
THÈSE NO 2772 (2003)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE À LA FACULTÉ SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

Institut de traitement des signaux

SECTION D'ÉLECTRICITÉ

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Master of Science in Cognitive Science and Natural Language,
The University of Edinburgh, Royaume-Uni

et de nationalité américaine

acceptée sur proposition du jury:

Prof. H. Bourlard, directeur de thèse
Dr S. Bengio, rapporteur

Prof. M. Hasler, rapporteur
Dr S. King, rapporteur

Dr G. Zweig, rapporteur

Lausanne, EPFL
2003

SPEECH RECOGNITION WITH AUXILIARY INFORMATION

Todd Andrew STEPHENSON

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147900049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Summary

Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the
data that it must be able to deal with. Being the standard tool for ASR, hidden Markov mod-
els (HMMs) have proven to work well for ASR when there are controls over the variety of the data.
Being relatively new to ASR, dynamic Bayesian networks (DBNs) are more generic models with
algorithms that are more flexible than those of HMMs. Various assumptions can be changed with-
out modifying the underlying algorithm and code, unlike in HMMs; these assumptions relate to the
variables to be modeled, the statistical dependencies between these variables, and the observations
which are available for certain of the variables.

The main objective of this thesis, therefore, is to examine some areas where DBNs can be used
to change HMMs’ assumptions so as to have models that are more robust to the variety of data
that ASR must deal with. HMMs model the standard observed features by jointly modeling them
with a hidden discrete state variable and by having certain restraints placed upon the states and
features. Some of the areas where DBNs can generalize this modeling framework of HMMs involve
the incorporation of even more “auxiliary” variables to help the modeling which HMMs typically
can only do with the two variables under certain restraints. The DBN framework is more flexible
in how this auxiliary variable is introduced in different ways. First, this auxiliary information aids
the modeling due to its correlation with the standard features. As such, in the DBN framework,
we can make it directly condition the distribution of the standard features. Second, some types of
auxiliary information are not strongly correlated with the hidden state. So, in the DBN framework
we may want to consider the auxiliary variable to be conditionally independent of the hidden state
variable. Third, as auxiliary information tends to be strongly correlated with its previous values
in time, I show DBNs using discretized auxiliary variables that model the evolution of the auxil-
iary information over time. Finally, as auxiliary information can be missing or noisy in using a
trained system, the DBNs can do recognition using just its prior distribution, learned on auxiliary
information observations during training.

I investigate these different advantages of DBN-based ASR using auxiliary information involv-
ing articulator positions, estimated pitch, estimated rate-of-speech, and energy. I also show DBNs
to be better at incorporating auxiliary information than hybrid HMM/ANN ASR, using artificial
neural networks (ANNs). I show how auxiliary information is best introduced in a time-dependent
manner. Finally, DBNs with auxiliary information are better able than standard HMM approaches
to handling noisy speech; specifically, DBNs with hidden energy as auxiliary information — that
conditions the distribution of the standard features and which is conditionally independent of the
state — are more robust to noisy speech than HMMs are.

i

ii

Version abrégée

La reconnaissance automatique de la parole (ASR) est un grand défi, vu la grande variété des
données concernées. Lorsque les types de données sont suffisamment homogènes, les modèles de
Markov cachées (HMMs) sont efficaces et representent l’état de l’art. Plus récents en ASR, les
réseaux dynamiques bayésiens (DBNs) utilisent des algorithmes plus génériques et plus flexibles :
deux groupes d’hypothèses intrinsèques aux HMMs ne sont plus nécessaires, à savoir celles concer-
nant les dépendance statistiques entre les variables et celles concernant les données observables.
Dans le contexte des DBNs, ces deux types d’hypothèses peuvent être ajoutées ou relaxées sans
changement de code.

L’objectif principal de cette thèse est donc d’examiner des situations où les DBNs peuvent être
utilisés pour changer les hypothèses des HMMs, afin de construire des modèles plus robustes face
à la grande variété de données utilisées en ASR. Les HMMs modèlent conjointement les variables
observées et les variables d’état cachées discrètes, en imposant des contraintes aux états et aux va-
riables observées. Les DBNs permettent de généraliser cette modélisation en incorporant d’autres
variables “auxiliaires”. La flexibilité apportée par les DBNs a plusieurs aspects. Premièrement,
l’information auxiliaire facilite la modélisation car on peut exploiter sa corrélation avec la variable
observée. Ainsi, en utilisant les DBNs l’information auxiliaire peut conditionner directement les
distributions de probabilités des variables observées. Deuxièmement, certains types d’information
auxiliaire ne sont que faiblement corrélés avec les variables d’état. Dans ce cas, les DBNs per-
mettent de considérer les variables d’état comme conditionellement indépendantes des variables
auxiliares. Troisièmement, comme l’information auxiliaire est souvent caractérisée par une forte
corrélation entre valeur présente et valeurs passées, les DBNs peuvent utiliser des variables auxi-
liaires discrètes pour en modéliser les variations dans le temps. Enfin, si lors de l’utilisation d’un
système DBN entraı̂né, l’information auxiliaire est manquante ou bruitée, il est possible de la rem-
placer par sa distribution a priori apprise pendant l’entraı̂nement.

Dans cette thèse, j’étudie ces différents avantages des DBNs. Les informations auxiliaires j’ai
analysées comprennent la position du système articulatoire, le ton de la voix, la cadence de parole et
l’énergie. Je montre aussi que les DBNs incorporent mieux l’information auxiliaire que les systèmes
hybrides HMM/ANN (HMM et réseaux de neurones artificiels). De plus, je montre qu’utiliser l’in-
formation auxiliaire est nettement plus efficace si l’on introduit des dépendances temporelles. En-
fin, les DBNs utilisant une information auxilaire sont plus efficaces que les HMMs normaux pour
la reconnaissance de parole bruitée. En particulier, utiliser l’énergie comme variable auxiliaire -
indépendante de l’état et non observée lors du décodage - apporte une amélioration significative par
rapport aux HMMs.

iii

iv

Contents

1 Introduction 1
1.1 Feature Extraction . 1
1.2 Acoustic Modeling . 2
1.3 Language Modeling . 5
1.4 Organization . 6
1.5 Notation . 6

2 Time Series Modeling for ASR 9
2.1 HMM Framework . 9

2.1.1 Hidden Markov Model Structure . 10
2.1.2 Training Hidden Markov Models . 11
2.1.3 Recognition using Hidden Markov Models . 15

2.2 HMM Problems . 15
2.2.1 Review of HMM Assumptions . 15
2.2.2 Problems with HMM Assumptions . 18

2.3 Artificial Neural networks . 19
2.4 Dynamic Bayesian Networks . 20

2.4.1 DBN Definition . 20
2.4.2 Probability Distributions Definition . 22
2.4.3 Complexity . 23
2.4.4 Learning . 27

2.5 Benefits of DBNs . 28
2.5.1 Probability distributions . 28
2.5.2 Probabilistic inference . 28
2.5.3 DBN to HMM Equivalence . 29
2.5.4 Advantages of DBNs over HMMs . 30

2.6 Conclusion . 31

3 DBN Inference 33
3.1 The Clique Tree . 34
3.2 Training . 34
3.3 Probabilistic Inference Theory . 35

3.3.1 Combination . 35
3.3.2 Marginals and Complements . 35
3.3.3 Incorporating Evidence . 36
3.3.4 Initializing . 37
3.3.5 Propagation . 37

3.4 Probabilistic Inference Implementation . 38

v

vi CONTENTS

3.4.1 Initializing and Incorporating Evidence . 39
3.4.2 Propagation . 40
3.4.3 Combination . 40

3.5 Conclusion . 40

4 Auxiliary Information 41
4.1 Standard vs. Auxiliary Information . 42
4.2 Relation to previous work . 43

4.2.1 Discrete conditioning variables . 43
4.2.2 Continuous conditioning variables . 45

4.3 Discrete Auxiliary Information . 46
4.4 Continuous Auxiliary Information . 47

4.4.1 Statistical Assumptions-DBNs (with GMMs) . 47
4.4.2 Statistical Assumptions-HMM/ANNs . 51
4.4.3 Hiding Auxiliary Variables . 53
4.4.4 Parameter Estimation . 54
4.4.5 Likelihoods . 57

4.5 Auxiliary chain information (factorial HMMs) . 61
4.6 Conclusion . 62

5 DBNs with auxiliary information for ASR 65
5.1 DBNs for ASR . 65
5.2 Auxiliary Information Examined . 69

5.2.1 Pitch . 71
5.2.2 Rate-of-speech (ROS) . 71
5.2.3 Short-term energy . 72
5.2.4 Articulators . 72
5.2.5 Graphemes . 73

5.3 Software and Experimental Method . 73
5.3.1 DBNEXPECT . 73
5.3.2 DBNMAX . 74
5.3.3 DBNSPLIT . 74
5.3.4 DBNRECOG . 75
5.3.5 DBNVITE . 75
5.3.6 MAXDISCOND . 75

5.4 Conclusion . 76

6 Experiments 77
6.1 Preliminaries . 77
6.2 Isolated Word Recognition . 78

6.2.1 Discretized Auxiliary Information . 78
6.2.2 Auxiliary chain information (factorial HMMs) 82
6.2.3 Continuous Auxiliary Information . 83

6.3 Spontaneous, Noisy Speech Recognition . 86
6.3.1 Gaussians in DBNs . 86
6.3.2 HMM/ANNs . 89

6.4 Conclusion . 91

CONTENTS vii

7 Conclusion 93
7.1 Review . 93
7.2 Future Directions . 94

7.2.1 Modeling of the auxiliary variable . 95
7.2.2 Choice of auxiliary variable(s) . 96
7.2.3 Latency of the auxiliary variable . 96
7.2.4 Missing Feature ASR . 98
7.2.5 Approximate Inference . 98

7.3 Conclusion . 98

A Graph Theory Terminology 101

B An Introduction to Inference 107
B.1 Example . 107
B.2 Implementation . 109

B.2.1 Constructing the clique tree . 110

Curriculum Vitae 123

viii CONTENTS

List of Figures

1.1 DTW: Acoustic models and dynamic time warping. 3

2.1 Markov chain. 10
2.2 Markov model. 11
2.3 Markov model with the transition < q4, q3 > added. 11
2.4 Example DBN. 21
2.5 Lower variance with conditional GMMS . 22
2.6 DBN for auxiliary information ASR. 24
2.7 “Non-strongly” decomposable graph. 24
2.8 Strongly decomposable graph. 25
2.9 Clique tree of graph in Figure 2.8. 25
2.10 Tractable DBN if Xn is observed. 26
2.11 DAG for a Generic DBN. 29

3.1 DBN for “auxiliary” ASR, here representing feature vectors Xn with three elements
each. 39

3.2 Clique tree corresponding to Figure 3.1. 39

4.1 Illustration of the ideal type of distributions. 42
4.2 Correlation between Xn and An. 43
4.3 Four BNs for modeling “context” information with their names, as used in Zweig (1998). 44
4.4 Discrete BN carrying time-dependent auxiliary information An that conditions Xn. . 47
4.5 BNs for ASR. 49
4.6 Conditional Gaussian mixture models . 50
4.7 ANNs for hybrid HMM/ANN ASR. 51
4.8 Factorial HMM, with chains for Qn and Ln and with observations xn. 62
4.9 Two possibilities for breaking one of the chains of the DBN in Figure 4.8. 62

5.1 DBN for ASR. 66
5.2 Discrete DBN with discrete time-dependent An . 68
5.3 Discrete DBN, equivalent to standard discrete HMM 68
5.4 Mixed DBN with continuous, time-independent An . 69
5.5 Mixed DBN, equivalent to standard HMM with Gaussian mixture models 69
5.6 Mixed, two-chain, DBN, with phoneme chain Qn and grapheme chain Ln for training 70
5.7 Mixed, single-chain version of the DBN in Figure 5.6. 70

6.1 Pitch observations for a sample utterance. 89

ix

x LIST OF FIGURES

7.1 BNs for ASR with auxiliary variable An using the same mixture component Jn as the
standard variable Xn. 94

7.2 BNs for ASR with auxiliary variable An using its own mixture component Mn. 95
7.3 BN for ASR where there are broad classes of Qn, g(Qn), that condition An. 96
7.4 Different possible topologies for incorporating two time-independent auxiliary vari-

ables A1
n and A2

n. 97

A.1 Directionality. 101
A.2 Chains and paths. 102
A.3 DAGs, parents/children, ancestors/descendants, family. 102
A.4 Forest. 103
A.5 Trees. 103
A.6 Moral and triangulated graphs. 104
A.7 Cliques. 104
A.8 A Join Tree. 105

B.1 A Bayesian network from Heckerman (1999) illustrating credit card fraud. 108
B.2 A DAG . 110
B.3 The moralized version of the DAG in Figure B.2. 111
B.4 The triangulated graph from Figure B.3 . 111
B.5 The cliques from Figure B.4. 113
B.6 The cliques from Figure B.5 formed into a clique tree. 114

List of Tables

2.1 Sample distributions for the DBN in Figure 2.4. 23

6.1 Discrete articulators recognition results on validation set. 79
6.2 Discrete articulators recognition results on test set. 80
6.3 Discrete articulators recognition results on test set (with observed articulators) 80
6.4 Discrete pitch word error rates . 81
6.5 Phoneme (Qn) and Grapheme (Ln) Markov chains, using auxiliary chain information

as two Markov chain DBNs (factorial HMMs) and, for comparison, one Markov chain
DBNs. 83

6.6 Word error rate for the Baseline (non-ROS) DBN and for the three ROS DBNs on the
PhoneBook test set. 84

6.7 Word error rate for the Baseline (non-Pitch) DBN and for the three Pitch DBNs on
the PhoneBook test set. 85

6.8 Word error rate for the Baseline (non-Energy) DBN and for the three Energy DBNs
on the PhoneBook test set. 85

6.9 Pitch DBN word error rate on the OGI Numbers development set 87
6.10 ROS DBN word error rate on the OGI Numbers development set 88
6.11 Energy DBN word error rate on the OGI Numbers development set 88
6.12 Pitch ANN word error rate on the OGI Numbers development set 90
6.13 ROS ANN word error rate on the OGI Numbers development set 91
6.14 Energy ANN word error rate on the OGI Numbers development set 91

B.1 Probabilities for the variables in Figure B.1 . 108
B.2 An example set of one unknown and four observations from the credit card fraud

network in Figure B.1. 108

xi

xii LIST OF TABLES

Acknowledgments

This thesis would not have been possible without God’s help to me over these many years in Switzer-
land. My family’s love and support for me from afar has strengthened and encouraged me and has
reminded me of how valuable they are to me.

My friends at IDIAP have shown much kindness and patience towards me. Their friendship,
outings, meals, etc., have been a source of refreshment for me. Those of the Assemblée Evangelique
de Martigny have warmly welcomed me into their fold with much hospitality during most of my
time in Martigny. Their love for Jesus and for the Bible has been an example to me.

IDIAP has been kind enough to supervise the work for this thesis. My supervisor Hervé Bourlard
has had a substantial impact on my research. My work also benefited directly from collaborations
with Samy Bengio, Jaume Carmona Escofet, Mathew Magimai-Doss, and Andrew Morris. More
generally, I have learned a lot from many discussions with colleagues at IDIAP. This work has also
benefited from discussions with the research community at conferences, from reviews of papers
written as part of this work, and from my extended visit to AT&T Labs-Research. My thesis jury
provided a lot of valuable input for improving this thesis. Maël Guillemot, Guillaume Lathoud, and
Samy Bengio provided their French translation services.

Finally, This work was carried out in the framework of the Swiss National Center of Competence
in Research (NCCR) on Interactive Multimodal Information Management (IM)2. The NCCR are
managed by the Swiss National Science Foundation on behalf of the Federal Authorities. This work
was also possible through financial support both from the Swiss National Science Foundation under
the grant BN ASR (20-64172.00) and from IDIAP.

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

Variety in the speaker types, conversation styles, environment, and topics of speech is one of the
primary reasons why automatic speech recognition (ASR) is such a challenging task. Regarding
speaker types, we may be dealing with a male verses female or, in a more general manner, people
with very different vocal tracts. Regarding conversation styles, we may be attempting to recog-
nize speech that at times is very fast and at other times is very slow; or we may be faced to cope
with someone that mumbles his speech. Regarding environment, we may be dealing with a single
speaker with minimal background noise or we may be dealing with multiple (overlapping) speak-
ers with traffic noise in the background. Regarding topics of speech, we may be dealing with a
travel reservation request or we may be dealing with something as different as medical records
transcription.

In light of this variety, one of the main problems facing ASR is how to deal with it, either by
determining how to remove it or by having the ASR system learn how to adapt to the variety of
situations that it can face. A given type of variety can often be dealt with in different stages of the
recognition process, these stages being known as the feature extraction, the acoustic modeling, and
the language modeling.

1.1 Feature Extraction
Feature extraction, at the lowest levels of automatic speech recognition (ASR), is the task of ex-
tracting the limited amount of useful information from high-dimensional data. In reducing the
dimensionality of the speech signal on the typical order of 80:1, feature extractors maintain much
of the characteristics of the original speech and eliminate much of the extraneous information.
Nevertheless, the speech is degraded through the information loss.

One of the goals in such a process is to extract purely the information that distinguishes a
given sub-unit of a word from another sub-unit. These sub-units are often represented in ASR by
phonemes, which are the elemental units in human speech. For example, the pronunciation of the
word “cat” is represented by the sequence of the three phonemes: /k/-/æ/-/t/. So, there will be some
information which is fundamental for distinguishing between these different phonemes; the rest
of the information is the “variety” that changes and should be removed. Two of the areas where
researchers have attempted to remove this variety in feature extraction are in speaker-dependent
information and in noise.

First, variations due to speaker-dependent information is one source of information that we
would hope the feature extraction to remove. This is the case with mel-frequency cepstral coeffi-
cients (MFCCs) (Owens, 1993), where “mel-frequency” is a warping done upon the spectrum so as

1

2 CHAPTER 1. INTRODUCTION

to give finer resolution to lower-frequencies and, thus, to simulate the sensitivities of the human
ear. In cepstral analysis, an inverse Fourier transform is done on the logarithm of the spectrum; the
result is that the contributions to the signal from the vocal tract and from the speaker-dependent
pitch (the fundamental frequency of the signal) are, in theory, separated into the lower-ordered
MFCCs and the higher-ordered MFCCs, respectively. The higher-ordered MFCCs are, therefore,
discarded in an attempt to remove the speaker-dependent information. However, as I will show
later on, it appears that not all of the effects of the pitch are removed during cepstral analysis.
A further method for attempting to remove speaker-dependent information is in using perceptual
linear prediction coefficients cepstral coefficients (PLPs), which takes psychoacoustic findings into
account (Hermansky et al., 1985) in processing the speech.

Second, variations in background noise from one utterance to the next are ideally removed dur-
ing feature extraction. Boll (1979) presented an early form of removing noise variation during
speech. He makes the assumption that the noise is locally stationary. If the signal can be separated
into speech and non-speech regions (see Rabiner and Juang (1993, Section 4.2) for a discussion
about speech detection), then the noise spectrum for a given speech region can be estimated using
the spectrum of its preceding non-speech region. By assuming that the noise is stationary during
a speech region, the estimated noise spectrum can be subtracted from the spectrum of the signal;
the effect, in theory, is to have spectrum resulting purely from the clean speech. As changing (non-
stationary) noise is a more realistic scenario, he reestimates the noise spectrum during each period
of non-speech. In addition to removing noise variation in the spectral domain, the noise can be
dealt with in the cepstral domain with cepstral mean subtraction (Atal, 1974). This also assumes
that there is stationary noise in the speech and that this noise, therefore, shows up as a constant
addition to each MFCC. So, for a given utterance, the mean of all the MFCCs is subtracted from
each MFCC. The result is, in theory, the coefficients resulting purely from the speech signal (Owens,
1993)–as if the speech had been recorded without any noise.

Another method for dealing with background noise is found with RASTA (RelAtive SpecTrAl)
PLPs. RASTA processing in PLP analysis (Hermansky et al., 1992) attempts to extract purely the
speech while leaving out the noise. It assumes that the characteristics of the speech spectrum
alone change at a certain rate. Those characteristics that change either much slower or much
faster than the rate that speech changes at are assumed to be non-speech and, hence, are filtered
out (Hermansky and Morgan, 1994).

1.2 Acoustic Modeling
An early method of adaptation of the acoustic models to a variety of potential inputs is known as
dynamic time warping (DTW) (Rabiner and Juang, 1993). In DTW, the acoustic model for a word
consists of an acoustic template which is a sort of generic pronunciation of the word. The warping
comes into play because the number of frames in the template is fixed and will usually not be equal
to the number of frames in the test utterance. There may be more frames, in which certain of the
frames in the templates will have to be replicated, or there may be fewer frames, in which case,
some of the templates will have to be deleted. As a distance is computed between each given frame
in the template and each given sample frame, the sequence of templates is stretched and shrunk
(“warped”), as illustrated in Figure 1.1, so as to minimize the sum of all the distances across all
frames.

This thesis addresses variation in ASR on the acoustic modeling level. Acoustic modeling in-
volves taking the computed acoustic features and determining which phones and, ultimately, which
words were spoken when they were produced. ASR is a complex pattern recognition task involving
time-dependent sub-models which having overlapping feature distributions. Several statistical as-
sumptions are typically made which, while sometimes counter-intuitive, render this complex task

1.2. ACOUSTIC MODELING 3

0-7 1

æ tk

-20

æ tk

2-4-5-5-20

TEMPLATE

OBSERVED
-1

Figure 1.1: DTW: Acoustic models and dynamic time warping. On top is the template and on bottom
is the observed features warped to fit the template. In this case, the /k/ is expanded by one frame;
the /æ/ is expanded by two frames; and the /t/ is shrunk by one frame.

more manageable. One is that the featuresXn at time 1, . . . , n, . . . , N are independent through time,
given a hidden state Qn (i.e., they are conditionally independent, identically distributed (c.i.i.d.),
given Qn); in practice, this assumption is partially-relaxed by also using approximated first and
second derivatives of the features in Xn. Another is that, in the case of modeling Xn using Gaus-
sian mixture models (GMMs) with J mixture components, the dimensions of Xn are conditionally
independent of each other, given Qn and the mixture component Jn of the GMM. The standard
model used for such a process is the hidden Markov model (HMM) (Rabiner, 1989), which, for each
time frame n, models each mixture component of its observed features xn as being conditioned upon
the hidden value of its state Qn:

∑J
j=1 p(Xn = xn, Jn = j|Qn). Furthermore, the distribution of Qn

itself is conditioned upon its value at the previous time frame: P (Qn|Qn−1). Such a model is re-
ferred to as a first-order Markov process: the states evolve over time, depending only upon their
previous value, and emit features depending only upon their current value, which will be discussed
in detail in Section 2.1. Some methods discussed below for better modeling variation in acous-
tics include sparse time-dependencies of Xn, gender information, auxiliary information, and hybrid
HMM/ANNs.

In making the featuresXn c.i.i.d. in HMM modeling, it can be difficult to model the various ways
that Xn can evolve over time. This is because the correlation of Xn with, for example, Xn−1 can
only be modeled indirectly via the hidden value of Qn; hence, some important information relating
Xn with Xn−1 may have been lost in making this assumption if the values of Qn were not defined
appropriately. Recent work in buried Markov models (BMMs) (Bilmes, 1999) has been addressing
relaxing this assumption in a controlled, data-driven manner so as to keep a compact parameter
set. Each individual element of Xn is modeled dependent upon a small subset of elements (not
necessarily from the same position in the feature vector) from the feature vectors of the recent past,
Xn−T , . . . , Xn−1, T > 0. The selection of these dependencies is data-driven so as to maximize the

4 CHAPTER 1. INTRODUCTION

discrimination between the different possible values 1, . . . ,K of the hidden state Qn so that only the
variations relevant to this discrimination are modeled; variations irrelevant to this discrimination
are not to be modeled. Wellekens (1987) presents an earlier form of simple time-dependencies that
can be used to model the evolution of Xn across time; he takes the typical emission distribution
p(Xn = xn|Qn = qn) and augments it with the features for Xn−1: p(Xn = xn|Xn−1 = xn−1, Qn = qn).

A simple and effective way to model inter-speaker variations in acoustic modeling is to use
gender information. As male and female voices have different acoustics, such as different pitch
ranges, gender-based modeling addresses these differences with a different set of acoustic models
for both males and females. These models, therefore, are each more tuned to the characteristics of
male and female voices. In recognition, where the gender of the speaker is unknown, the models
can then be used jointly (Konig and Morgan, 1992). In this thesis, I am providing a more general
framework for the incorporation of high-level information, such as gender information, into the
modeling of the standard acoustic features; included in this framework is the capacity to handle this
high-level information as missing during recognition. I call this high-level information “auxiliary”
information, as it is not intended to be the primary information for acoustic modeling. Rather, it is
higher-level information, with respect to the standard information; being correlated with standard
information, it can be used to provide acoustic models that are more robust to different speaker
types.

Within this framework for incorporating auxiliary information, I am focusing on the conditional
independence assumption within the feature elements of a given mixture component and state at
given time frame; this differs to the approach of BMMs, which addresses the c.i.i.d. assumption
between the feature vectors of different time frames. The goal here is to model those dependencies
which are most useful to the modeling. Likewise, if we were to model all of the dependencies, we
would need a lot of data to properly learn the resulting large number of parameters; furthermore,
we may be adding noise to the modeling so that the dependencies irrelevant to modeling the vari-
ation actually corrupt the modeling. Consequently, I am focusing here on the direct dependency
between two groups of features: the standard features Xn and the auxiliary features An. The aux-
iliary features are so named because of their intended secondary role in the modeling: first, they
are not emitted by the state Qn (assuming they contain “high enough” information) and, hence, are
not used directly in discriminating between the states; second, they are correlated with Xn and, by
modeling directly their dependency with Xn, can help give better models for Xn that better handle
the variations in Xn. In having a secondary role, these auxiliary features carry higher-level infor-
mation which arises from the variations between speaker types and between conversation styles.
Thus, auxiliary information can help in system adaptation, an important area within robust speech
recognition.

The auxiliary variable, the focus of this thesis, was initially investigated in Zweig (1998), where
it was a latent variable that was used to model “contextual” information; that is, the auxiliary vari-
able was used to recapture some of the correlation across feature elements and across time that
was lost in incorporating the standard assumptions. In studying this work, I have been using the
framework of dynamic Bayesian networks (DBNs) (Cowell et al., 1999; Dean and Kanazawa, 1988)
for part of the study. This is also the framework that BMMs were presented in. DBNs, which are a
type of graphical model (Lauritzen, 1996), model the evolution in time of a set of variables. Thus,
we are assuming them to model the evolution of the states over time: Q1:N = {Q1, . . . , Qn, . . . , QN},
of the standard features over time: X1:N = {X1, . . . , Xn, . . . , XN}, and of the (optional) auxiliary
features over time: A1:N = {A1, . . . , An, . . . , AN}. As hidden Markov models (HMMs) can also model
such a process, this puts HMMs and DBNs in the same family of models. The advantage of using
DBNs is that they provide a more flexible framework for investigating the addition of variables to
the modeling, the addition and deletion of statistical dependencies between the component vari-
ables, and the “hiding” of variables (i.e., marginalizing them out, through integration/summation,
of each time-frame’s distribution where it is hidden).

1.3. LANGUAGE MODELING 5

Artificial neural networks (ANNs) are a non-linear model that crudely simulates the opera-
tion of the human brain; one application of ANNs is to do classification of given features. Hybrid
HMM/ANN ASR, which uses ANNs to model the emission distributions in the context of HMMs,
can be more robust in handling the variety in speech than (GMM) HMMs. This is partly due to the
fact that the ANN uses inputs of whole feature vectors covering a window of time (e.g., a window of
nine frames). Given the strengths of HMM/ANN in modeling the correlation both within a feature
vector and across feature vectors from nearby time frames, I also investigate auxiliary information
in the context of HMM/ANN ASR.

1.3 Language Modeling

Language modeling (Rabiner and Juang, 1993, Sections 8.5, 8.6, & 8.7) is the task of determining
the valid and likely sequences of words that have been spoken. It builds upon, and works with,
the results of the acoustic modeling. It takes the various potential sequences of words from the
acoustic models and assigns a probability to each sequence of words. Each probability is combined
with the acoustic models’ likelihood assigned to the respective sequence; this results in the overall
probability of pronouncing the sequence of words with the given acoustics.

A standard approach to language modeling is to use an n-gram model. Given the previous n− 1
words, an n-gram language model gives the probability of the current word. Common, feasible n-
gram models are tri-grams (n = 3 and where P (w3|w1, w2) is modeled for words w1, w2, and w3)
and bi-grams (n = 2 and where P (w2|w1) is modeled). As the value of n increases, the size of the
probability table holding its parameters increases exponentially. If we have a large vocabulary size,
then the amount of data needed to learn an n-gram model with a large value for n is prohibitive.
Hence, some of the elements in the table will be poorly estimated and may even have a value of zero
where they should have a non-zero probability. One solution to this problem is to have different
n-gram models, for example, a tri-gram, bi-gram, and uni-gram (n = 1), and to use of weighted sum
of all of them (Jelinek and Mercer, 1980; Rabiner and Juang, 1993, Section 8.6):

P ∗(w3|w2, w1) = P (n = 3|N(w2, w1), N(w1)) · N(w3, w2, w1)

N(w2, w1)

+P (n = 2|N(w2, w1), N(w1)) · N(w2, w1)

N(w1)

+P (n = 1|N(w2, w1), N(w1)) · N(w1)

N(·) , (1.1)

where P (n|N(w2, w1), N(w1)) is the weight of each n-gram, which depends upon the counts of the
joint occurrence in the training data of w2 and w1 held in N(w2, w1) and upon the counts in the
training data of the occurrence of w1 held in N(w1), as explained in Jelinek and Mercer (1980); N(·)
represents the total number of words in the training data.

The language model itself is dependent upon the varieties of the type of language. Using adap-
tation techniques with language modeling could involve, for example, first identifying the type of
language (e.g., customer service requests, technical presentation, etc.) and then choosing the lan-
guage model that is specified to that domain. Lagus and Kurimo (2002) used a self-organizing map
and the words preliminarily recognized from the acoustics to determine which language model to
use.

6 CHAPTER 1. INTRODUCTION

1.4 Organization
In this thesis I propose a framework to increase the recognition robustness of automatic speech
recognition by using an acoustic model with both the typical acoustic feature Xn and with the
auxiliary information An containing high-level information; this is done in a way such that the
correlation between An and the rest of the system is utilized advantageously and such that the
system can deal with missing/unreliable An. As such, this thesis is broken down as follows.

• In Chapter 2 I discuss how time-series modeling works in the context of ASR. I review hid-
den Markov model (HMM) theory before discussing the more general dynamic Bayesian net-
works (DBNs). This chapter gives a simplified tutorial of learning in HMMs. Also, this chapter
contributes to DBN theory by explaining issues regarding tractability from the viewpoint of
“d-separation”. It also provides, in Section 2.5.4, further discussion, in addition to that in the
literature, on the relation between HMMs and DBNs.

• In Chapter 3 I continue the discussion of DBNs from Chapter 2 by discussing their inference
process. This chapter contributes to the DBN literature by giving an explanation of propaga-
tion in mixed Bayesian networks from an implementation perspective.

• I then motivate and discuss auxiliary information, the core concept of this thesis, in Chap-
ter 4; the purpose of auxiliary information is to provide information outside of the standard
acoustics that can be used to provide more robust distributions for the standard acoustics.
One of the novel approaches presented here is the use of auxiliary information only in train-
ing; however, in recognition, the auxiliary variable is hidden, and its inferred distribution is
used instead in modeling. A further contribution made in this chapter is one of the few uses
of factorial HMMs (implemented as a DBN) in ASR, where a second Markov chain carries
auxiliary information. In general, this chapter serves as a unifying work summarizing many
of the different approaches taken by myself and others for incorporating auxiliary information
into ASR; as such, it includes an investigation into the different ways that auxiliary can be
incorporated into the modeling.

• In Chapter 5 I review more practical information of how DBNs are actually constructed for
ASR, based on Zweig (1998). I also discuss the various types of auxiliary information to be
investigated in the experimental studies: articulator positions, pitch, rate-of-speech, energy,
and graphemes.

• Experimental results using the DBNs and auxiliary information of Chapter 5 are given in
Chapter 6. In addition to drawing together the various aspects of the thesis, these results
contribute to ASR theory by showing how auxiliary features can be constructively used to aid
ASR performance, particularly in noisy, spontaneous speech.

• Conclusions are drawn in Chapter 7. Additionally, ideas for further development of this work
are discussed.

1.5 Notation
In this thesis, I use the notation of upper-case letters A,B,C to refer to random variables (continu-
ous or discrete) or to sets of variables. and lower-case letters a, b, c to refer to actual observations of
variables. A subscript refers to the point in time that the variable is instantiated (e.g., An) while a
subscript with two colon separated items, refers to a range of instantiations in time of the variable

1.5. NOTATION 7

(e.g., A1:n). When referring to discrete variables, an upper-case letter (e.g., K) refers to the maxi-
mum number of values that it can take while the respective lower-case letter (e.g., k) refers to any
given value of the variable.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Time Series Modeling for ASR

Time series modeling in the context of ASR assumes that the system is in a certain state (discrete-
valued or continuous-valued) at each given (discrete) point in time. As we consider this to be a
“dynamic” problem, the evolution of the values of the state is time-dependent: the value of the state
at time n is directly influenced by the value of the state at time n − 1. The common, basic model
for doing time series modeling in the ASR framework is the hidden Markov model (HMM). This
theory underlying HMMs can be generalized to that of dynamic Bayesian networks (DBNs). So, in
this chapter I first review HMM theory in Section 2.1, where I present an introduction to learning
the parameters of an HMM. This is followed in Section 2.2 by a discussion of the potential prob-
lems involved with HMM assumptions. Section 2.3 touches upon artificial neural network (ANN)
theory, which can be incorporated into HMMs to make HMM/ANN hybrids. I then explain DBNs
in Section 2.4, where I include my own explanation of complexity issues in mixed DBNs (having
continuous and discrete variables) from the viewpoint of “d-separation.” I then make the bridge
between HMMs and DBNs in Section 2.5, where I review some of the issues in the literature as
well as contributing my own points on their relation. The discussion on probabilistic inference in
mixed DBNs will be presented later in Chapter 3.

2.1 HMM Framework
Given a signal s for an utterance, the first step in the recognition process is to transform it into
a series of features for each successive time frame n, where it is the acoustic feature xn that car-
ries the relevant information from s for doing speech recognition. So, given the features x1:N =
{x1, . . . , xn, . . . , xN} for all time frames n = 1, . . . , N , they are then compared against a series of
recognition models and classified according to the one that it most closely resembles. In current
speech recognition systems, these models are typically hidden Markov models (HMMs). Being a
generative model, an HMM m will give the likelihood that it generated the features x1:N :

p(X1:N = x1:N |λm), (2.1)

given the parameters λm for model m.
In the HMM framework we are dealing with a finite number of models {1, . . . ,m, . . . ,M} ac-

cording to which we classify a given set of features x1:N , using the likelihoods p(X1:N = x1:N |λm)
associated with each model m, 1 ≤ m ≤ M . Note that x1:N may have non-zero likelihood for many
different models m. However, a given model m tends to have certain values for its features x1:N ;
assuming that each model typically produces different features from each other, we can recognize
the different models with HMMs.

9

10 CHAPTER 2. TIME SERIES MODELING FOR ASR

q1 q2 q3 q4 FI

Figure 2.1: Four state Markov chain, with initial and final states, with transitions < q1, q1 >,<
q1, q2 >,< q1, q4 >,< q2, q2 >,< q2, q3 >,< q3, q3 >,< q3, q4 >,< q4, q1 >,< q4, q4 >.

Each model m, moreover, is typically composed of several states, or sub-models, which are in
common with the other models. These states are denoted Q and take on the value qk, where 1 ≤
k ≤ K. Hence model m is composed of N(m) (non-unique) instantiations of Q: {qm1 , . . . , qmN(m)}.
Furthermore, the temporal ordering of these states can be restricted; for example, we can impose a
“left-to-right” model in which if the model is exiting state qmi at time n, then the state of the model
at time n+ 1 must have value qmj , where j ≥ i. Each value k of Qn, the state at time n, has its own
local likelihood, p(Xn = xn|Qn = k), if it is an emitting state, which contributes to the likelihood
p(X1:N |λm) (an emitting state produces a feature vector, as opposed to a non-emitting null state,
which is used to indicate the initial and final states of the model at time n = 0 and n = N + 1,
respectively). That is, p(X1:N |λm) is computed, in part, by the product of p(Xn = xn|Qn = k) over
all time frames. An HMM is ‘hidden’ due to the fact that, for the N(m) states of model m, we are
uncertain as to which of the valid states qm1 , . . . , qmN(m) is associated with each feature x1, . . . , xN .
Given that the value of the state Qn is hidden, algorithms must be introduced to account for all
of the possible state values of Qn, which will be discussed below in the context of the Baum-Welch
training in Section 2.1.2.

I now proceed to present the overall structure and parameters of an HMM in Section 2.1.1.
One of the methods for learning the parameters, the expectation-maximization algorithm, will be
presented for HMMs in Section 2.1.2. Given the trained HMM, Section 2.1.3 presents how to use it
for recognition.

2.1.1 Hidden Markov Model Structure
An HMM consists, first of all, of the set of state variables in time: Q1, . . . , QN ; for each point in
time, the HMM state Qn is considered to have value qk, 1 ≤ k ≤ K (I abbreviate qk simply as k).
Given these states, we then specify transitions between them and, thus, create a Markov chain;
this allows the HMM to change the value of its state as time progresses. For example, we can have
the set of states {q1, q2, q3, q4}; we can then form this into a Markov chain by adding the transitions
as illustrated in Figure 2.1. Given this Markov chain, we then specify “observation” vectors that
can be “emitted” depending upon the value of the state at each time frame, thus creating a Markov
model (as illustrated in Figure 2.2), with a probability associated with the state sequence and
emitted observations. If it is not always possible to determine which value the state was in for each
observation vector, then the Markov model is known as a hidden Markov model (see Figure 2.3).

While there are a variety of HMMs, the type that is typically used in ASR has the following
items:

• set of states 1, . . . , k, . . . ,K. The state at time frame n is represented by the variable Qn. In
basic ASR, each emitting state (that which produces an observation xn) represents either (a
part of) a phoneme within a word or a non-speech part of the signal (e.g., silence); a non-
emitting state does not have any associated feature vector (for example, states ‘I’ and ‘F’ in
Figures 2.1, 2.2, & 2.3 are non-emitting states used to specify that the model must start in
state ‘I’ and end in state ‘F’).

2.1. HMM FRAMEWORK 11

X ≥ 1 X < 0 0 ≤ X < 1X ≥ 1

q1 q2 q3 q4 FI

Figure 2.2: Four state Markov model, with initial and final states. It is based on Figure 2.1
but with emissions added. The sequence {1,−1, 1, 0, 1, 0} can only come from the state sequence
{I, q1, q2, q3, q4, q1, q4, F}.

I

X ≥ 1 X < 0 0 ≤ X < 1X ≥ 1

q1 q2 q3 q4 F

Figure 2.3: Four state hidden Markov model, with initial and final states. It is based on Figure 2.2
but with the transition < q4, q3 > added. The sequence {1,−1, 1, 0, 1, 0} can come from different
state sequences: {I, q1, q2, q3, q4, q1, q4, F} or {I, q1, q2, q3, q4, q3, q4, F}.

• set of emission distributions P = {p1(·), . . . , pk(·), . . . , pK(·)}, one for each state.

• a transition matrix R of size K×K, indicating the probability of changing to a different state,
i.e., R(k, k′) = P (Qn = k′|Qn−1 = k), and

∑K
k′=1R(k, k′) = 1 ∀k. That is, the sum of any column

is 1.

At a time n, the state k emits an observation vector xn, with the likelihood specified by pk(Xn =
xn). Being in state k at time n, the probability of being in state k′ at time n + 1 is R(k, k′). For
time n = 1, . . . , N , we, hence, are modeling the evolution of the hidden discrete states Q1:N =
{Q1, . . . , Qn, . . . , QN} and the corresponding observations x1:N = {x1, . . . , xn, . . . , xN}:

p(Q1:N , x1:N). (2.2)

By summing over all of the possible values of Q1:N in (2.2), we can obtain the likelihood of x1:N ;
alternately, by instantiating Q1:N with q1:N , we can obtain the likelihood of the given “path” q1:N .

2.1.2 Training Hidden Markov Models
Model Formation

When training an HMM, we are typically given a list of utterances and a list of corresponding labels
with the text of each utterance. These utterances could be individual words or could be one or more
sentences. Sometimes the labels are given with time stamps, thus indicating which words and/or
phones were being spoken at each point in time; this is referred to as the segmentation. To use
such information for training, we need to build word and/or phoneme models using the individual
low-level HMM states (Rabiner and Juang, 1993, Chapter 8).

If we are given a segmentation according to, for example, which words are spoken at given points
in time, we can first extract the speech corresponding to each word and run the training on a model

12 CHAPTER 2. TIME SERIES MODELING FOR ASR

for each of the words. To form each word model, we either need the labeling of the word according
to its phonemes or we need a lexicon (a dictionary) which gives which phonemes, in order, that are
used to pronounce the word (assume here that there is only one valid pronunciation for each word).
So, to form the word model, the state(s) that correspond to each phoneme are concatenated together
(typically as a left-to-right model) to form the word model. By using these word models for training,
the component phoneme models will be trained.

After training according to a segmentation, or even if we are not given a segmentation, we can
run training on the whole utterance level. This is formed, first, by forming the word models by
concatenation of the phoneme models, as explained above. The utterance model is then formed
by concatenation of these word models along with any possible silence or non-speech models. The
resulting utterance models are thus used in training. Being composed, ultimately, of a series of
state models representing (parts of) phonemes, we are, likewise, learning the distributions and
transitions of these states.

Expectation-Maximization Algorithm in HMMs

If we knew the values of all of the variables, X1:N and Q1:N , then the maximum likelihood esti-
mates of the parameters for the transition distribution P (Qn|Qn−1) and the emission distribution
p(Xn|Qn) could be easily learned. That is, the discrete probabilities P (Qn = k′|Qn−1 = k) can be
learned by counting the occurrences N(Qn = k,Qn−1 = k) and N(Qn = k), where N(·) signifies the
number of times the indicated variable assignments occurred in the data. The maximum likelihood
estimate for the transitions R(k, k′) would then be calculated as:

P (Qn = k′|Qn−1 = k) =
N(Qn = k′, Qn−1 = k)

N(Qn−1 = k)
(2.3)

Likewise, the parameters for the probability distribution for the continuous variables Xn for each
state k can be learned by using only those data points (Xn, Qn) where Qn = k. For example, if
p(Xn|Qn = k) were modeled with a single Gaussian, its parameters µk and Σk would could then
simply be estimated, using standard maximum likelihood estimators of the mean and variance of a
distribution (Papoulis, 1991, Section 5.3), as

µk =
1

N(Qn = k)

∑

n,∀qn=k

xn (2.4)

Σk =
1

N(Qn = k)

∑

n,∀qn=k

(µk − xn)(µk − xn)T . (2.5)

However, since the values q1:N are hidden in an HMM, there is no closed-form equation for
estimating these parameters. This leaves us the problem of estimating the distribution of P (Q1:N);
as each Qn has K possible values, this results in dealing with KN different state sequences. If we
had not made the assumptions inherent to an HMM framework, this would have been a difficult
task.

The expectation-maximization (EM) algorithm (Dempster et al., 1977), as expressed in the the
Baum-Welch algorithm for HMMs, is one common method that takes advantage of an HMM’s statis-
tical assumptions for efficiently learning an HMM’s parameters with hidden Q1:N . It uses parame-
ters λi = {Ri, {µi

k}K
k=1, {Σi

k}K
k=1}. For simplicity here, I explain the training using a single Gaussian

per state; in practice, however, a Gaussian mixture model (GMM) is used, being re-estimated ac-
cording to Rabiner and Juang (1993, Section 6.6). EM is an iterative process where we try to
compute parameters λi+1 whose log data likelihood is at least as great as the data likelihood of a
model with parameters λi:

log p(X1:N = x1:N |λi+1) ≥ log p(X1:N = x1:N |λi), (2.6)

2.1. HMM FRAMEWORK 13

as explained in Rabiner and Juang (1993, Section 6.4.3). This is, in practice, updated using the
joint likelihood of x1:N with the hidden states Q1:N :

p(X1:N = x1:N , Q1:N |λi). (2.7)

As explained in Dempster et al. (1977, Section 2), a simple way to (locally) maximize (2.6) is to
maximize the expectation of the logarithm of (2.7):

E{log p(X1:N = x1:N , Q1:N |λi+1)|X1:N = x1:N , λ}
≥ E{log p(X1:N = x1:N , Q1:N |λi)|X1:N = x1:N , λ}.

(2.8)

As discussed in Rabiner and Juang (1993, Section 6.3.4), increasing the expectation (2.8) implies an
increase in the likelihood (2.6); furthermore, a (local) maximization of (2.8) implies a (local) maxi-
mization of (2.6). If we had not been in the HMM framework, such a maximization problem would
have involved operations of complexity O(KN), taking into account all unknown values of Q1:N ;
however, by being in the HMM framework, (2.8) can easily be factored such that the complexity of
the operations is reduced to O(K +K ·N +K2 ·N) (Rabiner and Juang, 1993, Section 6.4.3), where
there are K parameters for a prior π = Q0, K · N sets of parameters for X1, . . . , XN and K2 · N
parameters for the conditionals Q1|Q0, . . . , QN |QN−1. Specifically, in comparison with computing
KN elements in (2.7), we are left to computing the joint of X1:N = x1:N with individual elements in
time Qn and with neighboring elements in time (Qn−1, Qn):

p(Qn, X1:N = x1:N |λi) (2.9)
p(Qn−1:n, X1:N = x1:N |λi). (2.10)

The main task, therefore, in EM training is to estimate (2.9) and (2.10). First, to estimate (2.9),
two recursions are used together to compute this joint distribution: the forward algorithm and the
backward algorithm (Rabiner and Juang, 1993, Section 6.4.1). The forward algorithm considers the
past and current observations x1:n while the backward algorithm considers the future observations
xn+1:N , as explained in more detail below.

This forward recursion at time n is done so as to obtain the current likelihood of xn being emitted
by state k, considering only the past and current frames as well as the parameters λi. This is
obtained recursively by using the previous likelihoods (those at time n − 1) of all of the states; by
summing over the the previous likelihoods, weighted by the transition probability of their respective
state into state k, and then by multiplying it with the emission likelihood of the current frame by
state k, we obtain the desired likelihood. It is initialized at time 0 using π (the prior distribution
over all the states) and then continues “forward” in time, as follows:

αi
k(0) = π(k) (2.11)

αi
k(n) = p(Qn = k,X1:n = x1:n|λi) (2.12)

= pi
k(Xn = xn)

K
∑

k′=1

αi
k′ (n− 1)Ri(k′, k), (2.13)

where pi
k(·) is the emission distribution for state k with parameters λi.

This backward recursion at time n is done so as to obtain the likelihood of the future frames,
given that we are currently in state k with parameters λi. This is obtained recursively by using its
future values (those at time n+1) of all of the states; by summing over these future values, weighted
both by the transition probability of state k into their respective state and by the emission likelihood
of the respective state for frame xn+1, we obtain the current “future” likelihood. It is initialized at

14 CHAPTER 2. TIME SERIES MODELING FOR ASR

time N with probabilities of 1 and then continues “backward’ in time, as follows:

βi
k(N) = 1, ∀k (2.14)
βi

k(n) = p(Xn+1:N = xn+1:N |Qn = k, λi) (2.15)

=
K
∑

k′=1

βi
k′(n+ 1)pi

k′(Xn+1 = xn+1)R
i(k, k′). (2.16)

As each αi
k(N), for all states k, 1 ≤ k ≤ K, contains the likelihood of each state at time N ,

given both x1:N and λi, we can obtain the likelihood of all x1:N , given λi, by summing over all of the
values for αi

k(N) at the final frame N . With such, we can compute the data likelihood with only one
recursion (the forward recursion):

L(X1:N = x1:N |λi) =

K
∑

k=1

αi
k(N). (2.17)

After computing the likelihood with the forward recursion, the posteriors can be computed with
a second pass through the model with the backward recursion. Then, the product of αi

k(n) · βi
k(n)

gives the joint probability of (2.9).

αi
k(n) · βi

k(n) = p(Qn = k,X1:n = x1:n|λi) · p(Xn+1:N = xn+1:N |Qn = k, λi) (2.18)
= p(Qn, X1:N = x1:N |λi). (2.19)

The α and β values can be further used to compute (2.10), as shown in Rabiner and Juang (1993,
Section 6.4.3.1). The posterior of being in state k at time n, given x1:N , can then be computed using
(2.9), which is then used for counting the number of times that we estimate state k to have occurred.

P (Qn = k|X1:N = x1:N , λ
i) =

p(Qn = k,X1:N = x1:N |λi).
∑K

k′=1 p(Qn = k′, X1:N = x1:N |λi)
(2.20)

N(Qn = k|X1:N = x1:N , λ
i) =

N
∑

n=1

P (Qn = k|X1:N = x1:N , λ
i) (2.21)

Similarly, we have

P (Qn = k′, Qn−1 = k|X1:N =x1:N , λ
i)

=
p(Qn = k′, Qn−1 = k,X1:N = x1:N |λi).

∑K
k′′=1

∑K
k′′′=1 p(Qn = k′′′, Qn−1 = k′′, X1:N = x1:N |λi)

(2.22)

N(Qn = k′, Qn−1 = k|X1:N = x1:N , λ
i) =

N
∑

n=1

P (Qn = k′, Qn−1 = k|X1:N = x1:N , λ
i) (2.23)

(2.20), (2.21), (2.22), and (2.23) can then be used to update the parameters for λi:

R(k, k′) =
N(Qn = k′, Qn−1 = k|X1:N = x1:N , λ

i)

N(Qn−1 = k|X1:N = x1:N , λi)
(2.24)

µi
k =

∑N
n=1 P (Qn = k|X1:N = x1:N , λ

i)xn

N(Qn = k|X1:N = x1:N , λi)
(2.25)

Σi
k =

∑N
n=1 P (Qn = k|X1:N = x1:N , λ

i) (µi
k − xn) (µi

k − xn)T

N(Qn = k|X1:N = x1:N , λi)
, (2.26)

which are explained in more detail in Rabiner and Juang (1993, Section 6.4.3.1).

2.2. HMM PROBLEMS 15

2.1.3 Recognition using Hidden Markov Models

Recognition with HMMs involves a set of models 1, . . . ,m, . . . ,M and features x1:N for a given utter-
ance. As done in training in Section 2.1.2, these models could be formed by concatenating phoneme
models into word models and word models into sentence models. The task is to determine which
model m was the most likely candidate to have generated x1:N . The utterance that m represents is
the recognition result. That is, we are finding the utterance associated with

arg max
1≤m≤M

p(X1:N = x1:N |λm) (2.27)

p(X1:N = x1:N |λm) can be computed using the forward recursion of the Baum-Welch algorithm,
producing the likelihood, as given in (2.17), of the model m (Rabiner, 1989). This likelihood takes
into account every possible instantiation of the states Q1:N . If M is small, we can compute the
actual likelihood of x1:N for each model so as to use it in making our recognition decision in (2.27).
One method for approximating p(X1:N = x1:N |λm) is to calculate the Viterbi score, which is the
likelihood of the single instantiation of the states Q1:N that is the most likely of all of its possible
instantiations (Rabiner and Juang, 1993, Section 6.4.2.1):

p(X1:N = x1:N |λm) ≈ arg max
q1:N

p(X1:N = x1:N , Q1:N = q1:N |m) (2.28)

In more complicated tasks, such as connected word recognition, M becomes too large for us to
consider calculating or estimating the likelihood for all possible models as this would involve con-
structing and doing inference in M different models. Suppose that each model m ∈ M is composed
of individual words from a lexicon. In this case, we can create a single, large HMM which has the
respective word-level HMMs for all of the words in the lexicon; the final null state from each word-
level HMM is connected to each initial null state for each word-level HMM (assuming no grammar
is used to govern transitions between words (Rabiner and Juang, 1993, Section 7.4.5). We can then
calculate the Viterbi score along with its single associated utterance. However, this can be cumber-
some if the size of the word lexicon used to form the models M is large, as the Viterbi algorithm
is tracking the scores in each possible word at each time frame. One adaptation would be to do
pruning during the Viterbi algorithm such that, at any given frame during processing, scores that
are much smaller than the most likely score are removed (Lowerre and Reddy, 1980). Alternately,
methods such as stack decoding can be used in these cases to limit the number of words to examine
at a given time frame (Jelinek, 1969; Paul, 1992; Renals and Hochberb, 1999). With methods such
as stack decoding, a stack of hypotheses is maintained as a given sentence is processed. For each
iteration in stack decoding, the hypothesis currently having the best score is popped off the stack.
As this given hypothesis covers only part of the utterance, the most likely successive words to it are
determined. This given hypothesis is then augmented multiple times, each time with a different
one of these most likely words; these new hypotheses (each of which contains the given hypothesis
with an additional word) are pushed onto the stack before re-iterating.

2.2 HMM Problems

2.2.1 Review of HMM Assumptions

With discrete states Q1:N and continuous features X1:N , we want to model their joint distribution
p(X1:N , Q1:N). If we were to make no statistical assumptions on this distribution, then we could

16 CHAPTER 2. TIME SERIES MODELING FOR ASR

factor it as follows:

p(Q1:N , X1:N) = P (Q1:N) p(X1:N |Q1:N) (2.29)

=
N
∏

n=1

P (Qn|Q1:n−1) p(Xn|X1:n−1, Q1:N). (2.30)

Thus, in (2.30), we are modeling Qn as being dependent upon every variable Q1:n−1 that preceded
it in time and Xn as being dependent both upon every variable X1:n−1 that preceded it in time
as well as upon all Q1:N . We are making no assumption in the simple factorizations of (2.29) and
(2.30). It is, therefore, the 2 · N individual (“local”) distributions on (2.30) that we are attempting
to model. However, modeling these distributions can be complex from both the learning viewpoint
and from the inference viewpoint. In learning, we would need a large amount of data (or, alter-
nately, Bayesian priors) to learn the distributions. For example, the distribution P (QN |Q1:N−1) has
a discrete-space of the order of KN (assuming K discrete values for each of the N discrete variables
Q1:N). Thus, for large N and large K, there would be a prohibitive number of parameters to learn;
and to learn each parameter, we would need a minimum number of training examples assigned to
each parameter in order to properly learn it. Furthermore, as discussed in the literature on proba-
bilistic modeling (e.g., Heckerman (1999); Smith and Whittaker (1999); Bilmes (1999, Section 2.5)),
we want to limit the number of dependencies upon a variable as much as possible. This is because
we only want to model the important dependencies upon a variable and to eliminate the unimpor-
tant variables that, at most, can be of no harm and, at worst, can be of harm if used to condition a
variable’s distribution. For example, a certain state at some time n, Qn, may have no effect on the
distribution P (QN |Q1:N−1), that is, QN ⊥⊥Qn | {Q1:n−1, Qn+1:N−1} (the expression A⊥⊥B |C reads
“A is conditionally independent of B, given C”). This means that we can remove the dependency of
Qn upon QN :

P (QN |Q1:N−1) = P (QN |Q1:n−1, Qn, Qn+1:N−1) (2.31)
= P (QN |Q1:n−1, Qn+1:N−1). (2.32)

So, suppose that we then learned such a distribution with the unnecessary Qn included in (2.31).
Assuming we had a finite amount of training data, the maximum likelihood estimate for (2.31) may
cause a strong dependence upon Qn, even through the true, underlying distribution is not depen-
dent upon Qn. Using (2.31) instead of (2.32) could, then, give undesired likelihoods. An additional
reason for wanting to limit the number of dependencies is so that we can take advantage of the
sparse dependencies so as to have more efficient probabilistic inference, as utilized extensively, for
example, in BNs (Pearl, 1988; Cowell et al., 1999).

Therefore, in light of the desire to decrease the parameter space and to have more robust dis-
tributions, the distribution (2.30) is simplified in different ways until we arrive at what is actually
modeled by HMMs:

1. First, an independence assumption is assumed between all X1:N such that they are condition-
ally, independent, identically distributed (c.i.i.d.), thus simplifying the distribution of Xn in
(2.30). This makes both Xn and Xn′ (n′ < n) dependent only via the hidden state variables
Q1:N :

p(Q1:N , X1:N) ≈
N
∏

n=1

P (Qn|Q1:n−1) p(Xn|Q1:N). (2.33)

2. A second assumption is also made, which is similar to the c.i.i.d. assumption made in As-
sumption 1. We assume that the distribution of Xn is time-independent, i.e., p(Xn|Q1:N) =

2.2. HMM PROBLEMS 17

p(Xn|Qn), which simplifies (2.33) to

p(Q1:N , X1:N) ≈
N
∏

n=1

P (Qn|Q1:n−1) p(Xn|Qn). (2.34)

The difference between the assumption made here in (2.34) and that made above in (2.33)
is that before we were referring to the interaction between the different Xn and Xn′ , n′ < n,
whereas here we are addressing the (conditional) independency between Xn and Qn′ , n′ 6= n.

3. Third, a time window is imposed, such that we say that all that is needed to accurately model
the distribution for (Qn, Xn) is contained within the previous T time frames. This is referred
to as a T th order Markov process:

p(Q1:N , X1:N) ≈
N
∏

n=1

P (Qn|Qn−T :n−1) p(Xn|Qn). (2.35)

So, in the case of a 1st order Markov process, which is what I use in this thesis, we have:

p(Q1:N , X1:N) ≈
N
∏

n=1

P (Qn|Qn−1) p(Xn|Qn). (2.36)

4. A fourth assumption is typically made (though not necessary in order to be considered a “reg-
ular” HMM) in modeling the distribution ofXn: instead of being modeled by a single Gaussian
with a full covariance matrix, it is modeled by a GMM whose components have diagonal co-
variance matrices. Defining Xn[1], . . . , Xn[p], . . . , Xn[P] as the P elements of Xn, we can then
model the distribution of p(Xn|Qn) as indicated by the assumption in (2.38) with mixture
component Jn with values j, 1 ≤ j ≤ J :

p(Xn|Qn) =
J
∑

j=1

P (Jn = j|Qn)
P
∏

p=1

p(Xn[p]|Xn[p+ 1], . . . , Xn[P], Jn = j,Qn) (2.37)

≈
J
∑

j=1

P (Jn = j|Qn)

P
∏

p=1

p(Xn[p]|Jn = j,Qn). (2.38)

While the mixture components do have diagonal covariance matrices, indicating independence
of the dimensions within a given mixture component of a given state, the elements Xn are
typically not totally independent of each other. Rather, they are conditionally independent,
given Qn and Jn: Xn[p]⊥⊥Xn[p′] | {Qn, Jn}, ∀ p′ 6= p, 1 ≤ p′ ≤ P . That is, their joint dependence
upon (Qn, Jn) allows the correlation between the dimensions of Xn to be modeled indirectly;
this is due to their shared impact in calculating the posterior distribution for (Qn, Jn).

Hence, to summarize, when I refer to standard HMMs, as used in ASR, I am referring to a first-
order Markov process with time-independent features (continuous or discrete) whose elements are
considered (conditionally) independent of each other:

p(Q1:N , X1:N) ≈
N
∏

n=1

p(Qn|Qn−1) p(Xn|Qn), (2.39)

where p(Xn|Qn) is modeled according to (2.38). As illustrated in Section 2.1.3, with Q1:N being
unknown, we must then either marginalize them out (so as to obtain the data likelihood) or find

18 CHAPTER 2. TIME SERIES MODELING FOR ASR

their single joint instantiation giving the highest likelihood (so as to obtain the Viterbi score), re-
spectively:

p(X1:N) =
∑

q1:N

p(Q1:N = q1:N , X1:N = x1:N) (2.40)

q∗1:N = argmax
q1:N

p(Q1:N = q1:N , X1:N = x1:N) (2.41)

2.2.2 Problems with HMM Assumptions
In practice we assume that there is strictly a first-order Markov process (see Assumption 3 on
page 17) and do not attempt to have a higher-order Markov process (where the Markov order T
is greater than 1). One thing, however, that is commonly done is to use minimum-state duration,
where we stipulate that once a state is entered, the model must stay in that state for a mini-
mum number of frames; this is doing a pseudo-collapsing of states from several time frames into
one. Nevertheless, it may be necessary to carry over information beyond that minimum number
of frames so that Qn knows several of the previous values of the state. While this long distance
modeling of the state is typically ignored on the actual HMM level, this is sometimes captured at a
higher level in ASR modeling, such as in pronunciation models or in language models.

The main concern relating to the HMM assumptions, therefore, is with those related to the
modeling of features Xn. Assumption 1 (as well as Assumption 2) removes a lot of information, as
show in Bilmes (1998). That is, Xn and Xn′ , n′ < n are assumed to be conditionally independent
given the state Qn: Xn⊥⊥Xn′ |Qn. So, the state Qn does model some of the dependency between Xn

andXn′ but not all of it. That is, the value ofQn does indicate toXn what the value of bothQn−1 and
Xn′ might have been; this means that Xn assumes Xn′ has a certain distribution if Qn has a given
value. However, as Xn lacks the precise value of Xn′ that is lost with no direct dependency between
the two, it can not model the dependency exactly. One solution, as proposed in Bilmes (1998, 1999)
is to use buried Markov models (BMMs), which selectively add dependencies directly between Xn

and Xn′ . These dependencies vary according to the value of the state Qn and are chosen according
to information theoretic criteria in such a way so as to increase the discriminability between the
different states. Therefore, (2.38), as used in standard HMMs, is replaced by:

p(Xn|Qn) =

J
∑

j=1

P (Jn = j|Qn)

P
∏

p=1

p(Xn[p]|Z(p,Qn), Jn = j,Qn), (2.42)

where Z(p,Qn) is the set of variables (and dimensions) from X1, . . . , Xn−1 that Xn[p] is directly
dependent upon, with the members of this set depending on the value of Qn

In addition to looking at the modeling of the features Xn across time, there is also the assump-
tion of modeling of the elements of Xn using a diagonal covariance within a single time frame of a
given mixture component and state, as addressed in Assumption 4. This assumption can be relaxed
by having selected features be dependent upon each other. That is, (2.38) can be replaced by

p(Xn|Qn) =

J
∑

j=1

P (Jn = j|Qn)

P
∏

p=1

p(Xn[p]|Z(p), Jn = j,Qn), (2.43)

where Z(p), in this context, means the set of variable dimensions Xn[p+ 1], Xn[p+ 2], . . . that Xn[p]
is to be dependent upon. It is this assumption, of those listed above, that I look at in more detail
in this thesis. While I do not want to eliminate the conditional independence between the features
entirely, I am looking at how a key “auxiliary” feature should be conditioning the distributions of
the regular features. In terms of (2.43), Z(Xn[p]) = Xn[P + 1] = An, where An is the auxiliary

2.3. ARTIFICIAL NEURAL NETWORKS 19

feature (or, the (P + 1)th feature). This is inspired by the latent auxiliary variable used to model
“contextual” information in Zweig (1998)

In addition to looking at relaxing Assumption 4, I am looking at introducing an additional as-
sumption (which adds more (conditional) independencies than does the related Assumption 2 on
page 16 by removing the dependencies upon all states Q1:N), one of state independence:

1. Some high level features are not emitted based on the current state. If we consider the
state level to be on the short-term, some features that are considered auxiliary do not evolve
so much according to this short-term information. Rather, they evolve according to higher,
longer-term information, perhaps relating to the prosody. Therefore, if we concatenate S aux-
iliary features toXn so that we have the “standard”Xn[1], . . . , Xn[P] and the auxiliary features
Xn[P + 1], . . . , Xn[P + S], we first obtain (2.44), based on (2.39) and (2.43); then, introducing
this assumption, we obtain (2.45) for the modeling of Xn:

p(Xn|Qn) =

J
∑

j=1

P (Jn = j|Qn)

[

N
∏

n=1

p(Qn|Qn−1)

P
∏

p=1

p(Xn[p]|Z(p), Jn = j,Qn)

]

·
P+S
∏

s=P+1

p(Xn[s]|Z(s), Qn) (2.44)

p(Xn|Qn) =

J
∑

j=1

P (Jn = j|Qn)

[

N
∏

n=1

p(Qn|Qn−1)

P
∏

p=1

p(Xn[p]|Z(p), Jn = j,Qn)

]

·
P+S
∏

s=P+1

p(Xn[s]|Z(s)). (2.45)

This is how the auxiliary information of Fujinaga et al. (2001) was modeled. The features that
are “concatenated” here, that is, Xn[P + 1], . . . , Xn[P + S], will later be referred to as An.

Issues related to assumptions with the auxiliary variable are discussed in more detail in Sec-
tion 4.4.1 on page 47 ff and Section 4.4.2 on page 51 ff.

2.3 Artificial Neural networks
While DBNs, as presented here, use Gaussian mixture models (GMMs) or conditional GMMs to
compute the likelihood of the data, artificial neural networks (ANNs) can also be used in the con-
text of HMMs to compute (scaled) likelihoods. Such a system is referred to as an HMM/ANN hy-
brid (Bourlard and Morgan, 1993). The standard ANN used in such systems has three layers. The
input layer contains the observations for the current time frame and a window of c frames: xn−c:n+c,
where c ≥ 0. The hidden layer enables the correlations between the elements of Xn to be modeled.
The output layer consists of a separate output unit for each phonetic state, giving a posterior prob-
ability between 0 and 1 for each of the states. These posteriors P (Qn|Xn−c:n+c = xn−c:n+c) are then
scaled by the prior distributions P (Qn) to get scaled likelihoods:

p(Xn−c:n+c = xn−c:n+c|Qn) =
p(Xn−c:n+c = xn−c:n+c) · P (Qn|Xn−c:n+c = xn−c:n+c)

P (Qn)
(2.46)

∝ P (Qn|Xn−c:n+c = xn−c:n+c)

P (Qn)
(2.47)

Like DBNs, ANNs also have some flexibility in changing the statistical assumptions involved. So I
also present ANNs having some standard and non-standard assumptions in them (work with ANNs

20 CHAPTER 2. TIME SERIES MODELING FOR ASR

was done in collaboration with Mathew Magimai-Doss). We can model some features independent
of Qn by having a different ANN for each value of a discretized feature (in a similar way to (2.45)).
We can also model some features conditionally independent of the others (in a similar way to (2.38)).
These different approaches are explained in more detail in Section 4.4.2.

2.4 Dynamic Bayesian Networks
Section 2.1 presented the HMM, the workhorse of much current speech recognition. HMMs can be
viewed graphically as dynamic Bayesian networks (DBNs), which are extensions of Bayesian net-
works (BN). Whereas HMMs have predefined probabilistic dependencies, all using the same under-
lying algorithms, BNs can work with a wide range of various probabilistic dependencies, all using
the same underlying algorithms. HMMs can work in the same variety of probabilistic dependencies
but need to be reimplemented in order to incorporate the change in dependencies. Therefore, given
this flexibility of DBNs in allowing the underlying distributions to be modified, I have done my
work in the framework of DBNs.

DBNs are actually part of a larger group of probabilistic models called graphical models (GMs).
Within the family of graphical models, three specializations are possible: Markov fields, whose
component graph is undirected; Bayesian networks (BNs), whose component graph is a directed
acyclic graph (DAG, as defined in Section A on page 101); and chain graph networks, which use a
combination of a DAG and an undirected graph. Markov fields are common in the field of computer
vision (Li, 1995). DBNs are themselves a specialization of BNs, where a given set of variables is
modeled dynamically (e.g., over a series of windows in time) (Dean and Kanazawa, 1988). This
chapter assumes a certain knowledge of graph theory; for an introduction to graph theory, please
refer to Appendix A;

A Bayesian network (BN) is merely a tool to aid in the modeling of the joint distribution of a
set of variables V = {V 1, . . . , V M}. It enables the joint distribution to be factored into a set of local
distributions, one for each V i ∈ V , where V i represents a generic variable, in this case of ASR with
auxiliary information, A, Q, orX . With such a factorization, individual distributions can be utilized
by themselves or the joint distribution of only a subset of V can be easily constructed.

After defining DBNs in Section 2.4.1 above, I elaborate more on their probability distribution in
Section 2.4.2. I then discuss complexity issues in Section 2.4.3. I then give an overview of learning
in BNs in 2.4.4. For an in depth discussion on inference, please see Chapter 3.

2.4.1 DBN Definition
Using the same notation as in Lauritzen (1996, Chapter 6), DBNs have at their base a set of vari-
ables V = ∆ ∪ Γ, where ∆ is the set of discrete variables and Γ is the set of continuous variables.
See Cowell et al. (1999) for a good introduction to BNs. In the case of ASR with auxiliary informa-
tion, ∆ = {Q}, and Γ = {A,X}, where Q is the discrete hidden state, A the continuous auxiliary
information, and X the continuous acoustic information (A and X can, alternately, be discrete, as
illustrated in Stephenson et al. (2001)). In working with a dynamical system, these variables occur
at each discrete step in time: V1:N = ∆1:N ∪ Γ1:N = Q1:N ∪ A1:N ∪X1:N for time n = 1, . . . , N . These
variables then serve as the vertices in a directed acyclic graph (DAG) G =< V1:N , E >, with E be-
ing the directed edges between vertices in the DAG, as illustrated in Figure 2.4. For each ordered
edge pair < V ip

n , V ic

n >, the first vertex V ip

n is considered the “parent” and the second vertex V ic

n the
“child.” I also require the following conditions:

1. Edges do not go back in time (required because of how I have implemented the DBN algo-
rithms, which reflects the notion that the future does not affect the past).

2.4. DYNAMIC BAYESIAN NETWORKS 21

Qn

An

Xn

Q1

X1

A1

Q2

A2

X2 X3

A3

Q3

Figure 2.4: Example DBN, where ∆ = {Q}; Γ = {A,X}; N = 3; and G =< V1:3, E >, where
V1:3 = {Q1, A1, X1, . . . , Q3, A3, X3} and E = {< Q1, X1 >,< A1, X1 >,< Q1, Q2 >, . . . , < Q2, Q3 >,<
Q3, X3 >,< A3, X3 >}. Note that there is no connection such as < X1, Q2 > as this is not allowed as
X1 ∈ Γ but Q2 6∈ Γ; also there is no connection such as < A2, X1 > as this is a connection going back
in time (2 6≤ 1). Discrete variables have bold vertices.

2. Edges span, at most, one time frame (required so as to aid in efficient probabilistic inference
(Zweig, 1998, Section 3.6.3)).

3. Edges from continuous variables go only to continuous variables (required by the algorithm
(Lauritzen and Jensen (2001)) that I use).

Figure 2.4 gives an example of a DBN meeting these conditions. Defining pa(V i
n) as all of the

parent nodes of an arbitrary vertex V i
n inG, as specified in E, each variable has an associated “local”

probability distribution:

P (V i
n|pa(V i

n)). (2.48)

For example, the vertices Q3,A3, and X3 from Figure 2.4 have distributions of the form P (Q3|Q2),
p(A3), and p(X3|Q3, A3), respectively. The joint probability distribution of V1:N is then the product
of all of the local probability distributions:

P (V1:N) =
∏

V i
n∈V1:N

P (V i
n|pa(V i

n)), (2.49)

Thus, for Figure (2.4), we have

p(V1:3) = P (Q1) · P (Q2|Q1) · P (Q3|Q2)

·p(A1) · p(A2) · p(A3)

·p(X1|Q1, A1) · p(X2|Q2, A2) · p(X3|Q3, A3), (2.50)

which shows one of the main purposes of DBNs: a sparse parameterization of the joint distribution
by introducing certain independencies (assumptions) between variables. Note that, for these ASR
variables shown in Figure 2.4, local distributions can be used for (2.48) that do not make any
statistical assumptions by using the product rule of probability. That is, the following factorization
represents the joint distribution of V1:3 without any statistical assumptions:

p(V1:3) = p(Q1:3, A1:3, X1:3)

= P (Q1) · P (Q2|Q1) · P (Q3|Q1:2)

·p(A1|Q1:3) · p(A2|A1, Q1:3) · p(A3|A1:2, Q1:3)

·p(X1|A1:3, Q1:3) · p(X2|X1, A1:3, Q1:3) · p(X3|X1:2, A1:3, Q1:3) (2.51)

A DBN representing this factorization would have a lot more edges (i.e., it would be a fully-
connected DAG) and, hence, a lot more parameters in its local probability distributions than that

22 CHAPTER 2. TIME SERIES MODELING FOR ASR

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

2

2.5

PLP[1]

/W/ GAUSSIAN
/W/ CONDITIONAL GAUSSIAN

Figure 2.5: Lower variance with conditional Gaussian mixture models (GMMs), illustrated by the
conditioning variable of energy. Both plots use the same data used for estimating the parameters
for the first PLP coefficients with energy as of first state of the phoneme /w/ with energy as con-
ditioning variable (taken from the “An ⊥⊥ Qn |Xn = xn” of Table 6.11 on page 88). When using a
conditional Gaussian, part of the variance is accounted for by the conditioning auxiliary variable.
This results in a smaller variance for the conditional Gaussian, giving a more compact distribution
that is hopefully more separable from the other states’ distributions.

represented in Figure 2.4. Furthermore, it does not meet the condition within my DBN framework
that edges are not to go back in time; we could have factored it so as to meet this condition, but
then it would not have met the other condition within my DBN framework that edges do not go
from continuous variables to discrete variables. Hence, in order to get a more sparsely connected
and more robust DBN, if a variable can be shown (or assumed) to be independent of a variable that
it is conditioned upon, then that conditioning variable can be removed from its distribution along
with the corresponding edge in the graph. For example, if X3 were conditionally independent of
all the other variables given Q3 and A3, then the factor p(X3|X1:2, A1:3, Q1:3) could be simplified to
p(X3|A3, Q3), as represented in (2.50) and the corresponding Figure 2.4.

2.4.2 Probability Distributions Definition
The distribution P (V i

n|pa(V i
n)) of (2.48) is defined dependent on what types of variables are in V i

n

and pa(V i
n). It the framework that I am using, based on Lauritzen and Jensen (2001), the allowed

distributions are defined using Gaussians, conditional Gaussians, discrete probability tables, and
tables of (conditional) Gaussians:

• V i
n ∈ ∆

– pa(V i
n) ⊂ ∆: a table of discrete probabilities (e.g., P (Qn|Qn−1))

– pa(V i
n) ∩ Γ 6= {∅}: undefined since a continuous parent can not have a discrete child V i

n

• V i
n ∈ Γ

– pa(V i
n) ⊂ ∆: a table of Gaussian distributions: for each possible instantiation h of

pa(V i
n), a Gaussian defined by N (µV i

n,h,ΣV i
n,h), for mean µV i

n,h and covariance ΣV i
n,h, (e.g.,

2.4. DYNAMIC BAYESIAN NETWORKS 23

P (Qn = ‘a’|Qn−1 = ‘a’) = 0.8
P (Qn = ‘b’|Qn−1 = ‘a’) = 0.2
P (Qn = ‘a’|Qn−1 = ‘b’) = 0.3
P (Qn = ‘b’|Qn−1 = ‘b’) = 0.7

p(Xn|Qn = ‘a’, An) ∼ N

0.1
−2.1
1.5

+

[

−1.5 2.2 0
0.1 0 2.2

]T

An,

3.0 0.3 −1.1
0.3 2.0 0.2
−1.1 0.2 1.0

p(Xn|Qn = ‘b’, An) ∼ N

−0.2
−1.0
0.3

+

[

0.5 0.2 0.3
2.1 0.3 2.0

]T

An,

2.2 0.4 0.2
0.4 0.5 0.1
0.2 0.1 1.1

p(An) ∼ N
([

−3.0
8.5

]

,

[

8.2 −8.0
−8.0 12.0

])

Table 2.1: Sample distributions for the DBN in Figure 2.4. For purposes of illustration, assume that
Qn has values ‘a’, ‘b’, An is a two-dimensional vector, and that Xn is a three dimensional vector.

p(Xn|Qn, Jn), Qn being the discrete state variable and Jn being the discrete mixture com-
ponent variable)

– pa(V i
n) ⊂ Γ: a conditional Gaussian distribution, defined by N (µV i

n
+ BT

V i
n
a,ΣV i

n
), where

BV i
n

is a matrix of regression weights upon the value a (BV i
n

is a vector if a is a scalar) of
the continuous parents. (e.g., p(An|An−1). This condition does not exist in the DBNs used
in this work.

– pa(V i
n)∩Γ 6= {∅} and pa(V i

n)∩∆ 6= {∅}: a table of conditional Gaussian distributions (e.g.,
p(Xn|Qn, Jn, An)).

A conditional Gaussian, which occurs when a continuous variable is itself conditioned by another
continuous variable, can be viewed as a Gaussian whose mean changes dynamically. By allowing
the mean to change, more of the variation in the data can be captured by this changing of the
mean instead of just being measured by the variance. See Figure 2.5. Also, I note that there
are other possibilities for structuring the probability distributions besides just the discrete tables
and (conditional) Gaussians above. For example, a “noisy or” (Jensen, 1996, Section 3.3.2) can be
used to produce more robust probabilities of discrete variables with many parents through the
use of few parameters. Also, ANNs can be used for estimating the probabilities of discrete or
continuous variables (Murphy, 2002, Section C.3.4). We can even suppose that the first moment of
the conditional Gaussian, µV i

n
+BT

V i
n
a, can be estimated in some other, perhaps non-linear, manner.

While not allowed in my framework, the probabilities of discrete variables with continuous parents
can be estimated in the framework of Koller et al. (1999). See Table 2.1 for example parameters for
some of these distributions.

2.4.3 Complexity
DBN theory places few restrictions on valid topologies, depending on the reference framework.
However, I have found that there are some DBNs which are intractable due to both their topologies
and to which variables are hidden. Since this is not discussed much in the BN literature, I discuss
the problem here both from a graph viewpoint and from a probability viewpoint. For additional
discussion in the BN framework, see Lerner and Parr (2001). For additional explanation of the
terms paths, neighbors, clique tree, moralized, triangulated (decomposable), elimination order, and
other graph theory concepts, as used in this section, I refer the reader to Appendix A on page 101.

24 CHAPTER 2. TIME SERIES MODELING FOR ASR

Qn

An

Xn

Figure 2.6: DBN for auxiliary information ASR. While illustrated here as a continuous-valued
variable, An can also be discrete-valued.

Xn

An

Qn

Figure 2.7: “Non-strongly” decomposable graph, using elimination nodes of Q1, A1, X1, Q2, A2, X2,
Q3, A3, X3.

The focus of this thesis lies in adding an auxiliary variable that is in similar spirit to the ‘context’
variable in Zweig (1998), except that here I give the variable a definite meaning by giving it training
data. The base form for including the auxiliary variable ‘An’ is shown in Figure 2.6.

Graphical Analysis

In doing inference in a DBN, we will be needing a clique tree (as defined on page 104) with a strong
root (Cowell et al., 1999), which, informally defined, means that cliques containing only discrete
variables are found at the top of the clique tree while cliques containing only continuous variables
are found at the bottom of the clique tree. A necessary condition for this is that, after “triangu-
lation” (as defined on page 103) there can not be a path between two non-neighboring discrete
variables that has only continuous variables between the two non-neighbors (Cowell et al., 1999,
Proposition 7.9). For example, Figure 2.7 violates this condition with the path < Q1, A2, A3, Q3 >.
The solution is that, during the triangulation phase of forming the clique tree of the graph, edges
must be added between such discrete variables (in this case, Q1 and Q3 must be connected), as
illustrated in Figure 2.8. This becomes intractable for large N , where there is a long chain of dis-
crete variables, Q1, . . . , QN . Since, for any two of the non-neighboring discrete variables, Qi and Qj ,
there is such a violating path < Qi, . . . , Qj >; therefore, all of these discrete variables must be fully
connected, forming part of one large clique, with too large of a state space to allow for tractable,
exact inference. The solution is to use approximation methods (Boyen and Koller, 1998; Lerner and
Parr, 2001) for inference, which is not the focus of this thesis. This was not an issue in Zweig (1998),
as he only used discrete vertices.

The conflict arises in the condition that in the numbering of the “elimination order” (as defined
in page 103) used for triangulation that (1) all variables at time n+ 1 are higher than those at time
n (Zweig, 1998, Section 3.4) and that (2) all continuous variables are numbered higher than the
discrete variables (Cowell et al., 1999, Section 7.3). If we meet the first condition, then the discrete
variables from time n+ 1 will be numbered higher than the continuous variables from time n, thus
producing a graph that is not strongly decomposable. However, if we meet the second condition,
then we will have cliques whose variables may come from more than two neighboring frames, thus
potentially increasing immensely the complexity of the graph. The first condition is for complexity

2.4. DYNAMIC BAYESIAN NETWORKS 25

Xn

An

Qn

Figure 2.8: Strongly decomposable graph, using elimination order of Q1, Q2, Q3, A1, A2, A3, X1, X2,
X3

Q1

Q2

Q3

A1

Q3

A3

A2

Q2

Q3

A1

A2

Q2

A2

X2

Q1

A1

X1

Q3

A3

X3

Figure 2.9: Clique tree of graph in Figure 2.8. Using such an elimination order as in Figure 2.8
results in each variable An appearing in a clique with all variables Qn,N . In this figure, A1 appears
in a clique with Q1,3 and A2 appears in a clique with Q1,3. For large N , the cliques with low
numbered An (e.g., A1, A2, A3) would have a very large number of values in their tables. So, if
Qn has K values, there would be cliques involving A1, A2, A3, . . . with KN ,KN−1,KN−2, . . . values,
respectively.

reasons, the second for theoretical reasons. Therefore, the theoretical requirement must be adhered
to. As a result, doing exact inference in a DBN with a continuous, time-dependent variable is infea-
sible due to complexity reasons. The resulting, strongly decomposable graph is shown in Figure 2.8
(though there can be other valid triangulations). As shown in Figure 2.9, a clique tree formed using
Figure 2.8, has cliques whose parameter space sizes are KN ,KN−1,KN−2, . . ., giving complexity
of the order of KN ; hence, doing operations on cliques of these sizes would be computationally
complex.

Probability Analysis

The complexity problem in DBNs such as in Figure 2.6 involves marginalizing over discrete vari-
ables when there is a continuous conditioning variable in the distribution, which is not defined
in Lauritzen and Jensen (2001, Section 4.3). That is, as we can not sum over the values of the
marginalized discrete variable, we must maintain each individual value of the discrete variables
from each time frame to the next. Assume that we were to have one single clique for all the vari-
ables contained in a single frame (the conclusions are the same if we were to assume more than one
clique within a time frame but the analysis is simpler if we assume only one clique in a single time
frame). In looking at the final time frame N , we would be modeling the following distribution (by

26 CHAPTER 2. TIME SERIES MODELING FOR ASR

Qn

An

Xn

Figure 2.10: Tractable DBN if Xn is observed.

taking into account the time-dependency of two of the variables, AN and QN):

p(QN , XN , AN |QN−1, AN−1). (2.52)

We can not instantiate the known value of XN at this point, as their is a continuous conditioning
variable (i.e., AN−1) (Lauritzen and Jensen, 2001, Section 7); however, we can marginalize out AN :

∫ ∞

−∞

p(QN , QN−1, XN , AN |AN−1) dAN = p(QN , QN−1, XN |AN−1). (2.53)

As we can not marginalize out QN (due to the continuous conditioning variable AN−1, we must
maintain a list of all K values of Qn:

∑

∀qN

p(QN = qN , QN−1, XN |AN−1) = {p(QN = qN , QN−1, XN |AN−1)}∀qN
. (2.54)

That is, to marginalize out the discrete variable (e.g., QN), we must maintain all K the values for
time frame N . Continuing on to time frame N − 1, this will become K2 that must be maintained,
as there will be yet another continuous conditioning variable (e.g., AN−2); this grows exponentially
until at time frame 1, we have KN possible values.

Always Tractable

The complexity of inference in a clique tree is a function of the space size of the component cliques.
Therefore, for this inference to be tractable, DBNs must have a few restrictions upon them in
addition to the edges not going back in time and not going from continuous to discrete variables
(though, these two restrictions are only limited to the framework that I do my work in; Koller et al.
(1999) allows connections from continuous to discrete variables and Deviren and Daoudi (2001)
allows certain connections back in time). Suppose we are given one discrete variable per time frame,
Qn, and the two continuous variables per time frame, An and Xn, where Xn is always observed.
The most connections that such a DBN can have is illustrated in Figure 2.10, with the reason
for the missing connections explained below. Generally speaking, a discrete variable can receive
connections from any other discrete variables in the current or previous frame (e.g., P (Qn|Qn−1)).
Also, a continuous variable can receive connections from any other variables in the current frame
(e.g., P (Xn|Qn, An)). However, there are restrictions on a continuous variable’s having connections
from the previous time frame, though this does not occur in the studies in this thesis.

A continuous variable such as Xn can receive connections from discrete variables in the previous
time frame (e.g., p(Xn|Qn−1). It can also receive connections from continuous variables such as
Xn−1 in the previous time frame if they observed (e.g., p(Xn|Xn−1 = xn); this is allowed because
that observation can be incorporated into the distribution to produce an updated distribution p∗(·)
with no dependency on a continuous variable in the previous time frame (e.g., p(Xn|Xn−1 = xN) →
p∗(Xn)). If we were to allow a conditioning variable such as Xn−1 to be hidden, then inferring the

2.4. DYNAMIC BAYESIAN NETWORKS 27

distribution of the variable in the current time frame (in this case, Xn) would be directly dependent
on the inferred distribution of Xn−1 and indirectly dependent upon continuous variables, such as
Xn−2, . . . , X1, further back in time. So to model these indirect dependencies, we would have the
intractable situation where the discrete variables in between such variables are contained in the
same clique (a result of the strong root condition mentioned earlier in Section 2.4.3), as indicated
in Figure 2.9. Restricting the connections from a hidden continuous variable in the previous time
frame is because the continuous variables at a given time frame must be ‘d-separated’ (Pearl, 1988,
Section 3.3) from continuous variables more than one time frame away, given only the discrete
variables. ‘d-separation’ means that two sets of variables A and B are conditionally independent
of each other given a third set C; I notate this by A ⊥⊥ B |C. So, while Xn+1 is dependent upon
Xn−1, given the continuous variable Xn, the dependency is broken by the observation Xn = xn;
thus, we have Xn+1 ⊥⊥Xn−1 | {Qn, Xn = xn}. To illustrate the concept of d-separation better, A1 is
d-separated from A2 in Figure 2.4 on page 21 given only the discrete variables Q1,2 because any
path between the two must go through Q1,2; but A2 is not d-separated from A2 in Figure 2.6 on
page 24 given only the discrete variables Q1,2 because there is a path between the two that does not
go through Q1,2 (that is, in this case, A1 and A2 have a direct path between each other as they are
connected).

Tractable only with approximations

Theoretically, it is not necessary that the continuous variables from a given time be d-separated
from continuous variables at other time frames, given only the discrete variables However, in order
to accommodate continuous variables that do not meet this criterion, it is necessary for the resulting
clique tree to have a strong root (Cowell et al., 1999), as discussed above, which, informally defined,
means that cliques containing only discrete variables are found at the top of the clique tree while
cliques containing only continuous variables are found at the bottom of the clique tree. This becomes
intractable for large N , where there is a long chain of discrete variables, Q1, . . . , QN . Since, for
any two of the non-neighboring discrete variables, Qi and Qj , there is such a violating path <
Qi, . . . , Qj >, all of these discrete variables must be fully connected, forming one large clique, with
too large a state space to allow for tractable, exact inference. The solution is to use approximation
methods (Boyen and Koller, 1998; Lerner and Parr, 2001) for inference, which is not the focus of
this thesis.

2.4.4 Learning
The inferred posterior distributions can be used in the expectation stage of expectation-maximiza-
tion (EM) training. To get the expectation for a variable V i

n, we get each joint posterior distribution
P (V i

n,pa(V i
n)|e) (where e is the observations for the observed variables of V ; in my case, this will be

the observations x1:N , as well as a1:N , if available) for all time samples n = 1, . . . , N and use them in
the maximization stage to compute the updated version P ∗(V i

n,pa(V i
n)). This can then be factored

as P ∗(V i
n,pa(V i

n)) = P ∗(pa(V i
n))P ∗(V i

n|pa(V i
n)), with the final factor being used as the new estimate.

Note that in the case of a continuous variable V i
n with at least one continuous parent, that the

counts will be collected from the joint occurrences of (V i
n,pa(V i

n)) even though the final output after
maximization will be a conditional Gaussian P ∗(V i

n|pa(V i
n)). That is, we are actually maximizing

the regular, joint GMM for V i
n and pa(V i

n) even though we only want a conditional GMM. After
collecting the counts for (V i

n,pa(V i
n)) for n = 1, . . . , N , we use the standard maximum likelihood

formulas for estimating the weights, means, and variances of this multi-variate Gaussian mixture
model p(V i

n,pa(V i
n)); we then factor the estimated distribution, using the formulas in Lauritzen and

Jensen (2001, Section 4.5) to obtain the conditional p∗(V i
n|pa(V i

n)). So, there is (to my knowledge)
no formula for directly computing the maximum likelihood estimate for a conditional GMM; rather,

28 CHAPTER 2. TIME SERIES MODELING FOR ASR

we maximize the joint, multi-variate GMM and then factor it to get the conditional GMM. This
explanation is lacking in previous literature.

2.5 Benefits of DBNs
In Section 2.1 I presented the standard HMM, followed by a detailed discussion on dynamic Bayesian
networks (DBNs) in Section 2.4. I give here a discussion on the relation between HMMs and DBNs.
I first discuss the similarities in probability distributions and probabilistic inference in Section 2.5.1
and Section 2.5.2, respectively. I then close with a review on how to convert between the two in Sec-
tion 2.5.3 and on the advantages of DBNs in Section 2.5.4.

2.5.1 Probability distributions
In time-series modeling, with the assumptions as discussed in Section 2.2 on pages 15 ff, both an
HMM and a DBN model the evolution of discrete variables Q = {Q[1], . . . , Q[R]} and continuous
variables X = {X [1], . . . , X [P]}. Note that in typical HMM modeling in the context of ASR, we
typically have R = 1 and P >> 10. However, it is possible to have R > 1; in such a case, the states
would actually be combined into a single compound state whose values are the possible combined
instantiations of the individual state dimensions. Certain statistical independencies are assumed
to exist between the dimensions in Q, as well as between the dimensions in X ; these are defined
arbitrarily, according to the problem being worked with (as defined by a human “expert”) or can
be learned as in, for example, Monti and Cooper (1999). Furthermore, certain temporal statistical
independencies are assumed to exist between {Qn, Xn} and {Qn′ , Xn′}, n 6= n′. For instance, both
HMMs and DBNs assume a first-order process (variables at time n being conditionally independent
of all variables at previous time frames, given the variables at time n−1) so that we have {Qn, Xn}⊥
⊥{Q1:n−2, X1:n−2} | {Qn−1, Xn−1}.

One restriction in defining the topology of the distributions is that no discrete variable’s distri-
bution can be dependent upon a continuous variable’s value (though a current research area within
Bayesian networks is ways to allow this, as done, for example, in Koller et al. (1999)). That is,
for subsets of continuous variables X1

n and X2
n and subsets of discrete variables Q1

n and Q2
n, the

following types of distributions are allowed: p(X1
n), p(X1

n|X2
n), p(X1

n|Q1
n), p(X1

n|X2
n, Q

1
n), P (Q1

n), and
P (Q1

n|Q2
n), as explained in Section 2.4.2 on page 22. However, P (Q1

n|X1
n) and P (Q1

n|Q2
n, X

1
n) are not

defined within the framework that I am using in this thesis.
So, effectively, both HMMs and DBNs model the evolution of a set of discrete variables and/or

a set of continuous variables. If there are both discrete and continuous variables, the continuous
variables are dependent upon the discrete variables. For example, assume three discrete variables
(R = 3) and three continuous variables (P = 3). Figure 2.11 presents the generic structure for a
DBN/HMM that is a first-order process.

2.5.2 Probabilistic inference
Both HMMs and DBNs consist of two pass inference: the first to compute the likelihood of the
observed data given the prior distribution and the second to compute the variables’ posterior distri-
butions, given the observed data. During expectation-maximization (EM) training, the posteriors
from the second pass are used as the expected counts in both types of models. Likewise, in the
trained models in recognition, only the data likelihood from the first pass is used in determining
which candidate model most likely produced the utterance.

In standard HMMs, the probabilistic dependencies, and hence the actual inference operations,
are determined at compile time. However, in DBNs, this is more flexible in being determined at

2.5. BENEFITS OF DBNS 29

Qn

Xn

Figure 2.11: DAG for a Generic DBN. Discrete variables have bold vertices. Dashed line arrows
between groups of variables indicate full connection from the vertices in the parent group to the
vertices in the child group.

run time (Zweig, 1998). With DBNs, we can have both the component variables as well as the
statistical dependencies changed as desired; with HMMs, we assumed two variables Qn and Xn

and two dependencies (Qn−1 conditioning Qn and Qn conditioning Xn). For example, in the DBN in
Figure 2.4 we were able to introduce the variable An into the modeling without having to change
the underlying algorithms of the DBNs; we could also have given different dependencies in that
DBN (e.g., having Qn condition An and not having An condition Xn). The HMM framework is not
suited for easily incorporating such changes.

2.5.3 DBN to HMM Equivalence
As explained in Smyth et al. (1997); Roweis and Ghahramani (1999), DBNS are a generalization of
HMMs. In fact, they both can model the same processes. Zweig (1998) outlined how, given a DBN,
to construct its HMM equivalent, which, in general terms and modified, works as follows:

1. The values of the state space of the HMM will be all the possible instantiations of all the
discrete variables in a time frame n of the DBN.

2. The feature vector of the observed space of the HMM will be the concatenation of the features
of each observation variable.

3. The transition matrix for the state space is the combination of the transition matrices for all
of the component discrete variables.

4. The emission distribution for the observed space is the combination of all the emission distri-
butions for all of the component observed variables.

Doing the reverse process of generating a DBN from an HMM is not straightforward. That is,
one of a DBN’s strengths is that it can factor the elements in both its state space and its observation
space. So, to construct the DBN, we would need to determine the conditional independence assump-
tions existing within the state space, within the observation space, and between the state space and

30 CHAPTER 2. TIME SERIES MODELING FOR ASR

the observed space. The determination of these assumptions is not absolutely necessary but needs
to be done if we want to properly make use of the advantages that DBNs offer over HMMs (such as
that of having conditional statistical independence between multiple discrete state variables); else,
we have no need to work in the DBN framework and could just use the HMM framework.

2.5.4 Advantages of DBNs over HMMs
Both HMMs and DBNs, within the above framework, can, in theory, have arbitrary dependencies
within the topology of the probability distributions. The difference lies in the implementation. For
each new type of dependency desired in an HMM, the algorithms have to be enhanced and code
has to be added to the program to allow it. However, the algorithms used with a DBN are generic
enough to allow various dependencies, which are defined at run-time, not at the earlier stage of
compile-time. Also, the arbitrary hiding of any variable in the discrete or continuous space for any
time is built into the DBN; for HMMs, this will need to be added to the code.

HMMs are not designed for handling arbitrary statistical independencies within their state
space Q or within their feature space X . DBNs, rather, have a rich framework for allowing de-
pendencies to be selectively removed among Qn[1], . . . , Qn[R] and among Xn[1], . . . , Xn[P] as well as
between X and Q groups:

1. Qn[r] → Qn[1], . . . , Qn[r − 1] - dependencies can be deleted within multiple state variables of
Figure 2.11. In normal HMM modeling, all dependencies are used within the state.

2. Qn → Xn - dependencies can be deleted between the state and the features of Figure 2.11.
In normal HMM modeling, all dependencies are used. In this thesis, I look at removing this
dependency between Qn and one of the features (the “auxiliary” feature).

3. Xn[p] → Xn[1], . . . , Xn[p − 1] - dependencies can be deleted within multiple feature variables
of Figure 2.11. With the factor rule of probability, without assumptions, we have

p(Xn[1, . . . , P]) =

P
∏

p=1

p(Xn[p]|Xn[p+ 1], . . . , Xn[P]), (2.55)

which explains why the standard dependencies go only from dimension p to lower order di-
mensions (the ordering of the dimensions is arbitrary). In normal HMM modeling, no depen-
dencies are used within models for features of a given state and mixture component (though
it is allowable, reflecting full covariance matrices being used in each mixture component).

4. Qn−1 → Qn - dependencies can be deleted between different state variables across time of
Figure 2.11. In normal HMM modeling, all dependencies are used within the state.

5. Qn−1 → Xn - dependencies can be deleted between different state variables and different
feature variables across time of Figure 2.11. In normal HMM modeling, no dependencies are
used between the state and features across time.

6. Xn−1 → Xn - dependencies can be deleted between different observations variables across
time of Figure 2.11. In normal HMM modeling, no dependencies are used between observation
variables across time.

In Zweig (1998, Chapter 4), Dependencies 1, 2, 3, and 4 were examined (he did not look at
Dependencies 5 and 6 as these fall outside the realm of normal HMM modeling). In summary, he
argues for the case of using DBNs instead of HMMs where not only the state space (Dependencies
1 and 4) can be sparsely factored but where the observation space (Dependency 3) as well as the

2.6. CONCLUSION 31

dependencies between the state and observation (Dependency 2) can be sparsely factored as well.
If there are no such possible sparse factorizations, then DBNs would offer no advantages over the
HMMs, as least in regards to these modeling aspects.

In this thesis, in addition to Dependencies 2 and 3, I advocate an additional advantage of DBNs
over HMMs:

1. Hiding Xn[p] : DBNs, in theory, can handle any arbitrary variable (state or feature) being hid-
den or partially-observed through time. In practice, there must be certain conditions imposed
on the hidden variable (see Section 2.4.3).

It is true that this can be handled in the framework of HMMs (as done in missing feature the-
ory (Morris et al., 1998)), but DBNs provide a more general framework to do it in, regardless of the
statistical dependencies imposed.

2.6 Conclusion
In this chapter I have discussed how time series modeling is performed, in the context of ASR.
One fundamental model for time series in ASR is the HMM. I have shown the basic structure
of the HMM as well as the general framework for how it does inference and, more specifically,
how its parameters are learned. HMMs have a set of fundamental assumptions that make their
modeling more computationally feasible; however, these assumptions can remove some important
information for robustly dealing with the variation in modeling.

A more generic model for time series in ASR is the DBN. It can be used to relax or tighten some
of the assumptions imposed in standard HMMs so as to produce more robust models. While theo-
retically in the same family of probabilistic models as HMMs, they can easily handle the changing
of many of the statistical dependencies assumed in HMMs, due to their generic inference algorithm,
which will be presented in Chapter 3. I have shown, from the perspective of d-separation, how the
relaxing of certain assumptions related to having time-dependent, hidden continuous information
can pose complexity problems. The assumptions that I will examine in detail in Chapter 4 involve
independence between the state and the “auxiliary” feature as well as dependence between this
“auxiliary” feature and the the standard features.

32 CHAPTER 2. TIME SERIES MODELING FOR ASR

Chapter 3

DBN Inference

In this chapter, I continue the discussion on DBNs, as introduced in Chapter 2, by explaining
in detail how to do probabilistic inference in them. Probabilistic inference is the task of taking
prior distributions for a set of variables and a set of “evidence” (also known as observations) for a
subset of these variables and then using this to determine the posterior distribution of the variables
without evidence (that is, the hidden variables). Lauritzen and Jensen (2001) explain the theory
of how to do probabilistic inference in mixed Bayesian networks (BNs), where “mixed” means that
there are both continuous and discrete variables, any of which can be hidden. The algorithms in
Lauritzen and Jensen (2001) were developed to correct for numerical stability problems in an earlier
algorithm (Lauritzen, 1992). Here I would like to expand on some of the implementation details of
Lauritzen and Jensen (2001) in regards to the DBNs used in my work.

In a similar manner to that of HMMs in Section 2.1.2, calculating the probabilities of DBNs,
as well as learning their parameters, would be a lot simpler if all of the variables were observed.
However since ASR deals with models with hidden variables, we have a more complex problem. In
HMMs, I showed how the calculation of the various probabilities associated with an HMM (the data
likelihood, the posterior distribution of a given state Qn, etc.) can be more easily factored due to the
framework that the HMMs are set in.

In DBNs, we are faced with a generalization of this problem: we are given an arbitrary set
of variables, dependencies, and observations of certain of those variables (all within the limits
described in Section 2.4.1), and we need to be able to efficiently compute the data likelihood, the
posterior distributions of the hidden variables, etc. Like with HMMs, if we try to compute this
using only the joint probability of all of the variables, P (V1:N), we will have a complex problem;
for example, if the distribution P (V1:N) has hidden variables Q1:N , each of which has K possible
values, then there will beKN unknown parameters to jointly estimate. However, within the context
of DBNs, we can also take advantage of local computations. These local computations done in
probabilistic inference are possible because of conditional independence assumptions introduced
when forming the DBN.

To give a better understanding of the general workings of inference, I first give an overview of
the “clique tree” as well as how it is used for training. I then give a high-level overview of inference,
according to Lauritzen and Jensen (2001). Then, with this background, I propose methods (in addi-
tion to those from Zweig (1998)) from my own coding experience as to how this algorithm should be
implemented in practice in order to more efficiently do inference in mixed dynamic Bayesian net-
works (DBNs). This is meant as a complement to Lauritzen and Jensen (2001); so, for further ex-
planations and details, please refer there. For those readers unfamiliar with probabilistic inference
in Bayesian networks, please refer to Appendix B; for an explanation of some of the terminology
(DAG, cycles, cliques, moralize, triangulate, etc.), please refer to Appendix A.

33

34 CHAPTER 3. DBN INFERENCE

3.1 The Clique Tree
A clique tree is a transformed version of the base DBN, where vertices in the base DBN serve as
the members of the cliques in the clique tree (for more information on clique trees, please refer to
Section B.2 on page 109). Inference directly upon a DBN is not always possible if there are cycles
among the variables; however, we can always, in theory, do inference upon a clique tree formed
from the DBN. The clique tree is formed from the DBN so as to contain all of the probabilistic
dependencies contained in the DBN. As all of the DBN’s dependencies are captured in the clique
tree, the inference results from the clique tree apply to the underlying DBN as well. In contrast
to the case of HMMs, the topology of the distribution (i.e., which variables were dependent upon
which other variables) is not known beforehand; hence, this determination of what cliques are to
be used for the local computations is determined on a network-by-network basis using the generic
clique tree building algorithm involving moralization and triangulation.

When doing inference in the context of training the DBN, one of the goals is to obtain the joint
posterior distribution P (Vn,pa(Vn)|e) for each variable Vn and its parents pa(Vn):

P (Vn,pa(Vn)|e), (3.1)

given all of the observations (“evidence”) e. In the case of HMMs, e = {x1:N}; however, in DBNs this
can involve any arbitrary subset of the variables V1:N within the DBN (subject to the complexity
constraints discussed in Section 2.4.3). (3.1), in the case of EM learning, can then be used in
collecting the counts during the expectation step. For example, in collecting the counts for a discrete
Vn, we would be collecting posteriors for the counts, in a similar fashion as done with (2.21) on
page 14. Also, in collecting the data points for a continuous Vn, we have the option of leaving
certain continuous Vn hidden, if necessary, and using its inferred value from (3.1) in collecting the
data for the maximization of the continuous variables, using formulae such as used for HMMs in
(2.25) and (2.26). I note that, in this thesis, I never have a hidden continuous variable during
training; however I do, as noted later, take advantage of being able to use the posterior distribution
of a hidden continuous variable during recognition.

Inference, as used in this thesis, which is described in detail in Lauritzen and Jensen (2001),
then proceeds in two stages, an upward pass and a downward pass, corresponding to the forward
and backward passes used in HMMs (Baum, 1972; Zweig, 1998), respectively. The results of the
inference algorithm can then be used to simply compute the inferred distribution P (Vn,pa(Vn)|e).
More details regarding this whole process can be found in Pearl (1988); Zweig (1998); Lauritzen and
Jensen (2001); Cowell et al. (1999).

3.2 Training
EM training also exists in the context of DBNs (Lauritzen, 1995), thus allowing a more general
form of training than the Baum-Welch training used with HMMs, as discussed in Section 2.1.2. As
EM can be done in the context of the DBN probabilistic inference, we can take advantage of the
local computations involved in such calculations so as to achieve efficient EM training. It involves
maximizing the following expectation (Lauritzen, 1995, Section 3):

E{logP (e, V1:N |λi)|e, λ}. (3.2)

As done in (2.8), (3.2) can be used to increase the data likelihood P (e|λi) in DBNs. Thus, we can
use DBN probabilistic inference to learn the joint distributions of the cliques. These local joint
distributions can then be marginalized to subsets of their component variables so as to obtain the
desired distributions that we want to learn, such as:

P (Vn|pa(Vn), e, λi). (3.3)

3.3. PROBABILISTIC INFERENCE THEORY 35

3.3 Probabilistic Inference Theory
As a note of introduction, each clique f will be performing a set of local computations related to
its component variables. It stores some of its calculated values in a “potential” ψf ; a potential ψ
is an unnormalized distribution (i.e., its sum may be less than 1, which will occur as we compute
the likelihood of its component variables). Thus, a potential is composed of a table, where each
element i has an associated likelihood p(i), a mean vector A(i), a regression matrix B(i), and a
covariance matrix C(i). As with probability distributions, we can have conditioning variables in the
potential, such as ψ(H |T); more generally, we can have, in the framework of Lauritzen and Jensen
(2001), ψ(D;H |T), where T are continuous “tail” variables that condition the continuous “head”
variables H and where D are discrete variables that, in the algorithm of Lauritzen and Jensen
(2001) do not need to be distinguished as to being conditioning or not. Each of the element i in the
potentials’ table is associated with an instantiation of the discrete variables in the potential, and
the values of A(i), B(i), and C(i) for each i refer to the continuous variables. Thus, the element
resembles a conditional Gaussian, as discussed in Section 2.4.2. However, if T = {∅}, then the
element resembles a Gaussian, and if H = {} (which also implies in this framework of Lauritzen
and Jensen (2001) that T = {∅}), then the element is a discrete probability. The continuous head
variables are associated with the elements of the mean vector A(i), the rows of the regression matrix
B(i), and the rows (and columns) of the covariance matrix C(i); the continuous tail variables are
associated with the columns of B(i) (each column represents the regression weights of a tail variable
on the head variables). Before discussing how to initialize the clique tree and do propagation in
Section 3.3.4 & 3.3.5, respectively, I discuss some of the operations needed to do them: combination,
marginals, and evidence incorporation in Sections (3.3.1), (3.3.2), & (3.3.3), respectively.

3.3.1 Combination
Combination involves taking two potentials and forming one distribution out of the two:

ψ3 = ψ1 ⊗ ψ2, (3.4)

where ⊗ is the combination operator. It is used first in initialization of the clique tree; as the
cliques contain several variables, we may need to initialize certain cliques by “combining” the prior
distributions of more than one of their component variables. It is also used in propagation, where
messages (Pearl, 1988, Chapter 5) are passed between cliques; when a clique receives a message
(which is itself a potential ψS), it needs to combine it to its own potential ψf to form a new potential
ψ∗

f :

ψ∗
f = ψf ⊗ ψS (3.5)

This receiving of a message is equivalent to when, in the forward and backward recursions of
HMMs, the current α (or β) uses information from a neighboring α (or β) value.

3.3.2 Marginals and Complements
Marginalizing involves taking a potential and factoring it into the marginal and the complement.
For example, if we have ψ(D1, D2;H1, H2|T), we can marginalize outH1 so as to obtain the marginal
ψ(D1, D2;H2|T) and the complement ψ(D1, D2;H1|H2, T), which if re-“combined”, equal the original
potential:

ψ(D1, D2;H1, H2|T) = ψ(D1, D2;H2|T) ⊗ ψ(D1, D2;H1|H2, T). (3.6)

36 CHAPTER 3. DBN INFERENCE

Also, assuming there is no tail, (marginalization over discrete variables with a tail in the potential
is not possible (Lauritzen and Jensen, 2001, Section 4.3)), we can marginalize out the discrete
variables D1 out of ψ(D1, D2;H1, H2) to obtain the marginal ψ(D2;H1, H2) and the complement
ψ(D1, D2;H1, H2):

ψ(D1, D2;H1, H2) = ψ(D2;H1, H2) ⊗ ψ(D1, D2;H1, H2). (3.7)

Marginalizing is necessary primarily for generating the messages that are passed during prop-
agation (and which are then “combined” with a clique’s potential, as referred to in Section 3.3.1).
Its analogy in the HMM framework is when, in the forward and backward recursions, we do a sum
(i.e., a marginalization) over all the values from a neighboring time frame, as shown in (2.13) on
page 13, as well as in (2.16). However, in the DBN framework, the marginalization operation is
more general and could involve a sum or an integral or a combination of the two.

It is in the marginalization operation that the Viterbi algorithm used in the HMM framework
can be implemented in the DBN framework. That is, in DBNs, the marginal ψ(D2;H1, H2) in (3.7)
is computed by

ψ(D2;H1, H2) =
∑

d1

ψ(D1 = d1, D2;H1, H2). (3.8)

To do Viterbi in the DBN framework, this summation is replaced by a maximization:

ψ(D2;H1, H2) = max
d1

ψ(D1 = d1, D2;H1, H2), (3.9)

that is, for a given value d2 in the new potential, the value for ψ(D2 = d2;H1, H2) is determined by
the whichever value d1 has the highest likelihood (i.e., the p(i) value in each element of the table)
in ψ(D1 = d1, D2 = d2;H1, H2)

3.3.3 Incorporating Evidence
Incorporating evidence is the process of taking the observed value for a variable within a clique and
of updating the parameters (the likelihood p(i), the mean vector A(i), the regression matrix B(i), and
the covariance matrix C(i) for all values i of the discrete variables in the distribution) of its potential
in light of this observation. When incorporating evidence for a discrete variable V = v in ψf , this
involves setting p(i) = 0 all of the values in the ψf ’s table where V 6= v. When incorporating evidence
for a continuous variable V = v in ψf , it is incorporated differently, depending on whether it is a
“tail” variable or a “head” variable in the potential. If V is in the tail T of ψf , then its corresponding
regression weights are removed from its corresponding column in B(i) for each element i in ψf ’s
table; these regression weights are then used, weighted by v, to produce A∗(i), the updated version
of A(i) for each element i, in light of this evidence

A
∗(i) = A(i) + BV (i) · v, (3.10)

where BV (i) is the column in B(i) corresponding to V . The effect is to shift the conditional Gaus-
sian’s mean A(i) so as to take into account the conditioning variable’s observation. As the condi-
tioning variable’s value is known, its weights are no longer needed in the matrix BV (i).

If V is in the head H of ψf and if ψf has no tail variables, then we remove its corresponding
elements from A(i) and C(i): AV (i) and CV V (i). We then compute p∗(i), the updated likelihood
for p(i) for each element i in ψf ’s table, using the Av(i) and CV V (i) as the mean and covariance,
respectively, the standard likelihood estimation for Gaussians (Papoulis, 1991, Section 4-3):

p∗(i) = p(i)L(V = v|AV (i),CV V (i)). (3.11)

3.3. PROBABILISTIC INFERENCE THEORY 37

The elements of A(i) and C(i) that were not removed are updated, so as to take into account the
covariance between the remaining head variables and V , as explained in Lauritzen and Jensen
(2001, Section 7): while not given in detail here, the remaining mean AV̄ (i) is shifted (where V̄ =
H\V) and the remaining covariance CV̄ V̄ (i) is updated (note that the covariances CV̄ V and CV V̄ do
not remain after the incorporation). Note that there are exceptions to this for the case of having
a variance of 0 in C(i), which is also dealt with in Lauritzen and Jensen (2001, Section 7). If V is
in the head of ψf and if ψf has a tail variable(s), then the evidence can not be incorporated into ψf ;
rather, ψf is factored and a message containing V is passed to the parent clique of f, which will then
try to incorporate it, as explained in more detail in the “push” operation of Lauritzen and Jensen
(2001, Section 6.2).

3.3.4 Initializing
With a strongly rooted clique tree, initial potentials are assigned to each of the cliques. This is done
by first assigning each variable V i

n to a clique where it occurs with its parents pa(V i
n). Then, for

each clique, we do a “combine” of the (prior) distributions of all its assigned variables to obtain the
clique’s potential ψf . For example, say that variables V 1

n and V 2
n as well as their respective parents,

pa(V 1
n) and pa(V 2

n), all occur in clique f. Then, clique f ’s initial potential would be formed as:

ψf = P (V 1
n |pa(V 1

n)) ⊗ P (V 2
n |pa(V 2

n)).

The initialization is a simple process whose purpose is ensure that all of the local variable distri-
butions are incorporated into the clique tree. Once done, this ensure that we can compute the joint
potential (i.e., the unnormalized joint distribution) as such:

ψ =
⊗

f∈ clique tree

ψf . (3.12)

As at this point no evidence has been incorporated into the potentials, the joint potential is the
same as the joint distribution of all the variables V :

ψ = P (V1:N) =
∏

V i
n∈V1:N

P (V i
n|pa(V i

n)) (3.13)

3.3.5 Propagation
While the initialization above does allow the clique tree to represent the joint distribution of all
of the variables, we need a method for the cliques in the tree to “communicate” with each other.
That is, if a clique’s potential is changed (e.g., evidence is incorporated into it), it needs to let the
other cliques know how its potential has been changed. To do so, messages are passed between
neighboring cliques. A message is itself a potential whose component variables are those variables
in common between the two cliques involved in the message passing (these variables are referred to
as the “separators” between the two cliques). For clique f1 to form its message to f2, with separator
variables Sf1f2 , the potential ψf1 is factored into its marginal ψ↓Sf1f2

f1 and complement ψ|Sf1f2

f1

ψf1 = ψ
↓Sf1f2

f1 ⊗ ψ
|Sf1f2

f1 , (3.14)

where ψ↓S1
f f2

f1 indicates ψf1 with the non-Sf1f2 variables marginalized out, with ψ
|S1

f f2

f1 being the re-
spective complement.

More specifically, this message passing proceeds in two phases, “COLLECT” and “DISTRIBUTE”
(Lauritzen and Jensen, 2001, Sections 5.1 & 5.2) (see also the discussion in Pearl (1988, Chapter 4)),

38 CHAPTER 3. DBN INFERENCE

which resemble the backward recursion and forward recursion, respectively, used in HMMs, as
explained in Section 2.13. In COLLECT, we are starting at the bottom (the “leaves”) of the clique
tree, passing up messages recursively to each clique f related to the data likelihood of the cliques
below f in the clique tree. DISTRIBUTE is performed after COLLECT. In DISTRIBUTE we are
starting at the top (the “root”) of the clique tree, passing down messages recursively to each clique
f informing it of the posterior distribution of the f ’s separator variables (the variables in common
between f and its parent).

• COLLECT: for each clique f in reverse topological order, letting P be f ’s parent and SfP the
separator variables between the two:

– compute the marginal ψ↓SfP

f and the complement ψ|SfP

f (as discussed in Section 3.3.2).
These are factors of ψf : ψf = ψ↓SfP

f ⊗ ψ
|SfP

f .
– “combine” the marginal with ψP to form the updated form ψ∗

P so that P can take into
account the potential ψf :

ψ∗
P = ψP ⊗ ψ↓SfP

f

– assign the complement to ψ∗
f , the updated version of ψf :

ψ∗
f = ψ

|SfP

f

Note that as both factors of the original ψf are still accounted for (one combined with ψP and
the other left in the updated ψ∗

f), that the joint distribution of all the variables in the BN is
still represented by doing a “combine” over all of the potentials, as represented by (3.12).

• DISTRIBUTE: for each clique f in topological order, with parent P , its parent’s separator
variables SPG (G is the parent of P) and its own separator variables SfP :

– compute the marginal ψ↓SfP :

ψ↓SfP = (ψ↓SP G ⊗ ψP)↓SfP

– assign this marginal to ψSfP
, producing the updated version ψ∗

SfP
:

ψ∗
SfP

= ψ↓SfP

Note that DISTRIBUTE does not change the potentials of the cliques. Rather, it merely gives
the potentials to the separators for each clique. So, (3.12) and (3.13) still hold.

3.4 Probabilistic Inference Implementation
For reasons of optimizing both computational costs and memory size, the above algorithm can be
altered while being theoretically equivalent. For the DBNs used in my work, where there is a high-
dimensional, sparse discrete space, it is very important to implement the Enumerate Legal Values
algorithm found in Figure 3.4 of Zweig (1998), the purpose of which is to take advantage of the
known sparsity in the cliques; in doing so, the computational load is reduced substantially as we
are not doing operations on the many zero values in the cliques. As there are discrete probability
tables in my DBNs that are sparse (i.e., having mainly probabilities of zero), we only want the in-
ference to deal with those values in the DBN corresponding to the non-zero values in the tables. To
do otherwise would make the inference computationally infeasible in my DBNs.

3.4. PROBABILISTIC INFERENCE IMPLEMENTATION 39

Qn

An

Xn

Figure 3.1: DBN for “auxiliary” ASR, here representing feature vectors Xn with three elements
each.

Q3

A3

X3[2]

Q3

A3

X3[1]

Q3

A3

X3[3]

Q2

A2

X2[2]X2[1]

Q2

A2

Q2

A2

X2[3]

Q2

Q3

Q1

A1

X1[2]X1[1]

Q1

A1

Q1

A1

X1[3]

Q1

Q2

Figure 3.2: Clique tree corresponding to Figure 3.1.

3.4.1 Initializing and Incorporating Evidence

This initial assigning of the variables’ distributions is incorporated into the algorithm entitled
Enumerate Legal Values. I have also chosen to integrate as much as possible of the evidence
incorporation in the initial assigning of the variables’ distributions to the cliques. For example,
take the distribution p(Xn|An, Qn), where H = {Xn}, T = {An}, and ∆f = {Qn}. This distribution
would have a weight pk, mean µk, regression weights Bk, and covariance Σk for each discrete value
k of Qn. Using this distribution for each time frame n = 1, . . . , N would mean copying all of the
“legal” parameters for pk, µk, Bk, and Σk for each value k of Qn. This would take up lots of memory,
in addition to any time spent doing such copying. So, if we have evidence for, say, both Xn and An

for all time frames, we can proceed as follows: when we are assigning the distribution for Xn at a
given time frame, we can access the pk, µk, Bk, and Σk parameters and incorporate the correspond-
ing evidence for Xn and An at that time frame. We then only need to assign the updated pk (the
likelihood) for the potential for each value of Qn.

40 CHAPTER 3. DBN INFERENCE

3.4.2 Propagation
Furthermore, I have chosen to integrate the above initialization and evidence incorporation into
the COLLECT algorithm. This has, first, to do with the fact that many of the cliques, after having
their evidence incorporated, have the same remaining component variables in their potentials. For
example, take the cliques, “Q1 −A1−X1[1]”, “Q1−A1 −X1[2]”, and “Q1−A1 −X1[3]” from Figure 3.2
for the DBN in Figure 3.1; after incorporating the evidence for A1, X1[1], X1[2], and X1[3] into these
cliques, they are each left with the same variables: “Q1”, though with different ‘p’ values. Therefore,
after “enumerating” these legal values for all such cliques for a given time frame, the memory used
for them can be taken back right after the evidence incorporation by combining them together into
their parent and before moving on to do the same in another time frame. Furthermore, when
DISTRIBUTE is called, it will not have to deal many times with what have become cliques with
identical topologies.

3.4.3 Combination
Lauritzen and Jensen (2001) presents a simple algorithm called “Extension” which enables the
combination to be presented in simple terms of matrix multiplications and additions. However, the
Extension only adds zero terms to the potentials; in other words, they are just place-holders in the
potential for simplifying the matrix operations. Furthermore, the combination will be wasting lots
of time with additions and multiplications upon these “place-holders”. Therefore, I have chosen to
perform combinations in arranging the calculations such that the equivalent outputs are produced
but without having to do the “Extension.” This involves doing matrix operations on only selected
parts of vectors and matrices. While not used in my code itself, this could potentially be optimized,
in C++, using the “slice” functionality provided with the valarray class (Josuttis, 1999).

3.5 Conclusion
Having presented DBNs previously in Chapter 2, I have elaborated in this chapter how inference is
done in them. While the general theory presented in Section 3.1 and 3.3 is not original to this thesis,
I have contributed to this field by illustrating in Section 3.3 different methods that can be used when
actually implementing DBNs for ASR; some of the methods in Section 3.3 were taken from Zweig
(1998) (namely, the Enumerate Legal Values). Incorporating such implementations makes the
examination of the auxiliary information presented in the following chapters more feasible.

Chapter 4

Auxiliary Information

Auxiliary information is any information outside of the standard acoustic features that aids in
modeling the distribution of the standard features. They aid the modeling in that, because of their
correlation with the standard features, they help to better handle the wide variation that the stan-
dard features can have. The auxiliary information needed for these more robust distributions could
come from different sources, such as a second source of acoustic information; visual information;
articulator values; or, as one if its best examples, gender.

Standard ASR uses only the standard acoustic feature vectors x1:N = {x1, . . . , xN} for time
n = 1, . . . , N , for its modeling task. These standard feature vectors are usually derived using
some form of cepstral analysis. These feature vectors are typically assumed to be conditionally
independent, identically distributed (c.i.i.d.) and are an attempt to extract the information from
the signal that is the most useful for the modeling. However, the information contained within xn

appears to be insufficient for modeling the acoustics as ASR performance typically degrades when
given a variety of input acoustics (e.g., background noises not seen during system training). I show
that improved performance can come from better modeling of the distribution of Xn by conditioning
its distribution upon auxiliary information An.

Auxiliary information only has use in the context of standard information. So I here first de-
scribe what standard information is. I then describe the relation between the auxiliary information
and both the standard information and the emitting states. The auxiliary information that I re-
fer to can come in different ways: it can be static, semi-static (i.e., slowly changing), or it can be
dynamic (varying each time frame); it can be precisely known by a source outside xn or it can be
estimated from the same sources as xn. In this chapter, I will present the various types of auxiliary
information that I am investigating. First I will give some motivation as to why auxiliary informa-
tion should be used in Section 4.1 as well as how this relates to previous work in Section 4.2.1. I
will then discuss discrete auxiliary information in Section 4.3 and continuous auxiliary information
in Section 4.4. I close with a discussion on a special type of discrete auxiliary information, in the
form of a second chain, in Section 4.5. The main novelties of this chapter are the use of auxiliary
information in training but not in recognition; the illustration of a factorial HMM with two different
types of chains, each representing different types of states; and a unified overview of different at-
tempts at auxiliary information, including an investigation of different ways of incorporating “real”
auxiliary information into the modeling;

41

42 CHAPTER 4. AUXILIARY INFORMATION

(a) −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(b) 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 4.1: Illustration of the ideal type of distributions according to my definition of auxiliary
information: (a) Xn having different, discriminant distributions (shown is the distribution of the
first PLP coefficient for the phonemes /ao/ and /f/); (b) An of rate-of-speech (ROS) having simi-
lar, non-discriminant distributions (shown is the distribution of ROS for the phonemes /ao/ and
/f/). These are normalized, empirical distributions using all of the training data for the respective
phonemes, using the segmentation used for EM initialization (the segmentation obtained using a
forced-alignment as discussed in Section 6.1 on page 77).

4.1 Standard vs. Auxiliary Information
The standard information is the features x1:N = {x1, . . . , xn, . . . , xN} that are useful for discrimi-
nating between the different possible values 1, . . . ,K of the hidden states Qn for each time frame.
That is, the nature of the features is that we would expect the distribution of Xn to lie in a dis-
tinctly different area for each value of Qn. If any of the elements in the feature Xn are found to
not discriminate between the different values of Qn, then it may be better to remove such elements
from the feature vector.

In modeling the standard features, we are hoping that the distributions will be separated enough
for each state so as to allow good discrimination between the states. Furthermore, we would want
that the distributions be robust to noise and speaker/environmental changes that may arise during
utilization of the trained system. The current performance of state-of-the-art systems suggests
that these standard features are not robust enough. Therefore, there may be some other features,
referred to as auxiliary features, that, by conditioning the distributions of the standard features,
can make them more robust; so, even in noise, the distributions for Xn could hopefully discriminate
well between the states due, in part, to the information carried in An.

The information in the auxiliary features is different from the standard features in that it is not
directly dependent upon the emitting states, as illustrated in Figure 4.1. That is, while the low-level
standard features are changing as the hidden state changes, the higher-level auxiliary features
change due to other factors and may be more slowly changing than the standard features. See
Figure 4.2. Since the auxiliary information is not dependent directly upon the states, it makes sense
to model it independently of the states. Now, this auxiliary information is a fundamental trait of the
speech signal, meaning that there will quite possibly be a correlation between the standard features
and the auxiliary features. Hence, I propose that, while the auxiliary information is independent of
the state, it can aid the modeling of the standard features.

There are different possible sources for this auxiliary information. It can be known precisely;
for example, with discrete auxiliary information of gender (Konig and Morgan, 1992) or the contin-

4.2. RELATION TO PREVIOUS WORK 43

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 4.2: Correlation between Xn and An. Training utterance from the Numbers database for
a female uttering “thirty-six twelve.” The first PLP coefficient, PLP[1], (one of the “standard” fea-
tures) is plotted below its corresponding pitch estimate (an “auxiliary” feature). The x-axis rep-
resents the frame number; the y-axis represents the value of PLP[1] for the lower plot and the
pitch estimate divided by 100 for the upper plot. Note the positive correlation between PLP[1] and
pitch: when there is non-zero estimated pitch, PLP[1] tends to have higher values. Furthermore,
while PLP[1] changes its value rapidly, the pitch estimate changes slowly over time, hence carrying
higher-level information (that is, information related to the speaker or utterance, as opposed to the
phoneme).

uous auxiliary information of a child’s age (to take into account the changing attributes of a child’s
voice as he matures). It can be obtained using precise measurements, for example, using auxil-
iary information of the articulator positions (Westbury et al., 1994; Wrench, 2000). Finally, it can
be estimated information, for example, information regarding pitch, rate-of-speech, and energy, all
estimated from the signal.

4.2 Relation to previous work

4.2.1 Discrete conditioning variables
The concept of an auxiliary variable was in the first work that seriously addressed issues related
to using DBNs in ASR (Zweig, 1998), where it was typically referred to as a “context” variable.
The term context refers to how it attempts to model the features in relation to the features at the
previous time frame as well as how it attempts to models the correlation between features at the
same time frame. This is captured in the four different topologies that he used, as illustrated in
Figure 4.3.

Zweig (1998) showed the benefit of having an auxiliary variable to model this contextual in-
formation. The auxiliary variable was always hidden, both in training and in testing. Thus, in
training a latent variable, we can not be certain of what information it might be modeling. We
can, however, attempt to bias what information it is carrying; for example, Zweig gave the training
initial distributions for the variable that reflected what sort of information (e.g., voicing) that he
wanted them to model. In treating the auxiliary variable as a latent variable, he showed that the
“Chain” BN in Figure 4.3 can be used to do unsupervised clustering according to both speaker types
and word types. His thesis gave a lot of the theoretical background for pursuing auxiliary variables

44 CHAPTER 4. AUXILIARY INFORMATION

ChainArticulator

Qn

An (“context”)

Xn

PD-Correlation Correlation

Qn

An (“context”)

Xn

Figure 4.3: Four BNs for modeling “context” information with their names (“PD” means phoneme-
dependent), as used in Zweig (1998). The context variable, while possibly given initial distributions
with certain characteristics before training, remains hidden in both training and testing.

that are trained on actual data, instead of being latent in training. He, however, did not do any
experimental investigation on actual data. Furthermore, his thesis dealt with discrete DBNs, with
minimal discussion related to mixed DBNs. So, in this thesis, I am continuing his line of research
by using auxiliary variables with real data and in using mixed DBNs.

Discrete auxiliary information has also been investigated using the gender (male/female) of the
speaker. Konig and Morgan (1992) had two general approaches, each of which uses a “Gender
Classification Network” ANN to try to determine the gender of the speaker. In one approach, the
two outputs of the gender classifier are treated as additional features. In the other approach,
the outputs of the gender classifier are used to determine which of two gender-dependent acoustic
models to use during decoding. In a similar manner to using the gender as a discrete auxiliary
information, the discretized speaking rate has also been used. Martı́nez et al. (1998) proposed
having a set of HMM parameters adapted to slow speech and another adapted to fast speech. In
conjunction with the two sets of parameters, they proposed a “speech rate classifier” (SRC) that
gave an estimation of the speaking rate. Using the two sets of HMM parameters in conjunction
with the estimates given by the SRC, reduced the word error rate for slow speech as well as for
fast speech (but increased the word error rate of normal speech a small amount). In this thesis, my
discrete auxiliary information changes from frame-to-frame; it is not static (like gender) or “semi-
static” (like speaking rate). Furthermore, instead of taking the most likely auxiliary information at
each frame, I take into account the likelihood of each possible auxiliary value.

Logan and Moreno (1998) introduced factorial HMMs, in practice, to speech recognition. With
factorial HMMs (Ghahramani, 1997), the idea is to factor the discrete state space into two separate
discrete chains, each sharing the same observation space, as illustrated in Figure 4.8 on page 62.

4.2. RELATION TO PREVIOUS WORK 45

Logan and Moreno (1998) actually had a modified factorial HMM where the same discrete space was
used for each chain and where each chain had different observations; with such modifications, it
resembles a multi-stream approach to ASR (Dupont, 2000, Chapter 5). In this thesis, I further this
work by simultaneously training two chains (one of them being “auxiliary”) which have different
discrete spaces and where the two chains have the same observations; however, in recognition, I
remove the time-dependency for one of the chains.

4.2.2 Continuous conditioning variables

A continuous auxiliary variable with data in both training and testing was used in Fujinaga et al.
(2001). This was not done in the context of DBNs–though it could easily have been done. They
illustrated how continuous auxiliary information can be used in a regression to better model the
Gaussian distribution of the regular features. They showed how using auxiliary information in
a standard manner (that is, appending it to the standard feature vector used in the HMMs) in
speaker-dependent phoneme or isolated word recognition typically increases the error rate (they
hypothesized that the cause of this increase in error was the “curse of dimensionality” of having
too large a feature vector after the auxiliary feature(s) were appended). However, if this auxiliary
information conditions the standard features by shifting their expected mean value, then the error
rate decreases. A further benefit of conditioning the standard features on the auxiliary information
is that the variances within the resulting trained Gaussians are smaller (assuming the auxiliary
information is correlated with the standard features). They used auxiliary information related to
pitch and energy characteristics.

The results with Fujinaga et al. (2001) give an indication as to why there has not until recently
been much use of “auxiliary” information in ASR. While some of the auxiliary features that they
used provided some marginal improvement in standard HMM phoneme recognition, none of them
provided any improvement in standard HMM isolated word recognition. This fits in with my ar-
gument that certain auxiliary information needs to condition the standard features as well to be
independent of the state, both of which were done successfully in Fujinaga et al. (2001). I also
investigate continuous pitch and energy related features (as well as speaking rate) that condition
Gaussian distributions. I further this work both by looking at the effect of hiding the continuous
auxiliary feature in the testing phase and by looking at the effect of having this auxiliary feature
itself modeled dependent upon the state. Additionally, I am looking at the broader task of speaker-
independent, spontaneous speech recognition in noisy conditions.

While a discretized speaking rate was shown in Martı́nez et al. (1998), as mentioned in Sec-
tion 4.2.1, a continuous speaking rate was used in Morgan et al. (1997). Instead of conditioning all
of the HMM parameters, it conditioned only the transition probabilities out of the discrete states.
Using such an approach provided a 14% reduction in word error rate. Furthermore, note that these
results held for the case where they used a speaking rate estimated from the signal (Morgan et al.,
1997) or from a transcription. In this thesis I show how the acoustics can be conditioned by the
speaking rate (like Martı́nez et al. (1998)), and how the speaking rate can be used in a continuous
way to “shift” the distributions of the acoustics.

While not using “auxiliary” variables, as used in my thesis, Bilmes (1999), which used buried
Markov models (BMMs), and Wellekens (1987) conditioned the distribution of the observations
upon observations from the previous time frame(s). Bilmes (1999) showed the benefit of selectively
including dependencies from previous time frames, with this set of dependencies changing accord-
ing to the value of the discrete state. My work deals in conditioning the standard features not upon
features from other time frames but on, rather, conditioning them on the “auxiliary” variable from
the same time frame. I do note that, while not doing any experimental investigation into auxiliary
variables, Bilmes (1999, Section 4.7.2) does give the background for incorporating them, referring

46 CHAPTER 4. AUXILIARY INFORMATION

to the auxiliary variable by Yt, into BMMs1.

4.3 Discrete Auxiliary Information

My work with discrete auxiliary information was done with discrete DBNs (where all variables are
discrete). The exception where discrete auxiliary information is used in mixed DBNs (i.e., DBNs
with both discrete and continuous variables) is the case of “auxiliary” chain information, which
is dealt with separately in Section 4.5. Discrete DBNs have, in a way, a much simpler inference
algorithm. As such, they serve as a good tool for the initial investigations into auxiliary information
in DBNs. They do not have the computational problems that (hidden) continuous variables can
pose to probabilistic inference; they do, however, have their own computational problems when the
discrete space gets too large.

In discrete DBNs for ASR, we are modeling the discrete acoustic observation xn, which, in the
framework of Zweig (1998), involves having three dimensions xn[1], xn[2], and xn[3] (representing
the MFCCs, the approximate first-derivative of the MFCCs, and the zeroth MFCC with its approxi-
mate first-derivative, respectively; note that the number of dimensions of xn can be changed if other
feature representations are desired), and the hidden discrete state for each time n:

P (Xn = xn|Qn) = P (Xn[1] = xn[1]|Qn) · P (Xn[2] = xn[2]|Qn) · P (Xn[3] = xn[3]|Qn), (4.1)

thus making the standard assumption that the dimensions of Xn are (conditionally) independent of
each other and that Xn is (conditionally) time-independent. That is, the uncorrelated dimensions of
Xn are conditionally independent, identically distributed (c.i.i.d.) (see Section 2.2.1 on page 15 ff).
My first investigations into auxiliary information An, then, is to incorporate it as time-dependent
information that conditions Xn and can potentially be hidden:

P (Xn, An|Qn, An−1) = P (Xn|Qn, An) · P (An|An−1, Qn). (4.2)

Note, therefore, that the auxiliary feature here is not treated as if it were just another dimension of
the standard featureXn; if it had been, thenAn would not be conditioningXn andAn−1 would not be
conditioning An. Figure 4.4 (a) illustrates the BN that depicts this distribution. As some auxiliary
information may have its origin above the phone-level, it may not be related to the phonetic-state
Qn. However, it remains a time-dependent information that does conditionXn itself, as represented
in Figure 4.4 (b):

P (Xn, An|Qn, An−1) = P (Xn|Qn, An) · P (An|An−1), (4.3)

which, because there are two conditionally independent Markov chains, can be viewed as a factorial
HMM, as discussed in Section 4.2.1. In either case, the auxiliary information may be either missing
or noisy at any or all time frames. So, in discrete DBNs (specifically, with discrete An), we can
marginalize out the An by a summation over all L values of An. In the case of (4.1) and (4.2),

1I thank an anonymous reviewer of a paper (submitted to a journal) written in preparation for this thesis for pointing
this out.

4.4. CONTINUOUS AUXILIARY INFORMATION 47

(a) (b)

Qn

An

Xn

Figure 4.4: Discrete BN carrying time-dependent auxiliary information An that conditions Xn. (a)
has state-dependent An, as in (4.2); (b) has state-independent An, as in (4.3).

respectively:

P (Xn|Qn, An−1) =
L
∑

an=1

P (Xn, An = an|Qn, An−1)

=

L
∑

an=1

P (Xn|Qn, An = an) · P (An = an|An−1, Qn) (4.4)

P (Xn|Qn, An−1) =

L
∑

an=1

P (Xn, An = an|Qn, An−1)

=

L
∑

an=1

P (Xn|Qn, An = an) · P (An = an|An−1) (4.5)

4.4 Continuous Auxiliary Information
4.4.1 Statistical Assumptions-DBNs (with GMMs)
These various methods outlined below for including An in GMM based modeling can also be done
in the framework of HMMs. However, different software would need to be developed for handling
each change in the assumptions for handling An. DBNs provide the general framework for being
able to handle all of these assumptions in the same software, using the same algorithms.

In general, all of the DBNs in my experiments with continuous auxiliary informationAn assume
that An is time-independent. That is, An is conditionally independent of An−1. This has been
done because of the complexity issues involved when having An dependent upon a hidden An−1, as
discussed in Section 2.4.3 on pages 23 ff. As a result, the following time-dependent ways to model
An have not, to the best of my knowledge, been examined experimentally by anyone in the context
of ASR with continuous, hidden An (nor are they examined experimentally in this thesis):

p(An|Qn, An−1) (4.6)
p(An|An−1). (4.7)

(4.6) could have been incorporated into both (4.10) and (4.14) below and where (4.7) could have been
incorporated into (4.12) below. (Note that Bilmes (1999) does provide a framework for investigating
(4.7) with observed An in the context of BMMs but, as far as I am aware, has not experimentally
tested it). (4.6) and (4.7) could have been investigated, without the complexity issues with only
observed An. This is because the d-separation property (cf. Section 2.4.3) between An and Q1:N

remains the same whether An is dependent upon the observed An−1 or not: An ⊥⊥An′ |Q1:N , (n′ <

48 CHAPTER 4. AUXILIARY INFORMATION

n − 1 or n′ > n + 1). The only case with observed, time-dependent An that I have not investigated
yet which is of interested to this thesis is that of incorporating (4.6). (4.7) would not have been of
interest with only observed An as, since there are no hidden variables in its distribution, it will add
nothing to the modeling.

Xn only (Baseline, Figure 4.5 (a))

The baseline systems with no auxiliary variable are theoretically equivalent to standard HMMs,
as represented by the emission distribution p(Xn|Qn), which when using Gaussian mixture mod-
els (GMMs) in the DBNs is expanded as:

p(Xn|Qn) =

J
∑

j=1

P (Jn = j|Qn) · p(Xn|Qn, Jn = j), (4.8)

where j is the mixture component and J the number of mixture components. The elements of
these standard features, furthermore, are assumed to be statistically independent of each other,
within a given mixture component of a given state. This means that, in modeling them as multi-
Gaussian distributions, they have diagonal covariance matrices. Doing so reduces the complexity in
the models — each covariance matrix has only P parameters instead of (P+1)P

2 . With this reduced
complexity, more robust models can be learned without having to get the large amounts of data that
very complex models would demand for effective learning. Furthermore, as discussed in Assump-
tion 4 on page 17, there is still some indirect modeling of the correlation between the elements of
Xn via Jn (as well as via Qn). So, given the P parameters used for the variances in each of the J
components of the GMM used in (4.8), (not including the parameters for the mixture component
weights) the covariance of the full GMM is effectively modeled with JP parameters.

Xn, An (no assumptions, Figure 4.5 (b))

Without any statistical assumptions betweenAn,Xn, andQn, the emission distribution p(Xn, An|Qn)
is modeled as:

p(Xn, An|Qn) = p(Xn|An, Qn) · p(An|Qn) (4.9)

=

J
∑

j=1

P (Jn = j|Qn) · p(Xn|An, Qn, Jn = j) · p(An|Qn), (4.10)

Thus, An is serving as an auxiliary variable to Xn by conditioning its distribution. By having An

condition the distribution for Xn, some of the covariance between the elements is further modeled
implicitly. That is, by themselves, the elements of Xn are assumed to be uncorrelated (given Qn

and Jn). However, each element of Xn has a different regression weight upon the value of An, found
in the B matrix described in Section 2.4.1. Therefore, each element of Xn will then be correlated
with each other, via An. So, in effect there is then a “full” covariance matrix (i.e., every element
can be non-zero) for mixture component of the GMM for Xn but with only a limited number of free
parameters. That is, when the distributions of Xn and of An are combined (with An being an S-
dimensional vector), then the resulting (P +S)×(P+S) covariance matrix for each discrete mixture
component will have P + 2S + PS free parameters; in other words, the free parameters are the P
variances of Xn, the S means of An, the S variances of An, and the P · S regression weights of An

uponXn, all of which are used as specified in Lauritzen and Jensen (2001, Section 4.4). This results
in J(P + 2S + PS) total parameters for such a “conditional” GMM (not including the parameters
for the mixture component weights). So, in effect, we have two options available for improving
the modeling of the elements of Xn: we can use the standard discrete mixture component variable

4.4. CONTINUOUS AUXILIARY INFORMATION 49

(a) (b) (c) (d)

Qn

Jn

An

Xn

Figure 4.5: BNs for ASR: (a) has only xn; (b)-(d) have different ways of incorporating an. Figure 5.4
shows the full DBN, with the control layer and multi-dimensional xn, for the case of (b).

Jn and we can use a continuous “mixture” component variable An. We would want to use the An

directly conditioning Xn (instead of making them both part of the same GMMs), if there was a
substantial correlation between An and Xn which could not be modeled effectively using only a
reasonable number of Gaussian mixtures components.

Note that the use of (4.10) instead of (4.8) represents a small increase in computation for each
mixture component. That is, as (4.10) uses a conditional Gaussian, there is an additional multipli-
cation and addition to shift each mean according to the value of An (assuming An is observed).

An⊥⊥Qn |Xn = xn (Figure 4.5 (c))

Equation (4.10) does not make the assumption that An is independent of the state. However, my
standard way of incorporating An involves treating An independent of Qn:

p(Xn, An|Qn) = p(Xn|An, Qn) · p(An) (4.11)

=

J
∑

j=1

P (Jn = j|Qn) · p(Xn|An, Qn, Jn = j) · p(An). (4.12)

The correlation between the elements of Xn is still modeled implicitly through their mutual de-
pendence upon An (as upon Qn and Jn)–see Figure 4.6. However, An is merely given a simpler
distribution, that is, one independent of Qn. Additionally, in using conditional GMMs for each
state, DBNs both with An ⊥⊥Qn |Xn = xn and with Xn, An above, there will be smaller variances
for Xn, as part of the variance is accounted for by An, as illustrated in Figure 2.5 on page 22.

At this point I would like to draw attention to the above two ways of incorporating An: Xn, An

and An ⊥⊥Qn |Xn = xn regarding two different points. First, by conditioning the distribution for
Xn, the auxiliary variable An can be viewed as a continuous mixture component variable. In being
a (discrete) mixture component variable, Jn itself indicates which Gaussians component(s) to use
for a given time frame as well as their respective weight(s) (i.e., probability(ies) within Jn itself).
In a similar manner, the continuous “mixture” component variable, An, gives a continuous range of
Gaussians to use for a given time frame as well as the respective continuous range of weights (i.e.,
the probability distribution of An itself). The advantage of having a continuous mixture component
variable is that there is, in a sense, an infinite number of mixture components, with those closest
to the mean of An being the most likely ones. Conversely, the advantage of having a traditional
discrete mixture component variable is that the parameters of each discrete mixture component

50 CHAPTER 4. AUXILIARY INFORMATION

PLP[1]

P
LP

[2
]

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

PLP[1]
P

LP
[2

]
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Figure 4.6: Conditional Gaussian mixture models, illustrated by the first state of the phoneme /w/
and the first and second PLP coefficients with energy as the auxiliary variable. These two graphs
are taken from a single conditional GMM that was learned from the OGI Numbers data for the
“An⊥⊥Qn |Xn = xn” system in Table 6.11. On the left is the result of conditioning the (conditional)
GMM on a low energy value; on the right is the result of conditioning the same (conditional) GMM
on a high energy value. The resulting GMMs after conditioning change with different conditioning
values. Furthermore, with different energy values, the covariance (as indicated by the shape of the
GMMs) changes as a function of the energy value.

can be tailored for each of the discretized mixture components; that is, the weight, mean, and
variance can be different for each component, unlike with using An, whose weight upon Xn is a
function of An (in this work, this is a linear function) and whose variance is uniform (though an
area of research would be to investigate changing this variance also using a function of An). I do not
argue for or against the exclusive use of a continuous mixture component variable verse a discrete
mixture component variable (I actually use both in the same models). Rather, I point out that they
each have their own aspects to contribute to better modeling. Second, I have chosen in this work on
continuous An to not investigate how to best model An itself, except for allowing it in certain cases
to be dependent upon Qn. As a result, I have not made An dependent upon the mixture component
variable Jn. When using continuous An, I am concentrating on how to best model Xn itself; any
other ways to model continuous An (in addition to its dependency or independency upon Qn) is left
for future work (as explained in Chapter 7).

Xn⊥⊥An |Qn (Figure 4.5 (d))

Conversely, should An be dependent uponQn but independent ofXn (and, thus, not truly auxiliary),
we would model:

p(Xn, An|Qn) = p(Xn|Qn) · p(An|Qn) (4.13)

=

J
∑

j=1

P (Jn = j|Qn) · p(Xn|Qn, Jn = j) · p(An|Qn). (4.14)

Note that this is equivalent to having included An among Xn except that An is not modeled here by
mixture distributions. That is, Xn and An are assumed to be uncorrelated with each other (given
Qn).

4.4. CONTINUOUS AUXILIARY INFORMATION 51

(b)

(a) (c)

(d)

xn−c:n+c, an−c:n+c

P (Qn|xn−c:n+c, an−c:n+c)

ANN

P (Qn|xn−c:n+c)

ANN

xn−c:n+c xn−c:n+c

P (Qn|xn−c:n+c, an−c:n+c)

xn−c:n+c

P (Qn|xn−c:n+c, a
1) P (Qn|xn−c:n+c, a

L)

ANN
(1)

ANN
(L)

ANN
(Xn)

xn−c:n+c an−c:n+c

Figure 4.7: ANNs for hybrid HMM/ANN ASR. Presented are (a), the BASELINE Xn only ANN;
(b), the ANN with an appended to xn and used as a standard feature; (c), the multiple ANNs using
discretized auxiliary information (with L values); and (d), the two ANNs treating an outside of the
hidden layer for Xn.

4.4.2 Statistical Assumptions-HMM/ANNs

As hybrid HMM/ANN ASR is a competitive method compared to GMM based ASR (as presented in
Section 4.4.1), I have investigated2 how to incorporate An with the same assumptions as with the
GMMs. In investigating using auxiliary information in HMM/ANN systems, I only look at how to
change the ANNs so as to accommodate auxiliary information; the HMM portion of the system is
always used in the same standard way. That is, I look at how to take advantage of using auxiliary
information so as to get better scaled likelihoods from the ANNs. As typically done in HMM/ANN
systems for ASR, the ANNs are trained independently of the HMM (the HMMs themselves are not
trained).

Xn only (Baseline)

The baseline HMM/ANN system uses the scaled likelihood from (2.47), using the observations
xn−c:n+c. It has a window size of nine frames (four frames to the past and four frames to the
future, plus the current frame). It is illustrated in Figure 4.7 (a).

2In collaboration with Mathew Magimai-Doss

52 CHAPTER 4. AUXILIARY INFORMATION

Xn, An (no assumptions)

In incorporating An in the HMM/ANN context with no additional assumptions, we treat it as a
normal feature by appending it to the standard feature Xn. That is, like with Xn, we use the
contextual auxiliary features (a window of nine frames) and by including them in the same input
layer as the standard features, the hidden layer models correlation between An and Xn as well as
the correlation between An and Qn (similar to what is done in the BN presented in Figure 4.5 (b)).
Equation (2.47) is expanded with the observations xn−c:n+c and an−c:n+c as shown in (4.15).

p(Xn−c:n+c = xn−c:n+c, An−c:n+c = an−c:n+c|Qn)

=
p(Xn−c:n+c = xn−c:n+c, An−c:n+c = an−c:n+c) · P (Qn|Xn−c:n+c = xn−c:n+c, An−c:n+c = an−c:n+c)

P (Qn)

∝ P (Qn|Xn−c:n+c = xn−c:n+c, An−c:n+c = an−c:n+c)

P (Qn)
. (4.15)

The use of conditional Gaussians in DBNs for modeling Xn, An with no assumptions lets An have a
linear impact on the distribution. However, here incorporatingXn, An with no assumptions brings a
non-linear dependency betweenXn and An. Therefore, the relation between the two can potentially
be modeled better in the ANNs.. It is illustrated in Figure 4.7 (b).

An⊥⊥Qn |Xn = xn

In treating An as a normal feature in the Xn, An above, the hidden layer carried information about
An to the output layer representing Qn. Hence, that ANN had a dependency between An and Qn.
Breaking this dependency is a subject of research. The approach taken here is that to break this
dependency, there should be no input from An into the hidden layer. This is achieved by having a
separate ANN for each value of a discretized An. Therefore, the modeling of Xn is done differently
depending on which discrete value 1, . . . , l, . . . , L that An has; however, the value of An does not
directly affect Qn (only indirectly via Xn). Likewise, in a DBN, if An had been discretized (which is
not the case in my DBN—though the systems in Section 4.3 used a discretized An with discretized
Xn), the effect would have been to have a different set of Gaussians for each discrete value of An.
As in the other HMM/ANN setups, each ANN has a window size of nine frames. It is illustrated in
Figure 4.7 (c). For a given value An = l, the scaled likelihood is computed using only the one ANN
associated with An = l as:

p(Xn−c:n+c = xn−c:n+c, An = l|Qn)

=
p(Xn−c:n+c = xn−c:n+c, An = l) · P (Qn|Xn−c:n+c = xn−c:n+c, An = l)

P (Qn)

∝ P (Qn|Xn−c:n+c = xn−c:n+c, An = l)

P (Qn)
. (4.16)

Note that the prior of the states P (Qn) is over all the training data, independent of the distribution
of An; future work would involve having a different prior for each ANN for the discrete value l
of An: P (Qn|An = l). There are L ANNs for each of the L discrete values of An; each ANN for
An = l is trained using the features Xn whose corresponding auxiliary value is An = l. This results
in L ANNs whose structure is just like the BASELINE structure described above except that the
window size for the input layer is smaller and that the number of parameters in each of the L ANNs
is approximately 1

L
that of the number of parameters in the regular BASELINE so as to keep the

total number of parameters between the two types of system approximately the same. Each of the
L ANNs is, thus, tailored to a specific type of speech, based on the value of An; but as each receives,
on average, only 1

L
of the training data that the BASELINE has, there is the risk of having poorly

trained ANNs, particularly for large L.

4.4. CONTINUOUS AUXILIARY INFORMATION 53

Xn⊥⊥An |Qn

Conversely, to have An affect Qn but not Xn, the continuous An needs to have its layers separated
fromXn’s layers. The only point where information through whichAn andXn can share information
would be their would be the output layer, just like with the BN in Figure 4.5 (d), where Xn and An

are only connected via Qn. Like with An ⊥⊥ Qn |Xn = xn above, this is a subject of research; the
approach taken here to this research question is to have an input and a hidden layer forXn but only
an input layer for An; furthermore, no context is taken for An in the input layer. By connectingXn’s
hidden layer and An’s input layer both to the output layer, Xn is modeled in a non-linear manner
while An is modeled in a linear manner; that is, the hidden layer can do non-linear modeling of Xn

while having An’s input layer directly connected to the output layer, the (weighted) values of An

and used directly in the output layer’s softmax function. It is modeled as

p(Xn−c:n+c = xn−c:n+c, An = an|Qn)

=
p(Xn−c:n+c = xn−c:n+c, An = an) · P (Qn|Xn−c:n+c = xn−c:n+c, An = an)

P (Qn)

∝ P (Qn|Xn−c:n+c = xn−c:n+c, An = an)

P (Qn)
. (4.17)

As in the other HMM/ANN setups, there is a window size of nine frames for Xn; however, no time
frame is used for An as this was an initial investigation into this type of system setup. The model-
ing of (4.17) resembles that of (4.16) except that An is continuous and that the value of An directly
changes P (Qn|Xn−c:n+c = xn−c:n+c, An = an) in a continuous fashion. Investigating a linear de-
pendency for An was motivated by the use of An’s linear dependency upon Xn in the conditional
Gaussians in the DBN framework (though here with the ANNs, the linear dependency is not be-
tween Xn and An but between Qn and An). Modeling An in a such linear fashion is illustrated in
Figure 4.7 (d). Extensions of this model (not presented in this thesis) include having a separate
hidden layer, and, hence, non-linear modeling for An, as well as having a time window for An. For
example, an alterate approach to modeling An ⊥⊥Qn |Xn = xn, which is not pursued in this thesis,
would be to use the multi-stream approach, were a separate ANN is modeled for both Xn and for
An (Hagen, 2001).

4.4.3 Hiding Auxiliary Variables

The auxiliary information considered may not always be available or may not always be reliable
due to noise. In such a case, we do not want to use it in probabilistic inference as it would corrupt
the modeling. In such cases, we hide it and, instead, use its inferred value, which is computed using
both its prior distribution and the observations of the other variables. In the case of a continuous
auxiliary variable, this is accomplished through integration; in the case of a discrete auxiliary
variable with values 1, . . . , L, this is accomplished through a sum:

p(Xn|Qn) =

∫ ∞

−∞

p(Xn, An|Qn) dAn, An continuous (4.18)

p(Xn|Qn) =

L
∑

an=1

p(Xn, An = an|Qn), An discrete (4.19)

54 CHAPTER 4. AUXILIARY INFORMATION

In the case of using mixture distributions, we would have:

p(Xn|Qn) =
J
∑

j=1

∫ ∞

−∞

P (Jn = j|Qn) · p(Xn, An|Qn, Jn = j) dAn, An continuous (4.20)

p(Xn|Qn) =

J
∑

j=1

L
∑

an=1

P (Jn = j|Qn) · p(Xn, An = an|Qn, Jn = j), An discrete (4.21)

This is straightforward to do in the context of DBNs, where an integration over a continuous
An involves merely removing its dimension from within a Gaussian and a sum over a discrete An

is simply defined if there are no conditional Gaussians in the distribution. This is very similar to
the work done in missing feature theory (Morris et al., 1998), where certain elements of Xn are
integrated out when they are suspected of being corrupted by noise. However, in missing feature
theory where Xn contains energy values, the bounds of the integral are restricted to [0, an], where
an is the corrupted value and, hence, the maximum possible uncorrupted value (since the “true”
clean signal is an minus the unknown amount of energy in the added noise) and where 0 is the
minimum possible uncorrupted value (representing silence) of the missing feature.

Note that if Xn has a conditional Gaussian dependent upon a hidden An, there would be addi-
tional computation involved (all simple multiplications, divisions, and additions, as to be explained
in Section 4.4.5). This is due to the fact that all the elements are correlated with each other via this
hidden An. So, an updated distribution of An needs to be computed given the observations xn, and
this updated distribution of An is needed in the computation of the likelihood of xn.

Regarding the case with ANNs, the hiding can easily be done in the case of discrete An; as there
is an ANN for each value of An, we do a weighted sum of the posteriors from each ANN (where the
weights are the prior distribution of An in the training data). In the case of continuous An, it is not
straightforward how to hide the An, which is a part of the input layer. Hence, for our HMM/ANN
systems, I only present systems with hidden An where An has been discretized.

4.4.4 Parameter Estimation
Gaussians

In machine learning, the Gaussian distribution is the basis for modeling the distributions of a wide
variety of data (where it is used in mixture distributions, as discussed later on page 56 ff). It
consists of two parameters: the mean vector µ and the covariance matrix Σ, which are referred to
as the first moment and the second moment, respectively. If data X is distributed in such a manner,
we note it as:

X ∼ N (µX ,ΣX) (4.22)

If µX and ΣX are not known but if we do have data X = {x1, . . . , xN} drawn from this distribu-
tion, we can estimate their values (these were already introduced in Section 2.1.2 on page 11 in the
context of training HMMs):

µX = E(X) ≈ x̄ =
1

N

N
∑

i=1

xi (4.23)

ΣX = E((X −E(X))2) ≈ SX =
1

N

N
∑

i=1

(xi − x̄)(xi − x̄)T , (4.24)

4.4. CONTINUOUS AUXILIARY INFORMATION 55

where (4.24) is a biased estimate of ΣX . Alternatively, we can have an unbiased estimator of ΣX :

SX =
1

N − 1

N
∑

i=1

(xi − x̄)(xi − x̄)T , (4.25)

where (4.25) divides by (N−1) instead of byN and takes into account that x̄ is only an estimate (Pa-
poulis, 1991). The same result for SX in (4.24) can be obtained by:

SX =
1

N

N
∑

i=1

(xi − x̄)(xi − x̄)T

=
1

N

N
∑

i=1

xix
T
i − 1

N

N
∑

i=1

2xix̄
T +

1

N

N
∑

i=1

x̄x̄T

=
1

N

N
∑

i=1

xix
T
i − x̄x̄T . (4.26)

The advantage of (4.26) over (4.24) is that both µX and ΣX can be estimated in the same pass over
the data, instead of two.

Conditional Gaussians

The conditional Gaussian (Lauritzen and Wermuth, 1989) is a less common distribution used for
modeling the dependency between data X and data A. If we defined X as being dependent upon A,
then we have a distribution whose first moment is no longer the mean of X but, rather, a function
uX . In my work, this is represented by the linear function uX = µX + BXA, using regressions in
BX upon A. Its second moment is still the variance ΣX (albeit, estimated differently, as explained
below):

X ∼ N (uX ,ΣX)

∼ N (µX +BXA,ΣX). (4.27)

Even though not directly dependent upon A, ΣX is indirectly conditioned upon it as when we esti-
mate ΣX for this conditional Gaussian, the value of A accounts for some the variance; hence, the
variance will be lower, as illustrated in Figure 2.5 on page 22. Furthermore, it is only when X and
A are factored into two distributions that the variance appears to not be dependent upon A; if a
multivariate distribution were formed from (4.22) and (4.27) for the vector (X,A) such that we are
modeling

(X,A) ∼ N (µ(X,A),Σ(X,A)), (4.28)

then the variance for X within the Σ(X,A) would be ΣX + BX ΣAB
T
X , where ΣX and BX are taken

from (4.27) and ΣA is taken from A’s distribution (Lauritzen and Jensen, 2001, Section 4.4):

A ∼ N (µA,ΣA). (4.29)

Giving the second moment a direct dependence uponA in the conditional Gaussian forX is a subject
of research.

Hence, whereas the Gaussian (4.22) has two parameters to estimate, µ and Σ, the conditional
Gaussian (4.27) has three parameters: µ, B, and Σ. These parameters are learned in a two-stage
procedure. First, we need to estimate the joint mean and joint covariance of X and A. Let W be

56 CHAPTER 4. AUXILIARY INFORMATION

the combination of data X and A (that is, for each pair of data vectors x and a, w is the data vector
which is the concatenation of the two). Then we estimate µW and ΣW :

µW ≈ w̄ =
1

N

N
∑

i=1

wi (4.30)

ΣW ≈ SW =
1

N

N
∑

i=1

(wi − w̄)(wi − w̄)T =
1

N

N
∑

i=1

wiw
T
i − w̄w̄T (4.31)

(4.30) and (4.31) are the maximum likelihood estimates of the mean and variance, respectively,
for the joint distribution of W = (X,A). If we are then interested in having the individual dis-
tributions for X and for A (which, in the context of DBNs, we want — see Section 2.4.1), we can
factor the multivariate Gaussian distribution using the parameters (4.30) and (4.31). To do so, let
us partition w̄ according to the portion obtained from X and that obtained from A:

w̄ =

[

w̄{X}
w̄{A}

]

(4.32)

Let us also partition SW , according to that related only to X , that related only to A and those
related jointly to X and A, as follows

SW =

[

SW {X2} SW {XA}
SW {AX} SW {A2}

]

(4.33)

and let [SW {A2}]− be the pseudo-inverse of SW {A2}. Then the parameters µX , BX , and ΣX for the
conditional Gaussian are estimated as (see Lauritzen and Jensen (2001, Section 4.5):

BX ≈ B̂X = SW {XA}[SW{A2}]− (4.34)
µX ≈ x̄X = w̄{X}− B̂X w̄{A} (4.35)
ΣX ≈ SX = SX − B̂XSW {AX}. (4.36)

The parameters for A’s distribution remain as w̄{A} and SW {A2} for its mean and variance, respec-
tively (Lauritzen and Jensen, 2001, Section 4.3); they are not modified as they are not conditioned
upon anything.

Note that while only the first moment, uX , is conditioned upon A, the estimates for both the
first and second moments, uX and ΣX , respectively, are dependent upon A. Specifically, SW {XA}
and [SW {A2}]− are used for calculating all three of the estimates; additionally, w̄{A} is used in the
estimate of µX . In summary, we obtain the conditional distribution of X upon A by first computing
the maximum likelihood estimates of the multivariate Gaussian for (X,A) and then factor this into
the conditional Gaussian of X upon A and into the Gaussian of A.

Mixture Distributions

For many problems, the type of distribution is not known. While it is simple to estimate the mean
and covariance for a single Gaussian distribution, the resulting distribution may not truly rep-
resent the distribution. Now, certain mixture models, if set up correctly, can be used to model
any type of distribution (Bishop, 1995). Therefore, one type of mixture model, the Gaussian mix-
ture model (GMM), is sometimes used so as to better represent the true underlying distribution of
the data. So, for J Gaussians with respective means µX1 , . . . , µXJ

; covariances ΣX1 , . . . ,ΣXJ
; and

4.4. CONTINUOUS AUXILIARY INFORMATION 57

weights wX1 , . . . , wXJ
, where

∑J
j=1 wXj

= 1 and wXj
≥ 0 (the notation wXj

, µXj
, ΣXj

, etc., refers to
the parameters of X when it is distributed according to mixture component j), GMMs are:

J
∑

j=1

wXj
N (µXj

,ΣXj
) (4.37)

Similarly, we can have conditional GMMs:
J
∑

j=1

wXj
N (uXj

,ΣXj
),where uXj

= µXj
+Bj a, (4.38)

with a different regression matrix Bj as well for each mixture component. The parameters of (con-
ditional) GMMs can be estimated by algorithms such as K-means clustering (Rabiner and Juang,
1993, Section 3.4.4), where there is a cluster for each of the J mixtures. In K-means clustering, the
resulting vectors of X for each cluster will be used to estimate that mixture’s means and variances;
for conditional GMMs, the clustering will be done by the concatenated vector (X,A) and the result-
ing vectors of (X,A) for each cluster will be used to estimate the mixture’s multivariate means and
covariances, which will then be factored as explained above. The weights of the (conditional) GMM
will be the distribution of the vectors amongst the clusters.

4.4.5 Likelihoods
In this section I make the assumption that the elements of the covariance matrix for each mixture
component of X are zero off of its diagonal. In other words, the dimensions of the data X are uncor-
related with each other, given the state, mixture component, and auxiliary variables. Therefore, the
covariance matrix ΣXj

can be represented by its diagonal elements, contained in the variance vector
σ2

Xj
. Put more simply, each dimension p of X in mixture component j has its own one-dimensional

Gaussian.

Gaussian Mixture Models

Observed X Given a data sample x from X , denote the P elements in the vector as x[1], . . . , x[P].
Likewise, the elements of the mean vector and of the variance vector of N (µXj

, σ2
Xj

), the Gaussian
of mixture component j of X , are denoted, respectively, as µXj

[1], . . . , µXj
[P] and σ2

Xj
[1], . . . , σ2

Xj
[P].

As each dimension is independent of each other, the likelihood is computed independently for each
dimension:

L(X [p] = x[p]|j) =

exp

[

−0.5(x[p]−µXj [p])
2

σ2
Xj [p]

]

√

2πσ2
Xj [p]

. (4.39)

The likelihoods for each dimension are then multiplied together:

L(X = x|j) =

P
∏

p=1

L(X [p] = x[p]|j) (4.40)

If there are GMMs, then we use a weighted sum of the likelihoods using (4.40) and wj for each
mixture component j:

L(X = x) =

J
∑

j=1

wjL(X = x|j). (4.41)

58 CHAPTER 4. AUXILIARY INFORMATION

Partially-observed X If any dimensions of x are missing, those dimensions need to be inte-
grated out. Here we take advantage of the property of the Gaussian that, since it is a probability
distribution, the integral over all of its domain is 1:

∫ ∞

−∞

L(X [p]|j) dX [p] = 1, (4.42)

hence, expanding (4.41), using (4.40), as:

L(x) =

J
∑

j=1

wj

P
∏

p=1

f(x[p], j), (4.43)

where f(x[p], j) =

{

1 , x[p] missing
L(X [p] = x[p]|j) , x[p] observed

Hence, in the product over the P dimensions, a missing dimension p will have no impact on com-
puting the likelihood L(X = x|j) for each mixture component j, as its contribution to the product is
1, that is, the integral over all possible values for dimension p.

Attempting to use the expected value (i.e., the mean) of the missing dimensions instead of in-
tegrating over all values would not be as appropriate, as we want to take into account all of the
possible values for the missing dimension. Furthermore, if we had used the expected value in-
stead, those dimensions with a low variance would give a high likelihood (> 1) at the mean while
those with a high variance would give a low likelihood (< 1) at the mean; hence, different dimen-
sions would weight the overall likelihood differently, if they were missing, merely because of their
difference in their respective variances — this could potentially lead to undesired effects.

Conditional Gaussian Mixture Models

Observed A Given data samples x and a for mixture component j of a conditional GMM, we
compute the likelihood as in (4.41) except that each mean µXj

is offset, or shifted, according to the
value a and the regression weights BXj

:

µ̂Xj
= µXj

+BXj
a. (4.44)

µ̂Xj
(referred to as uX earlier) is then substituted for µXj

in (4.39) to compute the conditional likeli-
hood for a single dimension, single mixture component, and all mixture components of a conditional
Gaussian, respectively:

L(X [p] = x[p]|A = a, j) =

exp

[

−0.5(x[p]−µ̂Xj
[p])2

σ2
Xj

[p]

]

√

2πσ2
Xj

[p]
(4.45)

L(X = x|A = a, j) =
P
∏

p=1

L(X [p] = x[p]|A = a, j) (4.46)

L(X = x|A = a) =

J
∑

j=1

wjL(X = x|A = a, j). (4.47)

These are analogous to (4.39), (4.40), and (4.41), respectively. Thus, computing a likelihood with a
conditional Gaussian with given data sample x and a is only slightly more complicated per mixture
component than having a regular Gaussian: there is an additional (matrix) multiplication and
(vector) addition to compute each µ̂Xj

[p].

4.4. CONTINUOUS AUXILIARY INFORMATION 59

If any dimensions of x are missing in the conditional Gaussian, those dimensions can easily be
integrated out. Regardless of whether a is observed or missing, we also have, similarly to (4.42):

∫ ∞

−∞

L(X [p]|A, j) dX [p] = 1, (4.48)

hence, expanding (4.47), in the case of observed a, as:

L(x|A = a) =

J
∑

j=1

wj

P
∏

p=1

f(x[p], j, A = a), (4.49)

where f(x[p], A = a, j) =

{

1 , x[p] missing
L(X [p] = x[p]|A = a, j) , x[p] observed

Non-observed A However, suppose that we only have data sample x for a conditional GMM and
that the sample a is missing. In other words, we do not know what the distribution is to be condi-
tioned upon. The only items we have for A are its mean µA and variance σ2

A, that is, its prior distri-
bution. In Lauritzen and Jensen (2001), if we have the observations for X [1], . . . , X [P] but not for A
we need to “push” (Lauritzen and Jensen, 2001, Section 6.2) the distributions p(X [1]|A), . . . , p(X [P]|A)
up so to as to combine them with the distribution p(A) (or p(A|Q), as appropriate) because the
observation x[p] can not be incorporated into the distribution p(X [p]|A) if the continuous condi-
tioning variable A is hidden. With the push, we can form the joint, non-conditional distribution
p(X [1], . . . , X [P], A); after marginalizing A out of this distribution, we then incorporate the obser-
vations upon the resulting multivariate distribution, as it has no conditioning variable.

Since we are using a diagonal covariance matrices for X in each mixture component of each
state, we do not need to form the whole distribution p(X [1], . . . , X [P], A) but, rather, can compute
the likelihood in steps, one dimension at a time (e.g., for p(X [p], A)). Let us, then, consider the
likelihood for a given dimension p of x in a given mixture component j. The following discussion
is based upon an analysis of the DBN inference algorithm of Lauritzen and Jensen (2001). First
before processing any dimensions of Xj , we initialize the distribution Â:

Â ∼ N
(

µA, σ
2
A

)

. (4.50)

Consider that we have an arbitrary ordering P of the dimensions. For the first dimension p in P of
Xn, in incorporating the observation for Xj [p] in p(Xj [p]|A), we can not do so with the continuous
conditioning variable A. So, we “push” this distribution onto that of p(A) using the combination
operation of Lauritzen and Jensen (2001, Section 4.4) (as briefly introduced in Section 3.3.1 on
page 35), obtaining the multivariate (non-conditional) Gaussian:

[

Xj [p]

Â

]

|P,j,x

∼ N
([

µXj [p] +BXj [p] µ̂A

µ̂A

]

,

[

σ2
Xj [p] +BXj [p] σ̂

2
AB

T
Xj [p] σ̂2

AB
T
Xj [p]

BXj [p] σ̂
2
A σ̂2

A

])

∼ N
([

µ̂Xj [p]

µ̂A

]

,

[

σ̂2
Xj [p] σ̂Xj [p],A

σ̂A,Xj [p] σ̂2
A

])

, (4.51)

using the respective abbreviations in the second line of (4.51) in further discussion and with this
distribution being determined by P (indicated by |j,P).

This is the effect of “push”ing the distribution of Xj [p] upon that of A. We then use this distribu-
tion to calculate the likelihood of only X [p] (A is left missing/hidden) using the standard formula:

L(X [p] = x[p]|Â,P , j, x) =

exp

[

−0.5(x[p]−µ̂Xj [p])
2

σ̂2
Xj [p]

]

√

2πσ̂2
Xj [p]

. (4.52)

60 CHAPTER 4. AUXILIARY INFORMATION

After the likelihood for x[p] is calculated from (4.51) using (4.52), we are then left with the distribu-
tion only for Â, which, when is updated to take x[p] account (Lauritzen and Jensen, 2001, Section 7):

Â|j,P,p,x ∼ N
(

µ̂A + σ̂A,Xj [p]

(x[p] − µ̂Xj [p])

σ̂2
Xj [p]

, σ̂2
A − σ̂A,Xj [p]

σ̂Xj [p],A

σ̂2
Xj [p]

)

∼ N
(

µ̂†
A, σ̂

2,†
A

)

. (4.53)

We then continue iteratively through (4.51), (4.52), and (4.53), processing all of the dimensions of
X = x in turn (using (4.53) instead of (4.50) for each subsequent iteration).

The likelihood of the mixture component, using (4.52) is then

L(X = x|Â, j) =

P
∏

p=1

L(X [p] = x[p]|Â,P , j, x), (4.54)

and the likelihood of all the mixture components is

L(X = x|Â) =

J
∑

j=1

wjL(X = x|Â, j). (4.55)

Hence, computing a likelihood with a conditional Gaussian with x given but a hidden involves
even more computations due to inferring Â’s updated distribution given dimensions 1, . . . , P − 1
of the observed x (inferring the distribution after dimension P is not necessary for the likelihood
computation).

If any elements of X are hidden in addition to A being hidden, then (4.55) is expanded.

L(X = x|Â) =
J
∑

j=1

wj

P
∏

p=1

f(x[p], Â,P , j), (4.56)

where f(x[p], Â,P , j) =

{

1 , x[p] missing
L(X [p] = x[p]|Â,P , j) , x[p] observed

Note that if x[p] is missing, we do not do the combinations in (4.51) and (4.53) as these are intended
to account for observations.

To illustrate this process, consider a two-dimensional X and processing the dimensions in the
order P = {1, 2} (it can be shown that the final result in (4.66) is the same if P = {2, 1}). Consider
the following prior distributions for a mixture j:

X [1]|A,j ∼ N (−2 + 0.2 ·A, 2) (4.57)
X [2]|A,j ∼ N (0 − 0.1 · A, 1) (4.58)

A ∼ N (3, 5). (4.59)

Let x[1] = 1.5 and x[2] = −1. Proceeding P = 1, 2, we have, with respect to (4.50), (4.51), (4.52), and

4.5. AUXILIARY CHAIN INFORMATION (FACTORIAL HMMS) 61

(4.53), above for dimension 1:

Â ∼ N (3, 5) (4.60)
[

X [1]
A

]

|P,j

∼ N
([

−2 + 0.2 · 3
3

]

,

[

2 + 0.2 · 5 · 0.2 5 · 0.2
0.2 · 5 5

])

∼ N
([

−1.4
3

]

,

[

2.2 1
1 5

])

(4.61)

L(X [1] = 1.5|Â, j) =
exp

[

−0.5(1.5+1.4)2

2.2

]

√
2π2.2

= 0.0397744 (4.62)

A|j,P,p,x ∼ N
(

3 + 1 · (1.5 + 1.4)

2.2
, 5 − 1 · 1

2.2

)

∼ N (4.31818, 4.54545) (4.63)

Continuing with dimension 2, we have, with respect to (4.51), and (4.52):
[

X [2]

Â

]

|P,j,x

∼ N
([

0 − 0.1 · 4.31818
4.31818

]

,

[

1 + (−0.1) · 4.54545 · (−0.1) 4.54545 · (−0.1)
(−0.1) · 4.54545 4.54545

])

∼ N
([

−0.431818
4.31818

]

,

[

1.0454545 −0.454545
−0.454545 4.54545

])

(4.64)

L(X [2] = −1|Â, j) =
exp

[

−0.5(−1+0.431818)2

1.0454545

]

√
2π1.0454545

= 0.334352 (4.65)

Using (4.54), the likelihood of mixture j is:

L(X =

[

1.5
−1

]

|Â, j) = 0.0397744 · 0.334352 = .0132987 (4.66)

4.5 Auxiliary chain information (factorial HMMs)
An alternative method of modeling discrete auxiliary information involves having two state spaces
represented by two (conditionally) independent Markov chains. This can be represented as a fac-
torial HMM (Ghahramani, 1997). The two chains are represented by Q1:N = {Q1, . . . , Qn, . . . , QN}
and L1:N = {L1, . . . , Ln, . . . , LN} with joint observations X1:N , as represented by Figure 4.8. The Qn

chain represents, as elsewhere in this thesis, the phonemes (the sounds in spoken language) while
the Ln chain represents the graphemes (the letters, punctuation, etc. used in written language).

In training such a system, the labeling of the speech with respect to Q1:N and the labeling of the
speech with respect to L1:N are used in the respective control layers. In recognition, such a system
can be used in different ways. This has to do with the fact that, in recognition, we want to refer to
the labels with respect to only one of the chains; this is because in recognition, we typically only need
either the sequence of graphemes or the sequence of phonemes (but not both) to determine what
was spoken. This then gives us the option to break the chain which does not have any associated
labels and to leave it as hidden and with no restrictions on its sequence of values through time.
For example, in breaking the Ln chain, we might recognize the sequence of phonemes /k/-/æ/-/t/ (in
the Qn chain) for a given utterance of “cat” while, in breaking the Qn chain, we might recognize
the sequence of graphemes ‘c’-‘a’-‘t’ (in the Ln chain) for the same utterance; in recognizing the

62 CHAPTER 4. AUXILIARY INFORMATION

Qn

Xn

Ln

Figure 4.8: Factorial HMM, with chains for Qn and Ln and with observations xn. This is used for
training.

(a) (b)

Qn

Xn

Ln

Figure 4.9: Two possibilities for breaking one of the chains of the DBN in Figure 4.8. (these exam-
ples are for breaking the chain of Ln). (a) one chain (Ln) is made independent of all variables and
(b) one chain (Ln) is made dependent only upon the corresponding variable in the other chains (Qn).

series of phonemes (or graphemes), we leave the series of graphemes (or phonemes) hidden and
marginalize out the graphemes (or phonemes). One option is to just break the connection in the
case of having labels for Qn, between Ln−1 and Ln, leaving Ln independent of any other variable,
as shown in Figure 4.9 (a). Another option, and that used in the experiments, is that, in addition
to breaking the time-dependency, to add a dependency between the two chains; this is illustrated
for the case of breaking the Ln chain in Figure 4.9 (b). This is the same as used in having Gaussian
mixture models (GMMs) forXn except that, in this case, the “mixture” component variable can have
a meaning of grapheme (in the case of 4.9 (b)) or of phoneme.

4.6 Conclusion
In this chapter I have argued for the need for auxiliary information in the acoustic models so as
to better handle the wide variation in the data that the models will encounter. I have discussed
that this auxiliary information is typically higher-level information that is independent of the dis-
crete model state. Furthermore, this auxiliary information may be such that it is not available or
not reliable in recognition; in such case, the models can still be used, in which case the inferred
distributions of the auxiliary variable are used.

4.6. CONCLUSION 63

While some of the aspects of auxiliary information have been used in ASR previously, I have not
only given a general framework encompassing them but have also introduced additional methods
for handling it, including the aforementioned need to hide it at times as well; for handling it in
both HMM/ANN and DBN speech recognition; and for incorporating it in an “auxiliary chain.”
These methods for handling auxiliary information will be incorporated using the actual auxiliary
information in Chapter 5 with the experimental results presented in Chapter 6.

64 CHAPTER 4. AUXILIARY INFORMATION

Chapter 5

DBNs with auxiliary information
for ASR

In Chapter 2 I discussed in general how time series modeling is done in the context of ASR. Time
series modeling makes statistical assumptions that make the modeling feasible; without these as-
sumptions, it would have otherwise been infeasible, given the limited training data and the high-
dimensionality of the models. I then presented in Chapter 4 how “auxiliary information” can be
incorporated, in general, to this time series modeling so as to reduce the variation in the modeling
and, in so doing, provide more robust models. In this chapter, I now show more practical aspects
of using auxiliary information for ASR. First, in Section 5.1, I show how DBNs can be structured
to do ASR modeling. While Sections 4.3, 4.4,& 4.5 gave illustrative DBNs, I here give the actual
corresponding, full DBNs that are used; the difference is the incorporation of the “control” layer.
Second, in Section 5.2, I present the actual types of auxiliary information that I am examining:
articulator positions, pitch, rate-of-speech, energy, and graphemes. Third, in Section 5.3, I explain
the software as well as the methodology that was used for some of the experiments (those done in
the latter part of my studies, with mixed DBNs). In Chapter 6 I will then show the results of doing
experiments with these DBNs and types of auxiliary information so as to show how they help the
ASR to be more robust to variation in having a higher recognition rate in various conditions.

5.1 DBNs for ASR
Zweig (1998) introduced in detail how to do ASR with DBNs. The DBNs perform two simultaneous
tasks:

1. Stochastic modeling of the hidden states

2. Deterministic modeling of legal sequences of states

In HMM-based modeling, there were only two stochastic/random variables, modeling the transi-
tions and the emissions:

P (Qn|Qn−1) (5.1)

p(Xn|Qn) (5.2)

The DBN for doing isolated word recognition is then constructed as in Figure 5.1. TRANSn and
Xn are stochastic variables that model equations (5.2) and (5.1), respectively while POSn and Qn

65

66 CHAPTER 5. DBNS WITH AUXILIARY INFORMATION FOR ASR

TRANSn

POSn

Qn

Xn

Figure 5.1: DBN for ASR, illustrated for three time frames (N=3). For any value of N (N > 1), the
same variables and edges are replicated for each time frame. For example, if N = 4, then we would
add the variables POS4, TRANS4, Q4, andX4 on the right edge of the above DBN with edges added
between time frames 3 and 4 (< POS3, POS4 >,< TRANS3, POS4 >) and with edges added within
time frame 4 (< POS4, Q4 >,< Q4, X4 >,< Q4, TRANS4 >). The DBN is extended as such for any
time length N .

are deterministic variables. The distribution TRANSn makes one assumption related to equation
(5.1): that P (Qn = k′|Qn−1 = k) = P (Qn = k′′|Qn−1 = k) for any states k′, k′′. In other words, only
the exit transition from a state is modeled, with TRANSn itself not putting any restriction modeling
the probability of which phone can follow the current phone. The modeling of the sequence of phones
is handled by the deterministic variables POSn and Qn, which, along with TRANSn, are part of
the “control” layer of Zweig (1998). The control layer in the DBN framework accomplishes the
same task as concatenating sub-models in the HMM framework: assuming a left-to-right modeling
of phonemes, it specifies which sequence of phonemes the DBN is modeling. POSn will have a
different index for each sub-model that is being used (“concatenated” in the HMM framework). The
time dependency between POSn−1 and POSn is used to force the indices to come in order (assuming
a left-to-right sub-models). Each index in POSn maps to a single phoneme state in Qn, via POSn’s
conditioning of Qn. During the training phase, where the utterance labeling is known, the Qn

distribution (i.e., mappings) needs to be changed from utterance to utterance; hence, we change the
“controlling” so as to allow a different sequence of states. That is, as there is a different sequence
of sub-models from one word to the next, the distribution (i.e., mapping) from POSn to Qn needs
to be changed. Furthermore, during training, the model needs to end with a transition out of the
final index/phoneme state; one way this can be done is to observe the final position, POSN , to the
highest index in the utterance and the final transition, TRANSN , to ‘true’ so as to force the model
to pass through all of the models when doing inference.

For example, if the DBN represents the word “cat”, pronounced using three states: /k/-/æ/-/t/,
POS would have the following distribution:

P (POSn = 1) = 1, n = 0 (5.3)
P (POSn = d+ 1|POSn−1 = d, TRANSn−1 = ’true’) = 1, ∀d, 1 ≤ d < 3, n > 0 (5.4)
P (POSn = d|POSn−1 = d, TRANSn−1 = ‘false’) = 1, ∀d, 1 ≤ d ≤ 3, n > 0 (5.5)

Qn, furthermore, would have the following distribution:

P (Qn = /k/|POSn = 1) = 1, n ≥ 0 (5.6)
P (Qn = /æ/|POSn = 2) = 1, n > 0 (5.7)
P (Qn = /t/|POSn = 3) = 1, n > 0 (5.8)

5.1. DBNS FOR ASR 67

Zweig (1998) also addresses another requirement upon the DBN: that it must end with a tran-
sition out of the last sub-model. He uses a static deterministic variable called ‘End-of-sequence
observation,’ which is conditioned by POSN and TRANSN , where N is the last time frame. Its
distribution is defined as follows:

P (End-of-sequence Observation = 1|POSN = Last-Position, TRANSN = ‘true’) = 1 (5.9)

It is then instantiated as having value ‘1,’ thus forcing POSN to have value ‘Last-Position’ and
TRANSN to have value ‘true.’

In the implementation I used for my work, I have not used an ‘End-of-sequence Observation.’
Rather, I first observed TRANSN as having value ‘true’. I then followed one of the following for
fixing the value of POSN :

1. observe it as having the ‘Last-Position’

2. give it its own distribution specifying it must end in ‘Last-Position.’ The advantage of this
second approach over just observing it is that this gives more flexibility in having multiple
valid values for ‘Last-Position,’ which is reflected in the distribution given to ‘Last-Position’.
For example, there can be multiple valid positions in the last frame during decoding. One
place where this is useful is in isolated word recognition, where there are, for example, 75
possible word models to classify an utterance as. By having 75 different paths through POSn

with 75 respective values for the ‘Last-Position’, we can do inference over all of the models
with one call to the DBN inference algorithm; this is in contrast to building a different DBN
for each of the 75 possible word models (each with only one path through POSn) and having to
call the DBN inference algorithm 75 times, in this example. Another place this can be useful
is in doing decoding in connected word recognition: an utterance can end with different words
and, hence, in different last states; we can then indicate all of the valid states that we can end
an utterance in.

In setting up DBNs for ASR, I have based the topologies upon those presented in Zweig (1998);
Zweig and Padmanabhan (1999). In summary, the DBNs contain the following random and deter-
ministic variables:

• POSn - deterministic (in training); for the model that the DBN represents and its sequence
of sub-models (states), this is the sequence index (“position”) of the sub-model. In recognition,
when there are many candidate word models, it will be deterministic within a word model but
random when transitioning between candidate word models.

• TRANSn - random; probability of exiting from a state.

• Qn - deterministic; for each value of POSn, this is the phoneme state that it maps to.

• Jn - random; the Gaussian mixture component for Xn (not used in the discrete DBNs).

• An - random; the auxiliary features.

• Xn - random; the standard features.

Here I present the different base topologies actually used in the experiments: for discrete DBNs,
for mixed DBNs, and for two Markov-chain DBNs. Those pictured are the “base” topologies; topolo-
gies with certain edge(s) removed are also used, as indicated. In addition to the variables already
introduced, the mixed DBNs also contain the mixture component variable Jn used for Gaussian
mixture models.

68 CHAPTER 5. DBNS WITH AUXILIARY INFORMATION FOR ASR

TRANSn

POSn

Qn

An

Xn

Figure 5.2: Discrete DBN with discrete time-dependent An. The edges Qn → An are removed in
certain experiments in Table 6.4.

TRANSn

POSn

Qn

Xn

Figure 5.3: Discrete DBN, equivalent to standard discrete HMM. This DBN is used as the “BASE-
LINE” system for the DBN experiments with discretized features Xn and performs exactly the
same as if an HMM had been used (there is no mixture component variable Jn — see, for example,
Figure 5.5 — because the features Xn are discretized).

The discrete DBNs are looking at the effect of having a time-dependent discrete auxiliary vari-
able An (See Figure 5.2). That is, the topologies examined always contained a dependency An−1 →
An. The dependency that was removed in some of the tests was Qn → An. These DBNs with An

were compared against a baseline approach (without An), equivalent to a standard HMM that has
discrete features, as represented by Figure 5.3.

The mixed DBNs are looking at the effect of having a time-independent continuous auxiliary
variable An (see Figure 5.4). As with the discrete DBNs, I also look at the necessity of having the
edge Qn → An. Furthermore, I look at whether An should be conditioning Xn by having the edge
An → Xn removed. The dependencyAn−1 → An was not looked at with mixed DBNs due, in part, to
complexities in hiding it during inference (cf. Section 2.4.3); therefore, at each time frame, An was
considered conditionally independent of the previous time frames, given the state Qn. These DBNs
with An were compared against a baseline approach (without An), equivalent to a standard HMM
that has continuous features, as represented by Figure 5.5.

The mixed, two-chain DBNs (the factorial HMMs), as explained in Section 4.5, are looking at
the effect of having a Markov chain of (discrete) auxiliary information during training. These two
chains are treated as independent processes, given the observations, as represented in Figure 5.6
on page 70. In recognition, I only want to have one chain which I do decoding on–the other is to
be left hidden–as explained in Section 4.5. It would be preferred that this hidden chain does retain

5.2. AUXILIARY INFORMATION EXAMINED 69

Xn

An

Jn

Qn

POSn

TRANSn

Figure 5.4: Mixed DBN with continuous, time-independentAn. The edges Qn → An are removed in
certain experiments, An → Xn in certain other experiments.

Xn

Jn

Qn

POSn

TRANSn

Figure 5.5: Mixed DBN, equivalent to standard HMM with Gaussian mixture models. This DBN
is used as the “BASELINE” system for the DBN experiments with continuous features Xn and
performs exactly the same as if an HMM had been used.

time-dependency, which would show the amount of preference that the DBN has for the hidden
chain’s staying in the same state. I have chosen simpler, however less ideal, topologies which, while
ignoring the time-dependency, do take into account the dependency of Qn and Ln upon each other,
as shown in Figure 5.7 on page 70.

5.2 Auxiliary Information Examined

I am looking at five types of auxiliary information: pitch (i.e., the fundamental frequency F0), rate-
of-speech, and short-term energy (in the logarithm domain), articulator positions, and graphemes.
They are all fundamental features of speech that are speaker-dependent but which can also change
within a given speaker according to prosodic conditions and the environment.

70 CHAPTER 5. DBNS WITH AUXILIARY INFORMATION FOR ASR

TRANS − Qn

POS − Qn

POS − Ln

TRANS − Ln

Ln

Xn

Jn

Qn

Figure 5.6: Mixed, two-chain, DBN, with phoneme chain Qn and grapheme chain Ln for training.
In recognition, one of the chains is broken and its variable is conditioned upon the other chain, as
illustrated in Figure 5.7.

Ln (Qn)

Xn

Jn

Qn (Ln)

TRANS − Qn (TRANS − Ln)

POS − Qn (POS − Ln)

Figure 5.7: Mixed, single-chain version of the DBN in Figure 5.6, where the chain of Ln is broken
and conditioned by Qn. Names given in parenthesis for some of the variables are alternate variable
names; with the alternate variable names this DBN represents a mixed, single-chain version of the
DBN in Figure 5.6, where the chain of Qn is broken and conditioned by Ln.

5.2. AUXILIARY INFORMATION EXAMINED 71

5.2.1 Pitch
Pitch (which I use to refer to the fundamental frequency F0) is one of the most fundamental prop-
erties of speech but also one of the most difficult to extract (Hess, 1983). In principle, it is absent
in the features usually used in ASR. However, in reality, it may still have be present in some form
in these features. Given that pitch is difficult to estimate, there is going to be a lot of noise in
whatever estimate I use. Therefore, these noisy estimates need to be incorporated carefully into
the ASR models so as not to degrade the modeling. The estimates may be reliable enough over a
large sampling of them so as to train good models but may be too noisy over a single utterance to
be reliable in recognition.

Whether the pitch is non-zero or not (that is, if there is voicing) is highly correlated with the
phonemes. Hence, there is some relation between the states and this auxiliary feature of pitch;
however, this relation is between groups of states (voiced vs. unvoiced) and the auxiliary feature.
The auxiliary feature for pitch (in units of Hertz) was estimated1 using the simple inverse filter
tracking (SIFT) algorithm (Markel, 1972), also with a window size of 25 ms. It was computed at
the same frame rate as the standard features. The SIFT algorithm lowpass filters the speech at
300 Hz so as to have the band where the pitch is expected to be found; using the LP coefficients
of the filtered speech, the same filtered speech is passed through an inverse filter. The second
peak (the first peak is the energy) of the autocorrelation of the resulting excitation signal gives the
period (and hence the pitch) of the speech. For simplicity, it was not transformed any further (i.e.,
no logarithm was taken of it) for these initial investigations into using pitch; pitch has been used
in Fujinaga et al. (2001) in its logarithm form.

In this thesis, Pitch has been examined both in a discretized form and in the continuous form.
The initial experiments with Pitch in Chapter 6 in isolated word recognition are done with both
forms. The experiments with Pitch in spontaneous, noisy speech (Section 6.3) are done with contin-
uous speech, though investigating discretized pitch in this context is a valid research path (though
I have not investigated it in this thesis).

5.2.2 Rate-of-speech (ROS)
One obvious way the speaking rate changes the ASR models is in the transition probabilities be-
tween states. In fast speech, the probability for transitioning out of a state can increase. Further,
the probability for skipping a state entirely increases, whereas in normal speech, we may have in-
sisted on a zero probability of skipping a state. Another way that the speaking rate could change
the ASR models is in the emission distributions for Xn. The articulators may be following a dif-
ferent trajectory in fast speech and may also have more coarticulatory effects. Both factors could
change the underlying acoustic models.

I investigate the second correction for speaking rate changes by using conditional Gaussians for
the acoustic modeling. By conditioning the Gaussians upon the speaking rate, the means of the
models can adapt themselves to the speaking rate. Note that for a more complete study, I also look
at using ROS in regular Gaussians and in ANNs.

There are different approaches for determining the ROS of an utterance. If a hand transcription
is available, then it can be used to calculate an accurate ROS (Mirghafori et al., 1995). Without a
hand labeling (which would not be available in a deployed system), a forced alignment of the data
needs to be done if the transcription is available (Siegler and Stern, 1995). The phone rate, or the
normalized phone rate (Martı́nez et al., 1997), are common units to use in rate-of-speech dependent
ASR. In contrast to using a phone rate ROS dependent upon a transcription, more recent work has
looked into using not only a syllable ROS but also having it calculated directly from the speech

1Thanks to Mathew Magimai-Doss.

72 CHAPTER 5. DBNS WITH AUXILIARY INFORMATION FOR ASR

signal (not using any transcription) (Morgan and Fosler-Lussier, 1998). Its benefit is that syllables
appear to have a more uniform rate from one to the next than phones do and that there is no need
to do a preliminary segmentation of the speech in order to compute the ROS. The auxiliary feature
for rate-of-speech was estimated using mrate (Morgan and Fosler-Lussier, 1998), using a window
size of 1 s. mrate estimates ROS by combining ROS estimates from three different signal processing
algorithms; these algorithms look how the energy is changing. It has a correlation of .6 with the
actual ROS (Morgan and Fosler-Lussier, 1998).

5.2.3 Short-term energy
Like pitch, energy is a fundamental element of speech, and it is often excluded from the features
that ASR models. In clean speech, it is straightforward to calculate and does not have all of the
difficulties that estimating pitch does. Nevertheless, care needs to be used in incorporating it into
the ASR models. The short-term energy is correlated with the pitch. Indeed, the presence of voicing
(the presence of non-zero pitch) in the signal adds much energy to it. Unlike pitch and ROS, the
short-term energy can often be found as a standard feature in normal ASR systems but its benefit
as a standard feature is questionable, as suggested by its use in Tables 6.8 & 6.11.

There are different approaches to calculating energy. First, the logarithm of the energy is com-
monly used instead of the plain energy so as to reflect the behavior of the human auditory system.
Second, the energy of just a certain frequency band can be used; for example, (Fujinaga et al., 2001)
used low frequency energy as an estimate of voicing. Third, and more generally, energies for sev-
eral frequency bands can be used (as standard features), as done in some of the work on multi-band
speech recognition (Bourlard and Dupont, 1996). An energy feature will be directly affected by any
noise found in the speech. However, if frequency bands are used, then only the frequency bands
where the noise is found will be affected; this is taken advantage of in Morris et al. (1998), where
the dimensions for the noisy features (energies, in their case) are marginalized out. Fourth, short,
medium, or long-term energies can all potentially be used. Short-term energies may be useful
for capturing the transitions between phoneme states, which are important to correctly modeling;
long-term energies, on the other hand, may capture more prosodic information.

In this thesis, the auxiliary feature for energy was computed by taking the logarithm of the
short-term energy of 25 ms of the signal:2

log

[

1

C

T
∑

t=1

(ω(t)sn(t))2
]

, (5.10)

where C is a normalizing constant used for numerical reasons, sn(t) is the tth sample of the ex-
tracted window of speech for time frame n, ω(t) is the tth element of a Hamming window, and T is
the length of both the speech sample and the Hamming window.

5.2.4 Articulators
Many have been interested in incorporating information about the articulators (principally, the
lips, tongue, jaw, and velum) into ASR. There are various problems, however, in doing so. The main
problem is the lack of training data with accurate measurements of the articulator positions. A
secondary problem is how to properly incorporate any articulatory data.

Some people have addressed the problem of lack of data. Wrench (2000) has been recording
continuous speech with simultaneous speech and articulator recordings. Zlokarnik (1995); Frankel

2Work on energy was done in collaboration with Jaume Escofet.

5.3. SOFTWARE AND EXPERIMENTAL METHOD 73

et al. (2000); Frankel and King (2001); Krstulović (2001) have dealt with estimating the articu-
lator positions from the speech. Kirchhoff (1999) has used the phonetic labeling and the known
relation between phonemes and articulators in order to estimate features that resemble articulator
positions.

One issue in incorporating articulator information concerns whether the measurements will al-
ways be observed or not. If they are always observed, then they can be used as observations in Gaus-
sians or ANNs. If they are hidden, they can not be used easily in ANNs but can be used (with certain
restrictions) in Gaussians. Alternately, they can be incorporated into the state space (Richardson
et al., 2000). Also, the articulators in this work have been discretized for the initial investigations
that this work does in investigating their use as auxiliary information; using the articulators in the
continuous space is of interest but is not presented in this thesis.

5.2.5 Graphemes
One discrete source of auxiliary information is the graphemes of the word being spoken. The
graphemes are the characters (letters and punctuation) that are used in written language. While
some languages have a high correspondence between the written grapheme and the spoken pho-
neme (e.g., Spanish and Japanese), others have a more erratic correspondence between the written
grapheme and the spoken phoneme (e.g., English). Furthermore, even if there is a simple corre-
spondence between the graphemes and phonemes in carefully read speech of a given language, this
may become more erratic in spontaneous speech. Therefore, one way to potentially deal with this
pronunciation variation is to use the grapheme as auxiliary information to condition the acoustics
of the phonemes. Conversely, the phoneme can be used as auxiliary information to condition the
acoustics of grapheme-based states.

5.3 Software and Experimental Method
DBNs were used in ASR with software that was written primarily by myself. I present here some of
the different modules used during the training and testing of the various DBNs in this thesis. Note
that the discrete DBNs used here, as presented in Stephenson et al. (2001, 2000), actually used an
earlier version of the software and a modified methodology. The experimental method outlined here
is based on methods commonly used elsewhere (e.g., (Young et al., 1999)).

5.3.1 DBNEXPECT

DBNEXPECT collects the “counts” for the ‘E’ step of EM training. It is given the list(s) of feature
files along with their corresponding phoneme (or grapheme) labels. There can be multiple feature
file lists as the auxiliary feature may be stored in a different file than the standard features. For
each feature(s)/label set, it then performs the following:

1. “Splice” the DBN to the correct length, according to the number of frames in the feature file(s).
This involves repeating each of the the variables being modeled for each point in time, along
with their associated edges, as explained in Figure 5.1. In order to not have to rebuild the
clique tree each time the length of the DBN is changed, Zweig (1998, Section 3.6) gives details
of how to build one clique tree and how to change the length of the clique tree itself; in a
similar manner to changing the length of the underlying DBN, this involves repeating certain
cliques over time along with having the appropriate connections, with certain conditions, as
explained in more detail in Zweig (1998).

74 CHAPTER 5. DBNS WITH AUXILIARY INFORMATION FOR ASR

2. Load the feature observations for the current utterance into the DBN. Also, change the “con-
trol layer” deterministic probability distributions according to the current labels (Zweig, 1998,
Section 6.1); this will enforce that the DBN goes through the correct labels in order, over time.

3. Do inference on the DBN.

4. For each frame, collect the posterior distributions for each hidden discrete variable (typically,
the transition variable and the mixture component variable) as well as for each hidden contin-
uous variable (none of the work presented in this thesis happened to have hidden continuous
variables during training). Also, collect the observations for each frame. Add all of this to the
sub-total collected from previous feature(s)/label sets.

As also allowed in HTK-based HMM training (Young et al., 1999), it is easy to incorporate sim-
ple parallel processing in the DBN training. The training lists are partitioned into multiple sub-
training lists, each of which is used for a different processor. After collecting all of the counts of its
given lists of files, the (sub-)total is written to a file.

5.3.2 DBNMAX

DBNMAX uses all of the count files from DBNEXPECT, each containing the (sub-)totals for their re-
spective training lists, for the ‘M’ step of EM training. After summing them all together, it then
normalizes them to obtain joint distributions; that is, a variable is not conditioned by its parents —
rather, the distribution of the variable distribution jointly with its parents is maximized according
to all of the counts. These maximized joint distributions are then factored so that at this point we
obtain the conditional distribution of the each variable, given its parents. Before saving the result-
ing distributions in a file, the variances of the continuous variables are floored so that they are at
least 0.10 the global variance of the training data. The choice of global variance can be changed —
Young et al. (1999) gives a suggested value of 0.01 the global variance; I used 0.10 the global variance
as it seemed to be better to err in having too large a variance than in having too small a variance,
especially if there is a limited amount of training data for estimating a Gaussian mixture compo-
nent for a given state. The results of DBNMAX can then be used again in DBNEXPECT for another
iteration of EM training. For the systems with mixed DBNs, I continued training the DBNs until
the difference between the log likelihoods outputted by DBNMAX between two successive training
iterations decreased by less than 0.1% (note that the likelihood given by DBNMAX is the data like-
lihood of the inputted DBN–not of the outputted, maximized DBN — so we, in effect, do one more
iteration of EM after reaching the criterion of reducing the log likelihood by less than 0.1% over the
previous iteration); this convergence criterion was chosen as a balance between having DBNs that
were reasonably trained and having the training finished in a reasonable amount of time.

5.3.3 DBNSPLIT

DBNSPLIT is used for splitting Gaussians. It is only used in this thesis with the experiments related
to graphemes/phonemes. With the grapheme system and combined graphemes/phonemes system,
I did not have any segmentation available to use for providing initial estimates of GMMs to the
DBNs. Therefore, I chose to start the training with single Gaussians for every state, all of them
with the same parameters. To avoid having to split the data, I could have done K-means clustering
over all the training data and then use the single, resulting GMM as the initial estimate for all
states. In my case I initialized all Gaussians with a mean of 0 and a variance of 1; this could
equally have been the global mean and variance of the training data, though this would not make
any difference, in theory. This does not make a difference because if each state value is initialized
with the same Gaussians, they will each give the same likelihood for a given frame n (though each

5.3. SOFTWARE AND EXPERIMENTAL METHOD 75

time frame can have a different likelihood), i.e., p(Xn = xn|Qn = q′n) = p(Xn = xn|Qn = q′′n) for all
state values q′n, q′′n; it can be shown that the posterior distribution of the hidden variables during the
first iteration EM training will be the same, regardless of that common likelihood that each state
gives at a given time frame n.

After a given number of iterations of EM training, I then split some (typically, about 60%) of
the trained Gaussians. It is the Gaussians with the highest mixture component weights that were
split by replacing them with Gaussian with the same variance but with the means shift 0.1 times
the standard deviation to the left and right of the original Gaussian and with mixture component
weights 0.5 times the original weight. Young et al. (1999) has the same algorithm except for shifting
the means by 0.2 times the standard deviation — the shift amount can be changed; a shift of 0.1
times the standard deviation gives Gaussians that are not as far away from the original but, hope-
fully, separated enough so as to each be learned well in further EM training. Two more iterations
(the number of iterations was chosen so as to do some training with the split Gaussians but to avoid
getting stuck in a local minimum before a possible additional round of Gaussian splitting) of EM
training then occurred before optional additional splitting; the splitting was continued until the
desired number of mixture components was reached. After all rounds of Gaussian splitting were
done and if the two iterations of EM after the last splitting did not reach the convergence criterion
(as given in Section 5.3.2), EM training occurred until the convergence criterion was reached.

5.3.4 DBNRECOG

DBNRECOG is used for performing “best-of-N” recognition on a trained DBN. That is, a list of N
potential utterances (words) is given (along with their lexicon) and the DBN is used to determine
the most likely utterance. DBNRECOG has only been used for isolated word recognition. It finds the
“full” likelihood of each potential utterance by taking into account all possible assignments of state
values to the frames.

5.3.5 DBNVITE

DBNVITE is used for performing Viterbi decoding (see, in the HMM framework, (2.28) and (2.41)
on pages 15 & 18, respectively, and, in the DBN framework, (3.9) on page 36) through the DBNs in
continuous speech. As Viterbi decoding in the DBN context implies doing a maximization over every
discrete variable in the DBN, I make one modification to Viterbi coding in DBNs so as to make it
equivalent to what is done in HMMs: in dealing with the values of the mixture component variable
Jn, a summation is done — in dealing with all other discrete variables in the DBN, a maximization
is done. For a given lexicon, one or more of the words in the lexicon will appear in a given utterance
and need to be “decoded.” DBNVITE uses a very simple language model by stating that there is
an equal probability of changing from one word to the next. Furthermore, it does not incorporate
factors such as a word insertion penalty or a language model scaling, as used in software such as
HTK (Young et al., 1999); so, the recognition accuracy results could potentially have been raised
had DBNVITE used these factors and if they had been appropriately tuned from data. Note that no
pruning is done during decoding.

5.3.6 MAXDISCOND

MAXDISCOND is used for the grapheme/phoneme system, where there are two independent Markov
chains emitting the same features. As I then modify the topology to create two DBNs for recogni-
tion such that the grapheme variable Qn or the phoneme variable Ln is no longer a deterministic
variable, I need to provide a probability distribution for this variable which is now random. As both
Qn and Ln are parents of the features Xn, they appear together in the counts files for learning the

76 CHAPTER 5. DBNS WITH AUXILIARY INFORMATION FOR ASR

distribution of Xn. I can therefore extract the counts for one of these child features, remove the
distribution of the features, and then factor the resulting discrete distribution twice: once for the
graphemes conditioned by the phonemes and once for the phonemes conditioned by the graphemes.
For example, during DBNEXPECT, we are collecting counts for maximizing the joint distribution
p(Xn, Qn, Ln, Jn). These counts are maximized and factored in DBNMAX so as to obtain the emis-
sion distribution p(Xn|Qn, Ln, Jn):

p(Xn|Qn, Ln, Jn) =
p(Xn, Qn, Ln, Jn)

p(Qn, Ln, Jn)
(5.11)

However, in the new topologies we also need a distribution for Qn (or for Ln if Ln’s chain is being
broken); we can use the same counts used for p(Xn, Qn, Ln, Jn) and factor it again in a different way
in MAXDISCOND so as to obtain the conditional distribution P (Qn|Ln, Jn) (or P (Ln|Qn, Jn) if Ln’s
chain is being broken). For example, in breaking Qn’s chain, we would have:

P (Qn, Ln, Jn) =

∫ ∞

−∞

p(Xn, Qn, Ln, Jn) dXn (5.12)

P (Qn|Ln, Jn) =
P (Qn, Ln, Jn)

∑K
k=1 P (Qn = k, Ln, Jn)

(5.13)

The discrete conditional distribution from MAXDISCOND will be used in addition to the maximized
distributions typically provided by DBNMAX in the recognition. As it is only needed for the DBNs
with the new topologies used in recognition, MAXDISCOND is called only at the end of EM training.

5.4 Conclusion
In this chapter I have presented more of the practical aspects of my work, from the actual topologies
used for implementing DBNs for auxiliary information based ASR in Section 5.1 to the actual types
of auxiliary information that I use in Section 5.2. Various topologies of the actual DBNs used in
my work were presented in Section 5.1: those for discrete-only DBNs, followed by those for mixed
DBNs. The discrete-only DBNs are for investigating time-dependent auxiliary information while
the mixed DBNs are for investigating various dependencies within a single time frame. Various
types of auxiliary information were presented in Section 5.2: discrete information (discretized ar-
ticulators and pitch as well as graphemes) and continuous information (pitch, rate-of-speech, and
energy). A review of some of the software that I developed for this work was also given in Sec-
tion 5.3. Using this software (and others) with these various types of auxiliary information as well
as with these various DBNs, I will show the usefulness of using auxiliary information in DBNs (as
well as in HMM/ANN hybrids) in Chapter 6.

Chapter 6

Experiments

The experimental foundation for the DBN topologies and types of auxiliary information being laid in
Chapter 5, I now proceed in this chapter to present the experiments performed on such topologies
and data in two parts. First, in Section 6.2 I discuss experiments on isolated word recognition
by looking discretized auxiliary information, auxiliary chain information (factorial HMMs), and
continuous auxiliary information. Then, in Section 6.3, I move onto the more complicated scenario
of spontaneous, noisy speech recognition, this time using only continuous auxiliary information.

6.1 Preliminaries
All significance tests in this thesis are done with a standard proportion test, assuming a binomial
distribution for the targets, and using a normal approximation. All DBN models (and their HMM
baselines) were trained using expectation-maximization (EM) training. In the models with dis-
cretized features Xn, after the log likelihood increased by less then 1% from the previous iteration,
one more maximization step was done before termination; in the models with continuous features
Xn, after the log likelihood increased by less then 0.1% from the previous iteration, one more max-
imization step was done before termination. With both cases (discretized Xn vs. continuous Xn),
the respective convergence criterion was chosen arbitrarily according to what I considered in the
circumstances to be reasonable. No cross-validation set was used in the EM training nor in the
recognition (except as noted with the articulator experiments)

All DBN systems with discretized features Xn were initialized with a uniform distribution for
simplicity reasons. All DBN systems (except those in Table 6.5) with continuous features Xn were
initialized using segmentations computed using a forced-alignment over the training data.1 These
segmentations were used to compute the transition probabilities (with a floor/ceiling of 0.20/0.80
for these initial probabilities so as to give the training more flexibility) and the (conditional) GMMs
for each state; the GMMs used with the PhoneBook database were computed using binary splitting
(Rabiner and Juang, 1993, Section 4.4.4) on the segmented data while the GMMs for the OGI Num-
bers database were computed using a modification where only one mixture component was split per
iteration. This modification of the splitting for OGI Numbers was due to problems in estimating
the GMMS with splitting each mixture component at each iteration; while this modification was
not done with the PhoneBook data, such a modification might also be advantageous in future work
with PhoneBook as it takes a more cautious approach to estimating the mixture components. For
simplicity, in estimating the initial parameters for conditional GMMs, the B parameters were al-
ways set to 0 and the weights, means, and variances were initialized as for normal GMMs; during

1Thanks to the Faculté Polytechnique de Mons, Belgium for their help with this.

77

78 CHAPTER 6. EXPERIMENTS

the training, the B parameters would be learned. The systems in Table 6.5 (involving graphemes
and/or phonemes) were all trained with a uniform distribution. This is because while a segmenta-
tion is available for the phoneme states, no segmentation is available for the grapheme states; so,
to have systems that were trained in a similar fashion, all systems were trained with the initial
uniform distribution. After each two iterations of EM, approximately 60% of the mixture compo-
nents were split as explained in Section 5.3.3. Such types of initializations as described above can
also be done in the framework of normal HMM systems (except those related to conditional GMMs,
as normal HMMs can not handle conditional GMMs).

6.2 Isolated Word Recognition
To investigate the use of auxiliary information in ASR, I first investigated its use in isolated word
recognition, which has the advantage of not having to worry about the decoding issues that arise
with continuous speech recognition. However, it has the disadvantage of not being able to test out
the effectiveness of the auxiliary information on continuous, spontaneous speech. To do recognition,
the likelihood of each of the candidate models was used, with equal priors over all models; no
approximations, such as Viterbi, were used in computing the likelihoods.

6.2.1 Discretized Auxiliary Information
I used two different databases for ASR with discretized auxiliary information: PhoneBook (Pitrelli
et al., 1995) and the University of Wisconsin X-ray Microbeam Speech Production Database (West-
bury et al., 1994) (hereafter referred to as the “Microbeam” database). PhoneBook was specifically
designed for research into isolated word recognition. The Microbeam database, however, was not
designed with speech recognition research in mind; specifically, it lacks both the variety of data
and the amount of data that PhoneBook was specifically designed to have. As a result, I have used
PhoneBook by default for my experiments except for when examining the auxiliary feature of ar-
ticulatory positions that is absent in PhoneBook. The results on discrete articulators and discrete
pitch appeared, in part, in Stephenson et al. (2000) and Stephenson et al. (2001), respectively. Note
that all variables used in these DBNs are discretized; so as the emission distributions for Xn are
represented by tables, no Gaussian distributions and, hence, no mixture component variables, are
used (as mixtures are generally used in ASR with continuous emissions).

Articulators

Using the University of Wisconsin X-ray Microbeam Speech Production database (Westbury et al.,
1994), I did experiments on speaker-independent, task-dependent, isolated word recognition with
articulator information as auxiliary information. The speech is recorded at 21739 Hz with a record-
ing of selected articulator positions (lower lip, upper lip, four tongue positions, lower front tooth,
and lower back tooth) at approximately 146 Hz (6.866 ms between samples). Of the 48 speakers
in the database, eight were randomly selected to be in the test set; of the remaining 40 speakers,
eight were randomly selected to be in the validation set with the remaining 32 speakers comprising
the training set. All three lists were constructed as to be gender-balanced (the test and validation
sets each have an equal number of males and females while the training set has four more females
than males). There are different tasks that the speakers were asked to do. For this work, I chose to
use the “Citation Words” tasks, where the speaker reads a list of single words, separated by pauses.
Using a segmentation2 produced by a forced alignment with an HMM based on an HTK system

2Provided by Sacha Krstulović

6.2. ISOLATED WORD RECOGNITION 79

Param. WER
Baseline (HMM, no Articulatory Variable) 31k 9.8%
2 Discrete Articulatory Values 63k 8.5%
4 Discrete Articulatory Values 127k 7.7%
8 Discrete Articulatory Values 257k 8.4%

Table 6.1: Discrete articulators. Recognition results, given as Word Error Rate (WER), for models
trained on the training set (with observed articulators), with recognition performed on the valida-
tion set of 2155 words (with hidden articulators). The number of free parameters is given. The
DBNs in Figure 5.3 & 5.2 were used (without any edges removed). Results in bold are significantly
better than the baseline with 95% confidence; results in bold italics are significantly better than
the baseline with 99% confidence.

(Young et al., 1999), the set of words for each Citation Words task was cut into individual files with
some surrounding silence. The lexicon size was 106 words; some of the words were repeated multi-
ple times by the same speaker, giving an average, across all of the data, of about 260 utterances per
speaker. There was a total of 8468 utterances in the train set, 2155 in the validation set, and 2151
in the test set. Thirty-nine monophone models (as used in the earlier work on using this database
for ASR in Krstulović (2001, Chapter 5)) were used in addition to beginning and ending silence.
Three states were used for each monophone and silence being modeled.

Twelve mel-frequency cepstral coefficients (MFCCs) plus C0, the energy coefficient, were ex-
tracted per window from the speech, using a Hamming window of 20.6 ms with successive windows
shifted by 6.9 ms. This shift rate was chosen so as to have one articulatory observation per window.
There were 26 filters in the filterbanks with a preemphasis coefficient of 0.97. Energy normalization
as well as cepstral mean subtraction were performed. The delta (i.e., first derivative) coefficients
for all 13 MFCC coefficients were used as well.

The cepstral coefficients were then quantized. Using K-means clustering, four codebooks are
generated from the training data, as done in Zweig (1998): a 256 value codebook for the 12 MFCC
coefficients, a 256 value codebook for the 12 MFCC delta coefficients, a 16 value codebook for the C0

coefficient, and a 16 value codebook for the C0 delta coefficient. The C0 and the C0 delta values are
concatenated bitwise in the DBN to give a single 256 value variable.

Likewise, the articulatory values are also quantized, using K-means clustering. The measure-
ments of the eight articulators are used for the codebook. For certain frames (22% of the frames,
across all of the data), an articulator value was not recorded for some time slices; in these cases, the
whole vector for the concerned time slices was thrown out and not used in any part of the experi-
ments. One codebook was generated to represent all eight articulator positions. Various values for
the size of the codebook are presented in this paper: two, four, and eight. The baseline DBN system
did not use an articulatory variable; with such a configuration, it was theoretically equivalent to a
standard discrete HMM for ASR.

During EM training, Dirichlet priors (Cooper and Herskovits, 1992) of 0.1 were used on all
probabilities to prevent any from becoming 0; this prior is added to all counts obtained from EM:

N∗(·) = N(·) + 0.1. (6.1)

N∗(·) is then used instead of N(·) during maximization. The effect is to give greater weight to
variable values that did not occur very often in the training data. Except where noted, recognition
was then performed using only the acoustics from the validation set (the articulators were ignored
and thus treated as hidden). Results are given in Table 6.1 for a system trained on the training
set with recognition on the validation set. As can be seen, the word error rate is improved when
articulatory information is added.

80 CHAPTER 6. EXPERIMENTS

Param. WER
Baseline (HMM, no Articulatory Variable) 31k 8.6%
4 Discrete Articulatory Values 127k 7.8%

Table 6.2: Discrete articulators. Recognition results, given as Word Error Rate (WER), for models
trained on both the training set and the validation test (with observed articulators) with recognition
performed on the test set (with hidden articulators). The number of free parameters is given. Only
the best acoustics/articulatory system from Table 6.1 was used. The DBN in Figure 5.3 & 5.2 were
used (without any edges removed). These two results are not significantly different, in contrast to
the corresponding results presented in Table 6.1.

Param. WER
4 Discrete Articulatory Values 127k 7.6%

Table 6.3: Discrete articulators. Using observed articulator values, recognition results, given as
Word Error Rate (WER), for models trained on both the training set and the validation test (with
observed articulators) with recognition performed on the test set (with observed articulators). This
uses the same trained acoustics/articulatory system from Table 6.2. The number of free parame-
ters is given. The DBN in Figure 5.2 was used (without any edges removed). This result is not
significantly better than the baseline in Table 6.2.

Using the optimal number of discrete articulatory values on the validation set given in Ta-
ble 6.1, I then started the experiments over using only the baseline system (acoustics only) and the
best acoustics/articulatory system (with four articulatory values). However, this time all codebook
generation and DBN training were done on the combination of the training set and the validation
set. Recognition was then done on the test set. The results are given in Table 6.2. The results of
these recognition tests are the true estimates of the two systems’ performances on new data as the
test set was not used previously to select any parameters for either system.

Finally, note the results in Table 6.3, where I used the articulator values in recognition. While
having measured articulator values in recognition is an unrealistic scenario, in comparing the re-
sults in Table 6.3 with that in Table 6.2, we see the ability of the DBNs to cope with hidden artic-
ulators. That is, in Table 6.2, the DBN used only inferred articulator values and obtained a WER
of 7.8%, which is close to the result of 7.6% obtained using the actual, observed articulator values.
Also, while the tests on the validation set in Table 6.1 gave a significant improvement with an
articulator variable, the tests on the test set in Table 6.2 did not give a significant improvement;
therefore, tests on a more extensive database need to be done in future work.

Pitch

I have selected PhoneBook (Pitrelli et al., 1995) as the corpus to use for training and testing my
models for using discrete estimated pitch as auxiliary information. The bulk of this corpus contains
isolated word utterances collected from a large number of speakers with a large variety of words,
spoken over telephone lines. I have chosen the data partition used in Dupont et al. (1997): I used
their “small” training set of 19421 utterances (over 283 speakers) for training my models and their
“cross-validation” set of 6598 utterances (over 106 speakers) for testing my models. The small
training set contains 21 lists of words while the cross-validation set contains 8 lists of words; the
“test” set, which will be used in later experiments, itself contains 8 lists of words with a total of
6598 utterances (over 96 speakers). Each of these lists contains 75 or 76 words that are unique
from the other lists used and is read by a different set of speakers.

6.2. ISOLATED WORD RECOGNITION 81

Param. Num. Pitch Values Obs. Pitch Hid. Pitch
Baseline 33k - 7.8%
Pitch Baseline 66k 2 8.5% 7.6%
Pitch Baseline 133k 4 7.9% 7.1%
Pitch Baseline 270k 8 8.6% 7.2%
Pitch (An⊥⊥Qn |An−1) 66k 2 8.5% 7.7%
Pitch (An⊥⊥Qn |An−1) 133k 4 8.0% 7.2%
Pitch (An⊥⊥Qn |An−1) 270k 8 8.9% 7.2%

Table 6.4: Discrete pitch. Word Error Rates. Both results within the same given line are from
the same system, which was trained on estimated pitch data (discretized). The number of free
parameters is given. The DBN in Figure 5.3 was used for the “Baseline” (identical to a standard
discrete HMM); the DBN in Figure 5.2 was used for the “Pitch Baseline”; and the DBN in Figure 5.2
was used, except with the connections for Qn → An removed, for the “Pitch (An ⊥⊥ Qn |An−1)”.
The best “Pitch Baseline” and the best “Pitch (An ⊥⊥ Qn |An−1)”, both of which have 4 discrete
prototypes, perform statistically the same as the “Baseline”. All six results with hidden discretized
pitch are statistically better (with at least 95% confidence) than the respective results with observed
discretized pitch. Furthermore, the best system with hidden pitch, giving a result of 7.1%, performs
statistically better than the baseline result (with 95% confidence).

Sampled at 8 kHz, the speech signal (initially recorded µ-law format but transformed into pcm
format during the feature computation) was parameterized using mel-frequency cepstral coeffi-
cients (MFCC’s) with a Hamming window of 25 ms in width, shifting 8.3 ms per frame. Ten MFCC’s
as well as C0, the energy coefficient, were retained for the models (ten MFCCs being retained here
so as to have similar features to the related experiments done in Zweig (1998)). I then created three
codebooks for the acoustic data (using K-means clustering on the training data), each of 256 values,
as done with the Microbeam database acoustics.

Codebooks of size one, three, and seven were generated for the data where the pitch (as esti-
mated by the Simple Inverse Filter Tracking algorithm (SIFT) (Hess, 1983)) was non-zero. With
an additional entry in each reserved for the case for unvoiced speech (where the pitch is zero), this
resulted in codebooks of size two, four, and eight (as appearing in the column “Num. Pitch Values”
in Table 6.4). The codebooks were each reserved for a different set of experiments.

All systems used three hidden states for each monophone model, as is often done with ASR
(though, similar work with DBNs and the PhoneBook database also did some experiments with
four hidden states per monophone (Zweig, 1998)); there were 41 monophone sub-word models plus
models for beginning silence and ending silence (the same set of 41+2 models is based on earlier
work using DBNs on this database in Zweig (1998, Chapter 7)). A baseline system, with no auxil-
iary information was trained using the baseline model and data described above. It is theoretically
equivalent to a discrete HMM. The two sets of DBNs (see Figure 5.2, with and without the connec-
tion Qn → An.) with auxiliary information were each trained using the different sized codebooks
for the auxiliary information, as explained above.

Using these trained DBNs, I tested their performance with the auxiliary information observed
and also with it left hidden. Results are given in Table 6.4. In all cases, the DBNs with An per-
formed significantly better when the auxiliary information was left hidden than when the auxiliary
information was observed. Furthermore, the best performing DBN with An is significantly better
than the Baseline DBN: 7.1% verses 7.8%.

The significant improvement obtained in hiding the pitch could be due to the noise inherent in
its estimation. That is, the SIFT estimator will not be correct all of the time. While training with

82 CHAPTER 6. EXPERIMENTS

the estimates over the large amount of data in the training set, we can assume that the erroneous
estimates are infrequent enough that the resulting learned distributions related to the pitch are
fairly accurate. However, in recognition, erroneous pitch estimates for an individual utterance can
not as easily be overcome. That is, there may be many utterances in the recognition evaluation
that have been corrupted by noise and, hence, misrecognized; the effect of these errors would then
overcome any potential benefit of better recognizing those utterances with accurate pitch estimates.
Therefore, using the inferred (hidden) pitch estimates in recognition provides more robust recogni-
tion than using the estimates.

6.2.2 Auxiliary chain information (factorial HMMs)
Auxiliary information in the form of a second auxiliary chain is also discrete information and could
have been included in the section above on discrete auxiliary information. However, since it is used
differently and since the acoustic vector itself was not discrete in these experiments, I include it
here in its own section. ASR is typically performed using Markov chains whose state represents
phonemes; recent work has investigated using graphemes (the actual letters and punctuation used
in writing) as the states (Kanthak and Ney, 2002). In using auxiliary chains, I am looking here
training models having both a chain for the phonemes and a chain for the graphemes. Recognition
is then performed with the time-dependency broken on whichever chain is chosen as the “auxiliary”
chain; recognition is done on the units of the “primary” chain with the aid of the auxiliary chain.

These experiments were done using the PhoneBook database, as already introduced in Sec-
tion 6.2.1. The same MFCC coefficients as used with the PhoneBook experiments in Section 6.2.1
are used; however, in these experiments I did not use the coefficient C0 but did use its delta coef-
ficient. C0 was not used here as other work on the PhoneBook database using continuous features
(Dupont et al., 1997) uses only the first (and second) derivatives of energy (which resembles C0) but
not the energy itself. The advantage that this database has for these experiments is that there is
a wide variety of words available in it. In training a DBN with two chains (i.e., a factorial HMM),
there is to be a Gaussian (or GMM) for each combined instantiation of the two chains. That is, given
K states in the phoneme chain and L states in the grapheme chain, there are K · L Gaussians (or
GMMs) to be learned in the observation space. In Figure 4.8 on page 62, we see that Xn has two
parents Qn and LN (here I note that they have K values and L values, respectively); so a Gaussian
(or GMM) needs to be learned for each joint instantiation of the two parents. So, a database where
the phonemes occur in a wide variety of grapheme contexts (and vice-versa) is advantageous for
this. Note that, for example, the phoneme /æ/ will probably occur more often with the grapheme ‘a’
than with the grapheme ‘z’; however, we would want the phoneme /æ/ to occur with a wide variety
of graphemes in its context; conversely, we would also want each grapheme to occur with a wide
variety of phonemes in its context.

Results are shown in Table 6.5. As with other experiments with PhoneBook in this thesis, there
were 43 phoneme states (but with a different number of sub-states for the non-silence phonemes,
as indicated); there were 28 grapheme states (the 26 letters of the Latin alphabet, begin silence,
end silence, and the ‘+’ symbol which is used in the PhoneBook dictionary between certain affixes
and the root word). With the two Markov chains, two (time-dependent) chains were trained, both
simultaneously conditioning the acoustic observation. For recognition, a given two-chain DBN is
broken in two different ways to make a one-chain DBN: once for “Qn mode” (where Ln is made a
time-independent auxiliary variable) and once for “Ln mode” (whereQn is made a time-independent
auxiliary variable). In “Qn mode”, we are doing recognition using phonemes and with a phoneme
lexicon; at each time frame all of the graphemes in Ln will be summed over during inference In “Ln

mode”, we are doing recognition using graphemes and with a grapheme lexicon; at each time frame
all of the phonemes in Qn will be summed over during inference Different numbers of states were
tried (i.e., each phoneme and/or grapheme, except for the begin and end silence models, was divided

6.2. ISOLATED WORD RECOGNITION 83

sub-states
#-chains # Param. Ln Qn Mixes WER

2 52k Qn mode (with auxiliary Ln) 1 1 1 21.5%
(Figure 5.7)

2 52k Ln mode (with auxiliary Qn) 1 1 1 41.4%
(Figure 5.7, with alt. var. names)

1 52k Qn chain - 1 28 9.9%
(Figure 5.5)

1 52k Ln chain 1 - 42 20.5%
(Figure 5.5, with Qn changed to Ln)

2 198k Qn mode (with auxiliary Ln) 2 2 1 13.6%
(Figure 5.7)

2 198k Ln mode (with auxiliary Qn) 2 2 1 40.5%
(Figure 5.7, with alt. var. names)

Table 6.5: Phoneme (Qn) and Grapheme (Ln) Markov chains, using auxiliary chain information
as two Markov chain DBNs (factorial HMMs) and, for comparison, one Markov chain DBNs. The
number of sub-states (in the non-silence states) per phoneme and per grapheme (as applicable) is
given. “#-chains” indicates how many chains were used in training. When one of the chains is
broken, it is no longer a factorial HMM. The models trained with one-chain have many mixture
components so as to give them approximately the same total number of Gaussians as the two-
chain DBNs (after accounting for Gaussian components with zero weight); the results are grouped
according to DBNs that have the same total number of Gaussians. Results are stated in word-error-
rate (WER).

into multiple sub-states, such as ‘a’ being represented by a[1] and a[2]). These results show that,
in the current framework, graphemes can not be used to aid the modeling of the phoneme states.
However, I would expect a better performance if a time-dependency were to be added between
the “auxiliary chain” (that is, if we did not break a chain during inference); however, this would
add complexity to the inference. The auxiliary chain DBN with twice the number of states per
phoneme/grapheme performs worse (13.6 WER) than a traditional phoneme DBN with only one
sub-state per phoneme (9.9 WER) which has one-quarter of the parameters. Future work would be
to look properly the effect of using two or more sub-states per grapheme in a single chain.

6.2.3 Continuous Auxiliary Information
Work on incorporating continuous auxiliary information into isolated word recognition was per-
formed exclusively on the PhoneBook database. The same MFCC coefficients as used with the
PhoneBook experiments in Section 6.2.2, coefficients are used. The same set of discrete states was
used here as was used in the case of discretized pitch. For further background discussion on the
following auxiliary variables, please refer to Section 5.2, as well as Section 6.2.1. The experiments
with continuous auxiliary information on the PhoneBook database were trained on the small train-
ing set and were tested on the test set of Dupont et al. (1997) (in contrast to the systems with
discrete pitch in Section 6.2.1 being tested on the validation set of Dupont et al. (1997)).

These results are based on those that appeared in Stephenson et al. (2002a,c) and, in an earlier
form, in Stephenson et al. (2002b). Notable differences between these results and those in Stephen-
son et al. (2002a,c) are that, first, I give all systems here the same number of mixture components
(which is in line with the methodology used in Section 6.3) and, second, I use a higher variance floor
here so as to have more robust Gaussians. The number of mixture components was chosen so as to

84 CHAPTER 6. EXPERIMENTS

Param. Mix. Obs. ROS Hid. ROS
Baseline 32k 6 4.3%
ROS Baseline 48k 6 4.4% 4.3%
ROS (Xn⊥⊥An |Qn) 32k 6 4.3% 4.3%
ROS (An⊥⊥Qn |Xn = xn) 48k 6 4.4% 4.3%

Table 6.6: Word error rate for the Baseline (non-ROS) DBN and for the three ROS DBNs on the
PhoneBook test set. Results for the ROS DBNs are given with observed and hidden ROS. The
number of parameters and of mixture components is given as well. The DBN in Figure 5.5 was
used for the “Baseline” (identical to a standard HMM); the DBN in Figure 5.4 was used for the
“ROS Baseline”; the DBN in Figure 5.4, except with the connections An → Xn removed, was used
for the “ROS (Xn⊥⊥An |Qn)”; the DBN in Figure 5.4, except with the connectionsQn → An removed,
was used for the “ROS (An ⊥⊥Qn |Xn = xn)”. There is not statistical difference between any of the
results.

be large enough to get reasonable recognition but to be small enough so as to reduce the computa-
tion complexity. The variance floor was chosen to be 0.10 of the variance of the variables over all
of the training data; while the HMM training tool HTK (Young et al., 1999) suggests using 0.01 of
the global variance, 0.10 was used so as to take a more conservative approach by having broader
Gaussians. I have not repeated the earlier results of Stephenson et al. (2002a,c) here in this thesis
since the results given in this thesis cover the same tasks but with a better training setup in using
the variance floors. (I also note here an errata for the “Figure 1 (b)” result in Table 1 of Stephenson
et al. (2002a) as well as for the “Pitch xn⊥⊥an | qn” result in Table 1 of Stephenson et al. (2002c): in
both tables in those works, the word error rate should be 52.0 for Obs. Pitch and 6.7 for Hid. Pitch;
this big difference in performance, appears to be because of not having a variance floor in those
systems).

Speaking Rate

Experiments using speaking rate, as explained in Section 5.2.2 on page 71, are presented in Ta-
ble 6.6. The speaking rate is calculated at the same frame rate as the MFCCs. Using the speaking
rate in isolated word recognition does not bring any change, for better or for worse, to the recogni-
tion performance. This could be due to the fact the ROS is not a significant factor in recognizing
isolated words in clean speech. That is, the DBNs can match themselves to isolated-word utter-
ances equally well whether it is a fast or a slow utterance. It is possible that this approach to using
ROS in ASR would have a better impact if used in continuous speech recognition, where there is a
continuous stream of words, not separated by silence. In this case, an ROS measure may then make
a difference in matching the DBN word models to the individual component words. Other possible
explanations include there being an unreliable estimate of ROS or there not being a linear relation
between the MFCCs and the estimated ROS.

Pitch

Experiments using estimated pitch, as explained in Section 5.2.1 on page 71, are presented in
Table 6.7. The pitch was calculated using the SIFT algorithm with smoothing, as explained in
Section 6.2.1.

The results with continuous pitch in Table 6.7 do not give any statistical improvement over that
of the baseline (HMM) approach; furthermore, in the case of the system “Pitch (An⊥⊥Qn |Xn = xn)”,
there is a significant drop in performance if we hide the pitch instead of observing it. This is in
contrast to using (time-dependent) discrete pitch in Table 6.4 on page 81, where not only was there

6.2. ISOLATED WORD RECOGNITION 85

Param. Mix. Obs. Pitch Hid. Pitch
Baseline 32k 6 4.3%
Pitch Baseline 48k 6 4.1% 4.4%
Pitch (Xn⊥⊥An |Qn) 32k 6 4.6% 4.4%
Pitch (An⊥⊥Qn |Xn = xn) 48k 6 4.0% 4.4%

Table 6.7: Word error rate for the Baseline (non-Pitch) DBN and for the three Pitch DBNs on the
PhoneBook test set. Results are presented as in Table 6.6. With 90% confidence, there is a statistical
different between the observed and hidden cases of the system “Pitch (An ⊥⊥Qn |Xn = xn).” With
respect to the Baseline, all systems perform statistically the same.

Param. Mix. Obs. Energy Hid. Energy
Baseline 32k 6 4.3%
Energy Baseline 48k 6 5.1% 4.4%
Energy (Xn⊥⊥An |Qn) 32k 6 5.4% 4.3%
Energy (An⊥⊥Qn |Xn = xn) 48k 6 4.1% 4.4%

Table 6.8: Word error rate for the Baseline (non-Energy) DBN and for the three Energy DBNs on
the PhoneBook test set. Results are presented as in Table 6.6. The “Energy Baseline” and “Energy
(Xn ⊥⊥An |Qn)” systems perform statistically worse than the baseline (with 99% confidence). “En-
ergy Baseline” and “Energy (Xn ⊥⊥An |Qn)” both perform statistically better with An hidden than
with it observed (with 99% and 95% confidence, respectively); however, even with hidden energy,
they are both statistically equivalent to the baseline.

a significant improvement in performance if we observe the pitch instead of hiding it, but there
was also a significant improvement of the best discrete pitch system over the baseline system.
This suggests that there is a need to have a time-dependency between the hidden, continuous
pitch variables; as discussed in Section 2.4.3, this is not computationally feasible in the current
framework, and is therefore recommended as an area of future research in Section 7.2.5.

Energy

Experiments using energy, as explained in Section 5.2.3 on page 72, are presented in Table 6.8. The
energy was calculated with windowed frames of speech, of the same length and frame rate as the
MFCCs. It was then further transformed by taking the logarithm of this short-term energy. See
equation (5.10) on page 72.

Unlike with ROS and pitch, incorporating the energy in a state-dependent way (“Energy Base-
line” and “Energy (Xn⊥⊥An |Qn)”) increases the error rate significantly with respect to the baseline
system (from 4.3% to 5.1% and 5.4%, respectively). However, as with using pitch, the error rate
remains statistically the same as the baseline when modeling the Xn dependent upon An, with An

being state-independent. Unlike with pitch, the energy must be modeled independently of the state;
modeling the energy dependent upon the state Qn increases the error rate if Xn is conditioned itself
by the energy. Nevertheless the systems with An dependent upon Qn perform significantly better
with hidden energy than with observed energy. Thus, by hiding and, hence, marginalizing out the
energy and using its inferred distribution, these systems “recover” the baseline system’s perfor-
mance of 4.3%. While not useful here in the context of isolated word recognition in clean speech,
the energy will be shown to be of use in noisy speech in Section 6.3.

86 CHAPTER 6. EXPERIMENTS

6.3 Spontaneous, Noisy Speech Recognition
I have done (in collaboration with Mathew Magimai-Doss for the HMM/ANNs) my experimentation
using the Numbers data (Cole et al., 1994), which contains free format numbers spoken over the
telephone. As done in certain other work (Mirghafori and Morgan, 1998), I used 3233 utterances,
covering 92 minutes, from the database for training; this is a subset of the training list suggested
by the database. I used a subset of 1206 utterances of the suggested development set for evaluating
the performance of the system. The validation set contained 357 utterances; it was used for training
the ANNs but not used with the DBNs as no tuning was done with the DBNs. As done in certain
other work with the Numbers database at IDIAP, there were thirty words (including silence) in
the lexicon, composed of 27 monophone models (the three stops in the lexicon, /t/, /d/, and ’/k/’
were each represented as two monophones: for the closure and release of each respective stop). In
the case of the DBNS, the silence and closure models were each modeled with one state models,
the releases were modeled with two state models, and all of the other monophones were modeled
with three state models, as done in related work at IDIAP. In the case of the HMM/ANNs, every
monophone was modeled, in recognition, with a minimum state duration of three frames, reflecting
the constraint of the decoder used that all states have the same minimum state duration; in training
the HMM/ANNs, the minimum state duration follows that of the DBNs, as the training of both
types of models is based on the same (initial) segmentation of Numbers used in-house at IDIAP
(this segmentation, in the case of the DBNs is only used to determine the initial parameters to be
used in expectation-maximization training). With the DBNs, except if noted, 12 components were
used in the (conditional) Gaussian mixture models (GMMs); similarly to the choice of number of
mixture components in isolated word recognition in Section 6.2.3, this number of components was
chosen so as to provide reasonable recognition results while not being too computationally complex.
To do recognition, the Viterbi score (see Section 2.1.3 on page 15) was used by calculating the single
most likely instantiation of all of the discrete variables in the models. In the case of the DBNs the
one variable that was the exception to this was the discrete mixture component Jn: a sum (instead
of a max) was always over it. In doing decoding with the Viterbi algorithm, a uniform distribution
was used over all of the word models.

For all features I used a frame rate of 12.5 ms. The standard features used are 13 perceptual
linear prediction (PLP) coefficients in addition to their approximate first and second derivatives;
the analysis window size was 25 ms. These features included the 0th coefficient; future work would
involve removing this coefficient (but not its first or second derivative), so as to, first, resemble
more the work done with continuous features in isolated word recognition in Section 6.2.3 (which
did not use the 0th MFCC but did use its first derivative) and to, second, investigate the effects of
not having the 0th, energy-like coefficient as a standard feature when the short-term energy is an
auxiliary feature (to compare with the “An ⊥⊥Qn |Xn = xn” system presented in Table 6.11). Some
of these results have appeared in Stephenson et al. (2003).

6.3.1 Gaussians in DBNs
Results using the auxiliary features of pitch, ROS, and energy in DBNs are given in Tables 6.9,
6.10, & 6.11, respectively, along with the baseline performance. BASELINE uses the DBN in Fig-
ure 5.5, thus being equivalent to a standard HMM. “Xn, An” makes no statistical assumptions
between Xn, An, and Qn (using the DBN in Figure 5.4 as is); “An ⊥⊥ Qn |Xn = xn” assumes An

and Qn are independent of each other, given the observation Xn = xn (using the DBN in Figure 5.4
with the Qn → An connections removed); and “Xn ⊥⊥ An |Qn” assumes that Xn and An are con-
ditionally independent of each other, given Qn (using the DBN in Figure 5.4 with the An → Xn

connections removed), thus resembling an approach to incorporating auxiliary information where
it is treated as an emission of the state that is not directly correlated with the other emissions and

6.3. SPONTANEOUS, NOISY SPEECH RECOGNITION 87

NOISE TYPE
CLEAN CAR LYNX FACTORY

SNR (dB) SNR (dB) SNR (dB)
Topology An Param. 0 12 0 12 0 12
BASELINE (J = 12) 66 k 9.3 23.0 10.1 65.6 30.7 76.9 30.7
BASELINE (J = 18) 100 k 8.9 20.7 9.9 68.1 33.9 79.1 34.9
Xn, An O 99 k 8.9 32.5 13.9 74.2 42.2 79.5 29.7
Xn, An H 99 k 8.9 27.3 11.3 66.8 31.8 77.1 29.4
An⊥⊥Qn |Xn = xn O 99 k 9.6 20.6 9.9 63.6 26.6 79.3 31.1
An⊥⊥Qn |Xn = xn H 99 k 9.4 20.2 10.0 62.7 26.6 76.3 †25.1
Xn⊥⊥An |Qn O 67 k 9.4 28.6 14.5 72.3 39.7 76.5 28.9
Xn⊥⊥An |Qn H 67 k 9.2 23.5 11.0 66.1 30.9 74.8 29.7

Table 6.9: Pitch DBN word error rate on the OGI Numbers development set. Xn = PLP features, An

= Pitch feature,Qn = discrete state, O = “Observed”, H = “Hidden.” The number of free parameters is
also given for each system. Results which are marked with bold are significantly better (with 99%
confidence) than the corresponding 12-mixture component BASELINE result in the same column.
Results with hidden (or observed) An which are marked with † (only one occurrence in this table)
are significantly better (with 99% confidence) than both the corresponding 12-mixture component
BASELINE (J = 12) result and the corresponding result with the same DBN but using observed (or
hidden) An immediately above (or below) it in the same column. Unless otherwise indicated, there
are 12 mixture components for all systems. All WERs are in percentage terms.

where the auxiliary information is not even part of a GMM. Each system models Xn with 12 mix-
ture components in the Gaussians/conditional Gaussians (except for the second Baseline with 100 k
parameters, which uses 18 mixture components and is given to show that increasing the number of
mixture components is typically of no benefit for increasing the model’s robustness to noise). Un-
der the ‘An’ column, systems with auxiliary information that have observed An in recognition are
marked with an ‘O’ while those with hiddenAn in recognition are marked with ‘H’; in both cases, An

was observed during training. Auxiliary systems using Xn, An (meaning there are no assumptions
on An) or An ⊥⊥Qn |Xn = xn have conditional Gaussians while all other systems have Gaussians.
Results are reported on clean data (SNR = ∞) as well as for SNRs of 0 dB and 12 dB for three types
of added noises.

Better results would be expected with further refinements, such as context-dependent sub-
models, word insertion penalties, a trained language model, etc (the language model used is de-
scribed in Section 5.3.5 on page 75). However, my goal was not to have the best performances
possible, as I wanted to concentrate on new modeling techniques and not spend all my time imple-
menting the fine details of already established ones. So my goal was to have a reasonable training
and recognition methodology that gives acceptable performances and to apply the same methodol-
ogy (as described in Chapters 5 & 6) to all of the systems within a given set of experiments.

Clean speech

Being trained on clean speech, all of the systems should perform their best in clean conditions.
Compared to the baseline, HMM equivalent performance of 9.3 word-error-rate (WER), the systems
with auxiliary information do not perform significantly better with pitch, ROS, and energy; this
confirms the studies with continuous auxiliary information with isolated word recognition in Sec-
tion 6.2.3. Moreover, using energy as an auxiliary variable in the “An ⊥⊥ Qn |Xn = xn” topology
actually degrades the performance significantly (with 99% confidence), with respect to the base-

88 CHAPTER 6. EXPERIMENTS

NOISE TYPE
CLEAN CAR LYNX FACTORY

SNR (dB) SNR (dB) SNR (dB)
Topology An Param. 0 12 0 12 0 12
BASELINE (J = 12) 66 k 9.3 23.0 10.1 65.6 30.7 76.9 30.7
BASELINE (J = 18) 100 k 8.9 20.7 9.9 68.1 33.9 79.1 34.9
Xn, An O 99 k 9.3 33.1 12.9 66.6 28.8 81.3 30.6
Xn, An H 99 k 8.8 22.9 10.4 66.0 30.6 78.3 31.5
An⊥⊥Qn |Xn = xn O 99 k 9.3 25.0 10.6 65.6 †26.3 79.0 28.2
An⊥⊥Qn |Xn = xn H 99 k 9.0 21.2 10.0 65.3 28.6 76.6 28.5
Xn⊥⊥An |Qn O 67 k 9.3 26.2 11.3 65.8 31.3 80.3 31.9
Xn⊥⊥An |Qn H 67 k 9.4 23.5 10.2 66.3 31.2 77.4 30.7

Table 6.10: ROS DBN word error rate on the OGI Numbers development set, with a similar setup
to that of Table 6.9 except that An = ROS. Xn = PLP features, Qn = discrete state, O = “Observed”,
H = “Hidden.”

NOISE TYPE
CLEAN CAR LYNX FACTORY

SNR (dB) SNR (dB) SNR (dB)
Topology An Param. 0 12 0 12 0 12
BASELINE (J = 12) 66 k 9.3 23.0 10.1 65.6 30.7 76.9 30.7
BASELINE (J = 18) 100 k 8.9 20.7 9.9 68.1 33.9 79.1 34.9
Xn, An O 99 k 10.2 21.9 13.9 62.4 24.1 66.9 17.4
Xn, An H 99 k 10.0 23.4 12.9 †47.9 †17.9 †62.2 †15.5
An⊥⊥Qn |Xn = xn O 99 k 11.3 †15.9 12.9 41.0 16.0 69.3 15.4
An⊥⊥Qn |Xn = xn H 99 k 11.0 28.2 16.0 39.5 †14.2 †64.2 14.9
Xn⊥⊥An |Qn O 67 k 9.0 30.7 13.0 70.1 37.0 75.8 35.1
Xn⊥⊥An |Qn H 67 k 9.0 23.7 11.3 65.1 34.7 79.9 33.2

Table 6.11: Energy DBN word error rate on the OGI Numbers development set, with a similar
setup to that of Table 6.9 except that An = energy. Xn = PLP features, Qn = discrete state, O =
“Observed”, H = “Hidden.”

line’s performance. Hence, in these contexts, continuous auxiliary information can not help with
recognition in clean environments. This is in contrast to the discrete auxiliary information of Sec-
tion 6.2.1 which helped recognition; the difference may lie in that the discrete auxiliary information
was time-dependent information whereas continuous auxiliary information is being modeled here
as conditionally time-independent.

Noisy speech

Using systems that were trained in clean speech, I tested their ability to handle recognition in
noisy environments. Three different types of additive noise from Varga et al. (1992) were added to
the speech signal in separate tests in recognition: one set of tests was with stationary CAR noise;
another set of tests was with stationary LYNX helicopter noise; and a third set of tests was done
with non-stationary FACTORY noise. These noises were added to the signal so as to have a certain
SNR ratio; I present results showing the results of adding these noises both with an SNR of 12 dB
and with an SNR of 0 dB.

6.3. SPONTANEOUS, NOISY SPEECH RECOGNITION 89

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

Figure 6.1: Pitch observations for a sample utterance. Plot of pitch observations in clean conditions
on left. Plot of pitch observations in noise (LYNX noise added at 0 dB SNR) on right. The “error”
between these two is representative of the estimates with this type of noise.

Table 6.10 shows that auxiliary information of ROS only performs marginally, though signifi-
cantly, better than the baseline system in certain noise conditions. The improvement came in the
system using ROS as a state-independent conditioning variable to Xn. This shows the ability to
use a continuous ROS information to change the distributions of Xn, thus furthering the work done
with discrete ROS in acoustic modeling, as discussed in Section 5.2.2 on page 71.

As shown in Table 6.9, the auxiliary information of pitch, provides a better example than ROS, in
certain noise conditions, of the benefits of using auxiliary information as I have outlined here. The
systems with An ⊥⊥Qn |Xn = xn perform significantly better than the baseline system in certain
noise conditions of CAR, LYNX, and FACTORY. This is the system where the value of An conditions
the distribution of Xn and where An is modeled independently of Qn. Furthermore, hiding the
pitch in recognition, having used it in training, can be of potential benefit, as this system with
state-independent pitch performs significantly better without pitch (25.1 WER) than with pitch
estimates (31.1 WER) in the case of 12 dB SNR FACTORY noise; this indicates that, at least in this
case, the pitch estimates were unreliable in noise (see Figure 6.1).

Finally, Table 6.11 shows that the auxiliary information of the logarithm of the short-term en-
ergy provides a big reduction in WER, with respect to the performance of the baseline, in many of
the noisy conditions. All of the performances of systems with An that did significantly better than
the baseline used conditional Gaussians, thus showing the utility of having energy condition the
distributions of Xn. While the Xn, An system (with a dependency between Qn and An) did perform
better than the baseline as well, the An ⊥⊥Qn |Xn = xn (with no dependency between Qn and An)
tend to perform even better (at least in the case of LYNX noise), thus suggesting that energy is
better modeled independently of the state. There is often a significant improvement in performance
when hiding An in recognition, as indicated in the table, thus indicating that sometimes it is better
to let the DBN infer An’s distribution instead of providing it.

6.3.2 HMM/ANNs
Results using HMM/ANNs and the auxiliary features are given in Tables 6.12, 6.13, & 6.14, along
with the baseline performance. The various systems used for HMM/ANN hybrids (note that no

90 CHAPTER 6. EXPERIMENTS

NOISE TYPE
CLEAN CAR LYNX FACTORY

SNR (dB) SNR (dB) SNR (dB)
ANN Type An Param. 0 12 0 12 0 12
BASELINE 455 k 12.1 23.1 13.7 84.6 29.3 81.0 29.3
Xn, An O 465 k 11.1 21.4 13.4 81.3 30.3 82.8 27.4
An⊥⊥Qn |Xn = xn O 465 k 10.6 22.5 12.5 †79.0 †24.6 84.2 27.9
An⊥⊥Qn |Xn = xn H 465 k 13.7 25.5 14.9 91.0 28.7 93.1 32.8
Xn⊥⊥An |Qn O 455 k 13.1 27.2 16.1 79.6 28.4 80.2 30.5

Table 6.12: Pitch ANN word error rate on the OGI Numbers development set. Xn = PLP features,
An = Pitch feature,Qn = discrete state, O = “Observed”, H = “Hidden.” The number of parameters for
each system is given (in the case of “An⊥⊥Qn |Xn = xn”, which has multiple ANNs, this is the sum of
the parameters in all of its ANNs). Under the ‘An’ column, systems with auxiliary information that
have observed An in recognition are marked with an ‘O’ while those with hidden An in recognition
are marked with ‘H’; in both cases, An was observed during training. Hidden auxiliary information
is only performed on the system with An ⊥⊥Qn |Xn = xn (which has three discrete values for An)
for theoretical reasons. Results are reported on clean data (SNR = ∞) as well as for SNRs of 0 and
12 for three types of added noises. Results which are marked with bold are significantly better
than the corresponding BASELINE result in the same column. Results with hidden (or observed)
An which are marked with † are significantly better than both the corresponding BASELINE result
and the corresponding result with the same ANN but using observed (or hidden) An immediately
above (or below) it in the same column. All WERs are in percentage terms.

DBNs were involved with the ANNs) were discussed in 4.4.2 and illustrated in Figure 4.7 on
page 51. The BASELINE system uses inputs only of the standard features Xn with a time window,
using equation (2.47) to estimate its scaled likelihoods. The Xn, An systems uses an augmented
feature vectors of the two sets of features into a standard ANN, using equation (4.15) to calculate
its scaled likelihoods. The An ⊥⊥ Qn |Xn = xn systems use multiple ANNs, one for each discrete
value of An, using equation (4.16) to estimate its scaled likelihoods. Finally, Xn ⊥⊥An |Qn systems
separate An’s inputs from Xn’s hidden layer, using equation 4.17 to estimate its scaled likelihoods.

The ANNs used the same 39-dimension PLP features for the DBNs in Section 6.3.1. They com-
pute the scaled likelihoods using single state monophone models for the same monophones ex-
plained earlier in Section 6.3. During the training phase, it is only the ANNs which are trained
(using back propagation with cross-validation over the validation set), which is done using the pre-
viously supplied segmentation. The HMMs are not trained themselves (their emission distributions
are handled by the ANNs and their transition probabilities are set to a uniform distribution); their
role is to take these scaled likelihoods for doing Viterbi decoding.

Clean speech

As with the DBNs, all of the HMM/ANN systems were trained on clean speech and have their best
performance when presented with clean speech. With reference to the baseline HMM/ANN, which
uses only standard features, only one of the systems with observed auxiliary information presented
in the tables perform better. The attempts to use hidden (discrete) auxiliary information, done as
explained in Section 4.4.3, in each table did not help recognition The system that did well used
energy as a conditioning variable, thus showing the potential for using ANNs tailored to different
values of a discrete An.

6.4. CONCLUSION 91

NOISE TYPE
CLEAN CAR LYNX FACTORY

SNR (dB) SNR (dB) SNR (dB)
ANN Type An Param. 0 12 0 12 0 12
BASELINE 455 k 12.1 23.1 13.7 84.6 29.3 81.0 29.3
Xn, An O 465 k 11.3 21.6 12.5 66.3 27.4 85.0 30.3
An⊥⊥Qn |Xn = xn O 465 k 12.2 28.1 14.7 86.1 30.9 89.0 36.3
An⊥⊥Qn |Xn = xn H 465 k 14.4 26.1 16.8 91.8 36.4 94.3 39.8
Xn⊥⊥An |Qn O 455 k 13.3 24.7 15.4 78.5 27.6 84.9 31.3

Table 6.13: ROS ANN word error rate on the OGI Numbers development set, with a similar setup
to that of Table 6.12 except that An = ROS. Xn = PLP features, Qn = discrete state, O = “Observed”,
H = “Hidden.”

NOISE TYPE
CLEAN CAR LYNX FACTORY

SNR (dB) SNR (dB) SNR (dB)
ANN Type An Param. 0 12 0 12 0 12
BASELINE 455 k 12.1 23.1 13.7 84.6 29.3 81.0 29.3
Xn, An O 465 k 10.6 19.9 11.8 69.5 23.6 84.3 31.7
An⊥⊥Qn |Xn = xn O 465 k †10.2 22.9 †12.1 84.6 31.2 87.4 33.4
An⊥⊥Qn |Xn = xn H 465 k 13.3 23.7 15.4 85.6 26.7 87.6 31.7
Xn⊥⊥An |Qn O 455 k 12.7 30.5 15.7 87.6 31.3 82.0 30.7

Table 6.14: Energy ANN word error rate on the OGI Numbers development set, with a similar
setup to that of Table 6.12 except that An = energy. Xn = PLP features, Qn = discrete state, O =
“Observed”, H = “Hidden.”

Noisy speech

Auxiliary information in HMM/ANNs has mixed results with noisy speech. None of the systems
with auxiliary information performs statistically better than the baseline in FACTORY noise. Pitch
was of some benefit, but only under LYNX noise conditions. As with the DBNs, the best auxiliary
information of the three tested in spontaneous, noisy speech was energy. Of the various systems
tested with energy, the Xn, An system typically did well in noise, at least in CAR and LYNX noise,
where it performed significantly better than the baseline system.

6.4 Conclusion
The most important conclusions from this chapter are that auxiliary information appears to be
best implemented when it is time-dependent upon its previous value; that auxiliary information
often needs to be left hidden in recognition; and that the best source, of those test, of auxiliary
information in noisy speech is the short-term energy.

With the discretized auxiliary information, I showed the ability of the DBNs to have the auxil-
iary information hidden during recognition, having used it during training. At least with the case
of pitch in isolated word recognition, hiding it with a time-dependent An was effective (Table 6.4)
whereas hiding it when it was a time-independent An was not effective (Table 6.7) . This implies
that it is important to have An time-dependent if it is going to be effectively hidden in recognition;
however, more experimentation needs to be done as those two experiments where done with differ-

92 CHAPTER 6. EXPERIMENTS

ent representations of An (discrete versus continuous, respectively), and this comparison involves
only the auxiliary information of pitch.

With hidden auxiliary information, I showed how it can be effective in modeling various types of
speech when it is hidden during recognition. This was shown not only in the case of discrete pitch
but also in the case of noisy speech and, to a lesser extent, in the case of clean spontaneous speech.
I note that, in certain cases, such as with rate-of-speech and continuous pitch on isolated words, it
was not helpful to hide it in recognition.

Finally, HMM/ANNs show some ability to be able to incorporate auxiliary information. The
auxiliary information can easily be treated as standard information by appending it to the standard
feature vector. However, to treat it as conditioning information, it had to be discretized. It was only
when the auxiliary information was discretized were the HMM/ANN systems able to treat the
auxiliary information as hidden by summing over the likelihoods when using the different possible
instantiations of the auxiliary information. I was not able to show the effect of hiding continuous
auxiliary information in HMM/ANNs due to the limitations of ANNs of having continuous input
features be hidden. Overall, the performance of HMM/ANNs with auxiliary information in noisy
speech trails that of the DBNs.

Chapter 7

Conclusion

7.1 Review
The single, most important contribution of this thesis has been to demonstrate the need for a
time-dependent, auxiliary variable that conditions the standard features and which can be hid-
den, if noisy or missing, in recognition. I have laid this in the context of dynamic Bayesian net-
works (DBNs) as they provide the framework to do probabilistic inference in a wide variety of
conditions. As examples, I showed both discrete auxiliary information and continuous auxiliary
information.

In Chapter 1 I gave an overview of automatic speech recognition (ASR) in terms of its three
principal components: feature extraction, acoustic modeling, and language modeling. I explained
how much of ASR research is concerned with the adaptation of these aspects to the wide variety of
ASR environments. It is the varying acoustics in particular that I have investigated in this thesis.

In Chapter 2 I presented a discussion on times-series modeling for ASR, as related to this the-
sis. I reviewed hidden Markov model (HMM) theory, which is of prime importance in many time
(or sequence) modeling problems, and discussed its use in ASR; this included a discussion of the
expectation-maximization (EM) algorithm. I also reviewed dynamic Bayesian network (DBN) the-
ory, which is a newer development since HMMs that generalizes the HMM framework; this in-
cluded my own presentation of an important complexity issue, explained from the viewpoint of
“d-separation.”

After presenting DBNs in Chapter 2, I showed in Chapter 3 how to do inference in mixed DBNs.
This included contributions, from my own experience, as to how the DBN inference algorithm could
be implemented, in the context of ASR, so as to increase the computational efficiency. Having
implemented the theory without any optimizations would have resulted in very slow inference.

In Chapter 4 I presented a detailed discussion on auxiliary information. The idea of an auxiliary
variable was not original to this thesis. For example, Zweig (1998, Chapter 7) investigated the use
of an auxiliary variable which was both discrete and latent (that is, while given certain initial pa-
rameters, it was not given any observations during training). So, my contribution to using auxiliary
information in ASR, as explained in this and other chapters, involves the following:

• using real, “high-level” data in training the auxiliary variable instead of training it in an
unsupervised manner;

• arguing the need for time-dependent auxiliary information;

• showing the effect and, sometimes, the benefit of hiding the auxiliary variable’s value during
the recognition process;

93

94 CHAPTER 7. CONCLUSION

(b) (c) (d)

Qn

Jn

An

Xn

Figure 7.1: BNs for ASR with auxiliary variable An using the same mixture component Jn as the
standard variable Xn. Compare with Figure 4.5 on page 49.

• using a variety of continuous-valued auxiliary information (which can be state-dependent or
state-independent) to condition the distributions of the continuous valued standard features
(certain types of continuous-valued auxiliary information had already been implemented as
conditioning information in a state-independent way in (Fujinaga et al., 2001)).

In Chapter 5, I discussed the various DBNs as well as the various types of auxiliary information
that I have investigated in the course of this work. Here I showed the types of information that my
auxiliary variables represented: speaking rate, pitch, energy, articulator positions, and graphemes.
This chapter included what, to my knowledge, is the first application of factorial HMMs (a type of
DBN) to ASR for the case where the two Markov chains represent two distinct different processes
and where these processes have defined, precise meanings; this factorial HMM built upon the work
of Logan and Moreno (1998), whose two Markov chains were different parameterizations of the
same process.

In Chapter 6, I presented the experimental studies which take into account the DBNs of Chap-
ter 2 and the auxiliary information of Chapter 4. In addition to showing the experimental effect of
having auxiliary variables (discrete and continuous) trained on real data and hidden in recognition,
a particular contribution of this chapter is that I have applied auxiliary variables to spontaneous
speech in noisy conditions.

Auxiliary information makes acoustic modeling in ASR more robust to noise in many cases with
DBNs and, to a lesser extent, with HMM/ANNs as well. In DBNs with continuous auxiliary infor-
mation An, it is important to use An to “shift” the conditional Gaussians that model the standard
information Xn; for a small amount of additional computation, this allows the modeling of the cor-
relation between An and Xn and some of the correlation within Xn itself that is captured via An.
Hiding the An in the conditional Gaussian sometimes makes the DBNs even more robust–though
this is done through even more computational cost. Finally, the logarithm of the short-term energy
proves very promising as an auxiliary variable while pitch also shows some potential.

7.2 Future Directions
There are still research paths that can be followed in investigating auxiliary information in DBN-
based ASR. Here I present the following: modeling of the auxiliary variable, choice(s) of auxiliary
variable, latency of the auxiliary variable, missing feature ASR, and use of approximate inference.

7.2. FUTURE DIRECTIONS 95

(b) (c) (d)

Qn

Jn

Mn

An

Xn

Figure 7.2: BNs for ASR with auxiliary variable An using its own mixture componentMn. Compare
with the respective BNs (b)-(d) in Figure 4.5 on page 49.

7.2.1 Modeling of the auxiliary variable
All of the systems presented in this thesis modeled the continuous-valued auxiliary variable An

using a single Gaussian (in the case of state-dependent An, it was a single Gaussian for each value
of the state Qn). As GMMs are known to better model the standard features Xn, they may be
of help as well in modeling An. In applying GMMs to An, the variables Xn and An could share
the same mixture component variable, as in Figure 7.1. The potential advantage of An and Xn

having the same mixture component Jn is that it allows additional correlation between An and Xn

to be modeled via Jn. Hence, in the case of Figures 7.1 (b) & (c), the connected An and Jn can
together be viewed as a hybrid continuous/discrete mixture component variable (see the discussion
on “continuous mixture” component variable in Section 4.4.1 on page 49). However, it may be
desirable to model An with a different number of mixture components than what Xn is modeled
with. So, alternatively, An can have its own mixture component variable, as in Figure 7.2. For
example, we may want to model an auxiliary variable ‘pitch’ with only two Gaussians, such as
N (0, 0) and N (200, 2500); that is, there is a single Gaussian representing a pitch only of zero (i.e.,
voiceless) and a Gaussian representing voiced regions (where there might be a mean of 200 Hz, with
a standard deviation of of

√
2500 Hz = 50 Hz). The inference algorithm of Lauritzen and Jensen

(2001) can handle Gaussians with a covariance of 0.
The systems with discrete-valuedAn provided some of the most interesting results regardingAn

that is hidden during recognition. These topologies with discrete An also used the time-dependency
of An−1 → An. As the mixed DBNs did not improve as much as the discrete DBNs did when An was
hidden, this could be due to not having the time-dependency with a continuous An. However, I was
restricted from having a time-dependent, continuous, hidden An, as explained in Section 2.4.3 on
pages 23 ff. Therefore, one of the other research directions, as explained below, is using approximate
inference.

A final approach to modeling An is a hybrid between that of modeling it independent of Qn and
that of modeling it dependent upon Qn. That is, An is dependent on broad classes of Qn. So, given
that Qn has K classes, we define a discrete function g(Qn) which has H “broad” classes, where
H < K. We then model the distribution of An as being dependent upon these broad classes and,

96 CHAPTER 7. CONCLUSION

Qn

Jn

g(Qn)

An

Xn

Figure 7.3: BN for ASR where there are broad classes of Qn, g(Qn), that condition An.

hence, indirectly dependent upon Qn (See Figure 7.3):

p(An|g(Qn). (7.1)

This falls within the framework of the equivalence classes proposed in Zweig (1998) and has al-
ready been experimented with, in the case of different types of energy, in Escofet Carmona and
Stephenson (2003). Note that having state-independent An is equivalent to having one broad class
(H = 1). To illustrate why using broad classes might be advantageous, consider an auxiliary vari-
able of energy. Voiced sounds tend to have more energy than unvoiced sounds. However, individual
voiced sounds tend to have roughly the same energy as other voiced sounds. So, we may have more
robust modeling of the auxiliary variable if we condition it on appropriate broad classes of Qn.

7.2.2 Choice of auxiliary variable(s)
In this thesis I have presented a selection of auxiliary variables of speaking rate, pitch, log energy,
articulators, and graphemes. Furthermore, I worked with each individually, as a single auxiliary
variable. Further factors can be investigated regarding these auxiliary features already presented.
First, they may need to be mapped to another domain (e.g., using the logarithm of the pitch fre-
quency instead of the plain frequency). As the conditional Gaussians assume a linear relationship
between the value of An and Xn, it may be advantageous to map An to a space f(An) where there
is a more linear relationship with Xn; how to do this would be a subject of research. Second, we
would hope to have even better modeling in using multiple auxiliary variables in the same system.
In doing so, we may or may not want to add dependencies between the multiple auxiliary variables
themselves (see Figure 7.4).

7.2.3 Latency of the auxiliary variable
The systems were trained with maximum likelihood (ML) training. So, the most likely parameters
were learned, given the observations X1:N = x1:N , A1:N = a1:N . That is, in the context of equa-
tion (3.2) on page 34, e = {X1:N = x1:N , A1:N = a1:N}, with the maximized parameters λi = λ†.
Now, recognition worked well in many cases when An was hidden when using parameters λ†. So, I
suggest that after maximizing the likelihood of the parameters given the observations for Xn and

7.2. FUTURE DIRECTIONS 97

(b) (c) (d) (e) (f)

Qn

A1
n
, A2

n

Xn

Qn

A1
n
, A2

n

Xn

Figure 7.4: Different possible topologies for incorporating two time-independent auxiliary variables
A1

n and A2
n. (b)-(d) are based directly on Figure 4.5 (b)-(d), respectively, on page 49 (with the mix-

ture component variable Jn removed for simplicity). (e)-(f) are hybrids of (c) and (d) in that one
of the two auxiliary variables is state-independent (in the case of (e)) or that Xn is conditionally
independent of one of the two auxiliary variables (in the case of (f)). The upper row is the cases for
the two auxiliary variables directly dependent upon each other; the lower row is the case with this
dependency removed.

An, that a second phase of training begin with An being hidden and with λ† as the (new) initial pa-
rameters. That is, we can use the trained parameters from the first phase as the initial parameters
for a system where An is always a hidden variable in both training and recognition so that we only
have e = {X1:N = x1:N}. After this second phase of training, An would then no longer be guaranteed
to have a meaning related to the original data A1:N = a1:N used to obtain the parameters λ†; hence,
I refer to it as a “latent” variable, as it is no longer known what it represents. It is hoped, then,
that this system with a latent An would perform even better than a system using observed An in
training but hidden An in recognition. Note that, if training with a latent An, using the original
observations for A1:N = a1:N in recognition would introduce a lot of errors.

As an alternative to using a latent An in the second stage of training, An could be considered as
latent from the initial stages of training. Some investigation could then be done into the best way
to initialize the regression coefficients B relating Xn to An. I have not done any investigations in
this thesis about how the effects of different initializations; so, if an investigation is made into the
initialization of a latent An, the initialization of the other variables can also be looked at concur-
rently. This is an extension in the continuous domain of the latent discrete auxiliary variables used
in Zweig (1998).

98 CHAPTER 7. CONCLUSION

7.2.4 Missing Feature ASR
Missing feature ASR (Morris et al., 1998) is concerned with integrating out the noisy features at a
time frame n. As I also deal with integrating out (supposedly) noisy auxiliary features, there is a
connection between this thesis and established missing feature theory. One avenue which can be
explored is to only marginalize out the auxiliary feature when there is noise–though determining
when there is noise is itself an area of research. Additionally, I have shown that it can be advan-
tageous to train with an auxiliary feature but to leave it hidden in recognition; therefore, I propose
that some of the elements in the standard feature may themselves be of use in training but need to
be marginalized out in recognition.

7.2.5 Approximate Inference
All of the inference used in this thesis used exact inference (or the Viterbi-like simplification of
it). However, to use a hidden, time-dependent continuous auxiliary variable (e.g., Figure 2.6)
as illustrated in this thesis would require an approximate inference method. One such approx-
imate inference algorithm, which uses stochastic methods, is Rao-Blackwellised Particle Filter-
ing (RBPF) (Murphy, 2002, Section 5.3). With observed variables X1:N = x1:N , discrete hidden
variables Q1:N , and continuous hidden variables A1:N , we use sampling upon the discrete hidden
variable (i.e., Q1:N) so that the only hidden variable is the continuous hidden variables (i.e., A1:N).
Given the ith set of samples Q1:N = q1:N , “exact” inference can be done so as to obtain the distri-
bution of the remaining hidden variables (i.e., A1:N). Multiple samples are used along with their
computed likelihood so as to get an estimate of the likelihood p(X1:N = x1:N |A1:N , Q1:N). Another
approximate inference algorithm, which uses deterministic methods, is the Generalized Pseudo
Bayesian (GPB) algorithm (Murphy, 2002, Section 4.3.1). This would involve the list of K values on
the right side of equation (2.54) on page 26 being replaced by a single distribution:

∑

∀qN

p(QN = qN , QN−1, XN |AN−1) ≈ p∗(QN−1, XN |AN−1), (7.2)

where p∗(QN−1, XN |AN−1) is obtained using moment matching (Murphy, 2002, Appendix 5.2). This
allows an approximation of marginalizing out discrete variables in a distribution with conditional
Gaussians.

7.3 Conclusion
This thesis has shown how auxiliary information An is of benefit to increasing the modeling capa-
bility of acoustic models by allowing them to use An to explain variation in the data. An is typically
high-level information that is speaker-dependent or utterance-dependent. Since this auxiliary in-
formation explains variation in the data, the distributions for the standard features Xn will be
more compact and, hopefully, more robust and discriminative. It is often important to model this
auxiliary information as conditioning the distributions of Xn. Using the auxiliary information as
such, we can take advantage of its values for constraining the training of the systems; we can then
sometimes leave it hidden in recognition and still have more robust ASR.

This auxiliary information will quite possibly be of even better use if further research can be
done into modeling distribution of An itself better (this thesis concentrated more on the distribu-
tion of Xn, in relation to the value of An). Particularly, modeling An with a dependency upon An−1,
where An and An−1 are hidden would involve an interesting and challenging study. Having this
time-dependency with hidden values is of use in cases such as with An representing articulatory

7.3. CONCLUSION 99

positions, where the positions have a heavy time-dependency but which are not available in recog-
nition.

100 CHAPTER 7. CONCLUSION

Appendix A

Graph Theory Terminology

Bayesian networks combine probability theory and graph theory; as readers of this thesis may not
be as familiar with graph theory, I provide here some of the basics of graph theory here. For more
information, please see Neapolitan (1989, chap. 3 & 7), which provides a good background into the
graph theory from a Bayesian networks’ perspective.

Brualdi (1992, Section 11.1) defines a graph as (1) a set of nodes (also called vertices) and (2)
a set of edges (also called arcs), each edge being a pair of nodes. This is also called an undirected
graph. If the two vertices within each edge (Xi, Xj) are ordered, then the edges have a direction
assigned to them (that is, they lead specifically from node Xi to node Xj and not in the other
direction); this is called a digraph (or, a directed graph). Brualdi (1992) also presents multigraphs
and general digraphs, which allow multiple connections between any two nodes in graphs and
digraphs, respectively. The undirected graph is, therefore, the special case of a directed graph where
for every edge from node Xi to node Xj , there is also an edge from Xj to node Xi (See Figure A.1).
The following properties of a graph deal with what arrangement of edges appear among the nodes
in a graph or digraph.

A chain is a series of nodes where each successive node in the chain is connected to the previous
node by an edge (regardless of the direction, if any, of the edge). A path is a chain with the further
constraint for digraphs that each connecting edge in the chain has a directionality going in the same
direction as the chain. A cycle is a path that starts and ends at the same node. A simple path is
a path with unique nodes. A simple cycle is a cycle where, except for the start/end node, all nodes
are unique (See Figure A.2). A directed acyclic graph, or DAG, is a directed graph that has no

Graph A Graph B

Figure A.1: Directionality. While graphs A and B have connections between the same nodes, they
are not the same graph. Graph A has undirected edges while graph B has directed edges which
point in certain directions.

101

102 APPENDIX A. GRAPH THEORY TERMINOLOGY

A B C D

Figure A.2: Chains and paths. The vertex sequence A − B − C − D is a chain of length 3 (but it
is not a path). The vertex sequence A − B − C − A − B is a path of length 4. The vertex sequence
A−B−C is a simple path of length 2. The vertex sequence A−B−C −A−B−C −A is a cycle of
length 6. The vertex sequence A−B − C −A is a simple cycle of length 3.

E

F

A B

C

D

Figure A.3: DAGs, parents/children, ancestors/descendants, family. The above graph is a DAG. A is
the parent of B while B is the child of A; B is the parent of C and D while C and D are the children
of B; and so on. A is the ancestor of B, C, D, E, and F while B, C, D, E, and F are the descendants
of A; and so on. A possible ancestral ordering for this graph is A,B,C,D,E, F ; another acceptable
ancestral ordering is A,B,D, F, C,E. Some sample families from this graph are A,B as the family
of B; B,C as the family of C; and C,D,E as the family of E.

cycles (See Figure A.3).
A parent/child relationship in a directed graph occurs when there is an edge (X1,X2), from X1

to X2; X1 is called the parent of X2 and X2 is called the child of X1. In other words, the edge points
from the parent to the child. An ancestor/descendant relationship, furthermore, is the extension
of the parent/child relationship. For example, if X1 is the parent of X2 and if X2 is the parent of
X3, then X1 is an ancestor of X3 and X3 is a descendant of X1. Like in human genealogies, this
relationship extends further than just these two sets of parent/child relationships. An ancestral
ordering is an ordering of nodes where each ancestor comes before its respective descendants. This
is always and only possible in DAGs. (See Figure A.3). A family is the set of vertices composed of X
and the parents of X . For example, in Figure A.3, the vertices {C,D,E} are the family of the vertex
E. Whereas the terms parent and child define the relationship between two vertices connected by
a directed edge, the term adjacent (or neighbor) describes the relationship between two vertices
connected by an undirected edge; the two nodes are said to be adjacent.

A forest is a DAG where each node has either one parent or none at all. A tree is a forest where
only one node (called the root) has no parent; in other words, every node but the root has exactly one
parent. (See Figures A.4 & A.5). It should be noted that while books in graphical modeling define
trees as above (Cowell et al., 1999; Neapolitan, 1989), others define a tree as being a connected,
undirected, acyclic graph (Brualdi, 1992; Boffey, 1982). This brings about the term directed tree
versus regular trees. I am only concerned with directed trees, and I will, therefore, use the directed
definition from Cowell et al. (1999) and Neapolitan (1989).

A moral graph is made from a DAG. For a DAG, we marry the parents of each node; this means

103

EA

C

D

F G

H

B

Figure A.4: Forest. The above graph, consisting of all nodes A,B, . . . , H is a forest. Every node has
either one parent or none at all. B,C,D,E,G have one parent each while A,F,H have no parents.
This graph is not a tree because it does not meet the requirement of only one of its nodes having no
parent.

EA

C

D

B

Figure A.5: Trees. The above graph is a tree. It is a DAG where every node has exactly one parent,
except for the root node A which has no parent.

that we add an undirected edge between each parent. After doing this, we remove the directionality
from all of the original edges, resulting in a undirected graph. (See Figure A.6).

For a given path (or cycle), a chord is an edge that does not appear in the path but which is
between two nodes that occur in the path. The term chordless describes a simple path or (simple
cycle) for which no chords exist. For example, consider the cycle B −C −E −D−B from the graph
in Figure A.6. A chord for this cycle is the edge (C,D). However, the cycle B−C−D−B is chordless
as there are no edges between non-adjacent nodes in this cycle.

The term triangulated, or decomposable, describes an undirected graph where any simple cycle
with at least four nodes also has at least one chord. Note that it is not possible to have any chords
in a cycle with three nodes. (See Figure A.6).

To make a graph triangulated we first need an elimination order. Any arbitrary numbering of
the nodes will work, unless there are requirements that specify otherwise. The resultant ordering,
1, . . . , n, can then be used to make the triangulated graph. The following algorithm, taken from
Pearl (1988) but originally from Tarjan and Yannakakis (1984), is how to use this numbering to
construct the triangulated graph. Proceeding from node n, decreasing to node 1:

1. Determine the lower-numbered nodes which are adjacent to the current node, including those
which may have been made adjacent to this node earlier in this algorithm.

2. Connect these nodes to each other.

104 APPENDIX A. GRAPH THEORY TERMINOLOGY

E

F

A B

C

D

Figure A.6: Moral and triangulated graphs. The above graph is the moralized form of the graph
in Figure A.3 on page 102. The only node with “unwed” parents in that graph is E. In moralizing
the graph, C and D, the parents of E, are connected. Then, the directions are removed from all the
edges. This also happens to be a triangulated graph because its only simple cycle with a length of
at least 4, B − C −E −D −B, does have a chord (C −D).

A B

C

D

B E

C

D

F

D

Figure A.7: Cliques. These subgraphs are all of the (maximal) cliques from the graph in Figure A.6.
These cliques are complete subgraphs (that is, they are fully connected).

The term complete describes an undirected graph where every node is connected to all other
nodes.

A clique is a subset of nodes which is complete and can not be made any larger while still being
complete. For example, say that the subset of nodes X1, X2, X3 is complete; if they form a clique,
this means that there is no other node Xi that can be added this subset with it still being complete.
While Whittaker (1990, Section 3.1) specifies that a clique is maximal, this is not always strictly
enforced. For example, Golumbic (1980, Section 1.1) makes a distinction between a clique and a
maximal clique. (See Figure A.7).

A clique tree is a DAG that has been moralized and triangulated and then had its cliques
become the nodes of a tree. See Figure A.8 on page 105. It needs to have the characteristic known
as the running intersection property, which means that any vertex (or vertex set) that is found
in any two cliques Ci and Cj in the tree will also be found in all of the cliques found on the chain
between Ci and Cj .

105

A B

F

D

C

D

B E

C

D

A,B

D,E

B,C,D C,D,E

Figure A.8: A Join Tree. This is a clique tree for the cliques in Figure A.7. There are four nodes in
this tree: (A,B), (B,C,D), (C,D,E), and (D,F).

106 APPENDIX A. GRAPH THEORY TERMINOLOGY

Appendix B

An Introduction to Inference

B.1 Example
Heckerman (1999) gives an example of a Bayesian network that models credit card fraud, as illus-
trated in Figure B.1. From this BN we can see, for example, that if there is a case of credit card
fraud, then the chances of gas or jewelry being bought is affected; also, the chance of jewelry being
bought is further affected by the age and sex of the purchaser. Table B.1 indicates the probabilities
associated with each of the variables in this Bayesian network. For example, we can see that if
‘Fraud’ is ‘Yes’, then there is a probability of 0.2 that ‘Gas’ will be ‘Yes’ but if ‘Fraud’ is ‘No’, then
there is a much smaller probability of 0.01 that ‘Gas’ will be ‘Yes’. (That is, a person who is fraudu-
lently using a credit card is twenty times more likely to buy gas than someone who is legitimately
using a credit card). These different probabilities are commonly referred to as beliefs (Heckerman,
1999, Section 2).

Based on the discussion given in Heckerman (1999), inference in this Bayesian network pro-
ceeds as follows. Suppose that we notice a certain value for one or more of the variables in the
network. If one variable has a definite (i.e., observed) value, our beliefs (i.e., probabilities) for the
other variables need to be revised. This is what inference is: determining the updated (posterior)
probability distribution for a variable based on the known values of the other variables. By itself,
the prior probability for fraud is given as P (Fraud = yes) = 0.00001. However, we notice that a
young man is using a credit card to buy jewelry (but not any gas). That is, Sex = Male, Age =< 30,
Jewelry = Y es, Gas = No (Table B.2). We then want to infer whether he is using the card fraud-
ulently. In other words, we need to calculate P (F |J,G, S,A) (each letter is the first letter of its
respective variable). We proceed as follows:

By Bayes’ rule,

P (F |J,G, S,A) =
P (J,G, S,A, F)

P (J,G, S,A)
(B.1)

Because the states of F are mutually exclusive and exhaustive, we can transform the denomi-
nator of (B.1) to get:

P (F |J,G, S,A) =
P (J,G, S,A, F)

∑

f∈(Y es,No) P (J,G, S,A, F = f)
(B.2)

Now, using the product rule of probability, both the numerator and denominator of equation B.2

107

108 APPENDIX B. AN INTRODUCTION TO INFERENCE

Age SexFraud

JewelryGas

Figure B.1: A Bayesian network from Heckerman (1999) illustrating credit card fraud. There are
five variables in this network. The probability of the Jewelry variable is dependent upon the values
of the Fraud, Age, and Sex variables. Likewise, the value of the Gas variable is dependent upon the
value of the Fraud variable. The Fraud, Age, and Sex variables themselves are not conditioned on
any variable. See Table B.1 for the local probability distributions for each variable.

Probability Conditions
Fraud Age Sex

Fraud = Yes Fraud = No
0.00001 0.99999 – – –
Age < 30 Age = 30-50 Age > 50
0.25 0.40 0.35 – – –
Sex = Male Sex = Female
0.5 0.5 – – –
Gas = Yes Gas = No
0.2 0.8 Yes – –
0.01 0.99 No – –
Jewelry = Yes Jewelry = No
0.05 0.95 yes * *
0.0001 0.9999 no <30 male
0.0004 0.9996 no 30-50 male
0.0002 0.9998 no >50 male
0.0005 0.9995 no <30 female
0.002 0.998 no 30-50 female
0.001 0.999 no >50 female

Table B.1: Probabilities for the variables in Figure B.1

Variable Fraud Jewelry Gas Sex Age
Value ? Y es No Male < 30

Table B.2: An example set of one unknown and four observations from the credit card fraud network
in Figure B.1. Values are observed for every variable except Fraud. These observed values can then
be used to give an updated probability for the belief of Fraud being Y es.

B.2. IMPLEMENTATION 109

can be factored as follows:

P (F |J,G, S,A) =

P (J |G,S,A, F)P (G|S,A, F)P (S|A,F)P (A|F)P (F)
∑

f∈(Y es,No) P (J |G,S,A, F = f)P (G|S,A, F = f)P (S|A,F = f)P (A|F = f)P (F = f)

(B.3)

Due to the conditional independencies, we can remove certain variables from the conditional
lists in (B.3) (see Section 2.4.1). That is, if the variable X0 is not a child of Xn in the graph, then

P (X0|X1, . . . , Xn, . . . , Xk) = P (X0|X1, . . . , Xn−1, Xn+1, . . . , Xk).

Using this simplification provides the following:

P (F |J,G, S,A) =
P (J |S,A, F)P (G|F)P (S)P (A)P (F)

∑

f∈(Y es,No) P (J |S,A, F = f)P (G|F = f)P (S)P (A)P (F = f)
(B.4)

At this point, we can then simplify equation B.4 by cancelling common factors in the numerator
and denominator. (Doing so indicates that the prior probabilities for both age and sex have no direct
impact on the probability for fraud being computed).

P (F |J,G, S,A) =
P (J |S,A, F)P (G|F)P (F)

∑

f∈(Y es,No) P (J |S,A, F = f)P (G|F = f)P (F = f)
(B.5)

(B.5) can then be computed by inserting the values for the variables and reading the probabilities
from Table B.1.

P (F = Y es|J = Y es,G = No, S = Male,A =< 30)

=
P (J = Y es|S = Male,A =< 30, F = Y es)P (G = No|F = Y es)P (F = Y es)

∑

f∈(Y es,No) P (J = Y es|S = Male,A =< 30, F = f)P (G = No|F = f)P (F = f)
(B.6)

By substituting of the actual probabilities, we get:

P (F = Y es|J = Y es,G = No, S = Male,A =< 30)

=
0.05 · 0.8 · 0.00001

(0.05 · 0.8 · 0.00001) + (0.0001 · 0.99 · 0.99999)

= 0.00402

Thus, while the prior probability of fraud is 0.00001, the inferred probability of fraud, given the
other variables, is 0.00402 (over 400 times as probable).

B.2 Implementation
Probabilistic inference in BNs is typically done on BNs which are viewed graphically as trees; a
tree structure to the graph (instead of the more general DAG) is necessary as the propagation as-
sumes certain conditional independence assumptions between variables (Pearl, 1988, Section 4.4).
However, if the BN does not meet this requirement, it can be transformed from a DAG into a tree
whose vertices are actually clusters of vertices (i.e., cliques) from the original DAG. This is done by
moralizing and triangulating the original BN (Cowell et al., 1999) and by forming the required tree
from the cliques in this transformed graph (Golumbic, 1980). One of the goals in of this process is to

110 APPENDIX B. AN INTRODUCTION TO INFERENCE

Figure B.2: A DAG

put together related variables (e.g., a given variable’s parent variables) upon which the local com-
putations can be performed; another goal is for neighboring cliques to have certain dependencies so
that propagation can be done.

In the algorithms, a topological ordering of the vertices is needed. One algorithm for getting
a topological ordering is to do a depth-first search of the DAG, based on Golumbic (1980, Algo-
rithm 2.4):

Init: S = {}
Order = []

for each v ∈ V
if v /∈ S

TopSort(v)

TopSort(v): N = children(v)
S = S ∪ {v}
for each n ∈ N

if n /∈ S
TopSort(n)

else if n /∈ Order
return ’not a DAG’

Order = [v Order]

As this algorithm does not use the markings of discrete versus continuous, a post-sort needs to
be done where, while maintaining the ordering of discrete variables with respect to other discrete
variables and of continuous variables to other continuous variables, the discrete variables occur
before the continuous variables. As discrete variables are required to occur before continuous ones
in the DAG, the resulting order will still be topological. See (Lauritzen and Jensen, 2001, Algo-
rithm 7.10) (note that there they put continuous vertices before discrete but that this is accounted
for in the ordering that their algorithms process the vertices).

B.2.1 Constructing the clique tree
Moralizing the Bayesian network

Moralizing (as defined on page 102) a Bayesian network is concerned with “marrying” the parents
of each child. The procedure is as follows. For every child in the initial graph (such as the graph in

B.2. IMPLEMENTATION 111

1

2

34

5

6 7 8

Figure B.3: The moralized version of the DAG in Figure B.2 (with the vertices numbered according
to a maximum cardinality search after the graph was moralized)

1

2

34

5

6 7 8

Figure B.4: The triangulated graph from Figure B.3

Figure B.2), we add undirected edges between all of its parents from the initial graph. Each parent
of a given node should then be directly connected to each other parent of that given node (Jensen,
1996). Then we make all of the original edges in the entire graph undirected. So, we now end up
with an undirected graph (such as in Figure B.3).

Triangulating the graph

Triangulation is the process of making a graph triangulated (as defined on page 103). To do so, we
first need to number the vertices of the graph. Any arbitrary numbering of the nodes will work.
The resultant ordering, 1, . . . , n, can then be used to make the triangulated graph. The following
algorithm, taken from Pearl (1988) but originally from Tarjan and Yannakakis (1984), is how to
use this numbering to construct the triangulated graph (See Figure B.4). Proceeding from node n,
decreasing to node 1:

1. Determine all the lower-numbered nodes which are adjacent to the current node, including
those which may have been made adjacent to this node earlier in this algorithm.

2. Connect these nodes to each other.

112 APPENDIX B. AN INTRODUCTION TO INFERENCE

Instead of choosing an arbitrary numbering of the nodes in order to do the triangulation, we can
also use a maximum cardinality search (Neapolitan, 1989) (see Figure B.4):

1. Give any node an index of 1

2. For each subsequent number, pick an unnumbered node that neighbors the most already num-
bered nodes (if there is a tie, we can pick any of the nodes in the tie).

3. Give this node the next highest index and, if any nodes remain, go to Step 1.

One advantage of using the maximum cardinality search is that it can also be used as a test to
determine if a graph is already triangulated. That is, if we use a numbering from a maximum
cardinality search to do the triangulation, we will only have to add an edge if the graph is not
already triangulated.

Constructing the clique tree

Having a triangulated graph, we can now construct the clique tree. As a preliminary step, we need
an algorithm for producing a perfect vertex elimination scheme from a triangulated graph. A perfect
vertex elimination scheme is where each vertex subset Xi = {vj ∈ Adj(vi)|j < i} (Adj(vi) is the set
of vertices that neighbor vi) is complete (as defined on page 104 (Golumbic, 1980, Section 4.2)).
This means that the lower numbered neighbors of any given vertex form a complete subgraph
(the numbering used in the triangulation step meets this criterion). This definition from Golumbic
(1980) is modified so as to conform with the conventions that Neapolitan (1989) uses, who numbers
the nodes from 1, 2, . . . , n as opposed to from n, . . . , 2, 1.

The following algorithm for producing the clique tree is based on Golumbic (1980, Section 4.7).
It produces a list of maximal cliques.

Given: Graph G = (V,E)
Given: ordering of vertices v1, . . . , vn: σ (a perfect elimination order)
Initialize: χ = 1;S[1, . . . , n] = [0, . . . , 0], Cliques = []
for each decreasing vertex v in σ

if v has neighbors
if any of v’s neighbors occur earlier than v in σ

X = v’s earlier occurring neighbors in σ
u = the last occurring element of X
S[u] = the greater of either S[u] or |X | − 1
if S[v] < |X |

Cliques = Cliques+X, v
χ = the greater of either χ or 1 + |X |

else
break out of for loop

else
Cliques = Cliques+ v

return Cliques, χ

Having a list of the cliques in the graph, construct the clique tree (Pearl, 1988, Section 3.2.4):

1. Sort the clique list according to the highest numbered node (using the maximum cardinality
ordering) in the clique.

2. Connect each clique to a previous clique in the sorted list with which it shares the most num-
ber of nodes.

An example of a clique tree for the cliques in Figure B.5 is given in Figure B.6 on page 114.

B.2. IMPLEMENTATION 113

5

6 7

2

1

2

34

5

87

1

2 5

Figure B.5: The cliques from Figure B.4. Note that it is common for variables to occur in multiple
cliques.

114 APPENDIX B. AN INTRODUCTION TO INFERENCE

1

2

34

1

2 5

5

6 7

2

5

87

Figure B.6: The cliques from Figure B.5 formed into a clique tree. Note that for any given variable
x in the tree, that all of the cliques that it occurs in are connected together (a.k.a., running inter-
section property). While this clique tree is a chain, nodes in a tree in general are allowed to have
more than one child.

Bibliography

Atal, B. S. (1974). Effectiveness of linear prediction characteristics of the speech wave for automatic
speaker identification and verification. The Journal of the Acoustical Society of America, 55,
1304–1312.

Baum, L. E. (1972). An equality and associated maximization technique in statistical estimation
for probabilistic functions of Markov processes. Inequalities, 3, 1–8.

Bilmes, J. A. (1998). Data-driven extensions to HMM statistical dependencies. In ICSLP ’98 (1998).

Bilmes, J. A. (1999). Natural Statistical Models for Automatic Speech Recognition. Ph.D. thesis,
University of California, Berkeley.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press, Oxford,
UK.

Boffey, T. B. (1982). Graph Theory in Operations Research. Macmillan Computer Science Series.
The Macmillan Press, Ltd.

Boll, S. F. (1979). Suppression of acoustic noise in using spectral subtraction. IEEE Transactions
on Acoustics, Speech, and Signal Processing, ASSP-27(2), 113–120.

Bourlard, H. and Dupont, S. (1996). A new ASR approach based on independent processing and
recombination of partial fruequency bands. In Proceedings ICSLP 96: Fourth International Con-
fence on Spoken Language Processing, volume 1, pages 426–429, Philadelphia.

Bourlard, H. and Morgan, N. (1993). Connectionist Speech Recognition: A Hybrid Approach, volume
247 of The Kluwer International Series in Engineering and Computer Science. Kluwer Academic
Publishers, Boston.

Bourlard, H., Adali, T., Bengio, S., Larsen, J., and Douglas, S., editors (2002). Neural Networks
for Signal Processing XII–Proceedings of the 2002 IEEE Signal Processing Society Workshop
(NNSP 2002), Martigny, Switzerland.

Boyen, X. and Koller, D. (1998). Tractable inference for complex stochastic processes. In Proceed-
ings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI–98), pages 33–42,
Madison, WI. Morgan Kaufmann Publishers, Inc., San Francisco, CA.

Brualdi, R. A. (1992). Introductory Combinatorics. Elsevier Science Publishing Co., Inc., New York,
second edition.

Cole, R. A., Fanty, M., and Lander, T. (1994). Telephone speech corpus at CSLU. In Proc. of Intl.
Spoken Language Processing, Yokohama, Japan.

115

116 BIBLIOGRAPHY

Cooper, G. F. and Herskovits, E. (1992). A Bayesian method for the induction of probabilistic net-
works from data. Machine Learning, 9, 309–347.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J. (1999). Probabilistic Networks
and Expert Systems. Statistics for Engineering and Information Science. Springer-Verlag New
York, Inc.

Dean, T. and Kanazawa, K. (1988). Probabilistic temporal reasoning. In Proceedings of the Seventh
National Conference on Artificial Intelligence (AAAI-88), pages 524–528, St. Paul, MN.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, 39, 1–38.

Deviren, M. and Daoudi, K. (2001). Structural learning of dynamic Bayesian networks in automatic
speech recognition. In Eurospeech ’01 (2001), pages 1669–1672.

Dupont, S. (2000). Etude et développement d’architectures multi-bandes et multi-modales pour la re-
connaissance robuste de la parole. Ph.D. thesis, Factulté Polytechnique de Mons, Mons, Belgium.

Dupont, S., Bourlard, H., Deroo, O., Fontaine, V., and Boite, J.-M. (1997). Hybrid HMM/ANN sys-
tems for training independent tasks: Experiments on phonebook and related improvements. In
Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP-97), volume 3, pages 1767–1770, Munich.

Escofet Carmona, J. and Stephenson, T. A. (2003). Automatic speech recognition using dynamic
Bayesian networks with the energy as an auxiliary variable. IDIAP-RR 18, IDIAP, Martigny,
Switzerland. Available at ftp://ftp.idiap.ch/pub/reports/2003/rr03-18.ps.gz.

Eurospeech ’01 (2001). 7th European Conference on Speech Communication and Technology (Eu-
rospeech ’01), Aalborg, Denmark.

Eurospeech ’97 (1997). 5th European Conference on Speech Communication and Technology (Eu-
rospeech ’97), Rhodes, Greece.

Frankel, J. and King, S. (2001). ASR - articulatory speech recognition. In Eurospeech ’01 (2001),
pages 599–602.

Frankel, J., Richmond, K., King, S., and Taylor, P. (2000). An automatic speech recognition system
using neural networks and linear dynamic models to recover and model articulatory traces. In
ICSLP ’00 (2000), pages 254–257.

Fujinaga, K., Nakai, M., Shimodaira, H., and Sagayama, S. (2001). Multiple-regression hidden
Markov model. In Proceedings of the 2001 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP-01), volume 1, pages 513–516, Salt Lake City, Utah, USA.

Ghahramani, Z. (1997). Factorial hidden Markov models. Machine Learning, 29, 245–275.

Golumbic, M. C. (1980). Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.

Hagen, A. (2001). Robust speech recognition based on multi-stream processing. Ph.D. thesis, Swiss
Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.

Heckerman, D. (1999). A tutorial on learning with Bayesian networks. In Jordan (1999), pages
301–354.

BIBLIOGRAPHY 117

Hermansky, H. and Morgan, N. (1994). Rasta processing of speech. IEEE Transancations Speech
and Audio Processing, 2(4), 578–589.

Hermansky, H., Hanson, B. A., and Wakita, H. (1985). Perceptually based linear predictive analysis
of speech. In Proceedings of the 1985 IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP-85), pages 509–512, Tampa, FL.

Hermansky, H., Morgan, N., Bayya, A., and Kohn, P. (1992). Rasta-plp speech analysis technique.
In ICASSP ’92 (1992), pages 121–124.

Hess, W. (1983). Pitch Determination of Speech Signals: Algorithms and Devices, volume 3 of
Springer Series in Information Sciences. Springer-Verlag, Berlin.

ICASSP ’92 (1992). Proceedings of the 1992 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP-92), San Francisco, CA.

ICASSP ’95 (1995). Proceedings of the 1995 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP-95), Detroit, MI.

ICASSP ’98 (1998). Proceedings of the 1998 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP-98), Seattle, Washington, USA.

ICSLP ’00 (2000). 6th International Conference on Spoken Language Processing: ICSLP 2000 (In-
terspeech 2000), Beijing.

ICSLP ’98 (1998). Proceedings ICSLP 98: 5th International Confence on Spoken Language Process-
ing, Sydney.

Jelinek, F. (1969). A fast sequential decoding algorithm using a stack. IBJ J. Res. Develop., 13.

Jelinek, F. and Mercer, R. L. (1980). Interpolated estimation of Markov souce parameters from
sparse data. In E. S. Gelsema and L. N. Kanal, editors, Pattern Recognition in Practice, pages
381–397. North-Holland Pub. Co., Amsterdam.

Jensen, F. V. (1996). An Introduction to Bayesian Networks. UCL Press Ltd., London.

Jordan, M. I., editor (1999). Learning in Graphical Models. Adaptive Computation and Machine
Learning. The MIT Press, Cambridge, Massachusetts, first MIT press edition.

Josuttis, N. M. (1999). The C++ Standard Library: A Tutorial and Reference. Addison-Wesley,
Boston.

Kanthak, S. and Ney, H. (2002). Context-dependent acoustic modeling using graphemes for large vo-
cabulary speech recognition. In Proceedings of the 2002 IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP-02), volume I, pages 845–848, Orlando, Florida.

Kirchhoff, K. (1999). Robust Speech Recognition Using Articulatory Information. Ph.D. thesis,
Universität Bielefeld.

Koller, D., Lerner, U., and Angelov, D. (1999). A general algorithm for approximate inference and its
application to hybrid Bayes nets. In Proceedings of the Fifteenth Conference on Uncertainty in Ar-
tificial Intelligence (UAI–99), pages 324–333, Stockholm, Sweden. Morgan Kaufmann Publishers,
Inc., San Francisco, CA.

118 BIBLIOGRAPHY

Konig, Y. and Morgan, N. (1992). GDNN: A gender-dependent neural network for continuous
speech recognition. In Proceedings of the 1992 International Joint Conference on Neural Net-
works (IJCNN), pages 332–337, Baltimore, MD.

Krstulović, S. (2001). Speech Analysis with Production Constraints. Ph.D. thesis, Swiss Federal
Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.

Lagus, K. and Kurimo, M. (2002). Language model adaptation in speech recognition using document
maps. In Bourlard et al. (2002), pages 627–636.

Lauritzen, S. L. (1992). Propagation of probabilities, means, and variances in mixed graphical
association models. Journal of the American Statistical Association, 87(420), 1098–1108. Theory
and Methods.

Lauritzen, S. L. (1995). The EM algorithm for graphical association models with missing data.
Computational Statistics & Data Analysis, 19, 191–201.

Lauritzen, S. L. (1996). Graphical Models. Oxford Statistical Science Series, 17. Clarendon Press,
Oxford.

Lauritzen, S. L. and Jensen, F. (2001). Stable local computations with conditional Gaussian distri-
butions. Statistics and Computing, 11(2), 191–203.

Lauritzen, S. L. and Wermuth, N. (1989). Graphical models for associations between variables,
some of which are qualitative and some quantitative. The Annals of Statistics, 17(1), 31–57.

Lerner, U. and Parr, R. (2001). Inference in hybrid networks: Theoretical limits and practial al-
gorithms. In Uncertainty in Artificial Intelligence: Proceedings of the Seventeenth Conference
(UAI-2001), pages 310–318, Seattle, WA. Morgan Kaufmann Publishers, Inc., San Francisco, CA.

Li, S. Z. (1995). Markov random field modeling in computer vision. Number XVI in Computer
Science Workbench. Springer-Verlag, Tokyo.

Logan, B. and Moreno, P. (1998). Factorial HMMs for acoustic modeling. In ICASSP ’98 (1998),
pages 813–816.

Lowerre, B. and Reddy, R. (1980). The harpy speech understanding system. In W. A. Lea, editor,
Trends in Speech Recognition. Prentice-Hall, Englewood Cliffs, NJ.

Markel, J. D. (1972). The SIFT algorithm for fundamental frequency estimation. IEEE Trans. Audio
and Electroacoustics, 20, 367–377.

Martı́nez, F., Tapias, D., Álvarez, J., and León, P. (1997). Characteristics of slow, average and fast
speech and their effects in large vocabulary continuous speech recognition. In Eurospeech ’97
(1997), pages 469–472.

Martı́nez, F., Tapias, D., and Álvarez, J. (1998). Towards speech rate independence in large vocab-
ulary continuous speech recognition. In ICASSP ’98 (1998), pages 725–728.

Mirghafori, N. and Morgan, N. (1998). Combining connectionist multi-band and full-band probabil-
ity streams for speech recognition of natural numbers. In ICSLP ’98 (1998), pages 743–746.

Mirghafori, N., Fosler, E., and Morgan, N. (1995). Fast speakers in large vocabulary continuous
speech recognition: analysis & antidotes. In 4th European Conference on Speech Communication
and Technology (Eurospeech ’95), volume 1, pages 491–494, Madrid.

BIBLIOGRAPHY 119

Monti, S. and Cooper, G. F. (1999). Learning hybrid Bayesian networks from data. In Jordan (1999),
pages 521–540.

Morgan, N. and Fosler-Lussier, E. (1998). Combining multiple estimators of speaking rate. In
ICASSP ’98 (1998), pages 729–732.

Morgan, N., Fosler, E., and Mirghafori, N. (1997). Speech recognition using on-line estimation of
speaking rate. In Eurospeech ’97 (1997), pages 2079–2082.

Morris, A. C., Cooke, M. P., and Green, P. D. (1998). Some solutions to the missing feature problem
in data classification, with application to noise robust ASR. In ICASSP ’98 (1998), pages 737–740.

Murphy, K. P. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D.
thesis, University of California, Berkeley.

Neapolitan, R. E. (1989). Probabilistic Reasoning in Expert Systems: Theory and Algorithms. A
Wiley-Interscience Publication. John Wiley & Sons, Inc., New York.

Owens, F. J. (1993). Signal processing of speech. Macmillan New Electronics: Introductions to
Advanced Topics. The Macmillan Press Ltd., Houndmills, Basingstoke, UK.

Papoulis, A. (1991). Probability, Random Variables, and Stochastic Processes. McGraw-Hill, Inc.,
New York, third edition.

Paul, D. B. (1992). An efficient A* stack decoder algorithm for continuous speech recognition with
a stochastic language model. In ICASSP ’92 (1992), pages 25 – 28.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, Inc.

Pitrelli, J. F., Fong, C., Wong, S. H., Spitz, J. R., and Leung, H. C. (1995). PhoneBook: A phonetically-
rich isolated-word telephone-speech database. In ICASSP ’95 (1995), pages 101–104.

Rabiner, L. and Juang, B.-H. (1993). Fundamentals of Speech Recognition. PTR Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2), 257–286.

Renals, S. and Hochberb, M. M. (1999). Start-synchronous search for large vocabulary continuous
speech recognition. IEEE Transactions on Speech and Audio Processing, 7(5), 542–553.

Richardson, M., Bilmes, J., and Diorio, C. (2000). Hidden-articulator Markov models for speech
recognition. In Proceedings of the ISCA ITRW ASR2000. Automatic Speech Recognition: Chal-
lenges for the new Millenium, pages 133–139, Paris.

Roweis, S. and Ghahramani, Z. (1999). A unifying review of linear Gaussian models. Neural Com-
putation, 11(2).

Siegler, M. A. and Stern, R. M. (1995). On the effects of speech rate in large vocabulary speech
recognition systems. In ICASSP ’95 (1995), pages 612–615.

Smith, P. W. F. and Whittaker, J. (1999). Edge exclusion tests for graphical Gaussian models. In
Jordan (1999), pages 555–574.

120 BIBLIOGRAPHY

Smyth, P., Heckerman, D., and Jordan, M. I. (1997). Probabilistic independence networks for hidden
Markov probability models. Neural Computation, 9(2), 227–269.

Stephenson, T. A., Bourlard, H., Bengio, S., and Morris, A. C. (2000). Automatic speech recognition
using dynamic Bayesian networks with both acoustic and articulatory variables. In ICSLP ’00
(2000), pages 951–954.

Stephenson, T. A., Mathew, M., and Bourlard, H. (2001). Modeling auxiliary information in
Bayesian network based ASR. In Eurospeech ’01 (2001), pages 2765–2768.

Stephenson, T. A., Escofet, J., Magimai-Doss, M., and Bourlard, H. (2002a). Dynamic Bayesian
network based speech recognition with pitch and energy as auxiliary variables. In Bourlard et al.
(2002), pages 637–646.

Stephenson, T. A., Magimai-Doss, M., and Bourlard, H. (2002b). Mixed Bayesian networks with
auxiliary variables for automatic speech recognition. In International Conference on Pattern
Recognition (ICPR 2002), volume 4, pages 293–296, Quebec City, PQ, Canada.

Stephenson, T. A., Magimai-Doss, M., and Bourlard, H. (2002c). Auxiliary variables in conditional
Gaussian mixtures for automatic speech recognition. In 7th International Conference on Spoken
Language Processing: ICSLP 2002 (Interspeech 2002), volume 4, pages 2665–2668, Denver.

Stephenson, T. A., Magimai-Doss, M., and Bourlard, H. (2003). Speech recognition of spontaneous,
noisy speech using auxiliary information in Bayesian networks. In Proceedings of the 2003 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP-03), volume 1,
pages 20–23, Hong Kong.

Tarjan, R. E. and Yannakakis, M. (1984). Simple linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs. SIAM J. Computing,
13, 566–79.

Varga, A., Steeneken, H., Tomlinson, M., and Jones, D. (1992). The NOISEX-92 study on the effect
of additive noise on automatic speech recognition. Technical report, DRA Speech Research Unit,
Malvern, England.

Wellekens, C. J. (1987). Explicit time correlation in hidden Markov models for speech recognition.
In Proceedings of the 1987 IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP-87), volume 1, pages 384–386, Dallas, Texas.

Westbury, J. R., Turner, G., and Dembowski, J. (1994). X-ray Microbeam Speech Production
Database User’s Handbook. Waisman Center on Mental Retardation & Human Development,
University of Wisconsin, Madison, WI, first edition.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. John Wiley & Sons Ltd.,
Chichester, UK.

Wrench, A. (2000). Multichannel/multispeaker articulatory database for continuous speech recogni-
tion research. In PHONUS, Saarbrücken, Germany. Institute of Phonetics, Saarland University.

Young, S., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., and Woodland, P. (1999). The htk book.
Entropic, Ltd., Cambridge, UK, HTK version 2.2 edition.

Zlokarnik, I. (1995). Adding articulatory features to acoustic features for automatic speech recog-
nition. The Journal of the Acoustical Society of America, 97(5), 3246. Abstract 1aSC38.

BIBLIOGRAPHY 121

Zweig, G. and Padmanabhan, M. (1999). Dependency modeling with Bayesian networks in a voice-
mail transcription system. In 6th European Conference on Speech Communication and Technol-
ogy (Eurospeech ’99), volume 3, pages 1135–1138, Budapest, Hungary.

Zweig, G. G. (1998). Speech Recognition with Dynamic Bayesian Networks. Ph.D. thesis, University
of California, Berkeley.

122 BIBLIOGRAPHY

Curriculum Vitae

123

124 CURRICULUM VITAE

Todd A. Stephenson

Permanent address: 1140 Silver Maple Dr Phone: +1 570 586 0803
Clarks Summit, PA 18411-9780 email: Todd.Stephenson@idiap.ch
USA Citizenship: USA

Work Experience

1999– Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP), Switzerland
Speech Processing Group
Research Assistant

winter 2001 AT&T Labs-Research, New Jersey
Information Sciences Research Division
Intern

1995–1997 AT&T Corp., New Jersey
Consumer Markets Division
Computer Programmer and System Administrator

1993–1995 The Pennsylvania State University, Pennsylvania (part-time)
University Learning Resource Center
Supplemental Instruction Leader and Mathematics Tutor

Education

2000– Docteur ès Sciences (anticipated May 2003)
The Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland
Dissertation: Speech Recognition with Auxiliary Information.

1997–1998 Master of Science in Cognitive Science and Natural Language
The University of Edinburgh, United Kingdom
Dissertation: Speech Recognition using Phonetically Featured Syllables.

1991–1995 Bachelor of Science in Mathematics, with minor in Computer Science
The Pennsylvania State University, Pennsylvania

125

Computer Experience

Operating Systems: Solaris, UNIX/Linux, Windows, FTX 2.1, MacOS

Computer Applications: HTK 2.1, esps/waves+, NICO Artificial Neural Network Toolkit,
Conversant Voice Information System

Languages: C++, C, Pro-C, PERL, Matlab, ksh, HTML, SQL, REXX, Pascal

Languages

English (native), French (good), Spanish (moderate), Japanese (basic)

Published/Accepted Papers

Stephenson, T. A., Magimai-Doss, M., and Bourlard, H. (2003). Speech recognition of spontaneous,
noisy speech using auxiliary information in Bayesian networks. In Proceedings of the 2003 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP-03), volume 1, pages
20–23, Hong Kong.

Stephenson, T. A., Magimai-Doss, M., and Bourlard, H. (2002). Auxiliary variables in conditional
Gaussian mixtures for automatic speech recognition. In 7th International Conference on Spoken
Language Processing: ICSLP 2002 (Interspeech 2002), volume 4, pages 2665–2668, Denver.

Stephenson, T. A., Escofet, J., Magimai-Doss, M., and Bourlard, H. (2002). Dynamic Bayesian
network based speech recognition with pitch and energy as auxiliary variables. In H. Bourlard,
T. Adali, S. Bengio, J. Larsen, and S. Douglas, editors, Neural Networks for Signal Processing XII–
Proceedings of the 2002 IEEE Signal Processing Society Workshop (NNSP 2002), pages 637–646,
Martigny, Switzerland.

Stephenson, T. A., Magimai-Doss, M., and Bourlard, H. (2002). Mixed Bayesian networks with
auxiliary variables for automatic speech recognition. In International Conference on Pattern Recog-
nition (ICPR 2002), volume 4, pages 293–296, Quebec City, PQ, Canada.

Stephenson, T. A., Mathew, M., and Bourlard, H. (2001). Modeling auxiliary information in
Bayesian network based ASR. In 7th European Conference on Speech Communication and Technol-
ogy (Eurospeech ’01), volume 4, pages 2765–2768, Aalborg, Denmark.

Stephenson, T. A., Bourlard, H., Bengio, S., and Morris, A. C. (2000). Automatic speech recognition
using dynamic Bayesian networks with both acoustic and articulatory variables. In 6th Interna-
tional Conference on Spoken Language Processing: ICSLP 2000 (Interspeech 2000), volume 2, pages
951–954, Beijing.

King, S., Stephenson, T., Isard, S., Taylor, P., and Strachan, A. (1998). Speech recognition via
phonetically featured syllables. In Proceedings ICSLP 98: 5th International Confence on Spoken
Language Processing, volume 3, pages 1031–1034, Sydney.

126 CURRICULUM VITAE

Submitted Papers

Stephenson, T. A., Magimai-Doss, M., and Bourlard, H. Speech recognition with auxiliary informa-
tion. IEEE Transactions on Speech and Audio Processing. Submitted and completed one round of
reviews, current status of “revise and resubmit.”

Unpublished Papers

Magimai.-Doss, M., Stephenson, T. A., and Bourlard, H. (2003). Using pitch frequency in-
formation in speech recognition. IDIAP-RR 23, IDIAP, Martigny, Switzerland. Available at
ftp://ftp.idiap.ch/pub/reports/2003/rr03-23.ps.gz.

Escofet Carmona, J. and Stephenson, T. A. (2003). Automatic speech recognition using dynamic
Bayesian networks with the energy as an auxiliary variable. IDIAP-RR 18, IDIAP, Martigny,
Switzerland. Available at ftp://ftp.idiap.ch/pub/reports/2003/rr03-18.ps.gz.

Stephenson, T. A. (2003). Conditional Gaussian mixtures. IDIAP-RR 11, IDIAP, Martigny, Switzer-
land. Available at ftp://ftp.idiap.ch/pub/reports/2003/rr03-11.ps.gz.

Magimai.-Doss, M., Stephenson, T. A., and Bourlard, H. (2002). Modelling auxiliary informa-
tion (pitch frequency) in hybrid HMM/ANN based ASR systems. IDIAP-RR 62, IDIAP, Martigny,
Switzerland. Available at ftp://ftp.idiap.ch/pub/reports/2002/rr02-62.ps.gz.

Stephenson, T. A., Magimai Doss, M., and Bourlard, H. (2000). Automatic speech recognition using
pitch information in dynamic Bayesian networks. IDIAP-RR 41, IDIAP, Martigny, Switzerland.
Available at ftp://ftp.idiap.ch/pub/reports/2000/rr00-41.ps.gz.

Stephenson, T. A. (2000). An introduction to Bayesian network theory and usage. IDIAP-RR 03,
IDIAP, Martigny, Switzerland. Available at ftp://ftp.idiap.ch/pub/reports/2000/rr00-03.ps.gz.

Stephenson, T. A. (1998). Speech Recognition using Phonetically Featured Sylla-
bles. Master’s thesis, University of Edinburgh, United Kingdom. Available at
http://www.cstr.ed.ac.uk/projects/espresso.

Stephenson, T. A. (1998). Artificial neural networks in recognition of phonetic features in speech.
Project report for Neural Computation module during M.Sc. course. The University of Edinburgh,
United Kingdom. Available at http://www.cstr.ed.ac.uk/projects/espresso.

Stephenson, T. A. (1998). Speech recognition of phones using feature streams. Project report for
Speech Recognition module during M.Sc. course. The University of Edinburgh, United Kingdom.
Available at http://www.cstr.ed.ac.uk/projects/espresso.

