LOW-DELAY LOW-COMPLEXITY ERROR-CORRECTING
CODES ON SPARSE GRAPHS

THESE N° 2681 (2002)

PRESENTEE A LA FACULTE INFORMATIQUE ET COMMUNICATIONS

SECTION DES SYSTEMES DE COMMUNICATION
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES TECHNIQUES

PAR

Xiao-Yu HU

Master of Engineering, East China Institute of Technology, Chine
et de nationalité chinoise

acceptée sur proposition du jury:

Prof. M. Vetterli, Prof. R. Urbanke, directeurs de thése
Dr E. Eleftheriou, rapporteur
Prof. M. Fossorier, rapporteur
Prof. J. Hagenauer, rapporteur
Prof. B. Rimoldi, rapporteur

Lausanne, EPFL
2003

Fir Ying

Die Liebe ist langmiitig, die Liebe ist gutig. Sie ereifert sich nicht, sie prahlt nicht, sie blaht
sich nicht auf. Sie handelt nicht ungehirig, sucht nicht ihren Vorteil, ldsst sich nicht zum
Zorne reizen, tragt das Bose nicht nach. Sie freut sich nicht iber das Unrecht, sondern freut
sich an der Wahrheit. Sie ertragt alles, glaubt alles, hofft alles, hdlt allem stand. Die Liebe

hort niemals auf.

1. Korinther 18,4-8

Acknowledgments

First of all, I thank Dr. Evangelos S. Eleftheriou for providing such an excellent research
environment, serving as a co-advisor and providing tremendous technical guidance and in-
structions. Without his contribution, this thesis would not have been possible. I also thank
Prof. Martin Vetterli for acting as my thesis advisor and for encouraging me to pursue my own
ideas, which will influence my entire career. I thank Prof. Riidiger Urbanke for acting as a
co-advisor and for many enlightening discussions that promoted theoretical insight. I am also
grateful to Prof. J. Hagenauer, Prof. M. P. C. Fossorier and Prof. B. Rimoldi for acting as
referees of this thesis. A special thank goes to Prof. B. Rimoldi, who sparked my interest in
information and coding theory through his wonderful lectures which I attended, in the initial

stage of this thesis work.

The information and coding theory community at the IBM Zurich Research Laboratory is
a fascinating one to be a member of. I learned quite a lot from many smart people and thank
them all for sharing their ideas and experience with me. A special thank goes to my friend
Dieter-Michael Arnold, with whom I shared an office for three years. Apart from our many
discussions, he introduced me to the beauty of factor graphs and the sum-product algorithm,
and shared with me his substantial knowledge of computer skills, ranging from Matlab, Math-
ematica, to LaTex. My thanks also go to Ajay Dholakia and Thomas Mittelholzer, with whom
advances on efficient implementations of iterative decoding were made possible, to Sedat Olcer
and Giovanni Cherubini for the exciting time we spent together on the xDSL project, and to
Roy Cideciyan and Haris Pozidis for educating me with their expertise on magnetic recording

channels and the “Millipede” project.

Special thanks go to Werner Bux and Pierre Chevillat, for their continuous support and
assistance. 1 am also thankful to people with whom I could discuss and solve work-permit
problems, in particular to Anouschka Van Loon. Charlotte Bolliger has earned special acknowl-
edgment for proofreading this thesis with endurance and sharing with me her vast knowledge
of LaTex.

Needless to say, my family has always stood by me. I thank my parents for their endless

il Acknowledgments

care and support throughout all the stages of my education. I am deeply grateful to my wife

Ying Liu, for all her love, patience, support, and encouragement.
Riischlikon, Ziirich

September, 2002
Xiaoyu Hu

Abstract

This dissertation presents a systematic exposition on finite-block-length coding theory and
practice. We begin with the task of identifying the maximum achievable rates over noisy,
finite-block-length constrained channels, referred to as (e,n)-capacity C?, with ¢ denoting

target block-error probability and n the block length. We characterize how the optimum

codes look like over finite-block-length constrained channels.

Constructing good, short-block-length error-correcting codes defined on sparse graphs is the
focus of the thesis. We propose a new, general method for constructing Tanner graphs having
a large girth by progressively establishing edges or connections between symbol and check
nodes in an edge-by-edge manner, called progressive edge-growth (PEG) construction. Lower
bounds on the girth of PEG Tanner graphs and on the minimum distance of the resulting
low-density parity-check (LDPC) codes are derived in terms of parameters of the graphs.
The PEG construction attains essentially the same girth as Gallager’s explicit construction
for regular graphs, both of which meet or exceed an extension of the Erdés—Sachs bound.
The PEG construction proves to be powerful for generating good, short-block-length binary
LDPC codes. Furthermore, we show that the binary interpretation of GF(2°) codes on the
cycle Tanner graph TG(2, d.), if b grows sufficiently large, can be used over the binary-input
additive white Gaussian noise (AWGN) channel as “good code for optimum decoding” and

“good code for iterative decoding”.

Codes on sparse graphs are often decoded iteratively by a sum-product algorithm (SPA)
with low complexity. We investigate efficient digital implementations of the SPA for decoding
binary LDPC codes from both the architectural and algorithmic point of view, and describe
new reduced-complexity derivatives thereof. The unified treatment of decoding techniques
for LDPC codes provides flexibility in selecting the appropriate design point in high-speed

applications from a performance, latency, and computational complexity perspective.

Keywords: Shannon capacity, finite block length capacity, error-correcting codes, low-density

parity-check codes, sum-product algorithm, density evolution, codes on graphs

il

Kurzfassung

Die vorliegende Dissertation ist eine systematische Abhandlung von Theory und Praxis der
Kodierung bei endlicher Blocklinge. Zuerst wird die maximale erreichbare Ubertragungsrate
bei verrauschten Ubertragungskanilen unter der Bedingung, dass die Blocklinge endlich ist,
definiert. Wir bezeichnen diese Kapazitét als (e, n)-Kapazitdt CT, wobei € die Blockfehlerrate
und n die Blockldnge bezeichnen. Dies erlaubt es uns, optimale Kodes fiir Kanéle mit endlicher

Blockldnge zu charakterisieren.

Im Mittelpunkt dieser Arbeit steht die Konstruktion von guten, fehlerkorrigierenden Kodes
mit kurzer Blockldnge, die von diinn besetzten Graphen stammen. Wir schlagen eine neue,
allgemeingiiltige Methode zur Konstruktion von Tannergraphen mit grosser Taillenweite vor,
indem sukzessive Kanten oder Verbindungen zwischen den Symbol- und Priifbitknoten erstellt
werden. Diese Methode bezeichnen wir demzufolge als fortschreitendes Kanten-Wachstum-
Verfahren oder kurz FKW-Verfahren. Untere Schranken auf die Taillenweite des FKW-Tanner-
Graphen und auf die Minimaldistanz der resultierenden ’low-density parity-check’ (LDPC)
Kodes werden in Abhéngigkeit der Parameter des Graphen hergeleitet. Das FKW-Verfahren
erreicht die gleiche Taillenweite wie die explizite Konstruktion von Gallager fiir regulire Gra-
phen. Beide Verfahren erreichen mindestens oder iibertreffen in manchen Fillen sogar die
Erdos-Sachs Schranke. Das FKW-Verfahren erlaubt die Konstruktion von guten bindre! ! n
LDPC-Kodes mit kurzer Blockldnge. Weiter zeigen wir, dass die bindre Interpretation von
GF(2%) Kodes basierend auf dem Tanner-Graphen TG(2, d.) fiir den binsiren Eingangskanal
mit additivem weissen Gausschen Rauschen gute Kodes sowohl bei optimaler als auch bei

iterativer Dekodierung sind - vorausgesetzt b wichst geniigend schnell.

Kodes, die von diinn besetzten Graphen stammen, konnen mit geringer Rechenkomple-
xitét iterativ mit dem Summe-Produkt Algorithmus (SPA) dekodiert werden. Wir unter-
suchen effiziente digitale Implementationen des SPA zur Dekodierung von bindren LDPC-
Kodes unter dem Gesichtspunkt sowohl der Schaltungsarchitektur als auch der Algorithmik
und beschreiben daraus resultiernde neue Varianten mit geringerer Rechenkomplexitat. Die

umfassende Behandlung von solchen Dekodiertechniken fiir LDPC-Kodes ermdéglicht es, dass

v

vi Kurzfassung

bei Hochgeschwindigkeits-Anwendungen der Betriebspunkt vom Standpunkt der Leistung,

Verzogerung und Rechenkomplexitit flexibel ausgewdhlt werden kann.

Stichworte: Kanalkapazitit von Shannon, Kanalkapazitit bei endlicher Blocklange, fehler-
korrigierende Kodes, Kodes mit schwachbesetzter Priifbit-Matrix, Summe-Produkt Algorith-

mus, Dichteentwicklung, graphenbasierte Kodes

Contents

Abstract iii
Kurzfassung v
List of Figures xi
List of Tables XV
Acronyms xvii
1 Introduction 1
1.1 Motivation e 1
1.2 Historical Development 3
1.2.1 Channel Capacity e 3
1.2.2 Classic Error-Correcting Codes 4
1.2.3 Codes on Sparse Graphs 4
1.3 Resultsof the Thesis 5
1.4 Outline of the Thesis 7
2 Finite-Block-Length-Constrained Channel Capacity
2.1 Introduction
2.2 The (e,n)-Capacity 11
2.3 Channel Coding Theorem Revisited 18
2.4 The Optimum Decoder 22
2.5 Probabilistic Code with Correlated Codewords 25
2.5.1 Normalized Euclidean Distance 26
2.5.2 Asymptotically Sphere-Packing Code 28
26 SUMMAry e e e 33
3 Regular and Irregular Progressive Edge-Growth Tanner Graphs 35
3.1 Introduction e 35

vii

viii Contents

3.2 Definitions and Notations e 39
3.3 Progressive Edge-Growth (PEG) Algorithm 42
3.4 Graph Properties 45
341 GirthBound. 45
3.4.2 Minimum Distance Bound oL, 51

3.5 Asymptotic Analysis of Ensemble Codes 56
3.6 Irregular PEG Tanner Graphs 61
3.6.1 Constraints e e e 62
3.6.2 Cost Function oo 63
3.6.3 Constrained “Downhill Simplex” Search 63

3.7 Code Performance 66
3.71 RegularCodes. o 66
3.7.2 TIrregular Codes 69

3.8 Linear-Time Encoding 72
3.9 Performance of PEG Codes versus Turbo Codes 76
3.10 PEG Tanner-Graph Codes over GF(2%) 78
311 SumMmary e e e e e 81
4 Cycle Tanner-Graph Codes 83
41 Introduction L e e 83
4.2 Weight-Spectrum Analysis 85
4.3 A Perspective on Iterative Decoding from the Kikuchi Approximation 90
4.4 Construction of Cycle Tanner-Graph GF(2°) Codes 93
4.5 Simulation Results 95
4.6 SUMMATY« © v ottt e e e e e e 98
5 Decoding Binary LDPC Codes 99
5.1 Introduction 99
5.2 SPA in the Log-Likelihood Domain 101
5.3 Serial Implementation: Trellis Topology 102
9.3.1 Check-Node Updates 102
5.3.2 Symbol-Node Updates 103
5.3.3 Efficient Implementation of the Core Operation LU ® V) 104

5.4 Parallel Implementation: Tree Topology 106
5.5 Simulation Results 109
5.6 Approximations of the LLR-SPA 111

3.6.1 Separation Principle 111

Contents ix
5.6.2 Approximation of |[L{U@G V)| 114

5.6.3 Density Evolutiono oL 115

5.6.4 Approximation of |L(us, ©Se)| oL 118

5.6.5 Graph-Based Approximation 120

D7 SUMMATY o e e e e e e e e e e e e e e 125

6 Turbo Equalization: A Message-Passing Scheduling Perspective 127
6.1 Introduction L e 127
6.2 Joint Factor Graph Representation 128
6.3 Message-Passing Schedules L o oL 131
6.4 Simulation Results o o L 135
6.5 Summary R 137

7 Concluding Remarks 139
7.1 Conclusion e e 139
7.2 Outlook 141
Appendix 143
Bibliography 149
Biography 163

List of Figures

2.1
2.2

2.3

24

2.5

2.6

3.1

3.2
3.3
3.4
3.5
3.6
3.7

The discrete-time additive white Gaussian noise channel.
The minimum required signal-to-noise ratio (SNR) of the Shannon sphere-
packing bound for codes with varying block length n and rate 1 bit per sample,
operating over a continuous-input AWGN channel at p,, = 1073, 107%, 1073,
107%, and 1071°, respectively.
Upper bound on (€, n)-capacity of the sphere-packing bound for codes with
varying block length n, operating over a continuous-input AWGN channel at a
SNR of 3.0 (4.7712 dB), and p,, = 1073, 107%, 107°, 1075, 1071%, respectively. .
Signal-to-noise ratio of the spherical random-coding bound (as compared with
the sphere-packing bound) for codes with varying block length n, operating
over a continuous-input AWGN channel at a SNR of 3.0 and p, = 107%.
Achievable rates of the spherical random-coding bound (as compared with the
sphere-packing bound) for codes with varying block length n, operating over a
continuous-input AWGN channel at a SNR of 3.0 and p,, = 107%. Note that the

discontinuity in the short-block-length region is caused by numerical instability.

Cumulative distribution function (cdf) of the normalized Euclidean distance
with varying block length n, where P = 0.5. As n increases, its cdf becomes a

step function meaning that the probability mass concentrates on its expectation

An example of symbol node degree D;, = {2,2,2,2,3,3,3,3} irregular Tanner
graph.
A breadth-first-search (BFS) subgraph spreading from symbol node s;.

A BFS subgraph spreading from parity-check node ¢;.
Lower and upper bounds on a PEG regular Tanner graph with d; = 3,d. = 6.
Lower and upper bounds on a PEG regular Tanner graph with d; = 4,d, = 8.
An “active” tree induced by a minimum-weight codeword.
Girth histograms of a PEG Tanner graph, MacKay’s code, and a random graph,
with parameters n = 504, m = 252,d, =3,d.=6.

xi

15

16

17

17

27

40
41
42
51
92
54

xii

List of Figures

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

4.1

4.2

Bit- and block-error rates of PEG Tanner-graph code, MacKay’s code, and
random graph code, with parameters n = 504, m = 252,d, =3,d. =6. 67
Girth histograms of a PEG Tanner graph, MacKay’s code, and a random graph,

with parameters n = 1008, m = 504,d, =3,d.=6.. 68
Bit- and block-error rates of a PEG Tanner-graph code, MacKay’s code, and
random graph code, with parameters n = 1008, m = 504,d; = 3,d.=6. 69
Bit- and block-error rates of the irregular PEG Tanner-graph code, irregu-

lar random-graph code, and MacKay’s code (regular) with parameters n =
504,m = 252. The symbol-node-degree distribution for the irregular PEG
Tanner-graph code is A(z) = 0.4753222+0.2795372°+0.03486722*+0.1088912°+
0.101385z5. e 70
Bit- and block-error rates of the irregular PEG Tanner-graph code, irregu-

lar random-graph code, and MacKay’s code (regular) with parameters n =
1008, m = 504. The symbol-node-degree distribution for the irregular PEG
Tanner-graph code is A(z) = 0.4753222+0.27953723+0.0348672z*+0.108891 25+
0.101385z%5. 71
Block-error rates of irregular PEG (solid lines) and irregular random-graph
codes (dashed lines) with density-evolution-optimized degree distributions; code
parameters are n =504, m =252. oo 72
Linear-time-encodable PEG Tanner graph with zigzag pattern. The solid edges
correspond to the zigzag pattern, which is specified before the PEG algorithm
starts. The dashed lines correspond to the edges established by the PEG algo-
rithm. e 74
Bit- and block-error rates of an irregular PEG Tanner-graph code, an upper-
triangular PEG Tanner-graph code, and MacKay’s code. 76
Bit- and block-error rates of a linear-time-encodable PEG LDPC code and a
CDMA2000 turbo code, with block length 1024 and rate (512-6)/1024. 77
Bit- and block-error rates of a linear-time-encodable PEG LDPC code and a
CDMA2000 turbo code, with block length 2048 and rate (1024-6)/2048. . .. 78
Bit- and block-error rates of irregular LDPC codes over GF(2), GF(8), GF(16),
GF(32), and GF(64), based on PEG Tanner graph with the parameters given

in Table 3.1. 80

Hamming weight spectra of binary sparse random ensembles with different block
lengthsn. e 88

Hamming weight spectra of binary random ensembles as a function of density p. 89

List of Figures xiii

4.3

4.4
4.5
4.6

4.7

5.1
5.2
5.3
5.4
5.5
9.6
5.7
5.8
5.9

5.10
5.11

5.12

6.1
6.2
6.3

6.4
6.5

Hamming weight spectra of random ensembles over GF(g) with the same block

length n of 1200 bits and the same density p of 0.005. 90
The pairwise Markov random graph model of a Tanner-graph code. 92
The Petersen graph (left) and its induced TG(2, 3) (right). 94

Lower and upper bounds on the girth of cycle TG(2, 4). The symbols o, ¢, x
correspond to Ramanujan, look-ahead-enhanced PEG, and PEG Tanner graphs,
respectively. L L 96
Block-error rate of cycle Tanner-graph GF(2°) codes under iterative decoding.
The cycle Tanner graph is the edge-vertex incidence graph of the Ramanujan
graph X*7 with m = 336 and n = 672. The actual (binary) block length of

cycle Tanner-graph GF(2%) codes ismbinbits. 97
A serial configuration for computing the check-node updates. 104
The function g(z) =log(1+e)., 105
A parallel configuration for computing the check-node updates. 107
The function h(z) =logle® — 1. 108
Performance of [n = 1008, k = 504] LDPC code of MacKay. 109
Performance of [n = 6000, k = 3000) PEG LDPC code. 110
The coarse approximation of the function g(z) = log(1+e7 %),z >0. 115
The coarse approximation of function g(z) = —log(l1 —e™®),z >0. 120

Reliability-based balanced tree separating the z = 4 least reliable (left sub-tree)
and the d.— z most reliable incoming messages (right sub-tree) in a parity-check

node uy @® -+ D uy, = 0 (mod 2). The double circle represents a binary

intermediate variable that is a modulo-2 sum of symbol nodes. 121
Balanced subtree of the z = 4 least reliable incoming messages. 122
Performance of the LLR-SPA and its simplifications using z = 2, 3, and 4 least

reliable values for a rate-4158,/4489 code on the AWGN channel. 124
Performance of the LLR-SPA and its simplifications using z = 2, 3, and 4 least

reliable values for a rate-1/2 code (1008, 504) on the AWGN channel. 124
Block diagram of the LDPC-coded partial-response (PR) system 129
Joint factor graph representation of the LDPC-coded PR system. 130

An example of the ordinary forward-backward message-passing schedule for the
PR channel detection. L 133
An example of the flooding message-passing schedule for the PR channel detection.133
An example of the parallel windowed forward-backward (PWFB) message-
passing schedule for the PR channel detection with w =2. 135

List of Figures

Xiv
6.6 Performance of the LDPC-coded EPR4 channel for various message-passing
schedules. e 136
6.7 Performance of turbo decoding for various message-passing schedules over the
AWGN channel. L 137
B.1 The pdf of a normalized chi-square-distributed random variable for several de-

grees of freedom with o2 =1. 145

List of Tables

3.1

5.1
5.2
5.3
5.4

5.5
5.6

Optimized symbol-node-degree distributions for rate-1/2 PEG codes over GF(2°).

The block length in binary bitsisnb. 80
Quantization table for g(z) =log(14+e71#). 105
Piecewise linear function approximation for g(z) = log(1+e7*)..| 106
Piecewise linear function approximation for h(z) =logle®* —1|. 109
Threshold (E,/Ny) of LDPC codes with LLR-SPA and approximation of LLR-

SPA. 118
Threshold (E,/Ny) of LDPC codes decoded with 5-bit quantization. 118
Threshold (E,/Ny) of LDPC codes decoded with 6-bit quantization. 119

XV

Acronyms

AWGN: Additive white Gaussian noise
BCJR: Bahl-Cocke-Jelinek-Raviv

BEC: Binary erasure channel

BP: Belief propagation

BSC: Binary symmetric channel

CBP: Cluster belief propagation
CDMA: Code division multiple access
DMUC: Discrete-time memoryless channel
DSL: Digital subscriber lines

FFT: Fast Fourier transform

GF': Galois field

LDPC: Low-density parity-check

LLR: Log-likelihood ratio

LPF: Low-pass filter

MAP: Maximum a-posteriori probability
ML: Maximum likelihood

MRF: Markov random field

MTR: Maximum-transition-run

PEG: Progressive edge-growth

PLF: Piecewise linear function

PR.: Partial response

PWFB: Parallel windowed forward-backward
SNR: Signal-to-noise ratio

SPA: Sum-product algorithm

TG: Tanner graph

TSB: Tangential sphere bound

xvii

Chapter 1

Introduction

1.1 Motivation

A major goal of coding theory is to find a class of error-correcting codes, together with the
corresponding decoding algorithms, that realize the promise of Shannon’s noisy channel coding
theorem in a practical way. In the over 50 years since Shannon determined the capacity of
ergodic channels [1,2], the construction of capacity-approaching coding schemes has been the
supreme goal of coding research, as evidenced by a large number of significant contributions.
Only quite recently have practical codes and decoding algorithms that can closely approach the
channel capacity of some classical memoryless channels become available. It is a remarkable
fact that all known practical, capacity-approaching coding schemes are now understood to
be codes defined on graphs, particularly sparse graphs, together with the associated iterative

decoding algorithm — the sum-product algorithm.

It remains a puzzling fact (maybe for ever) that the main ideas pertaining to codes on
graphs and to the sum-product algorithm were, in essence, invented 40 years ago by Gallager
[3, 4] but were subsequently ignored by the coding community. Only a limited number of
researchers, for instance, Zyablov and Pinsker, and Margulis continued to study Gallager’s
low-density parity-check (LDPC) codes. In 1981, Tanner [5] formally introduced the graphical
model notation for describing codes, and proved the optimality of the sum-product algorithm

in cycle-free graphs.

The subject of codes on graphs and iterative decoding enjoyed a burst of intense interest
with the discovery of turbo codes [6] and the rediscovery of LDPC codes [7,8] in the past
few years. In particular, it has been shown by Richardson, Shokrollahi and Urbanke {9,10]

that an ensemble of LDPC codes of length one million achieves a bit-error probability of

1

2 Chapter 1. Introduction

107°, less than 0.13 dB away from capacity, with feasible complexity. It seems unlikely that
further improvements could have any practical significance in situations that involve end-to-
end communication over memoryless channels, and where very long block lengths are tolerable

or affordable.

On the other hand, many real-time applications actually demand relatively short block
lengths which are less than one or several thousands, either due to a strict end-to-end delay
constraint or due to other implementation considerations, for instance, memory and buffer
constraints. As opposed to the classic Shannon theory focusing on block lengths going to
infinity, there are still many open issues concerning finite-block-length coding theory and

practice. We summarize some but not all below:

e The Shannon theory assumes infinite coding latency, but in practice any application of
interest is more or less constrained with a fixed coding latency that is tolerable or afford-
able. For instance, in magnetic recoding channels, a coding block is often limited to 4096
bits; in wireless communications, the coding block length ranges from several hundred to
a few thousand bits, depending on the type of services; and in wireline communications
such as xDSL technologies, the required end-to-end coding latency leads to not more
than ten thousand bits. In addition, error-free is too costly for all these applications,
and each application has its own target error probability. Therefore, it is tempting to
ask the following questions: What is the maximum achievable rate under a fixed block
length constraint together with a target error probability, and fundamentally, what do
the optimum coding scheme look like? Moreover, can codes on sparse graphs together
with iterative decoding closely approach the optimum coding scheme at relatively short
block lengths?

e Constructions of sparse-graph codes in the existing literature focused on random graphs,
among which bad graphs are assumed to be easily picked out. Unfortunately this assump-
tion is true only for large graphs and a good construction method for short-block-length
sparse-graph codes is still lacking. Can one define an expurgated random construction
that effectively precludes bad graphs with short cycles and small minimum distance?

How does the expurgated random ensemble perform asymptotically?

e Currently there are increasing activities to try to realize the sum-product decoding algo-
rithm in many applications, ranging from wireless services, deep-space communications,
xDSL technologies, to magnetic recoding channels. In order to enable extremely high-
speed applications, can one find an efficient implementation of iterative decoding from

both the algorithmical and the architectural standpoint?

1.2. Historical Development 3

These are the issues that will be addressed in this thesis.

1.2 Historical Development

1.2.1 Channel Capacity

The pioneering work on channel characterization in terms of channel capacity and random
coding was done by Shannon [1,2]. Additional contributions were subsequently made by
Gilbert [11], Elias [12], Gallager [13], Wyner [14], Shannon, Gallager and Berlekamp [15],
Forney [16] and Viterbi [17].

The Noisy Channel Coding Theorem proved by Shannon states:

Theorem 1.1 All rates below the “information” channel capacity C are achievable, where

the information channel capacity of a memoryless channel is defined as

C =max I(X;Y), ' (1.1)
p(z)

the maximum is taken over all possible input distributions p(x) on the mutual information of

the channel input X and output Y. Specifically, for every rate R < C, there exists a sequence

of (n, 2"®) codes, where n is the block length and 2"F is the number of codewords in this

code, with maximum probability of block error €™ — 0 exponentially as n — co. Conversely,

any sequence of (n, 2"%) codes with €™ — 0 must have R < C.

Although the theorem shows that there exist good codes with exponentially small error
probability for long block lengths, it does not provide a way of constructing the best codes. If
one uses the scheme suggested by the random-coding proof [18] and generates a code at random
with the appropriate distribution, the code constructed is likely to be good for long block
lengths. However, without some structure in the code, it is very difficult to decode. Hence the
theorem does not provide a practical coding scheme. Ever since Shannon’s original paper on
information theory, researchers have tried to develop structured codes that are easy to encode
and decode. So far, many codes with interesting and useful structures have been developed,
but only quite recently, with the discovery of turbo codes and rediscovery of LDPC codes,
have practical codes and decoding algorithms become available that can closely approach the

channel capacity of some classical memoryless channels.

4 Chapter 1. Introduction

1.2.2 Classic Error-Correcting Codes

The pioneering work on coding and coded waveforms for digital communications was done
by Hamming [19], Golay [20], Muller [21] and Reed [22]. During the period 1960-1970, there
were a number of significant contributions to the development of coding theory and decoding
algorithms. In particular, we cite the papers by Reed and Solomon [23] on Reed-Solomon (RS)
codes, which are now ubiquitously used, the papers by Hocquenghem [24] and Bose and Ray-
Chaudhuri [25,26] on BCH codes, and the Ph.D dissertation of Forney [27] on concatenated
codes. These works were followed by the papers of Goppa [28,29] on the construction of a new
class of linear cyclic codes called Goppa codes, and the paper of Justesen [30] on a constructive
technique for asymptotically good codes. The first decoding algorithm for binary BCH codes
was developed by Peterson [31]. A number of refinements and generalizations to RS codes
were investigated by Chien [32], Forney [33], Massey [34], and Berlekamp [35].

In parallel to these developments on block codes are the developments in convolutional
codes, which were invented by Elias [12]. Wozencraft and Rieffen [36] described a sequential
decoding algorithm for convolutional codes. This algorithm was later refined by Fano [37],
and is now called the Fano algorithm. Subsequently, the stack algorithm was devised by
Zigangirov [38] and Jelinek [39], and the Viterbi algorithm was devised by Viterbi [40]. In
decoding convolutional codes with small constraint lengths, the Viterbi algorithm is the most

popular one because of its optimality and modest complexity.

1.2.3 Codes on Sparse Graphs

Codes on sparse graphs is a hot topic of great current interest. The main ideas pertaining to
codes on sparse graphs and to sum-product decoding algorithm were, in essence, invented 40
years ago by Gallager [3] but were subsequently neglected by the coding community. Zyablov
and Pinsker [41] and Margulis [42] studied Gallager’s LDPC codes in earlier times. In 1981,
Tanner [5] wrote a landmark paper that formally introduced the graphical model notation
for describing codes, proved the optimality of the sum-product algorithm in cycle-free graphs,
and founded the topic of algebraic methods for constructing graphs suitable for sum-product

decoding.

Recent excitement about codes on sparse graphs and sum-product decoding was sparked
by the excellent simulation performance exhibited by the turbo codes of Berrou, Glavieux
and Thitimajshima [6], MacKay and Neal’s [7] near-capacity results on Gallager codes, and

the linear-complexity expander graph codes of Sipser and Spielman [43]. Many researchers

1.3. Results of the Thesis 5

quickly recognized a unifying theme in the iterative decoding algorithms, and papers showing
the connections between iterative decoding of codes on sparse graphs and algorithms in the
artificial intelligence [44,45] and systems theory communities were published by Wiberg [46],
Loeliger and Koetter [47], McEliece, MacKay and Cheng [48], Kschichang and Frey [49], and
Aji and McEliece [50].

The asymptotic analysis of codes on sparse graphs has attracted a lot of attention lately. It
has been shown by Luby, Mitzenmacher, Shokrollahi and Spielman [51-53] that an ensemble
of randomly constructed codes defined on irregular sparse graphs asymptotically achieves the
channel capacity of the binary erasure channel. An important general discovery that arose
from this work was the superiority of irregular Tanner graphs. Inspired by their analytical
techniques, Richardson, Urbanke and Shokrollahi [9,10] have been able to design long irregular
LDPC codes that for all practical purposes achieve the Shannon limit of binary additive white

Gaussian noise (AWGN) channels using the density evolution approach.

More recently, using an improved density evolution algorithm, Chung, Forney, Richardson,
and Urbanke [54] have designed an ensemble of rate-1/2 codes having a threshold within
0.0045 dB of the Shannon limit, and a performance within 0.036 dB of the Shannon limit at
a bit-error rate of 1078 with a block length of 107.

1.3 Results of the Thesis

The main subject of this thesis is low-delay low-complexity error-correcting codes on sparse
graphs, in particular on sparse Tanner graphs or bipartite graphs, with an emphasis on code
construction and decoding algorithm. The term low-delay has two meanings: first the block
length of the error-correcting codes is confined to a relatively small number (depending on the
specific application of interest) so that the waiting time for encoding a block of data and for
collecting a block of received signals for the purpose of decoding is strictly fixed; secondly, the
decoding delay of one block is minimized by two levels of parallelism in the iterative decoding
procedure: the node level and the edge level. The node-level parallelism is widely recognized,

whereas the edge-level parallelism explored in this thesis is original.

Special focus is on the following topics:

e The capacity of finite-block-length constrained channels is investigated. For the AWGN
channel, the maximum achievable (transmit) rate under the finite-block-length con-
straint, referred to as (e, n)-capacity CP, with ¢ denoting the target block-error proba-
bility and n the block length, is identified.

Chapter 1. Introduction

e We investigate a family of time-varying block codes based on a probabilistic construc-
tion that closely approaches the finite-block-length constrained capacity and provably
achieves the Shannon limit asymptotically over the AWGN channel. We present an
improved construction of a probabilistic code with correlated codewords, enhancing its
asymptotic Euclidean distance by introducing a specific amount of correlation between
codewords. Analytical results show that, if the correlation coefficients are uniformly
chosen to be —1/(2"% —1), where 2" denotes the number of codewords, the correspond-
ing probabilistic code is asymptotically the best code in the sense of maximizing the

expected Euclidean distance, known as the sphere-packing code.

e We propose a general method for constructing Tanner graphs having a large girth by
progressively establishing edges or connections between symbol and check nodes in an
edge-by-edge manner, called the progressive edge-growth (PEG) algorithm. The algo-
rithm is simple, flexible, yet powerful to generate good LDPC codes.

e Lower bounds on the girth of PEG Tanner graphs and on the minimum distance of
the resulting LDPC codes are derived in terms of parameters of the graphs. The PEG
construction attains essentially the same girth as Gallager’s explicit construction for
regular graphs, both of which meet or exceed an extension of the Erdés-Sachs bound.

An asymptotic analysis of a relaxed version of the PEG construction is performed.

e We describe an empirical approach using a variant of the “downhill simplex”search
algorithm to design irregular PEG graphs for small codes with fewer than a thousand bits,
complementing the density evolution approach originally devised for larger, randomly
constructed codes. The encoding of LDPC codes based on the PEG principle is also
being investigated. We show how to exploit the PEG construction to obtain LDPC

codes that allow linear time encoding.

o We investigate regular and irregular LDPC codes using PEG Tanner graphs but allowing
symbol nodes to take values over GF(2%), b > 1. It is demonstrated that one can
consistently improve the performance of binary interpretation of sparse-graph GF(2?)
codes over the binary AWGN channel under iterative decoding, with larger field order

b, while gradually decreasing the average column weight.

e Analytical and simulation results show that the binary interpretation of GF(2%) codes
on the cycle Tanner graph TG(2, d.), if b reaches sufficiently large values, can be used
over the binary-input AWGN channel as “good code for optimum decoding” and “good

code for iterative decoding”

1.4. Outline of the Thesis 7

¢ Efficient implementations of the sum-product algorithm (SPA) for decoding LDPC codes
using log-likelihood ratios (LLR) as messages between symbol nodes and parity-check

nodes are presented.

e Various reduced-complexity derivatives of the LLR-SPA are proposed. Both serial and
parallel architectures for the check-node update are investigated, leading to trellis and
tree topologies, respectively. Density evolution is utilized as an analyzing tool to verify
the effectiveness of approximate LLR-SPAs. The unified treatment of decoding tech-
niques for LDPC codes provides flexibility in selecting the appropriate design point in

high-speed applications in terms of performance, latency and computational complexity.

e We propose a new message-passing schedule, characterized by a parallel windowed
forward-backward (PWFB) schedule over a trellis, for joint iterative decoding of LDPC
codes and partial response (PR) channels. It is demonstrated by simulation that with
an appropriate selection of the window size this schedule attains low latency and essen-
tially the same performance as the ordinary forward-backward schedule (over the PR
channel) with the same computational complexity in the context of turbo equalization

of LDPC-coded partial response system.

1.4 Outline of the Thesis

In Chapter 2 we start with the definition of the channel capacity involving the block length and
target block-error probability. Using Shannon’s spherical random-coding bound and sphere-
packing bound, we provide numerical examples of finite-block-length capacity of the AWGN
channel. We propose two constructions of probabilistic codes, one with independent codewords
and the other with correlated codewords. This chapter provides some knowledge of and insight

into “good codes for optimum decoding” for finite-block-length constrained channels.

One of the main results of this thesis is the PEG construction of Tanner graphs that
have a large girth and respectable minimum distance in their resulting LDPC codes. The
PEG algorithm and its features are the main topic of Chapter 3. We formally present the
description of the PEG algorithm and derive a lower bound on the graph girth. Following
Tanner’s approach, we are able to provide a lower bound on the minimum distance of the
resulting LDPC codes, thanks to the lower bound of the girth. The asymptotic analysis of the
PEG construction is treated as well. In this chapter, we also consider practical issues such as
how to design a good irregular degree sequence for the PEG construction, how to incorporate

the linear-time encoding property into the PEG construction, and how to extend it to GF(2°)

8 Chapter 1. Introduction

codes. Finally we offer extensive simulation results.

The binary interpretation of GF(2°) codes on the cycle Tanner graph TG(2, d.) is the main
subject of Chapter 4. We derive an expression for the average Hamming-weight spectrum
of sparse-graph GF(2%) codes and analyze their corresponding “cluster belief propagation”
decoding algorithm in terms of the Kikuchi approximation in the context of statistical physics.

Constructions of TG(2, d.) on the basis of Moore and Ramanujan graphs are also treated.

Chapter 5 deals with the topic of low-delay and low-complexity digital implementation of
LLR-SPA for decoding binary LDPC codes. We investigate LLR-SPA from both the architec-
tural and the algorithmic point of view. Trellis and tree topologies and their corresponding
core operations are derived and simplified. This chapter also consists of three approximates
of LLR-SPA, focusing on a maximum level of simplicity at the expense of accuracy and cor-
rectness of SPA. Density evolution is utilized as an analyzing tool to verify the effectiveness

of approximate SPAs.

Chapter 6 deals with the turbo equalization for an LDPC-coded partial-response channel
from the message-passing scheduling perspective. Within the framework of factor graph model
and the associated SPA algorithm, (almost) all existing turbo equalization algorithms boil

down to various message-passing schedules.

Finally, Chapter 7 contains the conclusions and an outlook on possible further research

activities in the area of this thesis.

Chapter 2

Finite-Block-Length-Constrained
Channel Capacity

2.1 Introduction

Ideas presented in the special issue on codes and graphs and iterative algorithms [55] allow
to approach the Shannon limit of the AWGN channel to within hundredth of a decibel at the
expense of very long block lengths. However, in most applications where the system delay
is strictly limited, approaching the Shannon limit becomes problematic. To construct good
block codes, the major parameters of interest are the probability of block (word) decoding
error p,, the code block length n, and the rate R. The Shannon Noisy Channel Coding
Theorem [1] states that, if R is less than the Shannon limit C, no matter how close they are,
surely there exist codes for which the word error probability p,, becomes small exponentially
with increasing n. There are, of course, prices to be paid for increasing the block length, one
of which is coding latency. At the transmitter side, the first information bit in a block of
incoming data stream must generally be delayed by n samples (or symbols) before a codeword
can be formed, and at the receiver it is the same case that decoding also requires a complete
codeword. The block length n is thus referred to as coding latency. Note that the coding
latency differs from the processing delay in that it is inherent in a coding scheme and can not

be reduced by increasing the processing capability.

The Shannon limit assumes infinite coding latency, but in practice any application of in-
terest is often constrained with a fixed coding latency that is tolerable or affordable, and a
target error probablity p,. It is tempting to ask the following questions: what is the max-

imum achievable rate under a finite-block-length constraint and the target-error-probability

9

10 Chapter 2. Finite-Block-Length-Constrained Channel Capacity

Py constraint, and subsequently, what is the optimum coding scheme in such a case? These

two fundamental issues will be addressed in this chapter !.

In Section 2.2, we introduce a modified definition of channel capacity, referred to as (¢, n)-
capacity C?, in the sense that the (block) error probability of a block code with block length n
is required to be no larger than e. It follows immediately from the definition that the Shannon
limit C' turns out to be an asymptotic version of (¢, n)-capacity, namely C = 11_1)%732{.10 Ccr.
Utilizing the upper and lower bounds on the block-error probability of a code as a function of
its block length, we derive a universal approach to calculate the respective lower and upper
bounds on the (e, n)-capacity of the AWGN channel. Numerical results agree with the old
folk theorem that random codes are always good for large block lengths [1,56], and more
importantly, we observe that even for moderate to relatively small block lengths, the average
performance of the ensemble of spherical random codes is remarkably close to that of a “best”
sphere-packing code, despite the fact that a sphere-packing code does not necessarily exist at
all. This observation strongly suggests a new philosophy to construct good codes, i.e., the use
of probabilistic method to “mimic” the ensemble of spherical random codes, rather than the

traditional idea of searching for a deterministic “best” code.

Section 2.3 deals with a particular construction of a probabilistic code over AWGN chan-
nels. Codewords are generated by i.i.d. Gaussian random variables. As such, the codebook
is inherently time-varying from block to block, namely each time that an information block is
transmitted, the old codebook is discarded and a new codebook is generated. As the Shannon
limit is an asymptotic version of the (¢, n)-capacity, optimum codes in the sense of achieving
the (e, n)-capacity should at least be capable of achieving it asymptotically. We show that, if
the block length n tends to infinity, the probabilistic code is indeed capable of achieving the
Shannon limit by means of a suboptimum decoding procedure—typical set decoding. This

section is basically a revisit of the Shannon’s noisy channel coding theorem.

The optimum detector (minimum probability of block-error) for the probabilistic code
is investigated in Section 2.4. The error probability performance of the optimum detector
is analyzed and approximately formulated. Further, we argue that the performance of the
probabilistic code with independent codewords approaches closely the average performance of
the ensemble of spherical random codes for moderate to large block lengths, implying that the
probabilistic code closely approaches the (e, n)-capacity. This reasoning depends primarily on
the empirical observation that the random-coding bound is nearly indistinguishable from the

sphere-packing bound for a wide range of combinations of block lengths and rates.

!This work has been presented in part at the 2001 Canadian Workshop on Information Theory, Vancouver,
BC. Also submitted to IEEE Trans. Information Theory.

2.2. The (¢, n)-Capacity 11

Much better insight can be obtained by establishing a direct relationship between the
probabilistic code and the sphere-packing code. In Section 2.5 we investigate the (normalized)
Euclidean distance properties of the probabilistic code with independent codewords over the
AWGN channel. Using a linear transformation, we present a new construction of the prob-
abilistic code with correlated codewords, improving its asymptotic (normalized) Euclidean
distance by the introduction of correlation between codewords. Analytical results show that
if the correlation coefficients are chosen uniformly to be —1/(M — 1), where M is the number
of codewords, the corresponding probabilistic code is asymptotically (in the sense of block
length) the best code maximizing the expected Euclidean distance between codewords, inci-

dently being the sphere-packing code.

2.2 The (¢,n)-Capacity

The definition of channel capacity involving coding latency n and a target block-error proba-

bility € is the following.

Definition 2.1 Given a discrete-time memoryless noise channel (DMC) with input space X.
Let C™ be the set of codes of block length n, and each component of the codewords be selected
from the space X. Consider any code c* € C™, whose block-error probability p,(c"™) over the
DMC is no greater than ¢, then the maximum rates of the set of ¢ is called the (e, n)-capacity
C? of the channel, namely

C¢ = max{R(c") : pu(c") < ¢},

where R(c") is the rate of code c".
The Shannon limit C is defined as the maximum rate that is (e, n)-achievable for all
0 < € < 1 and for all positive integers n. It follows immediately from the definition that

C = lim lim C™ (2.1)

e—0 n=>00
For any noisy channel, it can be easily checked that

li_r}r(% C7 =0, for any finite n, (2.2)

which justifies the necessity of the inclusion of target error probability in the (e, n)-capacity.

Closely related to the (e, n)-capacity is the so-called e-capacity C, where the block length
goes to infinity, namely

C. = lim C7 .

n—0o0

12 Chapter 2. Finite-Block-Length-Constrained Channel Capacity

If € denotes the target bit error probability, the e-capacity C. evaluates to 1—_%(—5, where h(-) is
the binary entropy function, i.e. h(e) = —eloge— (1 —¢€)log(1 —¢). This can be understood as
follows: First we start with a source producing data at a rate of C, bits/second with probability
1/2 of the data being 0 and probability of 1/2 of the data being 1, then we can compress that
data source into a source with a smaller rate by allowing some errors in the reproduction. If
we require the bit-error probability to be € or less, then from rate-distortion theory [57] we
can compress to the rate C(1 — h(e)). This is the best we can do in compression and these
compressed bits can be reliably communicated over a channel with capacity C = C(1 — h(e)).

It follows that C, = 1_2(6).

Back to the case where € denotes block error probability, we recall Eq. (8.110) in [18],
1
R<eR+ 7 C

Now letting n — oo, we see that

C
1-¢€
= Cll+ete+e4--1),

R

IA

which is a weak upper bound on C, because Eq. (8.110) leads to the weak converse to the
channel coding theorem. The strong converse to the channel coding theorem states that, the
Shannon capacity is a very clear dividing point — at rates below C, ¢ — 0 exponentially,
and at rates above C, ¢ — 1 exponentially with block length n. Therefore, for any finite

(non-vanishing) €, C. is essentially the same as C.

For the sake of simplicity, we concentrate on a discrete-time memoryless AWGN channel
(as shown in Fig. 2.1), which often serves as a basic modeling tool for many other kinds of
non-ideal channels. Before going on, we cite the well-known Shannon channel capacity formula
— the supremum of all rates R for which there exists at least one code with vanishing error

probability, that is
C=maxI(X;Y), (2.3)
2%

where px denotes the probability distribution of the real-valued channel input X and Y is
the real-valued channel output. This formula holds for any ergodic memoryless channels [58].

Specifically, the Shannon limit of a Gaussian channel with average power constraint P and

2.2. The (e, n)-Capacity 13

Ca
Figure 2.1: The discrete-time additive white Gaussian noise channel.

noise variance o2 is 2

C = max I(X;Y)

EX2<P

1 P

= 3 log, <1 + ;) (2.4)
and the maximum is attained only when X ~ A/(0, P), where N/ (0, P) is a zero-mean Gaussian

distribution of variance P.

Evaluating the (e,n)-capacity is not as simple as calculating the Shannon limit, but we
can nevertheless employ known analytical results to obtain an upper-bound as well as a lower-
bound on the (e, n)-capacity. A classic lower-bound on the error probability for codes of a
specific block length is the sphere-packing bound developed by Shannon [59]. This bound
has been recently employed as an important tool to evaluate the “imperfectness” of turbo
codes [60] and has also been treated in [61]. The problem posed by Shannon is to estimate as
well as possible, the probability of error for a “best” code of length n containing M codewords,
each of power P and perturbed by Gaussian noise of variance ¢2. We denote this minimum or
optimum probability of error by p2P*(M, n, \/W) The sphere-packing bound, @, is equal
to the probability that the output sequence Y of an AWGN channel will not be confined to
the cone with a solid half-angle 6 centralized with respect to the transmitted codeword, which
can be expressed in the form

™ (n - 1)(sin)" 2
P VP 2 Q) = [G
/oo =1 p—(r?+nA2—2ry/nAcos D/ 2drdp, (2.5)
0

where A is the square root of the signal-to-noise ratio (SNR), i.e., /P/o2, I'(p) is the Gamma

function f;° tP~le~dt, and 6 is the root of the following equation:

"n—-1T2+1) . ne2 1. o-n
/0 - F(%)ﬁ(smqﬁ) do = 27E, (2.6)

2Throughout the thesis we only deal with real-valued channels; however the results can easily be extended

to complex channels, i.e., bandpass signals represented in the equivalent complex baseband. In that case, the
factor of 1/2 in Eq. (2.4) does not appear.

14 Chapter 2. Finite-Block-Length-Constrained Channel Capacity

For moderate to large n, Eq. (2.5) can be approximated with great accuracy by

[G(Q) sin 96—(A2—AG(0) cos 0)/2]71

sp(0) = , 2.7
Qu(0) Vnm/1+ G%(8) sin [AG (8) sin® 6 — cos 6] (27)

where G(0) = (1/2)[A cosf + /A2 cos? § + 4], and Eq. (2.6) becomes, asymptotically,
(% +1)(sing)"' — (2.8)

nl(%L)y/mcosf

The sphere-packing lower bound on word error probability would be reached with equality
only if the code were a perfect code for the channel, i.e., if equal-size non-intersecting cones
could be drawn around every codeword to completely fill the n-dimensional space. Such a
partitioning is clearly possible only for n=1 or 2, if M > 2 [59]. It is very plausible intuitively
that any realistic code would have a higher error probability than a sphere-packing code.
Recognizing the monotonically increasing error probability with more codewords, the rates
specified by the sphere-packing bound can naturally be utilized to upper-bound the (e, n)-

capacity. Formally, we obtain

C™ < max{R : p,(2"%,n,/P/0o2) = Qs,(0) < €}. (2.9)

Shannon also computed an upper bound on word error probability by a spherical “random
coding” method [59]. The random coding bound gives an expression for the ensemble average
word error probability, averaged over the ensemble of all possible spherical codes, where each
codeword is selected independently and completely at random, subject to an equal energy
constraint. As n grows large enough, an asymptotic formula of the random coding bound
turns out to be the sphere-packing bound multiplied by a factor essentially independent of n,

that is

PP (M, n,\/P/0?) < Qre(6)
T(2+1)(sind)" ! [n
_ nR 2 —
= Qsp(0) +2 /0 nF("TH)Wl/Q cosgp V

[G(6) sin ¢ exp(—3z55 + 51/ ZG(6) cos §)"
. d
15 C2(0) sin”
AG(#)sin® 0 — cos b
2cosf — AG(0)sin?80)

Q

Qsp(0) (1 + (2.10)

As the average error probability over the ensemble of spherical random codes satisfies

Eq. (2.10), it is clear that at least one code in the ensemble must have a sufficiently small

2.2. The (e, n)-Capacity 15

error probability, i.e. at least one code of block length n meets the target error probability e

with a certain rate, which in turn, gives rise to a lower bound on the (e, n)-capacity. That is

C™ > max{R : p,(2"%,n, /P/0?) = Q,.(f) < €}. (2.11)

It is worth emphasizing that, in the case of moderate to large n, the multiplying factor in
Eq. (2.10) is just a little over unity; the sphere-packing and the random-coding bounds are
close together, thereby yielding a sharp estimate of the (e, n)-capacity.

The significance of the definition of the (e, n)-capacity can be seen from the following
numerical example. Consider an AWGN channel on which we wish to transmit information
with rate 1 bit per sample, for which the minimum SNR specified by the Shannon limit is
3.0 (about 4.7712 dB). By applying the sphere-packing bound, Fig. 2.2 shows that, for the
same code rate, the minimum threshold for reliable communication (in the sense of achieving a
target error probability) is significantly higher than the Shannon limit, provided that the code
block length is constrained to a relatively small size. For some real-time applications where
large delay is not tolerable, the Shannon limit does not convey much useful information, but
the (e, n)-capacity reveals the ultimate limit instead. It is also suggested that, even if a code

operates far from the Shannon limit it might perform nearly as well as the best code possible

Required Signal-to Noise Ratio (SNR), dB
~

P
N
~
2
N

10° - 10
Block size (coding latency)

Figure 2.2: The minimum required signal-to-noise ratio (SNR) of the Shannon sphere-

packing bound for codes with varying block length n and rate 1 bit per sample,

operating over a continuous-input AWGN channel at p, = 1073, 1074, 107°,

1076, and 10~19, respectively.

16 Chapter 2. Finite-Block-Length-Constrained Channel Capacity

of the same length. The same message has been delivered in [60,61]

A quantitative overview of the (¢, n)-capacity (upper bound) versus the Shannon limit is
exhibited in Fig. 2.3 where an AWGN channel at SNR of 3.0 is considered. It should not
be surprising that, if the code block length is less than 10%, only the rates significantly lower
than the Shannon limit are achievable. For example, codes of block length 100 have a penalty
of 0.3 bits per sample with p,, = 1073, and even a penalty of over 0.5 bits per sample with
pw = 10719 as compared with the Shannon limit. The Shannon limit can be approached within
0.05 bits per sample only for block lengths 100,000 and greater. Again, it is evident that, not
the Shannon limit, but the (¢, n)-capacity should be employed in evaluating a practical coding

scheme with finite block lengths.

1.2 T T T T — T

Shénndn L|m|t

Upper bound on achievable rates (bits/symbol)

04 : Dol : Y
10 10° 10 10

Block size (coding latency), SNR=3.0

Figure 2.3: Upper bound on (¢, n)-capacity of the sphere-packing bound for codes with vary-
ing block length n, operating over a continuous-input AWGN channel at a SNR
of 3.0 (4.7712 dB), and p,, = 1073, 107%, 105, 107, 10719, respectively.

Plotted in Figs. 2.4 and 2.5 are performance comparisons of two imaginary codes, one of
which is assumed to achieve the sphere-packing bound and the other the spherical random-
coding bound, with the target error probability p,, = 107® and with varying block lengths.
In particular, information on the upper and lower bounds on the (e, n)-capacity is shown
in Fig. 2.5. In this specific setting and for n > 100, the upper and lower bounds on the
(¢, n)-capacity are close enough together, thereby delivering precise information concerning
the (€, n)-capacity, whereas when n < 100, the upper bound and the lower bound are apart

and the question of determining (e, n)-capacity for this block-length region still remains open.

2.2. The (¢, n)-Capacity

17

Signal-to Noise Ratio (SNR), dB

&
3
n

4.~ sphere-packing bound
——_random coding bound

3

10 10 o
Block size (coding latency), p, =10

4 5

Figure 2.4: Signal-to-noise ratio of the spherical random-coding bound (as compared with

the sphere-packing bound) for codes with varying block length n, operating over
a continuous-input AWGN channel at a SNR of 3.0 and p,, = 1076,

12

Shannon Limit:

2 [="" sphere-packing bound—|

—— random coding bound

Y R S

06/

Upper bound versus achievable rate (bits/sample)

0.4

10

10°

10 10

Block size (coding latency), SNR=3.0, p, =1 0

Figure 2.5: Achievable rates of the spherical random-coding bound (as compared with the

sphere-packing bound) for codes with varying block length n, operating over a
continuous-input AWGN channel at a SNR of 3.0 and p,, = 107%. Note that the

discontinuity in the short-block-length region is caused by numerical instability.

18 Chapter 2. Finite-Block-Length-Constrained Channel Capacity

Additional insight into the implications of Fig. 2.4 and Fig. 2.5 may be obtained by re-
examining the definitions of the sphere-packing bound and the spherical random-coding bound.
As we know, the performance limit corresponding to the sphere-packing bound would be
reached with equality only if the code were a perfect spherical code for the continuous-input
AWGN, i.e., if equal-sized cones could be drawn around every codeword so as to completely
fill the n-dimensional space without intersecting. Actually this is impossible for all n > 2 and
M > 2. On the other hand, we observe empirically that the spherical random-coding bound
is virtually indistinguishable from the sphere-packing bound for block lengths greater than a
few hundreds. 3 Therefore it is tempting to construct probabilistic codes to “approximate”

the ensemble of spherical random codes, rather than search for a deterministic “best” code.

2.3 Channel Coding Theorem Revisited

As discussed previously, the major motivation to construct probabilistic codes is to mimic the
ensemble of spherical random codes, thereby closely approaching the sphere-packing bound
over a wide range of block lengths and rates. This idea is fundamentally different from the

traditional effort to search for a deterministic best code.

Definition 2.2 Probabilistic code with independent codewords—A (n, M) probabilistic code
for a certain DMC with channel input space X’ under average power constraint P consists of

the following:

o For each encoding block, generate M codewords X7, X7 ,... , X}, that satisfy the power

constraint P, i.e., for every codeword

n
szw < nP, w=12,...,M, (2.12)
i=1
where codewords X} = (%1,w, T2, - - - , Ln) are created by independent identically dis-

tributed (i.i.d.) random variables X,, € X, subject to a common probability distribution
px [58] maximizing input-output mutual information I(X;Y), e.g., for an AWGN chan-
nel, px ~ N (0, P).

3More empirical evidence on the binary erasure channel (BEC), the binary symmetric channel and the
AWGN channel can be found in [60,61]. It is worth mentioning that the discrepancy between the random-
coding bound and sphere-packing bound depends not only on the block length n, but also on the rate R of
the code. More precisely, it will be shown in Section 2.5 that the discrepancy decreases exponentially with the

product of nR.

2.3. Channel Coding Theorem Revisited 19

e An encoding function X : {1,2,... , M} — X", selecting one codeword from the code-

book and passing it through the channel.

e A synchronization scheme between the encoder and decoder that guarantees that the
decoder will generate an exact copy of the codebook of encoder for each block. In other

words, the receiver has perfect knowledge of the random sources X,,.
e A decoding function
g:Y'—={1,2,..., M}, (2.13)

which is a deterministic rule that assigns an estimate to each possible received vector.

The definition of probabilistic codes has the effect of “combined coding and modulation”
(baseband), i.e. the encoder feeds its output directly to the noise channel. In our notation, the
transmission rate is measured as R = l(’g—;%, which can be made readily larger than 1 bit per
sample simply by generating a large number of codewords such that M = 2*%. As there is no
explicit coding redundancy involved, the probabilistic code is also referred to as probabilistic

signaling.

The probabilistic code is inherently time-varying, i.e., the codebook varies from block to
block and the codeword with the same index w does not remain the same for different blocks.
This scheme differs from the traditional concept wherein a deterministic codebook is selected
once and used repetitively. The time-varying nature ensures that the channel input resembles
a stochastic process with an appropriate distribution, which maximizes the mutual information

of the channel input and output.

The probabilistic code should not be confused with the standard method of proof of coding
theorems based on a random-coding argument [62]. Whereas a probabilistic code constitutes
a communication technique, a random-coding argument is a proof technique often used to
establish the existence of a (single) deterministic code which yields good performance on
a specific channel without actually constructing the code. This is done by introducing a
probability mass function (pmf) on an ensemble of codes, computing the corresponding average
performance over such an ensemble, and then invoking the argument to show that if this
average performance is good, then there must exist at least one code in the ensemble with
good performance. In contrast, a probabilistic code constitutes a communication technique,
the implementation of which requires the availability of a common source of randomness at

the transmitter and receiver.

Armed with this formal definition of the probabilistic code, it is now straightforward to

prove that a probabilistic code is a capacity-achieving code.

20 Chapter 2. Finite-Block-Length-Constrained Channel Capacity

Theorem 2.1 The Shannon limit of a Gaussian channel with power constraint P and noise
variance o2,

1 P
C = §log2(1 + p)

can be attained by a probabilistic code.

Proof: We will use the same decoding rule as in [18], namely, joint typicality decoding.

1. Generation of probabilistic codebook. For every encoding block, we generate codewords
with each element i.i.d. according to a normal distribution with variance P — . For

large n, we have = x?,w — P —¢, then the probability that a codeword does not satisfy

n

the power constraint is quite small. Assume z;,,? = 1,2,... ,n,w = 1,2,... , 278 e
i.i.d. subject to N(0, P — ¢€), which form codewords X7, X2,... , X » € R". Thus for
each particular encoding block, we have 2"f codewords as the rows of a matrix
T1,1 21 - Tni
T1,2 oo v Tn,2
T nR x nR e I nR.
| T1,2 2,2 N P

2. Encoding. To send the message index w, the transmitter sends the wth codeword X in

the codebook.

3. Decoding. The receiver first regenerates the same codebook as that of the transmitter of
the corresponding block, then searches the list of codewords {X}} for one that is jointly
typical with the received vector. If there is one and only one such codeword, the receiver
declares it to be the transmitted codeword. Otherwise the receiver declares an error.
The receiver also declares an error if the chosen codeword does not satisfy the power

constraint.

4. Probability of error. By the symmetry of the code construction, the probability of error
pw does not depend on the particular index that was sent. Without loss of generality,
assume that codeword 1 was sent. Thus Y™ = X] + Z", where Z" is the channel noise

vector.

Define the following events:

1<,
Ey = {E;xl >P}.

2.3. Channel Coding Theorem Revisited 21

and .
E;={(X",Y™") isin joint typical set A™}.

An error occurs if Ey occurs (the power constraint is violated) or Ef occurs (the transmitted
codeword and the received sequence are not jointly typical) or Ey U E3 U -+ U Egynp occurs
(an incorrect codeword is jointly typical with the received sequence). Hence the word error

probability can be expressed as

pw = Pr(Elw=1)=Pr(EgUE{UE;UE3U-:-U Eynr)

onR

< Pr(Ep) +Pr(Ef) + > Pr(E)

1=2

by the union bound for probabilities. Applying the law of large numbers, Pr(Ey) — 0 as n
tends to infinity. Now, by the joint asymptotic equipartition property (AEP), Pr(E¢) — 0,
and hence

Pr(E$) < e for sufficiently large n.

By the code generation process we know that X' and X' are independent, Y and X[,
Vi # 1, are also independent. Hence, the probability that X and Y will be jointly typical is
< 27nI(XY)=39) by the joint AEP [18]. Thus

pw = Pr(Elw=1)=Pr(EyUE{UEFE;UE3U- U Eyr)

onR

Pr(Ey) + Pr(E{) + Y Pr(E;)

=2

IN

IA

e+e+ ZPr(Ei)

1=2

9% + Z g=n(I(X:Y)-3¢)

=2
% + (2nR _ 1)2—n(I(X;Y)-—36)

% + 2—n(I(X;Y)—R—-3€)

IA

IN

IN

3¢

for sufficiently large n and R < I(X;Y) — 3¢ which, together with Eq. (2.4), concludes the
proof. |

One might note that the above proof bears much resemblance with the random-coding
argument in [18]. This is actually not surprising because in a probabilistic code, the average
is done over time (block-by-block) and each block of the probabilistic code (termed member

code) is an instance of the ensemble of random codes, that is to say, the average done over

22 Chapter 2. Finite-Block-Length-Constrained Channel Capacity

member codes of a probabilistic code is equivalent to the average over the ensemble of random
codes. Unlike the random-coding argument where care must be taken to avoid trivial codes,

there is no need in the probabilistic code to distinguish good or bad member codes.

2.4 The Optimum Decoder

In the preceding section, we constructed a time-varying probabilistic code and showed that
it is able to achieve the Shannon limit asymptotically via typical set decoding for the AWGN
channel. Although typical set decoding is asymptotically optimal and conceptually easy to
analyze, the drawback is two-fold: firstly it is not optimal in the sense of minimizing the
probability of error; secondly, it is merely a statistical term and somewhat cumbersome to

obtain error probability performance.

The optimum procedure to minimize the probability of error is the maximum a-posteriori
probability (MAP) decoding, i.e., the receiver should choose the a-posteriori most likely index.

Using Bayes’ rule, the posterior probabilities may be expressed as

p(xzly) = B (2.14)

where p(Y™|X%) is the conditional probability density function (pdf) of the observed vector

given X7, and p(X]) is the a-priori probability of the w-th codeword being transmitted.
Assume that the 2"% codewords are equally probable a-priori, i.e., p(X?) = 27"F for all w.
Furthermore, note that the denominator in Eq. (2.14) is independent of which codeword is
transmitted. Consequently, the decision rule based on finding the codeword that maximizes
p(X2|Y™) is equivalent to finding the codeword that maximizes p(Y"|X"). It is evident that
a detector based on the MAP criterion and the one that is based on the maximum likelihood

criterion make the same decisions as long as a-prior probabilities p(X?) are all equal.

In the case of the AWGN channel, the logarithm likelihood function of p(Y™|X") is given
by

7

1 1
lnp(Y"|X}) = —5nIn(2m0%) = 55 3~ (Us = ka)* (2.15)

k=1

Hence, the maximum of p(Y™|X") over X is equivalent to finding the index w that minimizes

the Euclidean distance

D(Y™, Xp2) =) (vk — Trw)” (2.16)
k=1

2.4. The Optimum Decoder 23

We call the normalized version of D(Y", X) by distance metrics d(w), i.e.,

1
d(w) = ED(Y”,X{})),
forw=1,2,...,2"%. This decision rule is usually referred to as the minimum distance crite-

rion. It should be mentioned that each codeword in the probabilistic code is characterized by
a discrete stochastic process that maximizes the input-output mutual information. Although
the average power remains the same, the energies of particular codewords may not necessarily
be the same. Hence, a correlation detector is no longer optimal for the probabilistic code,

particularly for small block lengths.

Suppose the codeword 1, X7, is transmitted, then the 2"% decision variables d(w) are

QU
—~

st
~—

Il
3|
=

2
2k

x>
1l
-

QU
—~~

L)
~—

Il
3=
[z

(Tg1 + 25 — Tr2)?
(2.17)

N
el
I
—_

M=

d(2"®) = % (Tra + 2 — xk,an)Q

\

B
Il
_

where zj is the channel noise. The decision is made in favor of the codeword X} having the
least decision value d(w) among the whole set of all codewords. As all codewords are mutually
ii.d. Gaussian variables and independent of the channel noise, the decision variable d(1) has
the normalized chi-square distribution with n degrees of freedom (see Appendix B)

1 2
— n/2, n/2—1_-ny/2c > 21
fl(y) (20_2)7L/21'1(n/2)n Y € y Y2 0 (8)

and all other decision variables d(w),w # 1, yield the normalized chi-square distribution of

1
fuly) = = — p 2y lemmy /2P 42P) -y s) (2.19)
[2(0? + 2P)]*/?T(n/2)

It is interesting to note that each decision variable in Eq. (2.17) is precisely an estimate of the
variances of the Gaussian processes — the correct index has the minimum variance of 02 and
all other have variances of 02 +2P. By the Shannon’s noisy channel coding theorem, if the rate
is less than the channel capacity and as block length n goes to infinity, these estimates tend

to be increasingly accurate and the probability of making an error exponentially vanishes.

It is mathematically convenient to first derive the probability that the detector makes a
correct decision. This is the probability that d(1) is greater than each of the other 2"% — 1
decision variables d(2),d(3), ... ,d(2"®). This probability may be expressed as

Do = /0 ” Pr(d(2) > r,d(3) > r,- -+ ,d(2"F) > r|d(1) = 7] fy(r)dr, (2.20)

24 Chapter 2. Finite-Block-Length-Constrained Channel Capacity

where Pr[d(2) > r,d(3) > r,...,d(2"®) > r|d(1) = r] denotes the joint probability that
d(2), d(3), ..., d(2") are all greater than r, where r > 0. This joint probability is then
averaged over all . Unfortunately, the values of dy,, w = 1,2,..., 2", are not statistically
independent, and the evaluation of the influence of correlations is rather complicated, even
impossible. Therefore, we resort to an approximation expression in which the correlations
in decision variables are neglected.* One approach is to factor the joint probability into a

product of 2"% — 1 marginal probabilities, yielding
Pe & /Ooo[Pr(d(w) > rld(1) = r)]QnR—lfl(r)dr. (2.21)
Thus the probability of word error is
Py =1 —De. (2.22)

Under the condition that d(1) = r, the decision variable d(w) has the normalized chi-square

distribution of

1
n/2, n/2-1_—ny/2(r+2P) >
RG+ 2P Ty Y € v20
Thus the conditional probability Pr[d(w) > r|d(1) = r] yields
" 1
P — =-1- n/2, n/2—1 _—ny/2(r+2P) . 2.23
fdw) > rld(1) = 1] =1~ [o e dy. (229

Without loss of generality, we assume that n is an even integer, the integral can be expressed

in closed form by repeated integration by parts, which yields

n/2—-1 k
1 nr
Prld(w) > rld(1) = r] = e™™/22P40) 3~ — [_—} . (2.24)
e~ k! [22P +71)

Substituting Eq. (2.24) into Eq. (2.21) and Eq. (2.22), the probability of word error can be
expressed as

PALEE

n/2-1 k
° 1 2 1 nr
w 1 — n/2,.n/2—1_—nr/20 —nr/2(2P+r) o dr.
P /0 @ty Aty | € ¢ kzz:o K |20P 11 r

(2.25)

For moderate to large block lengths n, the evaluation of Eq. (2.25) becomes rather difficult
due to the existence of the factorial of a large number. Hence we derive an asymptotic
formula for probabilistic codes, which is based on the connection between probabilistic codes

and spherical random codes. Note that the only difference between the probabilistic code and

4The correlations in decision variables due to the channel noise {2x} vanish asymptotically as the signal-

to-noise ratio increases.

2.5. Probabilistic Code with Correlated Codewords 25

the ensemble of spherical random codes lies in the power constraint. In Shannon’s spherical
random codes, each codeword is required to lie exactly on the surface of the sphere of radius
vnP, but in the probabilistic code, all codewords are required to have a power of P in a
probabilistic manner. As stated by the law of large numbers, as the block length n tends
to infinity, the probability that a codeword deviates from this power constraint can be made
arbitrarily small. Thus one may presume that the asymptotic performance of both codes is
nearly the same. In fact, the probabilistic code can be transformed to be an instance of the
ensemble of spherical random codes by expanding one sample in the block length. Suppose
we have a probabilistic code with each block of length n, and all codewords satisfy the power
constraint i 23, < nP. To each codeword, add a further element of such value that the
n+1 dime;:sional codeword lies exactly on the n + 1 sphere surface. Specifically, the added

n + 1 element will have the value

n
Tnyiw =, R+ 1P =Y a3, . (2.26)

k=1
This yields a snapshot of spherical random codes with 2"% codewords of block length n + 1,
and the overall transmit rate becomes 7 R. Asymptotically as n tends to infinity, this rate
loss is negligible. This justification enables us to use Eq. (2.10) to calculate the asymptotic

performance of the probabilistic code based on the ensemble of spherical random codes, namely

AG(0) sin? 6 — cos 6
Pu % Qu(6) (1+ ©))

2.2
2cosf — AG(6) sin® 0 (2.27)

where 6 is defined in Eq. (2.6). Considering the empirical evidence that the performance of a
sphere-packing code is almost indistinguishable from that of the ensemble of spherical random
codes for moderate to large block lengths, it is plausibly intuitive that a probabilistic code

with independent codewords closely approaches the (¢, n)-capacity correspondingly.

In order to quantify how close the probabilistic code with independent codewords ap-
proaches the (e, n)-capacity, we will establish an explicit relationship between the probabilistic

code and the sphere-packing code later on.

2.5 Probabilistic Code with Correlated Codewords

The problem of finding the best possible code is often formulated as a sphere-packing problem,
and protection against various kinds of disturbances can be measured in terms of Euclidean
distance. The code design problem is therefore equivalent with the geometrical problem of

packing a largest number of equal spheres within a given sphere in the n-dimensional Euclidean

26 Chapter 2. Finite-Block-Length-Constrained Channel Capacity

space. Alternatively, one can fix the power of codewords (P), and fix the number of codewords
(M = 2™%), and fix the dimension n, then the code design problem is to maximize the pairwise
Euclidean distance between codewords. In particular, if a code have a uniform pairwise Eu-
clidean distance between any pair of codewords and the uniform pairwise Euclidean distance

attains the largest possible, then such a code is called the sphere-packing code.

The objective of this section is to construct a family of asymptotic sphere-packing codes
as the block length tends to infinity.
2.5.1 Normalized Euclidean Distance

Recognizing the fact that the codewords {X!} are independent of the channel noise, the

expected (normalized) decision variables in Eq. (2.17) can be written as

2
2

3 e
NIE

fz,lm _

=
1l
—

n

(xk,l — .’Ek12)2 + L Z 22
ni (2.28)

Qu
—~
Do
~—
|
3=
NgE

e
bl
||
-

n

(Ik,l - xk;,QRR)Q + %kX: Z’%
=1

NIE

azE = L

\

b
I
—

Clearly the probability of making an error is closely related to the normalized Euclidean

distances of codewords, i.e. the set

Z(mk’i — zk,j)z, for all 4 7é j (229)

k=1

S|=

dij; =

Because all codewords in a probabilistic code with independent codewords are generated via
Gaussian random variables in a time-varying manner, the normalized Euclidean distances
between codewords are essentially random variables subject to the normalized chi-square dis-

tribution

1

n/2 m/2-1_-—nd/4P >)
(4P)"/2F(n/2)n d e , d>0 (2.30)

fo(d) =

whose cumulative distribution function is illustrated in Fig. 2.6 for various n.

The normalized Euclidean distance of codewords, d; ;, is closely related to the pairwise
error probability (PEP). Denote by {X' — X7} a decoder pairwise error event, i.e., the
decoder chooses X when X" is the transmitted codeword and X and X7 are the only two

possible decoding outcomes. Also denote by p(X!* — X]") the pairwise error probability. Then

2.5. Probabilistic Code with Correlated Codewords 27

n=2 n=20
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.5 1 1.5 2 0.5 1 1.5 2
n=200 n=1000
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
’ 0.5 1 1.5 2 0.5 1 1.5 2

Figure 2.6: Cumulative distribution function (cdf) of the normalized Euclidean distance with
varying block length n, where P = 0.5. As n increases, its cdf becomes a step

function meaning that the probability mass concentrates on its expectation 2P.

for an AWGN channel,

p(XP = XM = Q (Zj’;g) , (2.31)
where
Qo)== [rap, (2.39)

which is usually referred to as the (Gaussian) Q-function. It suffices to see that the probability

of error between two codewords decreases exponentially with d; ;, owing to the upper-bound

nd, 1 —nd; ; /8¢
Q (H F’;) < 58 dii/8 2. (233)

As n goes to infinity, we obtain the asymptotic normalized Euclidean distance set ° df‘ij as

def . 1 S,
diy = lim =5 (wri— k)% 75 (2.34)
k=1

Under the assumption of independent codewords treated in the previous section, the asymp-

5By definition, the asymptotic (normalized) Euclidean distance denotes mathematical expectation over the

block length. Thus it can also be interpreted as expected (normalized) Euclidean distance.

28 Chapter 2. Finite-Block-Length-Constrained Channel Capacity

totic normalized Euclidean distance between codeword X;* and codeword X7' becomes

n

o1
d?sﬂ-y = lim - z:(:vkZ - a:k,j)Q

n—oo 71
k=1
n n n
.1 .1 .1
= lim — E T, + lim — E xﬁj — lim — E 2% ;T 5 (2.35)
n—oo 1 ? n—+00 M, > n—oo N ’ i
k=1 k=1 k=1
n n
. 1 2 . 1 2
= hm—E a:,”-+hm—§ Tk
n—oo N ! n—o00 1 i
k=1 k=1
— 2P,

n
which holds for all ¢ # j. Note that in Eq. (2.35) the third term lim 1 3 2y .2 falls to
zero under independence conditions. We observe that in a probabilistic code with independent
codewords, the asymptotic normalized Euclidean distance set d;’j-y is uniform with a unique

value of 2P that is precisely twice the transmit power.

As d, ; is an average sum of independent random variables, we can then use the Chernoft
bound to give an exponential bound on the probability that d; ; will deviate from its mean 2P
by more than a fraction €. A stronger bound can be obtained if the elements of codewords are

amplitude-limited, or say, under peak-power constraint.
Lemma 2.1 Let {2t} be peak-power constrained, i.e., ¥ z} ; < E,, then

1y,
Pr{|di,j - 2P| > 6} <e 2 7,

Proof: The proof follows in the exactly the same way as that of the Appendix of [63]. [|

The above Lemma provides a straightforward justification of the probabilistic construction.
Because of unlimited uses of member codes of the probabilistic code and the generalized law
of large numbers, the performance of the probabilistic code will concentrate exponentially
on that of a member code. As the block length n is sufficiently large, the performance of a
member code of the probabilistic codes should fall within the € region of that of the average

with probability close to 1.

2.5.2 Asymptotically Sphere-Packing Code

The asymptotic normalized Euclidean distance can be made even larger to improve the error
probability performance. From the above derivation we know that, if the i-th codeword {zj;}
has a certain correlation with the j-th codeword {zy;}, it is also possible for the third term

in Eq. (2.35) to contribute a positive value to the asymptotic normalized Euclidean distance.

2.5. Probabilistic Code with Correlated Codewords 29

In this subsection we will present a new construction of probabilistic codes with correlated

codewords, which incidently turns out to be a sphere-packing code in the asymptotic sense.

Let us assume that X;,7 = 1,2,..., M and M = 2", arei.i.d. Gaussian random variables,
which are used to generate independent codewords X7, X7, ... , X},. These Gaussian random
variables are mutually independent and with zero-mean, variances of P;, P,,... , Py; whose
values will be determined later. Let M denote the M x M covariance matrix which is diagonal,
i.e. M =diag(Py, P,, -+, Py). Let X denote the M x 1 column vector consisting of random
variables X;,7 =1,2,..., M. The joint pdf of the Gaussian random vector X is then defined

as

1 1
oz "ML (2:36)

p(X) =
where M~! denotes the inverse of M and X' the transpose of X.

Now let us consider a linear transformation [64, pp. 49-52] of M independently Gaussian

random variables X
Y =AX, (2.37)

where Y is an M x 1 column vector, A is an orthogonal matrix (A’ = A™'). The Jacobian of
this transformation is J = 1/det(A). As X = A~'Y, we may substitute for X in Eq. (2.36)
and thus obtain the joint pdf of Y in the form

1 1,..,4 1A -
PY) = oMy aea Pl AT YIM (A7)
1 1 1y—1
= - Y
e Qe PR
where the covariance matrix Q is given by
Q=AMA’ (2.38)

This leads to the following lemma:

Lemma 2.2 A set of correlated Gaussian random variables Y can be obtained via linear

transformation from a set of statistically independent Gaussian random variables X .

The above analysis suggests a method to generate a probabilistic code with correlated
codewords via linear transformation from a probabilistic code with independent codewords,

which is summarized as follows.

Definition 2.3 Probabilistic code with correlated codewords

30 Chapter 2. Finite-Block-Length-Constrained Channel Capacity

e At each time index k, k = 1,2,...,n, generate a random (column) vector X*¥ =
(Tr1,Tho, -+ > Tear), where zg 5, 5= 1,2,... , M and M = 2", are instances of i.i.d.

Gaussian variables whose covariance matrix M equals diag(Py, Ps, -+, Py).

o At each time index k, k = 1,2,... ,n, compute column vector Y* via linear transforma-
tion Y* = AX*.

e Finally the codewords are formed by the rows of the M-by-n matrix (Y1, Y% --. | Y™).

Now we shall determine values of P;, j = 1,2,... , M such that the codewords, i.e. the rows
of the M-by-n matrix (Y1,Y?2 ... Y™) satisfy the average power constraint. By application
of basic matrix theory, the matrix A consists of rows that are the eigenvectors of the covariance
matrix Q, and M is a diagonal matrix with elements equal to the eigenvalues of Q. To satisfy
the average energy constraint, P should be chosen as the main diagonal elements of the matrix
Q, meaning that each codeword has an average power of P. To maintain the symmetry, we

impose a constraint of equal correlation coefficients in Q, which gives

[p pP ... pp_
Q=" & , (2.39)
_pP pE - P_MxM

where —1 < p < 1. Hence, the asymptotic normalized Euclidean distance in Eq. (2.35) yields

1< 1< 1
asy _ 1 2 o1 R TI o
d;; = lim - Z Yk + lim - Z Yk — Hm - Z 29k, iYk,j
k=1 k=1 k=1
= P4 P—2pP
= 2(1-p)P. (2.40)
It is thus evident that, in order to maximize the asymptotic normalized Euclidean distance,

we need to make p as small as possible. However, there exists a tight lower bound on p that

induces the covariance matrix Q to be positive definite.

Lemma 2.3 The covariance matrix Q is positive definite if and only if p is greater than —‘—_1—1

Proof:
[A—P —pP ... —pP]
—pP A=P .- —pP
det(\ - Q) = det| I
| —pP —pP - A-P |

= A= 1+ (M -1)p)P]Ix— (1-p)PIM,

2.5. Probabilistic Code with Correlated Codewords 31

thus the matrix Q has M — 1 duplicate eigenvalues of (1 — p)P and one of [1 + (M — 1)p]P.

In order to guarantee that Q is positive definite, we obtain the following conditions

1—-p)P > 0
(1-0) (2.41)
N1+ (M-1)pP > 0,
which simplifies to p > —1/(M — 1). Thus completes the proof. |

Since M is a diagonal matrix with elements equal to the eigenvalues of Q, we obtain the

following lemma

Lemma 2.4 The diagonal matrix M = diag(Py, Py, - - - , Py) should be

diag{(1 — p)P,---,(1 = p)P,[1 + (M —1)p| P},

-

—

M—1
where P is the average transmit power. As p tends to —1/(M — 1), we have

MP MP
lim M = diag{~———, -+ ,———,0}.
Jim, diag{——,", 77—7>0}

M-1 ~ ~ v
M-1

Substituting the minimum (in the limiting case) value of p into Eq. (2.40), the asymptotic

normalized Euclidean distance becomes

2MP _ 2"E.op
M-1 2nR_1

d?s’jy = (2.42)
foralli#j,€1,2,..., M. It should be pointed out that, with increasing n, the improvement
due to the introduction of correlated codewords becomes negligible while the additional com-
plexity of linear transformation becomes prohibitive. However, it is important to note that the
probabilistic code with correlated codewords of p = _M_l_i is asymptotically the best code in
terms of the normalized Euclidean distance. We are now in a position to prove this argument.

Theorem 2.2 The probabilistic code with correlated codewords of p = — 7= achieves asymp-
totically the largest possible pairwise normalized Euclidean distance, leading to an asymptotic

sphere-packing code.

Proof. First we derive an upper bound on the average asymptotic normalized Euclidean dis-

32 Chapter 2. Finite-Block-Length-Constrained Channel Capacity

tance over all distinct codewords {zy ;}.

- -

n

> 1 1 ,
D = rr— 2 dm | D = zig)

Z#] L k=1 R
1 Fl n y
o . 1 e
= WD) 2 A | 2w k)
1 —1 n
= i 2 4 2
-]_/[(_]\4——1_) ;,}i{f}o n ;(xkz — 2T Tk j + Tf,])}
1
= — 1 _ 2 Z
M(M — "1*n<}0n<§$kZ ZE :xk xk]‘*'%%ﬂﬁk;)

11 |
BRI PP (53)

1
< —— lim |2 2
= M(M—1)n‘i§o(M§xk#)
oMP
_ , 2.4
M1 (243)

Referring to Egs. (2.31) and (2.33), the pairwise error probability of any pair of distinct
codewords decreases exponentially with the pairwise (normalized) Euclidean distance. Under
the Gaussian noise assumption and the condition of equal use of codewords, the best code
is exactly the code that has the maximum-minimum Euclidean distance among codewords.
However, maximum-minimum distance among a specific set (each point in the set is a codeword
in the n-dimensional Euclidean space) must be less than or equal to the average distance,

otherwise this would lead to a paradox. It is thus clear that the probabilistic code with

correlated codewords of p = —71_—1 is asymptotically (as n goes to infinity) the sphere-packing
code with a uniform normalized Euclidean distance of
4 = 2M P
“ooM-1
for all 4 # j, which achieves the upper bound of D. This completes the proof. [|
The fact that the probabilistic code with correlation p = —lel = 2nR ; asymptotically

attains the property of uniformly maximizing the normalized Euclidean distance of signal
points under constrained average energy over the AWGN channel indicates that it is precisely
the sphere-packing code envisioned by Shannon 50 years ago, but not yet being explicitly

constructed so far.

In a special case of very low rate R = 1/n, i.e. M = 2, the bound in Eq. (2.43) becomes

4P and is simply equal to the Euclidean distance of an optimum antipodal signaling and it

2.6. Summary 33

is also equal to the asymptotic Euclidean distance of the probabilistic code with correlated
codewords of p = —1 as n goes to infinity. In contrast, if one uses a typical random code or
the probabilistic code with independent codewords, the asymptotic Euclidean distance is only
2P, which is obviously 3 dB worse. For any fixed rate R and as n — oo, thus M — oo, the
bound in Eq. (2.43) approaches 2P quickly, which equals the asymptotic Euclidean distance of
a probabilistic code with independent codewords. The implication is that, for large M or say
2" only very little performance improvement is gained by the use of correlated codewords.
The performance improvement vanishes exponentially as the product of the block length and
the rate grows. It reveals to us that, for moderate to large nR, the probabilistic code with

independent codewords performs almost as well as the best code.

The characterization of the probabilistic code with correlation p = —+7— as the sphere-

packing code in the asymptotic case sheds light on the discrepancy of the random-code bound
and the sphere-packing bound. Considering the following limit

2nR

i = h =1
n]lilgloo M-1 anLnoo onR _ 1

: (2.44)

it can be deduced that the discrepancy decreases exponentially with the product of the block
length and the rate of the code. Except for the situations with small n and/or R, it is safe to
say that the random-coding bound and the sphere-packing bound are indistinguishable from

each other, thereby the probabilistic code closely approaches the (e, n)-capacity.

2.6 Summary

In this chapter, we have identified the maximum achievable rates over noisy, finite-block-
length constrained AWGN channels, referred to as (e, n)-capacity C*, with ¢ denoting the
target (block) error probability and n the block length. We have also investigated a family
of time-varying block codes based on a probabilistic construction that closely approaches
the (e, n)-capacity and provably achieves the Shannon limit over the AWGN channel. The
encoding/decoding complexity of probabilistic codes with independent or correlated codewords
grows exponentially with the product of block length and the rate, whereas they are the right
codes capable of approaching the (¢, n)-capacity closely except for small values of nR. The
theoretical characterization of the (e, n)-capacity and corresponding probabilistic codes shed
light on what is the ultimate limit under a critical coding-latency constraint together with a

target (block) error probability and how optimum block codes look like.

This work leaves several interesting open questions. To name a few, one is the theoretical

characterization of the (e, n)-capacity for extremely short block lengths and small rates where

34 Chapter 2. Finite-Block-Length-Constrained Channel Capacity

the sphere-packing bound and the random-coding bound typically diverge. Another open
problem is quite pragmatic — can one find an encoding/decoding scheme with linear-time
complexity or feasible complexity to approach the (e, n)-capacity in the case of relatively short
block lengths? This issue will be attacked in the context of error-correcting codes defined on

sparse graphs, which is the focus of subsequent chapters.

Chapter 3

Regular and Irregular Progressive

Edge-Growth Tanner Graphs

3.1 Introduction

Error-correcting codes defined on sparse graphs [5,43,46-50,65-70]' have attracted consider-
able attention owing to their capacity-approaching performance and low-complexity iterative
decoding. The prime examples of such codes are the low-density parity-check (LDPC) codes.
It is known that the belief-propagation (BP) or sum-product algorithm (SPA) over cycle-free
Tanner graphs [5] provides optimum decoding, hence it is natural to try to minimize the influ-
ence of the cycles in the iterative decoding process. This approach has been adopted for both
LDPC codes [4] and turbo codes [6] by using rather long block lengths. If the cycles are made
long enough, the decoding algorithm may run several iterations without being affected by
them while the error rate decreases exponentially with the number of independent iterations.
Using the incidence matrix associated with a graph, Gallager proposed an explicit construc-
tion [4, pp. 81-89] that guarantees independent decoding iterations up to a lower bound for
his LDPC codes. Unfortunately this construction is valid only for regular LDPC codes, and

appears to be computationally infeasible for relatively large block lengths.

For most existing classes of LDPC codes, the Tanner graph is randomly constructed by
avoiding cycles of length 4 [9,10,52,71]. To date, randomly constructed LDPC codes have

largely relied on the sparsity of the parity-check matrix to avoid short cycles in the Tanner

18ee also the special issue on codes and graphs and iterative algorithms of IEEE Transactions on Information
Theory, Feb. 2001, edited by B. J. Frey, R. Koetter, G. D. Forney, Jr., F. R. Kschischang, R. J. McEliece, and
D. A. Spielman.

35

36 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

graph. Although random graphs have been used to construct LDPC codes with impressive
performance [54,71], there is no guarantee that any given random graph defines a good code
having a suitable shortest cycle (girth) that facilitates iterative decoding as well as having a
respectable minimum distance that enhances decoding performance in a high signal-to-noise
(SNR) regime. In particular, for short block lengths, the probability of choosing an unfavorable
random graph is surprisingly high. The minimum distance issue becomes critical if an irregular

degree sequence is used.

Construction of LDPC codes based on finite geometries has been reported in [72,73]. Finite
geometry LDPC codes have relatively good minimum distances and their Tanner graphs do
not contain cycles of length 4. They can be put in either cyclic or quasi-cyclic form so that
the encoding can be achieved in linear time by using simple feedback shift registers. With
high-rate and very long block-length, these codes perform very well under iterative decoding,

only a few tenths of a decibel away from the Shannon limit. For further results, see [74-77].

Since the early work of Gallager, the first significant work in constructing LDPC codes
based on graph-theoretic algebraic approach was reported in [42]. In [78,79], explicit group-
theoretic constructions of graphs were proposed. These graphs have girth approaching or
exceeding the Erdés—Sachs bound [80], which is a non-constructive lower bound on the girth
of random graphs and has the same significance as the Gilbert—Varshamov bound does in
the context of minimum distance of linear codes. The notion of graph expansion was first
introduced as an analysis tool in coding theory by Sipser and Spielman [43]. Three families
of explicit expander graphs built on Cayley graphs of the non-Abelian group PSLy(F,) were
used to construct generalized LDPC codes coupled with Hamming subcodes as constraints [81].
Recently, the algebraic approach has been pursued even further, with emphasis on constructing
LDPC codes having almost the largest girth possible [82-84]. However, having large girth is
only one necessary condition to yield good codes; design of good irregular degree sequence
turns out to be equally or more important. Furthermore, practical code-design aspects, such
as flexible construction with arbitrary code rates and block sizes as well as linear-time encoding,

often conflict with algebraic construction methods.

In this chapter 2 we present a simple but efficient method for constructing Tanner graphs
having a large girth in a best-effort sense by progressively establishing edges between sym-
bol and check nodes in an edge-by-edge manner, called the Progressive Edge-Growth (PEG)
construction. Given the number of symbol nodes n, the number of check nodes m, and the

symbol-node-degree sequence of the graph, an edge-selection procedure is started such that

2This work has been submitted to IEEE Trans. Information Theory, co-authored with E. Evangelos and
D. Arnold.

3.1. Introduction 37

the placement of a new edge on the graph has as small an impact on the girth as possible.
After a best-effort edge has been determined, the graph with this new edge is updated, and the
procedure continues with the placement of a next edge. The PEG construction presented here
is a general, non-algebraic method for constructing graphs with large girth that asymptoti-
cally guarantees a girth at least as large as an analogy of the Erd6s—Sachs bound. Simulation
results show that the resulting LDPC codes of progressive PEG Tanner graphs significantly

outperform randomly constructed ones at relatively short block lengths.

In general, LDPC codes based on randomly constructed Tanner graphs do not lend them-
selves to easy characterization in terms of girth distribution, minimum distance, and number
of nearest neighbors. In contrast, a Tanner graph constructed using the PEG principle has
elegant properties with respect to the girth of the graph and minimum distance of the induced
binary LDPC code. In particular, lower bounds on the girth and on the minimum distance

are derived in terms of parameters of the underlying PEG Tanner graph.

It was shown in [51-53] that carefully designed irregular LDPC codes can outperform
regular ones. Using the density evolution technique, irregular graphs have been designed
by optimizing the degree-distribution pairs via linear programming or differential evolution
[10,51]. This approach proved to be very successful for designing random long block-length
LDPC codes; but it is not yet clear whether it is applicable to short block-length codes and to
the PEG construction. We describe an empirical Monte—Carlo approach using a variant of the
“downhill simplex” search algorithm [85] to design irregular PEG graphs for short codes with
fewer than a thousand bits, serving as a complementary procedure to the asymptotic density
evolution technique. In our approach we focus on irregular PEG graphs whose degree of parity-
check nodes is made as uniform as possible, so-called right-concentrated sequences [86,87]. The
conventional downhill simplex algorithm [85,88] is a nonlinear optimization procedure that
operates on a multidimensional simplex. A similar optimization approach has been chosen
in [89] to construct random irregular LDPC codes with two empirical cost functions: one
based on empirical decoding trials, the other based on simulation decoding. In contrast, we
design irregular LDPC codes based on the PEG construction and a nonlinear cost function
that depends on the block-error rate at a certain E,/N,. It is demonstrated by simulations that
our irregular PEG LDPC codes outperform significantly regular ones at short block lengths.
Furthermore, it is shown that the irregular degree sequences obtained by the density-evolution

approach, if properly chosen, work very well with the PEG construction too.

LDPC codes have been considered as a serious competitor of Turbo codes. One major
drawback so far has been their apparent high encoding complexity that grows quadratically

with the block length. The use of a cascade of subcodes to accomplish linear-time encoding

38 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

complexity was proposed in [51,90]. As each subcode is, in general, considerably smaller that
the overall code, a performance loss is expected. Another approach, proposed in [91], is to
force the parity-check matrix to have an approximate lower or upper triangular form. Similar
in spirit is the approach to incorporate a pattern, referred to as the zig-zag pattern, in the
parity-check matrix [92,93]. In [94] it is proved that optimized LDPC codes can be encoded in
linear time. Specifically, one can choose a randomly-generated LDPC code with an optimized
irregular degree sequence pair, and rearrange the parity-check matrix of this code to have an
almost upper-triangular structure which allows linear-time encoding. The significance of [94]
lies in the existence proof of optimal LDPC codes with almost upper-triangular structure.
Note that the rearrangement of the parity-check matrix does not change the LDPC code itself
and the complexity of rearrangement is quadratic in general. Thus it is possible and preferable

to construct such LDPC codes directly.

We investigate the construction of LDPC codes having (almost) triangular structure, good
girth property and an optimum irregular degree sequence. It is shown that the linear-time
encoding property can be combined with the PEG construction in a very natural way while
maintaining equally good performance. To this end we demonstrate that our short block-
length, linear-time-encodable LDPC codes offer comparable performance to the standardized
Turbo codes in third-generation high-speed wireless data services with essentially the same

encoding/decoding complexity.

Finally, we investigate the regular and irregular LDPC codes by using the same PEG
construction but allowing symbol nodes to assume values from a finite field with more than
two elements. In particular, Galois fields with 2° elements denoted as GF(2?), b > 1, have
been considered. Such constructions were first proposed in [5], and performance results of
randomly-constructed LDPC codes over GF(2°) were reported in [89,95]. The fact that one
can obtain consistently improved performance with increasing field size while decreasing the
average column weight, is demonstrated by simulation results, which extends the observations
of [95]. We report a short block-length (1008 bit) rate-1/2 irregular PEG LDPC code over
GF(2%) with a block error rate < 107 at E,/N, = 2 dB, which appears to have the best

performance under iterative decoding at this short block length to date.

The remainder of this chapter is organized as follows. Section 3.2 introduces the necessary
definitions and notations on graphs. Section 3.3 describes the principle and the detailed
algorithm of the PEG construction. In Section 3.4 we deal with graph properties of PEG
Tanner graphs; in particular, the lower bounds on the girth and on the minimum distance
are derived. Section 3.5 deals with the asymptotic analysis of the PEG Tanner graphs based

on a series of relaxations. We focus on the distance (weight) distribution function of the

3.2. Definitions and Notations 39

resulting LDPC codes. We prove the asymptotic optimality of the PEG construction by
showing the asymptotic optimality of its weakened version. Section 3.6 describes the variant
of the “downhill simplex” search algorithm used to design near-optimum symbol-node-degree
distributions for irregular PEG graphs. Section 3.7 presents simulation results comparing the
performance of regular and irregular LDPC codes defined on PEG Tanner graphs with that of
randomly constructed ones. We address the linear-time encoding based on the PEG principle
in Section 3.8 and compare the performance of linear-time-encodable PEG LDPC codes with
that of Turbo codes in Section 3.9. In Section 3.10 we extend the binary LDPC codes defined
on PEG Tanner graphs to codes over a finite field with more than two elements. Finally, 3.11

concludes this chapter.

3.2 Definitions and Notations

An LDPC code is a linear code defined by a sparse parity check matrix H having dimension
m X n. A bipartite graph with m check nodes in one class and n symbol nodes in the other can
be created using H as the integer-valued incidence matrix for the two classes. Such a graph
is also called Tanner graph [5]. As a Tanner graph defines a unique parity check matrix and a
parity check matrix corresponds to a unique Tanner graph, we shall use the terms Tanner graph
and code interchangeably if no confusion arises. Formally, a Tanner graph is denoted as (V, E),
with V' the set of vertices (nodes), V = V UV, where V. = {¢o, ¢y, .- . , Cm_1 } is the set of check
nodes and V; = {sg,51,...,8n,-1} the set of symbol nodes. E is the set of edges such that
E =V, xV,, with edge (¢;, s;) € Eifandonlyifh; ; #0,h,; € H,0<i<m-1,0< j <n-1.
A Tanner graph is called (ds, d.)-regular if every symbol node participates in d, check nodes
and every check node involves d. symbol nodes; otherwise it is called irregular. Denote the
symbol degree sequence by D, = {ds,,ds,,... ,ds,_,}, in which ds; is the degree of symbol
node s;, 0 < j < n — 1, in nondecreasing order, i.e., d;, < d,, ... < dg,_,, and the parity-check
degree sequence by D, = {d.,,d,,... ,d,_, }, in which d,; is the degree of parity-check node
¢, 0<j<m-1,and d,, < d,... < d,_,. Let also the set of edges E be partitioned in
terms of Vy as E = E, U Es, U---UE;, _,, with E;, containing all edges incident on symbol
node s;. Further, denote the k-th edge incident on s; by Efj, 0 <k <ds; — 1. Fig. 3.1 shows
an example of a D, = {2,2,2,2,3,3,3,3} irregular Tanner graph, in which the check degree
sequence is uniformly of degree 5, i.e., D, = {5,5,5,5}. Note that the definition of a Tanner
graph is quite general in that the check node may be a simple parity check, a parity check

over Galois field, or even a subcode such as BCH code.

A graph is called simple if 1) it does not have a self loop that is an edge joining a vertex

40 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

to itself, 2) there is at most one edge between the same pair of vertices, and 3) all edges are
non-directed. In a simple graph, we say that vertices = and y are adjacent if (z,y) is an edge.
The set consisting of all vertices that are adjacent to z is called x’s neighbor. A subgraph of a
graph G = (V, E) is a graph whose vertex and edge set are subsets of those of G. Note that,
if G’ = (V' E') is a subgraph of G, then for every edge e € E’, it must hold that both the
vertices of e lie in V'. A sequence of distinct vertices, starting from z and ending with y, is
called a path between x and y, if any two consecutive vertices in the sequence are adjacent. A
closed path with edges starting from z and ending with itself is called a cycle of z. If there
exists at least one path between x and y, then x and y is called connected or x is reached by
y and vice versa. If two vertices = and y in the graph are connected, their distance d(z,y) is
then defined as the length (number of edges) of the shortest path joining them. A subgraph

is tree-like if there is no cycle inside.

QO - - -Symbol Node

[J - - - Check Node

Figure 3.1: An example of symbol node degree D, = {2,2,2,2,3,3,3,3} irregular Tanner
graph.

In general, an ensemble of bipartite or Tanner graphs is characterized by degree distribution

dmax

pairs. In the case of symbol node, the degree distribution is defined as A(z) = Z Az, where

i>2

A; is the fraction of symbol nodes connected to exactly ¢ check nodes; d'®* is the largest entry
d;nax

in Dy = {dsy,ds;,--- ,ds, .}, and > A; = 1. Similarly, in the case of parity-check node, the
i>2

max
dc

degree distribution is defined as ®(z) = > ®;z¢, where ®; is the fraction of parity-check nodes

i>2
connected to exactly 4 symbol nodes; d** is the largest entry in D, = {dy,d.,,-.. ,dc,._; },
dxcnax
and Z (I)z =1.
i>2

For a given symbol node s;, define its neighbor within depth |, /\/slj, as the set consisting of

all check nodes reached by a subgraph (or a tree) spreading from symbol node s; within depth

3.2. Definitions and Notations 41

Depth-0

Depth-1

Depth- /

Figure 3.2: A breadth-first-search (BFS) subgraph spreading from symbol node s;.

[, as shown in the example in Fig. 3.2. Its complementary set, ./_fslj, is defined as Vc\./\/’j]_, or
equivalently N} UN = V,. The subgraph rooted from s; is generated by means of unfolding
the Tanner graph in a breadth-first way. That is to say, we start from s;, and traverse all edges
incident on s;; let these edges be (s;,¢;,), (85, i), - - - 5 (855 Cia,,). Then explore all other edges
incident on vertices ¢;,, ¢y, - - -) Cia,, excluding (s;,¢,), (85,¢5), - - ,(sj,cidsj). This process
continues until the depth can not increase further. Note that in the subgraph, duplicate
vertices or edges may occur. Referring to Fig. 3.2, any symbol node residing at depth-/ has
a distance to s; of 2/, and any check node residing at depth-/ has a distance to s; of 21 + 1.
Therefore Nslj can be alternatively defined as the check node subset of distance (relative to

s;) smaller than or equal to 2! + 1.

Similarly, for a given parity-check node ¢;, define its neighbor with depth I, NV, Cli, as the set
consisting of all parity-check nodes reached by a subgraph (or a tree) spreading from ¢; within

depth-I, as shown in Fig. 3.3.

The set N. slj and its counterpart J_/'Slj can be efficiently evaluated in a recursive manner.
Initially mark the symbol node s; with integer 0 and set d = 0. While any vertex, either
symbol node or parity-check node, was marked at the preceding stage, 1) look at all vertices
marked d and mark all unmarked neighbors of such vertices with d + 1; 2) replace d by d + 1.
At the termination of this algorithm, the mark of marked vertices is their distance to s;, and

the unmarked vertices, if exist, do not have a path connecting to s;. Obviously /\/Slj can be

42 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

Depth-0
Depth-1
®
- - - .
[]
[]
e o * o
Depth-{
e o o ® e o

Figure 3.3: A BFS subgraph spreading from parity-check node c;.

obtained by simply examining the check nodes having a mark less than or equal to 2! + 1.

In graph theory, girth g refers to the length of the shortest cycle in a graph. For each
symbol node s;, we define a local girth g,, as the length of the shortest cycle passing through
that symbol node. The set of local girth {g,;} is referred to as girth histogram. It follows, by
definition, that g = mjin{gsj}.

3.3 Progressive Edge-Growth (PEG) Algorithm

Constructing a Tanner graph with the largest possible girth is a rather difficult combinatorial
problem. Nevertheless, a sub-optimum algorithm to construct a Tanner graph with a relatively
large girth is feasible in practice. One such algorithm is the PEG algorithm that we present
here, in which the local girth of a symbol node is maximized whenever a new edge is added
to this symbol node. Suppose we have finished constructing edges of the first 7 symbol nodes
on a Tanner graph, i.e., edges E;, U E;, U---U E,,_, have been established. Let g* be the
temporary girth under the current graph setting with edges E;, U E;, U---U E,._,. In other
words, ¢g* = min{gs,, gs,,.-- , gs;_, }. The problem of constructing a graph having a large girth
lies in how to select the edge set E; of symbol node s; such that adding these new edges to the
current graph setting does not impair the current g* excessively. This boils down to optimizing

ds; edges of E;, to maximize the local girth g, because, if adding E;; to the current graph

3.3. Progressive Edge-Growth (PEG) Algorithm 43

results in a cycle shorter than g*, this new short cycle must pass through symbol node s;.
Unfortunately the complexity of exhaustively searching for the optimum set Ej; is governed
by (;;), where (de) is a binomial coefficient. Thus, we propose a best-effort algorithm known
as progressive edge-growth, in which d,; edges of E;; are added to the current graph on an
edge-by-edge basis, and the length of the shortest cycle passing through symbol node s; is
maximized whenever a new edge originating in s; is being added. This can be accomplished
simply by first expanding the tree originating in symbol node s; up to depth [each time a
new edge of s; is being determined, such that ./_/'slj # & but ./\7;]*1 = @ or the cardinality of
J\/'Sl], stops increasing but is smaller than m, and then placing an edge between s; and a check
node selected from the set /\7;1,. In this way, the shortest cycle passing through this new edge
under the current graph setting is guaranteed to be no shorter than 2(/ 4+ 2). We summarize

the proposed algorithm as follows.

Progressive Edge-Growth Algorithm:
for j=0ton—1do

begin
fork=0tod;, —1do
begin
ifk=0

Egj «— edge (c;, s;), where Egj is the first edge incident to s; and c; is
one check node such that it has the lowest check degree under the current
graph setting E;, U B, U---UE,,_,.
else

expanding a tree from symbol node s; up to depth [under the current
graph setting such that Y. # & but N = @, or the cardinality of N},
stops increasing but is less than m, then Ef «— edge (c;, s;), where Ef.
is the k-th edge incident to s; and ¢; is one check node picked from the

set N having the lowest check-node degree.
end

end

There is a subtle point in the PEG algorithm that needs further comment. Whenever
we encounter multiple choices for connecting to symbol node s;, i.e., multiple check nodes
exist in /_fjj, we select the one having the smallest number of incidence edges under the
current graph setting. Such a selective strategy renders the resulting PEG Tanner graphs as
check-node-degree uniform as possible and it tends to favor graphs with a non-zero degree in

parity-check nodes (parity-check-node regular graphs), or concentrated graphs with two non-

44 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

zero consecutive degrees otherwise. There is strong evidence indicating that such a degree

sequence is optimum in some weak sense [86,87].

Even so, we may still face a situation in which multiple choices exist because multiple
check nodes in N, slj might have the same lowest degree, particularly during the start-up period.
There are two main approaches to solve this problem. The first is to randomly select one of
these check nodes. The other is to always select one according to its position in the order of
o, C1,- .. ,Cm—1. FoOr instance, we can first sort the check nodes in /\7;}, that have the same
lowest degree according to their subscripts, and then always pick the first one. Here we
adopt the first approach; however, note that the second may also be of interest because of its

deterministic nature.

We close this section by pointing out the following remarks.

1. Complexity — The computational load in evaluating the set N slj depends primarily on
the degree sequences D, and D, as well as the depth /. In a sparse graph the elements
of Dy and D, are small numbers compared with the block length n, and [grows at most
logarithmically with the block length n (we will see this point later). This compares
much favorably with other random constructions that aim to achieve large girth whose

complexity generally grows exponentially with n.

2. Non-greedy version — The version presented above is greedy in the sense that the spread-
ing subgraph of s; proceeds as deep as possible, i.e., the depth [is maximized such that
J_/'slj # & but N sl:rl = @&. This approach proves to be favorable if the minimum distance is
at a premium, particularly for short block-length and/or high-rate codes [96-98]. How-
ever, for long block-length, low-rate codes in which the minimum distance is not a critical
issue, it might be favorable to limit [to a certain value Iy, 1) to make the check-node
degree sequence concentrated in the strict sense, 2) possibly to reduce the diameter of
the graph — the maximum distance of distinct vertex pairs, such that fewer decoding
iterations are required. This kind of variant is called non-greedy PEG algorithm. Note
that if one sets lynax = g1/2 — 2, where g is the target girth, then this variant bears some

resemblance to the “bit-filling” algorithm appeared in the independent work [99].

3. Look-ahead-enhanced version— The PEG principle refers to constructing edges in stages,
where at each stage we make the choice for an edge emanating from a symbol node which
locally optimizes the shortest cycle passing through the assumed edge, by which we
move closer to our final goal. Obviously, this short-sighted local optimization does not
usually produce the best overall solution. One can enhance the greedy PEG algorithm

by looking one-step ahead. In the look-ahead-enhanced version, the same procedure as

3.4. Graph Properties 45

in the greedy PEG algorithm is applied, except when multiple choices exist for placing
the k edge of s;. In this case, rather than randomly select one, an additional test
is introduced to distinguish multiple choices. That is, for each candidate in N slj, we
evaluate the maximum depth [of s; assuming this candidate edge being put onto the
graph, and associate the maximum depth to each candidate, and finally select the one

having the largest value as the parity-check node that the k& edge of s; joins.

4. Flexibility and Scalability — The idea underlying the PEG algorithm is quite flexible
and scalable. The PEG algorithm can be used to construct good regular or irregular
bipartite graphs. Later we will also show how to extend the PEG algorithm to construct
linear-time encodable LDPC codes. The PEG algorithm is not necessarily limited to
constructing bipartite graphs; it can be extended — although not treated here, in a
straightforward manner to constructing arbitrary graphs with large girth by applying

the PEG principle enunciated above.

3.4 Graph Properties

A randomly-constructed Tanner graph does not guarantee a meaningful lower bound on the
girth and the minimum distance. In contrast, a Tanner graph constructed with the PEG

algorithm has elegant properties with respect to the girth and the minimum distance.

3.4.1 Girth Bound

We need the following Lemmas to establish a lower bound on the girth of PEG Tanner graphs.

Lemma 3.1 Let (V, E) be a regular Tanner graph with d. and d, edges incident with each
parity-check and symbol node, respectively. If N Slj denotes the depth-l neighbor of a symbol
node s; such that N}, C V; and Nf' = V., then [is lower bounded by

P (3.1)
where t satisfies
log (md, — ™% —m +1
_ ol &) 1, (3.2)
log((ds — 1)(d. — 1)] |

|| indicates the floor of a real number, and m denotes the cardinality of the set V. of parity-

check nodes.

46 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

Proof. Consider a depth-I subgraph spreading from any symbol node s;, s; € V;, such that
./\/Zj C V. and ./\/'sl;rl = V.. By definition the depth-0 subgraph contains d, parity-check nodes,
each giving rise to (d; — 1)(d. — 1) parity-check nodes in the next round of spreading. Thus,
there are dy(d, — 1)(d. — 1) check nodes at depth-1. Similarly, there are dy(ds — 1)'(d, — 1)’
check nodes at depth /. In principle, duplicate parity-check nodes may occur in the subgraph
during the spreading process. Let [’ be the largest integer such that

dy + dy(ds — 1)(de — 1) + - + dy(ds —)" (d. — 1) < m, (3.3)

which can be simplified to

ds [(ds - 1)l’+1(dc _ 1)l’+1 _ 1]
@ -Ddi-1)-1 =™ (3.4)

Let ¢ be the floating-point solution of the equation

ds [(ds _ 1)t+1(dc _ 1)t+1 _ 1}

- nd-n-1_ " (3:)

Then | > I' > |t]|, After simple manipulations Eq. (3.5) yields Eq. (3.2), which completes the
proof. |

Lemma 3.2 Let (V, E) be an irregular Tanner graph in which d*®* and d™®* are the largest
degrees of the degree sequences D. and Dy, respectively. If ./\/'Sl], denotes the depth-l neighbor
of a symbol node s; such that A/Zj C V. and /\/jjl = V¢, then [is lower bounded by

1> t], (3.6)

where t satisfies

log (mdme* — Tf,f;? —m+1) .
t= : =
log[(dpax — 1)(dgax — 1)] ’

(3.7)
and m denotes the cardinality of the set V. of parity-check nodes.

Proof. The proof is identical to that of Lemma 3.1, except that ds; and d,. are replaced by

d¥®* and d7'**, respectively. n

We now establish a lower bound on the girth of a PEG Tanner graph.

Theorem 3.1 Let (V, E) be an irregular PEG Tanner graph in which d7* and dT** are the
largest degrees of the degree sequences D, and Dy, respectively. The girth g of this graph is
lower bounded by

g2 2(“_‘ + 2)’ (3-8)

3.4. Graph Properties 47

where t satisfies

log (mdPs — ";‘sff;zx —m+1)

log[(dg™ — 1)(dp>* - 1)]

~1, (3.9)

and m denotes the cardinality of the set V, of parity-check nodes. If (V, E) is a regular PEG
Tanner graph with d. and d; edges incident with each parity-check and symbol node, d7®*, d;**®

in Eq. (3.9) are then replaced by d., ds respectively.

Proof. Suppose that the closed path (sj,, Cis), (Cig» 8j1)s (871 Cir)» (Cizs S52)s -+ -5 (85,7515 Cigjai)s
(Ci,jo_1» Sjo) 18 among the ones that provide the shortest cycle in a Tanner graph (V, E)) con-
structed with the PEG algorithm where, without loss of generality, j;/2—; is the largest index
among jo,ji, ** - ,Jg2—1. Then the length of the shortest cycle in the graph, i.e., girth g,
is equal to the local girth of symbol node s;, , ,, ie., g = gj , ,. AS jgo-1 is the largest
index, g;, ,_, can be viewed as the girth of the symbol node s;_,_, in the intermediary graph
with edges in the set B U E, U---UE; , .
Bjy

cedure in the PEG algorithm for placing edges in the set E;,

Clearly, the edges in the complementary set
U---U E,_1 have no impact on the local girth of s;, , ,. Recall now the successive pro-
/o, By construction the shortest
possible cycle passing through symbol node s;, ,_, has length 2(1 + 2) where [corresponds to
the depth-/ neighbor J\/'Sljg/2_1 such that ./_/'Sl],g/z_1 # @, but /\73?9‘/12_1 = @. It can readily be seen

that in our case [+1 = g/2 — 1. Therefore, by making use of Lemma 3.2 we obtain
g9/2—-22> |t] (3.10)
which implies g > 2(|¢] + 2), where ¢ is subject to 3.9. [|

The bound on the girth provides a justification of the effort of the PEG algorithm to keep
the check-node degree as uniform as possible. The more uniform the Tanner graph, the smaller

the values of d7* and d;'**, thereby improving the lower bound.

An upper bound on the girth of a general Tanner graph can readily be derived based on
the idea in [4, pp. 81-82].

Lemma 3.3 Let (V, E) be a regular Tanner graph with d. and d, edges incident with each
parity-check and symbol node, respectively. The girth g of this graph is upper bounded by

g < 4[t] +4, (3.11)

where t is given by

_ log [(m - 1)(1 - giy) + 1]
log[(de — 1)(ds —1)]
and m denotes the cardinality of the set V, of parity-check nodes.

(3.12)

48 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

Proof. Consider a depth-l subgraph spreading from any parity-check node ¢;, ¢; € V., such
that N} C V, and N/! = V.. Furthermore, let’s assume that there are no duplicate parity-
check nodes within the subgraph of depth-/ but there are duplicate parity-check nodes within
depth-(I+1). Under these conditions the girth g must be smaller than or equal to 4/ +4. The
value ! can be upper bounded based on the fact that the total number of parity-check nodes
within the subgraph of depth-/ must be smaller than or equal to the cardinality of V., namely
m . Observe that there is only one parity-check node at depth-0, and there are d.(ds — 1)
parity-check nodes at depth-1, d.(d. — 1)(ds; — 1)? at depth-2, and so forth. Thus, we have

1 +do(ds — 1) + de(de — 1)(dg — 1)2 4+ - - + d(de — D) (ds — 1) < m, (3.13)

which reduces to
dc(ds - 1)[(dc - 1)l(ds - l)l - 1]
(dc — 1)(ds - 1) -1

+1<m. (3.14)

If ¢ is the solution of the equation

dc(ds - 1){(‘10 — l)t(ds - l)t — 1]

1=m. 3.15
d-Dd—1)-1 ™ (3.15)
then ¢ > |t| > I. Therefore
g<A4l+4<A4t] +4 (3.16)
where t is defined by Eq. (3.12). |

Lemma 3.4 Let (V| E) be a regular PEG Tanner graph with d. and ds edges incident with
each parity-check and symbol node, respectively. The girth g of this graph is always larger
than or equal to the half of the upper bound.

Proof. To prove the argument, it suffices to show that the lower bound on the girth of a
PEG Tanner graph is larger than or equal to half of the upper bound of a general Tanner
graph. The ratio of the lower bound to the upper bound is given by

mdcds ~mde~mds 41

1 mde— 2% ~m41 lo,
Y e o) DY) g (e Eeimmt) |y

log | (m—1)(1— z42—7)+1 log | Mdeds=mde—mds 4y (1 de)
e =) D G = = end =) Y
L1
- 2

in which inequality holds because in a nontrivial parity-check code we have d, > d, and d, > 1.
[|

The asymptotic Erdés-Sachs bound [80] states that a randomly generated regular graph

with n vertices and of degree k has girth larger than or equal to log,_; n with probability

3.4. Graph Properties 49

approaching 1 as n — oo. This lower bound is exactly half of an upper bound (asymptotically)
that can be obtained in the same manner as we did in the proof of Lemma 3.3. Therefore,

Lemma 3.4 implies that the girth of a PEG Tanner graph surpasses or meets an analogy of
the Erdés—Sachs bound.

We derive the subsequent two lemmas to tighten the upper bound on the girth of a general

Tanner graph.

Lemma 3.5 Let (V, E) be a regular Tanner graph with d. and d, edges incident with each
parity-check and symbol node, respectively. The girth g of the graph is upper bounded by

g < 4[t] +4, (3.17)

where t is given by

_ log [(m-1)(1- E;_(_;ii:fﬁ) +1]

; 3.18
og(d: = 1{de — 1) 318
and m denotes the cardinality of the set V, of parity-check nodes. Furthermore, if
de(ds — D{[(de — 1)(ds — 1)]¥ — 1}
d—1)(dy = 1) >m—1- s |
((de = 1)(d, = 1] > m hendeno 619
then
g<A4|t]+2. (3.20)

Proof. Consider a depth-I subgraph spreading from any parity-check node ¢;, ¢; € V., such
that M. C V, and N*! = V,. Furthermore, let’s assume that there are no duplicate parity-
check nodes within the subgraph of depth-/ but there are duplicate parity-check nodes within
depth-(I +1). Under these conditions the girth g must be smaller than or equal to 41 + 4. The
value [can be upper bounded [t| where ¢ is determined by Eq. (3.18).

Now let’s check the total number of symbol nodes residing at depth-{t]. On the one
hand, there are d.[(d. — 1)(d, — 1)]!) symbol nodes at depth-|t|, because there are d.(d, —
1)l1=1(d, — 1)U distinct parity-check nodes residing at depth-|[¢|. On the other hand, since
only m — (1 +d(ds — 1) + d,(de — 1)(ds — 1)2 + - - - + de(d. — 1) 1171 (d, — 1)1¥)) distinct check
nodes are not present in the depth-|¢] subgraph and each may lead to d. symbol nodes, there
are at most md, — d.(1 + do(dy — 1) + dc(de — 1)(ds — 1) + -+ + d(d. — D)HU-1(d, — 1)lt)
distinct symbol nodes residing at depth-|t|. Therefore, if

dc[(dc - 1)(ds - 1)]]!] > mdc - dc(l + dc(ds - 1) + dc(dc - 1)(ds - 1)2
+ ot de(de — DN — 1)), (3.21)

50 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

then there must be at least one duplicate symbol residing at depth-|¢], which implies
g <A4lt] +2. (3.22)

After simple algebra manipulations, Eq. (3.21) yields Eq. (3.19), which completes the proof.
|

Lemma 3.6 Let (V, E) be a regular Tanner graph with d. and d; edges incident with each
parity-check and symbol node, respectively, m and n be the cardinality of the set V. and Vj,
respectively. The girth g of the graph is upper bounded by

g < min{gy, g2}, (3.23)
where
41t +2 it =0 4lta] +2 I =0
g = Ay L= e , (3.24)
4(t;| +4 otherwise 4|ta] +4 otherwise
in which

_ log [(m—1)(1- I@d:—_T)) +1]
R [A) (329

B log [(n— 1)(1 - ﬁf—_n) +1]
N A A R (329

and T, is equal to 0 if and only if
do(ds — D{[(d. — 1)(d, — D)]t] — 1}

[(de—1)(ds — D)) >m—1- D@11 : (3.27)
and I, is equal to 0 if and only if
((de = 1)(dy = D))t} > —1— dy(de = D{[(de — 1)(d; — 1)]1! — 1} (3.28)

(de —1)(ds —1) =1

Proof: The new results in this lemma compared to Lemma 3.5 can be obtained by a duality
of the proof of Lemma 3.5. The duality lies in the fact that one can exchange V, and V; and

the same arguments apply. ||

Fig. 3.4 depicts both the lower bound on a PEG Tanner graph and the upper bound
on a general Tanner graph for regular d; = 3,d. = 6 codes with varying m (in this case
n = 2m). It is observed that the lower bound for the entire range of block lengths is above
half the upper bound. Compared to Gallager’s construction [4, pp. 81-89] for large girth,

the PEG construction achieves essentially the same performance on the girth but with less

3.4. Graph Properties 51

26 A I) 8
~— Lower bound on a PEG Tanner graph
24} =+ Upper bound for a general Tan.ner graph
!
22F : -1 4
i
20 - [Sbiatindiaty - .1
!
181 '._.I ﬁ

16

F

14% !._.I
I
T

girth

12 :. --------- o -
!
10 =1 o .
I
8 - e.-l -
!
6'|"d J
i
4 i 1 el L 1 P
10" 10° 10° 10* 10° 10°

number of parity nodes m

Figure 3.4: Lower and upper bounds on a PEG regular Tanner graph with d, = 3,d, = 6.

complexity. Recall that for large block lengths the complexity of Gallager’s construction
becomes prohibitively large owing to the so-called emergency procedure contained therein.
Also, the PEG construction can be applied to irregular graphs, whereas Gallager’s construction
only applies to regular graphs. Later it will be shown that the PEG algorithm can be extended
to design linear-time-encodable LDPC codes in a very natural way. Fig. 3.5 compares the
upper and lower bounds for regular d; = 4,d. = 8 codes. It is worthwhile to point out that
the lower bound on the PEG graphs can be exceeded by the PEG algorithm. We observe,
through experiments, that with some parameters ds,d, and m, the non-greedy PEG variant
or look-ahead-enhanced variant can achieve larger girth than the lower bound, some cases of

which were shown in Fig. 3.4 as small circles.

3.4.2 Minimum Distance Bound

Assume V takes on values from the binary alphabet {0,1} and V, is a set of simple parity
checks (SPC), the Tanner graph then translates into a Gallager’s binary LDPC code. The
randomly constructed (ds, d.)-regular code for d; > 3 has a minimum distance that increases
linearly with the block length n, for d; and d. constant [4]. This is only valid for relatively
large block lengths, however, and a code with a low minimum distance will be impaired in its
performance at high SNRs. Although finding the minimum distance turns out to be a difficult

task, some bounds on the minimum distance of a general Tanner graph have been established

52 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

26 T T

— Lower bound on a PEG Tanner graph
.=~ Upper bound for a general Tanner graph|

24}

221 -

20}
)

181

16 e A

girth

14 -]

12} e
1
i ——-——j
10t == .

10* 10° 10°

number of parity-check nodes m

Figure 3.5: Lower and upper bounds on a PEG regular Tanner graph with d; = 4,d, = 8.

in [100]. For a PEG Tanner graph, it is possible to derive a lower bound on the minimum

distance in a similar way.

The lower bound on the minimum distance of a PEG Tanner-graph code is based on the
properties of the subgraph induced by a minimum weight codeword in the code. Adopting the
notation of [100], a symbol node whose associated value in the minimum weight codeword is
nonzero will be called an active symbol node. The edges incident to active symbol nodes will
be called active edges, and the check nodes with at least one active incident edge will be called
active check nodes. Note that in a binary LDPC code, any edge incident to an active symbol

node must be active, and any active check node must be incident to even active edges.

Lemma 3.7 Given a symbol-node regular Tanner graph with ds (d; = 2) edges incident to
each symbol node. Assume the girth of the graph is g. Then its minimum distance dp;y,

satisfies

dmin = 9/2 . (329)

Proof: This lemma follows directly from the fact that the shortest cycle in such a graph
forms a complete active tree, i.e. a valid codeword, and the fact that it involves exactly g/2

active symbol nodes. ||

3.4. Graph Properties 53

An application of Lemma 3.7 is to establish an upper bound on the minimum distance of
an LDPC code with irregular Tanner graph. Consider a subgraph of the underlying Tanner
graph of an LDPC code, which consists of all degree-2 symbol nodes and their associated edges
and check nodes, and assume the girth of this subgraph is gsub—2. It then follows that gsyp-2/2
is an effective upper bound of the LDPC code.

Lemma 3.8 [A Variation of Tanner’81): Given a regular Tanner graph with d, edges
incident to each check node and d; (ds > 3) to each symbol node. Assume the girth of the

graph is g, g > 4. Then its minimum distance d,;, satisfies

dy[(d, — 1)lle=2/4] 1]

Anin > 1 .
min 2 1+ — (3.30)
Furthermore, if g/2 is even, the lower bound on d;, can be made even tighter:
d,[(d, — 1)le=2/4 _1
Aenin > 1 + [() I (dy — 1)H9=2/4], (3.31)

ds—2

Proof. Consider a subgraph induced by a minimum-weight codeword in the graph. The
subgraph consists of n’ active symbol nodes, m’ active check nodes, and all (active) edges
incident on n' active symbol nodes. Note that dpi, is exactly equivalént to the number of

active symbol nodes, n’. Now start a depth-/ tree from any active symbol node as shown in
Fig. 3.6, where | = | (g — 2)/4].

Any symbol node, check node, and edge resident in the tree must be active and mutually
different, except that the last row of check nodes does not have to meet the condition of being
mutually different if g/2 is odd. The number of active edges incident to an active check node
can in principle be 2, 4, ..., etc.; however only a degree-2 (active) check node is considered
to generate a minimum expansion for the number of active symbol nodes, which in turn gives
rise to a lower bound on the minimum distance. There is only one active symbol node at
depth 0, and there are d active symbol nodes at depth 1, d;(ds; — 1) at depth 2, and similarly
ds(ds — 1)1 at depth I. As the girth of the underlying graph is given by g, it is clear that all
active symbol nodes within this depth-|(g — 2)/4]| tree must be mutually different, otherwise
there always exists a closed path shorter than g, leading to a paradox. Thus dy;, is lower
bounded by the number of active symbol nodes within the depth-|(g — 2)/4] tree, that is

dmin > 1+ ds + ds(ds - 1) +oeee ds(ds - 1)l—l
ds[(ds - 1)l _ 1]
ds — 2
dg|(ds — 1)L(9—2)/4J - 1]
ds —2 ’

(3.32)

54 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

Depth-1

Figure 3.6: An “active” tree induced by a minimum-weight codeword.

which proves the first claim. If g/2 is even, the tree can proceed one step beyond depth
[(g — 2)/4], resulting in d,(d, — 1)* active symbol nodes. These d,(d; — 1) active nodes are,
however, not necessarily mutually different; a lower bound on the number of different active
symbol nodes is d,(ds — 1) divided by d,,® yielding the additive term (d, — 1)L(9=2/4], u

Tanner derived a minimum-distance lower bound for general bipartite graphs [5], which,

in the case that all subcodes are simple parity checks, turns out to be

_1\yg—2)/4 _
APy 2ld, - 1] for g2 0dd

dmin > —1)9/4_
v for g/2 even .

ds—2

(3.33)

Comparing with Eq. (3.33), Eq. (3.30)) and Eq. (3.31) are slightly stronger as d; > 3 in

general.

Note that for the case of g = 6, Eq. (3.30) reduces to the conventional bound dmiy, > 1+dj,
and for g = 8, we know dyi, > 2ds.? One might postulate that the PEG construction does
not guarantee the uniformity of the check-node-degree sequence, although the resulting PEG
Tanner graph is nearly check-node-degree uniform. Our experiments of short codes indicate
that uniformity of check nodes can actually be achieved through multiple trials or using non-
greedy variants. Nonetheless, the above lower bound can easily be extended to those cases

where the degree sequence of check nodes is not uniform.

3 As each symbol node has at most d, edges.
4This case was observed and pointed out to us by M. P. C. Fossorier.

3.4. Graph Properties 55

Theorem 3.2 Given a symbol-node-uniform PEG Tanner graph with ds (ds; > 3) edges in-
cident to each symbol node, let d7** be the largest degree of check nodes. The minimum

distance d;, satisfies

d s 1 + ds[d,—l)[(g 2)/4] _ 11 jfg/z IS Odd (3 34)
min = 1+ ds [(ds—1)L(9 /4 1] (ds _ 1)[(9—2)/4J ifg/2 is even,)
where the girth g is lower bounded by
g>2(t) +2), (3.35)
in which
m mdmax
B log(mdy™ — =5— —m +1) B (3.36)
log[(ds — 1)(dp> — 1)]
Proof. The proof follows directly from Theorem 3.1 and Lemma 3.8. |

Note that the above bound on the minimum distance is still a weak bound, although it
always furnishes a meaningful bound on graphs having a large girth. There are two reasons for
the weakness of this lower bound. The first is the assumption that all active check nodes are
satisfied by exactly two symbol nodes, which weakens the estimate of the minimum distance.
The second is that the condition that the last row of check nodes must be satisfied with

additional active symbol nodes has not been taken into account.

The above theorem can readily be extended and applied to analyze the minimum distance
of irregular PEG Tanner-graph codes. As a working example, suppose a simple symbol-node-
degree distribution defined as 0.8z2 + 0.2z%°, and n is chosen as 3000 and m as 2000. As
specified by the PEG construction, the edges of degree-2 symbol nodes are established first,
and the resulting girth of the subgraph containing all degree-2 symbol nodes turns out to be 44,
which means that the minimum distance involving only degree-2 symbol nodes is 22, a result
derived directly from the argument that the shortest cycle involving only degree-2 symbol
nodes leads to a minimum weight codeword. Next, the edges of degree-20 symbol nodes are
constructed, and finally the global girth is found to be 6. By applying Eq. (3.32), an active tree
stemming from a degree-20 symbol node will contain at least 21 symbol nodes, which means
that a minimum codeword involving a degree-20 symbol node will have a weight of 21 at least.
Therefore one can know that the minimum distance of the resultant PEG Tanner-graph code
is lower-bounded by 21, or more specifically, in our example it can be either 21 or 22. This
argument justifies the effort in the PEG construction to order the symbol degree sequence D,

in a nondecreasing order and hence construct the edges of lower-degree symbol nodes earlier,

56 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

improving the minimum distance induced by the subgraph of lower-degree symbol nodes,

particularly degree-2 symbol nodes.

It is worth pointing out that the girth of Tanner graphs can also lead to a lower bound
on the size of the smallest stopping set [101]. The finite-length error probability of iterative
decoding over binary erasure channels (BEC) has been determined via stopping sets in the
Tanner graph representation of an LDPC code [102,103]. The size of the smallest stopping

set has a direct impact on the error-floor behavior.

3.5 Asymptotic Analysis of Ensemble Codes

In the preceding section, we derived a lower bound on the minimum distance of binary LDPC
codes underlying PEG Tanner graphs that is mainly based on the girth property. However,
the analysis resting solely on the girth property seems insufficient to demonstrate that families
of codes are asymptotically good. Next, we shall prove that the ensemble of PEG codes is
indeed asymptotically good, i.e., its distance distribution asymptotically approaches that of
the equiprobable ensemble of parity-check codes. In order to simplify the analysis, we will
extend (to say exactly, relax) the PEG algorithm such that the PEG Tanner graphs degrade to
a general sparse random ensemble and in turn all variants of PEG graphs can be visualized as
expurgated random ensembles in which bad graphs with short cycles and/or small minimum

distance codewords are avoided.

The equiprobable random ensemble of parity-check codes has been analyzed in [4]; it
is a capacity-approaching family of codes for many practical channels, specifically binary-
symmetric stationary ergodic channels [62,104]. The equiprobable random ensemble of parity-
check codes of rate R and block length n is defined as the ensemble in which the m x n,
R=1-7% 5 parity-check matrix is filled with statistically independent equiprobable binary
digits {0,1}. Averaged over the equiprobable ensemble of parity-check codes, the minimum
distance is a random variable whose distribution function can be represented by the following

lemma.

Lemma 3.9 [Gallager’63]: Over the equiprobable ensemble of parity-check codes of length

5The actual rate in the ensemble may have a rate slightly higher than R, since the rows of a matrix in this
ensemble are not necessarily independent over the modulo 2 field. Nonetheless, this minor difference does not

cause serious problem, see [4,9,10] for instance.

3.5. Asymptotic Analysis of Ensembie Codes 57

n and rate R, the minimum distance distribution function Pr(D < én) is given by

Pr(D < 6n) = i <”) 9=n(1-F) (3.37)

=1 N

Proof: See [4, Eq. (2.6), p. 13]. |

Now we describe the procedure to relax the PEG construction to facilitate simple analysis:
Recalling that in the PEG algorithm, we partition the entire set of check nodes into two subsets
whenever a new edge of a symbol node (s;) is being added: one is the prohibitive subset, on
which if the new edge is placed, there exits a short cycle — this check-node set corresponds
to the depth-/ neighbors of the symbol node ./\/slj; the other is the feasible subset from which
each element is selected with equal probability to get connected with the symbol node, which
is the complement set of ./\/'Slj. If we relax the greedy PEG algorithm such that the prohibitive
subset only contains the existing connected parity checks, i.e., the expanding tree halts at
depth-0 (I = 0), then the PEG construction reduces to a simple random construction,® each
column in the parity-check matrix containing exactly dy 1’s. It is clear that the PEG codes
are a particular subset of these random matrices, from which bad codes (graphs) containing

small minimum distance (short cycles) are successfully avoided.

It still turns out to be a tedious task to analyze the distance distribution function of the
random construction discussed previously. One can relax it further by means of removing the
constraint that the 1’s in each column of parity-check matrix be exactly d,, instead, one can
define a new ensemble of parity-check matrices, i.e. sparse random matrices H in which each
entry in a column takes on 1 with probability p and 0 with 1 —p, p=d;/m,0<p < 1/2,pis
called density. Such an ensemble is naturally a broader random construction and contains the
previous random construction as its own subset. Note that this relaxed random construction
with density p is asymptotically the same as the old one, and also it is a weaker extension

since it includes some bad codes (graphs) again.

In summary, we obtain a series of relaxations of PEG constructions. These PEG Tanner
graphs can naturally be viewed as expurgated ensembles of the sparse random graphs with
density p, from which bad graphs having short cycles and/or small minimum distance are
effectively precluded. Our asymptotic analysis of PEG constructions relies on an extreme
degradation of PEG Tanner graphs, i.e, the sparse random matrix H with density p described

previously.

This ensemble is equivalent to that of Section II-A.(3) in [71].

58 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

Lemma 3.10 Let H be a random n(l — R) X n matrix over GF(2), with a density of p,
0 < p < 1/2. The minimum distance distribution function Pr(D < én) is given by

Pr(D < 6n) =]‘; (?) [TIH%F)J

] e (3.38)

Proof: Fix some nonzero vector V = [vg, v1, ... ,Un-1] € [GF(2)]", with exactly j nonzero
coordinates, i.e., the Hamming weight of this vector is j. Without loss of generality, assume
that the first j coordinates of V' are nonzero. Let P; be the probability that Z{zl vihg; = 0,
where each hy; is the entry of k-th row of the matrix H and is thus chosen according to the
uniform distribution of p. As there is a total of n(1 — R) independent check equations, the

probability that V is a valid codeword is given by Pf(l_R).

Given that the v;’s are fixed, the following recursion holds for P;.
Pj=Pi1(1-p)+ (1~ Pia)p, (3.39)

with the initial condition Py = 1. Denote Q; = P; — 1/2. It follows from Eq. (3.39) that

Qj = Qj-1(1-2p), (3.40)
with Qg = 1/2. Hence we obtain
1 :
Q=5 -2), (3.4)
and, consequently,
1 1 ;
P; = 5t 5(1 —2p) . (3.42)

The number of vectors V' with exactly j nonzero coordinates is given by (;”), the minimum

distance distribution function Pr(D < én) can then be written as

Pr(D < én) = EM: (") pro-R)
3 (%) [b+ -

- O o]

This completes the proof. |

I

}n(l—R)

3.5. Asymptotic Analysis of Ensemble Codes 59

Lemma 3.11 Let H be a random n(l — R) X n matrix over GF(2), with a density of p,
0 < p < 1/2. The minimum distance grows at least linearly with block length n.

Proof: Tt suffices to prove that, given any positive p, there exists a positive number ¢ such
that Pr(dmin < en) —5 0. Starting with Eq. (3.38), we have

Pr(dpin < €en) = i (7;) {1_+_(12__2p)_9} —n(1-R)

J=1

< 30) [wa=ml

i=1

Recall the following inequality [4, (2.7), p. 13]

£0)< ()i

J=1

We obtain

n\ 1l—c¢ 1]70-R
Pr(dy, < en) < _ . :
r(dpin < €n) < (en) T 5 [1 — p:] (3.44)

In view of the following bound on () [62, p. 530]

ST SO <") S O (3.45)
\/8ne(l — €) en vV 21ne(l — €)

We have

Pr(dmin S E’I’L) S

1 1—¢€ 1
/ on[Hz(e)=(1-R)logy 7] 3.46
1—2¢V 2mne ()

As Hy(e) is monotonically increasing within (0, 1/2), there must be a small positive number

¢, for any positive p € (0,1/2), that satisfies

Hy(e) ~ (1~ R)log, —

<0.
Thus,

Pr(dyin < en) — 0 exponentially with n . (3.47)
]

Theorem 3.3 Given a random matrix with density p, i.e., a degradation of a PEG ensemble
of uniform-symbol-degree d; (ds > 3), its minimum distance distribution function approaches
closely that of the equiprobable ensemble of parity-check codes, for sufficiently large n, fixed
R and fixed p, where 0 < p < 1/2, p = d,/[n(1 — R)].

60 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

Proof. In view of Eq. (3.47), the minimum distance distribution function of the sparse

random Tanner graph with fixed density p can be rewritten as

Pr(D <dén) = Pr(en < D <én)

> (D]

|
g

Jj=en
£t
- j=en .7 1+(1_2p)m

on

j=en

To prove Eq. (3.48) approaches asymptotically Eq. (3.37), it remains to show

lim [1+ (1 —2p)""~® =1 (3.49)

n—o

Using 1 + z < e twice we get

[1 + (1 _ 2p)en]n(1—R) < [1 + e_gpm]n(l—R)

A (3.50)
Therefore
lim [1 —+ (1 — 2p)en]n(1—R) S lim en(l_R)e—Zpen
n—rod N—y00
= 6nli}m°°n(1—R)e—2p€n
= =1. (3.51)
Combining the fact that [1 + (1 — 2p)]"*~" > 1, we obtain Eq. (3.49). =

Because the maximum-likelihood decoding performance of a linear code depends uniquely
on the minimum distance distribution function, this theorem effectively states that the binary
low-density parity codes underlying PEG Tanner graphs are asymptotically good, i.e., capable
of achieving reliable communication at rates up to the capacity of the binary-symmetrical

stationary ergodic channels, when optimally decoded.

We can prove that the binary random or PEG codes also attain the (asymptotic) Gilbert—
Varshamov bound with high probability. A code with block length n and rate R satisfies the
Gilbert—Varshamov minimum-distance bound if the relative minimum distance § = duyn/n

satisfies
H;(5)=1-R, (3.52)
where Hy(d) is the binary entropy function

Hy(6) = —blogy & — (1 — 6)logy(1 —9) . (3.53)

3.6. Irregular PEG Tanner Graphs 61

Theorem 3.4 Given a random matrix with density p, i.e., a degradation of the PEG ensemble
of uniform-symbol-degree ds (d; > 3), the binary LDPC code underlying this graph attains
the Gilbert—Varshamov minimum-distance bound with high probability.

Proof: First, recall the following inequality [4, (2.7), p. 13]

> ()< ()<(n) =S

j=en j=1
By inserting Eq. (3.54) in Eq. (3.48), we obtain
Pr(D<on) < (. 170 gno-n) [1+ (1—2p)=]"=R (3.55)
- —\on/1-2¢6

Recall the following bound on (;}) [62, p. 530]

1 gnm) ¢ (") < ! gnHa(9) (3.56)
8nd(1 — 4) —\on) T \/2rné(1 = §)

Thus 3.55 is upper bounded by

1 1-46

< <
Pr(D < én) < 1—26V 2mnd

Using Eq. (3.49) for sufficiently large n, we obtain

1 1-4
D < 6n) < —— 1| = onlHa(6)-(1~R)] _
Pr(D < dn) < 7=/ 5—2 (3.58)

For increasing n, the bound of Pr(D < én) as a function of § approaches a step function
with the step at dy such that Hz(dg) = (1 — R). In particular if § = dy, then

1 1—4g
Pr(D < don) < { 172%V 2mdo (3.59)

=0 for n —

Furthermore, recognizing that H(d) is monotonically increasing with § € (0,1/2), we conclude
that for any ¢ > 0, the probability for which D < n(8; — €) exponentially approaches 0 with
n. This completes the proof. |

3.6 Irregular PEG Tanner Graphs

For very long block lengths, the authors of [9,52] prove a concentration theorem that states

that in the limit large random graphs can be assumed to be effectively cycle-free. This allows

62 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

the calculation of precise convergence thresholds under the sum-product decoding algorithm
via the density evolution approach. An ensemble of random codes with optimum degree-
distribution pairs can then be carefully chosen to optimize its threshold. This approach has
been used to find good irregular LDPC codes based on the random construction that exhibit

a performance extremely close to the Shannon limit on typical memoryless channels.

However, two issues complicate the analysis and design of codes having short block lengths.
The first is that the concentration theorem applies only to the asymptotic case; for short block
lengths, random graphs experience significant deviation as pointed out in [105]. The second is
that the cycle-free assumption is no longer valid, which is a complication the density evolution

cannot handle adequately.

In this section, we briefly describe an empirical Monte-Carlo approach using a variant
of the “downhill simplex” optimization technique to design symbol-node-degree distributions.
The resulting degree distribution is used to optimize a LDPC code with specific parameters

n and m whose Tanner graph is constructed by the PEG algorithm.

The “downhill simplex” algorithm in general is a nonlinear unconstrained optimization
procedure that operates on a multidimensional simplex consisting of several vertices [85, 88].
Here we adopt a simple variant of the “downhill simplex” method that can handle constraints.
Each vertex represents a feasible symbol-node-degree distribution, and its cost function is
defined as the block-error rate at a Ej/N, threshold. The worst vertex is replaced by a better
vertex according to three basic operations: contraction, expansion, and reflection, resulting in
a new simplex. This step is repeated until the diameter of the simplex is less than a preselected

tolerance.

3.6.1 Constraints

The optimization parameters are the symbol-node-degree distribution that must be a proba-
bility vector. Assume there are [nonzero coefficients in the symbol-node-degree distribution
A(z), and define

l
Az) =) Mz,
=1

where d; is the preselected degree of the i-th nonzero entry in the degree distribution. Then

we have the following constraints:

> Ai=10, (3.60)

3.6. Irregular PEG Tanner Graphs 63

where 0.0 < A; < 1.0, for ¢ = 1,2,...,1. To improve the searching efficiency, we can reduce
this /-dimensional searching problem to a (I — 1)-dimensional one, i.e., we form a constrained
optimization problem with an (I — 1)-dimensional parameter vector A = (A, Ag,... ,A;_4)

under the following inequality constraints:

00<A; <10 fori=1,2,---,1—1

-1 3.61
00< Y A; <10 ()
=1

The I-th coefficient of A(z) is computed by

3.6.2 Cost Function

We need a cost function to assess the quality of a valid symbol-node-degree distribution A,
and then minimize this function by manipulating the simplex. The most natural cost function
is the block-error rate at a certain SNR, per bit (E;/Ng). In this approach we first construct a
PEG graph in accordance with A, and then evaluate the average block-error rate at a certain
Ey/N, using Monte Carlo simulations with a prescribed number of blocks. The value of Ej/N,
is initialized with a relatively large number, then gradually decreases in small steps whenever
a zero block-error rate is encountered. The final E,/Ny, at which there is no PEG graph
with a symbol-node-degree distribution A having a zero block-error rate, is called the E,/Ny
threshold.

3.6.3 Constrained “Downhill Simplex” Search

The method we have adopted in designing irregular PEG Tanner graphs is a constrained
“downhill simplex” nonlinear optimization procedure that uses only cost function evaluations.
A simplex in our setting is a geometrical manifold consisting of 2(I — 1) vertices, with each
vertex representing a valid symbol-node-degree distribution. We summarize the algorithm as
follows:

The Constrained “Downhill Simplex” Algorithm:

Step 1: Initializing a simplex

la. Find a vertex A! that meets all constraints. This can easily be done manually.

1b. Determine the other 2 — 3 vertices according to:

64

Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

1. for j=2to2l -2
fori=1tol -1
Al «— Random(0, 1]
end
end
where A7 is the i-th element of the j-th vertex A7 in the simplex, and Random[0, 1]

is a uniform [0, 1] random number generator.

-1
2. Check whether Y A} < 1.0 in the sequence of j = 1,2,...,2] — 2. Suppose the

)
first j vertices all meet this constraint, and the (j + 1)-th does not, then
AT = (AT 1) /2,

where

Repeat this check procedure until all vertices A7, j = 1,2,...,2l — 2, satisfy the

constraint.

1c. Evaluate cost functions of the vertices in the simplex, i.e., the block-error rates P? of codes

associated with irregular PEG graphs generated with A7, where j =1,2,...,2 — 2.

Step 2: Forming a new simplex

2a. Determine the worst vertex P/” and the second worst vertex P,

def ;
PY = max P!
1< <20~2

and

f .
Py = max PJ.
1<G<A~2, AW

2b. Compute the reflection vertex A" of the worst vertex A" in the current simplex.

A" = (1+a)A% — A",

in which

21-2

1 .
R __
A" = 2] —3 Z A
: J=1j#W

2c. Search a new vertex A™ based on A" to replace the worst vertex A", forming a new

simplex. The search procedure is as follows.

3.6. Irregular PEG Tanner Graphs 65

1. fori=1tol—-1
if A7 < 0.0 then A] = Al +§
if A] >1.0then A] =A] -6
end
Repeat this “for” loop until 0.0 < A] < 1.0foralli=1,2,...,l — 1. ¢ is usually
set to 1075,

1-1
2. Check whether) A7 < 1.0. If not,

A" = (AR 4+ A7))2,

and then go back to 2c in Step 2.

3. Evaluate the cost function P] of the vertex A". If P7 < P¥, then
A"=A", PP =P].

Otherwise,
A" = (AR +A")/2,

and then go back to 2c¢ in Step 2.

2d. Compute the average distance of these vertices in the new simplex. If the average distance
is smaller than a prescribed value, the optimum vertex is chosen as the one having the
smallest block-error rate among the simplex, and the optimization algorithm terminates.

Otherwise, go back to 2a in Step 2 and start a new round to evolve the simplex.

It can be seen that the computational complexity depends primarily on the evaluation of
the cost function of a valid symbol-node-degree distribution. Experimental results show that
in general approximately 100 evaluations of the block-error rate at the E},/N, threshold will
be sufficient for the constrained “downhill simplex” algorithm to yield a satisfactory symbol-
node-degree distribution. Note that the computational load can be greatly reduced by means
of efficient implementations of the sum-product algorithm for decoding LDPC codes [106-108].
Further reductions may be possible by using other, easily computable cost functions, see for

example [89].

Note that the Monte-Carlo scheme can be viewed as being complementary to the density
evolution scheme in the sense that the former is an empirical approach and its accuracy depends
primarily on the amount of computation power available, whereas the latter is a theoretical
approach and is based on asymptotic analysis. The density evolution approach proves to be

very successful for long block-length codes and for the random construction; but it is not clear

66 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

yet whether it is still applicable to short block-length codes and to the PEG construction; the
Monte~Carlo approach is also indispensable for non-binary LDPC codes where the density

evolution approach is not yet available.

3.7 Code Performance

3.7.1 Regular Codes

In this section we study the performance of PEG Tanner graphs applied to binary LDPC
codes by means of computer simulations. For comparison purposes, we use the rate-1/2
(n = 504, m = 252) code of MacKay in [109], which is based on a regular Tanner graph
with dy = 3,d. = 6. Currently this code is one of the best codes with these parameters.
A PEG Tanner graph of 504 symbol and 252 check nodes is generated with uniform degree
3 for each symbol node. The resulting graph is nearly check-node uniform with degree 6,
except for 8 check nodes with a degree of 7, and 8 with a degree of 5. We also use a randomly
constructed rate-1/2 (504, 252) code, in which the degree of symbol nodes is 3 and the positions
of 1s in a column is determined by a random integer generator uniformly distributed among
the set {0,1,...,m — 1}. Additional tests are implemented to avoid 4 cycles in the graph

representation.

Fig. 3.7 compares the girth histogram of the PEG, MacKay’s, and random graph codes.
In the PEG Tanner graph, each symbol node has a local girth of 8, except for three symbol
nodes with a local girth of 10. In MacKay’s code, 63% of the symbol nodes have a local girth
of 6 and 37% one of 8. In the random graph, 79% of the symbol nodes have a local girth
of 6 and 21% one of 8. The average local girth of these three graphs is 8.01, 6.74, and 6.42,
respectively. Clearly, based on the girth histogram, the PEG Tanner graph has an advantage

over its two counterparts.

Fig. 3.8 compares the bit- and block-error rates for the three codes after 80 iterations over
an additive white Gaussian noise (AWGN) channel,” and reveals that the performance of the
random graph is much worse than that of the other two codes, perhaps mainly because of its
poor girth histogram. We observe that the LDPC code based on the PEG Tanner graph is
always slightly better than MacKay’s code. With 80 iterations and at a block-error rate of
5 x 1073, the LDPC code based on the PEG Tanner graph outperforms MacKay’s code by

0.2 dB. The significance of this result should not be underestimated, considering that, to the

"Throughout, the channel model is assumed to be the binary-input AWGN channel.

3.7. Code Performance 67

10 L L L} T
oL L 4
PEG Tanner graph
] 1 — . i
0 100 200 300 400 500
10 T T T T T]
E
s B“M I”M IM\I MMMM ﬂlllﬂllﬂlﬂm " M‘HIMM MHMMMMI“M M "MWMM m‘”M "M"“M w
[=]
Le
17
T 4t _
=
f—,s MacKay’s code
il p— L L 1
0 100 200 300 400 500
10 T T T T T
8 -
o LR LAARC AR LACAUALRAL A AL AL ALALMREM
sk i
Random graph
1 1 —_ — 1
0 100 200 300 400 500

Symbol nodes from syto s n=504

n-1’

Figure 3.7: Girth histograms of a PEG Tanner graph, MacKay’s code, and a random graph,

with parameters n = 504, m = 252,d, = 3,d, = 6.
80 iterations

~B- PEG code, bit error
P+ MacKay code, bit error]
@+ Random graph code, bit error
-8~ PEG code, block error E
"""""""""""" -D—- MacKay code, block error

....... —-©—- Random graph code, block erro
107} BTN - 3
: "B,
@107
g
S
w10~k
10.5g
3
10}
;
167 — . L
1 15 2 25 3 3.5

Signal-to-noise ratio per bit, Eb/NO (dB)

Figure 3.8: Bit- and block-error rates of PEG Tanner-graph code, MacKay’s code, and ran-
dom graph code, with parameters n = 504, m = 252,d, = 3,d. = 6.

68 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

best of our knowledge, MacKay’s codes still are the best codes for short and medium block

lengths.

Note that although both MacKay’s code and the random graph have a global girth of 6,
the performance of the latter degrades significantly. This suggests that in reality it is not
only the girth but also the girth histogram that dominate the performance of the iterative
decoding. In [105] the average of the girth histogram is used as a heuristic tool to select good

codes from random graphs for short block lengths.

Fig. 3.9 compares the girth histograms of the PEG, MacKay’s and random graphs with
parameters n = 1008, m = 504,d, = 3,d, = 6. In the PEG Tanner graph, 17% of the symbol
nodes have a local girth of 8 and 83% one of 10. In MacKay’s code, 39.5% of the symbol nodes
have a local girth of 6 and 60.3% one of 8. In the random graph, 55.6% of the symbol nodes
have a local girth of 6 and 44.2% one of 8. The average local girth of these three graphs is
9.66, 7.214, and 6.892, respectively. Fig. 3.10 compares the bit and block-error rates for these
three (1008, 504) codes after 80 iterations. Again, we observe that the LDPC code based on
the PEG Tanner graph is much better than the LDPC code based on the random graph, and
slightly better than MacKay’s code.

12 T T
10
8

' PEG Tanner graph]

-
H OO ON

Girth histogram

MacKay's code

Random graph

500
Symbol nodes from 5, tos . n=1008

Figure 3.9: Girth histograms of a PEG Tanner graph, MacKay’s code, and a random graph,
with parameters n = 1008, m = 504, d; = 3,d, = 6.

We report that the look-ahead-enhanced PEG construction yields a Tanner graph of girth
10 for n = 1008, m = 504,d, = 3,d, = 6. This represents an improvement in terms of girth

relative to the generic PEG construction, in which the girth is 8. Moreover, by applying

3.7. Code Performance 69

80 iterations

B PEG code, bit error
<P MacKay code, bit error
<@+ Random graph code, bit error
.) - e | —8 PEG code, block error
AL =B~ MacKay code, block error

o,
,

it
1y,
‘
i

i
.
‘Y,
o
N

Error rate
IS

-
(=}
T

10 'k

10 F

10 —L

1.5 . 2 . 25
Signal-to-noise ratio per bit, Eb/N0 (dB)

Figure 3.10: Bit- and block-error rates of a PEG Tanner-graph code, MacKay’s code, and
random graph code, with parameters n = 1008, m = 504, d, = 3,d, = 6.

Lemma 6 with these parameters we know that in this case the upper bound on the girth is

12, indicating that the look-ahead-enhanced PEG is close to the globally optimum.

3.7.2 Irregular Codes

In this subsection we report on the code performance of near-optimum irregular symbol-
node-degree distributions for the PEG construction, obtained by the Monte-Carlo approach
together with constrained “downhill simplex” algorithm described above. The symbol-node-
degree distribution is A(x) = 0.4753222+0.279537234-0.03486722* 4-0.108891254-0.101385215,
which is optimized for n = 504, m = 252. As required by the PEG construction, the check-
node-degree distribution is automatically concentrated and thus uniquely determined by the
symbol-node-degree distribution and the code rate 8. The PEG LDPC code we considered is
of rate-1/2, and its performance is depicted in Fig. 3.11. As can be seen this code outperforms
MacKay’s rate-1/2 (504, 252) code by about 0.4 to 0.5 dB in the entire range of E;/N, after
80 iterations. Also plotted is the performance of a randomly constructed code using the same

degree distribution,® exhibiting a very early “error floor” effect. This clearly shows that the

8 Whenever a check-node-degree distribution is not explicitly shown, it is assumed to be concentrated.
9The irregular random code is constructed column by column with appropriate degree, and the 1s in each

column are determined by a uniform integer generator. Efforts have been taken to avoid 4-cycles.

70 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

80 iterations

Error rate

Irregular PEG code, bit error

Irreg. random-graph code, bit error . .
MacKay code, bit error o L
irregular PEG code, block error b
=8~ Irreg. random-graph code, block erro

[[MacKay code, block error

10 1 1 L
1 1.5 2 25 3 3.5

Signal-to-noise ratio per bit, Eb/NO (dB)

pvoe

Figure 3.11: Bit- and block-error rates of the irregular PEG Tanner-graph code, ir-
regular random-graph code, and MacKay’s code (regular) with parameters
n = 504,m = 252. The symbol-node-degree distribution for the irregular
PEG Tanner-graph code is A(z) = 0.47532z? + 0.27953723 + 0.0348672z* +
0.108891z° + 0.10138521°.

PEG construction provides a significant advantage over the random construction, particularly

for short block lengths and for cases in which the figure of merit is the block error rate.

We also investigate this degree distribution applied to the case n = 1008, m = 504. The
performance of the resulting LDPC code constructed with the PEG algorithm is shown in
Fig. 3.12. This figure indicates nearly 0.5 dB gain over MacKay’s rate-1/2 (1008, 504) code.
To the best of our knowledge, the irregular PEG LDPC codes reported here are the best ones

to date in terms of block-error rate at short block lengths.

Density evolution has proven to be an efficient and effective approach to design good
irregular-degree-distribution pairs with which LDPC codes based on random construction
exhibit a performance extremely close to the Shannon limit for sufficiently long block lengths.
It is thus tempting to combine the PEG construction with the symbol-node-degree distribution
optimized by the density evolution approach to design LDPC codes. We investigate the
performance of symbol-node-degree distributions !° in [10, Tables I and II] under the PEG

10We do not need the check-node distribution as the check-degree sequence is made as uniform as possible

3.7. Code Performance 71

80 iterations
10 — T T

Error rate

% Irregular PEG code, bil error “.

8- Irreg. random-graph code, bit error -

P MacKay code, bit error 'P‘,)

10 "F | =%~ Irregular PEG code, block error T
-8~ lrreg. random~graph code, block errof .

-~ MacKay code, biock error B

10 L 1 1
1 1.5 2 25 3

Signal-to-noise ratio per bit, Eb/N0 (dB)

Figure 3.12: Bit- and block-error rates of the irregular PEG Tanner-graph code, ir-
regular random-graph code, and MacKay’s code (regular) with parameters
n = 1008, m = 504. The symbol-node-degree distribution for the irregular
PEG Tanner-graph code is A(z) = 0.475322% + 0.279537z° + 0.0348672z* +
0.108891z° + 0.101385%15.

construction with parameters n = 504, m = 252. Among these symbol-node distributions with
maximum symbol-node degrees 4, 5, 7, 9, 11, 15, 30, 50, the one with maximum degree 15
achieves the best performance, which is essentially the same performance as that of the one
optimized by the empirical Monte—Carlo approach, see Fig. 3.13. This confirms that even for
short block lengths, the degree distributions designed by the density evolution approach are
still nearly optimum if the PEG construction is used. Note that the degree distribution with
maximum degree 50 has a very good “threshold,” which is only 0.06 dB away from the Shannon
capacity in the limiting case, but suffers from a significant degradation due to the short block
length. Also plotted is the performance of LDPC codes based on random construction with
the same degree distributions. Once again, we observe that the PEG construction significantly

outperforms the random construction, particularly in the high-SNR region.

The Monte—Carlo approach together with the constrained downhill simplex method to

design near-optimum degree distributions is indispensable for two reasons: first it confirmed

in the PEG algorithm.

72 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

80 iterations

10 T ——
o Max_ vanable deg. 4
== Max, variable deg. 5
= Max. variable deg. 7
—#- Max. variable deg. 9
107k =8— Max. variable deg. 11|
-©- Max. variable deg. 15
=% Max. variable deg. 30
A i
(] —
T 10 2L
S
@
X r
Q
o] =L
o 10
107}
E
|
10° ' s

1.5 2 2.5
Signal-to-noise ratio per bit, Eb/No(dB)

Figure 3.13: Block-error rates of irregular PEG (solid lines) and irregular random-graph
codes (dashed lines) with density-evolution-optimized degree distributions; code

parameters are n = 504, m = 252.

that the irregular degree distributions optimized by the density evolution approach match well
with the PEG construction for short block lengths; this contrasts the old belief that irregular
degree distributions do not work well with the random construction for short block lengths.
Secondly, it can also be applied to the cases of non-binary LDPC codes (in Section 3.10) where

a density-evolution approach is not available yet.

3.8 Linear-Time Encoding

The complexity per bit of iterative decoding using BP or SPA on a Tanner graph has been
shown to be independent of the block length n, but the encoding complexity generally scales
as n?. Several publications address this issue, see [51,90-94] for instance. The most common
idea is to exploit the sparseness of the parity-check matrix H and its corresponding graph
to obtain an efficient encoding format, namely, a triangular or almost triangular parity-check

matrix. For example, in [92] the codeword w and the parity-check matrix H are partitioned

3.8. Linear-Time Encoding 73

into w = [p,d] and H = [HP, H?), respectively, such that
[H?, HYwT = 0. (3.62)

It was found empirically that a good choice for H? is the m X m square matrix

1 0
11

HP = (3.63)
0 11

mxm

The matrix H¢ is then created by constructing a random graph such that no 4-cycles are

generated. Using Eq. (3.62) and Eq. (3.63), the parity-check bits p = {p;} can be computed
by

n—m n-m
pr=)Y hid; and pi=pia+ Y hid;, i>1, (mod2), (3.64)
j=1 j=1
where d = {d;} is the systematic part of the codeword, and H? = {h{} is the m x (n — m)
component of the partitioned parity-check matrix H. Clearly, the encoding process has become
much simpler because the Gaussian elimination step is avoided. Moreover, computation and
storage requirements in the encoder are also reduced because H® is sparse by design. This
approach clearly guarantees a linear-time encoding, but in general may result in some loss in
performance. The structure of Eq. (3.63) gives rise to a special pattern on a Tanner graph

that was called the “zigzag” pattern in irregular repeat accumulate (IRA) codes [93].

We show that this simple idea can also be applied in a natural way to a PEG Tanner graph,
rendering linear-time encoding possible while maintaining a large girth and equally good per-
formance. To facilitate linear-time encoding, we partition the symbol node set V; into two
disjoint subsets: a redundant subset V? and an information subset V¢. The redundant subset
contains the first m symbol nodes, which are redundant bits in a codeword and whose associ-
ated edges are prespecified as the simple “zigzag” pattern shown in Fig. 3.14 that corresponds
to the square matrix H? in Eq. (3.62). The information subset V2 contains the other n — m
symbol nodes, which correspond to information (systematic) bits in a codeword and whose
associated edges are established by the PEG algorithm with the zigzag edges already in the
graph. Note that the prescribed zigzag edges do not contain a single cycle before the PEG

algorithm starts, thereby imposing no negative impact on the girth histogram.

One of the most important results on encoding of LDPC codes appears in [94] where
it is proved that optimized LDPC codes can be encoded in linear time. In particular, one

can choose a randomly-generated LDPC code with an optimized irregular degree sequence

74 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

Information subset
|<— Zigzag pattern _>|
o

n redundant subset

Starting PEG algorithm

Figure 3.14: Linear-time-encodable PEG Tanner graph with zigzag pattern. The solid edges
correspond to the zigzag pattern, which is specified before the PEG algorithm
starts. The dashed lines correspond to the edges established by the PEG algo-

rithm.

pair, and then the parity-check matrix of this code can be rearranged to have an (almost)
upper-triangular structure that allows linear-time encoding. The significance of [94] lies in
the existence proof of optimal LDPC codes with (almost) upper-triangular structure. Note
that the rearrangement of a parity-check matrix does not change the LDPC code itself and
the complexity of rearrangement is generally quadratic, it is thus preferable to construct such
LDPC codes directly.

The PEG algorithm can be easily tailored to construct LDPC codes having (almost) tri-
angular structure, good girth properties and optimum irregular degree sequence. For the sake
of clarity we focus on parity-check matrices with upper-triangular structure. In this case the

m x m component H? = {h? .} of the parity-check matrix can be written as
p . p

(1 B, o B)
0 1
HP = , (3.65)
1 hfn—l,m
\0 cee 0 1)mxm

and the parity bits are computed according to

n—m
Z REpi+ Y hijds, (mod2), (3.66)
j=1

j=i+1

3.8. Linear-Time Encoding 75

where Eq. (3.66) is computed recursively from ¢ = m to ¢ = 1. By combining the PEG
construction method with the constraint that the resulting H matrix be of lower or upper
triangular form, we obtain powerful, linear-time encodable, irregular LDPC codes with large
girth and very good performance. As before, we partition the symbol node set V; into the
redundant subset V? and the information subset V¢ containing the first m symbol nodes
(parity bits) and the other » — m symbol nodes (systematic information bits), respectively.
The edges of the symbol nodes are then established by means of the PEG algorithm while
observing the special pattern in Eq. (3.65), so that a good girth histogram is obtained. As
the procedure of establishing the edges of n — m information bits follows the construction of
edges of redundant subset VP and is exactly the same as that described in Section 3.3, we

focus only on the modified PEG algorithm for constructing edges of V.

PEG Algorithm for Establishing Edges of V?:
for j=0tom—1do

begin
fork=0tod;, —1do
begin
ifk=0

Egj <— edge (c;, s;), where Egj is the first edge incident to s;. This edge
corresponds to the '1’ in the diagonal line of matrix HP.
else

expanding a tree from symbol node s; up to depth [under the cur-
rent graph setting such that N N {co,c1,...,¢;1} # @ but N5 N
{co,c1,...,¢j-1} = @, or the cardinality of N, slj stops increasing, then
Ef +— edge (c;, s;), where E{ is the k-th edge incident to s; and ¢; is
one check node picked from the set ./\-fij N {co,C1,-..,¢j_1} having the

lowest check-node degree.
end

end

As an example we consider an irregular PEG Tanner-graph code whose parity-check matrix
is forced into an upper triangular form. Fig. 3.15 compares the bit and block-error rates of
the irregular PEG Tanner-graph code presented in Section 3.7.2, an irregular PEG Tanner-
graph code with a parity-check matrix in upper diagonal form, and MacKay’s code, all with
parameters n = 1008, m = 504. The symbol-node-degree distribution for both irregular PEG
Tanner-graph codes is A(z) = 0.47532z2+0.2795372%+0.03486722*+0.1088912° +0.101385x 5.

When the parity check matrix is forced into an upper triangular form there is only one symbol

76 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

80 iterations

-# Irreg. PEG code, bit error
-0~ Up. Triang. lrreg. PEG code, bit error
-D- MacKay code, bit error

—* |rreg. PEG code, block error

-8~ Up. Triang. lrreg. PEG code, block errd}
=~ MacKay code, block error

Error rate
=
Ll

1.5 2 225
Signal-to—-noise ratio per bit, Eb/N0 (dB)

Figure 3.15: Bit- and block-error rates of an irregular PEG Tanner-graph code, an upper-

triangular PEG Tanner-graph code, and MacKay’s code.

node of degree 1. As can be seen, the two irregular codes designed according to the PEG
algorithm have essentially the same performance and are about 0.5 dB better than MacKay’s
rate-1/2 (n = 1008, m = 504) code. Hence it is shown that linear-time encoding can be

achieved without noticeable performance degradation under the PEG construction.

3.9 Performance of PEG Codes versus Turbo Codes

Irregular LDPC codes with large block lengths have been shown to outperform Turbo codes
(10,54]. However, it appears to be a common belief that for relatively short block lengths Turbo
codes outperform LDPC codes. Here we take a closer look at the performance of linear-time-
encodable PEG LDPC codes (of relatively short block lengths) as compared with that of Turbo
codes in the CDMA2000 standard. The turbo encoder consists of two systematic, recursive,
8-state convolutional encoders concatenated in parallel, with an interleaver. The transfer func-
tion for the encoder is G(D) = [1 'fi"(é))) "71((172)2], where d(D) = 1+D?+ D3 ny(D) = 1+ D+ D3,
and n1(D) = 1+ D + D? + D3. Depending on different puncturing patterns, rate-1/2, 1/3,
and 1/4 codes can be obtained. Note that for each block a total of six bits are used to ter-

minate the two convolutional encoders. For a detailed description of the standardized Turbo

3.9. Performance of PEG Codes versus Turbo Codes 77

interleaver, we refer the reader to [110]. The LDPC codes and Turbo codes are compared at
exactly the same rate and block length. For decoding Turbo codes, 12 iterations with the
Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [111] in log-domain are employed; for decoding
LDPC codes, 80 iterations using the low-complexity SPA of [107] are used so that the decod-
ing complexity remains approximately the same. In designing linear-time-encodable binary
LDPC codes, we take the irregular degree distribution as A(z) = 0.477081z2 + 0.280572x3 +
0.0349963z* + 0.0963301z° + 0.0090884z" + 0.00137443z* + 0.1005582'3, chosen from [10].

Fig. 3.16 and Fig. 3.17 show the bit- and block-error rates over the AWGN channel for
linear-time-encodable PEG LDPC codes and the CDM A2000 Turbo codes, with rate ~ 1/2 and
block lengths of 1024 and 2048, respectively. Both kinds of codes have comparable performance
at exactly the same block length and rate; in the low-SNR region, the CDMA2000 Turbo
codes are slightly better, whereas in the high-SNR region, the LDPC codes outperform the
CDMAZ2000 Turbo codes. The advantage of the LDPC codes becomes more pronounced if the

figure of merit is the block-error rate.

In conclusion, our linear-time-encodable PEG LDPC codes offer comparable performance
to the standardized Turbo codes with essentially the same encoding/decoding complexity. It

is anticipated that if better degree distributions are available from the analysis of finite block-

) E— . - N Ry
—— Block error, Turbo code, 12 iter.
-6~ Block error, Up. Triang. PEG code, 80 iter
~0- Bit error, Turbo code, 12 iter.]
=O- Bit error, Up. Triang. PEG code, 80 iter.

107

Error rate
o

1.1 1.3 15 1.7 1.9 2.1 2.3
Signal-to-noise ratio per bit, Eb/NO (dB)

Figure 3.16: Bit- and block-error rates of a linear-time-encodable PEG LDPC code and a
CDMA2000 turbo code, with block length 1024 and rate (512-6)/1024.

78 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

10 T T

=0~ Block error, Turbo code, 1l2 iter.
-6— Block error, Up. Triang. PEG code, 80 iter}]
-0~ Bit error, Turbo code, 12 iter.

107k -0~ Bit error, Up. Triang. PEG code, 80 iter.

Error rate
=
L}

107
10
3
10_6 i 1 A 1
0.9 1.1 13 15 17 1.9

Signal-to-noise ratio per bit, Em/N‘3 (dB)

Figure 3.17: Bit- and block-error rates of a linear-time-encodable PEG LDPC code and a
CDMAZ2000 turbo code, with block length 2048 and rate (1024-6),/2048.

length LDPC codes [102], the performance of such LDPC codes can be further improved. To
close this section, we point out that, as the iterative decoding of LDPC codes is fully paralleliz-
able and could be accomplished at significantly greater speeds, the linear-time-encodable PEG
LDPC codes show promise for extremely-high-speed applications such as magnetic recording,

optical communication, and broadband wireline/wireless access technologies.

3.10 PEG Tanner-Graph Codes over GF(2°)

So far we have primarily considered binary LDPC codes represented by binary parity-check
matrices or their corresponding bipartite graphs constructed using the PEG algorithm. These
codes can easily be generalized to finite fields GF(g) in the same natural way as in [89,95],
i.e., by allowing the symbol nodes to assume values from the finite field. Specifically, fields
with ¢ = 2%, b > 1, elements that are important in practical applications, and codes over
GF(2°) with linear constraints defined on non-binary sparse H matrices are considered in this
section. In GF(2%) each encoded symbol w; consists of b binary bits. Since a symbol from
the field GF(q), ¢ = 2° for some integer b, may be represented as a binary string of b bits,

we can use such codes with binary-input channels, transmitting one g-ary symbol for every b

3.10. PEG Tanner-Graph Codes over GF(2%) 79

uses of the binary channel. The decoder interprets b bits (yo, 41, - .. , ys—1) from the channel as
a single 2°-ary symbol and sets the prior information of that symbol by assuming a product

distribution for the values of each constituent bit. Namely

b
=11
1=0
b
where f,* is the likelihood the ith constituent bit is equal to z?, where (28, 2%,... 22 ,) is

the binary representation of the transmitted symbol z.

The motivation that we use GF(q) LDPC codes with binary-input channels is based on the
following arguments: Iterative decoding performance of an LDPC code is in general dominated
by two competing factors. One is the Hamming weight spectr‘um which requires the density of
parity-check matrix to be higher; the other is the performance loss due to iterative decoding
for which lower density of parity-check matrix is favorable. The two conflicting requirements
must be well balanced, particularly for short block lengths. The binary interpretation of codes
over GF(q) provides interesting possibilities for designing binary codes, as the binary minimum

distance can be much larger than the symbol minimum distance [112, p. 112-113], [113,114].

We describe the construction of PEG GF(q) LDPC codes briefly: given the number of
symbol nodes n, the number of parity-check nodes m, and the symbol-hode-degree sequence
of the graph, the PEG algorithm is started first, in exactly the same manner as the binary
case, such that the placement of a new edge on the graph has as small an impact on the girth
of the graph as possible. In this way a PEG Tanner graph is obtained that not only has a large
girth but also a good girth histogram. To form a GF(q) parity-check matrix, the positions of
nonzero entries are determined by the PEG Tanner graph, whereas the values of the nonzero
entries of the parity-check matrix are selected randomly from a uniform distribution among

nonzero elements of GF(q).

Table 3.1 shows optimized rate-1/2 irregular PEG Tanner-graph codes over GF(2°) and
their corresponding symbol-node-degree distributions. The optimization of the degree se-
quences was accomplished with the variant of the “downhill simplex”method described in
Section 3.6. We compare codes having a block length of n symbols over GF(2?) with binary
codes of length nb bits.

Fig. 3.18 shows the performance of the irregular PEG Tanner-graph codes over a binary-
input Gaussian channel. Five codes of rate 1/2 over GF(2), GF(8), GF(16), GF(32), and
GF(64) are shown. All codes correspond to block lengths of 1008 bits (except the irregular
PEG Tanner-graph code over GF(32), which has a block length of 202 symbols or 1010 bits).
Also shown is the performance of the rate-1/2, n = 1008, m = 504 binary MacKay code as well

80 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

Table 3.1: Optimized symbol-node-degree distributions for rate-1/2 PEG codes over GF(2°).

The block length in binary bits is nb.
Galois field (n,m) Symbol-node-degree distribution

Ave. symbol

degree

GF(2) (1008, 504) | 0.47532z2 + 0.2795372° + 0.0348672z* + 0.108891z5 | 3.994
+0.101385213
GF(8) (336, 168) | 0.64377222 + 0.1497192% + 0.193001z* + 0.0135082° | 2.5762
GF(16) (252, 126) | 0.772739z% + 0.10286323 + 0.113797z* + 0.010601z° | 2.3623
GF(32) (202, 101) | 0.84884x2 + 0.14203423 + 0.0091262* 2.1603
GF(64) (168, 84) | 0.9422 + 0.052% + 0.012* 2.07

as the sphere-packing bound for this block length. As can be seen, an improvement of 0.25 dB
is obtained by moving from binary to GF(2%) PEG construction. Furthermore, the overall gain
of the GF(2%) PEG construction compared with the binary MacKay code is approximately
0.75 dB. Finally, the rate-1/2 irregular PEG code over GF(2°) shows a block-error rate < 1074

0 80 iterations
10 T —T

~p- MacKay code, binary
~%— |rregular PEG, binary
-A— |regular PEG, GF(8)
~— lrregular PEG, GF(16)
~&- Irregular PEG, GF(32) |
~J=— |rregular PEG, GF(64)

Block error rate

-5 . - !

10 1 1.5 2 25 3
Signal-to—noise ratio per bit, Eb/N0 (dB)

Figure 3.18: Bit- and block-error rates of irregular LDPC codes over GF(2), GF(8), GF(16),
GF(32), and GF(64), based on PEG Tanner graph with the parameters given

in Table 3.1.

3.11. Summary 81

at Ep/Ny 2 dB, i.e., a performance that is only 0.4 dB from the Shannon—Gallager-Berlekamp
sphere-packing bound!! [see Appendix C] of a binary-input AWGN channel [62, 115], which

appears to be the best-known performance at this block length to date.

The performance results indicate that the PEG Tanner-graph codes over higher-order fields
outperform the binary ones. Furthermore, owing to the PEG construction that aims at large
girth as well as good irregular degree sequence we have observed a monotonic improvement
with increasing field order, which contrasts with the observations of [95]. Interestingly enough,
the irregularity feature seems to be unnecessary if the higher-order field is sufficiently large,
and the optimum graph tends to favor a regular one of degree-2 in all symbol nodes, termed

cycle graph or cycle code, which is the lowest density graph in the context of iterative decoding.

3.11 Summary

A general method for constructing Tanner graphs having large girth and minimum distance
has been presented. The main principle in this construction is to optimize the placement of
a new edge, connecting a particular symbol node to specific check node on the graph such
that the largest possible local girth is achieved. In this way, the underlying graph grows in
an edge-by-edge manner, optimizing each local girth, and is thus referred to as a progressive

edge-growth (PEG) Tanner graph.

Upper and lower bounds on the girth of a PEG Tanner graph have been derived. These
bounds depend on the number of symbol nodes and on that of check nodes, as well as on
the maximum values of the symbol- and check-node degrees of the underlying graph. By
comparing the lower bound and the upper bound on the girth, we claim that the girth of a
PEG Tanner graph meets or surpasses an analogy of the Erdés-Sachs bound. In addition, a
lower bound on the minimum distance of binary LDPC codes defined on PEG Tanner graphs

has also been derived.

The advantages of the PEG construction over a random one are twofold. First, it yields
a much better girth distribution, thereby facilitating the task of the BP or SPA during the
iterative decoding process. Second, it leads to (or guarantees) a meaningful lower bound on
the minimum distance, providing insight into the performance of the code at high signal-
to-noise ratios. Simulation results confirmed that using the PEG algorithm for constructing

short-block-length LDPC codes results in a significant improvement compared to randomly

!1Bear in mind, however, that no undue significance should be attached to this 0.4 dB gap, as at this block

length the formula for computing the Shannon—Gallager-Berlekamp bound might not be sufliciently precise.

82 Chapter 3. Regular and Irregular Progressive Edge-Growth Tanner Graphs

constructed codes.

We have described an empirical Monte-Carlo approach using a variant of the “downhill
simplex” search algorithm to design irregular PEG graphs for small codes with fewer than
a thousand bits, which can be viewed as a complementary tool for the asymptotic analysis
“density evolution”. We found that even for small block lengths such as n = 504, there is a
good degree distribution from the density evolution approach that works perfectly with the
PEG construction. Simulation results showed that in conjunction with optimum symbol-node-
degree distributions (obtained from either the empirical or the density evolution approach)
our PEG construction yields the best binary LDPC codes at short block lengths to date.
Linear-time-encodable LDPC codes have also been constructed by slightly modifying the PEG
algorithm to yield a Tanner graph containing a zigzag pattern or (almost) triangular format.
This easy encoding property is attained without noticeable performance degradation. We have
also demonstrated that in third-generation high-speed wireless data services, the linear-time-
encodable PEG LDPC codes offer comparable performance to standardized Turbo codes with

essentially the same encoding/decoding complexity.

Finally, regular and irregular LDPC codes have been generalized by using the PEG con-
struction but allowing the symbol nodes to take values over higher-order finite fields. This
work confirms that by moving to higher-order fields short-block-length codes can be con-
structed that operate very close to the Gallager bound when decoded with the sum-product
algorithm. We reported a short block-length (1008 bit) rate-1/2 irregular PEG LDPC code
over GF(2%) with a block error rate < 10~* at E;/Ny = 2 dB, which appears to have the

best-known performance at this short block length to date.

Chapter 4

Cycle Tanner-Graph Codes

4.1 Introduction

Gallager’s binary LDPC codes have been shown to achieve near-Shannon-limit performance
when decoded using the belief-propagation (also called sum-product) algorithm [4, 10, 71].
Binary LDPC codes may be generalized to finite Galois fields GF(q), as first suggested by
Tanner [5] in the context of codes on graphs and investigated empirically by Davey and
MacKay [89,95] over the binary-input AWGN channel. Sparse graph codes over GF(g) can
alternatively be defined in terms of a nonsystematic LDPC matrix H whose nonzero entries
are selected randomly from nonzero elements of GF(g) with uniform probability p/(q — 1),
where p is a small number referred to as the density of H. As a symbol from the field GF(q),
q = 2, for some integer b, may be represented as a binary string of b bits, one can use such
codes with binary-input-constrained channels, transmitting one g-ary symbol for every b uses
of the binary channel. The decoder interprets b bits (yg, 41, - ,¥p—1) from the chanuel as a
single 2P-ary symbol and sets the prior information of that symbol by assuming a product

distribution for the values of each constituent bit.

The binary interpretation of codes over GF(2°) provides interesting possibilities for design-
ing binary error-correcting codes [112]. In particular, binary interpretations of RS codes over
GF(2°) have been investigated in [113]. In [114,116,117] some famous nonlinear binary codes
were described as binary interpretations of linear codes over the ring Z,. These codes include
the Nordstrom-Robinson, Preparata and Kerdock codes, which are of theoretical interest but
often difficult to decode.

For sparse graph codes over GF(2%) under iterative decoding, it was empirically observed

in [95] that by moving from binary to GF(2%) while keeping the same binary block length, one

83

84 Chapter 4. Cycle Tanner-Graph Codes

can obtain a performance improvement of about 0.3 dB. It was also noted in [95] that there is
not always a monotonic improvement with increased field order over the binary-input AWGN
channel. In [97] we demonstrate a monotonic improvement with increased field order using
the PEG construction and a good irregular degree sequence optimized by the Monte-Carlo
approach. Very interestingly, it turns out that the irregularity feature seems to be unnecessary
if the higher-order field grows sufficiently large, and the optimum graph tends to favor a regular
feature of degree-2 in all symbol nodes, i.e., d; = 2. Abusing notation, we denote the ensemble

of regular sparse Tanner graphs having d, = 2 by TG(2, d,).

Binary LDPC codes defined on TG(2, d.) were dismissed by Gallager and considered not
to be truly practical because their minimum distance grows only logarithmically with block
length n [4, Theorem 2.5]. Nevertheless they are quite interesting from the point of view of
iterative decoding because their simple structure makes their analysis easier than that of the

” o«

other low-density codes, and they are variously called “graph-theoretic,” “circuit,” or “cycle”
codes [118, Section 5.8], [119]. Among all codes that are amenable to iterative decoding,
codes on TG(2, d.) are therefore the codes with lowest possible density in their parity-check
matrices, and the underlying Tanner graph TG(2, d.) has sparsest connectivity in the sense

of iterative decoding.

TG(2, d.) has long been understood as an ensemble of sparse graphs for which the iterative
decoding is close to or essentially equal to the optimum decoding, e.g. see [46, pp. 54-37]. It
has been shown in [104,120,121] that the threshold probability for ML or typical-pair decoding
of an ensemble of binary LDPC codes on TG(2, d.) over the binary symmetric channel (BSC)

is given by

Later it was shown in [122] that Eq. (4.1) is exactly the threshold of iterative decoding,

indicating that the asymptotic performance of iterative and optimum decoding coincide.

In this chapter, we investigate the Hamming weight spectrum of the binary interpretation
of ensembles of random GF(2°) codes of sparse Tanner graphs. Our results visually show that
if the field order b is sufficiently large, the Hamming weight spectrum of the sparse-graph
code ensemble asymptotically approaches the classical binomial distribution of the Shannon
equiprobable random ensemble. This observation justifies the advantages of GF(2°) codes
defined over the cycle Tanner graph TG(2, d.) in both senses: minimum distance and iterative
decoding. More specifically, one can minimize the performance loss due to iterative decoding
by resorting to the sparsest Tanner graph TG(2, d.), and, simultaneously improve the code

itself and let it behave like an equiprobable random code by moving to a sufficiently large

4.2. Weight-Spectrum Analysis 85

field. Therefore, cycle Tanner-graph codes defined over GF(2%), with sufficiently large b, are

heuristically both “good codes for optimum decoding” and “good codes for iterative decoding”.
g p g g

The close connection of the iterative decoding of GF(2°) codes on sparse Tanner graphs to
the Kikuchi approximation is also outlined. It is worth mentioning that the Kikuchi approxi-
mation often yields better performance than the Bethe approximation does in the presence of
cycles in statistical inference problems, and the stationary point of the Bethe approximation

is known to be equivalent to the fixed point of ordinary belief propagation (BP) or SPA.

4.2 Weight-Spectrum Analysis

In this section we investigate the average weight spectrum of a random ensemble of regular
sparse Tanner graph codes over GF(q). We are particularly interested in the binary inter-
pretation of GF(gq) codes on sparse Tanner graphs when they are applied to binary channels.
Formally, such codes are defined as follows: given some p, 0 < p < 1/2, we choose the entries
of each column in the matrix H independently, so that 0 is attained with probability 1 — p,
and each nonzero element in GF(g) with equal probability p/(q — 1). Note that if ¢ = 2, this
reduces to the random ensemble of binary LDPC codes in Section II-A.(3) of [71].

Define the symbol distance between two codewords in a linear code over GF(q) as the
number of positions in which the codewords differ. The symbol weight of a codeword is the
number of nonzero digits or the distance from the all-zero codeword. The symbol distance
function N,(j) of a code is defined as the number of codewords of symbol weight j. It follows
from the group properties of such a code that Ny(j) is the number of codewords at distance j

from any given codeword.

Theorem 4.1 Let N;(j) be the average number of codewords of symbol weight j in a code
averaged over the sparse random ensemble H based on some p and defined over GF(q). The
parity-check codes are of symbol length n/log,q (n in binary bits) and rate R. Then for j,
0<j<n/logyg,

e) T = L (42

where a is the normalizing constant such that 3, Ns(j) = 2"* and N,(0) = 1.

Proof. Fix some nonzero vector V = [vg, v1,... ,v; - 1] € [GF(g)]™*27, with exactly ;
og2

nonzero coordinates, i.e. a symbol weight of j. Without loss of generality assume that the

first 7 coordinates of V are nonzero. Let P; be the probability that Zle vihk; = 0, where

86 Chapter 4. Cycle Tanner-Graph Codes

each hg; is the entry of the k-th row of the matrix H and is thus chosen according to the
uniform distribution of p/(q — 1) among nonzero elements of GF(g). As there are in total

n(1 — R)/log, ¢ independent check equations, the probability that V is a valid codeword is

n(l—R)

given by P; "7 .

For fixed v;, the following recursion ! holds for P;:

(A= F)p (4.3)

Pp=PFa(1-p)+ o1

with the initial condition Py = 1. Let Q; = P; — 1/q. It follows from Eq. (4.3) that

Qj = Qj- (1 - qi_pi) ; (4.4)
with Qo = (¢ — 1)/q. Hence we obtain
g—1 o\’
Q= 7 (1 - q—:I) : (4.5)
and, consequently,
PJ=‘1—_—1(1—~‘”3—)J+l (4.6)
q q—1 q

The number of vectors V with exactly 7 nonzero coordinates is given by

(3o

The average number of codewords of symbol weight j is then given by

n(l—R)

_— n) -1 qp . 1| lesa2q
N.G) = al B8) (g—-1) |L==q - iy . 47
G = a0) -1y [Tt -y (@)

Finally note that there is only one all-zero codeword and that the number of all codewords

should sum up to qm% = 2"%_ This completes the proof. [

Lemma 4.1 Let N(k) be the average number of codewords of Hamming weight k in a code
averaged over the sparse random ensemble H based on some p and defined over GF(2). Then,
for 0 < k < n,

(4.8)

?

N_(k_) _ a(Z) [%(1 ~ 2p)k N %]n(l—R)

where o is the normalizing constant such that Y, N(k) = 2"% and N(0) = 1.

1This recursion has been used to analyze the rank properties of a sparse random n x n matrix over GF(q)
in [123].

4.2. Weight-Spectrum Analysis 87

Proof. This is obtained by inserting ¢ = 2 into Eq. (4.2). |

Lemma 4.2 Let N(k) be the average number of codewords of Hamming weight k in a code
averaged over the Shannon equiprobable random ensemble H defined over GF(2). Then for
0<k<n,

N) = (:) 9-n(1-F) | (4.9)

Proof: This is obtained by inserting ¢ = 2,p = 1/2 into Eq. (4.2). This result first appeared

in [4] and is known as the binomial distribution. u

Theorem 4.2 Let N(k) be the average number of codewords of Hamming weight k in a code
averaged over the sparse random ensemble H based on some p and defined over GF(q), ¢ > 2.
The parity-check codes are of symbol length n/log, q (n in binary bits) and rate R. Then for
0<k<n,

min{k,n/log, ¢} (J 10]?2 ‘I) [1 _ (_ T’E__)l()g2 ‘I]j
N(&) =8 Z N,(j) - - 1)11' g2 4 ’ (4.10)
Jj>k/logyq

where 3 is the normalizing factor such that Y, N(k) = 2"%, and N(0) = 1.

Proof: The sparse random ensemble of parity-check codes over GF(gq) of length n/log, g
and rate R can be visualized as an ensemble of binary codes of length n and rate R when used
with binary channels, thus there are 2" codewords in total, leading to >, N(k) = 2"%. It is

clear that the number of all-zero codewords is unique, i.e. N(0) = 1.

Suppose a valid codeword has a symbol weight of j, 0 < j < n/log,q. We need to
evaluate the probability that this codeword contains &, j < k < jlogyq, 1’s in its binary
representation. Without loss of generality, assume that each nonzero symbol in the codeword
is uniformly distributed among the nonzero elements of GF(gq). In total, there are (¢ — 1)
patterns the j nonzero symbols can assume. On the other hand, there are (j 1052 q) possibilities
that the 1’s in their binary representation sum up to exactly &, of which only a fraction, i.e.
1- (1~ j—w—'fg;)“’g? 99, satisfy the condition that each symbol be nonzero. Accordingly, the
probability that a codeword of symbol weight j contains £ 1’s in its binary representation is
given by

(jlosgq)[l _ (1 _ j—l—o];ﬁ)logzq]j
(¢—1)
From this, we obtain Eq. (4.10). [

88 Chapter 4. Cycle Tanner-Graph Codes

Fig. 4.1 shows the Hamming weight spectra of binary random ensembles with different
block lengths but keeping the same density and rate. As the block length increases, the
Hamming weight spectrum of the binary sparse random ensemble closely approaches that of

the Shannon equiprobable random ensemble — the binomial distribution.

Constant p=0.01, rate 1/2

06 .' .' ; ! ! ! 1 T

R T~ U

0.2

n=1200

n=3000

n=12000

Logz(weight spectra)/block length

i ™ Binomial distribution
~-06F - R e P PP -
‘0.8 1 l; 1 i l L 1

o o1 02 03 04 05 06 07 08 09 1

Normalized Hamming weight

Figure 4.1: Hamming weight spectra of binary sparse random ensembles with different block

lengths n.

Fig. 4.2 shows the Hamming weight spectra of binary random ensembles having different
densities, from p = 0.005 to p = 0.5. It can be seen that, as the density increases, an LDPC
code closely approaches the equiprobable binary random code, which is the best code we can
imagine but unfortunately is computationally infeasible to decode [61]. In contrast, an LDPC
code can be decoded iteratively with the SPA whose complexity is essentially linear to the
block length. On the one hand, one would like to increase the density of an LDPC code such
that it can closely approach the best code; on the other hand, iterative decoding requires the
density of the underlying Tanner graph to be small enough so that the suboptimum iterative
decoding comes close to the optimum decoding. These two conflicting requirements must be
well balanced, and this poses significant design challenges, particularly in the case of relatively
short block lengths.

Fig. 4.3 shows the Hamming weight spectra of low-density random ensembles over GF(2),

4.2. Weight-Spectrum Analysis 89

Block length 1200, rate 1/2

0.5 T T T ¥ T T T T
0.4F L2 S]
o 03b , i
?’ : 7 : : : : : : :
S 02 ,’ SRR RIRRNE RN L SRR N -
¥ y : S : : : : :
S 4k, 7 JLow-density binary random G c NG]
2 1,7 ensemble, p=0.005 : : 5 :
[v] 5 ! : N : .
g O TR N L
n =0.01 :
s —01¥F - g p ... R ETEA i
2 : :
o : :
VN _02 = 002 -
g =0.03’ :
-l -03 I s A R T PR A
p=0.04: ;
044 - p=01
05 Equuiproléable binary random ensemble l .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Hamming weight

Figure 4.2: Hamming weight spectra of binary random ensembles as a function of density p.

GF(2?%), GF(2®%), GF(2*%), GF(2%), and GF(2'°) with the same block length of n = 1200 bit,
and the same density of p = 0.005. Also plotted is the spectrum of the equiprobable binary
random ensemble. As the size of the Galois field increases, the Hamming weight spectrum
closely approaches that of the equiprobable binary random ensemble, while keeping the same
(binary) block length, rate, and density of the parity-check matrix. Fig. 4.3 indicates that
by fixing the density of Tanner graphs (parity-check matrices), one can always improve the
Hamming weight spectrum by consistently increasing the field order while keeping the same
binary block length. This allows the use of extremely sparse graphs of codes which previously
were believed to be too weak in the sense of minimum distance, particularly the GF(2?) codes
on the cycle Tanner graph TG(2, d.). It is well-known that the sparser the underlying Tanner
graph, the smaller the deleterious effect of cycles in the graph and the closer the iterative
decoding approaches the optimum decoding, therefore the binary interpretation of GF(2?)
cycle Tanner-graph codes, if b is sufficiently large, would perform very well under iterative
decoding, as opposed to the conventional binary LDPC codes of the same block length. It
has been reported in [97] that a GF(2°) (almost) cycle Tanner-graph code, with block length
1008 and rate 1/2, achieves the best performance (under iterative decoding) known to date,
beating its counterparts of turbo codes and binary LDPC codes of the same (binary) block
length and rate.

90 Chapter 4. Cycle Tanner-Graph Codes

Block length 1200 bits, rate 1/2
0-6 T ! T T T ! li 1 l
Low-density random ensemble : : : : :

0.4 ;‘ ; : 5 : SN RSN I

0.2 : 5 N i

GF(2), p_o oos
GF(2%), p=0. 005

GF(26) p._O oos

1
o
o

Logz(weight spectra)/block length
S
F-S

1

g

)
1

1 1 1
0.1 0.2 03 04 0.5 06 07 08 0.9 1
Normalized Hamming weight

Figure 4.3: Hamming weight spectra of random ensembles over GF(g) with the same block
length n of 1200 bits and the same density p of 0.005.

4.3 A Perspective on Iterative Decoding from the Kikuchi

Approximation

The iterative decoding of GF(2%) graphical codes in their binary interpretation is fundamen-
tally different from that of ordinary binary LDPC codes. In the former case, the decoder
interprets b bits (o, %1,..-,¥s—1) from the channel as a single 2°-ary symbol and sets the
prior information of that symbol by assuming a product distribution for the values of each

constituent bit. Namely
-1
2
7= H f i
=0
b

where fZ is the likelihood the ith constituent bit is equal to z?, where (z8,a?, ... ,zt_,) is
the binary representation of the transmitted symbol x. The decoding algorithm is then a
generalized belief propagation algorithm in which the messages exchanged over the graph are
probabilities of clusters of bits, hereafter called cluster belief propagation (CBP). In contrast,
in the ordinary BP algorithm for decoding binary LDPC codes, the messages are merely

probabilities of individual bits, not a cluster of bits. Next we shall provide a justification that

4.3. A Perspective on Iterative Decoding from the Kikuchi Approximation 91

the CBP algorithm can be fundamentally advantageous over the ordinary BP algorithm by

establishing connections to the Kikuchi and Bethe approximations in statistical physics.

For the purpose of analyzing the CBP algorithm, we consider a pairwise Markov Random
Field (MRF) model of the Tanner graph. Each parity-check node in the Tanner graph is con-
verted into a hidden node (the same as a symbol node) in a pairwise MRF with an observable
node hanging off it. For instance, Fig. 4.4 shows the pairwise MRF corresponding to a TG(2,
3). Now we briefly describe the CBP algorithm in the context of the MRF model for decoding
the binary interpretation of GF(2°) graphical (regular) codes. Let Roman letters like j denote
the symbols, i.e., clusters of b bits, and Greek letters like o denote the check nodes. In a
GF(2%) graphical code, the symbol node j can be in one of 2° states denoted by z;, while the
check nodes can be in one of 2%’ states denoted by z,, as each check node involves d, symbol
nodes. If the j-th symbol is connected to the a-th check node, then we use the notation z,(j)
to denote the state the j-th node should be in so as to correspond with the a-th check node
being in state z,. The pairwise potentials (compatibility function) ¢(z;, z,) are set to one if
To(j) = z; and zero otherwise. The singleton potentials are set to ¢;(x;) = f* for the symbol
nodes, while ¢, (z4) is one if z, satisfies the check-node constraint and zero otherwise. The
following update rules on this Markov graph give the CBP algorithm for iteratively decoding
the binary interpretation of GF(2%) graphical codes:

Maj(T5) Z Ya(Za) H Mia(Zo) (4.11)
Toita(f)=2; keEN(a)\j
mja(ma) « 1/’] xa H mﬁ] xa (4.12)
ﬁGNJ)\a

bi(z;) « Wilz) [] mailzy) (4.13)
€N (7)

ba(Ta) — Y(@a) [] mjalza) (4.14)
JEN (@)

where N'(a)\j means all symbol nodes neighboring check node «, except j; N (j)\a means
all check nodes neighboring symbol node j, except . Here mj, (my;) refers to the message
that node j (&) sends to node « (j), and b; is the belief (approximate marginal posterior
probability) at node j, obtained by multiplying all incoming messages to that node by the

local evidence.

It has been pointed out [124] that an error-correcting code can be represented as an Ising
spin glass model, revealing an elegant marriage of information theory and statistical physics.
In particular maximum-likelihood decoding is equivalent to finding the ground state of the
corresponding spin system [124], and maximum a-posteriori symbol probability decoding is

equivalent to computing the thermal average at the Nishimori temperature [125-127]. Decod-

92 Chapter 4. Cycle Tanner-Graph Codes

O - - ~Symbol Node

D = = = Check Node

®---ov o /
Y,

ervati
s) 5Q s,

Figure 4.4: The pairwise Markov random graph model of a Tanner-graph code.

ing of an error-correcting code from the point of view of statistical physics is often understood
as solving the stationary conditions of the approximate Gibbs free energy [128]. In Appendix
C of [71], MacKay reported empirical decoding results of binary LDPC codes using the vari-
ational free energy minimization (mean field) algorithm, which performs worse than BP algo-
rithm. It was shown in [129,130] that, although the BP algorithm for graphical models with
cycles is not guaranteed to converge, the BP fixed point corresponds to the stationary point of
an approximate free energy, known as the Bethe free energy, which is a better approximation
to Gibbs free energy than mean field approximation. Kikuchi developed a method, known
as cluster variational method, of deriving approximations that improve on and generalize the
Bethe approximation to the Gibbs free energy [131]. In a general Kikuchi approximation, the
free energy is approximated as a sum of the free energies of basic clusters of nodes, minus the
free energy of over-counted cluster intersections, minus the free energy of the over-counted
intersections of intersections, and so on [130]. The Bethe approximation is the simplest ex-
ample of the more complicated Kikuchi free energy: for that case, the basic cluster are all
the connected pairs of nodes. In general, increasing the size of the basic clusters improves the
approximation to the Gibbs free energy. In the limit where a basic cluster covers all the nodes

in the system, the Kikuchi approximation becomes exact.
Just as BP only converges to a stationary point of the Bethe free energy, we can expect

that CBP only converges to a stationary point of the Kikuchi free energy, as stated in the

following lemma.

Lemma 4.3 A set of messages and beliefs are fixed points of the CBP decoding algorithm

4.4. Construction of Cycle Tanner-Graph GF(2°) Codes 93

for the binary interpretation of GF(2°) codes if and only if they are stationary points of

Fxikuchi = *Zzb z;) In1;(x;) ZZZ) (o) In Yo (z4)
+zzb xa lnb xa)_z j—l ij Z; lnbj(xj), (415)

J
subject to the constraint that b,(z,) marginalize down to b;(z;) for all j € N'(a). d; is the
number of neighbors of symbol node j, i.e. the degree of symbol node j.

Proof: The proof follows directly from claim 1 in [130]. This lemma can also be viewed
as an extension of Corollary 2 of [130] with a minor difference: the corresponding free energy
here is of Kikuchi-type because each symbol node j represents a cluster of b binary bits. If

b =1, it reduces to the Bethe free energy. |

The connections between BP and the Bethe approximation, and CBP and the Kikuchi ap-
proximation reveal that, in the case of error-correcting codes with strictly short block lengths
where the graphical model under consideration has substantially short cycles, the binary in-
terpretation of GF(2%) codes may potentially be advantageous as their corresponding iterative

decoding algorithm CBP can outperform ordinary BP.

4.4 Construction of Cycle Tanner-Graph GF(2°) Codes

Constructing a good cycle Tanner-graph GF(2%) code can be performed in two steps. First
one could construct a generic cycle Tanner graph TG(2, d.) having large girth and then
associate each edge with a nonzero field element randomly selected from field GF(2°). The
PEG algorithm [96] can be used to construct TG(2, d.) with girth exceeding an analogy of
the Erdos-Sachs bound and can be used for any combination of parameters such as the block
length and the rate. Nonetheless our focus here is on the constructions of TG(2, d.) deriving

from the graph-theoretic approach.

Tanner [74] pointed out that two graph parameters are relevant to the iterative decoding
performance, namely the graph girth g (i.e. the length of the shortest cycle) and the graph
diameter r (i.e. the maximum over all pairs of vertices of the length of the shortest path
between them), and that the most favorable graph for iterative decoding may be the one that
has the largest girth and smallest diameter. Therefore, a special class of k-regular graphs, i.e.

every vertex has k connections, called Moore graphs, appears to the most interesting.

Theorem 4.3 [132, p. 181]: Of the following conditions on a graph G, any two imply the
third:

94 Chapter 4. Cycle Tanner-Graph Codes

Petersen graph

TG(2,3)

O - - -symbol Node

D = = = Check Node

Figure 4.5: The Petersen graph (left) and its induced TG(2, 3) (right).

e (is connected with maximum degree d and diameter r;
e G has minimum degree d and girth g = 2r + 1;

e Ghasl+d((d—1)"—1)/(d — 2) vertices.

A graph satisfying these three conditions 2 is called a Moore graph of diameter r and
degree d. The famous Petersen graph happens to be the unique Moore graph of diameter 2
and degree 3, see Fig. 4.5. Its fame stems from the fact that it is a counterexample to a large

number of conjectures in graph theory.

Note that each edge in a d-regular graph has two endpoints (vertices), and that if we
translate each edge into a symbol node and its two endpoints (vertices) into two check nodes
connected to it, we obtain a TG(2, d). In this way, from a d.-regular graph G on m vertices,
we derive a TG(2, d.) with d.m/2 symbol nodes on one side and m check nodes on the other.

The rate of the resulting code is > d./2.

Definition 4.1 (edge-vertex incidence graphs, [43]) : Let G be a graph with edge set
E and vertex set V. The edge-vertex incidence graph of G is a cycle Tanner graph with vertex

set £ UV and edge set
{(e,v) € EUV : v is an endpoint of e}.

Example 4.1 see Fig. 4.5.

2The first two conditions show that a Moore graph is regular.

4.5. Simulation Results 95

Lemma 4.4 Let the girth of a graph G be g¢, then the girth of the edge-vertex incidence
graph of G is 2g¢.

Proof. Consider a specific smallest cycle in G having gs edges. By definition each edge
in the cycle corresponds to a symbol node in the resulting edge-vertex incidence graph, and
evolves into two new edges connecting to its two endpoints. Then the corresponding cycle
in the edge-vertex incidence graph has 2gs edges. Therefore the girth of the edge-vertex
incidence graph of G is 2¢¢. []

In practice, it is often desirable to have a flexible combination of block length and rate.
Unfortunately, it turns out that Moore graphs are very rare. For instance, if there is a Moore
graph of diameter of 2 and degree d, then d must be 2, 3,\ 7, or 57, and the number of
vertices must be 5, 10, 50, or 3250, respectively. Alternatively, a larger family, the Ramanujan
graphs [78,79], which are d-regular graphs, can be used to construct TG(2, d) by their edge-
vertex incidence graphs. A Ramanujan graph is defined by the property that the second largest
eigenvalue of the adjacency matrix is no larger than 2v/d — 1, and thus is known to have good
expansion properties, large girth and small diameter. In particular, the girth of Ramanujan
graphs is asymptotically a factor of 4/3 better than the Erdos—Sachs bound, which appears
to be the best known d-regular graphs in terms of girth. Note that Ramanujan graphs have

been used in several instanced to construct good LDPC codes, see [43,81,82] for instance.

Theorem 4.4 [78,79]: Let s, t be distinct primes, and s is a quadratic nonresidue modulo
t. Then X** are (s + 1)-regular Cayley graphs of the projective general linear group of degree
2 over the field of t elements, PGL(2,F;), with the number of vertices of t(t* — 1) and of a
girth of at least

gc > 4log,t — log, 4. (4.16)
Moreover, the edge-vertex incidence graphs of X** have a girth of at least

grc > 8log,t — 2log, 4. (4.17)

4.5 Simulation Results

It is interesting to compare the girth properties of cycle TG(2, d.) of various possible construc-
tion approaches, including Ramanujan, PEG (non-greedy version), and look-ahead-enhanced
PEG Tanner graphs. Fig. 4.6 depicts both the lower bound on a PEG Tanner graph (Theo-
rem 3.1) and the upper bound (Lemma 3.6) on any Tanner graph for regular d; = 2,d. = 4

96 Chapter 4. Cycle Tanner-Graph Codes

50 ——rreT T maniy —
— Lower bound on a PEG Tanner graph

.=+ Upper bound for a general Tanner graph
45r J)

-

o
40 gt -
_r~-;

Y |

351 ! -

girth

10° 10* 10
number of parity nodes m

Figure 4.6: Lower and upper bounds on the girth of cycle TG(2, 4). The symbols o, o, x
correspond to Ramanujan, look-ahead-enhanced PEG, and PEG Tanner graphs,

respectively.

codes with varying m (in this case n = 2m). We consider three particular cases of Ramanujan
graphs, X% with m = 120 and n = 240, X*7 with m = 336 and n = 672, and X7 with
m = 4896 and n = 9792, whose resulting cycle TG(2, 4) have girth 12, 16, and 24, respectively.
With the same m, n, d, and d., all three candidates attain the same girth in the first two cases,
and in the last case, where the graph size is relatively large, the edge-vertex incidence graph of
the Ramanujan graph outperforms its counterparts in terms of girth. Note that Ramanujan

graphs only exist for a few specific combinations of parameters.

Fig. 4.7 shows the performance of cycle Tanner-graph GF(2%) codes as a function of field
order b. The cycle Tanner graph is the edge-vertex incidence graph of the Ramanujan graph
X3" with m = 336 and n = 672 and, accordingly, the actual binary block length of cycle
Tanner-graph GF(2°) codes is nb in bits. The binary interpretation of cycle Tanner-graph
GF(2%) codes is used over the binary-input AWGN channel and decoded by the CBP algorithm
up to 80 iterations. We compare the performance of cycle Tanner-graph GF(2%) codes with
the Shannon—Gallager-Berlekamp sphere-packing bound 3 [15,115] of the same binary block
length nb over the binary-input AWGN channel, plotted in Fig. 4.7 as dotted lines (shown in
sequence from right to left are b = 1,2,3,4,5,6, and 8). As can be seen, the gap decreases

significantly as b grows larger; in particular the performance of the cycle Tanner-graph GF(28)

3In computing this bound, the term o(n) is neglected because of the difficulty to calculate it.

4.5. Simulation Results 97

] ' = Bimary |3
[— GF(2) |;
[- GF@) |]
-A- GF(2%
-1 R 5
10 —+ GF2) 13
- GF(2% |
—- GF(2®) |]
(05} .
E 10 2L \ 3
: 1
S]
© [
-
3 10“’;L 4
m F b
10“‘} 3
10_5 - -'] . 1 1
0 3 35 4

2
E/N; (dB)

Figure 4.7: Block-error rate of cycle Tanner-graph GF(2°) codes under iterative decoding.
The cycle Tanner graph is the edge-vertex incidence graph of the Ramanujan
graph X37 with m = 336 and n = 672. The actual (binary) block length of cycle
Tanner-graph GF(2%) codes is nb in bits.

code is within 0.4 dB from the Shannon-Gallager—Berlekamp sphere-packing bound of the

same binary block length, at a block-error rate of 1074,

The Shannon—-Gallager-Berlekamp sphere-packing bound is often used as a lower bound
for the block-error rate of the best code at moderate to large block lengths (its tightness
also depends on the rate); and at short block lengths it becomes slightly loose as a conse-
quence of neglecting the o(n) term. Here we propose an alternative approach to estimate the
performance of the asymptotically best code under ML decoding, which is tighter at short
block lengths. One can think of an ensemble of Shannon equiprobable random codes, whose
average performance under ML decoding is known to be “typical” by the generalized law of
large numbers. As the distance spectrum of the Shannon equiprobable random ensemble is
known (the binomial distribution), one can apply the best-known bounding technique — the
Tangential Sphere Bound (TSB) [133-135] — to yield a tight upper bound on the block-error
rate of the asymptotically best ensemble under optimum decoding. The TSBs of the Shannon
equiprobable random ensemble of various block lengths over the binary-input AWGN channel
are plotted in Fig. 4.7 as dashed lines (shown from right to left are b = 1,2,3,4,5,6, and

98 Chapter 4. Cycle Tanner-Graph Codes

8). It can be seen that at b = 1 (block length 667) the TSB is tighter than the Shannon-
Gallager—Berlekamp bound by 0.19 dB with a block-error rate of 1074, at b = 2 (block length
667 x 2) the TSB is tighter by 0.1 dB, and finally, the TSB is essentially the same as the
Shannon—Gallager—Berlekamp bound as the block length grows larger.

4.6 Summary

The iterative decoding performance of an LDPC code is in general dominated by two com-
peting factors. One is the Hamming weight spectrum, which requires the density of the
parity-check matrix to be higher, the other is the performance loss due to iterative decod-
ing, for which a low density of the parity-check matrix is favorable. These two conflicting
requirements must be well balanced, particularly for short block lengths. It is demonstrated
that the Hamming weight spectrum can be significantly improved by moving from the binary
field to fields of higher order with lowest possible density. Therefore cycle Tanner-graph codes
defined over GF(2%), with sufficiently large b, are heuristically both “good codes for optimum
decoding” and “good codes for iterative decoding”. Simulation results of cycle Tanner-graph
GF(2°) codes based on the edge-vertex incidence graphs of Ramanujan graphs confirmed this

claim.

Chapter 5

Decoding Binary LDPC Codes

5.1 Introduction

Efficient hardware implementation of the sum-product algorithm (SPA) for decoding binary
LDPC codes has become a topic of increasing interest. Analog networks of transistors for
turbo decoding or SPA have been investigated by the groups of Hagenauer [136], and of
Loeliger [137], exploiting a natural match between probability theory and transistor physics.
The building block is the analog 'boxplus’ circuit, with which any network of sum-product
modules can be directly implemented in analog VLSI. The major difficulty in analog circuits
is not the complexity of hyperbolic tangent function in "boxplus’ operation, but the stability

and synchronization issues.

In digital hardware design, it has been shown that direct implementation of the original
form of SPA is sensitive to quantization effect [138]. Furthermore, it is demonstrated in [138§]
that using likelihood ratios can substantially reduce the quantization level required. A sim-
plification of the SPA that reduces the complexity of the parity-check node update at the
cost of some loss in performance has been proposed in [139]. This simplification has been
derived by operating in the log-likelihood-ratio (LLR) domain. Recently, a low-complexity
implementation of the SPA that also operates entirely in the log-likelihood domain has been
presented in [106,140]. This scheme bridges the gap between the optimal SPA and the simpli-
fied approach in [139]. Low-complexity software and hardware implementations of an iterative
decoder for LDPC codes suitable for multiple access applications have been presented in [141].

Improving the performance of [139] by normalization and offset has been proposed in [142,143].

In this chapter, we investigate low-delay and low-complexity digital implementations of

the LLR-SPA from both the architectural and the algorithmic point of view and describe new

99

100 Chapter 5. Decoding Binary LDPC Codes

derivatives thereof !. Log-likelihood ratios are used as messages between symbol nodes and
parity-check nodes. It is known that in practical systems, using LLRs offers implementation
advantages over the use of probabilities or likelihood ratios, because multiplications are re-
placed by additions and the normalization step is eliminated. Serial and parallel architectures
for realizing the party-check node update are investigated, leading to trellis and tree topologies,
respectively. In both cases, specific core operations similar to the special operations defined
in the log-likelihood algebra of [144] are used. An application of the forward-backward proce-
dure on the trellis topology leads precisely to the low-complexity implementation of the SPA
described in [106]. The tree topology together with its corresponding core operation yields a
new edge-level parallelism which is much more promising for extremely high-speed applica-
tions. The introduction of serial and parallel architecture not only leads to low-complexity
LDPC decoding algorithms that can be implemented with simple comparators and adders
but also provides the ability to make up the loss in performance by utilizing simple look-up
tables or constant correction factors. The unified treatment of decoding techniques for LDPC
codes presented in this chapter provides flexibility in selecting the appropriate design point in

high-speed applications in terms of performance, latency, and computational complexity.

The remainder of this chapter is organized as follows. In Section 5.2, the SPA in the log-
likelihood domain is described and the issues associated with a brute-force implementation are
discussed. In Section 5.3, a trellis topology for carrying out the parity-check node update is
derived. The core operation on this trellis is the LLR of the exclusive OR (XOR) function of
two binary independent random variables [144], instead of the hyperbolic tangent operation
used in the brute-force implementation. This core operation can either be implemented very
accurately by using the max* operation [145] or approximately by using the so called sign-
min operation. In either case, the check-node updates can be efficiently implemented on
the trellis by the well known forward-backward algorithm. Section 5.4 is devoted to parallel
processing at edge level inside the check node update, and a simple tree topology with a new
core operation is proposed. It is shown that such an implementation offers smaller latency at
the cost of a more complex core operation. In practice, this core operation can be realized
by employing a simple eight-segment piecewise linear function. In Section 5.5, simulation
results are presented, comparing the performance of‘ the various alternative implementations
of the various LLR-SPA alternatives. Section 5.6 consists of three approximations of the LLR-
SPA for decoding binary LDPC codes, emphasizing simplicity at the expense of accuracy
and correctness of the LLR-SPA. Finally, Section 5.7 contains a summary of the results and

conclusions.

!Part of this work was incorporated into a joint paper with J. Chen, A. Dholakia, E. Eleftheriou and M.P.C.

Fossorier, and will be submitted to IEEE Trans. Communications.

5.2. SPA in the Log-Likelihood Domain 101

5.2 SPA in the Log-Likelihood Domain

Following a notation similar to [71,139], let C(s) denote the set of check nodes connected to
symbol node s, i.e., the positions of 1’s in the sth column of the parity-check matrix H, and let
S(c) denote the set of symbol nodes that participate in the cth parity-check equation, i.e., the
positions of 1’s in the cth row of H. Furthermore, S(c)\s represents the set S(c), excluding
the sth symbol node, and similarly, C(s)\c represents the set C(s), excluding the cth check
node. In addition, gs—.(z), z € {0,1}, denotes the message that the symbol node s sends to
the check node ¢ indicating the probability of symbol s being 0 or 1, based on all the checks |
involving s except c¢. Similarly, r.,s(x), x € {0,1}, denotes the message that the cth check |
node sends to the sth symbol node indicating the probability of symbol s being 0 or 1, based
on all the symbols checked by ¢ except s. Finally, y = [y1,¥2,.-. ,¥n] denotes the received

word corresponding to the transmitted codeword u = [uy, ug, ... , uy].

The LLR of a binary valued random variable U is defined as

P(U=1)

L(U)) log P =0) (5.1)

where P(U = z) denotes the probability that the random variable U takes the value z. Further-
more, let us define the LLRs As_,(us) wf 10g(gs—c(1)/qs(0)) and Aqys(uy) « log(res(1)/7e=s(0)).
The LLR-SPA is then summarized as follows.

Initialization: Each symbol node s is assigned an a posteriori LLR L(u,) = log{P(us; = ‘
1lys)/P(us = 0|ys}. In case of equiprobable inputs on an AWGN channel, L(u,) = 2y,/0?, |

where o? is the noise variance. For every position (c, s) such that H,, = 1,

)‘Sﬁc(US) = L(u8)7
Aces(us) = 0.

Step (i) (check-node update): For each ¢, and for each s € S(c), compute

Acss(us) =2tanh™'{ J] tanh[Ayo(us)/2)]}. (5.2)

s'e€S(e)\s

Step (i) (symbol-node update): For each s, and for each ¢ € C(s), compute
)‘s—m(us) = L(Us) + Z Ac’—»s(us)-
decC(s)\c

For each s, compute

)\s(us) = L(us) + Z Ac——}s(us)-

c€C(s)

102 Chapter 5. Decoding Binary LDPC Codes

Step (iii) (decision): Quantize G = [dy, Uy, ... ,Us] such that 4, = 1 if A;(us) > 0, and
@ = 0 if A\y(us) < 0. If aHT = 0, then halt the algorithm with @i as the decoder output;
otherwise go to Step (i). If the algorithm does not halt within some maximum number of

iterations, then declare a decoder failure.

The check-node updates are computationally the most complex part of the LLR-SPA.
Two issues influence their complexity: i) the topology used in computing the messages that a
particular check node sends to the symbol nodes associated with it, and ii) the implementation
of the core operation needed for computing these messages. For example, the core operation
of the check-node update computation in Step (i) is the hyperbolic tangent function, which
looks apparently difficult to implement in digital hardware. Furthermore, in a brute-force
implementation of the check-node update Eq. (5.2), d.(d. — 1) multiplications are necessary
per check node, with the multiplicands in each multiplication requiring the evaluation of the
hyperbolic tangent core operation. Clearly, the higher the rate of the code, the higher the
row-degree d., thus leading to a larger number of multiplications. Therefore, the brute-force

topology and its corresponding core operation is not suited for high-speed digital applications.

5.3 Serial Implementation: Trellis Topology

5.3.1 Check-Node Updates

Consider a particular check node ¢ with d, connections from symbol nodes in S(c) = (s1, 89, . .. , $a_)-
The incoming messages are then g, c(us,), Asymse(tisy), - -+, Asy —c(tts,). The goal is to effi-
ciently compute the outgoing messages Acss, (s,), Acsey(Usy)s - - Memssy (s,)-

Let us define two sets of auxiliary binary random variables f; = u,,, fo = fi ® ug,, f3 =
fo® usy, ..o, fo. = fa.—1 ®us, , and by, = Usy, » bde—1 = ba, ® Usy__, --. ,b1 = by @ u,,, where
@ denotes the binary XOR operation. It can easily be seen that for statistically independent
binary random variable V; and V; [144],

1 + eLV1)+L(V2)

L ®Va) = log 7. (5.3)

In [144] the so-called 'boxplus’ operation H is defined as

L) B L(Vz) = L(V1 @ V), (5-4)

5.3. Serial Implementation: Trellis Topology 103

and it can be easily verified that

L(Vi)Boo = L(V)
LB -0 = —L(W)
L(V\)B0 = 0.

Using Eq. (5.3) repeatedly, we can obtain L(f;), L(f2), ... , L(fs,) and L(by), L(bs), ... , L(bg,)
in a recursive manner based on the knowledge of Ay, (s,), Asymse(tsy), -+ vy Ay me(tts,). Us-

ing the parity-check node constraint us, ® us, @ ... @ uy,, =0 mod 2, we obtain
Us; = fi—1 @ b (5.5)

for every i € {2,... ,d. — 1}. As the value of L(f;_1 @ b;;1) does not depend on the incoming
message from symbol node s;, i.e. A c(us,;), the outgoing (extrinsic) message from check

node ¢ to symbol node s; can be simply expressed as

Ac——)si(usi) = L(fi—l @bi_}_l), i :273v--- adc_ 17
Aess (us;) = L(by)
Ac—)sdc (Usdc) = L(fdc_l)' (56)

The total computational load consists of the forward recursive computation of L(f;), the
backward recursive computation of L(b;), and the final pairwise part in Eq. (5.6), which
amounts to 3(d, — 2) core operation L(V; @ V5). This should be compared to d.(d. — 1)
hyperbolic tangent operations for the check-node updates of the brute-force topology. Clearly,
the above procedure is exactly the forward-backward algorithm on a single-state trellis, as
shown in Fig. 5.1. In Section 5.3.3, an efficient implementation of the core operation will be
described.

5.3.2 Symbol-Node Updates

In the log-likelihood domain, the symbol-node updates consist only of additions of incoming

messages. It is more convenient to compute the posterior LLR for the symbol u,, given by

ds
)\s(us) = L(us) + Z Ac,;—)s(us)a

where A.,_,(u,), i = 1,...,d, are the incoming LLRs from the parity-check nodes C(s) =
(c1,¢a,--. ,cq,) connected to the symbol node s. Then, the outgoing messages from symbol

node s are gbtained as

As—e; (us) =)‘s(us) - Aci—-}s(uS)a i=1,...,ds. (57)

104 Chapter 5. Decoding Binary LDPC Codes

Figure 5.1: A serial configuration for computing the check-node updates.

The total computational load for a symbol-node update is 2d; additions (subtractions). Note
that this computational complexity figure includes the number of operations needed to obtain
the posterior LLR use in Step (i) of LLR-SPA.

5.3.3 Efficient Implementation of the Core Operation L(U @ V)

In this section, two versions of efficient implementation of the core operation L(U & V) are
described, both of which are amenable to efficient VLSI design.

The first version is analogous to the max* operation used in turbo codes [145,146]. By

using the Jacobian logarithm twice, we obtain

1 4 eLW+LV)
LUsV)=log L0 T k)

= log[l + eL(U)+L(V)] _ log[eL(U) + eL(V)]
= max[0, L(U) + L(V)] + log(1 4 e 1HUH+LVI]

— max[L(U), L(V)] — log(1 + e~ =LV (5.8)

in which the terms log(l + e~ HWHLVI) and log(1 + e E@-LM) can be implemented by
a look-up table. Fig. 5.2 shows a plot of the function g(z) = log(1 + e/*). A 3-bit coarse
quantization table of g(z) is given in Table 5.1. The maximum approximation error is less
than 0.05.

The function g(x) can also be approximated more accurately by a piecewise linear function
where the multiplying factors are powers of two and therefore simple to implement in hardware

with shift operations. Table 5.2 shows a piecewise linear approximation of g(z) with only

5.3. Serial Implementation: Trellis Topology 105

— log(1+e™)
=~ piecewise linear approx.
— - table~lookup approx.

Figure 5.2: The function g(z) = log(1 + e~12).

eight regions. Fig. 5.2 also shows the piecewise linear approximation plot corresponding to
Table 5.2. As can be seen, the piecewise linear function offers almost a perfect match to the

original function.
The core operation L(U @ V) can also be approximated as [144]

| 4 DLV
LUsV) = logm
~ sign|[L(U)]sign[L(V)]

~minf| L(U)], IL(V)]], (5.9)
which is called herein as the sign-min approximation. The advantage of using the sign-min

approximation lies in its simplicity. No additions are needed for the check-node updates, but

only two-way comparisons, hence requiring a very small number of logic gates.

Table 5.1: Quantization table for g(r) = log(1 + e~12l).

[dol Jiog+e =) [fof [logi+el=h) |
[0, 0.196) 0.65 [1.05, 1.508) 0.25
[0.196, 0.433) 0.55 [1.508, 2.252) 0.15
[0.433, 0.71) 0.45 [2.252, 4.5) 0.05

[0.71, 1.05) 0.35 [4.5, +00) 0.0 B

106 Chapter 5. Decoding Binary LDPC Codes

Table 5.2: Piecewise linear function approximation for g(z) = log(1 + e~12l).

[el | logtel=h [Jol [log(l+ell) |
[0, 0.5) —|z|*+27t +0.7 [2.2,32) | —|z]*271+40.2375
[0.5,1.6) | ~|z|*2"24+0.575 || [3.2,4.4) | —|z|*27%+0.1375
[1.6,2.2) | ~|&|*273+0.375 || [4.4, +c0) 0.0

It can be shown that the following equality holds:

max[0, L(U) + L(V)] — max[L(U), L(V)]
= sign[L(U)}sign[L(V')] - min[|[L(U)|, |IL(V)]}. (5.10)

Therefore, the difference between the operations max* and sign-min is given by the term
log(1 + e IEUHLMWIN — Tog(1 + e UL called the ‘correction factor ¢’ in [106]. That is

—c if lu+ov|>2lu—v|and ju—v| <2

1+ e~ lutl
c if|lu—wv|>2u+v|and ju+v| <2 (5.11)

log T e =

0 otherwise.

It is shown in [106] that this correction factor can be approximated by a single constant
without incurring significant loss in performance with respect to the SPA. It is interesting to

note that this correction factor has been re-invented in [147] with a slight modification.

5.4 Parallel Implementation: Tree Topology

For applications with high throughput requirements, recursive algorithms such as the forward-
backward algorithm may not be well suited. In this section, a simple tree topology that
enables fast check-node updates is described. The symbol-node updates remain the same as
in Eq. (5.7).

We begin by defining an auxiliary binary random variable S, = Zf;l @us,. The LLR of
Sc at a particular check node ¢ can be computed in parallel with the tree topology shown in
Fig. 5.3 using the efficient implementation of L(U @ V') described in the previous section. The
speed-up factor over the trellis topology is of order of O[d./log(d.)].

The rest of this section is devoted to a simple and efficient way for computing the LLRs

A5, (us;) by means of the auxiliary random variable S,.

5.4. Parallel Implementation: Tree Topology 107

Let us counsider

de de
L(S.) = L) _&uy)=L(us, & Y ouy)
i=1 j=1,5
1+ eL(E;lC:l’j# Bug;)+ Llus,)
= log

) 5.12
eL(E?ch#i Gus;) + el(us;) ()

In the context of iterative decoding, the term L(Zj;l ki @us,) is exactly equivalent to the out-

going (extrinsic) message Ac; (us;) from check node c to any symbol node u,, € {us,, us,, - - - ; Us,_},
and L(us,) is exactly Ag,,.(us,). Thus Eq. (5.12) becomes

1 + eAc—»si (usi)+)\5i—>c(usi)

L(S.)

— 108 eAc—)Si(uSi) + e)‘sz'—m(usi) .
After some algebra, we finally obtain

e)\siﬁc(usi)‘FL(SC) _— 1

Acsys, (us,) = log o T CA R L(S,). (5.13)
We define
Moo (us) & Lius, ©8,), i=1,...,d..
Clearly, for each ¢ € {1,2,...,d.}, the extrinsic information A, (us;) can be computed

simultaneously by a parallel implementation of the new core operation L(us, © S,.) as shown
in Fig. 5.3.

U,

Bl

Figure 5.3: A parallel configuration for computing the check-node updates.

108 Chapter 5. Decoding Binary LDPC Codes

Observe that Eq. (5.13) can be written as

Ac—-)si (u.si) = log le)\s,’—m(usi)+L(SC) _ 1|

—log Ie’\si—’c("“i)"L(Sc) — 1] = L(S,).
(5.14)

In Eq. (5.14) the calculation of the function h(z) = log|e® — 1| can be implemented either by
a look-up table or can be approximated by a piecewise-linear function. A plot of h(z) is given

in Fig. 5.4.

6 T T e B ﬁ

— logle*~1| ' : ‘

= - piecewise linear approx.
AF AR 4
2.. .. -

ol S T | R AT _

Figure 5.4: The function A(z) = log|e® — 1|.

Clearly, only d, — 1 core operations of type L(U & V) and d. core operations of type
L(U & V) are necessary for a particular check-node update. As can be seen in Fig. 5.4, as z
approaches zero, the function h(x) approaches —oo. This behavior makes it difficult to use
a look-up table with a small number of quantization levels for implementing the new core
operation L(U © V). Nevertheless, h(z) can easily be approximated by a piecewise linear
function where the multiplying factors are powers-of-two and therefore simple to implement
in hardware with shift operations. Table 5.3 is a very accurate piecewise linear approximation

of h(z) with only eight regions.

5.5. Simulation Results 109

Table 5.3: Piecewise linear function approximation for h(z) = log|e® — 1].

|ﬁ |z | log fe® ~ 1] ” |z| J log [€® — 1f ’

[-00,-3) 0 [0, 0.15) 24z — 4.0

[-3,-0.68) ~2722 - 0.75 || [0.15,0.4) | 22z 22
[-0.68,-0.27) ~2z — 1.94 [0.4, 1.3) 2z - 1.4
[-0.27, 0.0) —23 — 3.56 [1.3, +00) z—-0.1

5.5 Simulation Results

Fig. 5.5 and Fig. 5.6 show the bit error rate performance of an [n = 1008, £ = 504] LDPC code
from [109] and an [n = 6000, k = 3000] PEG LDPC code, respectively, assuming an AWGN
channel. Simulation results are presented for the following LDPC decoding algorithms: the
SPA, the LLR-SPA using the trellis topology for the check-node update (designated as ‘LLR-
SPAY’), and the LLR-SPA using the tree topology for the check-node update (designated
‘LLR-SPA?2’). Furthermore, the correction term log(1 4 e~IHU+LVIN_ Jog(1 + e~ IHU)-LVII)
in the core operation L(U @ V') of the LLR-SPA1 has been computed using either the look-up
table shown in Table 5.1 or the piecewise linear function shown in Table 5.2. In addition,
further simplifications of the LLR-SPA1 have been simulated in which the correction factor

in the core operation L(U @ V) is approximated by a fixed constant or eliminated entirely.

10 T T T

-4 SPA

@ LLR-SPAT1, table look-up

- = LLR-SPA1, piecewise linear
-~ [R-SPA1, sign—min approx.
—— LLR-SPAT1, constant(c=0.8)
€ - LLR-SPA2, piecewise linear

bit error rate

1 1.5 2 2.5 3
E/N2(dB)

Figure 5.5: Performance of [n = 1008, k = 504] LDPC code of MacKay.

110 Chapter 5. Decoding Binary LDPC Codes

10 T T T T
-4~ SPA
+© LLR-SPAI1, table look—up
1 = = LLR-SPA1, piecewise linear
10 —+— |LR-SPA1, sign-min approx.| 3
i = -4 - LLR-SPA2, piecewise linear
107}

bit error rate
>
T

1 —l

1 1.25 2.25

1.5 1.75
E/N, (dB)

Figure 5.6: Performance of [n = 6000, £ = 3000] PEG LDPC code.

The last case corresponds to the aforementioned sign-min approximation. Finally, the core
operation involved in LLR-SPA2 is implemented using the piecewise linear function shown in
Table 5.3. The results are obtained via Monte Carlo simulations where the maximum number

of iterations is fixed to 80 in all cases.

For both codes, we observe that at a bit error rate of 1075, the simple sign-min approxi-
mation suffers a performance penalty of 0.3 to 0.5 dB. It appears that the loss in performance
is greater as the number of parity-check equations of the LDPC code increases. On the other
hand, all the other reduced-complexity variants of the LLR-SPA perform very close to the
conventional SPA. In particular, the piecewise linear approximations of the core operations in
LLR-SPA1 or LLR-SPA2 appear to suffer no loss (essentially less than 0.05 dB) in performance
even in the case of the [n = 6000, ¥ = 3000] PEG LDPC code which involves 3000 parity-check
equations. Furthermore, as can be seen in Fig. 5.5, the simple LLR-SPA1 algorithm that uses
a constant correction term (¢ = 0.8) is also able to achieve the performance of the conventional

SPA, in particular at higher SNRs.

5.6. Approximations of the LLR-SPA 111

5.6 Approximations of the LLR-SPA

In Section 5.3 and Section 5.4, we developed the trellis topology and the tree topology together
with the corresponding core operations L(U®V') and L(USS). The trellis topology enables the
well-known forward-backward algorithm for a minimum usage of the core operation L(U @ V'),
and the tree topology leads to an edge-level parallelism in the check-node update, which
is favorable for extremely high-speed applications, but with the more difficult core operation
L(U&S). We also addressed the issues of efficiently implementing the core operations L(U&V)
and L(U © 5) in digital circuits using only adders and comparators, focusing on the accuracy
and correctness of the LLR-SPA.

In this section we will propose three approximations of the LLR-SPA for decoding binary
LDPC codes, emphasizing simplicity at the expense of accuracy and correctness of the LLR-
SPA. The first approximation is for the core operation L(U @ V') on the trellis topology, and
the second is for the core operation L(U © S) on the tree topology. The third is a graph-based
approximation in the sense that only a few incoming messages of least reliability are kept and
all other messages are tentatively decided. As the third version reduces the size of the trellis
or tree in the check-node update so that fewer core operations L(U & V') and/or L(U © S)
are needed, it can be combined with the first two approximations to yield extremely simple
methods for decoding LDPC codes.

5.6.1 Separation Principle

Before presenting these mentioned three approximations of LLR-SPA, we establish the follow-

ing separation principle.

Lemma 5.1 The sign and the magnitude of any outgoing (extrinsic) message in the check-
node update are separable in the sense that the sign of an outgoing message depends only
on the signs of incoming messages and the magnitude depends only on the magnitudes of

incoming messages.

Proof: Recall the fact that, in the trellis topology shown in Fig. 5.1, the computation
of any specific outgoing message is equivalent to applying a sequence of core operations —
L(U & V). In order to prove the lemma, it then suffices to show that the sign computation
and the magnitude computation of L(U & V') are separable.

112 Chapter 5. Decoding Binary LDPC Codes

It is known that the core operation L(U @ V') can be expressed as follows:
LUeV) = LU)BLV)
= 2tanh™' [tanh(L(U)/2) tanh(L(V)/2)]
= sign(L(U))sign(L(V)) - 2tanh™" [tanh(|L(U)|/2) tanh(|L(V)|/2)]
= sign(L(U)) sign(L(V)) - [[LU)[B [L(V)]]. (5.13)
Using Eq. (5.3) we have

1 4 LOIHLO)

ILOIBILVI] = log — i
> 0, (5.16)
where the inequality holds because
1+ eIL(U)|+|L(V)|] — [elL(U)I + 6IL(V)I] = (elL(U)I - 1)(e|L(V)| -1)>0. (5.17)

Therefore Eq. (5.15) can be decomposed into

sign [LU @ V)] = sign[L(U)]sign[L(V)] (5.18)
(LU V) = [LU)|B|LV)]. (5.19)

It is clear from Egs. (5.18) and (5.19) that the computation of the sign of L(U & V') depends
only on the signs of L(U) and L(V), and the computation of the magnitude of L(U & V)
depends only on the magnitudes of L(U) and L(V'), which completes the proof. |

The separation principle allows us to separate the circuit of computing the sign from
that of computing the magnitude. The circuit of computing the sign of an outgoing message
is rather simple. The simplest way is to first calculate sign(S.) = []sign[L(us,)] and then
sign(S,) - sign[L(us,)]. An instance of the circuit follows precisely the style of Fig. 5.3, for
which the input is replaced with 0 or 1 representing the signs, and @ and © are replaced with

exclusive OR.

One of the main advantages of the separation lies in that one can derive simpler update

equations for the check-node update, which will be discussed later.

Lemma 5.2 Let L(S,) = L(Zf;l @us,;). Then the magnitude of L(S,) is less than or equal
to the minimum of the magnitudes of L(us,), namely |L(S,)| < %in{[L(usi)’}.

Proof: First we prove that |L(us,)|B|L(u,,)| < min{|L(u,,)|, |L(u,,)|}, where s, j € {1,2,...d.}.
Using Egs. (5.8) and (5.10), we obtain

|L(us)| B |L(us,)| = min{]Lus,)], |L(us;)|} + log(1 + eI HER,)
—log(1 + e IE@I=ILusyily, (5.20)

5.6. Approximations of the LLR-SPA 113

It can be easily checked that
log(1 + e IE@ L@ _ 1og(1 4 gmlIEwe)I-ILs)lly < o

thus |L(ug,)| B |L(us,)| < min{|L(us,)|, |L(us;)|}. Now consider

de
[L(Se)| = lL(ZEBUSi)
1> BLu,)

dc
Z BB L (us,)
i=1

min(((1L) L))y |) - s)
= n\éiin{'L(uSi)lh (5'21)

IE

e

Ao

where a holds by definition, b by the separation lemma, and ¢ by the associative property of

B and min operations, which completes the proof. [

Before leaving this subsection, it is worthwhile to mention the original Gallager’s approach

[4, pp. 43] for decoding binary LDPC codes. Its key idea is based on the following observation:

|L(U)|BI|L(V)| = 2tanh™! [tanh(|L(U)|/2) tanh(|L(V)|/2)]

= SO + FILV)D), (5.22)
where
f(z) =log Z: i- i, (5.23)
which is an involution transform, i.e., has the property f(f(z)) = z. Generally
de—1 de—1
> BIL(us) = FOQ FIL(us)D). (5.24)
i=1 i=1

Using the same idea of tree topology in Section 5.4, one might think of a seemingly simple
implementation of Gallager’s approach for the check-node update: the transform defined by
Eq. (5.23) is first done on all incoming messages, actually LLRs, of a parity-check node. Then
additions can be done with the terms needed, or preferably summing all terms then subtracting
the individual ones to obtain the individual pseudo messages from which the outgoing messages

are obtained by means of the involution transform.

This transform approach looks promising in extremely high-speed applications because it

is conceptually simple and highly parallelizable. However, the digital implementation of the

114 Chapter 5. Decoding Binary LDPC Codes

transform poses a significant challenge. It can easily be verified that, as x goes to zero, f(x)
tends to infinity, requiring an extremely large range to be quantized. At the starting period of
iterative decoding, the values of x are often very small and thus this approach is unavoidably
sensitive to quantization errors. From a private communication with a senior engineer at Texas

Instrument Corp., we learned that at least 8 quantization bits are required for this approach.

5.6.2 Approximation of |L(U @ V)|

The complexity of the LLR-SPA on the trellis topology depends solely on the implementation
of the core operation L(U @ V). When the signs are handled separately, the core operation
can be simplified as follows:
LU V) = L(Ul&|V])
1 4 L@IHLV)]

log — T oz
L)L)

SO 1 gLV’

~ log (5.25)

where the approximation is made on the assumption that elZ@HIEVI 5 1. Without loss of

generality, one can assume |L(U)| < |L(V)| 2, then Eq. (5.25) can be rewritten as
ILU & V)| = |L(U)| — log (1 4 e~ (EWIZILODY | (5.26)

Care must be taken if the righthand side of Eq. (5.26) is less than 0, as in this case 0 should
be used to approaximate |L(U @ V)| instead. In principle one can use the quantization
table in Table 5.1 or the piecewise linear function approximation in Table 5.2 to approximate
g(z) = log(l + e %),z > 0, accurately. However, one can also use the coarse approximations,

either a simpler piecewise linear function such as

06—-22xz ifx<24
a(z) = { (5.27)

0 otherwise,

(designated by LLR-SPA1-PLF), or a constant

() 0375 ifz<1.8 (5.28)
x) = : .
92 0 otherwise,

(designated by LLR-SPA1-C), shown in Fig. 5.7, to obtain a greedy simplification in mathe-
matical operations. Note that the approximation of g(x) by means of a constant as in Eq. (5.28)
can be implemented using only 20 transistors, analogously to the simplified MAX* operation

in turbo decoders [148].

Finding the minimum over the set {|L{U)|,|L(V)|} can be obtained as a by-product in computing the
difference {L(V)| — |L(U)| by checking its sign, and in Eq. (5.26) the difference |L(V)| — |L(U)| is required

anyway.

5.6. Approximations of the LLR-SPA 115

I L i
— log(1+e™), x= 0
.- .. piecewise linear approx. g,(x)

constant approx. gz(x)

Figure 5.7: The coarse approximation of the function g(z) = log(1l + e %),z > 0.

5.6.3 Density Evolution

The density evolution technique has been proposed to predict the performance of iterative
decoders utilizing the LLR-SPA, assuming the underlying graphical model to be cycle-free
[9,54]. It has recently been extended to predict the performance of the min-sum decoding
algorithm and other variants [143,147,149].

Let v be a LLR message from a degree-d, variable node to a parity-check node and u a
LLR message from a parity-check node to a variable node. Under sum-product decoding, v is

equal to the sum of all incoming LLRs; i.e.,

dy—1
v= Y u, (5.29)

=0
where u;, ¢ = 1,...,d, — 1, are the incoming LLRs from the neighbors of the variable node

except the parity-check node that receives the message v, and ug is the observed (channel)
LLR of the output bit associated with the variable node.

The message update rule for a parity-check node having degree d. can be represented as

de—1
u= Z Bv;, (5.30)
Jj=1
where v;, 7 =1,...,d.—1, are the incoming LLRs from d. — 1 neighbors, and u is the message

sent to the remaining neighbor.

116 Chapter 5. Decoding Binary LDPC Codes

To perform density evolution numerically, we need to discretize the densities properly. Let

Q(w) be the quantized message of w, i.e.,

|2 +1]-A ifw> 4%
Q(w) = ¥4 ifwL —-21—A (5.31)
0 otherwise,

where Q is the quantization operator, A is the quantization step size, || is the largest integer

not greater than z, and [z] is the smallest integer not smaller than x.

Discretized sum-product decoding is defined as sum-product decoding with all input and
output messages quantized in this way. Under discretized sum-product decoding, Eq. (5.29)
becomes 7 = Zf;gl @;, where v = Q(v) and @; = Q(u;) for ¢ = 0,--- ,d, — 1. Denote the
probability mass function (pmf) of a quantized message w by py[k] = Pr(w = kA) for k € Z.
Then, p, is related to its input pmf’s by

Pv = ®F5 Puss (5.32)

where p, is the pmf of 7, p,, is the pmf of #4;, and ® is discrete convolution. As the @;’s are

iid. for 1 <1< d,, the above equation can be rewritten as
Py = Pug ® (&% 'py), (5.33)

where p, = py,, 1 <0 < d,.

We define the following two-input operator R:
R(a,b) = Q(aBb), (5.34)

where a and b are real random variables. Note that this can be done efficiently using a pre-
computed table. Using this operator, the quantized message @ of Eq. (5.30) can be calculated

as follows:
U= R(@l, R(’Ug, cee ,’R,(’l—)dc_z, ’l-)dc_l) ..)), (535)

where we assume that discretized sum-product decoding at parity-check nodes is done pairwise.
Clearly, if the operation H is implemented approximately, the quantized message @ models

the behavior of discretized approximate LLR-SPA decoding.

Let ¢ = R(a,b). The pmf p, of ¢ is given by

plkl= > paliloels). (5.36)

(i,7):kA=R(GAGA)

5.6. Approximations of the LLR-SPA 117

We write this as p, = R(pa, ps) for the sake of simplicity.

As the py,’s are all equal, we define p, = p,, for any 1 < ¢ < d., and write p, =
R(py, R(Dy, - - - yR(Duypy)--.)) a8 py = Rée=lp,

Consider a random ensemble of irregular codes specified by the two degree distributions
A(z) and p(z), where M(z) = 2%, \z*~! and p(z) = Z?’:2 p;z?~1. Here); is the fraction of
edges that belong to degree-i variable nodes, p; is the fraction of edges that belong to degree-j
parity-check nodes, d; is the maximum variable degree, and d, is the maximum parity-check
degree. By defining \(p) = Z?’zz X @1 pand p(p) = Z?T:z p;R?~1p for any pmf p, we can

write the discretized density evolution as follows:

Lemma 5.3 [Chung et al. [54]] The discretized density evolution is given by pi}! = p(py, ®
MP.)), where the initial pmf is

1 at0
pﬁ =dp = .
0 otherwise.

The discretized density evolution continues until either the density of u tends to the “point
mass at infinity” (equivalently, the probability of error tends to zero) or it converges to a
density having a finite error probability, which is defined as the probability of u being negative.
The threshold is defined as the maximum noise level such that the error probability tends to

zero as the number of iterations tends to infinity.

Using the discretized density evolution approach described in Lemma 5.3, we compare
approximations of LLR-SPA with the min-sum algorithm and the exact LLR-SPA. The results
are summarized in Table 5.4. These results show a performance degradation of about 0.18 to
1.13 dB for the min-sum algorithm, ranging from rate 9/10 to 1/4. The lower the rate, the
greater the performance loss. However, the proposed LLR-SPA1-C is capable of re-gaining
almost the entire performance loss due to the min-sum algorithm, for instance, at rate 1/4 the
performance loss is only 0.09 dB and at rate 9/10 only 0.02 dB. It is worth emphasizing that
the core operation |L(U@ V)| in LLR-SPA1-C needs two additions(minus) and one comparison
only but no look-up table.

As pointed out in [54], the discretized density evolution also predicts the performance of
a practical decoder that operates on quantized messages. Using this approach, we study the
performance of approximations of LLR-SPA with quantization errors. This is of practical
interest, as it can guide us in choosing appropriate quantization parameters, particularly

in selecting the number of bits for a digital hardware implementation. For simplicity, we

118 Chapter 5. Decoding Binary LDPC Codes

Table 5.4: Threshold (E,/Ny) of LDPC codes with LLR-SPA and approximation of LLR-

SPA.
| d. | do [rate [LLR-SPA | Min-Sum | LLR-SPAL-PLF | LLR-SPAI-C |

3 | 4 [1/4 | 0.957448 dB | 2.0834 dB 1.01048 dB 1.04428 dB
3| 5] 2/5 | 0889071 dB | 1.67778 dB | 0.919921 dB 0.946202 dB
3 | 6] 1/2 | 1.10195 dB | 1.69908 dB 1.12473 dB 1.14649 dB
3 | 7 | a/7 | 1.33526 dB | 1.82377 dB 1.35387 dB 1.3728 dB

3| 9] 2/3] 1.7477dB | 2.12468 dB 1.76215 dB 1.77769 dB
3 | 12| 3/4 | 222494 dB | 2.52392 dB 2.23645 dB 2.24934 dB
3 | 15| 4/5 | 2.58599 dB | 2.84375 dB 2.59601 dB 2.60738 dB
3 | 30 | 9/10 | 3.63246 dB | 3.81485 dB 3.63964 dB 3.64805 dB

restrict ourselves to uniform and time-invariant quantization. The results are summarized in
Tables 5.5 and 5.6, showing the quantization effects with 5- and 6-bit (all including the sign
bit) implementations. For each case a reasonably good quantization step size A is chosen by
multiple trials. It can be seen that, with appropriate choices of combinations of quantization
step size and number of quantization bits, 5 or 6 bits appear to be sufficient for attaining a
performance close to that of the LLR-SPA. At first sight it seems strange that the threshold
of rate-1/4 with 5- or 6-bit quantization outperforms that of LLR-SPA. We remind ourselves,
however, this is most likely due to the alias effect of the coarse quantization of the density

evolution.

Table 5.5: Threshold (E,/Ny) of LDPC codes decoded with 5-bit quantization.

| d. | de | rate | stepsize A | Min-Sum | LLR-SPAL-PLF | LLR-SPA1-C |
3] 4] 14 7/2* [2.08673dB | 0.97023dB | 0911324 dB
3 5] 25 9/2¢ | 1.70142dB | 0.932132dB__| 0.969805 dB
3 [6 | 1/2 [1020 1.728 dB 1.21325 dB 1.17419 dB
3] 7] 47] 1020 | 1.86396dB | 14371 dB 1.40389 dB
3 [o [2/3 | 1072 [222244dB | 1.87435 dB 1.84647 dB
3 J12]3/4 | 132" | 256641dB | 2.40816 dB 2.56641 dB
3 |15 a5 | 15/2* [287912dB | 2.73067 dB 2.87912 dB
3 [30]9/10] 17/2* | 386304dB | 3.75487 dB 3.86394 dB

5.6.4 Approximation of |L(us;, & S,)|

On the tree topology in the check-node update, we define

L(S,) = L(Zc Bu,,), (5.37)

5.6. Approximations of the LLR-SPA

119

Table 5.6: Threshold (E,/Ny) of LDPC codes decoded with 6-bit quantization.

[ds | de | rate | stepsize A | Min-Sum [LLR-SPAL-PLF | LLR-SPAL-C |
3 [4] 1/4 | 14/25 [200977dB | 0.969665 dB | 0.910469 dB
3 [5] 2/5 | 17/25 |169726dB | 0930979 dB | 0.924047 dB
3 6] 1/2 [17/2° [171604dB | 1.13702dB 1.13274 dB
3 | 7 | 47| 17722 [18383dB | 1.36628dB 1.36281 dB
3 9| 2/3 | 17/25 [213623dB| 1.77382dB 1.77101 dB
3 [12] 3/4 | 17/25 [253374dB | 2247324B 2.2447 dB
3 |15 4/5 | 17/2®> [285376dB | 2.60707 dB 2.60458 dB
3 [30]9/10 | 17/25 |3.85203dB [3.67198 dB 3.66975 dB
and then
de
L(S)| = D BIL(us)|
J=1

By definition we have

dc
|L(us, © So)l = |L() uy,)l.

(S BiL(u,)

j=1,5#i

) B | L(us)|

1 4 elP(E5% i By L sy

log

de
eIL(ijl,j;éi Bus; l + e|L("'Si)|

IL(5, gy @ua)|+ L(us,)|
e j=1,j# J

log

=1,

Solving |L(us, © S;)| from Eq. (5.38), we obtain

|L(u3i S SC)|

~
~

ol LS+ L(us))|

log ell(us;)l — elL(Se)|
|L(S,)| — log [1 — e~ (EusDI=IL(SIN],

el L% s @)| | olL(usy)]

(5.38)

(5.39)

(5.40)

Care must be taken if the right-hand side of Eq. (5.40) is less than 0; then 0 should be used
to approaximate |L(u,, © S.)| instead. According to Lemma 5.2, |L(u,,)| — |L(S.)| > 0, we

need only consider the approximation of function k(z) = —log(l — e¢~*) for z > 0. Shown in

Fig. 5.8 are two piecewise linear approximations of k(x), where

kl(x):{ 15—z

0

ifr <15

otherwise,

(5.41)

120 Chapter 5. Decoding Binary LDPC Codes

and

26— 22xzx if z < 0.4429
kQ(:E) = 1.05 — 21 x gz if 0.4429 <z<21 (5.42)

0 otherwise.

3 l T 1 1 1
: : — —og(1-e7™), x20
. —.. piece. linear approx. l%(x)
_ linear approx. k1(x)
25p .

Figure 5.8: The coarse approximation of function g(z) = — log(l — e™*),z > 0.

5.6.5 Graph-Based Approximation

In this subsection, we propose a complexity- and delay-efficient simplification of the LLR-
SPA based on graph reduction according to the magnitude (reliability) of incoming messages
(LLRs) [150]. The key feature of the new approximation consists of a modification of the
complexity-intensive and delay-causing update equations at the check nodes of the factor
graph of the LDPC code. The modified update equations at a check node are based on a
simplified factor graph retaining several least reliability values of the incoming messages and
on using a balanced tree topology to achieve optimum parallel processing. Furthermore, the
complexity of the new algorithm can be adjusted: the least complex version of the algorithm
corresponds to the so-called min-sum approximation, and the most complex version gives the
full LLR-SPA.

Specifically, all incoming messages are split into the set of a few least reliable messages

and the set of all other messages, which are treated as being fully reliable. In this way,

5.6. Approximations of the LLR-SPA 121

the complexity of the update equations can essentially be reduced to the case of only a few
incoming messages. The reduction in complexity is particularly pronounced for high-rate

LDPC codes, where each check node is connected to a large number of symbol nodes.

The key idea of the new algorithm is to select a fixed number, say z, of least reliable symbol

nodes u,,, ... , U, and to treat all remaining symbol nodes as being fully reliable, i.e.,
|L (o, 1) = [L(to,,)| = -+ - = | L(to,,)| = oo. (5.43)

This amounts to keeping the original soft values for the z least reliable incoming messages
and approximating the original soft values for the other d. — z messages by the hard decisions

+00, claiming the associated bits to have sign +.

The distinction of incoming messages with full information and with tentative decision can
be reflected in the construction of a partially balanced binary factor graph for the updates of
the check node corresponding to us, @ -+ ® u,, =0 (mod 2) (see Fig. 5.9). This partially
balanced binary tree, which we will call a reliability-based balanced tree, is obtained as follows.
From the least reliable incoming messages u,,, ... , u,,, we form a (partially) balanced binary
sub-tree with the root given by the binary state variable S' = u, & ... ® u,,. Similarly, a
(partially) balanced binary sub-tree with the root S” = wu,,,, ® ... ® u,,_is formed from the
hard-decision symbol nodes ., .. , U, . Eventually, the two sub-trees are connected via a

binary parity-check node, which becomes the root of the reliability-based balanced tree.

Figure 5.9: Reliability-based balanced tree separating the z = 4 least reliable (left sub-tree)
and the d, — z most reliable incoming messages (right sub-tree) in a parity-check
node u, @ -+ @ u,,, = 0 (mod 2). The double circle represents a binary

intermediate variable that is a modulo-2 sum of symbol nodes.

122 Chapter 5. Decoding Binary LDPC Codes

The complexity of the LLR-SPA on the partially balanced factor graph is mainly deter-
mined by the complexity on the left sub-tree emanating from state node S’ because full soft
reliability values are computed only on this sub-tree. On the right sub-tree, which emanates
from state S”, only sign computations are needed because all leaves have LLRs that are oo
(note that oo is the neutral element with respect to the B-operation, i.e. L(U) B oo = L(U),
and L(U) B —oco = —L(U)).

Supposing that the sign computations of extrinsic messages are done separately, the par-
tially balanced tree of Fig. 5.9 can be further simplified by keeping only the left sub-tree with
the root S’. The magnitude of extrinsic messages corresponding to incoming messages residing
on the right sub-tree is equal to the reliability of S’, namely |L(S’)|. The resulting factor graph
is shown in Fig. 5.10.

Figure 5.10: Balanced subtree of the z = 4 least reliable incoming messages.

We have several methods for the parity-check node update on this subtree. One common
method is the forward-backward one, e.g., the forward pass includes the updates from the top
down and then the backward pass includes the updates from the bottom up. We can also
change the topology of this factor graph into a trellis or a tree, as shown in Section 5.3 or

Section 5.4, to accomplish the check-node update.

For high-rate LDPC codes, the reliability-based check-node update provides substantial
savings in complexity: compared with the 3(d, —2) L(U & V') operations for every check node
in the full LLR-SPA, the simplified version needs about 3(z—2) L(U @ V') operations, to which
some overhead for partial-ordering has to be added. Both numbers are calculated based on

the trellis implementation.

The partial-ordering problem, which finds the z smallest elements in a set of d, real values,
is a problem whose worst-case complexity is difficult to analyze. Here, we give a simple algo-

rithm that provides a simple bound on the number of comparisons needed. The algorithm is

5.6. Approximations of the LLR-SPA 123

based on merge-sorting [151], but with the following modification: in the ordered list obtained
from the merging of two smaller ordered lists, only the z smallest values are kept and all other
(greater) values are deleted from the list. As a result, the maximum list size at each stage of
the algorithm is z. A balanced tree with d, leaves contains a total of d. — 1 inner nodes (that
are not leaves). At these inner nodes, at most z comparisons have to be done. Hence, the
total complexity of partial ordering is upper bounded by z(d. — 1) comparisons. Note that
when the comparisons are done in parallel at each level in the tree, the run time of the sorting

algorithm corresponds to about log,(d.) comparison operations.

Another approach to find the z smallest elements in a set of d, real values is to consecutively
find the smallest one, using a balanced binary tree excluding the smallest one found in the
preceding round. In this way, we find the smallest one at the first round, and the second
smallest one at the second round, and so on. The total complexity of comparisons is about

2(d. — 1) and the time complexity is about zlog, d..

For simulations on the AWGN channel, we have considered an LDPC code of length n =
4489 and rate 4158/4489, which is defined by m = 335 parity checks. Fig. 5.11 shows the
bit-error-rate performance of this code. The following LDPC decoding algorithms have been
used: the full LLR-SPA, and the reliability-based approximations of the LLR-SPA with z = 2
least reliable values, with z = 3 least reliable values, and with z = 4 least reliable values.
The results are obtained using Monte—Carlo simulations, in which the maximum number of
iterations is fixed to 80 in all cases. For the calculation of the core operation L(U @ V'), we

use Eq. (5.3) in its full accuracy.

We observe that the simple min-sum approximation, which essentially corresponds to the
reliability-based approximation of the LLR-SPA with z = 2 least reliable values, suffers a
performance penalty of about 0.3 dB at a bit-error rate of 107%. It is apparent from Fig. 5.11
that the loss in performance is recovered by increasing the number z of remaining least reliable
values. For instance, for z = 3 the performance loss falls within 0.1 dB, whereas for z = 4 it
is only 0.04 dB from the full LLR-SPA.

Fig. 5.12 shows the bit-error-rate performance of MacKay’s LDPC code of length n = 1008
and rate 1/2 on the AWGN channel. Again we see that the simple min-sum approximation
suffers non-negligible performance loss relative to the full LLR-SPA, which can be regained

by using z = 3 or z = 4.

Note that two improved BP-based reduced-complexity decoding algorithms presented in
[142,143] can be understood as the graph-based approximation with z = 2 followed by a

normalization or offset procedure. By optimizing the normalization or offset factor, it has

124 Chapter 5. Decoding Binary LDPC Codes

MacKay/(4489, 335)

10 SR

—%— Full sum-product algorithm
-| A= z=2 (Min—-Sum)

107 ‘ *IINE:

10798 N E

bit error rate
s
1

107k i

-5

0°E l s

10 '. L ; ; $ L
4 42 4.4 46 48 5 52 53
E,/N, (dB)

Figure 5.11: Performance of the LLR-SPA and its simplifications using z = 2, 3, and 4 least
reliable values for a rate-4158/4489 code on the AWGN channel.

21 —»— Full sum—-product algorithm |
o C] A z=2]
.................. EE R R L ERRERR R -— 2z=3
........................ e =P 224

bit error rate

1 1.5 2
Eb/N0 (dB)

Figure 5.12: Performance of the LLR-SPA and its simplifications using z = 2, 3, and 4 least
reliable values for a rate-1/2 code (1008, 504) on the AWGN channel.

5.7. Summary 125

been demonstrated that the performance of the full LLR-SPA can also be closely approached.

5.7 Summary

Efficient implementations of the SPA for decoding binary LDPC codes have been considered. A
number of reduced-complexity implementations of the SPA based on using LLRs as messages
between symbol nodes and parity-check nodes have been investigated. In particular, two
different topologies for implementing the parity-check-node update, namely, trellis and tree
topologies have been presented. In both cases, the correction terms in the core operations
have been implemented via piecewise linear functions or look-up tables, or even by using
a single constant, facilitating simple hardware design. Simulations results have shown that
it is possible to achieve the performance of the conventional SPA extremely closely with a

significant reduction in implementation complexity.

We have proposed three approximations of the LLR-SPA for decoding binary LDPC codes.
The first two focus on reducing the complexity of core operations on the trellis or tree topology,
sacrificing the correctness of the LLR-SPA. These two approximations are made available via
the separation principle that the sign and magnitude computation of outgoing messages in the

parity-check-node update can be implemented separately.

The main feature of the third approximation consists in partially ordering the reliability of
the incoming messages at each parity-check node and consequently simplifying the factor graph
representation of the parity-check node. The complexity of the graph-based approximation
approach depends on the number z of least reliable messages that are selected. When keeping
only z = 2 least reliable messages, the approach reduces essentially to the well-known min-sum
algorithm, which apparently has the least complexity. Simulation results have shown that for
increasing values of z, the performance of the graph-based approximation quickly approaches
that of the full LLR-SPA.

In conclusion, we investigated efficient implementations of the LLR-SPA for decoding bi-
nary LDPC codes from both the algorithmical and the architectural point of view, and derived
new reduced-complexity variants thereof. All existing digital solutions turn out to be specific
instances in our framework. The unified treatment of decoding techniques for binary LDPC
codes provides flexibility in selecting the appropriate design point in high-speed applications

in terms of performance, latency, and computational complexity.

Chapter 6

Turbo Equalization: A
Message-Passing Scheduling

Perspective

6.1 Introduction

The growth of the bit densities of magnetic recording systems by means of shrinking the bit
size on the surface of the magnetic medium unavoidably leads to degradation in the signal-to-
noise ratio (SNR), which in turn requires advanced signal-processing and coding techniques.
Turbo codes [6,152-154] and LDPC codes [4,5,8,10,71] are recent breakthroughs in coding
theory that promise to push the areal density of the magnetic recording system to its limits.
Considerable work in investigating turbo equalization schemes for the magnetic recording
channel has recently been reported in [155-160]. In particular, the application of turbo codes
and combined turbo decoding and turbo equalization to magnetic recording was presented
in [155]. A simplified serial turbo decoder structure, in which the inner code is the precoded

PR4 channel and the outer code is a single convolutional code, has been considered in [159,160].

Except for capacity-approaching decoding performance, LDPC codes have remarkable fea-
tures, e.g. good minimum distance and a highly parallel, low latency decoder, that make them
suitable for magnetic recording systems. Previous proposals for applying LDPC codes to the
magnetic recording channel include [140,158,161-169]. In particular, [161,165] proposed the
use of high-rate LDPC codes as outer codes for magnetic recording systems. The maximum-
transition-run (MTR) code is serially concatenated in reverse order with an LDPC code to

avoid the need for soft decoding of the MTR code. Iterative (turbo) detection/decoding is

127

128 Chapter 6. Turbo Equalization: A Message-Passing Scheduling Perspective

then performed between the partial response (PR) channel and the LDPC code. Ref. [140]
investigated low-complexity near-optimal detection algorithms for the PR channel and pro-
posed reduced-complexity algorithms for decoding LDPC codes, where various joint decod-
ing/detection schedules were also investigated. Refs. [166,168] considered the applications of
combinatorial constructions of high-rate LDPC codes to magnetic recording systems, [167]
designed near-optimal degree sequences to construct irregular LDPC codes applied to the PR
channel, and [169] proposed parallel bit-based and state-based message-passing algorithms to
remove intersymbol interference incurred in the PR channel, at a cost of about 0.6 dB in a

specific example to achieve the highest-level parallelism.

Factor graphs [67] prove to be a very powerful graphical model on which a single algo-
rithm — the sum-product algorithm can encompass a large variety of practical algorithms. In
particular, the forward-backward algorithm, the Viterbi algorithm, Pearl’s belief propagation,
the iterative turbo decoding algorithm, the Kalman filter, and even certain FFT algorithms
can be visualized as instances of SPA with different message-passing schedules, given an ap-
propriate definition of messages in each case. Ref. [164] made use of the factor graph model
to investigate the performance of joint decoding/detection of high-rate LDPC codes and the
PR channel, and a more general case was considered in [170]. Note that the parallel bit-based
and state-based message-passing algorithm in [169] can alternatively be derived from the SPA
with the so-called flooding schedule, which yields the least possible latency and was originally
proposed for decoding LDPC codes. Likewise, concurrent turbo decoding [171,172] can also
be viewed as the SPA on a trellis with the flooding schedule.

In this chapter, we propose a new message-passing schedule, characterized by a paral-
lel windowed forward-backward (PWFB) schedule over the PR channel, for joint iterative
decoding of LDPC codes and PR channels. The decoding/detection latency is essentially
independent of the block length, and proportional to the window size, which is adjustable.
Simulation results show that the performance loss reported in [169] can be recovered with the

same computational complexity.

6.2 Joint Factor Graph Representation

The basic magnetic recording system with an LDPC encoder and a serially concatenated
detector/decoder configuration is shown in Fig. 6.1. A block of binary data u = [uy, ... , u]
is encoded by a rate-k/n LDPC encoder into a binary codeword b = [b;,... ,b,] and then
mapped to antipodal encoded data symbols z; = 2b; — 1, ¢ = 1,... ,n, which are written on

the disk at a rate of 1/7. Adopting a linear model for the write-read process on a magnetic

6.2. Joint Factor Graph Representation 129

S LDPC PR
Encoder > Channel
AWGN é
LDPC
<€ Decoder € Detector <T

extrinsic info.

Figure 6.1: Block diagram of the LDPC-coded partial-response (PR) system

disk and assuming the presence of thermal noise only, the magnetic recording channel is often
modeled by a Lorentzian channel model with additive white Gaussian noise (AWGN). The
data signal is read back via a low-pass filter (LPF) and shaped such that the overall discrete-
time transfer function, including the head/disk-medium characteristics, the analog LPF, and
the sampler, closely matches the PR4, EPR4, or other generalized PR polynomials. The
shaped channel output samples y; are then passed to the detector. The detector produces soft
information about the encoded data symbols z;, which is passed to the LDPC decoder. The
extrinsic information produced by the LDPC decoder is then fed back to the channel detector.

Such loops are often performed a few times before sending out hard decisions on u;.

An LDPC code has an elegant factor graph representation, also known as bipartite graph
or Tanner graph representation. An LDPC code is a linear code defined by a sparse parity-
check matrix H having dimensions m x n. A factor graph (bipartite) with m parity-check
nodes in one class and n symbol nodes in the other can be created using H as the integer-
valued incidence matrix for the two classes. Decoding of the LDPC code turns out to be the
SPA operating on this graph. Messages of bit probabilities are alternately passed between
two types of nodes, symbol (bit) nodes and parity-check nodes. The alternation of messages
passing from symbol nodes to parity-check nodes and back to symbol nodes forms one LDPC
decoding iteration. As there is no inherent time axis inside this factor graph representation, all
messages are passed or exchanged simultaneously, called the flooding schedule [67], potentially

leading to a very-high-speed decoder.

The PR channel is simply an intersymbol interference channel which can be modeled as a
trellis. The factor graph representation of a trellis is a generalization of Wiberg’s work [46].

Symbols, states, and constraints are represented by three different kinds of nodes. A state or

130 Chapter 6. Turbo Equalization: A Message-Passing Scheduling Perspective

Dparity check nod:

O samybol node

LDPC code

--- > |

Time axis of the trellis

..

Partial response channel

Figure 6.2: Joint factor graph representation of the LDPC-coded PR system.

symbol node is connected to a constraint node if the corresponding state or symbol is involved
in the corresponding constraint. The constraints are often called trellis section which depicts
the rule of state transitions. Fig. 6.2 shows an example of a joint factor graph representation
of the LDPC-coded PR system. In the jargon of factor graph theory, the parity-check node
and the trellis section are called function node, while the symbol node and the trellis state are
called variable node. Each variable node takes on values from the binary set {1, —1} (symbol
node) or from the state set (trellis-state node) whose size depends on the memory of the PR
channel. The messages along an edge in both directions are defined as a set of probability

assignments of the associated variable node on its respective alphabet space.

Note that, unlike the factor graph representation of an LDPC code, the factor graph

representation of a trellis has an obvious time axis and no cycles in itself.

Within the framework of joint factor graph representation of the LDPC code and the PR
channel, it is convenient to define the message-update equations, maintaining soft information
throughout the joint decoding/detection procedure and properly treating extrinsic informa-
tion. As the SPA may be applied to arbitrary factor graphs, cycle-free or not, it is natural to
apply the SPA for joint LDPC decoding and for PR detection.

The SPA operates according to the following simple rule [67]: The message sent from a

6.3. Message-Passing Schedules 131

node v on an edge e is the product of the function at v (or the unit function if v is a variable
node) with all messages received at v on edges other than e, summarized for the variable

associated with e.

Let fy,-sv;(vy) denote the message sent from variable node v, to function node vy, and
let py;—v,(vy) denote the message sent from function node v; to node v,. Also, let N (v)\s
denote the set of neighbors of a given node v, except for s. Then the message computations
performed by the SPA may be expressed as follows:

variable to function:

Hoy—uy (v,) = H Hs—v, (Vo) (6.1)

sEN (vy)\vy

function to variable:

Hho v, (Up) = Z (V) H Us—wf(s)) (6.2)

~{vo} sEN (vs)\v

where " means that variable v, is excluded from the summation, and V = N (vy), neighbors
~{vv}
of vy, is the set of arguments of the local function of v;. For a parity-check node, the local

function f(V) is defined as an indicator function of all its associated symbol nodes, with 1 if
and only if (iff) the parity check is satisfied with a valid configuration. For a trellis section,
the local function is defined as an indicator function of its left-hand state, right-hand state,

the associated input and output, with 1 iff a configuration represents a valid trellis transition.

6.3 Message-Passing Schedules

The joint factor graph representation of a LDPC-coded PR system provides a unified ap-
proach for analyzing existing iterative receivers and to designing new alternatives of varying
complexity, latency and performance. As the SPA turns out to be the unifying algorithm
to define message-passing updating equations, the main part of the work in designing the

iterative receiver is to define message-passing schedules.

We assume that messages are synchronized with a global discrete-time clock, with at
most one message passed on any edge in any given direction at each clock tick. Any such
message effectively replaces or overwrites previous messages that might have been sent on

the edge in the same direction. Every node can send a message at each clock tick along

132 Chapter 6. Turbo Equalization: A Message-Passing Scheduling Perspective

every edge simultaneously. One iteration means that all messages have to be updated (only)
once, and, irrespective of a specific message-passing schedule, one iteration implies the same
computational complexity. With these conventions, a message-passing schedule in a factor
graph is a specification of messages to be passed during each clock tick, and we focus on the

latency of one iteration.

As shown in Fig. 6.2, the joint factor graph representation of a LDPC-coded PR system
consists of a factor graph of the LDPC code and a factor graph of the trellis for the PR channel.
As the LDPC code is often constructed randomly and there is no explicit time axis inside its
factor graph, the so-called flooding schedule is commonly used, calling for a message to pass in
each direction over each edge at each clock tick. Assuch, one decoding iteration corresponds to
one clock tick. An appealing practical aspect of the flooding schedule is that it breaks down the
decoding procedure into small, independent, and parallel decoding functions (i.e. the symbol
nodes and the parity-check nodes), potentially leading to a very-high-speed hardware LDPC
decoder [173,174]. This property is particularly important in magnetic recording applications,

where the data rate is typically high and the decoding latency has to be extremely low.

In the factor graph of the trellis for the PR channel, there exists an explicit time axis
in that the detection of later states depends on all the former states and inputs. The most
efficient algorithm, in terms of computational complexity, is the Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm [111], which is equivalent to the SPA with a forward-backward message-
passing schedule (also known as serial schedule in [67]). As shown in Fig. 6.3, the forward
(backward) message-passing schedule involves a serial chain from left to right (right to left),
with only one message being passed in one direction to its next neighbor at each clock tick.
The forward-backward computations of messages are recursive, whereby the later message
depends on the former one, thus the decoding latency of performing one iteration is equal
to n clock ticks ', where n is the block length, which poses a significant challenge for the

low-latency requirement in magnetic recording channels.

To remedy this issue, [169] proposed parallel state-based message-passing algorithms for
the PR channel detection. This algorithm can, in essence, be understood as the SPA with a
flooding schedule (referring to Fig. 6.4) operating on the factor graph representation of the
trellis of the PR channel, namely, each node (in the trellis part) sends out a message along
every associated edge simultaneously, and consequently, one iteration of channel detector
corresponds to one clock tick. However, it was reported by a specific example that about 0.6

dB is lost due to the flooding schedule.

!Note that trellis-state nodes are of degree two and perform no computation (no latency): a message

arriving on one (incoming) edge is simply forwarded to the other (outgoing) edge.

6.3. Message-Passing Schedules 133

g A Y
’ \\\‘::~ Lot To o ,;z”"' N
4 (YN <>%’ A ol 3 , 1 N
4 VN o7 :'~ L - Mo « 1 N
.’ 3287 Tratdel Nty .
ey ’ L] N‘ -~ 2~ '\s ~
’ S ’ N L Py ~ ~ -~
’ - A < M, ~«& 'S ~ -~
P P - - ™ ~ \
4 . ” » - Se Ty) S Y AN Yo A
V4 - ~ -~

seneennnapiasfrecanas sy i sdannadansnnpernsensndenpnanmasaraprfgrrecunaNganrusannnanng
H }") "J ’5 < \ (4 <Y . \\ :
. M
H »
: .
: .
H sduuannsunsndasennnnenrhanyguunnvushrananasupfonnuvnncnajunnsnannud M
. .
: .
,(; 5! ‘E EE ‘a EE .
: |I || II |I |I |I :
4 .
H .
H »
: .
: .
: »
: »
: back :
. .
: @ :
: .
: .
. H

a
e R N E U s RS R E NS B RN RN AR AR R RN NN ARG RS AE AR NN AN REEENSRETaNE SRR SRS AR R

Partial response channel

Figure 6.3: An example of the ordinary forward-backward message-passing schedule for the

PR channel detection.
LDPC code

A P Ve LT
2 VTN er I R Cd
-~ -
YR AN SO BN P LAY BN
4 [N PR’ A A} ,”V\ ~ f A
’ “ v So el IARS A
¢ 3 N -l < TN A
’ e” VLT N PR :‘\ Vs 4 ‘\' o S
’ - A «” _r P 4 ~ -
4 . e N LT veLl T~ N Sa N
L, el PP AN [TRAAS :ﬁ"cn\uy TS

exsannnenpinpPannnunun MY TL) sshanpennnnnnsbansue Do npedugnosnnssnsinagnnssnsnnnag
H '; 4 A i * <F 1 ’ S e ~e N -~ H
: .
H M
. H
H .
H .
M sk P .
. .
. t 3
: H
H H

.
: L]
: M
H H
. ‘- - H
a L]
H H
H .
H M
: H
: H
e T L LT T T T T T P O T T T T T

Partial response channel

Figure 6.4: An example of the flooding message-passing schedule for the PR channel detec-

tion.

134 Chapter 6. Turbo Equalization: A Message-Passing Scheduling Perspective

A possible cause of the performance degradation of the flooding schedule in the PR chan-
nel detection might be that the messages in the flooding schedule along the PR channel do
not propagate as quickly as the forward-backward schedule does. For instance, within one
iteration, each message can only have an influence on its neighbouring nodes in the flooding
schedule. In contrast, these messages may have an influence on all nodes along the time axis
in the forward-backward schedule, and moreover, the recursive updating of these messages
yields the best possible channel detection if the interplay of the LDPC code is neglected. The
drawback of the forward-backward schedule is its apparently high latency because of its serial

nature.

In many cases it might be desirable to obtain a better balance between latency and per-
formance. Here we propose a parallel windowed message-passing schedule for the PR channel
detection that combines the advantages of the forward-backward schedule with the flooding
schedule. The parallel windowed forward-backward (PWFB) schedule works as follows: Par-
tition the factor graph of the PR channel into consecutive non-overlapped windows of size w.
Within each window, the forward-backward message-passing schedule is used, and this sched-
ule is synchronized and carried out in parallel on each window. Fig. 6.5 shows an example of
the PWFB message-passing schedule with w = 2, where w is counted in terms of the number
of trellis sections inside each window. It is obvious that the computational complexity for one
iteration of channel detection remains the same as those for the other two counterparts, and
the latency for one iteration is equivalent to w owing to the forward-backward schedule within

each individual window.

Note that the flooding schedule and forward-backward schedule over the PR channel are
two special cases of the PWFB message-passing schedule. If we select w = 1, the PWFB
schedule reduces to the flooding schedule, and if we choose w = n, it becomes the ordinary

forward-backward schedule.

The PWFB message-passing schedule considered so far used non-overlapped windows. It
is, in principle, possible to incorporate overlapped windows in a parallel schedule. This would
mean an increase in the computational complexity, as the overlapped nodes will be processed
more than once in one iteration. However, the additional complexity may be justified by
the increased performance gain. In [145], a sliding-window-based decoding schedule for MAP
decoding of convolutional codes was described, with the aim of reducing memory requirements.
The overlapped parts of the sliding windows in the forward as well as the backward direction
were used to obtain refined messages for use in the non-overlapped parts, thereby delivering

better performance.

6.4. Simulation Results 135

LDPC code

Partial response channel

Figure 6.5: An example of the parallel windowed forward-backward (PWFB) message-

passing schedule for the PR channel detection with w = 2.

6.4 Simulation Results

The error-rate performance of the different message-passing schedules applied to the LDPC-
coded PR system has been studied by computer simulations. The PR channel is assumed
to be EPR4. Each round of iteration includes one iteration of the LDPC decoder and one
iteration of the PR channel detector. For the LDPC decoder, the flooding schedule is assumed
and aligned to the last clock tick of the PR channel detector. Therefore the total latency
of the joint decoder/detector is dominated by that of channel detector. The joint iterative
decoding/detection procedure is run for a maximum of 12 iterations, halting earlier if a valid
codeword is found. Note that the computational complexity of each iteration remains the same
and is independent of the specific message-passing schedule. The LDPC code is a regular one
with column weight 3, of rate 7/8, and block length 495, and is from MacKay [109].

Fig. 6.6 compares the performance of the LDPC-coded PR channel for various message-
passing schedules. Although the local updating equations remain the same, i.e., specified by
the SPA, the message-passing schedules over the PR channel play an obvious role in determin-
ing the performance. It can be seen that the ordinary forward-backward schedule, although is
of the largest latency, achieves the best performance, and the flooding schedule, which has the
lowest latency, suffers about 0.6 dB of performance loss. Furthermore, the PWFB schedule
with different window sizes, offers a series of trade-offs between the latency and performance.

In particular, it is shown in this specific example that the 0.6 dB performance loss can be

136 Chapter 6. Turbo Equalization: A Message-Passing Scheduling Perspective

10" ¢ T T T I —
S -5 flooding i
S ~#— forward-backward |}
7 PWFB, w=2 1
b PWFB, W=3
R ~#— PWFB, w=5 1
. ~t3~ PWFB, w=9]
T ~©— PWFB. w=15
2
8
g 10
o
a
s |
S
%10°¢
9
[v3]
10 _4-_
b
10-5 { 1 1

5 5.5 7.5

6 6.5
E/N, (dB)

Figure 6.6: Performance of the LDPC-coded EPR4 channel for various message-passing

schedules.

recovered by the PWFB message-passing schedule with window size w = 3 or w = 5.

The standard iterative decoding of turbo codes, the BCJR algorithm, can be visualized as
an instance of the SPA with the forward-backward message-passing schedule over the factor
graph representation of each constituent code [67], and concurrent turbo decoding [171] is an
instance of the SPA with the flooding schedule to achieve low-latency decoding. Similarly, we
can apply the PWFB message-passing schedule to the decoding of turbo codes, whose factor
graphs are essentially two concatenated trellises. Here we studied the performance of turbo
codes in the CDM A 2000 standard with various message-passing schedules. The turbo encoder
consists of two systematic, recursive, 8-state convolutional encoders concatenated in parallel,
with an interleaver. The transfer function for the encoder is G(D) = [1 ’;"((DD)) ’2(([)[)))], where
d(D) =1+ D?+ D3 ng(D) = 1+ D + D?, and ny(D) = 1+ D + D? + D3. For each block,

a total of six information bits are used to terminate the two convolutional encoders. For a

detailed description of the standardized Turbo interleaver, we refer the reader to [110]. We
take a turbo code of rate 1/2, a (information) block length of 512 bits over the bi-AWGN
channel and run the SPA with different schedules for up to 12 iterations. The computational
complexity of each schedule for one iteration remains the same, and we focus on trade-offs of

latency against performance for various message-passing schedules, as depicted in Fig. 6.7. As

6.5. Summary 137

s Concurrent
~¥- BCJR

- PWFB, w=2 |]
i~ PWFB, w=4

Block error probability

-
o
&

10'4 1 1 ;P L 1 P L

1.5 1.6 1.7
E/N, (dB)

Figure 6.7: Performance of turbo decoding for various message-passing schedules over the
AWGN channel.

expected, we observe a significant performance degradation when moving from the forward-
backward (BCJR) schedule to the flooding (concurrent) schedule, and this performance loss
can be recovered by the application of the PWFB message-passing schedule with a relatively
small window size. Note that the parallel MAP algorithm for low-latency turbo decoding,
recently proposed in [175], can be directly derived by the application of the PWFB message-
passing schedule.

Although not explicitly investigated here, we would like to point out that the PWFB
message-passing schedule can also be applied to the turbo-coded PR system, where the outer
code is either a single convolutional code or a turbo code, and expect to achieve a good balance

between latency, complexity and performance.

6.5 Summary

We have presented a new message-passing schedule for turbo equalization in the LDPC-coded
PR system, called parallel windowed forward-backward message-passing schedule. The PWFB

message-passing schedule combines the forward-backward schedule within a window with the

138 Chapter 6. Turbo Equalization: A Message-Passing Scheduling Perspective

flooding schedule on the window level. We have shown by simulation that it yields a good
trade-off between latency, complexity, and performance, with a judicious selection of the win-
dow size, in the LDPC-coded PR system. In particular, a very low latency can be achieved
without suffering a noticeable loss in the joint decoding/detection performance or an increase
in computational complexity. The application of the PWFB message-passing schedule to turbo

decoding/equalization has also been addressed.

While the joint detection/decoding example considered in the preceding section employed
the EPRA4 channel, we are also investigating PWFB message-passing schedule for more practi-
cal generalized PR channels, e.g., based on shaping polynomials of the form (1—D?)(1+p, D+
paD?). We expect that the general approach outlined in this chapter will facilitate achieving

the appropriate trade-off in terms of latency, computational complexity and performance.

Chapter 7

Concluding Remarks

7.1 Conclusion

Error-correcting codes are at the center of information theory since Shannon determined the
capacity of ergodic channels. A major goal of coding theory is to find a class of error-correcting
codes, together with the corresponding decoding algorithms, that realize the promise of Shan-
non’s noisy channel-coding theorem in a practical way. The traditional picture was that good
codes are easy to construct but difficult to decode. With the advent of turbo codes and LDPC
codes together with iterative decoding, this old picture has evolved into a new one — asymp-
totically good codes are both easily constructable and decodable. It is a remarkable fact that
all known practical, capacity-approaching coding schemes are now understood to be codes
defined on graphs, particularly sparse graphs, together with the associated iterative decoding
algorithm — the sum-product algorithm. A historic landmark was reached by Chung, Forney,
Richardson, and Urbanke, who designed a random ensemble of rate-1/2 LDPC codes having
a threshold within 0.0045 dB of the Shannon limit, and a performance within 0.036 dB of the
Shannon limit at a bit-error rate of 107® with a block length of 107. It seems unlikely that
further improvements could have any practical significance in situations where very long block

lengths are tolerable or affordable.

However, little is known on finite-block-length coding theory and practice, a situation that
is tougher but of profound practical significance. In the finite-block-length “arena”, the first
theoretical issue is the characterization of the channel capacity — the ultimate limit of the
maximum transmission rate. It turns out that the channel SNR, code block length, and target
block-error rate (NOT bit error rate) are fundamental factors in determining the capacity of

finite-block-length constrained channels. Moreover, good codes, in terms of optimum decoding,

139

140 Chapter 7. Concluding Remarks

are again easily constructable if both the block length and the product of the block length

and code rate are reasonably large.

There are two concentration theorems stating that asymptotically large random sparse
graphs can be assumed to be effectively cycle-free and their performance concentrates on
the average of the random ensemble, which are key ingredients in the design of capacity-
approaching LDPC codes with extremely long block lengths. In the finite-block-length “arena”,
the concentration theorems weaken in the following two senses: random sparse graphs in-
evitably experience non-negligible deviation that depends on the block length and the sparsity
of the underlying graph. The shorter the block length and the sparser the underlying graph,
the more significant the deviation of the performance. Furthermore, the cycle-free assump-
tion is no longer valid. The first argument advocates the invention of well-defined expurgated
random ensembles in which “bad” deviation is precluded, and the second argument moti-
vates the construction of good codes “for optimum decoding” and “for iterative decoding”

simultaneously.

The ensemble of PEG Tanner graphs can be viewed as an expurgated random ensemble
which precludes “bad” graphs containing short cycles and low-weight codewords in their result-
ing LDPC codes. The PEG algorithm is simple, flexible and yet powerful enough to generate
good LDPC codes of short and moderate block lengths. The PEG construction essentially at-
tains the same girth as Gallager’s explicit construction for regular graphs, both of which meet
or exceed an analogy of the Erdés—Sachs bound. Empirical results show that in conjunction
with optimum symbol-node-degree distributions (obtained from either the empirical or the
density evolution approach) the PEG construction yields the best binary LDPC codes (under

iterative decoding) at short block lengths known to date.

Binary LDPC codes at short to moderate block lengths are destined not to be “good
codes for optimum decoding” because iterative decoding requires them to have a rather sparse
graph representation. The iterative decoding performance of a binary LDPC code is in general
dominated by two conflicting factors. One is the Hamming weight spectrum, which requires the
density of its parity-check matrix to be higher, the other is the performance loss due to iterative
decoding in the presence of short cycles, for which the lower density of the parity-check matrix
is favorable. The two conflicting requirements are often difficult to balance, particularly for
short block lengths. It is, however, demonstrated that the Hamming weight spectrum can be
improved by moving from binary field to fields of higher order while maintaining the underlying
graph to be sparsest possible. Therefore cycle Tanner graph TG(2, d.) codes defined over
GF(2%), with sufficiently large b, are heuristically both “good codes for optimum decoding”

and “good codes for iterative decoding”.

7.2. Outlook 141

Codes on sparse graphs are often decoded iteratively by the sum-product algorithm with
low complexity. We investigate efficient digital implementations of the SPA for decoding
binary LDPC codes in the log-likelihood ratios domain, and describe new reduced-complexity
derivatives thereof. We examine LLR-SPA from both the architectural and the algorithmic
point of view. Serial and parallel architectures for the parity-check-node update are proposed,
leading to trellis and tree topologies, respectively. In both cases, specific core operations
similar to the special operations defined in the log-likelihood algebra of Hagenauer are used.
This framework not only leads to reduced-complexity LDPC decoding algorithms that can be
implemented with simple comparators and adders but also provides the ability to compensate
for the loss in performance by utilizing simple piecewise-linear approximations or constant
correction factors. The unified treatment of decoding techniques for LDPC codes provides
flexibility in selecting the appropriate design point in high-speed applications in terms of

performance, latency, and computational complexity.

7.2 Outlook

This thesis presents a systematic exposition on the finite-block-length coding theory and prac-
tice, and many interesting issues are left open. We list here some opportunities for future

research.

e The treatment of (¢, n)-capacity in its current stage is preliminary. Very little is known
concerning the capacity of the cases where nR and/or n are small. Quite certain is the
fact that geometric constructions in these cases will yield better codes than the random
construction, and thus the random coding bound for lower bounding the (e, n)-capacity
becomes rather loose. In addition, our numerical examples rely heavily on the use of
Shannon’s spheric random coding bound and sphere-packing bound, which are limited
to the AWGN channel. For the binary-input AWGN channel, little is known on how to

evaluate the (e, n)-capacity.

e The asymptotic analysis of PEG construction relies on a series of relaxations. Although
the relaxed PEG is shown to be asymptotically good, the relaxations weaken the luster
of PEG in its minimum distance as an expurgated random ensemble in the finite-block-
length cases. Direct analysis of the PEG ensemble is strongly expected to shed light on

“expurgation”.

e Compared with the decoding algorithm of binary LDPC codes, the decoding algorithm

for GF(2°) codes on sparse Tanner graphs is much more complex. Reduced-complexity

142

Chapter 7. Concluding Remarks

algorithms are thus desirable. In addition, a density evolution approach for designing

good irregular degree sequences for GF(2°) codes on sparse Tanner graphs is still lacking.

The determination of the minimum distance of an instance of an ensemble of LDPC
codes is often thought to be a rather difficult task except in some trivial cases. This
issue becomes a big concern in applications requiring extremely low block-error rates, for
instance, magnetic recoding channels and optical transmission. A possible route might
be to devise an approximation or randomized algorithm to search for minimum-weight
codewords. As we finalized this thesis, we learned of the error-impulse method [176,177]
which might be applicable to LDPC codes in order to yield a reasonably good estimate

of the minimum distance.

Appendix

I(F+1)

A: Evaluation of =2
(")

It would be rather difficult to evaluate - r(_L) for a large block length n by direct calculation.

In this appendix, we present an alternative method to evaluate it approximately.

By Stirling’s formula, we have

) 1 139 571
T(z) ~ e 2275 (2m)7 |1+ — - -
(Z) € "z 2(7‘-)2 + 122 + 28822 5184023 248832024 +

for z — oo. Substituting this formula into %—;, and after some algebra, we obtain

n 1/2 n/2 1 1139 571
(5 +1) - (F+1)7°(1+ n+1) 1+ + 28827 5184023 2488320z4]z=%+1
ntly 7 1/2 1 1 139 571 :
I() € [1+ 12z T 2887 — 518405 2488320z4]zzl‘—‘{,i

If n is sufficiently large, we obtain a simplified asymptotic version

ra+1) G+1DY20+ Aq)™?
r(%) el/?
n
~ \/; + o(1/+/n).
It is worth pointing out that the evaluation of 11:—(('%;_% considered above also applies to
2

non-integer n as does the Stirling’s formula.

143

144 Appendix

B: Normalized Chi-Square Distribution

Let X be Gaussian distributed with zero mean and variance o?. Setting Y = X?, we obtain

the pdf of Y in the form

py(y) = eV y>0. (B.1)
The cdf of Y is

Fy(y) = /0 ’ py(u)du
1

v 1 2
= ~uf20 d B 2)
€ u, .
\/27ry/0 Vu (

which cannot be expressed in closed form. The characteristic function, however, can be deter-

mined in closed form. It is [64]

1
jv) = : B.3
Now, suppose that the random variable Y is defined as
y=1 En: X? (B.4)
n =1 ;

where the X;, 1 = 1,2,--- ,n, are statistically independent and identically distributed Gaus-
sian random variables with zero mean and variance o?. As a consequence of the statistical

independence of the X;, the characteristic function of Y is

1
v) =) B.5
QSY(J’U) (1 — j2v02/n)"/2 ()
The inverse transform of this characteristic function yields the pdf
1 n/2, n/2—1_—ny/20? .
pY(y) = (20_2)n/zr(n/2)n / Y / € v s Y > 0; (B6)

where I'(p) is the gamma function defined as

I'(p) = / P le7ldt. p>0
0

I'(p) = (p—1)!, pan interger, p>0
1 3 1

G = v, F(§)=§\/7'T-

This pdf, which is a generalization of the chi-square distribution, is called a normalized chi-

square pdf with n degrees of freedom. It is illustrated in Fig. B.1.

Appendix 145

*loat
p !/ \
¢ 'n=100
2.5 oA
ol [} \
I \
1.5¢ / \
,/'l’—_§\\‘\ \
1} S N
,/ [} N
0.5f "2 Aol MRS
) n=2011 ! . S
i / \ S
e”, > N ‘\ \\\\\\\ =
0.5 1 1.5 2

Figure B.1: The pdf of a normalized chi-square-distributed random variable for several de-

grees of freedom with o2 = 1.

The first two moments of YV are

EY) = ¢*
4
E(Y?) = 2T 4o
n
20
2 _
T Th
The cdf of V' is
Fy(y) = /y ! nM 22 e 2 gy > (B.7)
Y o (20%)"2T(n/2) T '

When n is even, this integral can be expressed in closed form. Specifically, let m = %, where

m is an integer. Then, by repeated integration by parts, we obtain

m—1

/o2 1 /my*

Fy(yy=1-e¢ ylo ZE(?) , y20. (B.8)
k=0

Substituting N, (N +2P), and 2P for ¢? in Eq. (B.6) yields Egs. (2.18), (2.19), and (2.30),

respectively.

146 Appendix

C: Shannon—Gallager—Berlekamp Sphere-Packing Bound

One common way of providing a performance limit of finite-block-length codes over the binary-
input AWGN channel is via the Shannon—Gallager-Berlekamp approach [15]. Let n be the
code length of a block, R the code rate in bits/symbol, and € the probability of making a block
error at the decoder, i.e. decoding the wrong code word. For rates below the channel capacity,

Shannon, Gallager, and Berlekamp showed that € (of the best codes) is lower-bounded by

¢ > on(Eum(Ryroln)),
Ew(R) = maxmax|Eo(p,q) — pR], (C.1)

where g is the distribution of the input symbols, and

1+p
Ey(p,q) = —log, / [Zq p(y|z) ”(“”’} : (C.2)

In Eq. (C.2), z is the input signal to the channel, y is the channel output signal, and p(y|z) is
the conditional probability of the channel output signal, given the input. Eq. (C.1) is known

as the Gallager exponent.

For the AWGN channel, y = x + z, where z is uncorrelated zero-mean Gaussian noise with

variance o2 and

_ 1 (y — 2)?
p(ylz) = Toer P (— 53) (C.3)

In the case of binary phase-shift keying (BPSK) signaling, we have x = ++/F; and it is known
that the maximizing distribution g(z) is given by ¢(z) = 1/2, for all z, and

= o (25 o ()] o

Note that the term o(n) in Eq. (C.1) plays an appreciable role only for short block lengths,

and that it is often difficult to calculate and thus neglected.

Appendix 147

D: Tangential Sphere Bound (TSB)

The tangential sphere bound is an upper bound on the block-error rate of a linear code under
optimum decoding. It can be shown [134] that the TSB is always tighter than the tangential
bound [178] and the union bound, especially for low and moderate values of E,/N,. Suppose
that the signals transmitted through an AWGN channel for each message (represented by a
codeword of a linear block code C) are of the same energy E. The energy of each signal is
E = nE;, where n is the block length and E is the energy transmitted per symbol. Denote

the noise variance by o2. The derivation of TSB follows by the central inequality
Prob(A4) < Prob(z € B, A) + Prob(z ¢ B), (D.1)

where A is an event that represents a decoding block error, B is an n-dimensional cone with
half angle # and radius r = /nFE tan#é, and z is the noise vector added to the transmitted

signal.

The TSB on the block-error probability € is based only on the distance spectrum {Sk} of
the binary linear block code C and reads, following the notation of [135],

+oo 1 2 70,2 n—1 7”2
< ~(~2{/20%) 1—% - 21
€= /—oo \/27r02e 7 2 202

5 s[o(80) ()] n(52 555 L o

k:8;, /2<ak

where Q(-) is the Gaussian @-function defined by Eq. (2.32), 7(a,) is the normalized incom-

plete Gamma function given by

5(a,z) = 1-;(%) /0 Camttgy (D.3)

for positive values of a and z. In Eq. (D.2), the following representations are also used.

Ty = (1— i)r
o vVnE,

Be(z) = s 52
2ry\/1 - 4k,
52

ap = T 1—471%3, (D.4)

where ¢ is defined to be the Euclidean distance between two signals whose corresponding
codewords differ in k symbols (k < n). Thus for the case of BPSK, &, = 2v/kE;.

148 Appendix

The upper bound Eq. (D.2) is valid for all positive values of » and thus the optimal radius
r in the sense of achieving the tightest upper bound is determined by setting the derivative of

the right side of the bound to zero, yielding the following optimization equation

6, = cos! % -
2r 1_421;23
Ox r(r=2
> S / sin”~? gdp = %(_IL) (D.5)
k:&k/2<ak 0 (T)
where
P(x):/ " le7tdt, >0 (D.6)
0

designates the Gamma function.

Bibliography

(1

(8]

[10]

[11]

C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal,
vol. 27, pp. 379-423 and 623-656, July and October 1948. Reprinted in Claude Flwood Shan-
non: Collected Papers, pp. 583, (N. J. A. Sloane and A. D. Wyner, eds.) Piscataway: IEEE
Press, 1993.

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE, vol. 37, pp. 10-21, Jan.
1949.

R. G. Gallager, “Low-density parity-check code,” IRE Trans. Inform. Theory, vol. 8, pp. 21-28,
1962.

R. G. Gallager, Low Density Parity Check Codes. MIT Press, Cambridge, MA, 1963.

R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory,
vol. 27, pp. 533-547, Sept. 1981.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding
and decoding: Turbo codes,” in Proc. IEEE Intl. Conf. Commun. (ICC), Geneva, Switzerland,
pp. 1064-1070, 1993.

D. J. C. MacKay and R. M. Neal, “Good codes based on very sparse matrices,” in Cryptography
and Coding, 5th IMA Conference (Lecture Notes in Computer Science), pp. 100-111, 1995. C.
Boyd, Ed. Berlin, Germany: Springer vol. 1025.

D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low-density parity-check
codes,” IEE Flect. Leit., vol. 32, pp. 1645-1646, Aug. 1996. Reprinted in Elect. Lett., vol. 33,
pp. 457-458, Mar. 1997.

T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-
passing decoding,” IEEFE Trans. Inform. Theory, vol. 47, pp. 599-618, Feb. 2001.

T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of provably good low-density parity-
check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 619-637, Feb. 2001.

E. N. Gilbert, “A comparison of signaling alphabets,” Bell System Technical Journal, vol. 31,
pp. 504-522, May 1952.

149

150

Bibliography

[12]

[13]

P. Elias, “Coding for noisy channels,” IRE Convention Record, vol. 3, pp. 37-46, 1955.

R. G. Gallager, “Simple derivation of the coding theorem and some applications,” IEEE Trans.
Inform. Theory, vol. 11, pp. 3-18, Jan. 1965.

A. D. Wyner, “Capacity of the band-limited Gaussian channel,” Bell System Technical Journal,
vol. 45, pp. 359-371, Mar. 1965.

C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lower bounds to error probability for
coding on discrite memoryless channels: Part I and IL” Inform. Control., vol. 10, pp. 65-103
and 527-552, January and May 1967.

G. D. J. Forney, “Exponential error bounds for erasure, list, and decision-feedback schemes,”
IEEE Trans. Inform. Theory, vol. 14, pp. 206-220, Mar. 1968.

A. J. Viterbi, “Error bounds for white Gaussian and other very noisy memoryless channels
with generalized decision regions,” IEEE Trans. Inform. Theory, vol. 15, pp. 279-287, Mar.
1969.

T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991.

R. W. Hamming, “Error detecting and error correcting codes,” Bell System Technical Journal,

vol. 29, pp. 147-160, Apr. 1950.
M. J. E. Golay, “Note on digital coding,” Proc. IRE, vol. 37, p. 657, June 1949.

D. E. Muller, “Application of Boolean algebra to switching circuit design and to error detec-
tion,” IRE Trans. Electronic Comput., vol. 3, pp. 6—-12, Sept. 1954.

I. S. Reed, “A class of multiple-error correcting codes and the decoding scheme,” IRE Trans.
Inform. Theory, vol. 4, pp. 3849, Sept. 1954.

I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” SIAM J., vol. 8,
pp- 300-304, June 1960.

A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres, vol. 2, pp. 147-156, 1959.

R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary group codes,”
Inform. Control, vol. 3, pp. 68-79, Mar. 1960.

R. C. Bose and D. K. Ray-Chaudhuri, “Further results in error correcting binary group codes,”
Inform. Control, vol. 3, pp. 279-290, Sept. 1960.

G. D. J. Forney, Concatenated Codes. MIT Press, Cambridge, Mass, 1966.

V. D. Goppa, “New class of linear correcting codes,” Probl. Peredach. Inform., vol. 6, pp. 24-30,
1970.

Bibliography 151

[29]

[30]

31]

[42]

[43]

[44]

V. D. Goppa, “Rational presentation of codes and (L, g)-codes,” Probl. Peredach. Inform.,
vol. 7, pp. 41-49, 1971.

J. Justesen, “A class of constructive asymptotically good algebraic codes,” IEEE Trans. Inform.
Theory, vol. 18, pp. 652-656, Sept. 1972.

W. W. Peterson, “Encoding and error-correction precedures for Base-Chauhuri codes,” IRE
Trans. Inform. Theory, vol. 6, pp. 459-470, Sept. 1960.

R. T. Chien, “Cyclic decoding procedures for BCH codes,” IEEE Trans. Inform. Theory,
vol. 10, pp. 357-363, Oct. 1964.

G. D. J. Forney, “On decoding BCH codes,” IEEFE Trans. Inform. Theory, vol. 11, pp. 549-557,
Oct. 1965.

J. L. Massey, “Step-by-step decoding of the BCH codes,” IEEE Trans. Inform. Theory, vol. 11,
pp. 580-585, Oct. 1965.

E. R. Berlekamp, Algebraic Coding Theory. McGraw-Hill, New York, 1968.
J. M. Wozencraft and B. Rieffen, Sequential Decoding. MIT Press, Cambridge, Mass., 1961.

R. M. Fano, “A heuristic discussion of probabilistic coding,” IEEE Trans. Inform. Theory,
vol. 9, pp. 64-74, Apr. 1963.

K. S. Zigangirov, “Some sequential decoding precedures,” Probl. Peredach. Inform., vol. 2,
pp. 13-25, 1970.

F. Jelinek, “Fast sequential decoding algorithm using a stack,” IBM J. Res. Deuv., vol. 13,
pp. 675-685, Nov. 1969.

A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm,” IEEE Trans. Inform. Theory, vol. 13, pp. 260-269, Apr. 1967.

V. Zyablov and M. Pinsker, “Estimation of the error-correction complexity of Gallager low-
density codes,” Probl. Peredach. Inform., vol. 11, pp. 23-26, 1975.

G. A. Margulis, “Explicit constructions of graphs without short cycles and low density codes,”
Combinatorica, vol. 2, pp. 71-78, 1982.

M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Inform. Theory, vol. 42,
pp. 1710-1722, Nov. 1996.

J. Pearl, “Fusion, propagation, and structuring in belief networks,” Artificial Intelligence: 29,
pp. 241-288, 1986.

J. Pearl, Probabilistic Reasoning in Intelligent Systems. San Francisco, CA:Kaufmann, 1988.
2nd ed.

152

Bibliography

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

(55]

N. Wiberg, Codes and Decoding in General Graphs. PhD thesis, Linkoping Univ., Linkoping,
Sweden, 1996.

N. Wiberg, H.-A. Loeliger, and R. Kotter, “Codes and iterative decoding on general graphs,”
European. Trans. Telecommun., vol. 6, pp. 513-526, Sept. 1995.

R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as an instance of Pearl’s
belief propagation algorithm,” IEEE J. Select. Areas Commun., vol. 16, pp. 140-152, Feb.
1998.

F. R. Kschischang and B. J. Frey, “Iterative decoding of compound codes by probability prop-
agation in graphical models,” IEEE J. Select. Areas Commun., vol. 16, pp. 219-230, Feb.
1998.

S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE Trans. Inform. Theory,
vol. 46, pp. 325-343, Mar. 2000.

M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann, “Practical loss-
resilient codes,” in Proc. 29th ACM Symp. Theory of Computing, El Paso, TX, pp. 150-159,
May 1997.

M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Analysis of low-density codes
and improved designs using irregular graphs,” in Proc. 30th ACM STOC, Dallas, TX, pp. 249-
258, 1998.

M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Improved low-density parity-
check codes and using irregular graphs and belief propagation,” in Proc. IEEE Intl. Symp.
Inform. Theory, Cambridge, MA, p. 117, Aug. 1998.

S.-Y. Chung, G. D. F. Jr., T. J. Richardson, and R. Urbanke, “On the design of low-density
parity-check codes within 0.0045 db of the Shannon limit,” IEEE Commun. Lett., vol. 5, pp. 58—
60, Feb. 2001.

B. J. Frey, R. Koetter, G. D. J. Forney, F. R. Kschischang, R. J. McEliece, and D. A. Spielmdn,
“Special issue on codes and graphs and iterative algorithms,” IEEE Trans. Inform. Theory,
vol. 47, pp. 493-849, Feb. 2001.

S. Verdu, “Fifty years of Shannon theory,” IEEE Trans. Inform. Theory, vol. 44, pp. 2057-2077,
Oct. 1998.

T. Berger, Rate-Distortion Theory: A Mathematical Basis for Data Compression. Englewood
Cliffs, NJ: Prentice-Hall, 1971.

S. Shamai (Shitz) and S. Verdu, “The empirical distribution of good codes,” IEEE Trans.
Inform. Theory, vol. 43, pp. 836-846, May 1997.

Bibliography 153

[59]

[60]

[61]

[62]
(63]
[64]

[65]

[68]

(69]

[70]

[71]

[72]

[74

C. E. Shannon, “Probability of error for optimal codes in a Gaussian channel,” Bell System
Technical Journal, vol. 38, pp. 611-656, May 1959.

S. Dolinar, D. Divsalar, and F. Pollara, “Code performance as a function of block size,” TMO
Progress Report 42-133, Jet Propulsion Laboratory, Pasadena, CA, pp. 1-23, May 1998.

S. J. MacMullan and O. M. Collins, “A comparison of known codes, random codes, and the
best codes,” IEEE Trans. Inform. Theory, vol. 44, pp. 3009-3022, Nov. 1998.

R. G. Gallager, Information Theory and Reliable Communication. New York: Wiley, 1968.
N. Alon, J. Spencer, and P. Erdos, The Probabilistic Method. New York: Wiley, 1992.
J. G. Proakis, Digital Communications. Third edition, New York: McGraw-Hill, 1995.

N. Alon and M. Luby, “A linear-time erasure-resilient code with nearly optimal recovery,”
IEEE Trans. Inform. Theory, vol. 42, pp. 1732-1736, Nov. 1996.

R. Kotter and A. Vardy, “Factor graphs: Construction, classification and bounds,” in Proc.
IEEE Intl. Symp. Inform. Theory, Cambridge, MA,, p. 14, 1998.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algo-
rithm,” IEEE Trans. Inform. Theory, vol. 47, pp. 498-519, Feb. 2001.

A. R. Calderbank, G. D. Forney, and A. Vardy, “Minimal tail-biting trellises: The Golay code
and more,” IEEE Trans. Inform. Theory, vol. 45, pp. 1435-1455, July 1999.

Y. Weiss, “Correctness of local probability propagation in graphical models with loops,” Neural
Computation, vol. 12, pp. 1-41, 2000.

G. D. J. Forney, “Codes on graphs: News and views,” in Proc. 2nd Intl. Symp. on Turbo Codes
and Related Topics, Brest, France, pp. 9-16, Sept. 2000.

D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans.
Inform. Theory, vol. 45, pp. 399-431, Mar. 1999.

Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes based on finite geo-
metrices: a rediscovery and new results,” IEEE Trans. Inform. Theory, vol. 47, pp. 27112736,
Nov. 2001.

R. Lucas, M. P. C. Fossorier, Y. Kou, and S. Lin, “Iterative decoding of one-step majority
logic decodable codes based on belief propagation,” IEEE Trans. Communications, vol. 48,
pp. 931-937, June 2000.

R. Tanner, D. Srkdhara, and T. Fuja, “A class of group-structured LDPC codes,” in Proc. of
ISTA 2001, Ambleside, England, 2001.

154

Bibliography

[75]

[76]

[77]

78]

[81)

[82]

[84]

(85)

[86]

[87]

J. L. Fan, “Array codes as low-density parity-check codes,” in Proc. 2nd Intl. Symp. on Turbo
Codes and Related Topics, Brest, France, Sept. 2000.

B. Vasic, “Combinatorial constructions of structured low-density parity-check codes for iterative

decoding,” 2001. submitted for publication.

S. J. Johnson and S. R. Weller, “Regular low-density parity-check codes from combinatorial
designs,” in Proc. IEEE Inform. Theory Workshop, Cairns, Australia, Sept. 2001.

G. A. Margulis, “Explicit group-theoretical constructions of combinatorial schemes and their
application to the design of expanders and concentrators,” Problemy Peredachi Inform., vol. 24,

pp. 51-60, 1988.

A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs,” Combinatorica, vol. 8, pp. 261—
277, 1988.

P. Erdos and H. Sachs, “Reguliare Graphen gegebene Taillenweite mit minimaler Knotenzahl,”
Wiss. Z. Univ. Hall Martin Luther Univ. Halle - Wittenberg Math. — Natur. Reine, pp. 12:251-
257, 1963.

J. Lafferty and D. Rockmore, “Codes and iterative decoding on algebraic expander graphs,”
in Proc. IEEE Intl. Symp. Inform. Theory and Applications (ISITA), Honolulu, Hawaii, USA,
Nov. 2000.

J. Rosenthal and P. O. Vontobel, “Construction of LDPC codes based on Ramanujan graphs
and ideas from Margulis,” in Proc. 88th Annual Allerton Conf. on Communication, Computing

and Control, Monticello, 1L, Oct. 2000.

P. O. Vontobel and R. M. Tanner, “Construction of codes based on finite generalized quadran-
gles for iterative decoding,” in Proc. IEEE Intl. Symp. Inform. Theory, Washington, DC, June
2001.

D. J. C. MacKay and M. S. Postol, “Weaknesses of Margulis and Ramanujan—Margulis low-

density parity-check codes,” Electronic Notes in Theoretical Computer Science, vol. 74, 2002.

S. L. S. Jacoby, J. S.Kowalik, J. T. Pizzo, and W. T. Veterling, Iterative Methods for Nonlinear
Optimization Problems. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1972.

L. Bazzi, T. Richardson, and R. Urbanke, “Exact thresholds and optimal codes for the binary
symmetric channel and Gallager’s decoding algorithm A,” IEEE Trans. Inform. Theory. to

appear.

M. A. Shokrollahi, “New sequence of linear time erasure codes approaching the channel ca-
pacity,” in Proc. 13th Intl. Sym. on Applied Algebra, Algebraic Algorithm and Error-correcting
Codes, 1999.

Bibliography 155

[88]

[89]

[90]

[91]

[92]

[97]

[98]

[99]

[100]

[101]

[102]

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Veterling, Numerical Recipes in C.
Cambridge, 1988.

M. C. Davey, Error-Correction Using Low-Density Parity-Check codes. PhD thesis, University
of Cambridge, Dec. 1999.

D. Spielman, “Linear-time encodeable and decodable error-correcting codes,” IEEE Trans.
Inform. Theory, vol. 42, pp. 1723-1731, Nov. 1996.

D. J. C. MacKay, S. T. Wilson, and M. C. Davey, “Comparison of construction of irregular
Gallager codes,” IEEE Trans. Communications, vol. 47, pp. 1449-1454, Oct. 1999.

L. Ping, W. K. Leung, and N. Phamdo, “Low density parity check codes with semi-random
parity check matrix,” IEFE Elect. Lett., vol. 35, pp. 38-39, Jan. 1999.

H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate codes,” in Proc. 2nd
Intl. Symp. on Turbo Codes and Related Topics, Brest, France, pp. 1-8, Sept. 2000.

T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check codes,” IEEE
Trans. Inform. Theory, vol. 47, pp. 638-656, Feb. 2001,

M. C. Davey and D. MacKay, “Low-density parity-check codes over GF(q),” IEEE Commun.
Lett., vol. 2, pp. 165-167, June 1999.

X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Progressive edge-growth Tanner graphs,” in
Proc. IEEE Global Telecommun. Conf. (GLOBECOM), San Antonio, Texas, USA, Nov. 2001.

X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Irregular progressive edge-growth Tanner
graphs,” in Proc. Jth Intl. ITG Conf. on Source and Channel Coding, Berlin, Jan. 2002.

X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Irregular progressive edge-growth Tanner
graphs,” in Proc. IEEE Intl. Symp. Inform. Theory, Lausanne, Switzerland, July 2002.

J. Campello, D. S. Modha, and S. Rajagopalan, “Designing LDPC codes using bit-filling,” in
Proc. IEEE Intl. Conf. Commun. (ICC), Helsinki, Finland, June 2001.

R. M. Tanner, “Minimum distance bounds by graph analysis,” IEEE Trans. Inform. Theory,
vol. 47, pp. 808-821, Feb. 2001.

A. Orlitsky, R. Urbanke, K. Viswanathan, and J. Zhang, “Stopping sets and the girth of Tanner
graphs,” in Proc. IEEE Intl. Symp. Inform. Theory, Lausanne, Switzerland, July 2002.

C. Di, D. Proietti, E. Telatar, T. Richardson, and R. Urbanke, “Finite-length analysis of
low-density parity-check codes on the binary erasure channel,” IEEE Trans. Inform. Theory,
vol. 48, pp. 1570-1579, June 2002.

156

Bibliography

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

V[l 15]

[116]

J. Zhang and A. Orlitsky, “Finite-length analysis of LDPC codes with large left degrees,” in
Proc. IEEE Intl. Symp. Inform. Theory, Lausanne, Switzerland, July 2002.

S. Aji, H. Jin, A. Khandekar, D. J. C. MacKay, and R. J. McEliece, “BSC thresholds for
code ensembles based on " Typical Pairs”decoding,” in Codes, Systems, and Graphical Models :
the IMA volumes in mathematics and its applications, edited by B. Marcus and J. Rosenthal,
Springer, pp. 195-210, 2001.

Y. Mao and A. Banihashemi, “A heuristic search for good low-density parity-check codes at
short block lengths,” in Proc. IEEE Intl. Conf. Commun. (ICC), Helsinki, Finland, pp. 41-44,
2001.

E. Eleftheriou, T. Mittelholzer, and A. Dholakia, “Reduced-complexity decoding algorithm for
low-density parity-check codes,” IEE Elect. Lett., vol. 37, pp. 102-104, Jan. 2001.

X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implementations of the
sum-product algorithm for decoding LDPC codes,” in Proc. IEEE Global Telecommun. Conf.
(GLOBECOM), San Antonio, Texzas, USA, Nov. 2001.

J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu, “Near optimal reduced-
complexity decoding algorithms for LDPC codes,” in Proc. IEEE Intl. Symp. Inform. Theory,
Lausanne, Switzerland, July 2002.

D. J. C. MacKay, Online database of low-density parity-check codes.
http://wol.ra.phy.cam.uk/mackay/codes/data.html.

Standards for CDMA2000 Spread Spectrum Systems. EIA/TIA 1S-2000, 1-6.

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing
symbol error rate,” IEEE Trans. Inform. Theory, vol. 20, pp. 284-287, Mar. 1974.

M. Bossert, Channel Coding for Telecommunications. John Wiley & Sons, 1999.

A. Vardy and Y. Be’ery, “Bit-level soft-decision decoding of Reed-Solomon codes,” IEEE Trans.
Inform. Theory, vol. 37, Mar. 1991.

A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, “The Z4-
linearity of Kerdock, Preparata, Goethals, and related code,” IEEE Trans. Inform. Theory,
vol. 40, pp. 301-319, Feb. 1994.

C. Schlegel and L. Perez, “On error bounds and turbo codes,” IEEE Commun. Lett., vol. 3,
pp. 205-207, July 1999.

A. A. Nechaev, “Kerdock codes in a cyclic form,” Discrete Math. Appl., vol. 1, pp. 365-384,
Apr. 1991.

Bibliography 157

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

A. R. Calderbank, G. McGuire, P. V. Kumar, and T. Helleseth, “Cyclic codes over Z,, locator
polynomials and Newton’s identities,” IEEE Trans. Inform. Theory, vol. 42, pp. 217-226, Jan.
1996.

W. W. Peterson and E. J. W. Jr., Error—Correcting Codes. Cambridge, Mass. The MIT Press,
1972.

D. Jungnickel and S. A. Vanstone, “Graphical codes revisited,” IEEE Trans. Inform. Theory,
vol. 43, pp. 136-146, Jan. 1997.

L. Decreusefond and G. Zémor, “On the error-correcting capabilities of cycle codes of graphs,”

Combinatorics, Probability and Computing, vol. 6, pp. 27-38, 1997.

J.-P. Tillich and G. Zémor, “Optimal cycle codes constructed from Ramanujan graphs,” SIAM
Journal on Discrete Math., vol. 10, pp. 447-459, Mar. 1997.

G. Zémor, “On iterative decoding of cycle codes of graphs,” in Codes, Systems, and Graphical
Models : the IMA volumes in mathematics and its applications, edited by B. Marcus and J.
Rosenthal, Springer, pp. 311-326, 2001.

J. Blomer, R. Karp, and E. Welzl, “The rank of sparse random matrices over finite fields,”

Research Report, International Computer Science Institute, Berkeley, California, 1996.
N. Sourlas, “Spin-glass models as error-correcting codes,” Nature, vol. 338, pp. 693-695, 1989.

P. Rujan, “Finite temperature error-correcting codes,” Physical Review Letters, vol. 70,
pp- 2968-2971, 1993.

H. Nishimori, “Optimum decoding temperature for error-correcting codes,” Journal of the
Physical Society of Japan, vol. 62, pp. 2973-2975, 1993.

M. L. Belongie, “Spin galsses and error-correcting codes,” TMO Progress Report 42-118, Jet
Propulsion Laboratory, Pasadena, CA, pp. 26-36, Aug. 1994.

J. S. Yedidia, “An idiosyncratic journey beyond mean field theory,” Research Report TR-2000-
27, Mutsubishi Electric Research Laboratories, 2000.

J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding belief propagation and its gener-
alizations,” Research Report TR-2001-22, Mitsubishi Electric Research Laboratories, 2001.

J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Bethe free energy, Kikuchi approximations,
and belief propagation algorithms,” Research Report TR-2001-16, Mitsubishi Electric Research
Laboratories, 2001.

J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Characterization of belief propagation and
its generalizations,” Research Report TR-2001-15, Mitsubishi Electric Research Laboratories,
2001.

158

Bibliography

[132]) P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms. Cambridge University Press,

[133]

[134]

[135)

[136]

[137]

[138]

[139]

[140]

[141]

[142)

[143]

[144]

[145)

1994.

G. Poltyrev, “Bounds on the decoding error probability of binary linear codes via their spectra,”
IEEE Trans. Inform. Theory, vol. 40, pp. 1284-1292, July 1994.

H. Herzberg and G. Poltyrev, “The error probability of M-ary PSK block coded modulation
schemes,” IEEE Trans. Communications, vol. 44, pp. 427-433, Apr. 1996.

I. Sason and S. Shamai (Shitz), “Improved upper bounds on the ensemble performance of ML
decoded low-density parity-check codes,” IEEE Commun. Lett., vol. 4, pp. 89-91, Mar. 2000.

J. Hagenauer, M. Moerz, and E. Offer, “Analog turbo-networks in VLSI: The next step in turbo
decoding and equalization,” in Proc. 2nd Intl. Symp. on Turbo Codes and Related Topics, Brest,
France, Sept. 2000.

H.-A. Loeliger, F. Lustenberger, M. Helfenstein, and F. Tarkoy, “Probability propagation and
decoding in analog VL.S1,” IEEE Trans. Inform. Theory, vol. 47, pp. 837-843, Feb. 2001.

L. Ping and W. Leung, “Decoding low density parity check codes with finite quantization bits,”
IEEE Commun. Lett., vol. 4, pp. 62-64, Feb. 2000.

M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of low
density parity check codes based on belief propagation,” IEEE Trans. Communications, vol. 47,
pp. 673-680, May 1999.

T. Mittelholzer, A. Dholakia, and E. Elftheriou, “Reduced-complexity decoding of low density
parity check codes for generalized partial response channels,” IEEE Trans. Magnetics, vol. 37,
pp. 721-728, Mar. 2001. '

V. Sorokine, F. Kschischang, and S. Pasupathy, “Gallager codes for CDMA applications — part
II: Implementations, complexity, and system capacity,” IEEE Trans. Communications, vol. 48,
pp. 1818-1828, Nov. 2000.

J. Chen and M. P. C. Fossorier, “Near optimum universal belief propagation based decoding
of low-density parity-check codes,” IEEE Trans. Communications, vol. 50, pp. 406-414, Mar.
2002.

J. Chen and M. P. C. Fossorier, “Density evolution for two improved BP-based decoding
algorithms of LDPC codes,” IEEE Commun. Lett., vol. 6, pp. 208-210, May 2002.

J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional
codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 429-445, Mar. 1996.

A. J. Viterbi, “An intuitive justification and a simplified implementation of the MAP decoder
for convolutional codes,” IEEE J. Select. Areas Commun., vol. 16, pp. 260-264, Feb. 1998.

Bibliography 159

[146]

[147]

[148)

[149)

[150]

[151]

[152]

[153]

[154)

[155]

[156]

[157]

[158]

[159]

P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP
decoding algorithms operating in the log domain,” in Proc. IEEE Intl. Conf. Commun. (ICC),
pp- 1009-1013, June 1995.

A. Anastasopoulos, “A comparison between the sum-product and the min-sum iterative de-
tection algorithms based on density evolution,” in Proc. IEEE Global Telecommun. Conf.
(GLOBECOM), San Antonio, Tezas, USA, Nov. 2001.

W. J. Gross and P. G. Gulak, “Simplified MAP algorithm suitable for implementation of turbo
decoders,” IEE Elect. Lett., vol. 34, pp. 1577-1578, Aug. 1998.

X. Wei and A. N. Akansu, “Density evolution for low-density parity-check codes under Max-
Log-MAP decoding,” IEE Elect. Lett., vol. 37, pp. 1125-1126, Aug. 2001.

X.-Y. Hu and T. Mittelholzer, “An ordered-statistics-based approximation of the sum-product
algorithm,” in Proc. Intl. Telecommun. Symp. (ITS), Brazl, 2002.

D. E. Knuth, The Art of Computer Programming: Sorting and Searching. Addison-Wesley,
1973.

S. Benedetto and G. Montorsi, “Unveiling turbo codes: some results on parallel concatenated
coding schemes,” IEEE Trans. Inform. Theory, vol. 42, pp. 409-428, Mar. 1996.

L. Perez, J. Seghers, and D. Costello, “A distance spectrum interpretation of turbo codes,”
IEEE Trans. Inform. Theory, vol. 42, pp. 1698-1709, Nov. 1996.

S. t. Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,” IEEE
Trans. Communications, vol. 49, pp. 1727-1737, Oct. 2001.

W. E. Ryan, “Performance of high rate turbo codes on a PR4-equalized magnetic recording
channels,” in Proc. IEEE Intl. Conf. Commun. (ICC), Atlanta, GA, pp. 947-951, June 1998.

W. E. Ryan, L. L. McPheters, and S. W. McLaughlin, “Combined turbo coding and turbo
equalization for PR4-equalized Lorentzian channels,” in Proc. Conf. Info. Sci. Sys., Princeton,
NJ., pp. 489-493, Mar. 1998.

C. Heegard, “Turbo coding for magnetic recording,” in Proc. IEEE Inform. Theory Workshop,
San Diego, CA, pp. 18-19, Feb. 1998.

J. L. Fan, A. Friedmann, E. Kurtas, and S. W. McLaughlin, “Low density parity check codes
for magnetic recording,” in Proc. 37th Annual Allerton Conf. Communication, Control, and
Computing, pp. 1314-1323, 1999.

T. Souvignier, A. Friedmann, M. Oberg, P. H. Siegel, R. E. Swanson, and J. K. Wolf, “Turbo
decoding for PR4: parallel versus serial concatenation,” in Proc. IEEE Intl. Conf. Commun.
(ICC), Vancouver, Canada, pp. 1638-1642, June 1999.

160

Bibliography

[160]

[161]

[162]

(163]

[164]

[165]

[166]

[167]

[168]

[169)]

[170]

[171]

[172]

T. Souvignier, M. 6berg, P. H. Siegel, R. E. Swanson, and J. K. Wolf, “Turbo decoding for
partial response channels,” IEEE Trans. Communications, vol. 48, pp. 1297-1308, Aug. 2000.

H. Song, R. M. Todd, and J. R. Cruz, “Low density parity check codes for magnetic recording
channels,” IEEFE Trans. Magnetics, pp. 2183-2186, Sept. 2000.

A. Dholakia, E. Eleftheriou, and T. Mittelholzer, “On iterative decoding for magnetic recording
channels,” in Proc. 2nd Intl. Symp. on Turbo Codes and Related Topics, Brest, France, pp. 219-
225, Sept. 2000.

A. Dholakia, E. Eleftheriou, and T. Mittelholzer, “Iterative detection/decoding techniques for
the magnetic recording channel,” in Dig. 11th Annu. Magnetic Recording Conf. (TMRC 2000),
Santa Clara, CA, Aug. 2000.

D. Hoesli and E. Svensson, “Low-density parity-check codes for magnetic recording,” diploma

thesis, no. 7103, Signal and Information Processing Lab., ETH Zurich, Switzerland, Mar. 2000.

H. Song, R. M. Todd, and J. R. Cruz, “Applications of low-density parity-check codes to
magnetic recording channels,” IEEE J. Select. Areas Commun., vol. 19, pp. 918-923, May
2001.

B. Vasic, “Structured iteratively decodable codes based on Steiner systems their application in
magnetic recording,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), San Antonio,
Tezas, USA, Nov. 2001.

N. Varnica and A. Kavé¢ié, “Optimized LDPC codes for partial response channels,” in Proc.
IEEE Intl. Symp. Inform. Theory, Lausanne, Switzerland, July 2002.

B. Vasic, A. Kuznetsov, and E. Kurtas, “Lattice low-density parity-check codes and their
application in partial response systems,” in Proc. IEEE Intl. Symp. Inform. Theory, Lausanne,
Switzerland, July 2002.

B. M. Kurkoski, P. H. Siegel, and J. K. Wolf, “Joint message-passing decoding of LDPC codes
and parital-response channels,” IEEE Trans. Inform. Theory, vol. 48, pp. 1410-1422, June
2002.

J. Garcia-Frias, “Decoding of low-density parity-check codes over finite state binary Markov
channels,” in Proc. IEEE Intl. Symp. Inform. Theory, Washington, DC, p. 72, June 2001.

B. Frey, F. Kschischang, and P. Gulak, “Concurrent turbo decoding,” in Proc. IEFE Intl.
Symp. Inform. Theory, Ulm, Germany, July 1997.

J. Sun, O. Y. Takeshita, and M. P. Fitz, “A highly parallel decoder for turbo codes,” in Proc.
I[EEFE Intl. Symp. Inform. Theory, Lausanne, Switzerland, July 2002.

Bibliography 161

[173] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-
check code decoder,” IEEE J. Solid-State Circuits, vol. 37, pp. 404-412, Mar. 2002.

[174] E. Yeo, P. Pakzad, B. Nikoli¢, and V. Anantharam, “VLSI architectures for iterative decoders
in magnetic recording channels,” IEEE Trans. Magnetics, vol. 37, pp. 748-755, Mar. 2001.

[175] S. Yoon and Y. Bar-Ness, “A parallel MAP algorithm for low latency turbo decoding,” IEEE
Commun. Lett., vol. 7, pp. 288-290, July 2002.

[176] C. Berrou and S. Vaton, “Computing the minimum distance of linear codes by the error impulse
method,” in Proc. IEEFE Intl. Symp. Inform. Theory, Lausanne, Switzerland, July 2002.

[177] C. Berrou, S. Vaton, M. Jézéquel, and C. Douillard, “Computing the minimum distance of linear
codes by the error impulse method,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM),
Taiwan (to appear), Nov. 2002.

[178] E. R. Berlekamp, “The technology of error correction codes,” Proc. IEEE, vol. 68, pp. 564-593,
May 1980.

Biography

Xiaoyu Hu was born in a tiny beautiful village in China in 1970. After attending middle and high
school in Sichuang province, in 1987 he joined East China Institute of Technology (ECIT) at Nanjing
to study electrical engineering, with major in automation. He graduated with a Bachelor and a
Master degree in automation from ECIT in 1991 and 1993, respectively. After a couple of years as
a teaching/research assistant with ECIT and Southeast University in the same city, where he was
involved in the design and implementation of digital signal processing algorithms for low-bit-rate
speech codec, IS-95 mobile station receiver, and digital TV receiver, he came to Switzerland in 1998
and participated in the doctoral school of the department of Computer and Communication Systems
at the Swiss Federal Institute of Technology Lausanne (EPFL). From 1999 to 2002 he held a Pre-Doc
position at IBM Research, Zurich Research Laboratory, working on signal processing and coding
issues of xDSL and magnetic recording channels. He received a post-graduate certificate in 1999 and
his Ph. D in 2002 from EPFL.

163

