GC3. At this
temperature, heating loads are null for the LESO buildirigs talled thenon-heating
temperature.

The unique difference between versions 2 and 3 of the cdats@oth is the value
“positive low” in mid-season. IiBoth v2 200 W/nt are aimed for DWHB whereas only
100 W/n# are aimed irBoth v3

3.1.3.2 Algorithms Comparison

The simulation tests were carried out with Simulink (MATL&BToolbox), for a period
of one week during three different periods of the year (wiftkays 52-59), mid-season
(days 100-107), summer (days 192-199) with climate datasafshnne. The weather
conditions are synthetic values produced by the METEONORM@am [MeteoTest,
1996]. In these simulations, the thermal model of the roomtiso-nodes model (a sim-
ilar model is described in Section 3.4.4). One node cornedgpdo the indoor air (with
also the furniture) and the other corresponds to the mapait®f the rooms (walls, etc.).
For each period, the controllers are tested with a heatiojjftg system and with a heat-
ing only system. Both heating systems are predictive (mespfrom the NEUROBAT
project [Krauss et al., 1998, Morel et al., 2001]).

In summer, energy consumption of all controllers is null &mete are absolutely no
differences in the results between the different contrsllérhe reason is that all blind
controllers work in the same way during summer, they rejéctadar gains: because of
input “season = summer” for controlleBothandOnly seasopand because of the input

3For standard buildings, a value of k2 for the non-heating temperature should be assumed.
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Controller version  Current heating/cooling power

Negative Zero Positive
Only heating vl DWHB = negative DWHB = zero DWHB = positive
Only heatingv2 DWHB = negative DWHB = negative DWHB = positive

Table 3.3:Fuzzy rule base for the lighting controllers “Only heating'DWHB is the
desired window heat balance.

Controller version Season

Winter Mid-season Summer
Only seasonvl DWHB = positive DWHB = zero DWHB = negative
Only seasonv2 DWHB = positive DWHB = zero DWHB = negative

Only seasonv3  DWHB = positive DWHB = positive low DWHB = negative

Table 3.4: Fuzzy rule base for the lighting controllers “Only seasonDWHB is the
desired window heat balance.

Season Current heating power

Negative Zero Positive
Winter DWHB = negative DWHB = positive DWHB = positive
Mid-season DWHB = negative DWHB*= DWHB = positive

Summer DWHB = negative DWHB = negative DWHB = positive

*depends on version : “zero” for v1, “positive-low” for v2,e®id “negative” for v4.

Table 3.5: Fuzzy rule base for the lighting controllers “Both”. DWHB the desired
window heat balance.
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Figure 3.3:Membership functions of the fuzzy variable “season”
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Figure 3.4:Thermal optimization algorithms comparison during the teirperiod

“heating power = zero” for the controlle@nly heating Moreover, the weather data used
(typical from the Switzerland’s climate) correspond to dibions not warm enough to
have the usefulness of a cooling system.

In winter, all controllers with the season as input maxintfee solar gains and yield very
similar results. The two controlle@nly heatingeject solar gains as soon as the heating
power is zero, and this lead to an increase of 15% to 25% of ¢adirig energy con-
sumption in winter. Results relatively to the control@nly heating vlare depicted in
Figure 3.4 for the case with no cooling system (the other tassther identical because
of the uselessness of the cooling system for the Swiss @)mat

In mid-season, there are more differences between cagisollThe results are given in
Figure 3.5. Excepting the two controlle@nly heating the worst controller i8oth v4
which gives a negative DWHB in mid-season when the heatistesy is off. The simi-
lar poor results for the controlld@oth v1(that gives a zero DWHB in mid-season when
heating is zero) confirm the importance of having a positiVéHIB in mid-season when
the heating system is off.

The Only season vandOnly season v8ontrollers are more efficient than tnly
season v1 This comes from the fact that the fuzzy variable mid-seasararrower in
these two cases and thus the variable winter has more effaogdhe simulation. Solar
gains are larger and the power consumption is reduced. Badsiie results could also
have occurred: if the fuzzy mid-season membership funésiot properly defined (e.g.
does not correspond accurately to the non-heating avensigear temperature and is
slightly lower), the variable summer could be match morem#nd the solar gains would
be too often rejected, that would lead to higher power comdiom. So, it is hazardous
to shrink the variable mid-season in order to have bettedtesvithout an accurate def-
inition of the non-heating temperature. Moreover, the igfficy of a positive DWHB in
mid-season is proven again by the better results obthig season vBwith positive value
of DWHB in mid-season) compared to tlmly season vRwith a zero value of DWHB).

Three controllers are more efficient than oth@sly season vBoth v2andBoth v3
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Figure 3.5:Thermal optimization algorithms comparison during the +s@&@son period

the latter two differentiated by their positive DWHB duringd-season when heating is
zero. But there is no particular interest of finding the optinalue of DWHB, because
heating energy consumption seems not to be very sensitihe texact value. Moreover,
it completely depends of the room and heating device chetiatits.

Thus, the main conclusions of these simulations are:

e The differences between controllers are particularlybkesturing the mid-season
period.

e The fuzzy variable season is essential to improve the dffigiblind controller.

e |t is more advantageous to have a positive DWHB in mid-seagmn the heating
power is zero.

e Shrinking the mid-season membership functions may oniynteésting when the
non-heating average outdoor temperature is accuratetyrdieted (which could be
achieved through the adaptation process).

e Three controllers are clearly more energy efficient thaestiBoth v2 Both v3and
Only season v&he three controllers have a positive DWHB value in midseeg.

TheOnly season v8ontroller seems to be the most appropriate controlletfeuser
absent case. Although it is not exactly the optimal one aiggrthe heating energy con-
sumption, it does not use the heating power variable anéfiner avoids a cross coupling
heating-lighting, which could lead to instabilities. Irdk the heating controller would
have needed the blind position produced by the blind cdetr(do as to predict the future
indoor temperature), whereas the blind controller wouldehaeeded the heating power
variable produced by the heating controller.
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Figure 3.6:Principle block diagram of the three nested control loopelev

3.2 Basic Principles

Integrating all the different controllers in one uniquetsys would have been very dif-
ficult and inefficient if there were no underlying principleshis section describes the
basic principles used for the whole control system. It alglans how some additional
physical data are prepared.

3.2.1 Integration Aspects

Three different device categories are considered for thérab the heating/cooling sys-
tem, the blinds (shading devices) and the electric lightWentilation was not taken into
account since the LESO building (in which the experimentgheeen undertaken) has no
mechanical ventilation system installed. Nevertheldsschosen controller architecture
allows implementing easily additional control deviteBhe integrated system is built on
the principle of three nested control loop levels (see FE§.6).

e Level 1 performs the translation from physical values (imgapower, blind posi-
tion, etc.) into electrical signals for field actuators (todify the heating system
valve position, to raise or lower the blind, etc.). The Ewap Installation Bus
(EIB) is used for this task (see Section 5.3.1).

e Level 2 control loop includes the domain knowledge. It isdzhen expert fuzzy
inference systems and uses adaptive models for thermaligimih§ aspects in
order to produce an efficient global control strategy. THiecdint fuzzy controllers
are described later in this chapter. The outputs of thid kneethe physical values
that are the inputs of the level 1 control loop.

e Level 3 ensures the long-term adaptation of the level 2 dlgos. The adaptation
is performed in a continuous way to take into account all timgjtterm changes of
the building and device characteristics (see Section 3Myeover, an adaptation
task using Genetic Algorithms is undertaken in order torojzie the system from
both user and energy efficiency points of view (see Chapter 4)

4The possibility of an efficient ventilation integration ini¢ architecture had been proven in a previous
European project named EDIFICIO [Priolo et al., 2001].
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Figure 3.7:Preprocessing phase

The level 1 is specific to each building but both levels 2 ance¥ary easily adjustable
to any kind of controller device. The self-adaptation oftlistem leads to simplified com-
missioning and efficient working without complicated paster adjustment.

The system provides also an interface that allows the us#raioge set-points or other
operative conditions (see Section 4.1). This gives the mari flexibility to the system,
user actions always keeping the first priority over the aaticrcontrol.

3.2.2 Data Handling

The control system requires some variable that are notttjireeailable through the sen-
sors, but that have to be generated by preprocessing blesksilded in the figure 3.7.
The first block provides the average outdoor temperaturiagltine last 24 hours, includ-
ing the current outdoor temperature. It is used essentialtierive the current season as
a fuzzy variable.

The second block provides all the needed illuminances foctimtrollers and provides
also the solar altitude and solar azimuth relative to thadac Its inputs are the time and
the global horizontal radiation. Furthermore, four parsreare needed for the block
calculations. The longitudg, the latitudep, the time zond’, of the building location and
the facade orientatiom,.
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3.2.2.1 Solar Angles

First, the solar angles (namely the solar azimuth and d#itangles) are determined.
Many references [Duffie and Beckman, 1974] provide the falhy expressiorts

sinh =sind - sin¢ + cosd - cos ¢ - cosw (3.1)
. sinw - cos §
sing = — (3.2)
cosh

Where  h: Solar altitude, the angle between the sun direction angtdjgction on
a horizontal plane (positive when the sun is above the hot@@lane)

a: Azimuth angle of the sun, the angle between the south direand the

direction of the sun projected on a horizontal plane (pesitowards

the east direction)

Latitude (positive towards the north)

w: Hour angle, © at noon andt 180 at midnight (positive in the morning

and negative in the afternoon)

Declination, the angular position of the sun at solar nodth vwespect

to the equator plane (positive towards the north)

The equations fof andw are:

53

=2

360 - (284 + n)

0= 2345 sin
o)

) [deg] (3.3)
w=15- (12— Solartimg  [deg] (3.4)
Solar time= Legal time+ AH + (A/15) — T, [hours]
Where n: Day number of the year (coming from the Time input)
AH: “Time equation” [hour] that integrates both the ellipticof the move-
ment of the earth around the sun and the declination

T.:  Time zone [hour] (O for Greenwich Mean Time, positive todsEast)
Al Longitude [deg] (O at Greenwich, positive towards East)

So, the solar altitudé (used in the control algorithm) is simply given by:
h = arcsin (sin 0 - sin¢ + cosd - cos @ - cos w)

Since the solar azimuti can be greater than 9@r smaller than -9Q an additional
condition is needed depending on whether or not the sun isdalsouth-facing vertical
surface. That condition is given by the critical hour angle

tan o
tan ¢

CoOSwg = Vw, verifying 0 < w, < 180

Thus, the azimuth is depending orin a andw, which were given in Equations 3.2
and 3.4. The azimuth is given in the table below:

SWarning: not all textbooks assume the same angle convent@epending on the author, some signs
might differ, therefore it is not advisable to take an ecuafrom one textbook and mix it with an equation
from an other textbook.
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w a

|w| < ws | a=arcsin(sina) morning:a > 0, afternoonia < 0
w = ws a =90 sun at east

w=—ws | a=-90 sun at west

w>ws | a=180— arcsin(sina) morning (sun between east and north)
w < —ws | a = —180 — arcsin(sina) | evening (sun between west and north)

Finally, the solar azimuth relative to the facadg)( which is used in the control algo-
rithm, is given by:

a, = a—ag

Where aq: Facade orientation (angle between the perpendicularetéettade and
the south direction, positive towards the east)

3.2.2.2 llluminances Determination

After the determination of the solar angles, the requirketiniinances and irradiances are
calculated. Assuming an isotropic diffuse component, tlueahd Jordan correlation [Liu
and Jordan, 1960] allows to calculate the direct and diftwseponent from the global ir-
radiance (1) on a horizontal surface. The direct§,;,) and diffuse Ghy; ;) horizontal
irradiances are given by:

Ghair = Gh - (1 — faify)

Ghdiff = Gh . fdiff

With
faigr = 1.0045 +0.04349 - f — 3.5227 - f* +2.6313 - f*
Where
f =limitof (Gh/Ghes,0,0.75)
And ) )
Ghegy = 1353 - [1 4 0.034 - cos( §6'5") +0.001 - sin( ;TG'S")] ~sinh

Gheyt being the extraterrestrial solar radiation on an horizocugace.

The first term corresponds to the average extraterrestiat sadiation on the earth
(1353 W/nt). The second term takes into account the ellipticity of tghés orbit around
the sun and the third one deals with the orientation of thezbotal plane considered to-
wards the sun direction.

Once the two components of the solar radiation are avaitabehorizontal surface, they
can be calculated on a vertical surface of any orientation.

For the diffuse component:

Guaisy = 0.5 - Ghaigy +0.5-Gh -1
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The albedo- is due to ground reflection is assumed to be equal to 0.3, whigheason-
able value for concrete surfaces and grass.

For the direct component, the following expression is auptiepending on the sun posi-
tioné;

If  5° < h<90°and—-90° < a, < 90°
Gugir = Ghgy - cosh - cosa,/sinh

Else
Gl’dir = 0

The last step is to translate the irradiance values intaithances. Assuming a con-
stant luminous efficacy for different irradiance, Winkelmand Selkowitz [Winkelmann
and Selkowitz, 1985] give the two following correlations:

Eqip[lux] = 93 - Ga;r [W/m?]

Ed,»ff[lux] =111 Gd,»ff[W/mz]

Thus, the last three outputs of the preprocessing blocld(isthe control algorithm)
are:

Global radiation on facad& vy, = Guair + Gugifs

Direct vertical illuminanceEvy;, = 93 - Gug;,

Global vertical illuminanceEvg, = 93 - Gugir + 111 - Gugigs

3.3 Controllers

Three controllers are considered in this work: a shadingcéesontroller, an electric
lighting controller and a heating controller. Each one iegnated in the whole system
via the nested loops architecture (see Section 3.2.1). fidsept section deals only with
the level 2 of the different controllers.

5Whenh (solar altitude) is below the building receives nearly no direct solar radiationisEssump-
tion avoids numeric problems that could occur with very divalue ofsin h.
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Figure 3.8:0Overall diagram of the blinds controller operation

3.3.1 Shading Device

The shading device control system described here dealsvattiytissue blinds, since
the available blinds in the LESO building are of this type.véli¢gheless, a controller for
venetian blinds was developed (with both vertical positibrthe blind and slats angle
regulated). Its description can be found in Appendix B.

In this section, the tissue blind control system is preskrfiest the controller for the
case where the user is present, and then the controllerfaatfe where the user is absent.

3.3.1.1 User Present

From the preliminary study in Section 3.1.2, the main cidtef a blind controller in the
visual case have been established:

e Priority is to avoid glare.
e Thermal aspects should also be considered.

e Both solar altitude and azimuth should be used to be abletoge different control
strategy for different user positions in the room.

e There should not be a closed-loop control with indoor illnarice measurement.

The final controller presented here, is inspired by3he-Positioralgorithm described
in Section 3.1.2. It keeps the distinction between glareiimehinance considerations.
The main difference is that the thermal aspects have beérdhiom the “Glare” fuzzy
rule base to the “llluminance” fuzzy rule base. This was doeeause eyes adapt easily
to a wide range of illuminances whereas they have low toteEraowards contrast. Thus,
compromises may done more readily between solar gainslandrilances than between
solar gains and glare hazard.

Figure 3.8 shows the overall diagram of the blinds contralled the different included
function blocks.

First, a maximum value,,,, for the blind position is calculated through a fuzzy rule
base in order to avoid glare. At the same time, a blind posiiepending on the illumi-
nance setpoint;; is also determined. This last calculation is achieved uBiagy logic
inference systems, which is different from tBen-Positioralgorithm that determined the
illuminance through a simple illuminance model (see Sec8d..2.2). Then, the final
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value for the blind positionm;,, is determined: it corresponds to the minimum value of
the two blind positionsy,,., anda;;. A blind movement filter depending on the current
position of blinda,,,,. prevents from moving the blinds too often, which could &t the
user.

The final controller architecture has been chosen for tHevirhg reasons:

e Itis a simple and flexible system, containing only few rubasd therefore only few
parameters have to be tuned by the adaptation process (ap&e€CH).

e The glare aspect is very important: a dedicated fuzzy infeeystem (“Glare”) is
used to deal with this problem.

e Providing a perfect illuminance is not aimed, because hueyas have a very low
sensitivity towards the variation of illuminance. Moreaube “llluminance” fuzzy
inference system allows finding a compromise between thenitance and the
thermal impact of solar gains. For instance, opening thadbliwider in winter in
order to increase solar gains is quite acceptable for the asdong as no glare
occurs.

e The vertical direct illuminanc&v,;, on the facade is more relevant than the hori-
zontal one to address glare problems.

In addition, the fuzzy membership function mid-season isaeed in the final con-
troller in order to optimize it on the thermal aspects. Intfdlce preliminary study has
shown the necessity of providing an accurate value for theheating temperature (see
Section 3.1.3) in order to make the controller very enerfigiefit. Since this value is pro-
vided by the adaptive heating system (see Section 3.3@ntl optimization consists
simply in deciding to maximize (in winter) or reject (in suremsolar gains. The fuzzy
transition between winter and summer is probably suffictentleal with mid-season.
Thus, it has been decided to remove rules related to the egises, even it makes the
control system less flexible for this period.

The fuzzy rule bases are given in the Appendices A.1 and A.2.

The “Movement filter” is made of two consecutive filters: ad¢imlependent filter and
a minimum step filter.
The time filter prevents too frequent blind movements by iftitlmg a blind movement
when the precedent one has been applied less than 15 mirggtesTae time elapsed
is reset to 0 even when the blinds do not move but would haveethtswards down if
the minimum step filter was not applied. This is done to pretea blinds moving pe-
riodically (each time the 15 minutes pause is ended) duridgyawith an intermediate
sky (sunny-cloudy). Moreover, the movements that lowelbiels are not concerned by
the time filter, in order to avoid glare problems during theseny-cloudy days. A blind
position slightly too low is thus preferred to a positiorgslily too high.
When the blind movement is accepted by the time filter, it esritge minimum step filter:
the movement is applied only if it is larger than a fixed minimualueA« (in our case,
Aa = 0.3, i.e. 30% of the movement between totally closed arallyodpen). This value
is reduced by half when there is a risk of glare (i.e. when, < ac.,).



3.3. CONTROLLERS 33

The control algorithm presented here deals only with omedddut in the LESO build-
ing there are two blinds to control per room (see Section. 52)e idea is to control
independently the two blinds with two similar algorithmsheTunique differenceis in
the fuzzy rule base “llluminance” of the lower blind. A minaropening of 0.4 is kept in
order to allow visual contact with the outdoor environmevttich has been clearly shown
as an important criteria for user acceptance [Elder andotiph981].

3.3.1.2 User Absent

The preliminary study in Section 3.1.3 has shown two intarggacts about the thermal
blind controller.

e Energy efficiency of the blind controller largely dependstlom use of the variable
season.

¢ Providing a positive window heat balance in mid-seasonastbost efficient strat-
egy.

The final controller for the user absent case is largely nesidy the controller named
Only season v8escribed in Section 3.1.3. The distinctive characteritihis controller
is to only consider the current season (which is defined titralie average of the outdoor
temperature on the last 24 hours, see Figure 3.3, page 28)d@mune the blind position.
The basic idea is to use the window and blind system as a darfttioe incoming solar
gains, which have to be minimized in summer and maximizedimes The critical point
is to have an accurate value of the temperature that delth@tdieating season and the
non-heating season. Thus, this value is adapted every notile latest measurements
(see Section 3.4.4).

The controllelOnly season vBas been slightly improved to avoid overheating or over-
cooling with an extreme blind position. Briefly, the blindntmller tries to cool (reject
solar gains, increase thermal losses through window) imsemand to heat (maximize
solar gains, decrease thermal losses through window) itewirBut when the indoor
temperature is really too low or too high compared to the &emare setpoint, the con-
troller takes temporarily the opposite behaviour in ordeattenuate the overheating or
overcooling.

The fuzzy rule base is given in the Appendix A.4.

Two steps have been taken to minimize the number of moverte@migprevents early
mechanical wear). The first reduction of the number of blimmyements is realized with
a minimum step filter (similar to the one used in the user priesentroller) that allows
moving blind only if the movement is large enough (largemtd®% of the movement
between totally closed and totally open). The other redaa done through the use of
the two blinds (in the LESO building, see Section 5.2) in ausedjal way, that means to
consider the two blinds as only one larger blind. In the LE$fding, one blind is above
the other and a sequential control seems to be a naturaicsolut
The idea is to use a parameter calledhat describes the importance of blinds regarding

7In fact, the two blind controllers will be more differentat thanks to the adaptation to the user’s
preferences.
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the illuminance provided.

0<B7j<1

Using B; and thex value given by the controller, the blind position of the uppknd
a; and the lower blindy, are calculated as follows:

If « > B;then:

and «ay =1 (completely up)
If « < B;then:
a; =0 (completely down) and «; = %

The B; parameter is continuously adapted together with the RI iremigptation (de-
scribed in Section 3.4.2).

3.3.2 Electric Lighting System

The electric lighting is used as a complement of the inddomiinanceE;,,; (provided
by the RI model, see Section 3.4.2) in order to reach the ihamce setpoinf’,.;. A
hysteresis control is applied to avoid too frequent swisabre or off:

If £24 < 0.75 the electric lighting system is switched on.

If ’é—j > 1.0 the electric lighting system is switched off.

But prior to switching on, the system tries to raise the Winak far as the user has
not interacted with them. Thus, only in very special casesdlectric lighting may be
switched on with blinds being closed at the same time.

The calculation of the exact power fractiaR,( € [0,1]) applied to the dimming control is
performed using the electric lighting model described int®a 3.4.3 and the difference
between the indoor illuminance and the illuminance setpoin

anl+bPzi;l+Cszl+dPul+Esct7Eind =0
Wherea, b, c andd are the parameters of the electric lighting model.

The electric lighting power is the root of this equation. #shto be noted that the
solutionP,; may be negative or higher than 1 but in the controller nonspfay values are
rejected and replaced by the nearest physical value.

In a post-occupancy evaluation of seven energy efficientings in USA, Heerwa-
gen and Diamond had shown that users did not like the autordatilight and electric
light controls because they were distracting and distgrijitreerwagen and Diamond,
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Figure 3.9:Effect of the “smoother” feature on the electric lightingrdeol

1992]. Therefore, an electric lighting “smoother” havedeveloped and implemented.
It varies the electric lighting power by maximum steps of 28attare not noticed by

occupants. Each time an event occurs and the main contralilmdgicalled (see Sec-

tion 5.4.2.3), a variation step of electric lighting is doii@eeded, in the latest calculated
direction (increasing or decreasing power).

Figure 3.9 shows the effect of the “smoother” compared tahting control strat-
egy without the smoothing feature during a measurementrddgnuary. The time range
depicted corresponds to about one hour and a half. Firsteitepts the frequent and
very disturbing switching on or off as it occurred at time30. Second, it avoids sud-
den large variations of electric lighting power as it ocedraround times 30.37 and 30.38.

Larger steps of variation are permitted when users entelsages the room and if
the current electric lighting power is really too low comgarto the calculated power
(difference larger than 50% of maximum power).

3.3.3 Heating System

An efficient heating controller should have predictive addative features. Unfortu-
nately, available controllers such as NEUROBAT [Krausd.ef1898] consume too much
computational time. Indeed, optimization of a cost funet{grouping discomfort and
energy consumption) is unsuited to our experiments withffieorooms and 15 heating
controllers to run. Thus, a simpler empirical heating coliér has been developed, that
nevertheless has both predictive and adaptive features.

A simple proportional control that takes into account thedieted solar gains and
the predicted presence is used. Its parameters are autaltyadidjusted to the room and
heating device characteristics. The heating controlldefsned as follows, with physical
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limitations:
. Tsc, - T;n
Py = limit [ K, "0, 1] (3.5)
(¢Frememt 1)

Where  Py: Heating power fraction [-]

Toet: Setpoint of indoor temperaturéQ]

Tina: indoor temperature’C]

K, Gain parameter of the proportional controCf!]

& Solar effect coefficient [-]
Pyunprea: Average solar irradiance predicted on the next 6 hours [{/m
Pyunmaez: Average maximum theoretical solar irradiance on the next

6 hours [W/ni]

When large solar gains are predicted, the denominator odiimu3.5 increases, lead-
ing to the reduction of heating power. This way of integrgtsolar gains ensures a re-
liable control even with inaccurate prediction of solarrgaibecause the controller still
gives coherent command: it heats less, but it still heatstoesextent.

The default value for the temperature setpoint (appliedag bs the user does not
interact) is set at 2. This value has been chosen because it was much easien(due t
technical reasons) to implement it compared to a standargegature setpoint of 2C.

In addition, the heating power depends on the current peeséime presence predicted
one hour later, and the presence predicted six hours laergsction 3.4.5). The idea is
to reduce the temperature setpdiiy; in Equation 3.5 of a valuéT,.., that depends on
the different presence predictionAT,., is determined through a fuzzy logic rule base,
given in Table 3.6. Lower probability of presence leads tgdareduction of the temper-
ature setpoint and conversely, higher probability leadstaller reduction.

Current Presence Presen¢éAssociated
presence il hour in6hours| AT,

0 0 0 -3

0 0 1 -2

0 1 0 -1

0 1 1 —0.5

1 0 0 —0.5

1 0 1 —0.5

1 1 0 0

1 1 1 0

Table 3.6:Fuzzy rule base for reducing the temperature setpoint d#ipgron current
and predicted presence

An exception to this behaviour of the heating system is thiatstopped if a window
is open, in order not to needlessly heat.
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K, and¢ are two adjustable parameters of Equation 3.5. Their vai@®mmis-
sioning are set to 2 and 10 respectively. On the one hand aineparametefs,, of the
proportional controller depends on the physical chareties of the room and thus its
adaptation procedure relies on the thermal room model td@rg (see Section 3.4.4).
On the other hand, the solar effect coefficier directly adjusted from the real measure-
ments and the procedure is described below.

Only the measurements during whi€lacts effectively are considered for the adapta-
tion process. That means only when there were some solas gathheat power applied
to the room during the last six hours. Moreover, the tempegagetpoint have to be con-
stant on the last hour, in order not to consider transitistegke cases.

A simplified model of the relative solar energy transmissjahrough the “window
and blind” system has been used, which simply relates thggt@nsmitted to the blind
positionq; at timet considering a blind solar transmission coefficient of 0.2:

g(t) =024+0.8 o

The empirical following rules are applied to adggtom the current#) and six hours ago
(to) measurements:

AT = T;',nd(t(]) - Tset(tO)
If AT > 0°Cthen:

A¢ =91

AT
2vaa1‘
If —0.25°C < AT < 0°Cthen:
AE=0
If AT < —0.25°C then:
pg _ 900)- Gullo) +9.(1)- Gull) .
2G’U’I7lll1?
With G, Global vertical irradiance [W/#)

Gomaz: Average of maximum theoretical global vertical irradiaf@v/n?]

In the first case there is some overheating, theref@séncreased to lower the heating
power in similar cases. Larger solar gains and thus strofgarameter’s effect cause
adaptation of to be more important.

In the second case, indoor temperature is very near frorretpeist and no adaptation of
£ is needed.

In the last case, the heating power was not sufficient andin@onperature was too low.
So,¢ is lowered to increase heating power in such cases. And ayaia,aadaptation is
more important if solar gains were important.
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3.4 Adaptive Models

The different controllers being defined, the adaptive meodskd by them are described
in the present section. All these models are adapting atrma teeel. Only the weather
data prediction model is achieved at the building level.

3.4.1 Weather Data Prediction Model

The vector of solar irradiance predicted over the six nexiri@n the horizontal plane
is needed by the control system. Such data could have beeit@ddy public weather
forecast service but in this case the information suppkedfien averaged over several
hours and is not directly usable for a six hours ahead piliedicMoreover, the necessary
solar radiation sensor is already available in our systeraleee it is required for the light-
ing and thermal controllers. Thus, a solar irradiance ptedis used within this work.

The approach used was developed and verified in the NEUROB#Eqi [Krauss
etal., 1998, Morel et al., 2001]. It was there shown thafieidi neural networks (see the
book of Haykin [Haykin, 1999] for comprehensive explanat@f ANNs) are the most
effective method for the prediction of the horizontal glbbalar irradianc& A new ver-
sion of a similar feed-forward network has been re-devaloféhe same structure with
one hidden layer of four neurons has been taken. Due to itgecgence capabilities,
the Levenberg-Marquart training algorithm was used. Ferdttivation function of the
neurons, the tangent hyperbolic was chosen due to its neasity, continuity and deriv-
ability. The training data were relative values becausg Were divided by the theoretical
maximum solar irradiance, i.e. the solar irradiance wittagnospheric transmission fac-
tor of 1.0.

The Artificial Neural Network (ANN) used for the solar radat predictor has four
normalized inputs:

Gra(k): Relative solar irradiance at current tirhe

Gra(k —1): Relative solar irradiance at tinke— 1 (one hour ago)

Gra(k + 6 —24): Relative solar irradiance 24 hours before the time of tash
Gmaz(k +6): Computed maximum solar irradiance at the time of predictio

And one normalized output:

Grea(k +6): Relative solar radiation at the time of prediction

The newly developed predictor (called “new ANN") is comphreith the one used
in the NEUROBAT project, with a reference model that usesctireent measurement of
the relative solar irradiance as the prediction value aritli wimore recent meteorologi-
cal physical model (MRM) developed by Muneer et al. [Muneealg 1998]. Weather

8]t was confirmed by Kemmoku et al. [Kemmoku et al., 1999] far pmediction of daily integrated solar
irradiation
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Figure 3.10:Comparison of measured and predicted value of horizontal $oadiance

data used for the comparison are synthetic values gendrgtdte METEONORM pro-
gram [MeteoTest, 1996] (except the results of the Muneerehib@t have been obtained
with real weather data). Training is performed on the six finenths of the year, and
evaluation is performed on the last six months. Resultsiasngn Table 3.7. Both ANN
models give better results than the reference one, whichstit it is worth using ANN
for prediction. The accuracy of the new ANN model is confirnidits results quite
similar to the NEUROBAT ones. Moreover, results of ANN madate even better than
the ones of MRM. But it should be mentioned that the latterefmom real weather data,
which is maybe detrimental.

Model Mean error [W/m] Standard deviation [W/Aj
Referenceé 72.8 160.6

ANN NEUROBAT* -6.7 82.6

New ANN 9.1 80.9

MRM? 12 -54 39-112

%values coming from the NEUROBAT final report [Krauss et a098]
bvalues from [Muneer et al., 1998] in lux translated in VW/mith the Winkelmann and
Selkowitz correlations [Winkelmann and Selkowitz, 1985]

Table 3.7:Mean values and standard deviations of the 6-hours preatictirror of the
horizontal global solar radiation for different models

Even with ANN models, standard deviation is quite large,chtattests to the diffi-
culty of solar radiation prediction. Qualitative resulfstee prediction with the new ANN
model are depicted on Figure 3.10. They are sufficiently @teuto provide valuable
information to the heating system about future solar gains.
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3.4.2 llluminance Ratio Model

The RI model calculates the horizontal indoor illuminancetibe workplane from the
measurement of the vertical outdoor illuminance. Some x@ats have shown that the
use of the vertical outdoor illuminance gives better anderamnsistent results than the
standard use of the horizontal outdoor illuminance (eqoia daylight factorfor over-
cast sky) when comparing with horizontal indoor illuminerer different blind positions
(both upper and lower blinds are moved together). Figures 8nd 3.12 show the results
for both cases. The case with vertical outdoor illuminafienjodel) clearly leads to less
scattered results than the case with horizontal outdaemitiance (“Extended daylight
factor”). Hence, the Rl model will give better results foffeient sky conditions. Note
that sensors for indoor illuminance measurements weregted from direct solar radia-
tion.

Three RI models have been compared. First, a simple expaheridel (see Equa-
tion 3.6) that was shown to be better suited than a linear Moithen an artificial neural
network model and finally a model that mixes the exponentidltae ANN models. The
latter model first fits the data with an exponential model dreah ttries to fit the remaining
error AE via an ANN model (see Equation 3.7).

Ehind =a- eXp(b . a) . Evout (36)

FEhipg=a-exp(b- ) Evyy + AFE (3.7)

WhereEh;,q is the indoor horizontal illuminancé;v,,, the outdoor vertical illumi-
nance the blind position and, b the model parameters.

91t probably comes from the fact that luminances of the skylarger for higher altitudes, and their
relative contributions to indoor illuminance are thus miongortant for larger blinds opening.
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The fit of the exponential model is performed using the na@adimeast-squares Gauss-
Newton method (MATLAE® toolbox). The ANN models are feed-forward networks with
six neurons in the hidden layer and with the same two inphesbtind positionv and the
outdoor vertical illuminancé&v,,,;.

The three models are fitted (trained on 100 epochs for the AbiNgxperimental mea-
surements of the whole month of August and evaluated on tlasmements of the month
of September, provided that there were no electric lighaimd no saturation of the indoor
illuminance sensor (values below 3500 lux). The resultggaren in table 3.8. The two
models with the exponential characteristic are clearlyngivmore accurate results than
the simple ANN model. The combination of the two models gisiesilar results to the
simple exponential model in accuracy but it necessitateshmmore computational time.
The corresponding ANN model does not improve the exponlemtidel and requires too
much computational time for a real implementation. Thus,¢hosen RI model is the
exponential model.

Model Standard deviation CPU time [s]
Exponential model 416 3

ANN model 494 110°
Exponential + ANN model 417 99*

*average value out of ten runs

Table 3.8:RI models comparison

The RI model is continuously adapted to the new monitored dathe day via the
same procedure described above. It allows to take into atatanges in the environ-
ment (trees in their winter dress, new building in the vitinetc.). So, every night the
two parameters of the Rl model and tBg parameter (for the two blinds case, see Sec-
tion 3.3.1.2) are fitted on the measurements of the indoooatabor illuminances during
the last 15 days.

An additional feature related to the Rl model is the shadirgkdetection. Indeed,
shading from neighboring buildings and trees may largéiycathe indoor illuminance.
Thus, the system tries to detect shading cases in a room bylaahg the indoor illu-
minance using the diffuse component of the vertical outdibeminance instead of the
global one in the RI model. If the result is closer to the inddaminance measurement
without the direct component, it is assumed that there isadlgtshading on the windows
of the room and that it is better to only use the diffuse congmdn Figure 3.13 shows
the RI model results during a sunny morning in January coetpty the measurements.
Thanks to the shading mask detection, the model provided galoes even when direct
solar radiation is cut by obstacles. At time about 7.42,dliemo more shading and the
RI model goes properly back to the no shading mask mode.

In addition, if a shading mask is detected, the calculatdédevaf the vertical direct
outdoor illuminance (see Section 3.2.2) is set to zero. fassrepercussions on the blind
and electric lighting controls, which need either Rl modatalations or vertical illumi-
nance data.
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Figure 3.13:Effect of the shading mask detection in the Rl model - measnts have a
relative error of 15%

3.4.3 Electric Lighting Model

This model relates the illuminance provided by the eledigiting system to the elec-
trical power applied. The variables to consider are theteted power fraction (of the
maximum power) applied to the electric lighting systeRy, (¢ [0,1]), and the corre-
sponding provided illuminancg,; ([lux]).

Every night during the user’'s absence, illuminances aresored for five different
power fractions (0.2, 0.4, 0.6, 0.8 and 1). In order to redheempact of an adaptation
with wrong measurements, they are averaged with the old. oAed if the values are
clearly too low (monitored illuminance is lower than 50 luitlwvelectric lighting power
at full power), which could occur if a paper is on sensor orase of sensor failure, the
adaptation is postponed.

A fourth order polynomial is fitted to the five measuremenssng the nonlinear least-
squares Gauss-Newton method:

Eu = aPh+bP3 +cP%+dPy

Where E,; is the illuminance measured,, the fraction of power applied and b,
¢, d the parameters of the model. This model forces to give a zalke\of illuminance
when no electric lighting power is applied.

A fourth order model was chosen because it properly desctheetypical character-
istic of the electric lighting with only four parameters,st®own by the example depicted
on Figure 3.14 (measurement values have a relative err@%j.1
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Figure 3.14 Electric lighting model compared to measurements

3.4.4 Room Thermal Model

A physical model (2-nodes) of the room has been developed.Figure 3.15 described

the model, with one floating node for the temperature of tdedm air and furniture (node

1), and an other floating node for the temperature of the thlemmass of the room such as
walls, floor, ceiling (node 2). The outdoor temperature issidered as a fixed node.

The mathematical expression of this model comes from theviaig assumption on
each floating node:

dT
Hy =C-—
Z g-1 dt

on node

Where  H,;: Heatgains and losses (W)
C: Thermal capacity of node (J/K)
T: Temperature of node (K)
t: Time (s)

The free internal gaing,,,; (users, electrical appliances, etc.) and the heating power
P, are only delivered on the indoor air temperature node. Ther g@ins are separated
into two fractions depending on a constdii,.: P.u. - fsun IS @pplied to the first node
and(Psun - 1 — fsun) is applied to the second node. One obtains the two followlragsc
equations:

Node 1:

dT;
Ph - Guut—l(TI - Taut) - Gl—Q(Tl - T2) + Aequfs'urLPsun + Pint = Clel (38)
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Figure 3.15:Thermal 2-node model of the room

Node 2:

dT:
_Gout—2(T2 - Tout) - Gl—Z(TZ - Tl) + Aequ(l - fsun)Psun = 027; (39)
Where Gou—1:  Thermal conductance between indoor and outdoor air (W/K)
Gou—2: Thermal conductance between outdoor air and thermal MEKS(
Gi_a: Thermal conductance between indoor air and thermal ma#s)(W

Acqu’ Equivalent solar collection area ¢in

Ch: Thermal capacity of the indoor air and furniture (J/K)
Cs: Thermal capacity of the thermal mass (J/K)

Ty Indoor air and furniture temperature (K)

Ts: Thermal mass temperature (K)

Tout: Outdoor air temperature (K)

These expressions are integrated betweemdt, and divided byAt = ¢, — ¢;.

Node 1:
— R — R — — — C
Ph - Guut—l(Tl - Tuut) - Gl—Z(Tl - TZ) + Aequfsunpsun + Pint = K; (Tl(tQ) - Tl(tl))
Node 2:
_ R - &
_Gout—Z(TZ - Tout) - GI—Z(TQ - Tl) + félequ(1 - fsun)Psun = E (TZ (t2) - T2(t1)>

With the following notation:

X =
At
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A supplementary hypothesis is assuméd: and 75 varies linearly on the interval
[t1,ts]. Thus:

Ti(t)=at+b = T,(t)dt =

t1

- L)+ 1) 5y gor - 1,2
5 t =1,

The following index notation is defined:

Ty; = Ti(t;)

Thus, for node 1:

— — — — C1 Gou—1 +Gi- G
Ph + Aequfsunpsun + PinL + GouLflTouL + Tll (Klt - %12) + T21 12 2 =
C Gou,— + G — G
:T12<K;+7f 12 - 2)*T22712

And for node 2:

_ — G
Aequ(l - fsun)Psun + Gout—QTout + Tll% + T21

(Z@ Gout—22+ G1—2) _

= T13(—Gh2) + T2 (E + 3

These two equations may be expressed in a matrix form:

le}:A,l,B.[Tn%A,IWEPA?]_C

Cy | Gou—a+ G1—2)

T22 TZl 0
With:
r Q+ Gout—1+G1-2 _Gio
A = | & 2 PR
-2 Cs + Gout—2+G1-2
2 At 2
r G1-2
Cy Gout—1+—5 Gi_o
B = At 2 2
Gi-2 Cy _ Gout—2+Gi1-2
L 2 At 2
C — Aequfsunpsun +_Pint + Goutfl_TouL
L Aequ(l - fsun)Psun + Gout72T0ut

Thus, the evolution of; and7> may be calculated as soon as the parametgfs 1,
Gout—2, G1-2, Aequ, C1, C> and f,,,, are known. Every month, the adjustment of these
parameters is performed using the measurements of thedbagailable period. The
necessary monitored data are the timthe heating powep,,, the global solar irradiance
P,., and the temperatures of the two available nodésahdT,,;). The optimal set of
parameters is found through an optimization based on thessHewton method, with
the quadratic error to minimize defined as follows:

E== (Tl,j - T"MSJ)Q
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Where  Ti;: Indoor air temperature given by the model at tijne
Toneas,;-  INdoOr air temperature measured at tijne
n: Number of time step considered

Once these parameters are adjusted, an optimal value fagaiheparameter of the
proportional heating controller (see Section 3.3.3) maydomd. In fact, proportional
controllers lead always to a steady state error, which mayuite important. Higher gain
parameter yields lower offset value, but too high a gain petar leads to an unstable
control. Thus, it has been chosen to tolerate an offset VAllig,, of 0.5K, which is
quite sufficient to avoid problems of stability, while keegia suitable level of thermal
comfort. Using the thermal model Equations 3.8 and 3.9 atiststate, one obtains using
measurement values averaged on the last 24 hours:

T _ Gout72Tout + Gl*ZTl + Aequ(l - fsun)psun
: Gout—2 + G1-2

Ph,,sf,eady = Gﬂut—l(Tl - Tﬂut) + GI—Z(Tl - TZ) - Aequfsun?sun - ?int

Then, knowing the maximum heating powg .. of the system, the proportional
gain parametek), is given by:

Ph mazx * ATTH{JT
K,=—"/——"
P Ph,steudy

Similarly, the non-heating average outdoor temperatwge Section 3.3.1.2) is calcu-
lated, assuming), = 0 and also using Equations 3.8 and 3.9 at steady state analf@s
averaged on the last 24 hours:

sl G%,2T1+Gl—2Atitl':L<l7fsun)_Psun - o)
(Gouf,—l + G1—2)T1 - Gout—2+G1-2 - Aequfsu,npsun - Pint

out = G1-2Gout—2
Gout—1 + Gout—2+G1-2

This temperature is then included in the fuzzy rule base@btind controller for the
user absent case.

3.4.5 User Presence Prediction Model

The heating controller needs the prediction of the usergm@s in one hour and in six
hours. At the beginning of the project, no set of presenca dats available to de-
velop and test a reliable predictor (using Artificial NetWofor instance). Only frag-
mented data from two office rooms were recorded during theFEDJD European re-
search project [Priolo et al., 2001].
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Thus, a simple occupancy schedule has been used for thexpegzediction: rooms
are supposed to be occupied from 8 am to 18 pm during weekdays.

However, recent work [Scherz, 2003] shows that presencaigti@n using ANNs
outperforms schedule prediction and may lead to large imgments for both comfort
and heating energy consumption. Thus, a further improvéofaihe heating controller
used in this work would be to develop and implement an advdipoesence predictor.

3.5 Lighting Self-Commissioning

Each time a new automatic controller is applied in a room, lkcegnmissioning for
lighting aspects is carried out. The goal of this procedsr® iprovide reasonable start-
ing values for the parameters of the different adaptive rsoged by the controllers. It
concerns the Rl model, the electric lighting model and ttiedsl controller. This com-
missioning is only run when the global irradiance is higteamt 50 W/m.

No commissioning is carried out regarding the heating, beea correct adjustment
of parameters needs data on several days (to deal withahaspects of room character-
istics) and these data are not always available.

3.5.1 RIModel

Two measurements are taken during the commissioning irr éodgrovide reasonable
values for the RI model parameters (see Section 3.4.2ilances (outdoor and indoor)
with blinds completely open, and illuminances with blindsrpletely closed.

With the blinds closedd = 0), the Rl model gives:

Ehind,closed =a- Ehou

Then the commissioned value ofs calculated as:

a= Ehind,closcd
Eh Lout

And with the blinds completely opem(= 1):

Ehind‘()pen, =a- eXI)(b) : Ehout

FEh; d.
b — 10 ind,open
& < a- Ehgy )
This commissioning allows to have directly decent valueadbor illuminance avail-

able through the RI model for the control, but a more accuad#ptation of the model is
ensured by the daily adaptation procedure (see Sectiap)3.4.

Then
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3.5.2 Electric Lighting Model

When blinds are completely closed, the electric lightingvistched on at full power and
the indoor illuminance is measured. This value is then sgkgd by the measurement
of the indoor illuminance when the electric lighting was @ffso with blinds completely
closed). The additional illuminance provided by the eiedighting at full power is thus
obtained and it replaces the initial default value. A fit o fourth order model is under-
taken with this new value and the four other default valuksnginances at 20%, 40%,
60% and 80% of maximum power, see Section 3.4.3). Measurihgtloe value at 100%
is sufficient to obtain a reasonable electric lighting maded by the controller, and from
the following night adaptation, the model will be more aatar

In addition, the start value for the illuminance setpoirfbied depending on the value
of illuminance provided by the electric lighting systemuit power (defined a&,,,). As-
suming that the system was designed to provide sufficielnt ¢igring night, a reasonable
start value for the illuminance setpoift,.; is determined as follows:

E.

B _ SYS
set
2

It has been observed that the average valug,pf among the offices is equal to about
330 lux. That means the start value for illuminance setpioirsn office is, in average,
equal to 165 lux. This value is probably too low, but it is dymaore energy efficient to
start with too low a value than too high a value for the setpdtrforces the user to react
and thanks to the biased adaptation (biased towards Idweriilances, see Section 4.2.1),
the minimal value of setpoint (that satisfies the user) maghehed. Otherwise, user may
not react with high illuminances, even if a lower value woalso be satisfying.

3.5.3 Blinds Controller

The second fuzzy rule base (“llluminance” rule base) of thireds controller deals with
indoor illuminance (see Section 3.3.1.1). Thanks to thera@sioned Rl model, it is
possible to provide values of blinds position better suitethe reality.

For the rules in winter, the goal is to find blind positionstilehenter the most possible
solar gains, and thus a value of 2500 lux (considered as lledrg specialists in visual
ergonomics) is aimed for indoor illuminance. For the rulesummer, a lower value of
400 lux is aimed in order to reject a maximum of solar gains.

For each season two rules are considered for this commisgidhat are the ones match-
ing with vertical outdoor illuminance is higland vertical outdoor illuminance is mid
With the last ruleyertical outdoor illuminance is lopthe corresponding blind positions
are kept at 1.0 (completely open) (see Appendix A.2).

For the lower blind, a minimal opening of 0.4 is preservedltovavisual contact with
the outdoor environment.
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Adaptation to User

“They are in you and in me; they created us, body and mind; agid pheservation
is the ultimate rationale for our existence...they go bynhene of genes, and we
are their survival machines. (Richard Dawkins)

Several strategies are applied to make the automatic dlemsradapted to user wishes.
This chapter first explains how the system deals with theingemractions. Then, the adap-
tation to user concerning the electric lighting and heasystems is detailed. Afterwards,
the functioning of Genetic Algorithms is described and fiplecation to the shading de-
vice controller is provided. Finally, the adaptation presesing GAs is tested on some
set of synthetic wishes and its efficiency is compared toraihgémization methods such
as gradient descent and Simulated Annealing.

4.1 User Interactions

Chapter 2 has pointed out the necessity of overriding faslto increase the acceptance
of automatic controllers. In this work, standard interfawedules were provided with the
European Installation Bus that equipped the LESO buildgsg (Chapter 5). Thus, there
was no need to install additional interfaces for our purposegreat benefit of this, is
the fact that occupants were already used to this interfaderdroduction of automatic
control was thus less disturbing. Moreover, using stanadedifaces may, in some cases,
avoid a kind of “Big Brother” fear that could appear when pledpel being watched. The
interface modules are described in Section 5.3.4.

User interactions have always a direct effect on the consitfgystem in order to give
the user the feeling thaie controls his environment:

Electric lighting system Users may switch on or off the lights, or may precisely
choose the electric lighting level.

Heating system Users may change the temperature setpoint, and an incrighse o
setpoint will immediately start the heating system as fahasndoor temperature
is below this setpoint.

Blinds Users may choose any blind position they desire, blindsatilays react
to their interaction.

49
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An additional interaction opportunity is themporary override selectorlt allows
the user to stop the automatic control (regarding eledgittihg and blind systems) as
long as somebody stays in the room. Tslisep modejives the user the opportunity to
have particular environmental conditions during excemlasituations (e.g. completely
closing the blinds and switching off the lights during a slshow, completely opening
the blinds for cleaning of windows, switching on the lightswdl power for a temporary
and special task, etc.). Interactions done when the autocttrol is in thesleep mode
are not considered for the user adaptation.

4.2 Electric Lighting and Heating Control Adaptation

The adaptation to user regarding electric lighting andihgas carried on immediately
after a user interaction. These adaptation processes scglii in this section.

4.2.1 Electric Lighting Control Adaptation

When the user interacts with the electric lighting systeme, ittuminance setpoint de-
sired (E.s,) is determined by using the Rl model and the electric lightimodel (see
Sections 3.4.2 and 3.4.3) with the current values of blinsitiams and electric lighting
power. This desired setpoint is stored and the control ipesued during three minutes
in order to let the user chooses exactly the illuminance e@lwases are eliminated and
not taken into account for the adaptation:

o |f the automatic control was in treeep mode

o [f the user switches off the lights and the desired setpsihtgher than the current
setpoint (because of a high daylight illuminance for ins&n

o [f the user switches off the lights and leaves the room.

If none of these cases appear, the adaptation takes placediawely after the three min-
utes timeout (this adaptation process takes less than coadgef CPU time).

First, the desired illuminanck,,, is averaged with the current illuminance setpoint
F.t, in order to smooth the adaptation and to reduce the impat efroneous wish:

Ewish + Eset
2

Ewish,av -

At this point, two situations exist: either the new setpdi;y, ., is lower than the
current one, or the new setpoint is higher than the curreat dme goal is to integrate
this new setpoint in the electric lighting control systenhijle trying to limit at maximum
the electrical energy consumption. Thus, if the new setpsilower than the current one,
the adaptation process simply replaces the old setpoirfidnéw one. But on the other
hand, if the new setpoint is higher than the current one, ttapi@tion process tries to
prevent reaching too high an illuminance setpoint, whilkstoviding the possibility to
reach any setpoint level if the user insists.
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A method for limiting the adaptation towards high illumir@nsetpoint is to rely on
the illuminance provided by the electric lighting systerfutltpower (). If the current
setpoint is already at this value, that means the illumiedras reached the upper limit of
the electric lighting system, and one may assume that theraywas designed to provide
sufficient light during night. Thus:

e Additional increasing of the setpoint should be stronglighmack and a maximum
increase of 20% (fixed arbitrarily) of the current value iketated whenF,,, =
Egys.

e Higher current illuminance setpoint should lead to toleahaller change towards
higher setpoint.

e Inversely, lower current setpoint should tolerate greageration, up to a certain
limit.
These three requirements are obtained with a function tEathe behaviour depicted on

Figure 4.1. A reasonable function, which included theseiireqnents, is given by the
following mathematical expressions:

0.2 (Eyys)?

When E,.; > V0.2 £y, then AFE 0 = 5
set

When E,; < V0.2 Eyy, then AFE 0 = V0.2 Egyg

The figure shows thA E,,... in function of the current setpoitii,.;, assuming an ex-
ample value of 200 lux foF,,;. For lower values of current setpoint, the adaptation may
be large (up to 90 lux), but with higher values of current egtpthe maximum adaptation
decreases quickly. Whefi,.; = F,;, the aimed 20% of variation are reached (40 lux).

Finally, the new setpoint appliell, ...s.; is equal to:

Encwsct = min(Ewish,av ) Eset + AErrmw)

4.2.2 Heating Control Adaptation

When the user chooses a new temperature setpoint via tifaggea new calculation of
heating power (see Section 3.3.3) is carried out. Thus, ¢lagirig controller is adapted
directly to user wishes without using any override feature.

Providing such control opportunity seems in principle tosoéicient to satisfy the
users regarding thermal comfort. In fact, assuming a métadctivity of 1.2 met (typical
for an office work activity), a clothing value of 1.1 clo (tyail for winter inside clothing),
an air velocity of 0.1 m/s and a relative humidity of 50% Fargyequation [Fanger, 1982]
allows to calculate a PPD (predicted percentage of didiatipeople) lower than 10%
for a difference oft: 2.5°C from the optimal indoor temperature (ZDin this case). That
shows that the temperature range considered as comfoitatiéte large. Thus, more
accurate adaptation procedures are probably not necessary
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Figure 4.1:Maximum increasing adaptation value in function of the euatrilluminance
setpoint s, = 200 lux)

4.3 Genetic Algorithms

Among the numerous optimization techniques, Genetic Afigors have become quite
popular thanks to their robustness and their capabilitees a broad range of problems.
This section presents a brief history of GAs and describes they work through the
different genetic operators. A mathematical justificatidi®GAs is then provided.

4.3.1 History

In 1967, Bagley first used the phrase “Genetic Algorithm” ia dissertation [Bagley,
1967]. He studied adaptive systems and introduced Gendgimrithms (GAs) to solve
problems of game theory. But the history of GAs is most comisntaced to Holland’s
work. Holland conducted studies on cellular automata athhigersity of Michigan, and
his text “Adaptation in Natural and Artificial Systems”, pisihed in 1975, is generally
acknowledged as the beginning of the research in GAs.

At the beginning, during the 1970s, the main works was rdlaidixed length binary
representation for function optimization such as Hollstevork that provides detailed
analysis of the effect that different selection methods rewating strategies have on the
performance of a GA. Another famous author, De Jong, attedhiat define the features
of the adaptive mechanisms in the family of Genetic Alganihthat leads to a robust
search procedure. But the research in GAs was still maimlgretical, with very few real
applications.

The situation changed in the early 1980s with the appearnain@e abundance of ap-
plications in many domains. This brought a new perspectivihé theory and several
performance improvements were achieved by specializing@A operators. Further-
more, new findings regarding the applicability, robustreass tuning of GA parameters
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became available [Goldberg, 1989].

Nowadays, many researchers still work on GAs developmeriiamy more are ap-
plying them in numerous domains. In engineering, in scisrcel in the business world,
GAs are applied for plenty of problems as data mining, raytstheduling, time series
prediction and of course optimization problems.

4.3.2 Basic Principles

Genetic algorithms are inspired from biological evolut{oatural selection) and are an
elegant way for finding optimal solutions (in GAs considessdhe individuals) of a given
problem space (the individuals’ environment). Three bpsitciples:

e There is a population of individuals

e Each individual is represented by a finite string of symblatgwn as the chromo-
some

e A chromosome encodes a possible solution in a given prohpares(search space)

As in biology, the following definitions are usegenotypewhich is the genetic com-
position of an individual, i.e. the information containedthe chromosome argheno-
type which is the expressed traits of an individual.

The genotype gives rise to the phenotype, which in turn id tsdetermine how well
the individual is adapted to his environment, via a “fitndssiction. This function allows
to evaluate and classify the individuals on a performandetps view. It is specific to
one problem, and its determination is one of the major chg#ts of the use of GAs.

The standard Genetic Algorithm works as follows:
1. Generate an initial population (at random, for example)

2. Eachindividual is then decoded and evaluated accordisgrhe predefined quality
criteria, by using a fitness function

3. A new population is formed (corresponding to the next gatien) using genetic
operators:

e Selection: individuals are selected in accordance to fliréss values
e Crossover (recombination) : individuals are recombined
e Mutation : small changes are randomly applied to individual
The steps 2 and 3 are repeated until the “fitness” of an indaligs good enough or
over a certain number of generations.
In fact, natural selection ensures that chromosomes wathigher fithess will propagate

themselves into next generations and genetic operatoms tdlexplore the whole search
space.
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Figure 4.2:Demonstration of a Genetic Algorithm over one generation

A simple example is given in Figure 4.2 to illustrate the aitqn. It shows the transi-

tion from one generation to the next. The population cossistix individuals, each one
represented by an artificial chromosome containing six gedegene can take on one
of two values (marked by black and white boxes). In this sergtample, the fithess of
an individual equals the number of black boxes (genes) ichitsmosome (fitness values
are displayed below the chromosomes). Selection (reptimi)ds here performed in a
probabilistic way: the higher an individual’s fitness ise thetter is its chance of being
selected. Thus, some parents are selected more than orleethigrs are never selected.
Each selected pair of parents is recombined to produce tisprafg, an operation known
as crossover. This is done by exchanging all genes to thé ofgh randomly selected
crossover point. Mutation is then applied with low probapiby simply flipping the
gene’s value.
The application of the genetic operators on the populatidheogeneration X has yielded
a perfect individual, with a fitness value of 6, at generaed. Furthermore, the average
fitness of the population, computed over all individualss been increased (from 3.0 to
3.7 in this example).

In this example, the individuals (chromosomes) are veryplnfcontaining only six
binary genes), and there are no differences between theptnaf phenotype and geno-
type. There are complicated mappings of genotype/pheepbyp within this work, phe-
notype will simply refer to a genotype evaluated throughfitmess function. Moreover
this example does not show the difficulty of encoding the ipiiéésolutions of a specific
problem in the chromosome, which is the main issue of theiegtn of GAs.
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4.3.3 Genetic Operators

GAs work thanks to the combination of three type of operatsetection, crossover and
mutation), each of them being inspired by a biological pssceThey are individually
described below. The mathematical description of all dpesapresented here can be
found in the book of Mitchell [Mitchell, 1996].

4.3.3.1 Selection

A very important aspect is to decide which individuals skioog¢ chosen as parents for
the reproduction process. A probabilistic selection ifqrered based upon the fitness
of the individuals. It gives the better individuals a higlotiance of being selected. An
individual may be selected more than once while others weillem be chosen to reproduce
in the next generation. Several schemes of the selectiaeps@xist:

Roulette wheellt chooses the offspring by using a roulette wheel with eachi i
vidual's slot sized according to its fitness. The probapditchoosing an individual
is then proportional to the individual’s fitness.

Elitism The best individual (or a few best individuals) is copiedte hew popula-
tion. The rest are chosen in a classical way. Elitism prevkrsing the best found
solution to date.

Tournament A set of n individuals is randomly selected and then the fittest is
taken.n is often equal to 2. This method of selection applies an autit selective
pressure over roulette wheel selection.

Ranking methods When the different fitnesses differ greatly the roulette @he
selection will not work properly (certain slots would be rexhely large compared

to others). The idea is to rank the population and then reptle fitness of the

individuals by their ranking.

Only few works have tried to compare the different selectimthods, but during the
last decade ranking methods have gained increasing pdgwad are thought to be the
best method, which seems to be confirmed by a recent studygiZarad Kim, 2000].

Thus, the normalized geometric ranking method [Houck etl&895] was chosen. It
assigns the following probabilit; to solution: when all solutions have been sorted:

q r—1
P, 5 (1—9q)

= 1-(1—g¥N
Where Probability of selecting thé&" individual
Probability of selecting the best individual
Rank of the individual, where 1 is the best
Population size

SR
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4.3.3.2 Crossover

The crossover operator is the prime distinguishing facta Genetic Algorithm from
other optimization algorithms and its role is to spread tiheaatageous traits of individ-
uals throughout the population.

Once two parents have been selected, the Genetic Algoritmbines them to create
two new offspring. This recombination is performed by thessover operator. Differ-
ent crossover operators exist: the simple crossover,nagitic crossover and heuristic
crossover.

Let us denote the two parents @slimensional vectorX andY. The simple crossover
generates a random numlgenniformly distributed over the interval [d},and creates the
two new offspringX’ andY” as follows:

, x; if i<(

i y; otherwise
g Jw i i<
Y= x; otherwise

The arithmetic crossover is similar but produces two comefitary linear combina-
tions of the parents depending on a uniform random valgel/ (0, 1):

X = X+(1-nrY
Y = (1-nX+rY

The heuristic crossover is slightly different, becauseadtices a linear extrapolation
of the two individuals. If the new individual is outside thelgion boundaries, a new
extrapolation is done until the individual is feasible. Tdrdrapolation is performed as
follows, assumingX is better tharly” in terms of fithess:

X = X+r(X-Y)
Y = X

In this work, the simple crossover was chosen for its sinitglic

4.3.3.3 Mutation

The last operator in the Genetic Algorithm is the mutatiagoathm. The effect of mu-
tation is to prevent the population from stagnating at amgl@ptimum. With mutated
genes, the GAs may be able to arrive at better individuals thes previously possible.
Three main mutation operators are used:

Boundary mutation It replaces the value of a gene with either the upper or lower
bound for that gene (chosen randomly).

Uniform mutation It replaces the value of a gene with a uniform random value
selected between upper and lower bounds specified by the user
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Non-uniform mutation It replaces the value of a gene with a non-uniform random
value selected between upper and lower bounds specifiecehystr. It increases
the probability of having smaller mutation as the evoluti@ts to its later stages.

The non-uniform mutation operator is the more sophistitatee, and it has been seen
to work well for our purpose. It randomly selects (using afem distribution) one gene
located at thg position on the chromosome and sets it equal to a non-unifardom
number:

NN
zi + (v; — x;) (r2 (1 - #)) if i=j andr; <0.5

B )y
U=\ (o) (e (1-5%)) i i=j and 1y > 0.5

T otherwise

Where  wu;,v;:  Lower and upper bounds for gene
ri,r2:  Uniform random number in the interval [0,1]

G- Current generation number
Gmaz:  Maximum number of generations
b: Shape parameter

4.3.4 The Schema Theorem as a Mathematical Justification

Intuitively, it seems obvious that Genetic Algorithms waikd may be considered as an
optimization method. But it is quite hard to formally contiggize GAs and thus only a
few theories are available. A mathematical justificatiarst fijiven by Holland [Holland,
1975], for the simple GA exists all the same.

This theory, detailed in the Goldberg’s book [Goldberg,9]9& based upon the def-
inition of aschemaA schema is a template for a bit string of lengtischema are made
of ones and zeros (this demonstration only deals with a pieacoding GA) and asteriks
(x) that act as wild cards within the string. So, the schema

H=1x%01x

represents the four followings bit strings0 010, 10011, 11010, 11011 which
are callednstance®f the schemd.

Two important definitions:

Theorder of a schema is the number of defining positions it contaire, itieans
the number of nor bits. In the above example, the ordgH) is 3.

Thedefining lengthof a schema is the distance between leftmost and rightmest de
fined bits inH. In the example, the outmost defined positions are tharid the
4%, So, the defining length( H ) is 3.
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Let us suppose that there areinstances of the schema H at timé a population
of n individuals. This is denoted by:(H,t). In addition,S; defines a set of bit strings
(i =1,2,...,n). Applying the first genetic operator (roulette wheel séte), a bit string
S; containing the schemA is selected according to the probability

i
i = 4.1
Pi= S (4.1)

wheref; is the fitness of the individual

The number of instances of the schefiat timet + 1 is given by the sum of all the
selection probabilities of bit strings containing the solag?, multiplied by the number
of selections applied (size of the population

i il
m(H,t+1)=n- =n- 4.2
(4D =n 2 S = 5 *-2)
Defining f(H) as the average fitness of instances of H, one obtains:
Yo fi=m(H.t)- f(H) (4.3)
J
Thus, using 4.2 and 4.3:
f(H)
m(H,t+1)=m(H,t) -n - —+ 4.4
(H,t+1) =m(H,1) S 7 (4.4
Since the average fitness of the population is giverf by Z,j /i , Equation 4.4 becomes:
m(H,t+1) :m(H,t)~n~@ (4.5)

Let us suppose that a schema H remains above the averageanftityyu- f with ¢ being
a strictly positive constant. Equation 4.5 is now:

m(H,t+1) :m(H,,t)~(f+c~f)-%:(1+c)-m(H7t) (4.6)

Thus, beginning at = 0 and aftert generations, one obtains:
m(H,t+1) =m(H,0) (1+c)’ 4.7)

This clearly shows that selection leads to an exponentiatiseasing of the number of
individuals having a schema with above average fitness.

Now, let us calculate the probabilipg of our scheme H to survive a crossover operator.
It depends on the defining length of the schema and of theléstgth! of the individual’s
chromosome:

6(H)
s, =1——+ 4,
Ds 1 (4.8)
If the crossover occurs with the probabiljty, the survival probability becomes:
0(H)

ps=1—pc- -1 (4.9)
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The selection operator and the crossover operator can Is&gdeved independent, so they
can be gathered together and Equation 4.5 becbmes
H H

m(H,t+1) > m(H,t) -n- y . (1 — P (;(—1)> (4.10)
The last step is to consider the mutation operator. The ibityeof a gene to survive to
the mutation isl — p,,,, with p,,, being the mutation probability. With the ordetH ) of
the schema, the probability tht survives the mutation operator(is— p,,)°". Finally,
including this probability in Equation 4.10:

m(H,t+1)>m(H,t) n- @ . <1 —Pe+ (;(—il)) (1= pp)°H) (4.11)

This result, known as th8chema Theorenshows that short, low order and above
average schema have a large survival probability and tlegthll grow exponentially
with the number of generations. But there are several liioita of the Schema Theorem.
In particular, it does not apply to schema with real numbansl other operators such as
the fitness ranking cannot be rigorously explained with thigiral interpretation of the
theorem.

Moreover, the inexactitude of the inequality is such thatmé were to try to use the
Schema Theorem to predict the representation of a partibylgerplane over multiple
generations, the resulting predictions would in many casasseless or misleading.

However, an important information should be pointed outirduthe encoding pro-
cess (see Section 4.4.1), one has to take care to build a oboone that enables robust
and efficient schema to appear. This also deals @piktasisthe process in which a gene
is expressed or suppressed due to the interaction betwees gethe expression of the
genotype [Rochet, 1997]. An example of this is when a cegaire can turn on or off the
expression in the phenotype of other genes.

4.4 Shading Device Control Adaptation

The adaptation process for the blind controller occurs eaght assuming that at least
one wish has been expressed during the day. Expressing anegstis raising or lowering
the blind. Since the system does not immediately learn ustres (but only once a day),
the automatic system is temporarily switched off (typigalring one hour) when the
user expresses a wish, in order not to interfere with thellgsition decided by the user.

In addition, at the end of the week an adaptation processrigedaout taking into
account all wishes expressed during the week, starting frenoriginal controller (de-
fault one). If the individual found via this method is betthan the current controller,
it replaces it. This additional adaptation process is perél in order to ensure that the

1The inequality is due to the possibility of generating a schél from two schema not containing.
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optimal controller is currently running. For instance, sinlering several wishes of the
user together may allow to determine if they were due to ghapblems or illuminance
preferences, and thus adapting and anticipating in the wigh (see Section 4.5.8).

The adaptation has two aims with regard to the shading dean#oller: it has to
learn the new user wishes concerning the blind position ehés to keep the accumu-
lated experience concerning the previous learned wisheethanenergy efficient control.
Therefore, the GAs are applied on two bases, the so-callezhbase”, which contains
the latest wishes expressed by the user, and the “contbak&h contains the outputs
of the current controller. The “wishbase” allows to ada tontroller to the new user
preferences and the “contbase” prevents forgetting trernmdtion already learned and
contained in the current controller.

During the adaptation process, the system remains effiiemt an energetic point
of view for two reasons: the system is energy efficient befbeefirst adaptation (the
original rules lead to an energy efficient controller) ane wish filter prevents learning
energetically bad wishes, as long as these wishes are reztespby the user.

In the case where there are two (or more) blinds per room, twanre) similar
and independent controllers are used. The independende afifferent controllers is
the unique way to ensure a total adaptation to user wisheldir blinds. The same
adaptation process is carried out independently for eaot.bl

4.4.1 Encoding

There are two main ways to adapt fuzzy system by using GAsr@reret al., 1995a].
The first consists in generating a set of fuzzy rules that iothee set of examples, and
the second consists in tuning membership function paramete pre-existing fuzzy rule
base. Since we already have an efficient and expert fuzzybade, the second solution
is applied.

Generally, tuning fuzzy rule bases using GAs is achievealitin the modification of
the parameters of the different membership functions. Anatder to reduce the number
of parameters to be adjusted, not each membership funatidescribed with a set of
parameters but only few parameters are sufficient to destiidwhole fuzzy variable, as
depicted in Figure 4.3.

In this example, the mean temperat(ig of the mid-season (transition between winter
and summer) and a width7;, are sufficient to describe the whole variable.

But given the fact that there are only crisp values as oufputsir fuzzy system (see
Appendix A), a simpler set of parameters is used in the atlaptprocess. The point is
to only encode the crisp outputs of the fuzzy system for the adaptation using GAs.
For instance, in the rule

If “Season is winter” and “Evg,, is high” then “a =0.6"
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Figure 4.3:Adaptation on membership function parameters

the output blind position (here = 0.6) is the parameter that will be adjusted by the adap-
tation process.

Thus, since there are 10 and 8 rules in the two fuzzy rule kzgbe blinds controller
(see Appendix A), there are 18 parameters to adjuatiationsof these parameters are
represented as genes on a chromosome. Each individualr@mokome) will consist of
18 genes encoding the 18 variations. The geneseatenumberghat can take any value
between -1 and 1. Thus, each gene characterizes a change fuzay rule of the con-
trollers and each chromosome corresponds to one contfmilene blind. One advantage
of such an encoding is that no additional constraint (thg cohstraint is to have values of
blind position between 0 and 1) is needed because the lotheoiles is keptin any case.

The 18 genes are not randomly located on the chromosome.dér tr enable ro-
bust and efficienschemao appear, some precautions have to be taken. Even if we do
not know in advance which kind of schema may be interestiogyesbasic rules should

however be applied.

First, genes related to the same fuzzy rule base should bergdttogether. Thus, the
first 10 genes of the chromosome concern the glare fuzzy ade hnd the last 8 genes

concern the illuminance fuzzy rule base.

Second, genes related to similar rules should be neighbiorse in fuzzy logic the
output comes from the aggregation of matching (and thezedionilar) rules. But, in fact,
all rules are similar to some other rules, and it has to bedéelcivhich kind of variables
should be linked together. For instance, in the fuzzy glgstesn, two main variables
appear in the rules: the solar altitude and azimuth. Hetegstbeen chosen to group the
rules in order to facilitate the tuning of the controller betour depending on the azimuth.
Then, the genes related to different azimuth (and the sataeattude) are grouped to-
gether, and schema containing efficient combinations efdbfiositions depending on

azimuth will have a larger probability of survival.
The azimuth variable was chosen because it concerns theesatration direction and
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allows to tune the blind position precisely depending on kwevsun illuminates the user
(towards his face, his back or his profile), whereas theualéiis used to roughly determi-
nate the blind position in order to control the sun peneiratiepth.

Regarding the fuzzy illuminance system, it was chosen tilitite the tuning of the
fuzzy rules depending on the global vertical illuminanceéad of the season. This choice
comes from the fact that it is more important to preciselytaarthe blind position de-
pending on the outdoor vertical illuminance rather thanhengeason, which is only used
to detect if it is currently the heating period or not.

The encoding details are given in Appendix A.3.

4.4.2 Wishbase

Each time the user expresses a wish regarding the blind,utihent conditions and the
corresponding desired blind position are stored in thelibvése” matrix (see Table 4.1).
In addition, the last column provides the oldness of the wishthe number of adaptation
steps encountered. The original value of oldness is setatdlat every adaptation step,
this value is increased by 1. A wish older than 10 is removenhfthe “wishbase”.

Conditions Expressed Oldness of
user wishes wishes
Season Ewg, FEuvg, Solaraltitude azimuth Blind position Steps
[°C]  [lux]  [lux] [deg] [deq] [] []
17 1000 13000 17 —85 0.5 1
21 34’000 58000 64 —12 0.8 2

Table 4.1:Example of a “wishbase” matrix

Every night, all the new wishes expressed during the day léeesfil before the adap-
tation is undertaken. If a wish can lead to very negative equences from an energetic
point of view, the wish is “attenuated” in order to becomergpéically better. The overall
diagram of this pre-processing filter is given in Figure 4.4.

The new wishes are compared to the wishes of the last ten alagshe energetically
“bad wishes” are only attenuated if no similar wishes haveaaly been expressed. This
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method ensures that the “wrong” wishes (not firmly desiredhayuser, expressed only
once) will be filtered, while the “special” wishes (partiaultaste of the user, expressed
several times) will remain unfiltered and thus strongly tekeo account.

There are two situations in which wishes could lead to veyatige consequences
from an energetic point of view. In summer, when the globaiival illuminance Evg)
is high, a large opening of the blinds could lead to overinggiti the room. In winter, also
when the vertical illuminance is high, closing the blinde tauch corresponds to a loss
of free solar gains, which would have greatly reduced theilgdoad of the day. The
“attenuation” (A«) is thus calculated through a simple fuzzy rule base sunz®étielow:

If “Season is winter” and “Evg,, is high” and “«is closed” then "Aa = +0.25"
If “Season is summer” and Ev,,; is high” and “« is widely open” then ‘Aa =-0.25"
If “Other conditions” then “Aa =0"

In some rare cases, the “attenuation” applied is too largkthe filtered wish goes
in the opposite direction of the unfiltered wish relativedythe position provided by the
automatic system (see Section 4.5.4). In these cases, sievaiue is set equal to the
blind position value provided by the current control systamd this disables the wish.
That means, it becomes useless for the adaptation proagssidstill stored as a wish.
So, if a similar wish is expressed, it remains unfiltered.

When all the wishes have been filtered, the “wishbase” isy¢ade used by the
Genetic Algorithms.

4.4.3 Contbase

The second aim of the adaptation is to keep the accumulapestierce from the previous
learned wishes and the energy efficiency of the controllee "Tontbase” is used for this
task; it contains the blind positions given by the currenttodgller in different conditions
(season, outdoor illuminances, sun position).

The main difficulty is to choose the set of different condigon order to fill at best the
space of all the possible situations. Thanks to the factttieaGAs are just adapting the
output values of the fuzzy rules (see Section 4.4.1) andatrehanging the membership
functions, itis possible to define a fixed set of values foheaput of the fuzzy systems in
order to have every fuzzy membership functions individuadhtching. For instance, the
fuzzy variable “vertical global illuminance” has a fuzzyt séthree membership functions
(low, mediumandhigh), so only 3 correctly chosen values are necessary to coefplet
cover the space of this variable. Likewise, 2 values of segsommer and winter), 2
values of “direct vertical illuminance”, 3 solar altitudasd 3 solar azimuths are needed.
They are given in Table 4.2. The total number of combinatisr®- 2-2- 3 -3 = 108.
Two supplementary conditions are added, one for a summaét aigd one for a winter
night. Thus, the complete chosen set of values contains ifféesht conditions.

The structure of “Contbase” is similar to that of “wishba¢eée Table 4.3).
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Fuzzy variable Corresponding set of values
Season 0°C 20°C

Evgir 1000 lux 307000 lux
Evgiop 5000 lux 40’000 lux 80’000 lux
Solar altitude 10° 30° 70°
Solar azimuth —60° 0° 60°

Table 4.2:Values of fuzzy variables chosen for the contbase definition

Conditions Controller
outputs
Season Ewg, FEvge Solaraltitude  Solar azimuth Blind position
[°Cl  [lux]  [lux] [deg] [deq] [l
0 1000 5000 10 —60 1.0
0 1000 40’000 10 —60 0.4
20 30'000 80’000 70 60 0.6

Table 4.3:The “contbase” matrix

Since the controller is adapted and therefore modified emigyt, this “contbase”
should be re-filled daily with the latest controller befoegrging out the GAs adaptation.

In addition to the use of the “contbase”, a bias in the origawgoulation has been im-
plemented to keep the experience accumulated in the cwwanller through the previ-
ous adaptations: at the beginning of the adaptation prats¥%sof the individuals of the
initial population are randomly generated (using a unifalistribution) and the remain-
ing 25% correspond to the current controller (individuathwéhromosome = [0 0 ... 0]).
This biased population generation has been defined in codgreted up the convergence
and not to accidentally lose the genotype of the currentrobiet.

4.4.4 Fitness Function

Once the two bases (“wishbase” and “contbase”) have begam@e, the adaptation using
GAs is carried out. In order to select the best individualseasuare of how efficient an
individual is, has to be defined. This is done via the fithesstion.

The fitness of an individual (i.e. a tested controller) icakdted using both bases. An ef-
ficient individual should give good results both on the “d¢mage” (difference between the
values given by the old controller and the tested indivifilaad on the “wishbase” (dif-
ference between the blind position provided by the testdivicual and the one desired
by the user). The fitness of the controlieis thus defined as follows:

(ay, (¢;) — oy, (wishbasg)®

fitnesgc;) = 1 / {Z (a; (¢;) — ;j (contbasg)® + W Y JoTness)

j k

Where a;(c;): Blind position given by controllet; in contbase condition
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aj(contbasg Blind position given by old controller in contbase condiitij
ar(c): Blind position given by controller; in wishbase conditio
ai(wishbasg Wish numbert, expressed in wishbase conditibn
oldnes$a;,):  Number of adaptation steps encountered by the wish
w: Weight parameter

Importance of old wishes is slightly reduced in comparismméw wishes. This is
achieved by using the square root of the oldness of a wiskeid#émominator of the sec-
ond term of the fitness.

Moreover, since there are normally much less wishes exgtlassin the 110 different
conditions contained in “contbase”, a weidlit larger than 1 is necessary to ensure a
good adaptation to user wishes even if there are only fewesisixpressed. The weight
parameter has been chosen equal to 20, which is balancingtm&/1 the relative im-
portance of “contbase” on “wishbase”. That means, sincesh&d are expressed during
a day, the two bases have the same importance in the fitness fandtie effect of the
weight parameter is more precisely described in Sectio64.5

Later in this chapter, in Section 4.6, GAs will be comparethvather optimization
methods minimizing an “error” valu&, = 1/fitness. In order to assess and compare
their performances, two different criterim@derateandseverg are defined and related to
a blind position error.

The moderatecriterion is an errot,. of an individual equivalent to a controller that
gives perfect blind positions for all “contbase” conditsoand only one blind position
wrong of 0.5 in the “wishbase” conditions. That means thivitdual completely fulfills
the “contbase” conditions but does not fulfill only one wisihoviding a blind position
0.5 higher or lower than the desired position (expressedidition’ by the user).

The lower limit of this errorE,. of the controller;; may be determined as follows:
E,.(moderate = 1/fitness=

o (¢;) — o (wishbasg)®

yoldness(;)

= |3 (e (c;) — a; (contbasg)® + W > (
I k
But since
> (@ (¢;) — o (contbasg)® > 0
j
One obtains

) — o (wishbasg)®

. 2
Er(moderate > VVZ (Oék (01 > W (O(k./ (Cl) — Qe (WIShbaSé)
&

J/oldnessy) - Voldness;)

With  ay (¢;) — ay (Wishbasg¢ = 0.5 and assuming oldnesg() = 1

2The value of 5 wishes per day is about the maximum number bf m@ractions with blinds observed
during the experiments.
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One finally has:
0.5%
E,.(moderate > W - =5
( 8> Vil
The more demandingeverecriterion corresponds to one wrong blind position of 0.1 an
the errorE, is similarly obtained:

E,(severé > W 0% _ 0.2
T = \/I - .

4.4.5 Genetic Algorithms Characterization

This subsection first deals with the setting of the differgstameters of the Genetic Al-
gorithms and then, the relative effect of the genetic opesds studied.

The whole adaptation module has been implemented on a MAT_pRtform, using
the GA toolbox [Houck et al., 1995] developed by Houck et &tha North Carolina State
University (USA). Thanks to the convenience and flexibitifythis toolbox, the code was
easily modified to fulfill our needs.

4.4.5.1 Parameters Settings

Parameters settings is a major concern in GAs. The optimalfggarameters depends
on each problem, and generally the setting is done by usimg sales of thumb. In this
work, a study of the most important parameters has beeredaoit extensively. The
studied parameters are namely: the number of crossoverg@l@ 100) and mutations
(20, 40 or 100) at each generation, the population size (480andividuals) and the
shape parameter (2 or 3). All the possible combination ocpaters have been tested,
which corresponds to 33 - 2 - 2 = 36 different combinations. For each combinatim,
simulations were run with a set of 32 real wishes observethgwa mid-season period.
These wishes are taken as they were expressed in only on€hdayest is quite complex
because all genes are involved and should be changed by GAs.

Some other parameters have been empirically chosen suoh emkimum number of
generations fixed at 50, to ensure a reasonable time for tiraination and the selection
function parameter fixed at 0.08, which is the default vabrdtie probability of selecting
the best individual.

First, a matrix of correlatiofshas been calculated from the results of the simulations
to check the influence of the different parameters on the Gsargence characteristic.
Table 4.4 shows the calculated correlations.

The time needed for the optimization depends quite obwoaisithe number of mu-
tations and crossovers per generation (mutations aretlgligiore time consuming than
crossovers). Higher number of operations leads to longepatational time. Moreover,
as it could be expected, the shape parameter does not irglwemneputing time (it re-
quires no supplementary calculation). Surprisingly, gdapopulation does not lead to
a higher time of computation (it even tends to be the opppsiieis may come from the

3A reminder of basic statistics definitions is provided in &pgix C.
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Number of Number of Shape Population

crossovers —mutations  parameter size
Correl. with CPU time 0.59 0.75 0.02 —0.14
Correl. withE,.* —0.34 —0.58 0.02 —0.28

*E, = 1/fitness

Table 4.4:Correlations of Genetic Algorithm parameters with the coagional time and
the errorE,

fact that the computational time is mainly due to the mutatiod crossover processes
(that do not depend on population size) and not from the Seteprocess (that largely
depends on population size).

The results quality £,) mainly depends on the mutation operator, a bit less on the
crossover operator and again a bit less on the populatien $tee shape parameter does
not seem to influence the results.

The relative importance of the mutation and crossover a¢pesare studied more thor-
oughly in the next section.

Table 4.5 shows a summary of the results obtained. A verywaging point is that
GAs have converged for all set of parameters to sufficientit€sthemoderatecriterion
being always satisfiedYE, < 5) compared to the best result (lowdst) obtained.

Number of Number of Population E. Standard CPU time

crossovers — mutations size deviation [sec]
Lower E,. 40 100 80 43.6 0.4 50.7
Longer CPU time 100 100 40 43.9 0.4 87.2
Shorter CPU time 10 10 80 45.2 1.0 5.4
Higher E,. 10 10 40 45.7 1.3 6.1

Table 4.5:Summary of results

Nevertheless, the set of parameters that gives the loles quite time consum-
ing and a compromise has to be found between quality of rasdlicomputational time.
Since the considered computational times are not reallgssieé, the idea is to be rather
tolerant with them by setting a “cost function” that gives eqguivalent contribution to
10 seconds of calculation or an additional error correspantb the severecriterion
(AE, = 0.2). The “cost” for each set of parameters has been calculatddte re-
sults are given in Table 4.6. The best set found was chosetihéoimplementation of
the adaptation process. It has, in addition, the fair acagebf balancing the number of
mutations and crossovers.

To summarize, the chosen Genetic Algorithm engine has tleviag specifications:

e The size of the population is set to 80 individuals.

4The tests have been performed on a 800 Mhz computer with 51 RIMB.
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Rank “cost” Nb of Nb of Population E, Standard CPU time
value crossovers mutations size deviation [sec]

15t 0.688 40 40 80 43.8 0.5 27.3

ond 0.745 10 100 80 43.7 0.4 35.8

3d 0758 40 10 80 44.2 0.6 10.2

4th 0.770 100 40 80 43.7 0.4 39.8

5th 0.776 10 40 80 44.1 0.5 15.8

36 235 100 100 40 44.3 0.5 86.3

Table 4.6:Parameters set classified depending on a “cost functiont traups together
the error E,. and the CPU time
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Figure 4.5:Average and higher fitness evolution over the generations

e The selection function used is the “normalized geometnmkirey” method with a
probability of selecting the best individual (paramefeset to 0.08.

e At each generation, 40 simple crossovers and 40 non-unifoutations (whose
amplitudes are decreasing generation after generatierpeaformed.

e After a maximum number of 50 generations, the algorithmapged and the best
individual found over the whole process is kept as the “bestmosome”.

With these parameters and the same set of 32 real wishestrtbgsfprogresses over
the generations as depicted in Figure 4.5. Both the avenadidigher fitness obtained
at every generation are shown. The average fitness tendsptoeaply progress in a
logarithmic way with a saturation at the end, whereas thefiieess progresses more by
steps depending on the appearance of effideheman population. These behaviours
are quite standard and confirm the correctness of the cheseifigarameters.
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4.45.2 Genetic Operators Relative Effects

In order to quantify the effects of mutation and reprodutiio the optimization perfor-
mance, additional simulations have been carried out. Isetlsemulations, the two oper-
ators have been alternatively inactivated by setting to feeir number of occurrences
at each generation. When an operator is inactive, the catipoél time is reduced.
Therefore, additional simulations were carried out witleatended number of remaining
operator occurrences at each generation so as to keept,a bemputational time equal
to the one of the original algorithm. These results are dshat “extended” (in opposi-
tion to the “normal” number of operator occurrence) in taldéresults. If the crossover
operator is inactivated, “extended” means that 85 mutatwere performed at each gen-
eration instead of 40. If the mutation operator is inactdat'extended” means that 220
crossovers were performed instead of 40. The values fondgtkcalculations have been
roughly estimated from the “normal” simulations results.

Simulations were carried out again on the same sets of resdlesipreviously used.
Table 4.7 shows the results, that are averaggfiyrruns.
The results show that the mutation operator is more impbtttam the crossover operator.
Missing crossover leads to slightly worse resultsy, exceeding by 5 times theevere
criterion (AE, < 0.2) compared to original GAs, whereas missing mutation drabi
reduces results quality £, exceeding by 16 times theeverecriterion.
The “extended” version manages partly to recover convegeercentage in the case of
missing mutation, whereas it does not improve results ircse of missing crossover.
This is due to the fact that mutation is more time consumirantbrossover (missing
mutation leads to 85% less computational time whereas mgssossover leads to only
50% less), and thus the extended version in missing mutetiea has more substantial
possibilities to make improvements.

Version Percentage of Mean Standard CPUtime  Student
convergence (E,) deviation t-test value

GA original 100 44.12 0.52 30.2 undefined

No crossover, “normal” 100 45.08 0.98 13.8 6.12

No crossover, “extended” 100 44.72 0.68 29.2 4.96

No mutation, “normal” 8 47.26 0.58 4.6 -

No mutation, “extended” 54 47.13 0.89 31.5 -

*Considering thenoderatecriterion
Table 4.7:Comparison of mutation and crossover missing effects

A Student test (see Appendix C) has been applied on the sesaticerning the case
without crossover, in order to ensure that the differennds.iwith the original GAs are
significant. As soon as the t-test value is higher than 3¥ellef significance 0.001),
the hypothesis:E, (no — crossover) > E.(original) is verified and the difference is
considered as “highly significant”. Then, in both cases ffmal” and “extended”), the
case without crossover is clearly leading to worse resiltés showshe necessity and
usefulness of every operator and their combinatmget the most efficient optimization.
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4.4.6 Sensitivity Filter

At the end of the GA process, a “best chromosome” correspgrtdithe best controller is
obtained. A sensitivity filter is applied on this new chromoe in order to remove some
inaccuracy in the GAs optimization method. Indeed, it weseobed that sometimes after
the adaptation process, certain genes gave variationsieanto zero (less than 0.01) that
were useless. These small errors could have introduced biases in the results if they
were piled up.

The filter tests each gene of the new chromosome separattydiyg the value of the
gene to zero and re-evaluating the fitness. If the resultingds is higher (or equal) than
the fitness with the new gene, the value of the gene is keptat 2nce the sensitivity
filter has been run on all the genes, the new chromosome i§y/faggblied to the current
controller to obtain the new and adapted controller.

4.5 \Verification through Simulations

This section presents the adaptation process operatitndifferent synthetic wishes.

The complexity of the wishes is increasing through examplégese different examples
will show that the concerned genes are found and changedatigrby the adaptation

process, and that the others are protected from unwantedicatidns. Finally, results

of a simulation on a year time basis with a consistent usepiagented. The content of
this section has already been published in [Guillemin ¢2801, Guillemin and Molteni,

2002, Guillemin and Morel, 2002a].

4.5.1 Simple Example

Winter night is a quite particular condition for the adajutatsystem, since one gene is
dedicated to this situation. The example wish is describeble Table 4.8.

Conditions Synthetic wish
Season Ewvg. FEwvge Solaraltitude Solar azimuth Blind position
[°Cl  [lux]  [lux] [deg] [deq] [l
0 0 0 —12 110 0.00

Table 4.8:Wish expressed during a winter night

The wish pre-processing filter has no effect on the wish beedloe corresponding
conditions (in particular the absence of solar radiatiothenfacade) cannot lead to very
negative consequences from an energetic point of view anddhptation is applied di-
rectly using the original wish (see Table 4.9).

The second column of Table 4.10 shows the chromosome of gtarzbvidual ob-
tained after this adaptation process. Only gene 11 (retatdg rule “winter night” in the
“llluminance” fuzzy system) has to be changed, and the GAdzadly managed to find
the right gene to change. It is interesting to note that géhevhich described the rule
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Blind position [-]

Controller output before adaptation 1.00
Wish before pre-processing filter 0.00
Wish after pre-processing filter 0.00
Controller output after adaptation 0.04

Table 4.9:Controller output and wish in winter night conditions

“ Evg, is low” in the “Glare” fuzzy system could also have been clahghis would have
fulfilled the wish, but it would have changed the outputs @ftbntroller also in other sit-
uations (in summer nights for instance). This last solutwold have been unsatisfactory
and the GAs have found a better one.

Gene Simple | Contradictory | Ordinary Sensitivity Sensitivity | Weight effect ~ Weight effect| Multiple
number | example wishes wish filter (before) filter (after) (sol.1) (sol.2) wishes
Genes concerning the “Glare” fuzzy system

1 0 0 0 0 0 0 -0.6 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0.36 0 0 0 0 0.26
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 -0.47 0
7 0 0 0.07 0.16 0 0 -0.4 0.19
8 0 0 0 0.2 0 0 -0.4 0
9 0 0 0 0.02 0 0 0 0
10 0 0 0 0 0 0 0 0
Genes concerning the “llluminance” fuzzy system
11 -0.96 -0.73 0 0 0 0 0 -0.73
12 0 0 0 0 0 0 0 0
13 0 0 0.16 0 0 -0.16 0 0.06
14 0 0 0 -0.34 -0.34 -0.25 0 -0.42
15 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0
17 0 0 0 0 0 -0.13 0 -0.19
18 0 0 0 0 0 -0.24 0 -0.33

Table 4.10Values of the 18 genes of the best individual obtained afte2A adaptation
process for each example

4.5.2 Contradictory Wishes

In order to understand how the adaptation module proceetttisowntradictory wishes,
the previous simple example (winter night conditions) ketaand a similar wish is added
with a different value of the blind position.

The controller, after the adaptation process (see the ¢bitdnn of Table 4.10 for the
best chromosome obtained and Table 4.11 for the results)idas the average value of
the contradictory wishes, thanks to the squaring of thedéfices in the fitness function.
If there was no squaring (but only absolute values for ins#ra large difference would
not have been more penalized than a sum of two smaller diifese and the adaptation
could have given any value in the range [0,0.5]. In the caserevkthe wishes are not
expressed the same day, the system will favor the latest wish
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Blind position [-]
Controller output before adaptation 1.00
Wishes before pre-processing filter  0.00, 0.50
Wishes after pre-processing filter 0.00, 0.50
Controller output after adaptation 0.27

Table 4.11:Controller output and “contradictory” wishes

4.5.3 Ordinary Wish

This example (see Table 4.12) shows the adaptation progeasiish in ordinary condi-
tions. Results are given in Table 4.13.

Conditions Synthetic wish
Season FEuvg, FEwvg,, Solaraltitude Solar azimuth Blind position
[°C]  [lux]  [lux] [deg] [deg] []
0 30000 40000 35 60 0.00

Table 4.12:Ordinary wish expressed during a winter day

Blind position [-]

Controller output before adaptation 0.60
Wishes before pre-processing filter 1.00
Wishes after pre-processing filter 1.00
Controller output after adaptation 0.96

Table 4.13:Controller output and “ordinary” wish

The chromosome corresponding to the best found individuahown in the fourth
column of Table 4.10 and its analysis allows us to understaeadsAs operation. Gene
13 (that most corresponds to the wish conditions in the fililance” fuzzy system) has
been changed to fit to the user wish. But since the “Glare"yisystem prevents to raise
the blinds high enough, the corresponding rules in “Glaleb aeed to be increased,
which is done by adjusting the genes 4 and 7.

4.5.4 Wish Attenuation Effect

These two examples (see Table 4.14) show the wish pre-mmiogefiter effect on ener-
getically bad wishes in the case of an adequate “attendaimhin the case of too large
an “attenuation” (i.e. when the attenuated wish goes in ggposite direction of the orig-
inal wish).

In the adequate case, the “attenuation” is applied by thé ¥ilier and the system
learns the wish. In the inadequate situation, the “atteonats not applied and the wish
is disabled (the value of the wish is set equal to the valuaetontroller output).
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Blind position with Blind position with
abad wish that leads to  a bad wish that leads to
adequate “attenuation” inadequate “attenuation”

Controller output before adaptation 0.57 0.57
Wish before pre-processing filter 0.90 0.70
Wish after pre-processing filter 0.65 (0.65) 0.57 (0.49)
Controller output after adaptation 0.61 0.57

*wishes with the “attenuation” that would have been appliedgiven in brackets
Table 4.14:Controller output and wishes for the “wish attenuation” et

4.5.5 Sensitivity Filter Effect

At first, the sensitivity filter was developed to deal with thaccuracy of the GAs op-

timization method, but an other effect is also addresseH thit filter: in some cases,

certain genes (only the ones concerning the “Glare” fuzzagesy) may become inactive
when the blind positions provided by the “llluminance” fyzzystem are always lower
than the ones provided by “Glare”. That means that if thedbfinsitions asked by the
user are always low enough, the risk of glare may completislgpgear and some rules
of the first part of the fuzzy controller may become useless.

This phenomenon (influence of certain genes on others)ledagpistasis The sensi-
tivity genes filter, as previously designed, prevents ramgi@hanging this kind of genes,
and keeps them at their old values ensuring an adequateibeha¥ the controller in
case these genes are re-activated. This example (see Tab)alWistrates this feature,
because it leads to three inactive genes (genes 7, 8 and 9).

Blind position [-]

Controller output before adaptation 1.00
Wish before pre-processing filter 0.50
Wish after pre-processing filter 0.50
Controller output after adaptation 0.66

Table 4.15:Controller output and wish for the “sensitivity filter” case

In the fifth and sixth columns of Table 4.10, the chromosomthefbest individual
obtained by the GAs is shown before and after the sensitgétyes filter. Genes 7, 8
and 9 have become inactive, because gene 14 has been geshited, and they may
take any positive value without having any influence on thipuats of the shading device
controller. The sensitivity genes filter has detected thesetive genes and has forced
them to zero.

4.5.6 Weight Parameter Effect

Two different aims have to be balanced in the adaptationgsicadapting the controller
to user wishes and keeping the experience integrated irotiteotler. Depending on the
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weightV applied to the “wishbase” in the equation of the fitness fiamc{see page 64)
either the system can perfectly learn the wishes and losexjherience integrated in the
controller (large weight) or the system can slightly adapiser wishes and keep the ex-
perience (small weight). It is very critical to carefullyjast the weight. It is particularly
risky to choose too large a value for the weight: in this c&#s only look for a solution
that satisfies the wishes and completely forget the “coetbasamples. Moreover, since
the mutation width is necessarily decreasing during the &#ch, GAs can never find
the optimal solution if they take a wrong way at the beginnifpe following example
(see Table 4.16) illustrates this problem with a large we{gti=200), which is ten times
larger than the weight normally useld’€20). This wish is particularly complex to fit, be-
cause it was chosen to match a large number of rules in theuaay tontrollers (“Glare”
and “llluminance”).

Blind position [-]

Controller output before adaptation 0.59
Wish before pre-processing filter 0.00
Wish after pre-processing filter 0.00
Controller output after adaptation (solution 1) 0.13
Controller output after adaptation (solution 2) 0.16

Table 4.16:Controller output and wish for the “weight effect” case

The adaptation process has been run several times and agayérleads in 60%
of the situations to the solution 1 and in 40% to the solutiqsez columns 7 and 8 of
Table 4.10 for the corresponding chromosomes of these thaigos). Now, solution
2 should be avoided because it is a local minimum of the sespabe. The problem is
that when solution 2 is first found by GAs, the system is no é&raple to come back
to solution 1, because of the too large weight (this localimim is near the global
minimum). In fact, solution 1 only changes the genes coriggrthe “llluminance” fuzzy
system and disturbs less the conditions that are not coeddim the wish. When the
weight is 20, solution 1 is found every time. The weight fipahosen is equal to 20 and
it has been seen to be a good compromise between the two atims adaptation.

4.5.7 Multiple Wishes

This example groups together the previous wishes desdrilfedntradictory wish”, “or-
dinary wishes”, “sensitivity genes filter effect” and in “igat parameter effect” as if they
were all expressed during the same day (see Table 4.17).

It shows that all wishes are taken into account, almostyyaatien in case of a com-
bination of them. The system still finds an adequate oveolit®n when several wishes
are expressed together. The last column of Table 4.10 sh@chtomosome of the best
individual obtained.
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Blind position  Blind position  Blind position  Blind positio

“contradictory” “ordinary” “filter” “weight effect”
Output before adaptation 1.00 0.60 1.00 0.59
Wishes before filter 0.00 and0.50 1.00 0.50 0.00
Wishes after filter 0.00 and0.50 1.00 0.50 0.00
Output after adaptation 0.27 0.86 0.56 0.39

Table 4.17:Controller outputs and wishes for the “multiple wishes” eas

4.5.8 Virtual User on an Extended Period

In the previous examples, the system was tested with sesetslof synthetic wishes
and has shown a powerful ability to find solutions, even witomplex combination of
wishes. But in order to test the learning capability of thsetegn on a yearly basis, a sim-
ulation was performed with a virtual user whose wishes aresistent and only season
dependent.

The hypothetical user requests the blind to be almost cdeliplelosed { = 0.2)
in winter and almost completely open €0.8) in summer. During the simulation all the
different possible conditions (defined by the membershigfions of the fuzzy logic con-
troller) are encountered. Figures 4.6 to 4.8 show that thelitions go fromwinter with
glare risk and low solar radiatioio summer with no glare risk and high solar radiation
Each area on the figure defined by the vertical lines includies different conditions
that correspond to nine different sun positions relatitelyhe facade. The simulation
is run sequentially on the different conditions by step oééhconditions. That means it
works as if there are three conditions encountered per dythiee associated wishes
expressed by the virtual user. The adaptation process®at@ach step (i.e. each day)
considering these three wishes. Figures 4.6 to 4.8 desttréeffect of the adaptation
and the associated evolution of the controller at diffetiem¢s during the simulation. The
bar at the top of the graphics spreads over the cases whedaptation has already been
carried out.

Figure 4.6 shows that thanks to the GA adaptation, the sylsésrwidely learned what
the user wants in the encountered conditions (the contraffer adaptation curve is very
close to the simulated user wishes in comparison with thggrai controller dots) and has
kept the original controller in the not encountered cowdisi. There is only one exception
for the not encounteredinter with no glare risk and low solar radiatigavhich has also
been changed by the adaptation. This behaviour may be erglas follows: the system
has “understood” that the user did not react towards a gisikesince his reactions were
not related to the sun position (same value of blind positiesired for every sun posi-
tion). Thus, if the user is consistent, the system assunagsttl user should react in the
same way in similar conditions (at least when the solar taxfias low) without glare risk.

Figure 4.7 confirms the extrapolation capability of the eyst After 27 encountered
wishes, all theglare risk conditions in winter have been encountered and the system ha
extrapolated the user wishes to all the possible conditiomsnter. Even for a few condi-
tions in summer, the system begins to (wrongly) extrapoBite it should be noticed that
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at this point, it was really plausible that the user wantedghme blind position during
the whole year.

Figure 4.8 shows that, at this stage, the system has pegrfeatined user wishes in
winter, and has corrected the wrong extrapolation in sumiMereover, the system has
again adequately extrapolated to the unencounteoeglare riskconditions. At the end
of the simulation, the results are quite similar to the ortesws in Figure 4.8. The small
discrepancy between the user wishes and the adapted ¢tentahes from the wish pre-
processing filter (described in Section 4.4.2). It trieséduce overheating in summer
(lower blind positions) and to maximize solar gains in winfieigher blind positions).
The effect of this filter is strongly reduced in this simutetibecause the user has of-
ten repeated the wishes in similar conditions. Severalrcineulations were performed
with more complex, but always consistent, user behaviand,the system has always
managed, at least in the end, to almost perfectly learn uistes.

4.6 Adaptation Performances Comparison

The choice of Genetic Algorithms for the adaptation procedagarding blinds has to be
justified. The present section briefly introduces alteueatnethods for optimization task
and compares their performances with GAs through simulatidhese methods cover a
wide range in the optimization domain, going from Simulafethealing to direct search
algorithm and gradient descent methods. For the perforenassessment, both real and
synthetic sets of wishes are used.

4.6.1 Standard Search Methods

The so-called “standard” search methods may be broadlycared in terms of the
derivative information that is, or not, used. The ones tlmahdt use derivative informa-
tion are calledlirect search methodand the others are callel&rivative-based methods

4.6.1.1 Direct Search Methods

Direct search methods may be defined as minimization algostthat only use function
evaluations to look for the minimum. No gradient informatis needed by this kind of
algorithm. The Nelder-Mead algorithm, also known as thepéx method, is a typical
example of a direct search algorithm [Lagarias et al., 1988 algorithm is based on an
initial design ofk + 1 trials, wherek is the number of variables. A+ 1 geometric figure
in ak-dimensional space is called a simplex. It works simply witb main rules:

o First rule is to reject the trial with the least favorablepasse value in the current
simplex. A new trial is calculated, by reflection, opposaétte undesirable result.

e Second rule is never to return to a variable that has just bejented, in order to
avoid oscillations.

Even if this method is widely and happily used by practitiengince 1965, it was
proved to be unreliable and inefficient in several casesicodarly when there are many
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independent variables [Wright, 1995]. Moreover, the latkheoretical sounded back-
ground imply using it with care.

4.6.1.2 Derivative-Based Methods

The methods using gradient information find the way to tral@kn on search space
surfaces, like a marble rolling freely through a surface iti§ land valleys. Among the
derivative-based methods, the most favored is the unainstt Quasi-Newton method.
This algorithm is used when the Hessian matrix (matrix oiphsecond derivatives)
is difficult or time-consuming to evaluate. Instead of obiag the Hessian matrix at
every steps, this method gradually build up an approximatibthis matrix by using

gradient information from the previous iterations. The @gpmation procedure used
in this work is the well known BFGS formula [Fletcher, 1980ppided by Broyden,

Fletcher, Goldfarb and Shanno.

4.6.2 Simulated Annealing

Simulated Annealing (SA) was originally inspired by the ealing process in metallurgy:
a piece of metal is heated (atoms are given thermal agi)atiod then left to cool slowly.
This slow and regular cooling allows the atoms to slide peegively in their most stable
(corresponding to a minimal energy) positions. On the opppa rapid cooling would
have frozen the atoms in whatever position they had at thmet ti

In 1983, Kirkpatrick et al. showed the analogy between thiepss and the optimization
of parameters in combinatorial problems [S. Kirkpatrickl &fecchi, 1983].

4.6.2.1 Simulated Annealing Parameters Definition

The method is based on a random walk through the space assieadg decreasing tem-
peratures, looking for points with low energies. From theeut solutionz (or from a
random initialz,), the algorithm works as follows:

First a random walk is generated depending orstee length;:
z(t+1) =)+ k- x4

x4 being a uniform random deviation of the vector solutiorLarger value of; leads to
larger deviation from the previous solution. The energy ebltion (E(¢)) is evaluated
through the function to minimize. In our case, the energyesponds to the erraf,
defined in Section 4.4.4.

The difference between the energy levels at timesd¢ + 1 is denoted as\E =
E(t +1) — E(t). The new solution is accepted according to a Boltzmannibligion
probabilityp, whereT" describes a kind of “thermal agitation”:

AE .
e~ T otherwise

{1 if AE<0
p:
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Accepting steps that lead to higher energy gives the atgorthe opportunity to get
out from local minima. The higher the temperatttés, higher is the probability of get-
ting out of a local minimum. This method is proven to find thelgl minimum of a
function with very slow temperature cooling schedule [Geraad Geman, 1984]. Un-
fortunately, this cooling schedule is too slow to be of pradtuse. Nevertheless, a usual
way is to use a fixed rate of temperature cooling, such as follows:

Tt+1)=r-T(t) with 0<rk<1

Simulated Annealing is widely used as a global optimizatieethod, but its draw-
backs are well-known and are comparable to the ones of GA&: ofi obtaining sub-
optimal solutions, no explicit management of constraietapirical parameters adjust-
ment.

4.6.2.2 Simulated Annealing Parameters Optimization

Four parameters have to be carefully tuned: the initial Enapire of the systerfy, the
cooling ratex, the maximum number of iteration$,,,, and the step lengthy.

All the simulations described below were performed on a §&2oreal wishes ob-
served during a mid-season period. Each wish is taken imdigmely, so that results pre-
sented here are averaged value on 32 different simulatidealing with the 32 wishes
independently ensures to optimize parameters on a wide rainyishes conditions and
not only on one particular case. But since every simulatiead to different values of’.
(varying from 1 to 100), the results are given relatively tdszrror £, for every wishes
in order to make results values comparable.

First, several simulations have been carried out to deterrmn optimal initial value
for temperatureX(). It should be not too high, in order to avoid useless largetian in
the system state, and not too low in order to allow everyahitonditions to converge
The goal is to delimit a region where the energy (the errothefsystem begins to frankly
decrease in a simulation with too high a value of initial temgure.

Figure 4.9 shows an example of this determination: duririgialation with an initial
temperature of 5 and a cooling rate of 0.998, around step a@@ereasing energy trend
becomes clear. Thus, the optimal valué/pfs calculated as follows:

Ty = 0.9981% . 5 ~ 0.25

Then, an optimal value for the step lendthis roughly assessed using a simulation
with default values for the cooling rate (set to 0.998) andtfie maximum number of
iterations (set to 10°000). Simulations have been perfarmith eight different values of
step length, from 0.001 to 1. Figure 4.10 depicts the regiilteese simulations. They
show that standard deviation is particularly high, whicki® to the fact that SA some-
times does not converge. Nevertheless, three step lengtbstier than others: 0.01, 0.05
and 0.1. They are rather equivalent in term of mean, but atandeviation, which char-
acterizes the non-convergence percentage, is lower (2.290) whenk; = 0.1. Thus,

SActually, the initial state is randomly defined.
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Figure 4.9:Example off, determination on a Simulated Annealing run

the latter has been chosen for the following simulations.

The maximum number of iteration’,,,, and cooling rate: are closely related. So,
they have been optimized together through different coatimns. Three values fov,,, .
and nine forx have been evaluated. Results are presented successivitlg tbree values
of N4 (in ascending order) in Figures 4.11 to 4.13.

The first figure presents results for the case with few iterati(V,,,. = 1000) and
for all values ofx. Once again, standard deviation is high but it informs abwr-
convergence frequency. A clear trend is obtained for vadfienear 1.0: SA gives worse
results (higher energy) and standard deviation is alsaingdtrger, which denotes clearly
that temperature decreased not sufficiently.

On the opposite, low values af also lead to slightly worse results, which means that
temperature is decreasing probably too quickly in thesescaad consequently, SA get
more often stuck in local minima. An optimal valueofor this case seems to be 0.975.
Both mean and standard deviation are minimal. Thus, for the¢ and higher value of
Noae» the optimals should be higher or equal to 0.975.

In Figure 4.12 results fox values from 0.975 to 0.9999 are shown. Except a strange
behaviour forx = 0.998, similar conclusions may be found about the extresthees ofx.
The optimal value seems to be 0.995 and thus, for the largést wf NV,,., (10’000), an
optimalx value higher or equal to 0.995 has been expected.
Results depicted on Figure 4.13, lead to conclude simitargn optimal value of. equal
to 0.9995.

The three optimal results found for the three valuesvgf,, are summarized in Ta-
ble 4.18. First, results give some hints about the supégyiofi GAs on SA, since SA
results are worsex 1) in any case. This will be more detailed in the next secton-
sidering mean and standard deviation, the optimal obtasetds, as expected, the one
with largestN,,... Concerning computational time, astonishingly, the w@ghe one
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with N, = 5000. In fact, it has been observed that simulations withevaf x very
close to 1.0 (i.ex = 0.999, 0.9995 or 0.9999) lead to shorter computationa tifihis is
probably due to the combination of two facts:

e Low cooling rate involves many solution rejections.

e |t is probably less time consuming to simply reject a solutioan to accept it and
replace the current system state.

Niaz K Mean of relative  Standard Relative CPU time

results deviation for one adaptation
1000 0.975 6.2 8.7 0.28
5000 0.995 2.7 6.7 1.36
10000 0.9995 2.0 3.4 1.31

Table 4.18:Relative results (to GAs) for the three optimal cooling rate

Since the major drawback of SA is the low quality of resultd aot the computa-
tional time, the set of parameteh§,,., = 10’000 andx = 0.9995, which leads to results
of highest quality without regarding the computationalgjrhas been chosen. Besides,
its corresponding time for one adaptation is not excessie@mparison with GAs.

Finally, with the new obtained set of parameters, additisimaulations for optimizing
one more time the step length value are carried out. They pgfermed once again with
eight different values of step length, from 0.001 to 1. Fegdrl4 presents the results. A
value ofx of 0.05 is clearly the optimal for both mean and standardat@n.

In order to assess the effect of the undertaken SA paramméraization, ten runs
of simulations were finally performed taking into accourg 82 wishes all at once. Ta-
ble 4.19 gives the results of these simulations.

Niaz K k;  Percentage of Mean Standard CPU time
convergence of E, deviation [sec]
Before opt. 10000 0.998 0.1 70 46.18 1.56 69
After opt. 10000 0.9995 0.05 90 43.84 0.47 67

*Considering thenoderatecriterion

Table 4.19:Simulated Annealing parameters optimization effects

The new obtained set of parameters is not very different fitearinitial values. Nev-
ertheless, the improvements are quite noticeable. Coemeeg mean value and standard
deviation have all been improved without increasing corapomal time.

4.6.3 Comparison Results using a Synthetic Wish

Standard search methods and Simulated Annealing (withptieized set of parameters)
were compared with GAs in a case of a particular synthetibwi$is wish has been de-
signed to force the adaptation process to act on two genasdiag two rules in the two
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Figure 4.15:Search space for the synthetic wish

different fuzzy inference systems (one concerning glacetha other concerning illumi-
nance). In fact, it concerns a sunny day in winter with sumlized at the medium-right
position (see Appendix A), and the desired blind positioodmpletely up. The adapta-
tion should first change the gene (gene 12) related to thenilhance” fuzzy rule base
up to a value of 1.0. Then, in order for this change to takecgffidie maximum blind

position provided by the glare fuzzy system in these coonlitishould also be modified
to 1.0 (gene 4).

This wish is not particularly hard to be learned by the ad#migrocess but it illus-
trates well the limitations of standard search methodsidare 4.15, the space search is
depicted. A large flat region and a wide valley near the optinmiake the optimization
hard for standard search methods.

Optimization procedures are carried out only on concerregteg. In this work, the
MATLAB ® implementations of the simplex and Quasi-Newton methods wsed. The
exit conditions of these two algorithms were set to stop wtteemnge in the solution is
smaller than 10°. Supplementary simulations have shown that decreasiagéhiie to
107'° does not influence results by more tham4,@vhereas it dramatically increases the
computational time.

The search methods are very sensitive to the initial pdietgfore optimizations have
been performed from a grid of 441 (221) initial points on the range [-1,1] for each gene.
The grid step is 0.1 for both dimensions. Figures 4.16 and refiresent the convergence
results for the different initial points. An algorithm isiddo have converged when tse-
verecriterion is fulfilled, i.e. when the difference with the lest errorE, (here 1.441) is
less than 0.2 (see Section 4.4.4). In these figures, whenthlgs have strongly diverged
the corresponding results have been set to 2 for clarity.

Table 4.20 gives a summary of results. Convergence is aleagared with GAs,
whereas it is the main drawback of the two standard searchadst Nelder-Mead is
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Figure 4.16: Convergence results depending on initial conditions of Nedder-Mead
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Figure 4.17:Convergence results depending on initial conditions of Guasi-Newton
algorithm with the synthetic wish test
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better than Quasi-Newton both in convergence percental§é (# the time compared to
16%) and in quality of results. However, it takes twice as mtime, but still is very low
(about 1 second, which is much lower than the 28 seconds ddsd8As).

Optimization  Percentage of Mean Bf. Standard CPU time for

method convergente (when converged) deviation one adaptation [s]
Nelder-Mead 24 1.443 <107* 1.16
Quasi-Newton 16 1.447 0.016 0.51
SA 72 1.448 0.004 63.8
GAs 100 1.445 0.002 28.1

*Considering theseverecriterion
Table 4.20:Comparison results for a synthetic wish

The results for Nelder-Mead and Quasi-Newton methods wetenmproved with
lower exit conditions and a larger optimization time. Thadspending on the initial con-
ditions, these algorithms often get stuck in local optimd da not succeed in getting out
of them. This major observed drawback confirms the inadggogthis kind of method
for our task.

Regarding SA, the convergence percentage is 72%, with a ai@tignal time twice
more than GAs. Thus, even if SA results (when SA convergesg¢qual to those of GAs,
the overall SA performance is less. In the following sectmmore detailed comparison
of SA and GAs is made.

4.6.4 Comparison Results using a Complex Set of Wishes

For this comparison, the methods were tested on a set of 8betimwishes and on the
same set of 32 real wishes used for the SA parameters optiari{aee Section 4.6.2.2).
All these 112 wishes are taken independently, which ensucesnparison on a wide

range of wishes conditions. And unlike the comparison usimg synthetic wish, the as-
sessment of the two methods cannot be achieved through meastandard deviation:

they have no sense when each value come from a differeribdistn. Thus, convergence
percentages are used for comparison and then, the diffieterieeen the two methods is
calculated at each point and averaged.

The search space has 18 dimensions, each one with a rantje Jip examples of
2-D slices of search space are given. First, in Figure 4.08ual search space is depicted,
with flat regions, discontinuity and suboptimal valley, @llaracteristics that would have
made optimization really hard for gradient and direct seanethods. In Figure 4.19, an
interesting and unusual situation occurs with a basin vathessteep walls around, which
is not the global minimum. Probably due to apistasiseffect (see Section 4.5.5), the
influence of gene 8 is suppressed by gene 16 for certain vaheethe global minimum
of the 2-D search space is located at the whole bottom of theyva
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Figure 4.192-D slice of search space for the real wishes test
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Table 4.21 presents the GAs and SA convergence percentagté. m®derateand
severecriteria have been applied to determine the percentage rofecgence of each
method. Since the objective value is not known, the referematue for the criteria is the
minimum of the two methods obtained at each point.

Method Convergence percentage CPU time for
severecriterion moderatecriterion  one adaptation [s]

SA 75 99 79

GAs 99 100 34

Table 4.21:Simulated Annealing results for the two different sets shes

SA has greater difficulty in finding solutions. In 25% of theses, SA did not man-
age to fulfill theseverecriterion. That means GAs outperform SA considerably in 28%
the cases. Moreover, in one case, SA result is really ppodératecriterion not fulfilled).

In comparison, GAs always provide satisfactory resutt®deratecriterion always
reached) and manage almost always to fulfill skgerecriterion.

Considering only the cases where both methods convesgseecriterion), a differ-
enceAE, between GAs and SA errors is calculated at each remainimg.gogives:

Mean(AE,) = —0.0296 and Standard deviationnE, ) = 0.0656

It may so be concluded that if both methods converge they teagry similar results.
Even if the obtained mean value may show that SA gives vegytji better results, the
difference is far less than theoderatecriterion and may be considered as negligible.

Thus, even with a computational time 2.3 times greater thas, SA does not reach
GAs overall performance. It is very probable that if one édygncreases the maximum
number of iterationsV,,,., and changes accordingly the cooling rafé&SA will be able to
provide better results than the ones presented here. Howleigawill also surely requires
much more computational time and will not allow SA to outpeni GAs. In conclusion,
GAs seem to be definitely more appropriate to our purpose$ian



Chapter 5

Experimental Set-up

“An experiment is a question which science poses to Natuceaaneasurement is
the recording of Nature’s answér. (Max Planck)

Field experiments such as the one carried out within thikweguire dealing with many
differentissues: experimental procedures definitionpm®and hardware set-up, software
development and monitoring installation. This chaptercdbes the solutions applied for
each one of these issues.

5.1 Experimental Procedure

The goal of the experiments is to study the effect of the udeptation on the acceptance
of automatic control systems and to quantify the cost ingnef such an adaptation.
Therefore, three systems are compared: manual contralmatic control without user
adaptation and automatic control with user adaptation.

This section details the difference between the comparsigsys and then describes the
programme of experiments and some important experimergahptions that have been
taken.

5.1.1 Systems Compared

The manual control system corresponds to the default dositthe LESO experimental
building running through the EIB network. This system haly two automatic features:

e |f aroom is unoccupied during more than 15 minutes, eletigiting is switched
off.

e The heating system is driven by the default EIB control sysighich is a proportional-
integral controller without night setback.

The automatic control system with adaptation correspood$fié one described in
Chapters 3 and 4.

It should be noticed that the default parameters of thisesystere defined to make
the whole original system very energy efficient. Hence, titematic control without user

89
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adaptation has some differences (in addition to the useatatian missing feature) com-
pared to the automatic control with user adaptation. Thetjypaake the automatic con-
trol without user adaptation more user-friendly. The falilog points are thus changed:

Delay The time after a user interaction during which the automesictrol for
blinds is stopped, is increased from one hour to two hours.

Blinds (user present) There is no user adaptation, so values given at commission-
ing for blinds position depending on season should be lesgaésee Section 3.5)

to be accepted by a larger number of users. In winter, thel lgosition is deter-
mined so to provide an illuminance of 2000 lux instead of 2B&0 In summer, the
value aimed is 500 lux instead of 400 lux.

Blinds (user absent) The limitation of blinds thermal effect when indoor temper-
ature is too low or too high (see Section 3.3.1.2) is inatdda That means only
energy aspects are taken into account and thermal comftiteatser’s arrival is
not considered (i.e. the temperature setpoint is absgloteltaken into account for
controlling blinds when the user is absent).

Electric lighting There is no user adaptation, so illuminance setpoint is fated
400 lux. International norms concerning workplace illuamoe for general tasks
in offices are spread on a wide range: from 150 to 1000 lux d#pgron the
country [Mills and Borg, 1999]. The value chosen is the ageraf the values
recommended in Switzerland [ASE8912, 1977] for office gaheork (500 lux)
and for visual display terminal task (300 lux). As for blindsuser interaction
stopped the automatic control for two hours.

5.1.2 Experimental Programme

The total duration of experiments is nine months, froinJine 2002 tot March 2003.
The goal is that every rooms have the three control systemsgiree different seasons.
Thus, three periods have been defined as follows:

Summer period corresponding to  “June, July, August”
Mid-season period correspondingto “September, Octob®rehiber”
Winter period corresponding to  “December, January, Felgtua

The experiments were conducted in a similar way thiaical randomized trialsare
carried out [Jadad, 1998]: attribution of systems per rosmandomly done with the
constraint of having every system in every season in eactm.rodsers do not know
which system they have (single-blind study) in order to dwany bias that could occur.
A double-blinded study (experimenter does not know whicttesy is applied in each
room) was impossible to realize in this work, but interacti®tween users and experi-
menter was very limited (survey questionnaires appeartdratically on their computer,
no intervention inside rooms was needed to start and stopat@ystems, etc.).

An additional constraint for the control systems attribatiwas to group together
rooms with common energy consumption measurements i.emgd®d1 and 102 and
rooms 105 and 106 (see Section 5.2). Table 5.1 gives théuwtttm sequence of the
different control systems in every room considered for takel fstudy.
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Room  June July Aug. Sept. Oct. Nov. Dec. Jan. Febr.

001 man  aut+ad aut man  aut+ad aut aut+ad man aut
002 aut aut+ad man aut auttad man  aut+ad aut man
005 man aut aut+ad man aut aut+ad aut man  aut+ad
101 aut+tad  man aut aut+tad  man aut man  aut+ad aut
102 aut+tad  man aut aut+tad  man aut man  aut+ad aut
103 man  aut+ad aut man  aut+ad aut auttad  man aut
104 aut+ad aut man  aut+ad aut man aut aut+tad man
105 man aut auttad  man aut aut+ad aut man  aut+ad
106 man aut aut+ad man aut aut+ad aut man  aut+ad
201 aut man  aut+ad aut man aut+tad man aut aut+ad
202 aut man  aut+ad aut man aut+tad man aut aut+ad
203 aut aut+ad man aut auttad man  aut+ad aut man
204 aut aut+tad  man aut auttad man  aut+ad aut man
205 man  aut+ad aut man  aut+ad aut auttad  man aut

“man” = manual system (no automatic control)
“aut” = automatic system without user adaptation
“aut+ad” = automatic system with user adaptation

Table 5.1:Attribution sequence of control systems per room

5.2 Building Description

This section presents the LESO building considered for #pemental assessment of
the automatic control systems. Important rooms charatiesisuch as sensors locations,
temperature stratification and luminance distributionmovided.

5.2.1 The LESO Experimental Building

The LESO building is a small office building with about 20 officboms, hosting the
activities of the Laboratory of Solar Energy and BuildingyBies located on the EPFL
(Swiss Federal Institute of Technology in Lausanne) camfisssouth facade was used
for several years for experimenting various solar facadartelogies. In 1999, it was
retrofitted with a new facade conforming to the criteria of Bustainable development.
The whole facade has been replaced by a new wooden facadbetté Figure 5.1. The
office rooms are all equipped with an anidolic (non-imagidaylighting device [Courret
et al., 1998] that is very effective for providing dayligbtthe user, but requires an addi-
tional blind and window area.

Figure 5.2 gives a view of the south facade from outside, gigpthe anidolic and
conventional windows provided for each office room. Eacladgcelement (for one typi-
cal office room) has two blinds: one for the lower (normal) éow, and one for the upper
(anidolic) fixed window. Both blinds are controlled indepently.

The building is heavy, with a very well insulated envelopel #rge passive solar
gains through the (dominant) south facade. A previous sfattherr and Gay, 2002]
pointed out interesting features of the LESO building:
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Figure 5.1:Vertical section through the southern facade, showing thidaic system

Figure 5.2:South facade view of the LESO experimental building
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e The total yearly energy intensity (heat and electricityted building is equal to
232 MJ/n?, which is almost four times lower than the swiss average ofgarable
building.

¢ This total energy intensity corresponds to a consumptict2df1J/n? for lighting
and 76 MJ/rf for heating. The remaining 114 MJ?raorrespond to computers and
other electrical appliances.

e Solar gains cover 75% of the heat needs for the building.

The building is made of 9 thermally insulated “units” (3 wnfier floor), each unit
including one or two rooms. Figures 5.3 to 5.5 shows the pldheothree floors. In these
figures, North is towards the top.

5.2.2 The Rooms Considered

Fourteen rooms of the twenty available are considered fegperiments. Two of them
are geometrically different from others in the way that theg equivalent to two office
rooms grouped together. One of these rooms is the worksbom(P05) of the labora-
tory and the other is an office room with three users (room 20&ple 5.2 gives more
information about every room and shows the chosen roomsreTdre 21 users in the
chosen rooms.

Electric convective heaters are used in all rooms, excemdidors and rooms 001,
200 and 206 that have water radiators. Energy consumptapgrtogether the electrical
heating energy, the electric lighting energy and all othectecal appliances.

5.2.2.1 Room dimensions and Sensors Locations

The following descriptions deal with the standard rooms.

Room size:
¢ Floor area of aroom: 15.7'm
e Room height: 2.8 m

Walls and slabs

e Facade wall (to South): 5.4 light wall (1 cm plaster panel + 12 cm thermal
insulation + 1 cm wood) + windows (see below)

¢ Rear wall (to North, circulation space): 7.6 sheavy partition wall (12 cm concrete
bricks + 8 cm thermal insulation + 12 cm concrete brick) + 34 door (2 cm
wood)

¢ Wall to neighbor unit: 13.3 /) heavy partition wall (12 cm concrete bricks + 8 cm
thermal insulation + 12 cm concrete bricks)

1All layers of the construction elements are given startiogrfinside the room; “thermal insulation” is
either glasswool, polystyren or polyurethan, with a thdreeaductivity equal to 0.04 W/mK.
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Figure 5.5:Second floor plan of the LESO building
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Room Nbof Energy consumption Remarks Standard room Chosen
users availability configuration room

v
v

001
002
003
004
005
100
101
102
103
104
105
106
107
200
201
202
203
204
205
206 Library

*Energy consumption is grouped for two adjacent rooms

Used for an other project
Used for an other project
Workshop
Computers room

PR NN
IS S N
|

*

LSS

*

NP R RPN,
I O O
Lo |

<<

Printers room

LW R RN R

(IS NG NG N
(IS N NG
IO

Table 5.2:List of all office rooms of the LESO building and choice of th@ms considered
for the present work
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¢ Wall to neighbor room of the same thermal unit: 133 fight partition wall (1 cm
plaster panel + 4 cm thermal insulatfon 1 cm plaster panel)

e Floor: 15.7 nd (1 cm rubber coating + 6 cm screed + 6 cm thermal insulation + 25
cm concrete slab)

o Ceiling (towards roof): 15.7 (25 cm concrete slab + 16 cm thermal insulation +
10 cm concrete and roof gravel)

Windows:

e Standard window: 2.1 inet area (double glazing with IR coating, U-value 1.4
W/m2K)

¢ Anidolic window: 1.7 n¥ net area (double glazing with IR coating, U-value 1.4
W/m?K)

e Frame area (total for the facade of one room): 029 hvalue 2 W/mK

Figure 5.6 depicts a room configuration with the sensors aedinterfaces locations.
The presence and luminance sensors are placed on the @slisigown on Figure 5.7.
Figures 5.8 and 5.9 shows the interfaces localization.

5.2.2.2 Daylight Factor Assessment

Assessment of Daylight Factor (DF) was performed in a stahdem (room 004) in or-

der to characterize the room behaviour according to datjfigltoncerns. DF is defined,
with overcast sky conditions, as the ratio between indooizbatal illuminance and out-
door horizontal illuminance. For this measurement blindsevcompletely open and
outdoor horizontal illuminance was about 6’000 lux (ovetcgky conditions). DF have
been measured at 8 different distances from the window ingeraf 0.8 m to 4.3 meters
by steps of 0.5 meter, on three row (A, B, C) differently distad from the east wall (1,
2 and 3 meters). Measurements were done 0.85 meter abovedgrigure 5.6 depicts
precisely the locations of the different measuring poirftee user interfaces, the VNR
data acquisition system and the EIB communication bus golaieed later in Section 5.3.

Results of this measurements are given in Figure 5.10. Misgoints are due to
obstacles preventing measurements at these positionslt&&sow that DF decreases as
the distance from the windows increases. DF value varigs §% to about 1.5%, which
are quite usual values.

In addition, some luminance measurements (see Figure proY)de information
about the visual environment in the rooms. They were medsuméler clear sky con-
ditions, with an external horizontal illuminance varyirmrgrh 31°000 to 33’000 lux.

2In certain rooms the 4 cm thermal insulation is replaced biynple air layer of also 4 cm.
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Figure 5.6:Room configuration and location of sensors and user inteac

Figure 5.7:Presence and luminance sensors on ceiling
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Figure 5.8:EIB interface localization

Figure 5.9:Blinds interface localization
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Daylight factor [%]

0 1 2 3 4 5

Distance from window [m]

Figure 5.10:Daylight factor assessment in a standard room

Figure 5.11:Luminance measurements in a standard room, with externddmtal il-
luminance of 32’000 lux (values in [cdfi) - Importance of daylight provided by the
anidolic system is visible on the wall and the ceiling
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Figure 5.12:Thermal stratification in two rooms during two different seas

5.2.2.3 Temperature Stratification Assessment

Measurements of temperature at different heights werentakeharacterize the thermal
stratification for two different rooms in winter and summiesults, which are presented
in Figure 5.12, show that stratification exists in all cadmsd, seems to be more room
dependent than season dependent. In room 101, thermdicdtan leads to less than
1°C of difference between upper and lower position in both sesswhile difference is
up to 3C in both seasons in room 105. Such different stratificatamesdue to different
windows opening occurrence and depend on if the door is kzgrt or closed.

Difference between seasons is visible in the average oféesyres that are lower in
winter than in summer in both rooms.

5.3 Hardware Set-up

Hardware issues are presented in this section. First thdifigicommunication bus used
in the experiments is introduced and then some sensorsatdito procedure and results
are presented.

5.3.1 The European Installation Bus

The use of a building management bus allows an easy acceése¢asors and actuators,
and the sharing of the available information between alpémial control systems, mak-
ing the integration of the different controllers easiee(Section 3.2.1). Several building
buses types are available. Choosing a well-supported atarftbr instance, European
Installation Bus or LonWorks bus) provides wider choice efisors and actuators from
various manufacturers, which should be freely interoperabhe development work can
be focused on the controller itself, instead of re-develgiensors and actuators that are
already available on the market. A building management s rmakes easier the ca-
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Figure 5.13:EIB Overall diagram

bling between sensors, actuators and controller, thantketstandardization.

The whole building has been equipped with an EIB (EuropeaitdiBg Bus) net-
work, provided by Siemens. The heating system, the eldagliting and the blinds are
connected on this bus.

Figure 5.13 gives the arrangement of the bus for two roomistoaims and the com-
mon circulation spaces are equipped in a similar way. Fdr ea@m, sensors monitoring
the presence, the air temperature, the window opening anitluminance are available.
A computer named EIB-PC is also depicted on the diagramtoivalother computers to
communicate with EIB through the Ethernet network (seeiGeéi4.2).

Every devices connected on the bus may theoretically exyghariormation with all
other devices. Indeed, the work principle of the commuigeebus is to send and read
telegramscontaining a header that indicate to which device it is askld, and the in-
cluded message for the device. Thus, every devices are pentia“listening” to others,
but take into account the included message only when theyoareerned.

5.3.2 VNR Data Acquisition System

A monitoring system was already installed in the LESO buiidéince 1981. It allowed
to monitor several data (temperatures, heat flows, enemguroption) individually for
each room. Due to its age, the VNR system is suffering todamy fa lack of reliability
and stability. Nevertheless, the system still providesieate measurements of weather
data such as outdoor temperature and solar irradiance.

5.3.3 Sensors and Calibration

Many sensors are needed for monitoring for both outdoor addar conditions assess-
ment. They are presented in Table 5.3. In addition, blindtjpos are not measured
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directly but calculated by the EIB-PC using the durationlofdmovements.

Physical value Type of sensors  EIB/VNR Calibrated/verified
in this work

Per room

Air temperature for control Pt100 EIB Vv

Air temperature for monitoring Pt100 VNR vV

Presence infrared EIB Vv

Workplane illuminance luminancemeter EIB Vv

Window opening 0/1 magnetic EIB —

Common for the whole building

Outdoor air temperature Pt100 VNR -

Global horizontal irradiance pyranometer VNR vV

Wind speed anemometer VNR N4

Wind direction weather vane VNR —

Table 5.3:List of available sensors in the LESO building

The table shows that many calibration and verification haenlperformed. Only
the calibration regarding the most important values for fushrassessment (namely the
indoor temperature and illuminance) are detailed in thiefohg sections.

5.3.3.1 Temperature Sensors

All temperature sensors available (from EIB and VNR) haverbegreliminary calibrated
using a mercury thermometer with precision6f0.1°C. It consisted in measuring the
real temperature with the mercury thermometer and adgstiefficients in VNR and
EIB systems in order to obtain a similar value of temperatiités calibration was lim-
ited to a zero-order adjustment (constant correction yalue

In order to assess the accuracy of the available calibrategdrature sensors, they
have been compared with a measurement of the operative tetufgeon a period of ten
days:

T-operative It measures the temperature really feels by user, whichrakpef the
heat losses of human body due to convection and radiatiaihust combines the
mean radiant temperature with the air temperature depgradirair velocity. For
instance, if air velocity is near zero, the operative terapee may be approximated
by the average of the mean radiant and air temperatures. dfisplibrated de-
vice was used for this measurement. It was located at theecehthe room at the
height of 1 meter.

T-EIB These temperature sensors (Pt100 type) are connected canlllBmbed-
ded in the EIB interface (see Section 5.3.4), which is latatear the dodr

3Exact locations of EIB and VNR sensors are indicated in Figué on page 97.
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Figure 5.14:EIB and VNR temperature measurements compared to the oet@mnper-
ature

T-air These sensors (Pt100 type) are connected to the VNR datal¢gge Sec-
tion 5.3.2). There are sensors protected from radiation tiyrame cylinder, that
let air passing vertically through it. Since radiation cament is avoided, it should
essentially measure the air temperature. They are locatedabs (fixed 3 cm in

front of the wall) and 1.5 meter above ground.

Figure 5.14 shows results of the ten days measurementd mEhsurement s clearly
influenced by the fact it is embedded in the EIB interface Ade whole box should first
be at the ambient temperature and then the sensor is getting &ir temperature. Inertial
behaviour may also be explained by the fact this box is fixeelotly on the wall, and is
surely influenced by the wall surface temperature.

The T-air measurement s very near to the operative tempetathich indicates a low
influence of the mean radiant temperature. However, sonpgising inertial behaviour
seems to appear for the T-air measurement compared to thatiopeemperature. A
plausible explanation is that cylinders are influenced bl praximity, and are measur-
ing temperature of thair layer against the wall.

Hence, available sensors (from VNR and EIB) provide unhidse less responsive
measurements because of their contact with walls. Thisteieparticularly important
for the EIB measurement, which are used for the thermal obnfrthe room. It makes
probably the system weakly responsive, which was indiyemihfirmed by the fact that
some users were complaining about the upper limitation &mere about the lower limi-
tation. To solve this problem, the default range providedh®temperature interface has
been doubled from Z to +2°C, to -4#C to +&C. It therefore corresponds to a range of
17°C to 25C, assuming a basic temperature of@1
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5.3.3.2 Luminance Sensors

The EIB luminance devices installed in each room, transteduminance measured by
their sensor in a corresponding illuminance. Thereforés particularly important to
properly calibrate these devices.

The sensor field of view is not circular but elliptic. The larg@ngle (38 degrees) has
been set to correspond to the larger dimension of the roam(8outh to North) and the
smaller angle (20 degrees) to correspond to the smallentdiioe (East to West).

Calibrations are performed using a dedicated applicatiogram that has to be down-
loaded in the device. They have all been carried out durigbtnwith electric lighting,
in order to have the most possible steady illuminance cmmdit Moreover, since our
system needs to know precisely the illuminance value ménlglectric lighting control,
the calibration was achieved with values of illuminancenaszn 200 and 400 lux. All
EIB luminance sensors have been calibrated following tbegmure described below:

1. The “calibration program” is downloaded in the luminadewice.

2. The measured value of illuminance on the work plan is keéyede parameters of
the “calibration program”.

3. Thecalibration parameteis read from the device.

4. The original “illuminance program”, which measures theminance, is re-downloaded
in the device.

5. Thecalibration parameteis keyed in the “illuminance program”

Figure 5.15 shows the results of the luminance calibrattwndom 001. The values
given by the calibrated EIB luminance sensor are comparéuetones given by a LMT
luxmeter @ 1.9% accuracy) used as a reference. Estimated error ba&efte indi-
cated for the EIB measurements. Accuracy of EIB sensor ficmift under 500 lux (that
corresponds to values considered for calibration procésg)overestimate illuminance
above 500 lux. This non-linear behaviour seems to be dueet@ehsor characteristic,
each of them tending to overestimate above 500 lux. It has 8eeided to apply a linear
correction at each sensor as follows:

P _ E if 0<F <500Ilux
corrected =3 500 4 0.85 - (E —500)  if E > 500 lux

Figure 5.16 shows the results with the corrected EIB outslitesults are thus close
to the reference, that means being less than 15% wrong. theless, these results show
that the applied correction is maybe a bit too low, but beimgservative is safer.

Since every device has already gone through the calibrptimess, it was too huge a
work to assess in each room, which correction coefficientishioe applied. Thus, it has
been chosen to apply the same coefficient to each sensoreFdl depicts results of
all sensors with the correction and calibration appliedo Tiseasurements per room with
different blind positions have been taken during a sunny degnost all discrepancies
observed are below 15%. This accuracy is quite sufficienb@ompurpose, given the fact
that human eye is not very sensitive towards illuminancatians.
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Figure 5.151lluminance values given by the calibrated EIB sensor anefarence (LMT)
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Figure 5.18:Picture of the EIB interface for temperature and electrghliing controls

5.3.4 User Interface Modules

Two standard interface modules were provided with the Eemapnstallation Bus. One is
related to the electric lighting control and the tempemgetpoint and the other is related
to the blinds position control.

The main interface module is depicted on Figure 5.18. It iga@ieals with the electric
lighting control and is generally located near the door,roteo to be able to switch on/off
the lights at arrival/departure (see Figure 5.8 on page %@¢othe exact localization in
the room). A short press on the upper part of the button swaitctine lights at full power.
A short press on the lower part of the button switch off thétisg Long pressures allow
dimming (up or down) the electric lighting from 1% up to 100%n@aximum power.

This interface provides also a control on the indoor tenmpeessetpoint. The user can
choose an offset value for the temperature setpoint fro«@ td +4 C by step of 2C. The
last control opportunity of this device is a temporary oid®rselector and since it only
concerns automatic control, it was not active before theBrents take place. It allows
the user to stop the automatic control (for electric lightand blind systems) as long as
somebody stays in the room. There are two positions availdbé activated one being
indicated by ared LED. If the upper LED is switched on, thaansethe automatic control
is running as usual. If the lower LED is switched on that mehesconcerned automatic
controllers are temporarily stoppesldep modg It lets the user the opportunity to have
particular environmental conditions during exceptioriaiations: completely closing the
blinds and switching off the lights during a slide show, céetgly opening the blinds for
windows cleaning or switching on the lights at full power &emporary and special task.

The other interface module deals only with the blinds cdntitois located near the
window, on the wood shelf (see Figure 5.9 on page 98). It sirophsists of buttons for
raising or lowering the blinds. Since there are two blindsrpem in the LESO building,
there are two pairs of buttons for blinds control, as deplicte Figure 5.19.
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Upper blind
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Figure 5.19:Picture of the command buttons for blinds

5.4 Overall System Description

Field experiments involve not only hardware setup but alsmerous software develop-
ments and integrations in an overall structure. This sedlescribes how the different
software systems are interconnected and explains thefrelsch component.

5.4.1 Overall Architecture

The main purpose of the proposed architecture is to enabl€dmtrol-PC, which holds
the automatic controllers presented in Chapter 4, to conwatenwith EIB for both ac-
quisition of sensors measurements and sending commandsisias.

The final chosen architecture is described in Figure 5.26e@bomputers are needed,
one being the Control-PC, an other that is able to commumidiaéctly with EIB (EIB-
PC) and one for the monitoring system (VNR-PC). They areaihected to the Ethernet
LESO Network. Control-PC is the central node for the expernits; it contains different
softwares that enables communication with the VNR datadoggd with EIB.

5.4.2 Components Description

The components mentioned in Figure 5.20 are explained snséttion. First, the roles
of VNR-PC and EIB-PC are described and then a detailed gegeriof Control-PC is
given through its different software.

5.4.2.1 VNR-PC

This computer, running under Windows, is the pre-existingnitoring facility of the
LESO building. Sensors connected to VNR and used in the erpat are listed in
Table 5.3 on page 102. Every two seconds, new measuremesitsligse VNR sensors
become available through a text file in the computer VNR-PC.
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Figure 5.20:Overall architecture of control system

5.4.2.2 EIB-PC

A computer able to connect itself to EIB has been developeis d PC running under
Linux?, which is permanently connected to the communication brsutth a RS-232
connection, and analyzes all telegrams passing througbuhé¢all telegrams are visible
by all devices, see Section 5.3.1). EIB-PC contains a mewfaad} available variables in
EIB and the values of these variables are continuously egdhanks to the fact that all
telegrams are analyzed.

So, EIB-PC works as a server: when a client requests the edlaeariable, the server
provides this value without sending a telegram on the buskdtse concerned device the
current value of this variable. In addition, EIB-PC may adsmd telegrams to actuators,
if it is requested by a client. It deals with all control algbms concerning level 1 of the
nested control loop structure (see Section 3.2.1).

5.4.2.3 Control-PC

This PC, running under Windows, contains four importantwgafes: the MATLAB®
module, the remote EIB Java server, the VNR Datalog sencEENTIME.

The MATLAB® module is the central control part. It collects the all nekbdariables
(from VNR and EIB), it calculates the controllers outputsl @deals with all adaptation
aspects.

This implementation has been designed to make the systemeniented, i.e. new calcu-
lations are only performed if an event occurs. This is doa@aks to thehot link features
provided by the remote EIB Java Server (see belowhoAlink is established with every
important variables for control, and thus each time one e§¢hvariables changes, the
module receives an event from the remote EIB server. TaBlstinmarizes the different
possible events.

4At the beginning, the EIB-PC server was running under Wirsidwt approximately every week the
computer crashes. Therefore, a more reliable solutiondnad teveloped.
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Variable modified Corresponding event effect

Time Scheduled tasks (heating, user adaptation, modehizgatiion)
Global horizontal irradiance  New control calculation (Bdinds and electric lighting)
Presence New control calculation (for blinds and elecigieting)
External temperature Update value

Indoor temperature Idem

Indoor illuminance Idem

Wind-alarm Raise up blinds and deactivate blinds control

User interactions

On electric lighting Effect described in Section 4.1

On blinds position Idem

On temperature setpoint Idem

Onsleep mode Idem

Table 5.4:Effects in the MATLAB module of “hot linked” variables modification.

The remote EIB Java server provides the same services anéisepoovided by the
EIB-PC server. It may gives values of variables, and resedeenmand that should be
send to EIB. It has been designed to only run under WindowsH[PBbtocol does not
exist in Linux operating system) and to connect itself torestance of the Linux EIB-PC
server via a RMI connection through the Ethernet LESO nétwd@oing so, the hard
job of serial port communication and telegram analysis lse@d by the EIB-PC server
on a computer, which works under a more stable operatingsysThus, the Windows
computer hosting the controller only needs to run this ligimote EIB Java server and
can choose to get events regarding only pre-selected rooms.

Two types of DDE link may be established by the client withitaeote EIB Java server:

Cold link It allows communicating data in both ways: client to servé,apoke
command and server to client, viaeguestcommand. Communication event only
occurs on client demand.

Hot link It makes the server sending values whenever they changem@nita-
tion is only possible from server to client.

In our case, the unique client for this server, is the MATI®Biodule.

The VNR Datalog server allows communicating through the défims DDE (Dy-
namic Data Exchange) protocol, between a client (the MATBARodule in our case)
and the VNR data logger station. In fact, this server readyesecond the text file in
the VNR-PC that contains latest sensors values and make akaiable through DDE
connection for every clients on the Control-PC.

The last software is EDITIME, which is the time master for thigole system. It is
a very simple DDE server that provides time through DDE comication. Eithercold
or hot link communication may be established. In this work, the MATI®Bhodule
establishes &ot link connection with EDITIME, and the latter sends the curremieti
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every minute (the elapsed time between two time events mashbeged via a DDE
command).

5.5 Monitoring

Two main issues should be assessed in this experiment:yegifirgency of the automatic
controllers and acceptance of them by the users. The fins¢ is=quires to record all
values concerned by controllers and the second one reguiradditional survey method,
namely questionnaires. This section gives an exhausstelfiall variables recorded
and describes the questionnaires used for assessing tiseaoseptance of the automatic
system.

5.5.1 Recorded Variables

The MATLAB® module is the central node of the whole system. Thus, alnvasyen-
teresting variables are directly available in this modtidact, every time an event occurs
(see Section 5.4.2.3), the system stores all relevantblagaTable 5.5 lists the whole set
of recorded variables within the module. In average, thezdvao events per minute (and
at least one since EDITIME sends an event every minute) ¢aalsl to about 90’000 sets
of variables per room recorded in one month. In addition, ef®dnd controllers param-
eters are stored every night after the adaptation progessder to assess their evolution
over the time.

Nevertheless, two kinds of variables are not directly add in the MATLAB® mod-
ule: the energy consumption and the additional indoor teatpees, both measured by the
VNR data logger. So, every 5 minutes, these variables arfeygetiedicated MATLAE
instance through the VNR datalog software and stored poalthe Control-PC. Energy
consumption is available for almost each room (see Tab)eibgtoups together the heat-
ing energy and indoor temperatures are available for eamn except room 005, which
is a workshop. These temperatures coming from VNR are alsarded because they
are more accurate than the ones provided by EIB (see Sec8dhH and because some
redundancy may be useful (in case of sensor failure or torromfieasured values).

5.5.2 Questionnaires

In order to assess the user acceptance of the automatioberstr a survey using ques-
tionnaires is carried out. These questionnaires are kamgspired by the ones developed
by Hygge and Lofberg [Hygge and Lofberg, 1997] to addraskling’s occupants ap-
praisal towards daylighting system. They have been modifieshainly concern user
response towards automatic control. They are divided hneettype:

Personal QuestionnaireFilled once at the beginning and once at the end of the
experiments, these questionnaires allow to classify udepgnding on personal
information (age, gender, wear glasses or not, etc.). Thsyalow to compare
opinion of the users about automatic control before and #feexperiments.
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Recorded variables in the MATLAB module Units

Day of the year (fractional value) [1-366]
Outdoor temperature [°C]

Indoor temperature [°C]

Indoor temperature setpoint [°C]
Reduction of the temperature setpoint (for heating eneagings) PC]

Heat power fraction [0-1]
Presence (for the controller, timeout of 10 minutes) [0, 1]
Presence (given by the sensor) [0, 1]
Ambiance [1 normal, 2 fixed]
Global hor. irradiance measured [W/m?]
Vertical global illuminance on the facade calculated [lux]
Vertical direct illuminance on the facade calculated [lux]
Daylight indoor illuminance calculated (from Rl model) Xlu
Daylight indoor illuminance measured [lux]
llluminance setpoint [lux]

Flag “mask detected on the window” (no more direct sunlight) [0, 1]

Blind anidolic position [0-1]

Blind normal position [0-1]

Blind anidolic user flag [0, 1]

Blind normal user flag [0,1]

Time of last blind move (fractional value) [1-366]
Electric light user flag [0, 1]
Electric light power fraction [0-1]
Electric light power fraction (not updated with user intetfans) [0-1]

East window switch [0 closed, 1 open]
West window switch [0 closed, 1 open]
Flag wind danger [0, 1]

Table 5.5:List of recorded variables in the MATLABmodule
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Twice-Monthly User Satisfaction This questionnaire appears automatically twice
a month on the computer screen of the users at startup. Itdesfound to be

a less disturbing way for users compared to paper quesii@snand it ensures
a large proportion of filled questionnaires. These questigms concern the user
satisfaction regarding automatic control installed indffice room.

Daily Comfort Twice a day, a very short questionnaire appears automgtizal
user computer screen. It asks three questions about cuiseat and thermal com-
fort in the room. It can be filled in less than 3 seconds, sirsgr temembers the
questions.

The three questionnaires are given in Appendix D.



Chapter 6

Experimental Results

“1 have had my results for a long time: but | do not yet know homlta arrive at
them” (Karl Friedrich Gauss)

The goal of the field experiments was to study the effect ofuber adaptation on the
acceptance of automatic control systems and to quantifgdisein energy of such an

adaptation. Results are given and discussed in this chéfpitst, energy consumptions
of the three compared control systems are detailed persedben, thermal and visual

comfort assessed through questionnaires is analyzed diegeon the control system.

Afterwards, evidences of effect of the adaptation to useipainted out. The user accep-
tances of the two automatic controllers are then compareéthenimpact of the adaptation
on acceptance is studied. Finally, some additional reseliised to the Rl model perfor-

mance are given.

Experiments should have covered nine months but at the erlg,eight months
of measurements are available. In fact, during Novembersijdered as a mid-season
month), the EIB-PC server (see Section 5.4.2) has crashedifiles. A new version
of the main software that should solve several remaining §ogainly regarding blinds
control) had been installed in the beginning of Novemberfodnnately, this new ver-
sion was unstable and experiments were stopped several tintiéa more stable version
was obtained. Hence, the adaptation processes (to usezsaasid room characteristics)
have not managed to converge properly during this month iandddition, only frag-
mented data were available. It has been finally decided rtak®into account the whole
November month. Thus, results presented in this chapter@bmonths but November.

6.1 Energy Consumptions

One major issue of the experiments was to assess the diffssémenergy consumptions
between the three different systems (manual control, aatieroontrol without user adap-
tation and automatic control with user adaptation).

113
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6.1.1 Monitored Results

In order to compare the energy consumptions, some indatere developed.

Let C;,; denotes the energy consumption in robwith a controller of typer during
month;. Four energy consumption indicators are thus defined:

Ccr, = Z Z Ci; [MJ/(m?-month)
J

s _ 2% Cuy &
i Y G

v (G .
CTel/r(mm - Z <Zr Z]‘ Cilj) /[ [ }

ia

C
C:Lf, month — ( = >/J [7]
Y/ & ; Ez er CL'Ij

with 7 and.J the total number of rooms and months, respectively.

C¢ . is the total energy consumed during the experimental pdayotthe controller of
type z, expressed in [MJ/(famonth]. C2, is the fraction of the total energy consumed

€
during the experimental period by the controller of typeCy,, ., is the average frac-
tion of total energy consumed per room by the controller iety. Cy., ..., is the
average fraction of total energy consumed per month by théraer of typex. The

error margins mentioned are the standard deviation caémitan all rooms/months.

Table 6.1 shows the values of the different indicators ofgyneonsumption for the
whole experimental period. The three relative indicatave grecisely the same relative
values, which shows that there is no bias due to the roomasditot or to differences
in month: 40.4% of the total energy consumption is due to tl@uml control system,
29.7% is due to the automatic control system without adegt@nd 29.9% is due to the
automatic control system with adaptation. In other wordsomatic controllers reduce
the total energy consumption by about 26% compared to mawmatol. This confirms
the result obtained in a similar study carried out only in twifice rooms of the LESO
building [Guillemin and Morel, 2001], which had shown that imtegrated automatic
controller allows 25% of energy savings on the total eneysamption compared to a
conventional system (identical to the manual control sysieed in the present study).

Controller type Ctlut Cfel Cfcl/romn Cfel/'month
[MI(m?*-month)]  [] [l [l
Manual 11.6 0.404 0.402 +0.069 0.405 £ 0.249
Automatic without user adapt. 8.5 0.297 0.290 +£0.058 0.293 +0.115
Automatic with user adapt. 8.6 0.299 0.308 £0.058 0.302 £ 0.163

Table 6.1:Energy consumptions on the whole experimental period
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The other very important result shown in this table, is thet that the adaptation
to user does not significantly increase energy consumptiomo Studentt-tests have
been applied to the values 6f;, ,,,,, that have lower standard deviation than values of
Cretmontn, (there are less energy consumption differences betweensrdioan between
seasons). The first test confirms that the energy consumetitme manual system is
higher than the energy consumption of the automatic cdatsoldifference ishighly
significan):

t-value> qt25(99.5%) i.e. 3.72>2.78

The second test shows that the difference in energy consumipetween the user

adaptive and non-adaptive controllers is sighificant

t-value< qt26(95%) i.e. 0.67 < 1.71

This surprising result (it was expected that adaptationsier immakes the automatic
controller less energy efficient) is explained in the nextisa.

6.1.2 Analysis per Season

An analysis of energy consumption of the different systesnddne depending on the
season.

6.1.2.1 Winter

Table 6.2 shows relative energy consumption for winter mgntt confirms the two re-
sults already mentioned: automatic controllers reducestiergy consumption of 26%
compared to the manual control and differences betweenntbeatitomatic controllers
are not significant.

Controller type CZ)t Cfel C:el/raom C:'Pel/month,
[MI/(m?*-month)] ] [ [
Manual 20.3 0.407 0.412 0.395
Automatic without user adaptation 14.7 0.295 0.289 0.294
Automatic with user adaptation 14.9 0.298 0.299 0.311

Table 6.2:Energy consumptions in winter

A previous study [Guillemin and Morel, 2002b] has deternditigat the implementa-
tion of a night setback in the conventional controller ordguces the total energy con-
sumption by 5% for standard room of LESO. These rather lovefiesmay be explained
by the fact that heating energy represents only 30% of tta éotergy consumption in
the LESO building (see Section 5.2), while appliances aadtet lighting represent the
remaining 70%. So, energy savings concerning the heatstgrsydo not much influence
the total energy consumption even if the heating systemrig efficient. Moreover, the
thermal mass of the building being large, a night setbackieghpo the heating system
may only lead to a limited reduction of the heating energyscomption.
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Table 6.3 gives different average measurements on thenyated and provides in-
teresting clues to explain the remaining 21% of energy ggvin

Controller Indoor Anidolic blind Normal blind Windows opiery
type temperature’C]  position [-] position [-] [time fraction]
Manual 20.6 0.94 0.96 0.012
Automatic without u. a. 20.5 0.93 0.95 0.008
Automatic with u. a. 20.5 0.86 0.90 0.007

Blind position = opening fraction [0;1]
Table 6.3:Averaged measurements over the winter period

Surprisingly, blind positions provided by the automatiawollers are lower than the
ones chosen by users with the manual control. Thus, theelifée in energy consumption
between automatic and manual control systems may not baiegplby a more extensive
use of solar gains. On the other hand, the prediction capabflthe heating controller
(see Section 3.3.3) allows to reduce the heating power gitin@ night and the morning
when solar gains are predicted to provide a large amountaf spergy in the afternoon.
Thus, heating energy consumption is reduced and overlges#ravoided. This last point
is confirmed by the fact that windows are more often open im®with manual control
than in rooms with automatic controllers. Moreover, thegedews opening may lead to
additional heating loads if users let the windows open @paroo long time and let the
indoor temperature falling too low.

An other interesting fact is shown by Table 6.3. The automatintroller with user
adaptation provides blind position lower than the one witheser adaptation. This dif-
ference was mainly observed when user is absent, which igderee of the effect of the
limitation introduced in the blind controller for the usdrsent case. This limitation was
set to prevent the blind controller to accept too large sgdéms when indoor temperature
is already high (see Section 3.3.1.2). Histograms of teatpegs for both controllers are
shown in Figures 6.2 and 6.3. The effect of the limitationéady visible: the histogram
is narrower in the case with the user adaptive controller.

Comparing these histograms with the one measured with tmeiah@ontrol system
(see Figure 6.1), shows that overheatings aroun@€ 28e much more frequent with the
latter system, confirming the usefulness of predictiveesyst

6.1.2.2 Mid-Season

Table 6.4 shows relative energy consumption for the mid@eanonths. The indicator
Cretjroom 9ives very different results from the others. This shows taaults are biased
by the room allocation.

The higher energy consumption of the manual controller eaexplained by the fact
that rooms with higher average energy consumption have akerated to the manual
controller and not to the automatic controller without uadaptation. This bias is un-

fortunately due to the missing November month. For mid-segfom September to
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Figure 6.1:Histogram of temperatures for the manual control systemintexr
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Figure 6.2: Histogram of temperatures for the automatic control syst@thout user
adaptation in winter
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Figure 6.3:Histogram of temperatures for the automatic control systéth user adap-
tation in winter
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Controller type Ciot Cfel Cfal/room Cfﬁl/month
[MI/(m?*-month)]  [] [] [
Manual 7.4 0.469 0.300 0.463
Automatic without user adaptation 3.7 0.233 0.338 0.235
Automatic with user adaptation 4.7 0.298 0.362 0.302

Table 6.4:Energy consumptions in mid-season

Controller Indoor Anidolic blind  Normal blind Presence
type temperature’[C] position [-] position [-]  [time fraction]
Automatic without u. a. 21.3 0.70 0.83 0.234
Automatic with u. a. 22.2 0.68 0.78 0.284

Table 6.5:Averaged measurements over the mid-season period

November) not all controllers have been applied to all rooftaus, it is harder to draw
conclusions about energy consumptions. Neverthelesdptiéndicators are in accor-
dance to show that the automatic controller with user adiaptdeads to higher energy
consumption than the one without user adaptation. TablpréMides a possible explana-
tion. The averaged indoor temperature is higher in the case aiser adaptive controller,
which could be explained by a higher user presence, andftiera higher setpoint of
temperatures (when user is absent the heating controtlecesthe temperature setpoint
of at least 0.5C, see Section 3.3.3). In mid-season, some heating energyocasion-
ally be needed, and a higher temperature setpoint is ledollagger energy consumption
during this period.

The observed discrepancy in user presence may come fronat¢héhht controllers
were not applied to the same rooms, and thus different pcesgatterns may have been
encountered by them.

6.1.2.3 Summer

In summer, there is no heating energy used and energy cotistnoply involves appli-
ances and electric lighting.

Table 6.6 gives the energy consumption during the summettmadar the different
controllers. The different indicators do not fully correspl concerning the manual and
automatic without user adaptation systedi§, andC?,, show that the energy consumed

rel

by the automatic system was higher than the one consumedehmahual system. But

Controller type tagt Crzel Cfal/r‘oom Cfcl/munth
[MI/(m?-month)]  [-] [-] [l
Manual 5.6 0.349 0.410 0.376
Automatic without user adaptation 5.5 0.344 0.294 0.330
Automatic with user adaptation 4.9 0.307 0.296 0.294

Table 6.6:Energy consumptions in summer
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Cretjroom @NACT, 0, Indicate the opposite and this shows that results are plpbab
ased by the rooms allocation. That means the automatiasysés applied in rooms that
consume more energy (probably rooms with users presentifatiee evening or sooner
in the morning) during months that lead to higher energy sonstion (probably months
with less daylighting available in the morning and evenirig¢vertheless, histograms of
workplane illuminances during the summer months (see EgJ6r4 and 6.5) seem to ex-
plain a higher energy consumption of the automatic systedeed the histogram of the
manual control system shows a higher occurrence of very hawar illuminance (0-80
lux), whereas the histogram of the automatic without adaptashows that indoor illu-
minance is almost never lower than 240 lux. The automati¢robof electric lighting
thus leads to an extensive use of electric lighting eneiiggesit switches on the lights
in conditions where users would have not acted so, in casemdraial control system.
Moreover, the benefit of the automatic control that switabféshe lights, as soon as the
user leaves the room, does not appear anymore since thisdesatalso implemented in
the manual control system.

The user adaptive system seems to be a good compromise jtsi®e provides an
automatic control for electric lighting but with a lower peint (observed in average at
165+ 70 lux) compared to the one of the automatic control with@etr@adaptation (con-
stant at 400 lux). This is confirmed by the different histogseof illuminances (see the
second slot corresponding to illuminances from 80 to 16ArdWxigures 6.5 and 6.6).

Finally, the lower energy consumption of the automatic oanwith user adaptation
compared to the manual control system may be explained byaefficient management
of the electric lighting: with the manual system, user majtadwon the lights on arrival
and “forgets” to switch them off when daylighting become€fisient. Thus, electric
lighting remains uselessly switched on or at a too high power

6.1.2.4 Summary

Automatic controllers allow 26% of energy savings compai@dhe manual system,
mainly due to the prediction capability of the heating coliér and a more efficient man-
agement of electric lighting. On the whole experimentalqakrthe energy consumption
of the user adaptive system is not significantly higher thenane of the non-adaptive
system.

6.2 Users Comfort

The users comfort has been assessed through daily questes(see Section 5.5.2). A
total amount of 3367 daily questionnaires have been filleddgyrs during the monitoring
period. This section presents the results of analysis for theermal and visual comfort.

6.2.1 Thermal Comfort

Since energy consumption was reduced by using automattoodiens (see Section 6.1),
it is important to check if thermal comfort was maintainedgufe 6.7 shows the user
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Figure 6.4:Histogram of illuminances (when user present) for the méoaatrol system
in summer - each slot corresponds to 80 lux
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Figure 6.5:Histogram of illuminances (when user present) for the aatiicrcontrol sys-
temwithout user adaptation in summer - each slot corresponds to 80 lux

15000

10000

5000

0 500 1000 1500 2000 2500 3000
Inside illuminance [lux]

Figure 6.6:Histogram of illuminances (when user present) for the aatiiercontrol sys-
temwith user adaptation in summer - each slot corresponds to 80 lux
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thermal votes on the Fanger's scale for the whole experiah@etiod, depending on the
controller installed. The comfort votes for all controieare very similar. On the whole

period, the automatic controllers have provided condgitwat user felt as comfortable as
the ones with the manual control. Even a slight improvemenbiiceable for the auto-

matic controller with user adaptation (Higher frequencyates 0). This is mainly due to

a reduction of the overheating occurrence (less votes +%ammbmpared to the manual
system).

Analyzing comfort per season shows that the narrower Higion of temperature in
winter provided by the user adaptive controller (see Sadid.2.1) do not improve the
thermal comfort felt by users (see the similarity of the éhosntrollers in Figure 6.8).
In the other hand, the main advantage of the automatic dersas pointed out in mid-
season, where a better management of solar gains reducepiiely the overheating
(see Figure 6.9). In summer, automatic controllers als@daweerheating in comparison
to the manual system, but it sometimes leads to a slight detwdhfort (see votes -1 on
Figure 6.10). The automatic controller with user adaptativoids temperature to be too
low and then gives slightly better results than the corgrallithout user adaptation.

To summarize, more than 90% of votes are within the rangeIj¥or all controllers,
except in summer where significant overheating (+2 and +Beays for all controllers.
In mid-season, the overheating is often avoided by autentatintrollers compared to
the manual system. In winter, the comfort is comparable fiocantrollers, even if the
automatic controller with user adaptation provides a meeralistribution of temperature.
On the whole period, automatic controllers can be consitiasecomfortable for thermal
aspects (and even slightly better for the one with user atiap) as the manual control
system.

6.2.2 Visual Comfort

Visual comfort is assessed using both glare and illuminaspects. First, results of the
daily questionnaires are presented for the whole expetaheeriod on Figure 6.11 for

glare and Figure 6.12 for illuminance. Considering glangeass, the three controllers
have quite similar results, with a slight reduction of glagethe automatic controllers.

This obsrvation is a bit disappointing since avoiding gktrteuld be a main benefit of the
automatic blinds controller. It may be explained by the faat users with the manual con-
trol system move blinds sufficiently often to cut direct so&diation (see Section 6.3.1.1).
Concerning illuminance, the automatic controller withnesgaptation provides the most
comfortable conditions, mainly by avoiding too high wordpé illuminances.

Results for the winter months only (see Figures 6.13 and)&hdw that the auto-
matic controller with user adaptation and the manual césyrstem give identical results
for both glare and illuminance. The automatic control withoser adaptation manages
to avoid some “low glare” votes compared to the other systanasslightly reduces the
number of “too dark” votes . The latter point is easily expad by its relatively high
setpoint of the electric lighting system.

Figures 6.15 and 6.16 confirm that, in mid-season, the cbetreith user adaptation
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provides sometimes too low illuminances, and also that @sagement of glare issue is
not fully appropriate.

In summer, Figures 6.17 and 6.18 show that the situationvextied, the automatic
controller with user adaptation is quite better than the without user adaptation for
both glare and illuminance. Regarding illuminance, th@eattic controller without user
adaptation is even worse than the manual control system.

In summary, visual comfort conditions provided by the auatimcontrollers are sim-
ilar or slightly better than the ones with the manual systenthe whole experimental
period, but some significant differences appear dependirtg@season: in summer, the
automatic controller with user adaptation performs betten the one without user adap-
tation whereas in mid-season the situation is invertededtiss to indicate that the user
adaptation has particularly well performed in summer andimonid-season. The next
section deals with this issue.

6.3 Effect of the Adaptation to User

The effect of the adaptation to user (extensively describe@hapter 4) is studied in
this section, through the evolution of the number of intBeoexs with blinds and electric
lighting over a month. In addition, evolution of the illunaince and temperature setpoints
is also analyzed.

6.3.1 Number of Interactions Evolution during a Month

The number of interactions with the system may indicategfdiitomatic controller has
adapted to user wishes. If the adaptation is efficient anditons correspond better and
better to the ones desired by the user, the number of intenacthould decrease over the
month.

First, interactions with the blinds are studied and thearauttions with electric lighting
are discussed.

6.3.1.1 Shading Device Controller

Figures 6.19 to 6.24 plot the number of interactions witididi during the different sea-
sons. In general, the number of interactions is higher wighautomatic controller than
with the manual system. It shows that users do not agree héthlind positions provided
by the automatic controllers and consequently move them.

Due to technical problems, the number of interactions aetiebof the month is not
available for the manual system during summer months.

Concerning the anidolic blind, the number of interactiolesdy decrease in the sec-
ond half of the month during winter and summer when the usaptage system is applied.
In summer, the number of interactions with anidolic blindleven lower than the ones
with the manual system. It indicates that the user adaptéioorking efficiently. In the
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other hand, in mid-season, the number of interactions da@atease during the month.
The adaptation seems not to converge, which may explairedigappointing results
obtained by the user adaptive controller regarding visaaifort in mid-season (see Sec-
tion 6.2.2).

Concerning the lower blind (normal window), conclusions aot so obvious. Nev-
ertheless, in winter and summer, during the first part of tbetimthe user adaptive con-
troller leads to more interactions (blind positions do ngt gsers) but in the second part
the number of interactions tends to decrease and to becamee tban the ones with the
non-adaptive controller. Again in mid-season, adaptageems not to work properly.

The difficulty of the adaptation is probably due to the factttthere are no specific
rules for mid-season in the controllers (see Section 3B.Thus, the adaptation process
has to act on values related to summer and winter conditioosier to learn user wishes:
this makes the adaptation task very difficult. But resultswsthat even it was probably
fair regarding energy consumption, removing mid-seastasprevents a correct control
during these months, and therefore prevents a correctatéapto user.

Since user adaptation process is daily carried out, it wasard that user wishes
would be learned in few days as soon as different sky conmditweere encountered. But
the number of interactions shows that it takes at least onte@meeks for the system
to learn user wishes. Thus, applying the control system daljng one month is just
sufficient to show a significant difference between autooraintrollers.

6.3.1.2 Electric Lighting Controller

Figure 6.25 shows the cumulated number of interactions thighelectric lighting sys-
tem during a month (average on the whole experimental periddtomatic controllers
drastically reduce the total number of interactions coragado the manual system. This
shows that it is easier to fulfill user needs and wishes dgaliith electric lighting than
the ones dealing with blinds (number of users interactioitis klinds were not reduced
by automatic controllers).

The user adaptive controller leads to less user interactammpared to the non-
adaptive one. This is not due to an adaptation effect as itbeaseen on Figure 6.26:
the largest part of interactions consists of switch offriatéions. Since the user adaptive
electric lighting system has a lower illuminance setpose( next section) than the non-
adaptive system, the electric lighting system is less ofteitched off by users with the
adaptive controller. Moreover, this explanation is conéichby the fact that number of
switches on is higher with the adaptive system, surely b@asers experienced too low
illuminances in their office.

The effect of the adaptation is not visible on these figurgeeslrelated to the user
adaptive system do not show any decreasing trend at the éhd ofonth.
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6.3.2 Setpoints Evolution during a Month

An other way to see the user adaptation effect is to obseeveublution of the different
setpoints over a month.

First, the illuminance setpoints evolution (averaged am dffferent corresponding
months and on the different rooms) are given in Figures 62729 for each season. In
winter and summer, the illuminance setpoints do not muck &ad have the same kind
of lower (about 75 lux) and upper (about 400 lux) limits. Ireeage, the setpoint value
is higher in winter (195+ 70 lux) than in summer (165 70). This difference is not
significant according to a Studentest with a level of significance of 0.05. Nevertheless,
it is quite probable that the season has an effect on theisétpesired by the user. In
particular, it is possible that users compensate the uaréhdss of winter months by
requesting higher illuminance setpoint.

During mid-season, the average setpoint value shows a idesasing trend, con-
firmed by an associated increasing of the maximum setpoioevaFirst, it should be
noticed that the average values at the end of the month4£2580 lux) is absolutely not
excessive and far below the setpoint applied in the roomisonitadaptive system (400
lux). Secondly, this behaviour confirms the fact that useipéation do not converge to a
satisfactory configuration during mid-season.

The evolution of the temperature setpoint over a mbistlyiven in Figure 6.30. These
results are the average on the whole experimental periathéstandard deviations given
remain quite large. The plots for the season taken indiVighave higher standard devi-
ation and are not given here.

1The setpoint of temperature is also used in summer for theagement of solar gains (see Sec-
tion 3.3.1.2).
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Even if standard deviations are quite large, the setpo@@emdo be kept constant over
the month. At least, no clear trend is shown by these resMtseover, no differences
are noticeable between the user adaptive and non-adaptit®lers.

6.4 Users Acceptance of Automatic Controllers

The users acceptance of automatic controllers have beessassthrough the twice-
monthly questionnaires (see Section 5.5.2). 270 questiesiare usable for the analysis.

6.4.1 Users Description

There are 23 users who have participated to the field studyr@em and 15 men. 10
users wear glasses, 13 not. 6 users are less than thirtygldaBsare between thirty and
thirty-nine, 3 between forty and forty-nine and 6 are moatfifty years old.

In order to have a better statistic, users are grouped in gecchasses: 14 users less
than thirty-nine years old and 9 users are older than forty.

Three different room occupancy exist in the LESO offices: dspe per room (6
concerned users), 2 persons per room (13 concerned use€r§) gersons per room (3
concerned users). In offices with several users, questi@mshow that the blind po-
sition and electric lighting power are chosen on the basis cdmpromise between all
occupants.

6.4.2 Overall Results
The last question of the twice-monthly questionnaire is:

After the last two weeks, do you prefer to come back to the al@yatem or
keep the current control system you have?

The proposed answers are:

O O

No more automatic contrgteject) keep current systelfaccept) No opinion

Table 6.7 gives results related to this question for botbraatic controllers (with and
without user adaptation).

After two weeks, a difference between controllers appdes percentage of rejection
is lower with the user adaptive system (about 13%) than whighrton-adaptive system
(about 20%). The acceptance percentage is also slighggridor the user adaptive sys-
tem (68% compared to 64%).

After four weeks, the difference is drastically enlargetk percentage of unsatisfied
people with the non-adaptive system is increased and re&%% whereas only 5% of
the users remain unsatisfied with the adaptive system.
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System type Reject Accept No opinion Nb of questionnaires
After two weeks with the system

Non-adaptive 20.5% 63.6% 15.9% 44

User adaptive 12.8% 68.1% 19.1% 47

After four weeks with the system

Non-adaptive 25.0% 55.0% 20.0% 40

User adaptive 4.8% 71.4% 23.8% 42

Table 6.7:Users acceptance of the automatic controllers after two fand weeks

A Chi-Squared test (see Appendix C) for 2 degrees of freedmfirens, with a signif-
icance level of 0.05, that the variables “controller” and¢eptance” are not independent:

Pos > ¢x3(95%) , (11.36 > 5.99)

Thus, acceptance is proven to be significantly and posjtivéluenced by the user
adaptation feature.

Then, several Chi-Squared tests are performed in ordestsashe independence of
the answers percentage with other variables (room occypgeisder, age). Results of the
tests on all questionnaires (both after two and four weelessammarized in Table 6.8.
It shows that acceptance of the automatic controllers doedepend on the room occu-
pancy. This proves that the user adaptive controller is @sp beneficial with several
users in a room. In particular, the fact that users choosetteor conditions based on
a compromise with all occupants in a room make their int@vastconsistent and this
allows the adaptive system to converge to a suitable cosiratiegy.

Py rejection acceptance no opinianChitest degree  Chi-Squared value
answers  answers answejs of freedom §;,) ‘IX%L (95%)

Occupancy| 1.39 2.82 1.68 2 5.99

Gender 0.81 0.00 0.04 1 3.84

Age 0.01 5.24 0.93 1 3.84

Table 6.8:Chi-Squared independence test values with different béeta- Variables are
independent when values are lower than the last column

There is no relation between gender and acceptance. Wondemem accept and re-
ject the automatic controllers in the same way.

Therejectionof automatic controllers is not related to the age, but aiggmt depen-
dence exist between tleeceptanceof a controller and the age. The same Chi-Squared
test applied only on the questionnaires after four weeks/ghat the dependence is not
anymore significantf,,; = 0.79). Tables 6.9 and 6.10 show the acceptance percerftage o
both classes of age after two weeks and after four weeks hétlodntrol system.
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Non-adaptive User adaptive Non-adaptive ~User adaptive
controller controller controller controller
Age < 40 46% 70% Age <40 50% 1%
Age > 40 85% 65% Age > 40 63% 1%

Table 6.9:Acceptance percentage after ~ Table 6.10Acceptance percentage after
two weeks four weeks

These tables show that opinion of “young” users (less thageds old) about au-
tomatic controllers is already established after two wesid do not change afterwards.
They definitely accept more easily the controller with usdaation than the one with-
out user adaptation. On the opposite, “older” users (mae #0 years old) change their
opinion towards automatic control during the month. Thegept more largely the non-
adaptive controller after the two first weeks, but they préffie user adaptive system in
the questionnaires after four weeks. In particular, theptance percentage of the non-
adaptive system strongly decreases between two and folswiem 85% to 63%).

At the beginning, “older” users are more tolerant towardsrtbn-adaptive controller
compared to “young” users, who seem to be quite demandinigatBoe end, both classes
of age agree; they accept more the user adaptive contreisyst

Since itis shown in the next section that the adaptatiorcefigperceived by the users,
results may be interpreted as follows: “young” users areemmeceptive to new features.
As soon as they perceive the adaptation effect, they acheptdntrol system even if it
has not perfectly learned their wishes. In the other handgtd users also perceive the

adaptation effect, but do not accept the control systenhitihtas largely adapted to their
wishes.

6.4.3 Users Perception of the Adaptation Effect

One question of the twice-monthly questionnaire allowessisg the user perception of
the adaptation effect. The results are given in Figure 6&1type of control (blinds,
electric lighting or heating system).

Concerning daylighting (blinds control), users strongdyqeive the adaptation effect:
Cumulating answers percentage for “completely” and “Ipfgadapted, a value of 55%
is obtained for the user adaptive system and only 35% for dineatlaptive system.

For electric lighting, users also perceive the adaptatftece(50% for the adaptive
system compared to 35% for the non-adaptive one, with cueaifecompletely” and
“largely” answers). But regarding the temperature, déferes in the users perception
are not significant. As mentioned in Section 6.2.1, the diffiees between automatic
controllers in temperature conditions provided are toolsim&ave an impact on thermal
comfort and thus, they are not significantly perceived bysise
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Figure 6.31.User assessment of the adaptation effect

6.4.4 Reasons of Rejection

Questions 6,7 and 8 of the twice-monthly questionnaires fggpendix D) provide clues
about reasons of rejection of the automatic controllerblélé.11 summarized the results

for the rejection reasons.

System type Answer percentage

“ineffective” “stupid” ‘“irritating”  “going against my wifes”

Blinds controller

Non-adaptive 8.2% 7.1% 21.2% 28.2%

User adaptive 4.5% 7.9% 12.4% 18.0%

Electric lighting control

Non-adaptive 5.9% 7.1% 11.8% 17.7%

User adaptive 3.3% 2.3% 5.6% 6.7%

Heating control

Non-adaptive 1.2% 0% 0% 2.4%

User adaptive 2.3% 0% 0% 2.3%

Table 6.11:Reasons of rejection

Two answers are mostly cited by users to describe the negatpects of the auto-
matic control for both blinds and electric lighting inseadlin their room: it “goes against
my wishes” and it is “irritating”. Concerning blinds, botmswers are cited more than
20% of time with the non-adaptive control but these pergedare almost divided per
two for the user adaptive system. Concerning electric ilightontrol, conclusions are
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Figure 6.32:User negative opinions on the automatic control

similar, the adaptive control system reducing even mogelsrthe answers percentage.
Thus, the main reasons of rejection (system “goes againstishes” and “is irritating”),
were largely reduced by the adaptive control system andceipkins the lower rejection
percentage of the user adaptive system.

Concerning the heating control, all percentages are verydtesting sufficient ther-
mal comfort conditions in the rooms.

Figure 6.32 summarizes negative answers of question 9,imdeals with general
opinions about the controller installed in the room. Themuhawback of automatic con-
trollers is confirmed, users found that automatic contrsigg® against their wishes mainly
when the controller installed is not adaptive (43% compaoe?’% for user adaptive).

There is less than 5% of the users who feel being watched with type of con-
trollers. That excludes this aspect from the reasons oftieje

6.4.5 Reasons of Acceptance

Questions 6,7 and 8 of the twice-monthly questionnaires fggpendix D) provide also
clues about the reasons of acceptance of the automatiotiergr Table 6.12 summa-
rized the results for the acceptance reasons.

The answer mostly cited for all control types is clearly tipedper working” of the
automatic control system. Regarding blinds control, ther aslaptation has a strong ef-
fect on the answers percentages. Every positive aspectsasieed with the user adaptive
system. In particular, the answer “adapted to my wishesitésidwo times more with the
user adaptive system together with the answer “intelligenlis confirms the user per-
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System type Answer percentage
“work properly” “intelligent” “pleasant” “adapted to my whes”

Blinds controller

Non-adaptive 49.4% 16.5% 17.7% 15.3%
User adaptive 62.9% 30.3% 21.4% 27.0%
Electric lighting control

Non-adaptive 51.8% 11.8% 10.6% 17.7%
User adaptive 52.8% 25.8% 15.7% 16.9%
Heating control

Non-adaptive 43.5% 8.2% 5.9% 8.2%
User adaptive 44.9% 8.0% 2.3% 7.9%

Table 6.12:Reasons of acceptance

ception of the user adaptation feature. For electric lightilso, the answer “intelligent”
is cited two times more with the adaptive system. But in thise; the adaptive system is
not felt more “adapted to my wishes” by users, which may bdaémped by the fact that
electric lighting setpoint has probably not sufficientlyngerged to the value desired by
user (see Section 6.3.1.2).

For the heating control, no noticeable difference existvieen controllers.

Considering all types of control (heating, lighting anchis), about 50% of the users
answer that the system “work properly”, but only 8% to 20%veersthat the system is
“adapted to their wishes”. This may be explained by the faat tisers probably consider
a system “working properly” as soon as it acts in a way theyewstdnd, and consider a
system “adapted to their wishes” only when it acts in the samag as they would have
acted. Thus, in order to get a system accepted (instead ob agmion” answer), a
“proper working” is probably sufficient and it does not nexaidly need to be “adapted to
my wishes”.

Figure 6.33 summarizes positive answers of question 9, hwtié&als with general
opinions about the controller installed in the room. It seadditional reasons of accep-
tance of the automatic controllers: energy savings, récluct the number of interactions
and improvement of comfort are all considered as existipgets of the controllers they
have (more than 60% of agreement). Moreover, the reducfiorumber of interaction
and the improvement of comfort are clearly enhanced withutee adaptive system. The
improvement of comfort with the user adaptive system corsfittme slight effect observed
in the daily comfort questionnaires (see Section 6.2) fah leermal and visual comfort.
Regarding the reduction of the number of interactions, stien actually observed that
the adaptive system reduces it compared to the non-adayswem. But for blinds, even
the adaptive control system increases the number of intensoccompared to the manual
control (see Section 6.3.1.1). Nevertheless, the factaii@matic controllers largely re-
duce the number of interactions with electric lighting systseems to compensate, for
users opinion, the corresponding increase number of ictteres with blinds.
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Figure 6.33:User positive opinions on the automatic control

6.4.6 Users Opinion Evolution

Personal questionnaires (see Section 5.5.2) have beentwdbefore and after the ex-
perimental period. Analysis of answers pointed out sonferdifices that show evidence
of an evolution of the user opinion.

Some questions ask the user to choose the three most rebmamérs and classify
them from 1 to 3. In the questionnaires analysis, a weighti®ffd/en to the most relevant
answer, a weight of 2 for the second one and a weight of 1 fotHiné one. Answers
not chosen have a weight of 0. Then, the sum of all weightsriareswer is divided by
the total sum of all weighted answers for the consideredtaquesn order to obtain a
“relative weighted number of answers”.

First, Figure 6.34 gives the user opinion before and afteretkperiments about the
most important characteristics to make a room to his likifgfficient lighting” and
“view of outside” are definitely more cited after the expegimts. Indeed, introduction of
automatic control has particularly an effect on lightingnditions, because of the blinds
and electric lighting control. Moreover, some users reattmt view of outside is very
important, since they have observed that automatic blindsral may prevent it (at least
when they enter the room with closed blinds in summer).

In Figures 6.35 and 6.36 the main positive and negative éspé@utomatic con-
trollers given by users are detailed before and after ewpris. Concerning positive
aspects, only slight differences in opinions are visibleswers “increase of comfort”
and “reduction of number of interactions” are more citeerathe experiments, which
shows that experiments have strengthened these posifivieapamong users about au-
tomatic controllers. “Energy savings” and especially “cohis funny” are considered
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Figure 6.34:Users opinion about the main characteristics to make a romtheir liking

relatively less relevant after experiments. The lattenpsiows a kind of demystification
of automatic controllers after experiments.

About the negative aspects, the importance of “control ggesnst wishes” is almost
doubled after the experiments and reaches more than 50%sHtivs one more time that
the main drawback and the main reason of rejection of auforoantrollers is that they
do not take into account user wishes. This also confirms aligbtes the opportunity of
the present work.

Figure 6.37 shows the self-evaluation of the users conegihieir sensitivity to glare
before and after experiments. The same percentage of us&sisler themselves partic-
ularly and not particularly sensitive to glare. The sitaatis identical after experiments,
except the fact that the number of users without opiniondarty lower. The introduction
of automatic control in their room probably gives users #aihg that an entity decides
for them if situation is comfortable or not. Thus, they beeomore aware of what com-
fort means for themselves and which needs they have.

At the end of experiments, users could choose which systeyntanted to be applied
in their office rooms in the future. 21 users have requestedé#st available automatic
system (i.e. the adaptive one) and 2 have requested the hmmieol. One of these
two answers is related to the workshop (which have been vedéo give disappointing
results, see Section 6.5.2), so only one user in a standfied efill rejects all automatic
systems after the experiments. This corresponds to aboutf3%e users who would
probably reject automatic control in all forms.
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Figure 6.37:.User self-evaluation of his sensitivity to glare

6.5 Additional Results

This section discusses the quality of the Rl model resultseaplains the user adaptation
problem observed in a special room of the LESO building.

6.5.1 RI Model Assessment

This section provides a comparison between measurememsi@dr illuminance and
values given by the Rl model (described in Section 3.4.2).

Figure 6.38 shows a histogram of the relative error of the Bélehin all rooms, the
relative error being defined as:

model value- measurement
measurement

RI model relative erroe=

Relative error is centered on zero but a high peak exists fefagive error equal to
-1 and no relative errors appear below -1. This is explainethé fact that the RI model
cannot give negative values. Indeed, the worst cases (casesponding to a relative
error equal to -1) are when the RI model calculates a zercevaluilluminances when
measured values are not zero.

Frequencies observed in the range [-1,-0.5] are not equatdoencies in the sym-
metric positive range [0.5,1]. This may indicate some caseghich Rl model underes-
timates illuminances. It is discussed later in this chapter

Table 6.13 shows the percentage of observed values forehiffboundaries. For this
determination, null values of the RI model are removed the.peak at -1 in Figure 6.38
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Figure 6.38:Histogram of relative error of the RI model on all rooms

is not taken into account). Itis observed that only 40% ofigalprovided by the Rl model
are comprised in the relative error boundariest00.15, which is the assumed relative
error of the measured illuminances. The ratio reaches 65etWwhundaries are enlarged
to £+ 0.3 and 83% with boundaries &f 0.5. It means that in 17% of the cases values
calculated by the RI model are more than 50% different fronasneements. Some ex-
planations of this discrepancy may be found in Figure 6.88epicts the RI model error
in function of the illuminance measured in a standard rootrhigh illuminances (above
1500 lux) a trend of underestimation by the Rl model is visifithis underestimation may
be partly explained by the overestimation of illuminancéhe&EIB sensors. Even if these
sensors were calibrated and an attempt to correct this stumagion was performed, they
still gave slightly overestimated values (see Figure 5ripage 105).

Relative error boundaries +0.15 4+0.30 +0.50 +1.00
Percentage of observed valuest0%  65%  83%  97%

Table 6.13:RI model error assessment

A malfunctioning of the RI model is visible on Figure 6.40, ialh depicts the RI
model error in function of the illuminance measured in a rtahdard room. This room
(room 205) is a large room grouping two standard rooms tagetlfith two illuminance
sensors (with two associated and independent Rl modelsfoamdblinds to control. In
this room, the RI model gives sometimes largely overesgohaalues when the measured
values are around 750 lux. It indicates that the RI model isetones misleaded by the
additional illuminance coming from the other windows of thmuble-room. For instance,
it fits some measurements with blinds of the other windowspletaly open and then
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overestimates indoor illuminances when blinds of the otfiedows are closed.

To summarize, the Rl model is not very accurate (less thand0%alues comprised
in the 0.15 of measurement relative errors) but providesamable values (relative errors
less than 0.5) in 83% of the cases. Larger errors appear kstamalard rooms, and when
the illuminance is high (RI model underestimate values messby the EIB sensors).

6.5.2 Special Case of Workshop

The field study also included the workshop of the LESO buddifhis room (room 005)
has two particularities: it is a large room grouping two st@a rooms together and up to
10 different persons were working occasionally in this rodpuestionnaires were filled
by the main user of the workshop. At the end of experimentaai obvious that the
adaptive system proposed was not appropriate to the wapksdee. Since a room with
the same configuration (room 205) has given satisfactomiteesegarding acceptance,
the difficulty should have come from the large number of useréact, different reasons
explain why the user adaptation has failed in this room:

e Many different indoor conditions are irregularly requestsince users vary and
are not regularly present. This lack of regularity prevehts adaptive system to
converge.

o Various tasks were performed in the workshop, requestimyg d#ferent indoor
lighting conditions: tasks involving computers (requgridark indoor conditions),
general tasks such as readings (mainly requiring to avaiceyland high preci-
sion manufacturing tasks (requiring high illuminance)eHuaptive system do not
manage to find a compromise between all these requirements.

e The electric lighting setpoint was not adapted correcttywds observed that the
adapted setpoint tends to be too low. In fact, frequent wraagptations occur
when a user switches off the lights at his departure and whesther user enters
the workshop just afterwards. Thus, the adaptive systemiders that user is still
present and that the switch off was a wish for lower illumicen

Extrapolating from this result, it may be assumed that udaptive systems are prob-
ably not appropriate for places with irregular users, suchvarkshop, library, corridors
and in general all public spaces.
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Chapter 7

Conclusions

“The best way to predict the future is to inverit iftAlan Kay)

7.1 Achievements

The objective of this work was to develop and test user adagtntrollers for blinds,
electric lighting and heating. For this purpose, an integtaontrol system that adapts
to the environment and building characteristics was deezlcand successfully imple-
mented. This system was built on three nested control Idepsl 1 translating physical
values into actuator commands, level 2 being the fuzzy logidrollers and level 3 deal-
ing with adaptation aspects.

User adaptation was achieved by means of Genetic Algorithatoptimize param-
eters of the fuzzy logic controllers. GAs have been seen tthéenost efficient opti-
mization method for this task. They ensure a 100% convesyemereas standard search
methods such as Gauss-Newton and Nelder-Mead convergssithien 25% of the time
and the Simulated Annealing converges in about 75% of the.tim

Simulations with a consistent virtual user (who permanemtjuires an opening frac-
tion of blind of 20% in winter, and 80% in summer) have showat tthe user adaptive
controller is capable of anticipation. The control systeanages to provide blind posi-
tions desired by the user in conditions not yet encountered.

The experimental tests were carried out in the LESO buildim@4 rooms with a to-
tal of 23 users. Three controllers were compared: a manmtalsystem, an automatic
controller without user adaptation and an automatic cdietraith user adaptation. Tests
were conducted in a similar fashion @lical randomized trialsare carried out: control
systems are randomly attributed to rooms and users do net Wiich system they have
(single-blind study). The most important results are sunwsd in Table 7.1.

The main benefit of automatic controllers is the reductioteftotal energy consump-
tion: 26% energy savings compared to the manual controésystThese large energy
savings are reached without impairing indoor comfort. Tiremal comfort is kept at a
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Controller type Energy Thermal comfort Visual comfort Rejection after
savings satisfaction satisfaction 4 weeks

Manual 0% 84% 86% -

Non-adaptive system 26% 84% 838% 25%

User adaptive system 26% 86% 89% 5%

* average values for both glare and illuminance assessment

Table 7.1:Results on the whole experimental period

high level and visual comfort is even slightly improved bg tiutomatic controllers.

The most interesting result is the large reduction of the@matic control rejection
percentage with the user adaptive system. Indeed, aftervfeaks with an automatic
control, 25% of the users with the non-adaptive system tegethe automatic control,
whereas only 5% of the users with the user adaptive systetteg] it. Moreover, energy
savings were not reduced by the user adaptive system.

It has been shown that the rejection percentages of autoewitrol do not depend
on the gender or number of occupants in a room. On the othel; harinteresting depen-
dence has been found between the age and the acceptancgamecéfter two weeks,
“older” users (more than 40 years old) are more likely to pttiee non-adaptive system
than the adaptive one. They only change their mind afterimeks and at the end, both
classes of age agree: they prefer the user adaptive copstehs.

The main reason for rejection has been determined to be ¢héhfat automatic con-
trol may go against user wishes. This validates the aim optsent work, which was to
take into account user wishes on a long-term basis. Indeseds with an adaptive control
system complain considerably less about the control sygt@ng against their wishes.

An other interesting result is that the user adaptive cosystem slightly improves
both thermal and visual comfort compared to the non-adajgtyétem. The performance
of the user adaptive control would probably be even bettdraéfadaptation performed
better in mid-season. Indeed, during mid-season it has dleserved that the adaptation
does not properly converge for both electric lighting andds control. The reason for
this is probably that there are no specific rules for mid-seas the controllers. Thus,
the adaptation process has to act on rules set for summeriatet a order to correctly
learn user wishes. This makes the adaptation task veryudiffidn important improve-
ment may thus be to include mid-season specific rules in theasystem.

In addition, it was noticed that the user adaptive systemndidconverge properly
in the case of a workshop, probably because of the numerdfesedit users and tasks
involved. It has been concluded that user adaptive systeengrabably not appropriate
for places with irregular users, such as public spaces.



7.2. QUTLOOK 145

7.2 Outlook

This work has shown that the user adaptation process takiesagong time to be effec-
tive. For instance, at least one or two weeks are needed tanseffect on the number of
interactions. Moreover, it has been noticed that the diffees in user acceptance between
the adaptive and non-adaptive control systems were ontyfisignt after four weeks with
the control system.

In fact, there are no clues that adaptation has finished ecgimge Experiments should
be carried out during several months with the same contstésy, in order to assess the
user adaptation over a longer period. An extended periotittegd to even better results,
with a rejection percentage even lower than 5% and with betisfort conditions. On
the other hand, adaptation might also become unstable aildtspresults obtained dur-
ing the first month. Only experiments over a longer period ld@mswer these questions.

An other promising approach is the integration of user pres@rediction in the con-
trol system. When the user is absent, additional energygasnd better management of
solar gains may be expected with an accurate presence fwediEor instance, the du-
ration of the predicted absence may determine the managersolar gains: for a long
absence, mainly thermal aspects are considered but forrteeshbsence a compromise
between thermal and comfort aspects should be made, in trgeovide fair thermal
comfort conditions at the user’s arrival.

Finally, in order to investigate commercial applicatiomasnore global approach to the
building is needed. Interactions between rooms shoulduxtest (in relation with ther-
mal aspects or localization within the building), userswdtidoe recognized in different
rooms (for instance using smart cards) and security aspegts also be considered (fire
or intrusion detection). The most promising way is to corefitme integrated control con-
cept presented in this work with the Distributed Artificiatélligence technique, which
allows intelligence to be distributed among devices thhmug the building.

Hence, several improvements can still be expected in threedfeghutomatic control in
buildings. However, this work has shown that the additioamfiser adaptive feature was
a very important step, and user needs should therefore aligayain a major concern in
any further development.
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Appendix A

Shading Device Fuzzy Logic Controllers

A.1 User Present, “Glare” Fuzzy Rule Base

The innovative idea to take into account not only the incaeangle of the solar radia-
tion on the facade but the exact position of the sun relatiteethe facade. It is depicted
on Figure A.1. This allows having different behaviours fdffedent kind of direct sun
penetration. In particular, it gives the opportunity to jpidhhe system (through the user
wishes) depending on the user position in the room.

Inputs (fuzzy values):

e Direct vertical illuminance Evy;,)

e Solar altitude Altitude)

e Solar azimuth (relative to the facade orientatiat}{muth)
Output (crisp value):

e Maximum blind position ;,...)

High High High
Left P y : Center — \nght
7 N
/ Mid Mid Mid \
/ Left Center Right \
Low Low Low
Left Center Right

Figure A.1:Sun position relatively to the facade
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Complete rule base (10 rules):

1. If “ Evg;, is high” and “ Altitude is low” and “ Azimuth is right” then “a,pq. = 0.4”
2. If “ Evg, is high” and “ Altitude is low” and “ Azimuth is center” then “a,nq. = 0.4”
3. If “ Evg,- is high” and “ Altitude is low” and “ Azimuth is left” then “aynee = 0.4”
4. If “ Evg,, is high” and “ Altitude is mid” and “ Azimuth is right” then “a;,q, = 0.6”
5. If “ Evg;,- is high” and “ Altitude is mid” and “Azimuth is center” then “ay,q. = 0.6”
6. If “ Evg, is high” and “ Altitude is mid” and “ Azimuth is left” then “a,pq. = 0.6”

7. If “ Evg, is high” and “ Altitude is high” and “ Azimuth is right” then “ a4, = 0.8”
8. If “ Evg;,- is high” and “ Altitude is high” and “Azimuth is center” then ‘a4, = 0.8”
9. If “ Evg;,- is high” and “Altitude is high” and “Azimuth is left” then “«a;,q, = 0.8”
10. If “FEuvg, islow” then “a;e, = 17

Fuzzy input variables are depicted on Figures A.2 to A.4. diitput crisp variable, . is shown
in Figure A.5.
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Figure A.2:Fuzzy variableEv;,
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A.2 User Present, “llluminance” Fuzzy Rule Base

Inputs (fuzzy values):

o Global vertical illuminance £vg;op)

e Outdoor average temperature on the last 24 hats {on)

Output (crisp value):

e Maximum blind position ¢;;;)

Complete rule base (8 rules):

1. If “Season is winter”

2

3

6

7

. If “Season is winter”

. If “Season is winter”

. If “Season is winter”

and

and

and

and

‘FEuvgiop is night” then “a = 1"
‘Evgiop is high” then “a = 0.6"
‘Evgiop is mid” then “a = 0.8"

‘Evgiop is low” then “a=1"

. If “Season is summer” and Euvg,y, is night” then “a = 1"

. If “Season is summer” and Euvg,y, is high” then “a = 0.3

. If “Season is summer” and Evg;, is mid” then “a = 0.5"

8. If “Season is summer” and Evg,, is low” then “a = 0.7"

Fuzzy variables are depicted on Figures A.6 and A.7.
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Figure A.6:Fuzzy variableEvg,,
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Figure A.7:Fuzzy variableSeason

20



A.3. GENETIC ALGORITHMS ENCODING 151

A.3 Genetic Algorithms Encoding

The encoding of the two fuzzy rule bases for Genetic Alganghs realized by regrouping the
two fuzzy rule bases in one individual, whose genes are septing variations of the crisp output
values. An individual (chromosome) is built as follows:

“Glare” fuzzy rule number “llluminance” fuzzy rule number
(1]2]3]4[5[6[7[8]9]10]1]2[3[4[5][6]7]8]

The rules numbers are given in previous sections.

A.4 User Absent Fuzzy Rule Base
Inputs (fuzzy values):
e Outdoor average temperature on the last 24 hatiwg {on)
o Horizontal global solar radiatiorCifg;0,)
o Difference between current room temperature and setpenmpératuredy; s )
Output (crisp value):
e Blind position ¢)
Complete rule base:
If “Season is winter” and ‘Qhg, is night” and “Ty;s is zero” then “a = 0"
If “Season is winter” and ‘Qhg,y, is shinyday” and ‘T is zero” then “a=1"
If “Season is summer” and Qhg is night” and “Ty; s is zero” then “a = 1"
If “Season is summer” and Qhy,y, is shinyday” and ‘Ty; s is zero” then “a = 0"
If “ Qhgiop is night” and “Ty;y is too cold” then “o = 0"
If “ Qhgop is night” and “Ty;y is too hot” then “a = 17
If “ Qhgiop is shinyday” and ‘Ty;;; is too cold” then “a = 1"
If “ Qhgiop is shinyday” and ‘Ty;y; is too hot” then “a = 0"
If “ Qhgiop is darkday” then “a = 1"

The last rule is not quite optimal for thermal aspects butlawes to illuminate corridors with

daylight when office doors are open. It has been seen to retiecase of electric lighting in

corridors during dark day. Fuzzy variables are depicted igurEs A.8 and A.9. The fuzzy
variableTy;; is less severe with too high temperature than too low tentyeralt is due to the

fact that it is less energy consuming to cool an office in wifite. opens the windows) if there is
overheating than to heat an office in summer (i.e. appliesrigepower) if there is overcooling. It
would not be the case if a cooling system was installed in 88Q-PB building.
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Appendix B

Venetian Blinds Controller

Controlling venetian blinds is more complex than tissuedsisince it deals with two variables:
the vertical positiond) and the slats angledj.

The venetian blinds controller developed in this work isidid into two controllers depending
on whether the user is present or not (similarly to the stahtifinds controller). If the user is
absent the automatic control is performed identically ®tibsue blind control system (the slats
are simply closed and only the vertical position is regulatdhe controller for the user present
case is different and is described below.

The main difference compared to the tissue blind contrpliesented in Section 3.3.1.1 lies in the
fact that the additional slats regulation is performed ineg v just completely cut the direct solar
radiation. Thus, the main task is to determinedhcal slats anglethat just obstruct sufficiently
the visible sky in order to cut the direct solar radiation.

Let 2 denotes the slat widthy the distance between two slaf$the slats angle as defined on
Figure B.1 and) the solar altitude projected on the vertical plan perpanidicto the facade.

Figure B.1 shows an illustration of two slats of a venetigndl

b
y

Outdoor Py O Indoor

Figure B.1:Lateral view of two slats of a venetian blind

Defined on the figurey andq can be easily calculated:
p=2x-cosf-tanf

g=ux-sinf
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In addition, one has:
y=p+q
So,
y=x-(sinf+cos-tandh)
Then, definingl = y/z, the solar radiation is just cut when:
d=sinf+ cos - tanf for =0
with 3. being the critical slats angle.

Finally, using the relative azimuth(angle between the perpendicular to the facade and the direc
tion of the sun projected on a horizontal plane, positiveatas the East direction) and the real
solar altitude of the suh instead of the projected sun heightit comes:

tan h
tanb =

cosa

and
tan h

Ccos a

d=sinfB+cosf - for =0

This equation is solved fo. using the Matlab Symbolic Calculation Toolbox. There are tw
solutions, only one of them has a physical meaning:

1— /14 k2
ﬁc= M-‘rd

cos a

Sincef. is determined, the venetian blind controller works as tbsu blind controller. With the
slats regulated to reach the critical slats anglethe vertical positiory of the blind is determined
using the “Glare” and “llluminance” fuzzy rule bases as expéd in Section 3.3.1.1.

A version of this venetian blind controller has been sudcéigsmplemented in the LESO build-
ing during an other research project, dealing with blindteaincalled SMARTWINDOW [Bakker
et al., 2001].



Appendix C

Statistics Definition Reminder

The different definitions presented here are extensivelgudised in the book of Morgenthaler [Mor-
genthaler, 1997].
C.1 Basic Definitions

Given a distribution of a variable, theexpected valuef a functionf(x) is defined as:
(fl@) =) f@)P(x)

with P(x) being the probability that a triat takes on the value.

Thearithmetic meardenoted:, commonly calledneanor average is defined by:
fy = (x) = ZxP(z)

For N samples of a variablehaving a distribution with a known mean,, thevarianceis defined
as follows:

var(z) = {(x — 1)) = (a?) — s’
Note that thestandard deviatiomlenotedr is simply equal to:
o =/var(z)
Thecovarianceof two variablesz andy, with their associated meaps andy,,, is defined as:
cov(z,y) = (& — pe)(y — 1y)) = (xy) — (2)(y)
Finally, thestatistical correlationof two variables: andy is given by:

cov(zx,y)

corz, y) = ——
Ty

This value gives the strength of the relationship betweeiabies.
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C.2 Student t-Test for Two Samples

This test is used for comparing the means of two samples.€l$@nples may be correlated or not.
Let z andy denotes two variables from two normal distributions withamg,,, 1, and standard
deviationo, o, respectively. And letn andn be the sample sizes for variablesndy, respec-
tively.

Let assume that hypothest is 11, < i, and thus alternative hypothedi& is 11, > ji,.

First, the two standard deviations are combined:

o2 = (m—1)o2 + (n — 1)05
p m4+n—2
Then, thet-value is defined as:

Hy — Ha
o2(m+n)/(mn)

t-value= for testing Hy

Thus, H is rejected at a significance level of 0.05 if
t-value> gty 4m—2(95%)

Wheregt,,1+m,m—2(95%) is thet-value in at-table forn + m — 2 degrees of freedom with a signifi-
cance level 0f).05.

A significance levebf 0.05 indicates that the probability of the observed daiad due to pure
chance is less than 5%. Thkenfidence levak often mentioned in statistical tests. It is simply
related to the significance level as follows:

confidence levek (1 — significance level

If Hy is rejected, the means, is significantly highetthan,.

C.3 Chi-Squared Test

This test allows to assess if two variables are independerglated. It is equivalent to the cor-
relation but with variables that are categorical or orditigk often used in questionnaires analysis.

Let observe a sample of couple of discrete variable§’(Z). Possible values foY” and Z are
Yiy-- s Yis- -, yrandzi, ..., z;,...,2;5. Thus, there aré - J possible couples of value¥'(2),
that may be arranged incntingency tablewith I lines andJ columns, each celh,y;) display-
ing the number of occurrence;.

AssumingY” and Z independent, one may calculate the probabjlityobserving each couple of
values:

pij:P{Y:yiandZ:zj}:P{Y:yi}'P{Z:zj}
With

Zﬁlzl nij
P{Y = y,-} = = <7 J 7
i=1 22j=1"ij
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I
Di=1 Mg
T 7
i=1 Zj:l i

Then, a theoretical contingency table Yifand Z were really independent) may be determined,
each cell filled with:

P{Z:Z]‘} =

n-PY =yi} - P{Z = 2}

Now, the independence test may be applied depending on 8@lsired distribution. The Pearson
statistic test valué’,;, is the sum of the - J squared differences between theoretical and observed
values in the contingency table, each squared differenicg loivided by the theoretical value.

The degree of freedory, is equal to( — 1) - (J — 1).
Finally, the hypothesis of independence is rejected if
Pobs > QXf-L (95%>

Whereqxﬁb (95%) is the test value fok;, degrees of freedom in a Chi-Squared distribution with
a level of significance of 0.05.
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Appendix D

Questionnaires

D.1 Personal Questionnaire

Projet AdControl — Questionnaire Général

Nom :..oooeiien Local : ................ Date :

Votre nom est uniquementutilisé pour comparer les résultats avec les aufres questionnaires que vous pourriez remplic.

1. Combien de personnes occupent-elles votre bureaun ou votre espace de travail ?

1 personne 2 personnes 34 personnes Plus de 4 personnes
(o] e} Q e}

2. Si vous n’&tes pas seul(e) dans votre bureau, qui choisit les conditions intérieures (stores, lumiére

artificielle et consigne de température) ?

Vous-méme Les autres Compromis entre tous les
occupants
e} o] o]
3. Depuis combien de temps occupez-vous ce méme bureau dans lebitiment LESO ?
Moins d’'un mois  Entre 1 et 6 mois Entre 6moiset 2  Entre 2 et 5 ans Plus de 5 ans
ans
Q Q (o] (o] Q

4. Notez par ordre d*importance les trois caractéristiques physiques qui vous paraissent les plus

pertinentes pour rendre un bureau 2 votre goiit (de 1 a 3, 1 =1le plus important).

température agréable

bon éclairage

aération efficace

vue sur extérieur

agréments généraux {couleurs desrevétements, etc.)
insonorisation

espace privatif

grandeur du local

autre (spécifiez s.v.p.) ...

5. Utilisez-vous une lampe de bureau supplé taire comme appoint d’éclairage?
Oui Non
[e] (o]
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10.

11

12.

13.

14.

APPENDIXD. QUESTIONNAIRES

D’une maniére générale, préférez-vous travailler i la lumiére natrelle, 1 la lumiére artificielle on
avec une combinaison des denx ?

Lumiére Lumiére Combinaison des Ne sais pas
naturelle artificielle deux
o] o] Lo} Lo}

Vous considérez-vous comme quelqu’un de trés sensible i 1’éblonissement 7

Oui Non Ne sais pas
o] o]

Vous considérez-vous comme quelqu’un de trés sensible ou an contraire résistant an froid ?

Sensible au froid Reésistant an froid Indifférent ou ne sais pas
o] o] (o]

Vous considérez-vous comme quelqu’un de trés sensible ou an contraire résistant i la chaleur ?

Sensible a la chaleur Résistant a la chaleur  Indifférent ou ne sais pas
o] o] (o]

Portez vous des lunettes ou des lentilles de contact pendant votre travail ?

Oui Non
o] Lo}
Sexe
Femme Homme
Age

Moins de 30 ans Entre 30 et 3% ans  Entre 40 et 49 ans  Entre 50 et 39 ans Plus de 60 ans
o] o] o] o] o]

Notez les trois avantages d’un systém e de contréle autom atique qui vous semblent le plus appréciable
(de 1 a3, 1=1eplus appréciable).

permet des économies d”énergie

limite le nombre d’interactions nécessaires avec les stores et la lumiére artificielle
angmente le confort

permet de s’adapter & la cybernétique

casse la monotonie
est amusant

autre (précisez s.v.p.)

Notez les trois inconvénients d’un systéme de contréle automatique qui vous semblent le plus
pénalisant (de 1 4 3, 1 = le plus pénalisant).

déconcentre

donne le sentiment d’étre surveillé

est bruyant

entrave la liberté

rend fainéant

va 4 ’encontre des souhaits de I"utilisateur
autre (précisez s.v.p.) ...........
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D.2 Twice-Monthly User Satisfaction

Projet AdControl — Questionnaire d’évaluation sur les 2 derniéres
semaines

Nom : Local : Date : ..

Wotre nom est uniquement utilis€ pour comparer les résultats avec les autres questionnaires que wous pourriez remplir.

1. Demaniére générale, comment estimez vous Ia quantité de lumiére artificielle et naturelle combin ées,
a votre place de travail ?

Trop clair Clair Correcte Sombre Trop sombre
(o] Q o Q o

2. L’éclairage artificiel dans ce local entrain e-t-il, p our vous, des génes visuelles ?

Souvent Detemps en temps  Occasionnellement Jam ais
o] o] o] o]

3. Lalumiére naturelle dans ce local entrsine-t-elle, pour vous, des génes visuelles ?

Souvent Detemps en temps ~ Occasionnellement Jam ais
[e] [e] [e]

4. S’il y ades génes

ol se m anif lles généralem ent (plusieurs réponses possibles) ?

éblouissement direct depuis la fenétre
éblouissement direct depuis le systéme anidolique
éblouissement direct depuis les luminaires

reflets sur I"écran d"ordinateur

reflets sur du papier brillant

autre (Précisez S.V.p.) .....oooiiiiiiiiii

ooooono

5. Demaniére générale, comment estimez-vous la température du local ?

Trop froid Froid A peine froid Neuire A peine chand Chand Trés chaud
el o] [+] o] el o] [+]

6. Lesystéme de contrile de stores vous a semblé ... (plusieurs réponses possibles)

O absent O fonctionner correctement

O inutile O performant

O inefficace O adapté ames besoins

O stupide O intelligent

O énervant O agréable

O alleral’encontre de vos souhaits O autre (précisez s.v.p.) ............
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7. Lesystéme de contréle de la lumiére artificielle vous a semblé ... (plusieurs réponses possibles)

O absent O fonctionner correctement

O inutile O performant

O inefficace O adapté & mes besoins

O stupide O intelligent

O énervant O agréable

O aller al’encontre de vos souhaits O autre {précisez s.v.p.) ...oeenene

8. Lesystéme de contréle du chauffage vous a semblé ... (plusieurs réponses possibles)

O absent O fonctionner correctement

O inutile O performant

O inefficace O adapté & mes besoins

O stupide O intelligent

O énervant O agréable

O aller al’encontre de vos souhaits O autre {précizez s.v.p.) ...oeenene

9. Pour chacun des aspects suivants, jugez le systéme de contréle qui a été installé dans voire bureau.

Tout a fait Plutot Ne sais pas Plutét Désaccord
d’accord d*accord pas d’accord total

Permet des économies d’énergie o o o] o o
Limite le nombre d’interactions o ] o) ] o]
Augmente le confort o o o] o o]
Permet de s*adapter a la cybernétique & ] o o e}
Casse la monotonie o ] o] o o]
Est amusant [¢] o} o] o] o}
Déconcentre o o o] [o} o]
Donne le sentiment d’étre surveillé o ] o <] o]
Est bruyant o} o} o] o]} o
Entrave la liberté [¢] o} o] o] e}
Rend fainéant o] o] e} o] e}
Vaal’encontre des souhaits o] o] o] ] o

o] o] o] o] Lo}

autre (précisez s.v.p.) ..ooeenene

10. De maniére générale, le systéme semble-t-il s'étre adapté A vos goiits particuliers ?

Totalement Largement  Moyennement  Faiblement Pas du tout
Pour I’éclairage naturel © o o] ] o]
Pour I’éclairage artificiel o o o o o]
Pour la température o] o o [¢] o}

11. Dans 1’état actuel, préfériez-vous retourner i un systéme sans aucun contréle automatique, ou
conserver le systéme 7

Aucun contr8le automatique Systéme actuel Ne sais pas
O O o]
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D.3 Daily Comfort

W Projet AdControl - Enquéte sur le confo =10l x|

Evaluez votre confort actuel

— Confort thermiqgue ————  ~ Confort visuel
3 = trop chaud " pas d'éblouissement
i~ 2 = chaud " léger éblouissement
1 = & peine chaud " Fort éblouiszement
0 = neutre
i -1 = a peine frais " trop sombre
-2 = frais " éclairement comect
-3 = froid i trop clair

Envoyer les valeurs I

Merci de votre collaboration !
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