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For our knowledge is imperfect and our prophecy is imperfect
Car partielle est notre science, partielle aussi notre prophétie

Perché imperfetta é la nostra conoscenza ed imperfetta la nostra profezia

Saint Paul, Apostle, First Letter to Corinthians, 13, 9.






Version abrégée

Les phénomeénes de transport dans les plasmas de tokamak réduisent fortement le con-
finement de particules et d’énergie et constituent un obstacle majeur & la fusion ther-
monucléaire controlée. Parmi les nombreux themes relatifs & ’études du transport, trois
points ont été abordés dans le cadre de cette thése: premierement, le calcul numérique des
coeflicients de transport néoclassique pour les équilibres axisymétriques généraux et un
régime collisionel arbitraire, deuxiemement, ’analyse du comportement de la température
électronique et la modélisation du transport dans les décharges de plasma du Toka-
mak & Configuration Variable (TCV), troisitmement, la modélisation et la simulation
de l'activité de dents de scie sous différentes conditions de chauffage.

Le travail consacrée a la théorie néoclassique a été entrepris avant tout afin d’identifier
analytiquement un ensemble d’équations adaptées a étre implémentées dans les codes
Fokker-Planck existants. La modification de ces codes nous a permis de calculer les coef-
ficients de transport néoclassique tout en considérant différentes configurations réalistes
d’équilibre magnétique et en faisent varier sur un large spectre les trois parametres clés
suivants: le rapport d’aspect, la collisionalité et la charge effective. La comparaison des
résultats numériques avec une limite analytique a conduit & I'identification de deux ex-
pressions donnant la fraction des particules piégées; ces expressions, incluant les effets
géométriques, permirent de faire correspondre chaque coefficient avec une seule fonction
analytique. En conséquence, de simples formules analytiques pour les coeflicients de
transport néoclassique purent étre établies, formules valables pour un rapport d’aspect
et une collisionalité quelconques et dans une géométrie réaliste et générale. Cette étude
est particulierement utile pour évaluer correctement la contribution néoclassique dans un
scénario pour le tokamak caractérisé par une grande composante de courant bootstrap, ou
dans un régime de confinement amélioré avec faible transport anormal, et pour déterminer
le profil de densité de courant, la conductivité du plasma étant généralement supposée
néoclassique.

Ces résultats furent inclus dans le code de transport PRETOR. Son champ d’application
fut développé afin de pouvoir simuler le transport électronique dans TCV. Dans les simu-
lations de profil de température électronique de plasmas Ohmiques avec dents de scie, la
description correcte du profil de densité de courant et de I’activité des dents de scie joue le
role principal, et non pas le modele spécifique de transport, pourvu qu’un seul parameétre
du modele soit ajusté de maniere a reproduire la performance globale du plasma. Dans
les décharges TCV avec chauffage cyclotronique électronique (CCE), le comportement de
la température électronique fait preuve de caractéristiques récemment observées comme
étant communes a plusieurs tokamaks. En particulier, en présence de chauffage central, le
profil de température électronique est rigide a I’extérieur de la région de déposition de puis-
sance et essentiellement constant le long du rayon mineur. En présence de chauffage hors-
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axe, le transport est fortement réduit dans la région centrale du plasma, tandis qu’une forte
augmentation de la conductivité de chaleur est observée au lieu de déposition de la puis-
sance. Bien que le modele de transport semi-empirique de Rebut-Lallia-Watkins (RLW)
n’implique pas une échelle de gradient critique, comme ’observation expérimentale le
suggere, mais plutét un gradient critique de température électronique, nous avons montré
que ce modele permet de faire des simulations en tres bon accord avec les caractéristiques
expérimentales décrites plus haut. Grace au relativement bas champ magnétique torique
de TCV, le gradient expérimental de température avec CCE excede de loin le seuil inclus
dans le modele. Il peut par conséquent étre affirmé que la dépendance paramétrique de la
conductivité électronique de chaleur de ce modele de transport reproduit adéquatement
le transport électronique pour des parametres de plasma dans le domaine d’opération de
TCV. PRETOR, interfacé avec les données expérimentales et le code TORAY-GA pour le
calcul de la source CCE, a ainsi pu étre utilisé comme un instrument fiable pour I’analyse
de transport et la planification de nouvelles expériences. Ceci a contribué a I'identification
d’un régime de confinement central électronique amélioré (CCEA) dans TCV, caractérisé
par un schéma précis de chauffage (forte génération de courant cyclotronique électronique,
au centre du plasma et dans la direction contre-courant, avec chauffage hors-axe localisé)
avec une séquence de temps spécifique. Des simulations et analyses de transport de
ce régime, en particulier consacrées a la reconstruction du profil de densité de courant
pendant la phase de haute performance, ont motivé des expériences additionnelles, con-
firmant les prédictions numériques et permettant d’ identifier 'inversion du cisaillement

magnétique comme étant 'ingrédient crucial du CCEA.

Le puissant systeme CCE dans TCV ne permet pas de modifier fortement le profil de
courant que de maniere globale, mais aussi localement, ce qui influence significativement
I’activité de dents de scie. Un modele pour la prédiction de la période des dents de
scie dans le “International Thermonuclear Experimental Reactor” (ITER) a été étendu
et rendu applicable aux décharges Ohmiques et CCE de TCV. Le modele est en ac-
cord avec les observations expérimentales, nous permettant par conséquent d’identifier les
mécanismes physiques a l’origine du controle de la periode de dent de scie par le CCE. La
dépendance paramétrique du seuil relevant de stabilité est consistant avec les expériences
consacrées a la démonstration des effets du chauffage localisé et de la génération de courant
sur la période de dent de scie. Les effets du cisaillement magnétique et du gradient de
pression a la surface ¢ = 1 ont été mis en évidence. De plus, il a été constaté que le
lieu de chauffage le plus efficace pour stabiliser la période des dents de scie est situé a
I’extérieur de la surface ¢ = 1 avant ’écroulement des dents de scie. Le méme modéele a
été utilisé pour simuler la période des dents de scie de récentes décharges avec chauffage
par injection de neutres (CIN) dans le “Joint European Torus” (JET), effectuées dans
le but d’établir le réle des ions rapides du faisceau sur la stabilisation des dents de
scie. Grace a l'inclusion de D’expression analytique de la contribution des ions rapi-
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des a ’énergie potentielle de P'instabilité de torsion interne, validée par le code hybride
cinétique/magnétohydrodynamique NOVA-K, les résultats de simulations se sont révélés
étre remarquablement proches des observations expérimentales. Ce travail a démontré le
role des ions rapides du CIN dans la stabilisation des dents de scie et validé le seuil de
stabilité pour 'instabilité résistive de torsion interne, prédite comme étant, pour le régime
d’opération d’ITER, le déclencheur de I’écroulement de la dent de scie.
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Summary

Transport phenomena in tokamak plasmas strongly limit the particle and energy confine-
ment and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast
framework of transport studies, three topics have been tackled in the present thesis: first,
the computation of neoclassical transport coeflicients for general axisymmetric equilibria
and arbitrary collisionality regime; second, the analysis of the electron temperature be-
haviour and transport modelling of plasma discharges in the Tokamak a Configuration
Variable (TCV); third, the modelling and simulation of the sawtooth activity with differ-
ent plasma heating conditions.

The work dedicated to neoclassical theory has been undertaken in order to first ana-
lytically identify a set of equations suited for implementation in existing Fokker—Planck
codes. Modifications of these codes enabled us to compute the neoclassical transport co-
efficients considering different realistic magnetic equilibrium configurations and covering
a large range of variation of three key parameters: aspect ratio, collisionality, and effec-
tive charge number. A comparison of the numerical results with an analytical limit has
permitted the identification of two expressions for the trapped particle fraction, capable
of encapsulating the geometrical effects and thus enabling each transport coefficient to be
fitted with a single analytical function. This has allowed us to provide simple analytical
formulae for all the neoclassical transport coefficients valid for arbitrary aspect ratio and
collisionality in general realistic geometry. This work is particularly useful for a correct
evaluation of the neoclassical contribution in tokamak scenarios with large bootstrap cur-
rent fraction, or improved confinement regimes with low anomalous transport and for
the determination of the plasma current density profile, since the plasma conductivity is
usually assumed neoclassical.

These results have been included in the plasma transport code PRETOR. This code has
been further extended and applied to the simulation of electron transport in TCV. In
simulating the electron temperature profile of Ohmic sawtoothing plasmas, the proper
description of the current density profile and the sawtooth activity play the dominant
role and not the specific transport model, provided that a single parameter in the model
is adjusted to match the global plasma performance. In TCV discharges with electron
cyclotron heating (ECH), the behaviour of the electron temperature exhibits some char-
acteristics which have been recently observed to be common to several tokamaks. In
particular, with central heating the electron temperature profile is stiff outside the power
deposition region, that is the gradient scale length is independent of the heating power
and essentially constant along the minor radius. With off-axis heating, transport is
strongly reduced in the central region of the plasma, whereas a steep increase of the heat
conductivity is observed at the power deposition location. Although the semi—empirical
Rebut—Lallia~Watkins (RLW) transport model does not involve a critical gradient scale



length, as the experimental observations would suggest, rather a critical electron temper-
ature gradient, we have shown that it allows simulations which reproduce the described
experimental features with very good agreement. Due to the relatively low toroidal mag-
netic field of TCV, the experimental temperature gradient with ECH exceeds by far the
threshold included in the model. It can thus be stated that the parametric dependence
of the electron heat conductivity of this transport model is adequate to reproduce the
electron transport for plasma parameters in the operation domain of TCV. PRETOR, in-
terfaced with the experimental data and the code TORAY-GA for the computation of the
ECH source, has hence been used as a reliable tool for transport analysis and planning
of new experiments. This has contributed to the identification of an improved central
electron confinement (ICEC) regime in TCV, characterized by a precise heating scheme
(strong electron cyclotron current drive in the counter—direction in the plasma center,
and localized off-axis heating), with a specific time sequence. Transport simulations and
investigations of this regime, in particular dedicated to the reconstruction of the current
density profile during the high performance phase, have motivated further experiments
which have confirmed numerical predictions. As a consequence, the magnetic shear re-

versal has been identified as the crucial ingredient for ICEC.

The powerful ECH system in TCV does not allow only strong global current profile
modifications but also local tailoring which has significant effects on sawtooth activity.
A model introduced for the prediction of the sawtooth period in the proposed Interna-
tional Thermonuclear Experimental Reactor (ITER) has been extended to be applicable
to Ohmic and ECH discharges in TCV. The model has been found in agreement with the
experimental observations and thereby we were able to identify the physical mechanisms
which make ECH capable of controlling the sawtooth period. The parameter dependence
of the relevant stability threshold has been found consistent with dedicated experiments
demonstrating the effects of localized heating and current drive on the sawtooth period.
The simulations have pointed out the effects of the magnetic shear and of the pressure
gradient at the ¢ = 1 surface. Moreover, the most efficient heating location to stabilize
the sawtooth period has been identified as located outside the ¢ = 1 surface before the
sawtooth crash. The same period model has been used for the simulation of the sawtooth
period in recent discharges with neutral beam injection (NBI) in the Joint European
Torus (JET), performed to assess the role of beam ions on sawtooth stabilization. With
the inclusion of an analytical expression for the fast ion contribution to the internal kink
potential energy, validated by the hybrid kinetic/MHD code NOVA-K, the simulations
have been found in remarkable good agreement with the experimental observations. This
work has demontrated the role of beam ions in sawtooth stabilization and validated the
stability threshold for the resistive internal kink which was predicted to be the sawtooth
crash trigger relevant for ITER operation.
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Chapter 1

Introduction

Nuclear fusion is a reaction in which two light nuclei fuse to form a heavier nucleus.
The nuclear rearrangement results in a reduction of the total mass and consequently
in a release of energy. These reactions are of extreme importance in nature, since they
supply stars with energy. On earth, controlled thermonuclear fusion is one of the principal
long-term, safe, and rather clean potential sources of energy. Coulomb repulsion of the
positively charged nuclei needs to be overcome by providing high kinetic energies to the
nuclei. Even at high energy the probability of a fusion reaction occurring is much lower
than that for Coulomb scattering. The solution offered by thermonuclear fusion is to
heat a reagent mixture until thermal velocities are sufficiently high for fusion reactions to
occur with a significant frequency. The most favourable reagents found in nature are two
hydrogen isotopes, deuterium (D) and tritium (T), which fuse yielding a fast a—particle
of 3.5 MeV and a neutron of 14.1 MeV. With this reaction the required thermal energy
for the reagent mixture is of the order of 10 keV, which corresponds to a temperature
of 116 million degrees Kelvin. At this temperature atoms are fully ionised. The positive
electrostatic charge of ions is neutralized by the presence of an equal negative charge of
electrons, resulting in a neutral gas called plasma. To maintain this high temperature,
the plasma needs to be confined to minimize the contact with material walls. A possible
method is to use a magnetic field. One of the devices which have been developed over
the years to produce a magnetic confinement configuration for thermonuclear plasmas is
the tokamak. In this device a set of external toroidal field coils and an electric current
induced in the plasma, usually by transformer action, generate a closed toroidal structure

consisting of an infinite set of nested toroidal magnetic surfaces.

The tokamak is regarded today as the most promising device and the most likely to
become the future reactor in a nuclear fusion power plant. The ignition condition, at
which the thermonuclear power produced by fusion reactions inside the plasma provides

sufficient plasma heating to balance the power losses, reads, for a D-T mixture around
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10 keV,

nT1g>510"m3keVs,

where n is the plasma density, T the ion temperature and 7g the thermal energy confine-
ment time. The heating power required to reach the desired values of energy confinement
time and central plasma temperature is determined by the magnitude of energy transport.
Therefore, research on energy transport in tokamaks is of crucial importance for nuclear

fusion.

An unavoidable physical mechanism involving energy and particle transport is collisions.
In a magnetized plasma, “classical” collisional transport arises from collisions affecting
the charged particles gyromotion around the field lines. In toroidal magnetic confinement
systems a supplementary contribution to collisional transport, the so—called “neoclassi-
cal” transport, is present. Neoclassical transport is generated by collisions affecting the
guiding centre orbits caused by the closed field lines of the magnetic confinement con-
figuration. Since the radial excursion of these orbits can be macroscopically significant
(“banana” orbits), the neoclassical term provides the dominant contribution to collisional
transport. Nevertheless, even taking into account neoclassical enhancements, collisions
are far from being able to account for the energy and particle losses which are observed
experimentally in tokamaks. Other mechanisms, much more effective than collisions, are

unfortunately at play. They produce the so—called “anomalous” transport.

Research on anomalous transport is aimed at developing physical models capable of pro-
viding reliable predictions of the confinement properties of future devices. This research
might allow also the identification of configurations and plasma conditions where anoma-
lous transport is reduced or even absent. Improvements need both experimental and theo-
retical approaches. Dedicated experiments can highlight specific parametric dependences
and identify plasma conditions in which confinement is improved. Theoretical models
must be developed in order to explain experimental observations, and predict new plasma
behaviours under experimentally unexplored conditions. Since the tokamak is a rather
complex system, the comparison itself between theoretical predictions and experimental
measurements is not a trivial task. The link between theory and experiments requires
numerical tools capable of transforming theoretical models into measurable quantities. It

is in this activity that we can locate the main body of the present research work.

The first goal of this work has been to extend an existing transport code, PRETOR,
in order to supply the TCV device with numerical tools for analysis and simulation of
plasma transport. The Tokamak & Configuration Variable (TCV) is a medium size toka-
mak located at the Centre de Recherches en Physique des Plasmas (CRPP) in the Ecole



Polytechnique Fédérale de Lausanne (EPFL). It has been designed to investigate the ef-
fects of plasma shape on confinement and stability. The strong shape flexibility of TCV
and its powerful electron cyclotron heating (ECH) system allow transport studies which
can address specific issues of great relevance to fusion research. In addition, the peculiar-
ities of TCV imply precise requirements for a transport simulation code. In particular,
the shape flexibility demands a realistic description of the magnetic surface configuration.
The auxiliary heating sources, enabling also strong current drive, require a correct de-

scription of the plasma current density evolution.

In constrast with perpendicular transport, the plasma conductivity is believed to be
mainly determined by collisions, and therefore by neoclassical theory. Another impor-
tant effect of collisions, predicted by neoclassical theory, is to self-generate a plasma
current, known as “bootstrap current”, in the presence of inhomogeneities of the pressure
and density profiles. For applications to TCV, as in general for shaped plasmas in toka-
maks which are not in the large aspect ratio limit, it is particularly important to have
expressions for the neoclassical parallel transport coefficients which take into account the
real geometry and plasma collisionality. This has motivated us to reformulate the stan-
dard neoclassical theory in order to obtain analytically a set of equations simple enough
to be easily implemented in existing Fokker-Planck codes which take into account the
axisymmetric magnetic surface configuration. This work has enabled us to obtain a set of
formulae for all the neoclassical coefficients describing parallel and perpendicular electron
and ion transport, taking into account both collisionality and finite aspect ratio effects in
realistic geometries. In this way we have been able to perform transport simulations of
shaped plasmas including the most correct neoclassical description of both plasma con-
ductivity and bootstrap current.

Transport modelling has been dedicated to the simulation of both ohmic and ECH dis-
charges in TCV. We have analyzed the experimental behaviour of the electron temper-
ature in TCV in order to identify the main experimental characteristics which must be
expected to be reproduced by a transport model. We have applied the Rebut-Lallia—
Watkins (RLW) transport model to both Ohmic and ECH plasmas. This model provides
a global scaling law for the energy confinement time which was found to be in very good
agreement with TCV data in Ohmic and ECH discharges in low confinement (L—) mode.
The local RLW transport model had already been applied in the literature to the simula-
tion of transport in other tokamaks. In those studies it provided many successful results,
in particular in the simulation of the electron heat transport, but it was not found consis-
tent with the experimental observations in all cases. We shall show that, when applied to

TCV plasmas, the model is well inside the validity domain identified by previous analysis.
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It turns out to be successful in the simulation of a very large variety of TCV heating and
plasma conditions. This model must be regarded as almost completely empirical, in the
sense that it is not derived from a consistent theoretical model based on first principle
physics. Because of this, it should be stressed that the application of such a model has lim-
ited relevance in transport studies dedicated to identifying the real physical mechanisms
producing anomalous transport. We believe that reliable predictions of the confinement
properties of future devices cannot simply be based on empirical models or scaling laws,
but require that the real physics responsible for anomalous transport is identified and
understood. Nevertheless, TCV plasmas with extreme auxiliary heating conditions and
record values of the electron temperature gradients have been simulated with surprising
accuracy by the RLW model. In this sense we are confident that its parameter dependence
can provide useful indications on the nature of electron transport, hopefully motivating

new dedicated theoretical investigations and experiments.

The application of this model has allowed us to provide a transport code which has been
used on a regular basis not only in simulations, but also in the preparation and design of
new experiments, and regarded as a useful and reliable tool by TCV experimentalists. In
particular it has provided valuable help in the discovery of an improved central electron
confinement regime in TCV. The correct description of the current density profile evolu-
tion in PRETOR has also allowed us to identify the modification of the central magnetic
shear, namely the shear reversal produced by strong counter current drive, as the key for

the improved confinement.

Most standard tokamak scenarios are characterized by the presence of an internal instabil-
ity which generates periodic oscillations of central temperature, density and other plasma
parameters. These oscillations are called sawteeth because of their characteristic sawtooth
shape, as observed on soft X-ray signals. Transport simulations of sawtoothing discharges
can not be performed purely on the basis of a transport model, but must also incorporate
a specific model for the sawtooth period and amplitude. Since sawteeth cause an outward
transfer of energy and particles, the sawtooth model must be actually regarded as an
integral part of the transport model. For this reason, in parallel with transport analysis
and simulation, we have been involved in modelling the sawtooth activity, with specific
~ emphasis on sawtooth period simulations. We have generalized a sawtooth period model
previously introduced for the prediction of the sawtooth period in the proposed Interna-
tional Thermonuclear Experimental Reactor (ITER), a project that involves almost all
the industrialized countries in the world and will provide the next step device towards a
fusion reactor. We have applied the sawtooth period model in the simulation of Ohmic
and ECH TCV discharges, as well as of discharges with neutral beam injection (NBI) in



the Joint European Torus (JET, located in the Culham Science Centre in Great Britain,
is the largest tokamak in the world and it is the result of a collaboration amongst several
European countries). The application of the model in two different tokamaks has allowed
us to investigate the physics of different sawtooth crash trigger conditions, and to identify
the plasma parameters most likely to be at play in sawtooth stabilization. In particular
the analysis and simulation of TCV experiments have highlighted the role of local current
profile modifications produced both by localized electron heating and current drive. ECH
turns out to be a powerful tool for modifying and controlling the sawtooth period. This
is of specific relevance to future applications in nuclear fusion research. Long sawteeth
can have undesirable consequences, such as the creation of seed magnetic islands capa-
ble of triggering pressure-limiting instabilities, highly reducing the plasma performance.
Therefore, understanding the physical mechanisms which govern sawtooth activity must

be considered a crucial issue for the scientific development towards a fusion reactor.

Moreover, in a burning plasma the dominant role in the determination of the sawtooth
period is likely to be played by a—particles. The investigation of the effects of fast parti-
cles on sawtooth stabilization is therefore of particular interest. For this reason, we have
performed a detailed analysis and simulation of dedicated JET discharges with NBI, as-
sessing the role of beam ions in sawtooth stabilization. In this way we have obtained the
first detailed understanding of the role of NBI on sawteeth. The sawtooth period model,
including a stabilizing contribution by beam ions, has been found to provide simulations
of the sawtooth period in good quantitative agreement with the experimental observa-
tions, by means of a sawtooth crash trigger condition which was predicted by a previous
work as the most likely to be relevant for ITER operation.

The present work is the first detailed test of a sawtooth model fully integrated in transport
simulations. The application to TCV and JET discharges made it possible to validate
almost all the aspects of the model.

I firmly believe in nuclear fusion as the main road towards satisfying the growing energy
demand of mankind. In view of the large number of physical and technological problems
which still remain to be solved towards a complete mastery of this almost unlimited nat-
ural source of energy, I hope I have been able to provide, with the present work, a small
but non completely negligible contribution.

Outline

In Chapter 2 we present the computation of the neoclassical transport coefficients for
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general axisymmetric magnetic configurations and arbitrary collisionality regime. First
we describe the analytical derivation of a set of kinetic equations suited for implemen-
tation in numerical Fokker—Planck codes. Then we discuss the numerical results, with
particular emphasis on the behaviour at small aspect ratio, and we compare with previous
formulae available in the literature. We identify the parameters able to correctly describe
the geometrical and collisional effects on the coefficients and then we present a set of
formulae of general validity, obtained by fitting the numerical results.

In Chapter 3 we introduce the concept of 1-1/2 D transport simulations for tokamak
plasmas. We present the equations describing transport and magnetic field evolution,
following more closely what is implemented in the code PRETOR. Finally, we present
and briefly discuss the Rebut—Lallia—Watkins local transport model, for both energy and
particle transport, in the form in which it has been implemented in the code.

Chapter 4 contains the results related to transport modelling of TCV discharges. After
a brief description of the TCV device and of the ECH system, we present an analysis
of the experimental behaviour of the electron temperature in discharges with auxiliary
heating. Afterwards we discuss the application of the RLW transport model to TCV
plasmas, in particular pointing out that the critical temperature gradient involved in the
model plays an almost negligible role. We present simulations of both Ohmic and ECH
plasmas, highlighting the characteristics of the model which are responsible for the good
agreement with the experimental observations. Finally a long section dedicated to the
improved electron confinement obtained in TCV provides a description of the experiments
and of the experimental observations, shows the results of some PRETOR simulations,

and discusses the effects of current profile tailoring on plasma confinement.

Chapter 5 is devoted to sawtooth period modelling. We first give a detailed descrip-
tion and discussion of the sawtooth period model and of the prescriptions for computing
the relaxed post—crash plasma profiles. Then we present the application of the model to
Ohmic TCV plasmas, identifying the relevant instability regime and stability threshold
for TCV operation. The model is then applied to ECH discharges in which dedicated
experiments have been performed in order to test the effects of power localization and
current drive on sawtooth activity. In the last section we present the work performed at
JET, with the goal of experimentally and theoretically assessing the effect of fast ions
arising from NBI on sawtooth stabilization.

In Chapter 6 conclusions are drawn on the work presented, and proposals for future

work are outlined.



Chapter 2

Neoclassical transport

2.1 Introduction

The expression neoclassical transport has been introduced to identify a supplementary
contribution to the classical collisional transport in magnetically confined plasmas, aris-
ing from the toroidal effects due to the confinement system [1]. Classical transport is due
to Coulomb collisions affecting the Larmor orbits [2], whereas neoclassical transport is
caused by collisions affecting the guiding centre orbits created by the magnetic field of
the toroidal magnetic confinement system. Depending on the value of the collision fre-
quency compared to the transit frequencies of the various possible guiding center orbits,
several different additional collisional transport processes can be involved and different
collisional transport regimes can be identified. Neoclassical transport is largely dominant
as compared with classical transport. Nevertheless the experimentally observed radial
transport occurring in a tokamak turns out to be in general significantly larger than the
one which can be ascribed only to collisional effects: the amount of transport which can
not be explained by collisional theory is usually called anomalous. On the contrary, trans-
port parallel to the magnetic field lines is believed to be well described by neoclassical
theory. For this reason recent improvements in neoclassical transport theory are almost
completely dedicated to parallel transport.

The neoclassical resistivity and the self-generated bootstrap current are widely used to
analyze experimental data and design new experiments (e.g. see Ref. [3]). Nevertheless,
perpendicular neoclassical transport needs also a precise computation in order to allow
a correct evaluation of the anomalous contribution by means of the comparison with the
experimentally measured heat and particle fluxes. This is becoming even more impor-
tant with the recent improved confinement modes of operation, with internal transport
barriers and relatively small anomalous transport in the plasma core. The formulae used
for the neoclassical transport coefficients are in most cases based on works done 15-20
years ago, where the results have been obtained for large aspect ratio, in the limits of
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small or of very large collisionality, or with a reduced expression for the Coulomb colli-
sion operator. In particular, relatively simple formulae for all the neoclassical transport
coefficients exist, valid for low inverse aspect ratio, e<1, and arbitrary collisionality v,
[4] (Vex being the ratio of the trapped particle bounce time to the collision time). For
the neoclassical resistivity and the bootstrap current, Hirshman has computed formulae
which are valid for arbitrary plasma equilibrium and low collisionality [5]. In Ref. [6]
Harris has derived simple formulae connecting these two limits using [4] and [5]. This
enabled one to study any configuration [7]: as near the center one has typically e<1 and
Vex~1, at mid-radius v,,<1 and at the plasma edge ¢<1 and v..~1, even in reactor-like
plasmas. A recent important improvement has been to solve a set of multi-species fluid
equations using the three odd velocity moments of the Fokker-Planck equation [8], follow-
ing the work of Hirshman, using interpolation formulae for viscosity moments from low
and large collisionality regimes. This enables one to compute not only the neoclassical
conductivity and the bootstrap current, but also the particle and heat neoclassical fluxes,
for arbitrary collisionality and aspect ratio, in addition to multi—species effects. However,
as a set of equations has to be solved in a specific code NCLASS, it is not of convenient
use for rapid experimental diagnostics or tokamak design over a wide range of parameters.
Simple formulae for the perpendicular neoclassical transport, valid for arbitrary aspect
ratio, have been computed only for the ion thermal conductivity in the banana regime
[9, 10, 11], and for various collision frequencies [12]. All these latter results [8]-[12] use
an approximate collision operator, usually following the expansion method of Hirshman
and Sigmar [13]. This method was also used to compute the like—particle collisions con-
tribution on the viscosity matrix [9], and these results were applied in Ref. [5] to compute
the bootstrap current coefficients at low aspect ratio. It has been shown in Ref. [14], and
mentioned in Ref. [8], that such an approximation for the Coulomb collision operator can
lead to errors up to 20% for the bootstrap current coefficients in which the contribution
given by the like—particle collision operator is particularly important. In Ref. [15] the
work published in Ref. [16] and [17] has been extended, and a complete accurate and
analytical set of formulae for the neoclassical resistivity and all the bootstrap current
coefficients has been provided, taking into account the full collision operator and includ-
ing the advection parallel to the magnetic field, considering the realistic axisymmetric
magnetic configuration of the flux surface. This set of formulae are therefore valid for
general axisymmetric equilibria and arbitrary collisionality regimes. In the collisionless
limit, namely the banana regime, formulae turn out to be in very good agreement with
the ones obtained in the same collisionless limit for arbitrary aspect ratio in Ref. [5],
using the reduced like—particle collision operator, but the non negligible discrepancy of
two bootstrap current coefficients, caused by this approximation, has been confirmed.
This has provided strong motivation to extend the work of Ref. [15] in order to compute
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all the neoclassical transport coefficients, in particular the ion and electron thermal con-
ductivities. Indeed, as already mentioned, all the previous and more recent evaluation
of the neoclassical ion thermal conductivity valid for arbitrary aspect ratio, are obtained
using the reduced like-particle collision operator, in particular [10] and [11]. Moreover,
for all the electron perpendicular transport coefficients, the only formulae available at
small aspect ratio are those in Ref. [18], valid in the banana regime, which use the ana-
lytical values of the transport coefficients at ¢ = 1 and the values at large aspect ratio of
Ref. [19] to obtain a set of formulae with a linear interpolation between these two limits,
which should be valid also at small aspect ratio. In the more recent investigations on the
ion thermal conductivity, [10] and [11], the intermediate aspect ratio corrections show a
difference with the results of [18] of almost a factor of two. For this reason, the work
done in Ref. [20], provides a necessary investigation of the small aspect ratio corrections
for all the neoclassical transport coefficients, taking into account the full collision operator.

In Section 2.2 we describe the approach to obtain the linear drift-kinetic equations suitable
for implementation in a Fokker-Planck code and the expressions to compute the transport
coefficients as simple integrals of the distribution functions. The related bounce-averaged
equations in the banana regime are then obtained, and the Lorentz model is investigated
analytically. In Section 2.3 we show the numerical results for the banana regime, com-
puted with the Fokker-Planck code CQL3D [21], which solves the linearized drift—kinetic
bounce-averaged equation with the full collision operator and considering the realistic
axisymmetric configuration of the magnetic surfaces. Some benchmarks are considered
to validate the results, and the comparison with some previous numerical and analyt-
ical results is shown. Then we present and discuss the numerical results obtained for
the neoclassical conductivity and the bootstrap current coefficients, obtained solving the
non-bounce-averaged drift-kinetic equations, with the code CQLP [16], and hence valid
for collisional regimes. In Section 2.4 we give a set of formulae which fit our numerical
results and allow to easily evaluate all the neoclassical transport coefficients in general
axisymmetric equilibria for arbitrary aspect ratio and ion charge. In subsection 2.4.1
formulae for all the transport coeflicients are presented, valid in the banana regime. In
subsection 2.4.2, formulae fitting the code results for the parallel transport coefficients,
valid for arbitrary collisionality and ion charge, are then presented. For the perpendicular
transport coefficients, combined formulae for arbitrary collisionality regime are proposed
in the last subsection.
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2.2 Kinetic theory

2.2.1 Transport coefficients

Our approach follows the standard neoclassical theory, in particular the one of Ref. [4].
Definitions of thermodynamic forces and fluxes are only slightly different. We begin
considering the Linearized Drift-Kinetic (LDK) Fokker-Planck equations [4] [Egs. (5.21-
24)]

Ofeo _ quII Ofeo
€ 8¢ me a’U” ’

Y b-Vfy—Ch(fn) = —(vp- Vi) %ff, (2.2)

U bV —Clfa) = —(vp- V)

with

C!=C!,+C', linearized collision operator,

. v

(vp-V¢)o = I(¥)y b-V (Qi) ,
0 fs0 Olnny g, 0(P) v2 3\ 0InT,g
“—=foo |—F— +t7a~t|3 3 )
o o T, oy vy, 2 oY
and where f,q is the unperturbed Maxwellian distribution function with related density
nyo and temperature T, of particle species o, whose mass is m, and electric charge g,.
vz, = 212, /m, and Q, = ¢,B/m, are the thermal velocity and the cyclotron frequency,

I(y) = RBy, b = B/B, and (®) is the flux surface averaged electrostatic potential.

Similar to the derivation presented in Ref. [4], we perform the following transformation

of the distribution functions

_ 2y uy) B(E)B) 9 /“’ dly ( _ B*E)B)
fel = 'U%"e feO + <B2> Y fse + TefeO o Bp BEH <B2> + He,

_ I()vy (Olnp; g (D) g ' dl, B*(E.B) ‘
le‘” Qz aw +i aw sz+ﬁf10L Bp BE* <B2> +Hz

where

Uy =

k(0B _ 1) (Tidhm) | o0
n; B \g¢ 0¥ o’

( ) denotes the flux surface average, f;. is the Spitzer function [22] and K;(?) is a function

of the magnetic poloidal flux ¢ which will be determined later; E, = Ej+ Fj (gin;)~! is the

so-called “effective electric field” and Fj, is the friction force between ions and electrons.

For the new distribution functions H, and H;, the LDK equations can be written in the

following “canonical” form:

vh-VH,— Cly(He) = =Y vyb-V(Yen) Aenfeo,

v b-VH; - Cii(H;) = - Z,Bin Ainfio,
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where we have introduced the flux surface averaged thermodynamic forces, as follows:

1 ape 1 api
A4 = — ——
T 500 p 0w
10T, _ (E.B)
A82 e T;—a—aa A’Ll - <B2> )
_ (EB) _ 19T
A63 - <B2> 9 Al2 7—;—6-'[—/)—,
W wK() (B
o4 nd ()T,
el Qe y e2 el 'U%e 2 )
V) fse B?
e3 — B, ed — Vel 7o
Tes .feO Ted Yel <B2>
q;v r
Bir = T-H B, Biz =v b~ V(y2),
. _ 1@y (v 5
7@2 - Qz U'%i 2 .

The conjugated neoclassical thermodynamic fluxes are identified in the expression of the

linearized entropy production [4], and can be defined as follows

B, = (/ dv (v” b v%n) H), n=1234, (2.3)
Bin = </ dv Bin H), n=1,2, (2.4)
which gives, with p the generic radial coordinate
Ba=T.%, Bua= 722,
paUB D ED
Bi1=gu%‘@, Bi2=%%,

where I'; and @, are the particle and heat fluxes of species o, jj is the total parallel
electric current, jys is the so-called Spitzer current and jjg; is the ion contribution to the
so-called “return current”. The flux surface average (jr;B) is related to the function
K;(%) by the following equation

(JiriB) = a; Ki(1)(B?).
Note that ion and electron forces and fluxes are mutually dependent
T

Bil = —[(’Qb)'fleff.3 Ae4, Be4 = I(w)’l’le Ail- ‘ (25)
i
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The transport coeflicients linearly relate forces with fluxes, B,p, = >, L7, Agsn. To

easily identify the role of each transport coefficient, we show the complete relation between

electron and ion forces and fluxes in the following form

Le % 1 Ll Lis

. e ap, 21 22
B JisB e e e
T. > - < T, 31 32 33
T()(E. B) 71c e e e
—Tzf— 41 42 43

1 Ope 1 QEL
ol e
24 [
e (B B) )
34 <B2§
e ge Ki(y 2
44 nfz 1) (B

YiriB) L {EsB)
T, [ 11 Lo ] 1(%) _
%5 Lo Lo T; 0%

The transport matrices in neoclassical theory are full, namely not only diagonal terms are
present, but also off-diagonal terms are non-negligible. The formers are easily related to
standard particle and heat diffusivities, whereas the latters involve supplementary effects,
connecting for instance particle fluxes with temperature gradients and heat fluxes with
density gradients. Furthermore, off-diagonal terms connect particle and heat fluxes with
the parallel electric field. This is the case of the Ware pinch [23], given by coefficients

¢4, With n = 1,2, 4, while the symmetric coefficients imply the bootstrap current [24, 25|,
yielding a contribution to the electric current due to density and temperature gradients.

We now perform the second transformation

He + Z VenAenfem

n
H; +vi24i2fi0.

Ge ==
G, =
The LDK equations for the new distribution functions are

Z 0(76nf80 en

—5i1fiox4i1— Cl(Yizfin)Ais

v b VG, —CH{G.) = (2.6)

y b VG; —CLY(G;) = (2.7)

Note that now all the coeflicients of the thermodynamic forces in the source terms can be

evaluated analytically [14],

~Ceo(Verfeo) = Ziveo(v)e1feo, (2.8a)
O (mafu) = Zavm(0)reafeo — via(n)h (%) et feon (2.8b)
—Cio(Vesfer) = qev”Bfeo, (2.8¢)
—Cly(Yeafer) = Ziueo(vmfeo, (2.8d)
—Cf; (vizfww) = —vio(v)h (vi:m) I(@(bl)iv“ fios (2.8¢)
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with
. 3T, . 3T,
(V) = : vio(v) = — ="
Veo(v) 477, v3 o(v) 2/27; v3
h(z) = (10— 42?) erf(z) — 10z erf'(z),
l . 44/ 2 Mo ZE 64 InA l _ 4ﬁ 0 Zz4 64 InA (2 9)
e 3 me 2 TH? n 3 mg/zﬂ%ﬂ . '

In Appendix at the end of the Chapter, Section 2.6, we present the derivation of Egs.
(2.8b) and (2.8¢). As the equations are linear and the thermodynamic forces can be
treated as independent, we can write the unknown function G, for the electrons as a
linear combination in the following form: G, = 3. genAen. For the set of functions gy,

Eq. (2.6) can be decoupled, leading to the following set of equations

0 b Ven — Clo(gen) = —Cl(Yenfw), n=1,2,34. (2.10)

In the same way, introducing G; =), ginAi, in Eq. (2.7) for the ions, we obtain
v b Vg1 —Cii(gn) = —Birfo, (2.11a)
Yl b- Vg — Cgi(gﬂ) = _Céi(7i2fi0)- (2.11b)

We look now at the definitions of the thermodynamic fluxes, Eqgs.(2.3) and (2.4); a simple
calculation shows that for the electrons we can write

Ben = Z l:(/ dv’yemcéo('?’en fe0)> - < ?;em Céo(’}’en feo»

Analogously the ion fluxes read

B, = Z(/dvﬂilgin>44im

n

B = ([ dvyaCly(oia f) Aia - Y [ avSEclinatal 4

At this point we can identify the transport coefficients

Lrn = </ dVYem eo(')’en feo)) (/ dvgem Clo(’)’en feo)), n,m=1,2,3,4,(2.12)
‘Cﬁn = </ dvgin /Bi1>, n= 17 27
i _ 9i1
Ly = /d +Cii(%i2 fin)), (2.13)
) _ gz2
5 = dV’)’z2 i ’Yz2 fio)) = ([ dv ’Yz2 fio))-

In this way we have obtained a simple set of expressions to compute all the neoclassical
transport coefficients, once we have solved the drift-kinetic equations, Egs. (2.10) and
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(2.11), to obtain the distribution functions g., and g;,. We see that every expression
is composed of the sum of two terms: the first one is an integral that can be computed
analytically and that, for some coeflicients, is identically zero; the second one has an
integrand in which the only term to be computed numerically is the distribution function
gen OF gin. Note that in the banana regime the first term, computed analytically, gives
directly the value of the transport coefficient at € = 1, when all the particles are trapped:;
the second term gives the reduction of transport due to the presence of passing particles.
In subsection 2.2.2 we show that Egs. (2.12) and (2.13) satisfy the Onsager relations [26]
of symmetry as expected. In Ref. [15] the expressions for the neoclassical conductivity
and the bootstrap current coeflicients, Egs. (7)-(11) in the Reference, where obtained in
terms of the adjoint functions x. and x;, solving the adjoint equations, Egs. (3) and (4)
in the Reference, which were obtained following the work of Ref. [27] adapted to this
problem in [14] and also described in Ref. [16]. In the present formulation, which follows
the one of Ref. [20], the adjoint formalism is shown to be not necessary, as the effect
of introducing the adjoint functions is equivalent to the linear decoupling of the direct
equations, which allows to pass from Egs. (2.6) and (2.7) to Eqgs. (2.10) and (2.11). With
a simple calculation, analogous to the one presented in subsection 2.2.2 for the Onsager
symmetry, it can be shown that the expressions given for the neoclassical conductivity
and the bootstrap current coefficients in Ref. [15] are completely equivalent to the ones of
Egs. (2.12), with m = 3, and Eq. (2.13), m = 2, n = 1. For this reason in the following
sections the numerical results of Ref. {15] will be presented together with the ones of [20],
without making any distinction. Also it should be noted that the resulting equations to be
solved are similar to standard Fokker-Planck equations, with just source terms modified.
As the source terms can be easily evaluated by Eq. (2.8), the use of the codes CQL3D
and CQLP was straightforward. In addition, due to the different transformations, the
source terms do not need any information on plasma profiles (A,,), which enables generic

transport coefficients to be calculated.

2.2.2 Onsager symmetry of the transport coeflicients

The expressions for the transport coefficients given by Eqgs. (2.12) for the electrons and by
Egs. (2.13) for the ions satisfy the Onsager relations of symmetry, as expected [4]. We be-
gin with the electron case. In Eq. (2.12), the first term, £5,, = ([ dvyemClo(Yen fe0))
is symmetric directly from the self-adjointness of the collision operator. Hence

‘Cfnn(l) = (/dv'yemcéo(’)'en fe0)) = (/dV’yenCéO(’yem feo)) = ‘szm(l)‘ (2.14)

For the second term, L££,,Y = ([ dVgem/ feo Clo(Yen fon)), We shall rewrite it in a sym-
metric form. Introducing the following notation [4], for a generic function f(v), f+ =
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5f(c=+1)+ f(o = —1)]isitseven partino = v /|vj| and f~ = 3 Lflo=41) - f(o =
is the odd part, so that

|'l)“ |B : Vg:n - Celzo(ge_n) = _Céo(’yenfeO)’

o [B- Vo, — Clo(g) = 0,

en

(as Cé0(7enf60)_ = Cflgo(’YenfeO) and CO(7enfeO) - Oa n= 1a2a3’4),
we can perform the following derivation:

[’fnn(Z) = (/d Jem Cl (7en fe0)> = ( dvgem Cl ('7en feO)_) -

o o
— dvg;em (01D - Vi, — Clolgz)]) =

([ dva= [l 1B Vo = g2 Chtaz)]) =
~(f dvﬁ (=2 Clol9E) = G Clolg)]) =

([ @V gom sl = ([ dv = nCllaem)) = L3, (215

which is a symmetric expression, using the self-adjointness of the collision operator. (Note
that we have used in this derivation the fact that the operator —uv b - V is the adjoint of
the operator v b- V). A somewhat analogous calculation can be performed for the ion
coefficients £¢, and £, which shows that the two given expressions, Egs. (2.13), satisfy
the following relation

o= —Lh, (2.16)
consistently with the result in Ref. [4], Eq. (5.99).
2.2.3 Banana regime: bounce-averaged equations

When the collision frequency ve;(v) = Z; vy = (37'/2/47,) (v /v)® is much smaller than

the bounce frequency vy ~ €'/2 vr./qR, the distribution functions g., can be expanded as

2
Vei Vei
gen = geon + (_6> geln + O <_> :l 3
143 Vy

and analogously for the ion distribution functions. A somewhat standard derivation,

follows

[4, 19], shows that the functions g2, are independent of the poloidal angle 6,, and that
they are zero in the trapped particle region of velocity space. In the passing particle

region, the functions ¢°, satisfy the following bounce-averaged equations

/ do C'lo(geon) = Sen, n=1,234, (2.17a)

Plog 17

/ d9P|,U_B|Cii(gi91) = Sin, n=1,2, (2.17b)
- I
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with
Sen = 210 (BCY, (v, B)) feo, n=1,234, (2.17c)
. (B2 )
Sil = 2710 gLT—l fig, S,;g = 2o <B CZQ(U, B)> fio, (217d)

where 0 = v /|v| | and where we have introduced the set of functions C} (v, B), defined

as follows

CZn(vaB) = Cflr(7anf00)/(vll faO)-

The analytical expressions of these functions can easily be obtained from Egs. (2.8).
Note that (BC],(v,B)) = (BCJ,(v, B)), so that the functions g% and g2 solve the
same equation in the banana regime; in particular it follows that £44 = L14: this is a
consequence of our choice of thermodynamic forces and fluxes. We see that at ¢ = 1, when
all the particles are trapped, the distribution functions g2, are zero everywhere, and the
first terms in the expressions for the transport coefficients, Egs. (2.12) and (2.13), give
directly the entire coefficient. The code CQL3D has been modified to solve Egs. (2.17)

in general axisymmetric equilibria and with the full collision operator.

2.2.4 Lorentz model

For the Lorentz gas model, Z; > 1, the set of Eqgs. (2.17a) is solved analytically, [4][28].
In fact, as collisions between electrons can be neglected, the collision operator can be

approximated by the pitch-angle scattering operator:

! . 19 2y 0 = 4
= Vei = Vei eyl € EYs =
CeO 4 (U) L 4 (U) 9 86( € )ag and é- v
The solutions of Egs. (2.17a) in this approximation can be written in the following form
Ac !
o _ _,_"Y v dA - 2.1
gen 021/51;(’0) (Bcen(UaB» feO \ ((1 _ /\’B)1/2> H()‘C )‘)’ ( . 8)

where A= (1—-¢6%)/B , A.=1/B. and H(z) is the Heaviside function. Introducing
Eq. (2.18) in the expressions for the coefficients Eqs. (2.12), all the electron transport
coefficients can be written as integrals in the absolute value of velocity v:

vt dv
Ves (’U)
The integrals of v can easily be computed analytically, and the results have been compared

with Ref. [4], Egs. (5.121), (5.124 - 5.130), finding a complete agreement. As the Lorentz
model coefficients will be used not only as a benchmark for the results of CQL3D, but

4 o0 o0
Le, = il vt dv(%—mCZn> feo + 7r/
3 0 Y| 0

<B CZm><BCZn> feO’ n,m= 17 2a 37 4.

also to analyze the results of the code with the full collision operator and in different
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axisymmetric configurations, we report all the electron transport coefficients, which can
be written in the following simple form

¢ = —0.5LyB2(B™3)]f¢, (2.19a)
4 — e 13 —
21 = 0.75 Ed[Bg<B 2>]ftd7 22 = _‘g‘ ['d[Bg<B 2>]ftd7 (2-19b)
e e e e 32 _
531 = 534 = _[fbft; ['32 =0, 33 = _g‘ca[Bo 2<B2>]ft, (2~19C)
L5 = L5 =—05L4Bi(B*)f;, L5 =0.75LyB5(B*>)7"|f, (2.19d)

with
2 2 2
NePey ( dip Neqe Te
Lo=—"2(= Ly = I(¥)n, o= —2°B2 2.20
=2 (E) L L=rwm, L="EER @
and where we have introduced two definitions for the trapped fraction
3, o— 3
fi=1-7(B 71, fo=1-7(B" I, (2.21)
Ac )\’d)\'
Ty =

o (A-XNB)Y?)
The second one, f;, is the usual definition for the trapped particle fraction [9]. Note that

the integral Z, can easily be evaluated using the formulae in Ref. [29]. The poloidal
gyroradius p,, of species o is given by

v V2me T

- |Qap| a |qa|Bpo(p),
like in Ref. [4], Eq. (5.122), where the poloidal magnetic field By,(p) is defined by
Bpo = (dv/dp)Bo(v)/1(¢), and By(v) is an arbitrarily chosen function introduced to
normalize the magnetic field on a given flux surface. Note that the flux surface averaged

Pop(p) (2.22)

integrals Iy, I13 and Iz3 which appear in the results of Ref. [4] can be reduced to only
the two trapped fractions, Egs. (2.21), with the following relations
4 _ 4 4

In= 5[33<B RIFe Ly =3 fo Iy = 3[By 2(B))] fi- (2.23)

We see therefore that all the coefficients in the Lorentz model depend essentially on f¢

and f;. We shall show in the next Sections that in the general case this property remains

true, namely that all the equilibrium effects on the neoclassical transport coefficients are

functions of only these two trapped fractions.

2.3 Numerical results

2.3.1 Benchmarks

As the Lorentz model gives an analytical solution, it can be used as a first benchmark for
the numerical results. In Figure 2.1 we show the transport coefficients £7,, and L5, relative
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Figure 2.1: Transport coefficients L3, and L3, for an almost cylindrical equilibrium, com-
puted by CQL3D in the approzimation of the Lorentz model (circles), and compared with
the analytical results, Eq. (2.19) (solid lines).

to the sources Se; and Seo, Eqs. (2.17), computed by CQL3D in the approximation of
the Lorentz model: very good agreement is obtained for all e. The coefficients in the
Figure, indicated by L; ,, are plotted normalized by the relative factors L4 or L, given
in Egs. (2.20). This normalization for the electron transport coefficients is also kept in
Figure 2.2 and Figure 2.7, and analogously in Figure 2.6 for the ion transport coefficients.
The complete definition of a set of dimensionless coefficients will be given in the next

section.

When the full collision operator is used, the symmetry of the transport matrix gives a
second benchmark of the numerical results: indeed, each off-diagonal coefficient can be
computed in two different ways, L, and L,,,. In Figure 2.2(a) we plot the results for the
coefficient L£};, computed solving the kinetic equation with the source S,;, Egs. (2.17a,c),
n = 1: they are perfectly aligned with the solid line representing the code results for the



2.3. NUMERICAL RESULTS 19

0.7

symbols L12
solid line L31 - 0.6} solid lines L21

symbols L1 3

(a)

(b)

% ol ——
0 02505075 1 0 02505 075 1

ft 81/2

Figure 2.2: Onsager symmetry is correctly respected by the numerical results. (a) The
transport coefficient LS5 (symbols), plotted vs f;, is well aligned with the numerical results
for the bootstrap current coefficient L5, (solid line). The different symbols refer to different
equilibria in all the Figures. Note that the results given by the different equilibria are
perfectly overlapped, as they are plotted vs f,. (b) Transport coefficient L, (symbols) and
L%, (solid lines) computed with four different equilibria, plotted vs €'/2. Note that when
the complete coefficients are plotted vs the inverse aspect ratio, a strong dependence on
equilibria appears at small aspect ratio, large €.

bootstrap current coefficient £5;, hence computed with the source S.3, Egs. (2.17a,c),
n = 3. In Figure 2.2(b) we plot the two coeflicients £{, and L5, computed considering
four different equilibria, as shown in Figure 2.3, and whose main specifications and related
symbols, full or open, used in all the Figures are given in Table 2.1. The coefficient
L35, obtained solving Eq. (2.17a,c), n = 1, is plotted with symbols, the coefficient L5,
obtained solving Eq. (2.17a,c), n = 2, is plotted with solid lines: we find a very good
agreement between the two coefficients, within 1% for € > 0.1. We see also that the
behaviour of the transport coefficient strongly depends on the equilibrium at small aspect
ratio. Previous formulae, which give the transport coefficients with an expansion in powers

1/2

of €'/%, are correct only for almost cylindrical equilibria and are of practical interest in
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| Symbol | Ryag ] | Rgeo m] | @ [m]| &k | & |
0 2.13 2.13 1.925 1.0 0
O 8.44 8.00 2.750 1.8 0.32
> 1.67 1.22 0.875 3.0 0.56
< 0.92 0.88 0.252 2.5 -0.65

Table 2.1: Equilibria specifications and related symbols used in the Figures.

general equilibria only for € < 0.1: this must be taken into account when comparing with
our results. It indicates that for each transport coeflicient an appropriate geometrical
parameter, like f; for £5; and L5 in Fig. 2(a), needs to be used instead of ¢, as it will be

shown in the next subsection.

2.3.2 Comparison with previous results, behaviour at small as-
pect ratio

As mentioned in Section 2.1, formulae for arbitrary aspect ratio for the transport co-
efficients are available only for the neoclassical conductivity, the bootstrap current co-
efficients and the ion thermal conductivity. When comparing the numerical results of
the code CQL3D with Hirshman’s formulae for the neoclassical conductivity [9] and the
bootstrap current coefficients [5], general very good agreement is found, exception made

for coefficients in which the contribution given by the like—particle collision operator is

Figure 2.3: Different equilibria used for the numerical computation of the transport coef-
ficients, whose main specifications are given in Table 2.1.
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particularly important, hence coefficients ££, and £5,. The bootstrap current coefficient
L3y = —L35,/I ne computed with CQL3D is compared with the Hirshman’s formulae in
Figure 2.4. The disagreement is more significant at small values of the charge number Z,
pointing out that it must be ascribed to the like-particle collision contribution. Indeed,
as it can be seen from Eq. (2.12) and Eq. (2.8), the term —C';(v.2fe0) is given by two
contribution of opposite signs, one involving electron-ion collisions, the other involving
electron-electron collisions. Consequently, the integrand in Eq. (2.12), m = 3, n = 2,
has different contributions from the small and large v spectra; in particular, the term
deriving from the like—particle collision operator, involving the function h(v/vre), has its
main contribution from the high energy tail, in the region v/vr, ~ 2, which therefore
explains the discrepancies with the results obtained adopting an approximate collision
operator. The velocity dependence of the two contributions involved in the integrand of
the bootstrap current coefficient L3y, and called for simplicity L35 .. and L35 ; are shown

in Figure 2.5, with solid circles in the case of low collisionality.

The most recent investigations on perpendicular neoclassical transport were dedicated
only to the ion thermal conductivity [10, 11]. In Figure 2.6 we compare our results for
the coefficient L£3,, obtained with an almost cylindrical equilibrium, with the results of
Refs. [10, 11, 18]. The simple geometry is necessary for the comparison, since some of
the previous results are valid only in this limit. As mentioned at the end of the previous
paragraph, a correct geometrical parameter must be chosen to plot a given transport co-
efficient. As it can be inferred from the Lorentz model results for the electron coefficient

52, Eq. (2.19b), and as it will be presented later, the ion heat conductivity is a function
of the trapped fraction f¢, Eq. (2.21). We find good agreement with the most recent
formulae of Refs. [10] and [11]. These results enable to finally resolve the discrepancy
between the formulae given in Refs. [10] and [11], obtained with approximated collision
operators. It turns out that the results with the full collision operator, CQL3D, are in
between the previous results. Note that the plotted formula of Ref. [18] has been mod-
ified, keeping in the expression for the transport coefficient the flux surface average of
the magnetic field, which were correctly computed in the Reference to obtain the limit at

€ = 1, but then not taken into account in the final formulae.

When different axisymmetric equilibria are considered in the numerical calculations, the
transport coefficients exhibit particular geometrical effects at small aspect ratio, as al-
ready highlighted in Figure 2.2(b). In Figure 2.7 we also show the electron coefficient £3,
(~ Xe, €lectron heat conductivity), computed with the four different equilibria of Table
2.1. In Figure 2.7(a), L5, is plotted versus €!/2: we see differences up to 30% already at
e = 0.15. In Figure 2.7(b) we show the same coefficient £5, divided by the appropriate
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flux surface average (B < B~? >) and still plotted versus €'/2. Although the correct
normalization, the geometrical parameter is not adequate to allow the overlapping of the
curves obtained with the different equilibria. Therefore such a paramter would not enable
one to produce a unique fitting formula for the transport coefficient with a global geo-
metrical validity. In Figure 2.7(c) we plot £5,/(B2 < B=2 >) versus the trapped particle
fraction f¢, defined in Eq. (2.21), as suggested by the results of the Lorentz model: the
points are well-aligned at all fZ, i.e. at all e. The same behaviour is obtained for all the

-0.05

-0.25

Figure 2.4: Bootstrap current coefficient Lyy = —L5,/I n, versus f;, for different charge
number Z in the collisionless limit (CQLSD). Solid lines are obtained from Eqgs. (2.26f),
(2.27e) and (2.27f). The dashed lines are obtained from Hirshman’s formula.



2.3. NUMERICAL RESULTS 23

other transport coefficients: the coefficients must be normalized by a suitable flux sur-
face average and a correct geometrical parameter must be used to encapsulate the effects
of the different equilibria. Note that the definition of a new trapped particle fraction,
£ Eq. (2.21), is effectively necessary, as suggested by the Lorentz model, to correctly
describe the geometrical behaviour of certain coefficients, in particular all the particle
and heat conductivities, for which the usual one, f;, turns out to be inadequate. From
Figure 2.2 or Figure 2.7 it is also evident that, when plotted versus the correct parameter,
the transport coefficients turn out to be very simple functions, almost proportional to
the appropriate trapped fraction. This allows to express the transport coefficients with
particularly simple formulae in terms of the appropriate geometrical parameter, as it will
be presented in Section 2.4 and shown in Figure 2.9, for all the perpendicular transport
coeflicients. Hence the study of the effects of plasma shape on the neoclassical transport
can be simply obtained considering the dependence of the trapped fraction on plasma
elongation and triangularity at a given aspect ratio. Both the two given expressions for
the trapped fraction, f; and fZ, Eq. (2.21), turn out to be almost independent of elon-
gation, and increasing when decreasing triangularity. In this sense, in the neoclassical
transport, at a given value of the aspect ratio, a highly triangular plasma shape is favor-
able for confinement, as shown in Figure 2.2(b) and Figure 2.7(a) (symbol ), but not
favorable for driving bootstrap current.

Figure 2.5: Velocity dependence, normalized to vy, = +/2T./me, of the integrands of
Lo ce = L3gee/I ne, solid lines, and Lzs_¢; = L3¢/ ne, dashed lines, of the bootstrap
current coefficient Lss = —L5,/In.. Solid circles for a low collisionality case (CQL3D),
open squares for an high collisionality cases (CQLP)
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1} i 2 -2
L22/ (BO<B >)

Figure 2.6: The ion heat conductivity, transport coefficient Ly, computed by CQLSD
with an almost cylindrical equilibrium (solid circles), divided by the flux surface average
B2 (B~2), plotted vs the trapped particle fraction f2 and compared with formulae of Ref.
5, CH 82 (dashed-dotted line), Ref. 6, T 88 (dashed line), and Ref. 10 (modified), HHR
78 (solid line).

2.3.3 Neoclassical conductivity and bootstrap current coeflicients
at arbitrary collisionality

The code CQLP [16] solves the Fokker-Planck equation using the linearized operator on
a magnetic flux surface, including the advection parallel to the magnetic field. It does
not make any assumption on the ratio of the collision frequency to the bounce frequency.
Moreover, like CQL3D, the code uses the magnetic geometry as calculated by a toroidal
equilibrium code and therefore uses the realistic axisymmetric magnetic configuration
of the flux surface. With this code we have solved Egs. (2.12), with m = 4, and Eq.
(2.13), m = 2, n = 1, in order to compute the neoclassical conductivity and bootstrap
current coefficients for arbitrary collisionality. Particular care in this context have been
taken in order to compute the bootstrap coefficient Lzy = —L5,/I n.. As we have already
mentioned, this coefficient is given by two different contributions, arising from electron-
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Figure 2.7: The transport coefficient L5,, main contribution to the electron heat conduc-
tivity, computed by CQL3D with four different equilibria: (a) the complete coefficient is
plotted vs €'/2, a strong dependence on the different equilibria appears at small aspect ra-
tio; (b) the coefficient is divided by an appropriate fluz surface average BE (B~?%), and
still plotted vs €'/2: although the correct renormalization, the geometrical parameter is
not yet adequate to encapsulate all the geometrical effetcs; (c) same as (b) but plotted vs
the correct geometrical parameter, f, which allows to perfectly align all the points of the
different equilibria.

ion and electron-electron collisions respectively, which are of opposite signs and which, for
like—particle collisions, involve dominant terms from the fast spectrum of the distribution
function. In Figure 2.5, with open squares, the integrands Lss . and L3s,; are shown
for a CQLP run at high collisionality. Moreover it can be inferred from this plot that
both terms will have a different collisionality dependence, as their main contributions
come from different v region. Increasing collisionality modifies first the small v region,
and therefore modifies first L£32¢;. This is shown in Figure 2.8, where both terms, L35 .
and L3o ., are plotted versus v... Note first that, at very low collisionality, the results of
CQL3D for the banana regime are correctly recovered by the collisionality dependent code
CQLP. On the other hand, at very high collisionality, the limit of L35 is zero and therefore
L32.¢e = - L39.¢; for ve, > 10. Solid lines in Figure 2.8 show the fitting expressions of the
numeric results for the transport coefficients computed in terms of f;, v.., and Z, and
which will be presented in the next Section.
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Figure 2.8: Bootstrap current coefficient L3y = —L32/Ly = L3g_ee + L3o_¢; versus collision-
ality Ves.

2.4 Transport coefficients formulae

2.4.1 Analytical fits to the numerical results for the banana
regime

Considering the results of the previous section, we can introduce a set of dimensionless

electron and ion transport coefficients K7

L, = LBXBAKe.(FH, nm=12 (2.24a)
Lrs = LyKis(fe), n=1,24, (2.24b)
ne = LaBYBY)Kn(f), n=12, (2.24c)
s = L[By*(BY)] K (f2), (2.24d)
Ly = Li[By*(B*)]Ku(f), (2.24e)
= LLKL(f), (2.24f)

» = LylBY(B™*)]Ky(f), (2.24g)
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and analogously all their symmetrics, where L4, £, and L, are defined by Eqs. (2.20);
the ion normalization factors, £5, £ and L., are defined as follows:

d:L(d_f) o L=Iwm,  Lo="U0i (225)

The dimensionless coefficients are functions of only one suitable geometrical parameter, i.e.
a trapped fraction, which completely encapsulates the effects of the various equilibria: in
this way the code results for the coefficients K7 can be fitted in terms of the appropriate
trapped fraction, f; or f¢, as they perfectly overlap, regardless the equilibrium considered
in the calculation, even highly non-circular and at small aspect ratio. Note that only
in this way relatively simple formulae valid in general axisymmetric equilibria and at all
aspect ratios can be given. We have run the code CQL3D with different equilibria and
for the electron coefficients we have also varied the ion charge, to obtain the dependence
on the effective charge Z. Our idea is that, at least for the electron transport coefficients,
an effective charge approximation for multispecies cases should still be valid: collisions
between electrons and main ions, or between electrons and impurity ions are almost of
the same kind, involving basically the pitch-angle scattering. In any case, the comparison
with the results of multispecies codes [8] should enable one to determine the correct form
of Z, instead of the usual definition of Z,y, to be used in our formulae. For the ions, the
presence of one heavy impurity species leads to collisions between main ions and impurity
ions which involve basically the pitch-angle scattering, and which are completely different
from like—particle collisions. In this case, as shown in Ref. [30], the thermal conductivity
computed as Z.ss times the pure ion conductivity is underestimated. Using the results
of Ref. [30], which uses the large aspect ratio limit of Ref. [31], we have generalized our
formula for the transport coefficient L5, to include the effect of a single heavy impurity
species in the Pfirsch-Schliiter regime. We have also adapted the formula for the bootstrap
current coefficient (¥ in the banana regime, obtained fitting the CQL3D results, in order
to include the same effect, using the large aspect ratio limit of Ref. [31], and noting that
at € = 1 not only the pure plasma coefficient, but also the impurity contribution must be
equal to zero. The analytical fits to the results of CQL3D for all the transport coefficients
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valid in the banana regime, for arbitrary trapped fraction and Z, read as follows:

CHAPTER 2. NEOCLASSICAL TRANSPORT

q(f) —0.5 Fy (), (2.26a)
L) = 075 F(f), (2.26b)
1s(ft) K34 = — Fi3(f1), (2.26¢)
14(f2) K% = —0.5 Fu(f), (2.26d)
. 13 V2
Ksa(£2) - ('8— + ﬁ) Fo(£), (2.26¢)
53(fe) — (Fasee(ft) + Fazei(fi)), (2.26f)
24(f2) 0.75 Fi2( 1), (2.26g)
53(fe) (Fs3(f:) — 1)/Z/N(Z), (2.26h)
Kyn(ff) = —Fu(f)), (2.261)
. 0.9 19 ., 16 5 06 _,
Fu(X) =01+ Z+0‘5)X os X t s X T sk (2.27a)
0.6 0.95 0.3 0.05
= ~ X? X3 X4, (2.27b
Fe(X) =0+ 7205 ~ 2305~ TZ+05" T Z1o5° (2¥)
. 14 . 19 ., 03 o 02
F13(X)_(1+Z+1)X 71 +———Z+1X +Z+1X’ (2.27¢)
0.11 0.08 0.03
=(1- X 2 3 2.2
Pa(X) = (- 755X * Z505% T 2705 (2:27d)
. 0.05+0.62Z .
FoeelX) = Za0aayX — X0+
__1_ 2 _ yv4 3_ y4 1.2 4
0z [X? - X% —1.2(X3 - X)) + AL (2.27¢)
. 0.56+1.93Z7 .
F23_ei(y) = _m(y Y )+
4.95 9 4 3 4 1.2 .
— = [Y°-Y"-0. -YYH] - —— 2.2
1+248Z [Y*=¥E-055(y N =1 +05Z° (2:278)
. 0.36 059, 023_,
F3.3(X)—1 I+ —)X + —= X" — —=X, (2.27g)
FiL(X)=(1-055)(1+ 1540) X +
(0.75 X* — 0.7 X% + 0.5X*) (1+ 2.92¢), (2.27h)
; 062+ 1.5 1—
a(fy) = Ky = - ! Ji (2.28)

053+ Q; 1-0.22f,—0.19f7
where (¢ 1 =n;Z%/n;Z? is the usual impurity strength parameter, and index I refers to
the ion impurity species. The factorizations used in Eqgs. (2.26) and (2.27) are such that
the Lorentz limit (Z — 00), the low (f; — 0) and the large aspect ratio (f; — 1) are easily
recovered. Moreover the functions Fj; have values within [0, 1]. Note that Kf; and KS,,
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as well as K%, and K, have the same functional dependence on their respective trapped
fraction. The coefficient K33 is obviously directly related to the neoclassical conductivity:
indeed it reads

Tneollt) _ g N(2) Kss + 1= Fis(f), (2:29)
O Sptz
where
T[CV]3/2 0.74
4 e -10-1
L =1. . S e B ; Z)=0. .
Osptz = 19012-10° 7 mm im0 5 N(Z) = 058+ 5=

This set of relations can be considered as the extension to a general axisymmetric equilib-
rium at all aspect ratios of Egs. (6.28) - (6.30) and Eq. (6.47) in Ref. [4]. We have also
computed the coefficient Eil, which is usually not considered, using the weak-coupling
approximation which neglects the force A;;. For completeness, we give also the fit to the

code results for the transport coefficient K¢,
Ki(f) = (011 4+ 1.7 f, — 1.25 f2 4+ 0.44 f3)7! — 1.

Note that Eqs. (2.5) allow one to reduce the number of independent thermodynamic
forces from 6 to 4, hence with only 4 conjugated thermodynamic fluxes. Taking the first 3
electron forces and the second ion force, whose conjugated fluxes have more direct physical
meaning and more direct application in the fluid transport equations, the relations which
connect fluxes with forces read as follows:

3 R
_ e 1 T L5,
Ben - Z{Enm FZ?TE [I(w)nz]Z}Aem

m=1
1 T; e [:112 _
~F 7T S Ty A, n=1,2,3, (2.30a)
1 £ < .1 T, L[
B, = =24 L Aem L — = 127 pe R 4, 2.30b
2 fI(T/))ﬂqmX::l 4m +{ 22 ]:Z,?Te [I(’L[))nz]Q 44 25 ( )

where

% e
n Lll 44

=1 2T T

and Z; is the main ion charge number. The condition for the validity of the weak-coupling
approximation is given by Eq. (5.86) in Ref. [4], and is simply F—1 < 1. Introducing the
dimensionless coefficients K, ., this relation reads, consistently with the estimate given

in Ref. [4], Table IV:
W2 (m\E (T\? ... ..
Z- (—) (T“) 14 ’Cll << 1. (2.31)

m;

[SIH

The absolute value of the term X%, K}, turns out to be smaller then 0.25, which confirms
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the validity of the weak coupling approximation in the banana regime. In this way Egs.
(2.30) are reduced to:

. |
[ € El
Ben = chmAem - ZT L2, le; Az, n=1,2,3, (2.32a)
) i T; 512 21 pe i
B = i o Cotent {Eu Zrisiiti) 4 o
1 1
e e
0.8 K11’ K 0.8 K12’ K21’
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Figure 2.9: Computed values of the dimensionless transport coefficients K2, (symbols),
compared with the fitting formulae, Egs. (2.26) and (2.27), (solid lines). (a) Coefficients
K5, plotted vs f2, (solid symbols), and K¢, plotted vs f;, (open symbols). (b) Coefficients
K5, and K<, plotted vs f&, (solid symbols), and K, plotted vs f;, (open symbols). (c)
Coefficient K5, plotted vs f2, (solid symbols). (d) Coefficient Ks, plotted vs f&, (solid
symbols).
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In Figure 2.9 we compare the code results for the dimensionless transport coefficients K7
(symbols) with the algebraic formulae, Egs. (2.26) and Eqgs. (2.27), which fit the data,
(solid lines).

2.4.2 Analytical fits to the numerical results for parallel trans-
port at all collisionality

As already presented in subsection 2.3.3, the code CQLP has been used to compute the
neoclassical conductivity and the bootstrap current coefficients for arbitrary collisionality,
solving the non-bounce-averaged kinetic equations, Eq. (2.10), n = 3, and Eq. (2.11b).
As we have shown at the end of subsection 2.3.2, as well as in the previous subsection,
the trapped particle fractions, f; and f¢, turn out to be the best parameters in order
to encapsulate the geometrical effects on the transport coefficients in the collisionless
limit. For this reason it seems better, when fitting the numerical results for collisional
regimes, to change only f; as a function of v, if possible. In this way one can first find
the polynomial dependence of K3, on f; in the collisionless limit using CQL3D, which is
faster and more accurate, as presented in the previous subsection, and then determine the
effective trapped fraction f;(ve.) for finite collisionality, while keeping the coefficient of the
polynomials independent of v.,. This procedure is also easier to find an analytic formula
valid for arbitrary f; and v.., as one does essentially two 1D fits, instead of one 2D fit.
Finally it is interesting as one naturally obtains an estimate of the effect of collisionality
on the fraction of trapped particles. This procedure was shown to be possible for 6., and
the bootstrap coefficient L3; in Ref. [17]. In this way, the dependence on collisionality
for the coefficients K3, can be simply obtained replacing, in the corresponding functions
Fj,, the effective trapped particle fractions, depending on collisionality,

fu(vee) = 1+(1—0.1ft)\/zft+0.5(1—ft)ye*/z’ (2.33a)
(V) = 1+0.26(1— ft)\/z/_e*+f(t).18(1—0.37ft)z/e*/\/7’ (2.33b)
i (Ver) = 1+(1+0.6ft)\/12+Oj.t;5(1—0.37ft)z/e*(1+Z)’ (2.33¢)
(Vo) = 1+(0-55—0-1ft)\/fft+0.45(1—ft)ve*/Z3/2’ (2.33d)
oi(Ver) = It (2.33¢)

14+ (1=0.1f;)\/Ver + 0.5(1=0.5ft)Ves /Z
We have tested different definitions of v, and v;,, using some averaged poloidal magnetic
field instead of rB/qR and/or some function of f; instead of €/2 for example. However
the simple following definitions
s ¢RneZInA,

. 18 an,Z‘*lnAm
T2e2

— -1
Ver = 6.921 - 10 ’1—;263/2 ’

Vi = 4.90 - 10™ (2.34)
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Figure 2.10: The bootstrap current coefficient L3 = —K5,, open circles, and L34 = —K3,,
crosses, vs. collisionality ve., as obtained with CQLP. The solid lines are obtained applying
the formulae given in Eq. (2.26¢), Egs. (2.33a) and (2.33e) respectively.

where

’ N Z8
nA, = 31.3—-In{ Y%},  IlnA;=30-In i
T T3/2

2

with the combination of Rq and €~3/2, gives the best overlap of the results of the different
equilibria at same values of f; and v,., as shown in Figure 2.8 and Figure 2.10. We see
also from Egs. (2.33a, 2.33e) that K%, is indeed almost equal to Kf,, except at very large
Vex, as seen in Figure 2.10 and in agreement with Ref. [4]. This is why we only had
to change slightly the collisionality dependence of f3%, as it can be easily shown, using
the bounce-averaged equations, that £34=L3; in the collisionless limit. For the bootstrap
current coefficient (¢ = —K,, we have not used the same structure. First it should be
emphasized that the actual coefficient for the ion temperature gradient is K34 Q. Second,
Figure 2.11(a), the coefficient has a very sharp v;, dependence, which is very sensitive
also to f; as shown in Figure 2.11(b). It is therefore not possible to decouple the f; and

v;, dependences as it is done for the other coefficients. This is why we have modified
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Figure 2.11: (a) Coefficient ¢ for three different values of f; vs v;.. The lines correspond
to Bq. (2.35), and they are reproduced on the 3D plot. (b) 3D view of the coefficient (x
in terms of f; and v;, for Z = 1. Note that the sharp rise depends strongly on both f, and

Viy

the formula proposed by Harris [6] such as to reproduce the correct results in the banana
regime, Eq. (2.28), as well as in the plateau region, and such as to have a function of f;
rather than ¢ in order to be valid for any axisymmetric geometry

Qi + 0.25(1 = f2)/Vis . 1
av) = |— s ](_ VY +0.3150, f) | ————=- (2.35)
14 0.5,/v;. 1 + 0.15v;, f¢

2.4.3 Combined formulae for radial transport at all collisionality

In order to compute the neoclassical radial transport coefficients at arbitrary collision-
ality regime, the non-bounce-averaged kinetic equations, Eqs. (2.10) and (2.11), must

be solved, as it has been done for the parallel transport coefficients and presented in
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the previous subsection. This long task has not been performed yet, mainly because we
can use the knowledge gained in calculating the parallel transport coefficients to derive
directly formulae for the perpendicular transport coeflicients. In order to strictly com-
pare only the dependence on collisionality, in Figure 2.12 we have plotted formulae of
subsection 2.4.2 (solid lines) and those of Ref. [4], Sec. VI F (dashed lines), in which
we have replaced the banana limit with the correct results of the code CQL3D. The neo-
classical resistivity is shown in Figure 2.12(a) and the bootstrap current coefficient £5,
in Figure 2.12(b), for three values of the trapped fraction. At low aspect ratio there is
a very good agreement, which falls down at larger values of the trapped fraction. This
comes from the main approximation adopted to compute the banana-—plateau regime, in
Ref. [32], which neglects the energy scattering in the like—particle collision operator and

which underestimates the neoclassical transport at low aspect ratio [12]. However for

Figure 2.12: Dependence on collisionality for the transport coefficients opeo, (a), and L3,
(b), for different values of the trapped fraction f;, as given by Ref. 2, (solid lines), by Ref.
3, with the value at V., = 0, banana limit, corrected with the results of Ref. 2, (dashed
lines), and still by Ref. 3, with also the collisional parameter rescaled by Eq. (2.56),
(dashed—-dotted lines).
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both the neoclassical resistivity and the bootstrap current coefficient £5;, and also for

the coefficient £, not shown here, formulae of Ref. [4] go down to zero at smaller values

of V., with respect to the rigorous results of subsection 2.4.2, with approximatively the

same behaviour. When the collisional parameter V,,, defined in Eq. (2.34), is rescaled

in terms of the trapped fraction with the simple transformation
Vg«

Ugte = —25 2.36
A (2.36)

formulae of Ref. [4] allow an agreement within 20% for all the bootstrap current co-
efficients and the neoclassical resistivity (dashed—dotted lines), comparing with subsec-
tion 2.4.2. Hence, following the idea of Ref. [10], in which a formula valid for all colli-
sionality regimes for the ion heat conductivity is obtained connecting a new banana limit,
valid also at small aspect ratio, with the collisional dependence of Ref. [4], we propose to
combine formulae of Ref. [4], Sec. VI F, adapted to small aspect ratio, with the results
of subsection 2.4.1, in the limit at v,, = 0. The electron transport coefficients K¢ ,,

m,n = 1,2 can be computed at arbitrary collisionality regimes as follows:

e e e 5 .
K:U(ftd’ye*) =’H§1a (ftdaye*): 127 5 113

52(ftd> Ve*) = H22 57{?2 + 5 L Hu, (237&)

HEO(fe Ve =0
ann(ftda Ves) = - ({t/Z - ) o
1+a’mn(Z) ef*+bm'n(Z) ef*

dmn(Z)I/ef* ¢ (1+f )
14 emn(Z) Vegs FE (1 + £2%)

Fps,  (2.37b)

where the banana limit coefficients H¢; © (2, Ves = 0) can be readily evaluated using Eqs.
(2.26) and (2.27), with:

e e € e 5 € [¢
Hi" =KL, Hi = Kn(H+ S KLU0,
Has” = Ksa(F2) + 5 KS5(f7) — B K5, (). (2.37c)
The coefficients K, are given by:
‘ V € € (4 [4 5 ¢
41(ft> Ve*) = My, K;42(ft,Ve*) = Ty — 5 41+ (2-37d)
Hin(fta Ve*) =
7'[27(10)(ft, Ver = 0) B din(Z) Ve« fi? (1408 ft3) FW
1+ aw(2)v eﬁ 4 b1n(Z)Wess 1+ cin(Z)Vep i (1+0.8 1)
1

— 2.37
1+I/ef*  (2.37¢)



36 CHAPTER 2. NEOCLASSICAL TRANSPORT

where analogously:

e e [ e 5 €
%41(0) = K41 (f1), 7“42(0) = K% (fi) + 9 Ka1(f), (2.37f)
and with .
_ 4) _ /p-2 2
Fps =1~ B (B2 Fps=(B™")(B) - 1. (2.37g)

The ion thermal conductivity K, is given by:

io(£9) da iy, fE (1 + £2°)

- Hp Fps, (2.37h)
1+a2ﬂz¥i+b2ﬂif* L+ o fhiy, 21+ )

é2(ftda V’i*) =

with ;;, = Vir, (1 +1.540) and Hp = 1+ 1.33 0 (1 + 0.600;) / (1 + 1.79.ay), [30].
The coefficients amn(Z), bmn(Z), ¢mn(Z) and dpn(Z) are given in subsection 2.4.4 and
are obtained by interpolation of the data given in Ref. [4], Table III, for the electron
coefficients and below Eq. (6.133) for the ion coefficient. The dependence on ¢ of the
plateau—collisional terms of the formulae of Ref. [4], first computed in Ref. [33], has
been rescaled on f; or ftd. Finite aspect ratio effects in these terms have been taken into
account, like in Ref. [10], introducing the complete expression of the Pfirsch-Schliiter
geometrical factor, by means of Fpg and F}(fs), Eqgs. (2.37g). Note that Eq. (2.37h) for the
ion thermal conductivity K, includes the effects of a single heavy impurity species in the
Pfirsch-Schliiter regime, according to [30], using the modified ion collisionality parameter
t4;; . and the factor Hp, which take into account the enhancement of main ion thermal

transport due to the presence of the impurity species [30].

2.4.4 Coefficients for the combined formulae of subsection 2.4.3

The coefficients amn(Z), bmn(Z), cmn(Z) and dp,(Z) for the electron transport coeffi-

cients are defined as follows:

1+372 07240427

a11(Z2) = S REVA a12(2) = 052 a2(Z) = 0.46, (2.38a)
bu(Z) = %, b12(Z) = ;;—927 bo(Z) = —3+—Z5.3é—2’ (2.38Db)

e (Z) = 0.1;—62.24 Z’ c(Z) = 0.217_:-30; Z’ en(Z) = 0.2_21++0'.75§Z, (2.38¢)
ai(2) = s du(2) =S IBE 2y = SBEIRL (238a)

For the ion thermal conductivity, the coefficients are:

a; =1.03, by =031, ¢ =022 dy=0.175. (2.39)
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2.5 Conclusion

We have presented an approach for the neoclassical transport theory which allows to
obtain simple equations suited for implementation in numerical codes in order to compute
all the neoclassical transport coefficients. The code CQL3D, solving the bounce-averaged
linearized drift—kinetic Fokker-Planck equation with the full collision operator, has been
modified to calculate all these coeflicients at all aspect ratios of various axisymmetric
equilibria in the banana regime. We have shown that the limits at large and unit aspect
ratio are correctly respected by the numerical results, as also the Onsager symmetry of
the non-diagonal transport coefficients. Investigating the dependence of the coeflicients
on geometry parameters, we have shown that appropriate normalizations and definitions
of trapped fractions are required in order to encapsulate all the geometry effects in a single
variable. In this way, a set of simple formulae can be obtained from the numerical results
and allow the evaluation of any transport coefficient for every axisymmetric equilibrium
and at all aspect ratios. Our formula for the ion thermal conductivity is in good agreement
with the most recent evaluations of this coefficient [10, 11] which however do not use the
full collision operator, with errors at finite aspect ratio of about 10% by excess and by
defect respectively. For all the other perpendicular transport coefficients, in particular
the electron thermal conductivity, our formulae are the only existing to date and to
our knowledge, computed for general axisymmetric equilibria taking into account finite
aspect ratio effects. For parallel transport, neoclassical conductivity and bootstrap current
coefficients are in good agreement in general with the previous formulae of Ref. [5], which
do not use the full collision operator. Because of this, however, errors up to 20 % have
been found in transport coefficients in which the contribution given by the like—particle
collision operator is particularly important. The transport coefficients formulae, which
fit the numerical results in the banana regime, are given by Eqs. (2.24), Egs. (2.27)
and Eq. (2.28) of subsection 2.4.1. With the code CQLP we have solved the non-
bounce-averaged drift-kinetic equation, Eq. (2.10) for m = 3 and Eq. (2.11) for m = 2,
taking into account the advection parallel to the magnetic field and without making
any assumption on the ratio of the collision frequency to the bounce frequency. The code
results have been fitted by simple analytical expressions, providing simple formulae for the
neoclassical conductivity and the bootstrap current coefficients valid for all collisionality
and aspect ratio. An effective trapped particle fraction has been introduced for each
transport coefficient, in order to easily describe the collisional effect keeping the correct
parameter, the trapped fraction, encapsulating the geometrical effects. These results for
the parallel transport coefficients, compared with the ones of Refs. [4] and [10], have
motivated us to propose combined formulae for all the other transport coeflicients, valid
for arbitrary collisionality regime, albeit without solving for Egs. (2.10) and Eq. (2.11).
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These combined formulae are necessary to correctly evaluate the coefficients over the

whole plasma minor radius. The thermodynamic fluxes

dy) Q. dip GiB)  UisB) 5 _Qidy

Be :Fe"“a Be = 7 Be = 3 i >
L dp 2 P s Te Te 2 Tz dp

(2.40a)

where I', is the perpendicular electron particle flux, ), is the electron perpendicular heat
flux, j; and jjs are the parallel electric current and the Spitzer current, and Q; is the ion
perpendicular heat flux, are given by Eqs. (2.32), in the weak coupling approximation,
whose validity is confirmed by Eq. (2.31). Egs. (2.32) can be reordered, and the ther-
modynamic fluxes can be expressed directly in terms of the electron and ion temperature

and density perpendicular gradients and the parallel electric field

Bon = L3 Tt + (Lo + L) Tt + T £, S
+ 1;??;6( 21+a£24)%% 23%?, —=1,2,3, (2.40b)
Biy = %%z
i ( éﬁ%%ﬁi‘*) a_én%’ (2.40c)

where R, = p./p and Z; is the main ion charge number. The perpendicular transport

coeflicients L7, for general axisymmetric equilibria and arbitrary collisionality regime,
g g

mn?
are given by Egs. (2.37a) of subsection 2.4.3 in terms of the trapped fractions f; or fe,
Eq. (2.21), the collisionality parameter v, and the effective charge number Z. The neo-
classical conductivity and the bootstrap current coeflicients, £5, and (¥, are given by Egs.

(2.26cfh), (2.27cefg), (2.28) and by Egs. (2.33), (2.35).
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2.6 Appendix

Linearized Coulomb collision operator of v,2 fu

In Egs. (2.8) we have shown that the linearized Coulomb collision operator applied to
the functions 7,, can always be computed analytically. This is a well-known and almost
straightforward result for functions v,,, n # 2. On the contrary, for n = 2, Egs. (2.8b)
and (2.8e), this is a somewhat unknown result, presented for the first time in Ref. [14],
but whose derivation, which is far from being trivial, has never been presented before.
The complexity of the derivation comes from the calculation of the like—particle collision
operator of the function 7,2, namely C!_ (7,2 far). Note that this is also a useful result,
since it is crucial for developments in neoclassical theory similar to the one presented in
this Chapter. For this reason we have performed independently this analytical calculation
and we present the details in this Appendix. This also provides a pedagogical example
of a calculation of the Coulomb collision operator, which is in general not frequent in the
literature.

We start reminding the definition of the linearized collision operator for like—particle

collisions of species o

Otlnr(fl) = CUU(fU(): fol) + Caa(fal, faO)a (241)

where f,o = far is the Maxwellian distribution function and f,; is the first order pertur-
bation in the Larmor radius expansion. In our specific application, the expression of f,;

v2 5\ I
for = ) (E - ‘2') 5 fo0

Let us introduce the dimensionless function f = v (u*—5/2), with u = v/vr,. Therefore,

reads

the goal is to compute

C,(Bfu) = Coo(far, BFsr) + Coo(Bfrs, far) (2.42)

A very useful expression for the Coulomb collision operator is the one derived by Rosen-
bluth, MacDonald and Judd [34], which can be written, for like—particle collisions, in the
following form

Coolf,9) = 22 [ A <f @zg(g)) 42 (faﬂ(g))], (2.43)

~ 2m, | Ovavg Ovavp O0v, Ovg

where v,, = 4mel InA / m,. The functionals G(g) and H(g) are usually known as Rosen-
bluth potentials and defined as follows

Gg) = G(v) = / av' g(v) [v - '],

R3
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_ N ,_9(v)
H(g) =H(v) = R dv |—‘:—"7—|’
where the integrals are extended to the full velocity space R3. In Eq. (2.43) the standard
notation assuming summation over any repeated index has been adopted. Note that
in cartesian coordinates no distinction between covariant and controvariant components

needs to be made. The Rosenbluth potentials for a maxwellian function

Ny
fM = 3
T 7T'UT0

—u?

and for the function S f,; will be derived at the end of this Appendix

G(fu) =Gul(v) = ”"—;’T— [erf’(u) + (% +2u) erf(u)] ,

H(fu) = Hu(v) = _’l_a_(erf(U)>,
1

G(Bfu) =Gi(v) = ::;Tau,,u[m (9‘? - erf’(u))] , (2.44a)
H(Bfu) = Hi(v) = :—iuu (_erf;(u)) , (2.44b)

where erf(u) is the error function.

Cdd(ﬂfM, fM)

We start from the term involving the maxwellian Rosenbluth potentials, namely the term
Coa (5fM7 fM) in Eq (242)7

2 2
Cao(Bfuts fu) = 5 [ - (ﬂfMa GM) ‘4% (BfMaaIZM)]'

2m, | Ovap O0v,vp

We begin considering the part involving Gy,

0Gum _ (us dgu
ovg "\ u du

where we have introduced the function g, as follows

!
Gm =1y Vrogm, gum(u) = erf'(u) + (—1— + u) erf(u).

2 2u

Gy n 1dgum 1d /1dguy
’ = — 5a ——y a -7 |\ -5 y
Ov,0vg  vrs { u du + talip [u du (u du )J}

where d,p is the Kroenecker delta. Developing the calculation one obtains

Bf 02GM _ nf, (5 K( )+ K ))
Mavaavﬂ o V3, ap UsKa(u) + uqupus Kp(u
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where we have aligned the third cartesian coordinate along the magnetic field, v = us,
and we have introduced the two functions

Kuw) = (- 5) 29 e, gy = (- 3) 2 (19 o

u du u du \u du

Then we compute

0 82GM ’I’LZ
Bvs (/BfM 8v06vﬁ> = (8a3Ko(u) + uqus K (u))

where we have introduced the function

At this point we can take the divergence on the last index o

0? ’Gy
Ova0ug ('BfM 3va8vﬁ) B

9 K, o 4K,
— —nd 3 <(50‘31ﬁ d + 3U3K + Ua5a3K + uau3u ) -
T/ T Vg, u du v du
n2 1dK, dK
_ 2 ¢ 2.4
wm oY ( ™ e ) (2.45)

We pass now to the term in C,,(8 £, far) involving Hyy.

BHM . Ng Uq th

=7 =
e vE, u du

where analogously we have introduced the function hj, as follows

Ng erf(u
Vo u
Then we have 9 - ) dL
M n a
= 4 4L, , 2.46
Oa Biu Ove  TTUE, . ( T ) (2.46)

where the function L,(u) is given by

Combining the G and Hj, contributions, Eqs. (2.45) and (2.46) respectively, we find

2 1 dK dK dLa
Coo(Bfm, fu) = 2m(,- { T::U%aull {(u du du ) _4( ¢ du )]}

Performing all the long but not complex derivations on u, one finally finds

Coo(Bfrs frr) = Voo(v) far ) [(7 ~ 4u?) erf(u) — 2(7 — 6u*) u erf’(u)} , (2.47)
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where we remind that vy (v) = nyYs0 / (Mev3).

Ccra'(fM’:BfM)

Now we compute the term involving the Rosenbluth potentials G; and H; of the first
order perturbation 8fys, namely Cyo(far, Bfa) in Eq. (2.42).

_ 70'0’ 62 82G1 a 8H1
Caa(fM;ﬂfM)—_‘_[ (FMm)_‘l—av_a (fMBva)]'

2m, | Ovavg

From Egs. (2.44b) and (2.44b), we introduce the functions g, (u) and h;(u) as follows

G = g, () = o (T - ')
) = M), =-T0,

(2.48)

As usual, we compute first

2o ne 212 0] -
6vaav,g - (2 aua Buﬂ 391 -
_ n, 0O uzugdgr |
= r, Oug (‘5’”91(“” u du>‘

Ny 1dg1 1d 1dgl
= — |(uad e 0ap) ——— + Uq —— (=]
VT [(u p3 T Up0a3 + Us ﬁ)udu+u U du (udu)]

Therefore we obtain
32G1 . n2

fM a’UaaUﬂ - W\/’;T_v%a [(uaéﬂg + Uﬁ(sa3 + u350,3) Ma, + Ugn Uﬁ ’Ll,3Mb]

where we have introduced the functions M,(u) and M,(u) as follows

1 dg —u2 d 1 dg —u?
Mo(u) =2 o e™,  My(u)= 4 (Ed_u1> e

We now take the divergence on the index f,

] < 5, 020 _
avﬂ Ma’uaa'vg -

n?, 1 dM, d A,
| = W [5 6a3 Ma + (2 U U3z + U2 6a3) E du +5 'ua’U,3Mb + uau3u~d—ub} =
2
7
= £ 5 (5043 Mc + Ug U3 Md) s
T/,
where the functions M, (u) and My(u) are given by
dM, 2 dM, dM,
c(u) =5 My(u)+u To a(u) — +5My+u o
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The derivative on index « then yields

82 f 8G: \ _
Auadvs \'Y Bvadug)

n2 uq dM, U dMy
— M a5a M o ==
w\/_ng< du 4 F talas Mg+ Uatly du)
n2 1 dM de
= +4M — . 2.49
W\/— TUrq ( T du ) (249)
We now consider the term involving H;,
6H1 Ng U U3 dhl
= —— | ash —].
Ovg V3, ( s+ du)
Therefore 3 OH ) 3
1 n
= Z a3 N, e )
vy (fM 8'va) /T, Oug (9as No + uatis o)
where we have introduced the functions N,(u) and N,(u) as follows
2 1dh ot
No(u) =hie™™, Ny(u) = " dul :
Derivating on index «, we obtain
0H, n2 1 dN, dN,
= —0 4 N, — . .
(fM vy ) T/TVS, il (u du TV ) (2:50)

Combining the G; and H, contributions, Eqgs. (2.49) and (2.50) respectively, we find

Coolfu, Bfu) = (2.51)
Yoo n2 1 dM, dM, 1 dN, dN,

= 4 —rd .

2ma{7r\/'7?vr_‘,iau” [( T Ma+u du ) * 4(u du du )]}

Performing all the long but not complex derivations on u, one finally finds

Coo(frrs BfM) = Voo (v) frry 3 [erf(u) — u (14 247) erf’(u)]. (2.52)

Combining Eqgs. (2.47) and (2.52), one obtains

CL(f1) = voo(v) far % [(10 — 4u?) erf(u) — 10 werf'(u)]

which is the result we are looking for, as reported in Egs. (2.8b) and (2.8e).
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Rosenbluth Potentials
GMm

Gy = / &' v = V| fur(v') = (2.53)
3

_ el [ u'? du’ /1 d(cost") /27r d¢' u—u'|e™
VT Jo -1 0

We call x the angle between u and u’. Expanding in Legendre polynomials, the distance

|u — u'| can be written as follows

|u_ul|=_i 1*:%1 (1_l_1/2 _u%) }DI(COSX),
— us I+3/2 u? 20 -1

where u« = min(u, v') and v, = max(u,u’). We now use the standard expansion of the

Legendre polynomials P;(cos x) in spherical harmonics Y},,, which yields

0o l l 9
—_ 9l = - U< l_1/2u< 4m * V)
IHM—ZZ%“(LWMZWjMwmwm

(=0 m=-—1{ >

Therefore _
Ne Vre [ o2 ul [ —1/2 u?
Gy = o o du' 12 o—u U ( U<
o = B [ealeen S 8 (-

27
o i 0,9) [ dCeost) [ at¥in(@,)].
2l -1 1 0
We can now use the orthogonality of the spherical harmonic functions, which gives

1 2T
[ dlcost) [ a6Yin(#,8) = 5080020,
— 0

1

and we remind that

Hence we find

Gy = oY 47r/ du u'? e %" [u> (1+
0

1
3
= 4nvro /du' 2 g=u?y, 1—}-11,; + oodU'u’3e—u'2 1+1u—2 =
VT 0 3u u 3 u'?
)

= [(2u + 1) erf(u) + uerf’(u
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Hm
Hy = /d y July ?- (2.54)
R3 lv—v|
_ e /oou’Qdu’ /1d(c050’) d¢’ il
TVTUTs Jo -1 0 lu— |

We use the well-known expansion usually adopted in order to compute the eloctrostatic

potential of a space distribution of electric charges

o0

[e9) I
* / !
- u,| Z Py(cos x) lZ;mZ e 2l+1 Yirn(6,6) Yim(6, 8.

=0

Therefore

n a2
Hy = —— du u?e™® E E: esy
/T VUTe Jo

=0 m=-I u>

47T 27
—— Y6, d(cos ¢’ d¢' Yim (6, ¢') ) | =
2 +1 im( ¢)(/ (cos )/0 # Yim ¢))]
n 2 U
— [ 4 dI12 —u <:
—_— 71'/0 uUU

/T Uy Us
U 13 [e o]
n u a2 ]
= —2 4x dv' —e™ +u dv'v' e ™™ ) =
T\/T Uy 0 1 u
ne erf(u)
V1o U

We now consider the Rosenbluth potentials of the function 3 fa,.
Gy

Gi = /§R3 dv’u (u'2 — —Z—) v — V| fu(v') =

Ny VT [ee] 5 ) 1 2
= u? du' v’ (u'2 - —) e ™ / d(cos ') cos ¢ / d¢'|u —u'|
T Jo 2 -1 0

Adopting the development in spherical harmonics for |u — u'|,

_ii ul (0 1=1/242
— ul>1 1 +3/2 u2

=0 m=

_ NeVrg v (e 9\ -
G, = s du (u 2) e

4 2w
57 ir : / d(cos#') cos &' /0 d¢'Y; . (0, 0) Vi (0, q&’):\ i
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We remind that

4?”3/'10(9, ¢) = cosb

and therefore

N
3

1 2m
/ d(cos@') / d¢’ cos@ Vi, (0, 8") = 811 dmo 5
- 0

1

This gives

' n,,v,,47r 9\ _.

G = T 3 s0/ du[ < —5)6 2u<<
_ Mg Ure 4T Y / i af m O 1u?\ e

= — d — 11— = —
avE 3w Jo Y \M T2 a2 ) ¢ T

o 5 1’11,2 2
3 (. r —u?| _
+u/u du/du'v’ (u'—g) (1—3175)6 ]—

= novrgu oz (T2 - et').

u
| 4u2 u

_ 11 ! fM( ) _
mo= [ava (v-3) 955

Ng UTo oo 2 3..1,.1 2 / /
= d - d(cos 6 0 d
v u“du'u (u ) / (cos@') cos /0 ¢ ——— - u,|

Adopting the development for 1/|u — u'|, we find

o Ng o 3 _u'?
H = ;T—————/O du'[u' (u ——) Zoo Zl e

T Ve el
ATy 6, 6) / 1cl(cose') o / : d¢' Yim(0', &)
i1 ™[ MR A m ’

and the orthogonality of the spherical harmonics gives

H = e 27 cos9/ du'u” < 2 _ ?-) u—;e”’“'z =
/T Vg u?
N 4u” 1/ Jut o e B\ e /°° v oo f e 9\ e
= —2 N[ qu/— —2) e d —2) ) =
\/7_”)% 3% (u2 A U " U 5 € + u y uu |u 5 e

g erf’(u)
o Vre ’LL“ < 2 >
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Chapter 3

1-1/2 D simulation of a tokamak
plasma

Transport in tokamak plasmas is commonly described adopting the standard paradigm
of local diffusion. Macroscopic quantities like temperatures and densities solve continuity
equations directly derived as velocity moments of the Boltzmann—Vlasov kinetic equation.
Particle and heat fluxes occuring in the fluid equations are assumed proportional to the
gradients of macroscopic quantities like densities and temperatures, by means of diffusion
(transport) coefficients. The previous chapter has shown a specific application in this
framework. Kinetic calculations undertaken assuming the so—called drift—ordering for a
magnetized plasma allowed us to compute transport coefficients resulting from collisional
processes affecting guiding centre orbits caused by the axisymmetric magnetic confine-
ment system. Due to the orderings assumed in the model, other transport phenomena,
which are nevertheless present in the plasma, have not been taken into account. For
instance the basic classical collisional transport, due to collisions affecting the Larmor
gyromotion, is not included in the solution of the drift-kinetic equations, since the effects

of collisions on gyromotion have been averaged out.

In a magnetized plasma, microinstabilities provide an alternative transport channel which
in general is largely dominant compared to collisional effects. These physical phenomena,
usually called drift-waves, need appropriate orderings and theoretical models to be de-
scribed. Analogously to what has been done in the previous Chapter for the neoclassical
transport coefficients, the common approach is to use kinetic and/or fluid models in or-
der to obtain expressions of the transport coefficients providing the anomalous transport
enhancement in terms of local macroscopic plasma parameters. The most complete and
first principle approach is that of tackling directly the Boltzmann-Vlasov equation, in
particular in the gyrokinetic ordering, which allows short range radial plasma variations
of the same order of the Larmor radius [1, 2]. The evaluation of the transport coefficients
from the growth rates of the most unstable modes is usually done adopting more or less
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sophisticated mixing length arguments [3, 4].

Nevertheless, experimental observations have pointed out the occurence of several un-
expected features in plasma transport. The appropriate physical framework for their
description is still under discussion. Although the kinetic equation in principle encom-
passes all the observed physics, the approximations made to allow a solution and the
usual assumption of diffusive transport made in order to compute macroscopic quantities
like temperatures and densities could be inadequate. For instance, non-local phenom-
ena have been observed [5]: long-range responses take place in time scales which are
two orders of magnitude smaller than the time scale of diffusive transport. Moreover
these phenomena present an inverse polarity compared to standard diffusive transport
phenomena, namely cooling at the plasma edge provokes a sudden enhancement of the
temperature in the plasma centre. Recently, electron temperature fluctuations measured
in the DIII-D tokamak have shown some of the characteristics of avalanche like events [6].
Theoretical models have revealed that avalanches, namely very fast radial propagations
of a heat pulse, are likely to occur {7, 8]. These events have suggested alternative descrip-
tions of plasma turbulent transport, adopting in particular the self-organized criticality
(SOC) paradigm (7, 9]. The standard approach of local diffusive transport is indeed non
adequate to describe some of the most exotic phenomena observed, and a controversial

debate on this issue is being developed in the literature [10, 11, 12].

Furthermore, in a magnetized plasma, magnetic topology can play a non—negligible role
on transport. The presence of magnetic islands arising close to resonant surfaces can
involve strong modifications of the transport properties due to rapid convection along the
field lines [13]. It has been proposed that their effect can explain some observed structures
(“filaments”) of the electron temperature profile. In this framework, the description of the
magnetic topology would be of primary importance compared to that of kinetic, diffusive

or non—diffusive radial transport effects.

For all the limits and the open issues briefly discussed above, our approach is indeed the
most conventional. We shall assume that plasma transport can be described by standard
local diffusion equations, with transport coefficients obtained from gvrokinetic or gy-
rofluid solutions, or semi—empirical expressions. Moreover, we shall assume that for time
and space scales relevant for transport phenomena the magnetic topology can always be
considered in equilibrium, and therefore the flux surface configuration is determined by

the solution of the magnetohydrodynamic (MHD) equilibrium equation.
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3.1 Introduction to 1-1/2D simulations

The simulation of a tokamak plasma needs physical models able to describe every plasma
and magnetic equilibrium quantity as a function of both time and space, from the plasma
center up to the edge, including edge effects and even out to the scrape—off layer and the
wall. In this global approach, equations for the time evolution of a large set of physical
quantities describing the plasma must be identified and solved consistently. A generical
macroscopic physical quantity G belonging to this set, like density and temperature of
each particle species, is assumed to solve a continuity equation, whose general form in

three dimensional (3D) geometry reads

%Ct—; +V -T'g=5¢. (3.1)
The physical quantity G = G(R, Z, ¢,t), solution of the continuity equation [Eq. (3.1)],
assuming toroidal axisymmetry, hence neglecting the toroidal coordinate ¢, depends on
two spatial coordinates spanning the poloidal plane, which are usually called in cartesian
coordinates R, the major radius, and Z, the vertical position. A physical description
limited to transport perpendicular to the magnetic surfaces, called radial transport, allows
to assume that all the plasma quantities, like densities and temperatures, are constant
over a flux surface. This assumption is justified directly by the small gyroradius ordering
for a magnetized plasma. This implies that transport parallel to the magnetic field lines
is much faster than the one occuring in the direction perpendicular to the flux surfaces.
Spatial variations of physical variables like temperature and density on a given flux surface
can be neglected when phenomena of interest occur in time scales and length scales which
are relevant for radial transport. Therefore we can introduce a flux surface label p, which
plays the role of a radial coordinate, in such a way that flux surfaces are defined by
the simple equation p(R, Z) = constant. The physical quantity G can be written in the
form G = G(p(R, Z),t). Taking the flux surface average of Eq. (3.1), the 3D continuity
equation [Eq. (3.1)] can be reduced to a 1D equation of the form

75 (V'6)+ 35 (V' (Ta - Vo)) = (o). (52
Here the index ’ for flux surface labels means derivation on p, namely V' = 9V / dp, and
V is the volume enclosed by the surface of label p. The symbol { ) indicates the operation
of flux surface average on a magnetic surface. From the point of view of the numerical im-
plementation, this allows to compute plasma transport with a 1D code. Nevertheless the
continuity equations in toroidal geometry involve quantities which describe the magnetic
surface configuration. In realistic configurations, these quantities can be computed only
by a 2D magnetic equilibrium solver. The equilibrium solver has to be coupled with the

transport code, in order to compute the magnetic surface configuration consistent with
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the updated pressure and magnetic field profiles. In this sense, the package consisting of
the 1D transport code and the 2D equilibrium solver provides a 1-1/2D description of the
plasma in a tokamak device.

Each continuity equation, Eq. (3.2), involves the knowledge of two separate terms, the
flux I'¢ and the source Sg corresponding to the quantity G. The continuity equations
are coupled to one another by several different physical mechanisms. In particular, the
fluxes I'; and sources S directly depend on local plasma conditions, defined by the set
of physical quantities like G, which are the unknown variables of the set of equations.
For instance this is the case for off-diagonal transport effects in the fluxes, like the ones
pointed out in neoclassical transport (subsection 2.2.1), or the equipartition term in the
sources of the temperature equations, coupling the electron and ion temperatures. More-
over, other indirect mechanisms can couple the equations. The evaluation of the fluxes is
usually made through the computation of the transport coefficients, relating fluxes with
the thermodynamic forces, namely the gradients of temperatures and densities. Since the
transport coefficients depend on the local plasma parameters, this makes another indi-
rect coupling mechanism. Also in the sources indirect coupling terms can be involved.
In particular, the auxiliary heating effects depend on the local plasma conditions, and
thus imply another coupling mechanism among the equations. Heating effects are usually
difficult to compute, and specific codes describing the different heating sources must be
considered and consistently coupled to the transport code. The same can happen for
the computation of the transport coefficients: some transport models provide analytical
expressions directly relating heat and particle diffusivities with the plasma and equilib-
rium parameters, which can be easily implemented in the transport code. Other models
involve the coupling of the transport code with separate specific codes. All this implies
that, finally, a complete and consistent numerical tool describing a tokamak plasma is
provided by the connection of several different codes. The main body of the package, the

transport code, solves a set of several coupled continuity equations.

The final results of the code critically depend on the specific transport model adopted.
For this reason, the availability of several different models within the same transport code
is particularly useful in order to perform comparisons on the predictions of the different
models and comparisons with the experimental measurements. In the present work the
Rebut-Lallia-Watkins (RLW) model [15] has been the one regularly applied in the simu-
lation of TCV discharges, both in Ohmic and with ECH. During the present thesis work,
other models have been implemented in PRETOR, the Multi Mode Model 95 (MMM95)
[16], and the IFS/PPPL model [17]. At this stage, the numerical implementation of these

models have been checked, and preliminary physical applications have been performed.
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The comparison with the experimental data in TCV is not sufficiently stringent for a
complete and reliable validation, since measurements of the ion temperature profile are
not yet available on TCV. Therefore, the application of these models will be the subject
of further work and is out of the scope of the present thesis.

In the following section we present the transport equations for the time evolution of
plasma temperatures and densities. In order to provide a sufficiently precise description
of the numerical tool used in this work and since in PRETOR the equations are solved in
sequence, the presentation will follow the same order in which the equations are solved
in the code. Similar transport equations have been implemented in several other plasma,
transport codes, which have been developed by the fusion community over the years. We
mention here for example the codes ASTRA [18], BALDUR [19], and JETTO [20]. Differ-
ent extensive treatments of specific effects have been introduced in some of these codes, in
such a way that the codes can be considered quite complementary. Section 3.3 describes
the equations which compute the self-consistent evolution of the magnetic equilibrium.
We present in detail how the 2D magnetic surface configuration is taken into account in
the 1D field diffusion equation. PRETOR is coupled with a fixed boundary 2D equilib-
rium solver. In Section 3.4 explicit expressions for the source and loss terms involved in
the heat transport equations are given. Formulae and algorithms are those which have
been specifically used in the simulations presented in this thesis. In this context we must
emphasize that, even if some of these formulae are standard and of general validity, like in
the case of energy losses due to bremmsstrahlung, other formulae, like in the case of losses
due to cyclotron emission or to line radiation, provide only rough approximations, and can
be quite different from formulae implemented in other transport codes. In Section 3.5 we
provide a few numerical details about the code implementation. Finally, in subsection 3.6

we present the local RLW transport model, giving details about its implementation in
PRETOR.

3.2 Transport equations in toroidal geometry

As already mentioned, in Eq. (3.2) G represents each physical quantity describing the
plasma, namely the temperature and density of each particle species. In particular the
transport code PRETOR computes the time dependent evolution of the following quan-
tities:

- Electron density n. and temperature T,

- Main ion density n;

- First impurity ion density n, and ionization stage Z

- Ions temperature 7;
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- Densities of neutral atoms

- Current and magnetic fields
The equations describing the time evolution of the electric currents and magnetic fields
will be presented in the next section. In this paragraph we concentrate on the continuity
equations for densities and temperatures. Two ion species are considered: the main ion
species, usually deuterium or a mixture of deuterium and tritium which is in any case
considered as a single plasma species, and the impurity ion, carbon in the specific case
of TCV, or a—particles in the case of a burning plasma. The densities of the two ion
species are evolved in time indipendently, but the same temperature is assumed for both.
Note that while this latter assumption is usually made in all the transport codes, other
codes allow one to compute independently the density evolution of a large number of ion
species. In particular BALDUR can take into account up to 4 different impurity species.
In PRETOR a third impurity species can be included as a fixed percentage of the electron
density, in particular in order to be able to take into account a second plasma impurity in
a burning plasma, like beryllium for ITER simulations [21]. Neutral atoms, even if they
can be considered as ions with a zero ionization stage, are treated separately: indeed they
obey completely different equations. As already mentioned, in the following description of
all the transport equations, we follow the detailed sequence adopted in PRETOR during

the computation of a single time step.

The starting point is given by all the updated plasma profiles, densities and tempera-
tures, and the consistently computed magnetic equilibrium. The first step is to compute
all the new particle and heat sources, as it will be described in Section 3.4. Afterwards
the particle and heat transport coefficients are updated, according to a specific transport
model (Section 3.6).

Neutrals

The first transport equations considered are the ones which update the density profiles of
the neutral populations. These are involved in the particle source terms for the ion den-
sities. In PRETOR three independent neutral species are considered. The main neutral
density ny;, which appears in the source term of the density continuity equation of the
main ions, Eq. (3.7), is splitted in a cold and a hot part, ny; = nyi. + nyin. This allows
one to more adequately take into account the effects of charge exchange, which involve a
source term in the whole plasma volume, and edge effects due to recycling and gas pufling.
In this context, it must be mentioned that BALDUR treats the problem of neutrals trans-
port with particular accuracy compared to other codes. This code computes the neutral
gas sources by means of a specific Monte Carlo algorithm and an extensive atomic physics
package. In PRETOR the neutrals densities are updated by simple diffusion equations.
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The equation for the cold neutrals ny;. reads

10 (IVpP) 0 ,
Wa_pV,FNic = —(Ol[ + Olcx)nNic, where PNic = _Q'I T acx 'a—p_(vNic nNiC)’ (33)

with aicx the charge exchange rate and oy the ionization rate. The speed vy, is related to
the cold neutrals energy, which is given as input. The charge exchange rate is computed
from the ion density and temperature profiles

Ny

acx = 10° (InT; + 6.6) M

with density in 10 m~3, temperature in keV and the main ion mass Mg in proton mass

units. The ionization rate is related to the electron density and temperature by

ar = 10° [VTL]B; exp(v/To/ )]

Te
EY (T]Ei+6)

with the same units of the previous formula, and where E; is the main ion ionization
energy, in keV. The boundary condition sets a defined flux I'y;. at the last close flux
surface (LCFS), due to gas puffing: in the simulation this term can be either kept equal
to zero, or it can be determined by the code in order to match a given value of the volume
average density, also taking into account, if requested, the main ion density reduction
rate due to fusion reactions in a burning plasma. The hot neutrals are produced by cold

neutrals in case of charge exchange reactions. Their density ny;;, is computed as follows

10

v _8p V'Tnin = —annin + @oxnnic,
(Vo) 0 T;
h Tyip=———F—— || = il .
where T'nip o1+ oy Op _ ) in (3.4)

in which the source term, due to charge exchange, involves the population of cold neutrals.
The boundary condition for hot neutrals sets the flux which crosses the LCFS equal to
zero. The third neutral species is the one which describes the neutral atoms of the first
impurity. Assuming a low density of the impurity ions compared to the electron density,
charge exchange reactions are sufficiently rare to justify to consider a single impurity
neutral population, not splitted in hot and cold particles. Therefore the density ny, is
updated solving the single equation

10
Vb—pVTN,, = —Qnnp
(IVp*) 0

ar a_p(vlep an). (35)

where I'y, = -

The boundary condition defines the value of the flux I'y, at the LCFS. This value, de-

pending on whether the simulation includes fusion reactions or not, and hence depending
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on whether the first impurity is given by a—particles or not, can be determined in different
ways. This boundary condition turns out to be essential in order to compute the value of
the effective charge number. The inward edge flux of the impurity neutrals is in some way
related to the outward edge fluxes of both the impurity ions and the main ions. Several
different options can be chosen in the code, in order to adapt the simulation to specific
applications. The most general and simple choice is to impose to the inward impurity
neutrals flux to match a given fraction of the outward impurity ions flux, due mainly to
recombination. In the simulation such a fraction can be determined for instance in or-
der to fit the value of the experimentally measured effective charge number. The largest
is this fraction, the largest is the resulting effective charge number, computed with Eq.
(3.11). For non—burning plasmas, the first impurity is usually determined by the material
of the first wall, like carbon for TCV. In this case additional effects of both deuterium and
self sputtering can be taken into account, involving both the main ion and the impurity
ion edge fluxes. This is the option which was chosen in all the simulations performed
in this thesis work, when also the density evolution was computed. An additional term
can be also included in order to take into account the impurity release ascribed to the
radiofrequency antennas, taken proportional to the additional power. In case the first
impurity is given by a—particles, the fraction of the impurity ion flux can be modified by
a supplementary factor related to the ratio between the energy confinement time and the

a—particles confinement time, given as input.

Once the density profiles of the neutral populations have been updated, the determina-
tion of the charge profile Z, of the first impurity is considered. Two options are possible:
either we assume simply that ions are completely ionized everywhere in the plasma or a
diffusion equation for the impurity charge is considered. In this second case we solve the

equation

10 0z
'V;a_pV,FZ =cz(Z.— Z), where I'z= —DZ<|VP|2>‘a—p + Z vpz(|Vpl). (3.6)
Here Z_ is the coronal equilibrium ionization state, which is function of the updated
electron temperature profile. In particular for the principal TCV impurity, carbon, we
take Z, = 6, where the electron temperature is larger than 300 eV, while partially ionized

states are considered for lower temperatures. The coefficient ¢z is proportional to the

3 and

electron collision frequency, and given by 156 n.Z/T}5, with densities in 10 m™
temperatures in keV. The diffusion coefficient Dz and the pinch term vpz are taken equal

to the ones for the first impurity diffusion equation, D, and Vp,, Eq. (3.10).

Ion and electron densities
At this point the continuity equations for the ion densities are considered. The density of
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the main ions n; is determined by the following equation

5 + Va_pVTi = Swnpri — 2R + nniay,
where I = —D,'(|Vp|2)(?;;i + nvpi(|Vp|), (3.7)

with D; and vp; the diffusion coefficient and the pinch velocity respectively, provided by
the transport model. In the source term, Sypy; represents the main ion source arising
from neutral beam injection, R = r¢(1 — r7)n2(ov) is the total fusion reaction rate per
unit volume, with rr the tritium concentration and (ov) the fusion cross-section; oy is
the ionization rate. Note that time variations of the volume included in a flux surface
are ignored in PRETOR, on the basis that they are negligible compared to the other
terms of the equation with fixed plasma boundary conditions. Codes which allow free
plasma boundary conditions need to include terms such as n;/V' (0V’/8t) in the transport
equations. This is for instance the case of the code JETTO, as in the application described
in Ref. [22]. We must also stress that off-diagonal terms in the fluxes are not explicitely
taken into account in PRETOR. Off-diagonal terms can be included only introducing

effective diffusivities defined by
D

Deﬂ - an/ap7

where I'y,; is a diffusive flux in which off-diagonal terms are taken into account. Note

however that these procedure must be adopted with caution as it can produce artificial
singularities when the density gradient is equal to zero. This is the case of hollow density
profiles, in which off-diagonal terms could be expected to play a non-negligible role.
The boundary condition for Eq. (3.7) is obtained modelling a toroidal belt limiter. The
flux which goes out of the plasma, crossing radially the last closed flux surface (LCFS),
matches the flux reaching the limiter, assuming that no significative change of density
occurs in the SOL, in particular in the absence of ionization. Transport across the LCFS
is assumed to be equal to the radial transport immediately inside the plasma. Calling
['s the global ion flux crossing the LCFS, and 'y the ion flux reaching the limiter, and
making the previous assumptions, the equation for the density evolution in the SOL reads

i/ n; dVZFS—FLZO, (38)
dt VsoL

where I'y ~ n;v) Si, v being the particle speed along the magnetic field lines and Sy,
the limiter surface perpendicular to the field lines. Treating these parallel losses as a
uniform sink term in the SOL [23], neglecting a radial pinch velocity and estimating the
ion velocity parallel to the field lines as equal to the ion sound speed cg;, in slab geometry,
the previous equation can be written in the simple differential form

d?n; _ MiCsi

_D —
L dr? L.~
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where L, = 27 Ry ge4qe is the connection length for the toroidal limiter. This equation
yields a simple exponential radial decay for the density in the SOL, for r > a, of the
form n;(r) = n;(a) exp[(a —7)/Xs], with a SOL characteristic length g = (D L./csi)'/?,
which provides an evaluation of the effective radial thickness of the SOL. Applying again
Eq. (3.8), we find the following boundary condition for the main ion density

an,-
Op

9 AS MiCsi
s 27TRO ’

Til,—q = =Di{|Vp|?) + nwpi(|Vol)l,og = R (3.9)

p=a
where Rg is a parameter which provides the “effective” limiter surface fraction, and rep-
resents the ratio between the limiter and the edge plasma surface. This parameter can be
given as input. Large values allow steeper density edge gradients and lower densities. On
the contrary, low values of this parameter allow to increase the edge density, producing a
pedestal and therefore simulating the presence of a divertor region in which a fraction of
the neutrals are ionized increasing the edge density. This parameter can be adjusted in

order to reproduce the density pedestal in H-modes.

The first impurity ion density n, solves the following continuity equation

on 1 0
#+V%V’Fp = SNBIp+R+anOfI

on
where T, = D) 52 + mora| V) (3.10)

and ny, is the impurity neutrals density. Sypr, describes a NBI source, in the case of
injection of impurity particles, and R is again the fusion reaction rate, in the case of sim-
ulations of a burning plasma, since in this case the first impurity is given by a—particles.

The boundary condition is imposed in the same way as described for Eq. (3.7).

The electron density is then obtained by quasi-neutrality and the effective charge is com-
puted as usual:
_Zini+ Zymy Zini+ Z2ny, + Z3 Cane

= = 1
ne 1 _ Z303 b] Zeff ne ) (3 1)

where C3 and Z3 are the charge and the concentration, given as a fraction of the electron

density, of the third ion species.

Temperatures

When all the density profiles have been updated, the heat transport is tackled in order
to update also the temperature profiles. Note that an option in the input is available in
order to set the density profiles equal to the experimental measurements and by-pass in

the code all the calculations related to particle transport. This allows one to focus the
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simulations on heat transport, particularly in the presence of external heat and particle
sources, in which the correct simulation of the experimental density behaviour becomes
a very complex task. In PRETOR only two heat continuity equations are solved, one for
the electron temperature T,, and one for the ion temperature T;, since T; is assumed the
same for all the ion species. Therefore, in the ion heat transport equation, a total ion
density ny; = n; + n, and a total ion particle flux I'r; = I'; + I';, must be introduced,

5

oT;
where  Qr; —np; Xi{| Vo) 3 1 + vprineiT;.  (3.12)

In the expression for the heat flux we have included thermal diffusion, thermal convection
and heat pinch. Like for particles, off-diagonal terms are not included. The description
of off-diagonal terms is in general rather limited in plasma transport codes. For this
purpose, transport models which in principle can involve full transport matrices, like for
instance the MMM95 [16], introduce a set of diagonal effective conductivities which allow
to obtain the total heat fluxes only proportional to the conjugated temperature gradients.
In the source term S; we take into account equipartition and auxiliary heating as radio

frequency (RF), neutral beam injection (NBI), and eventually a fraction of the o heating
Si = prri + PNBI:i + Dai + Neve(Te — T;). (3.13)

The neoclassical equipartition frequency, for a single ion species, is given by

. 2,3
Me 3 Mg Ve
Vg =3 where 7, =
m;i Te 1671/2 Z2Zein;lnA

is the electron-ion momentum exchange time, also called electron collision time. In the
case of three ion species considered together in the same heat transport equation, like in
the case of PRETOR, the equipartition power provided by electrons to each ion species
must be added, and the following formula can be used

- (5 5)

where the summation is extended to all the ion species considered, densities are expressed
in 10'° m~3, temperatures are expressed in keV, and the masses M; in units of the proton
mass.

The equation for the electron temperature is

3 9(n.T,)
2 8t V’

V@_s

5
2

where Qe = —'neXe<|Vpl

neTe (3.14)
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where again the term vpr, nel, includes a heat pinch contribution. I'. is the electron

particle flow and it is computed assuming ambipolarity
Fe = Zze + Z,,I‘p, (315)

and neglecting the particle flow of the second impurity. The source of electron energy is

given by:
Se = DPohm + DRFe + DNBIe + Pae — neVE(Te - T'z) - pcyc — Pbrems — Prmp — DIon (316)

where the terms with positive sign are due to ohmic heating, RF, NBI and o heating re-
spectively. Energy losses for the electrons are the neoclassical equipartition, the radiation
losses due to cyclotron radiation peyc, Eq. (3.34), bremsstrahlung perems, Eq. (3.33), and
atomic processes, like recombination and line radiation, due to the presence of impurities
Prmp, Eq. (3.35), as well as losses involved by ionization processes pron, Eq. (3.37). The
boundary conditions for the heat transport equations can be of different type. One pos-
sibility is to give the value of the edge electron and ion temperature as input. This is the
option which has been used on a regular basis during the present thesis work. A different
possibility is analogous to the one described for the ion density, Eq. (3.9). Physically,
a power balance condition is imposed stating that the total conductive and convective
heat flux crossing the LCFS must equate the total heat flux reaching the limiter, there-
fore assuming that no heat source is located in the SOL. This condition, always with the
assumption that transport across the LCFS is equal to the radial transport immediately

inside the plasma, can be translated in the following equations

oT, 5 As
2 € 2
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which provide the boundary conditions for the electron and the ion temperature respec-
tively. The elelctron and ion heat fluxes reaching the limiter, g1, and ¢z ;, are evaluated

as follows

1

T,
Qre — [2 + 3.7+ 0.5ln (T)] Te [(’I’Lz ZG + Z3 C3 ne) Cg; + Zp nyp Csp] y

5
qLi = ETZ [(n; Zg + Z3 C3 ne) Csi+anp08p],

where, like precedently, c;; and c,, are the sound speeds of main ions and impurity ions
respectively. As already discussed for the ion density boundary condition, the input
parameter Rg allows to modify the edge temperature gradient and to produce a pedestal
in both the density and the temperature profiles. It becomes particularly important in

order to fit the value of the pedestal density and temperature in simulations of H-mode
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profiles. Low values of this parameter, yielding low net outgoing flux across the LCFS,
allow high values of both the pedestal temperature and density.

In the expressions for the particle fluxes, Egs. (3.7) and (3.10), and for the heat fluxes, Egs.
(3.12) and (3.14), we have respectively the following transport coefficients: the diffusion
coefficients D; and D,, the pinch velocity terms vp; and vp,, the two heat conductivities
Xe and x; as well as the two heat pinch velocities vpy; and vpr.. The expressions used
for these coefficients depend on the transport model which is assumed: the standard
neoclassical theory being insufficient, different models for anomalous transport have been
developed and are available in the literature. The code PRETOR uses a version of the
RLW model [15] which has been extended also to particle transport [14] and which will
be described in Section 3.6. For predictions of burning plasmas in ITER, a factor can be
introduced “normalizing” the transport coefficients in order to obtain in the simulation a
plasma performance which follows a given ITER global scaling law.

3.3 Self—consistent magnetic equilibrium evolution

A correct description of the time evolution of the equilibrium magnetic fields and current
densities in transport simulations is of great importance in tokamak physics. In these
devices transport phenomena and geometrical effects deriving from the magnetic config-
uration are to a certain extent linked together. Therefore transport and geometry must
be described consistently. This is particularly important for TCV, because of the large
shape flexibility (Section 4.2), and of the powerful auxiliary heating system (Section 4.3).
Indeed, with intense ECH power and strong ECCD, the effects of the external sources
on the magnetic equilibrium configuration can be significant. For this reason, we shall
describe in detail the equations which allow to compute the evolution of the equilibrium
magnetic fields and current density profiles, following the definitions adopted in PRE-
TOR.

Note that in general currents and fields are not constant on a given flux surface, differently
from densities and temperatures. Moreover currents and fields are vectorial quantities.
Therefore appropriate definitions must be introduced in order to reduce the 3D vectorial
equations, namely Faraday and Ampere laws, to 1D scalar equations, adequate to be
implemented in a 1D transport code. First of all we introduce, for a generic physical
quantity A, the flux surface average in the standard form
(A) = fAdl/Bp,
$di/B,
where B, = |V¥|/R, U being the poloidal magnetic flux and R the major radius. For a

vectorial field a, we introduce the following flux surface averaged parallel component to
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the magnetic field
27 (a- B)

po FRo(R~2)’
where pg is the free space permeability and F' is proportional to the toroidal covariant
component of the magnetic field R By by means of the relation F' = 2r RBg /o, Ry being
the major radius of the geometric axis. We consider an effective minor radius p which is

(3.19)

a=

a proper flux label. Several definitions have been introduced for p in the literature. One
of the most common possibilities, introduced in [24], and adopted for instance in JETTO,
is to define p in terms of the toroidal flux ® by the relation Bp, mp?> = ®, where By, is
a constant, representative value of the toroidal field, and usually chosen as the vacuum
magnetic field at the geometric axis By. In PRETOR the defintion of p follows the choice
which has been made for the variable “RMINOR” in the ITER Profile Database [25]
(variable number 68). In PRETOR p is defined for each flux surface to be the average
horizontal minor radius at the vertical position of the magnetic axis. A more detailed
definition, together with a description of the radial mesh used in PRETOR is provided in
Section 3.5.

A somewhat standard derivation (see, for instance, Eq. (7.14) in [24]) allows one to write

the toroidal component of Faraday law in the form

0B,, 0L

= 2
5 ~ oy (3.20)

where, following [24], we have introduced the effective poloidal magnetic field in terms of

the radial coordinate p
1 dv

P~ R dp’
The averaged parallel electric field E is related to the ohmic current by means of the

plasma resistivity, which is assumed neoclassical. Therefore we can write

E= Tneo johm = Thneo (j - jBS - jCD) . (321)

The neoclassical resistivity 7,., and the bootstrap current jgg are computed using for-
mulae presented in Section 2.4, which are the only available in the literature taking into
account both geometrical and collisional effects. Note that the neoclassical resistivity is a
surface label and the bootstrap current is computed already in the flux surface averaged
form suitable for application in Eq. (3.21), as defined in Eq. (2.3). In Eq. (3.21) we
have also included a current drive density profile jop. Note that also jop is introduced
using the defintion of Eq. (3.19), hence it must be eventually adequately transformed
when it is taken from the output of a separate code, like for instance the ray—-tracing code
TORAY-GA [26] [see Eq. (3.29)]. In Eq. (3.21) the total current density profile 7 can be
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written in terms of the effective poloidal magnetic field taking the projection of Ampere
law parallel to the magnetic field. One can write (see for instance Eq. (7.20) in [24]),

. F 0 Gngo)
= —_— , 3.22
g 1oGe Op ( F ( )
where (B2)
_ V! 1 By
G(p = (27_‘_)2 <R2>, and Ge = Vi (323)

Introducing Eq. (3.22) in Eq. (3.20), we obtain a diffusion equation for the effective
poloidal field B,,, in which the radial derivatives of the bootstrap and driven current
densities take the place of source terms, and the neoclassical resisitivity appears in a term
which takes the place of the diffusion coefficient

8Bpo = _ﬂ _f___ __a_ Gy BpO)] + a77neo (jBS + jCD)
ot ap Tineo en ap ja o

. (3.24)

Therefore, during a time step of the transport code, once all the equations presented in
subsection 3.2 have been solved, then the neoclassical resisistivity and bootstrap current
can be computed with the updated density and temperature profiles, by means of neo-
classical formulae Egs. (2.30) and (2.33), as well as eventually the new source term jop.
Afterwards, the poloidal magnetic field diffusion equation is solved. With the updated
poloidal magnetic field profile, several different current and magnetic field profiles can be
obtained. The integrated current density profile I;(p) can be easily related to the poloidal
magnetic field By, considering the flux of Ampere law through the poloidal cross section
of the magnetic surface of radial coordinate p. This provides

_ 2 Ro
Ho

I

Go B,o. (3.25)

The flux surface label F' is then updated through the relation

e 2V oP @ 1 9I?
2 _ 2 - 7Tt
F*=F; +/p 10Ca 8pdp+ f CoGa Bp dp. (3.26)

where Fy = 2w RyBy/pe. The knowledge of the intergrated current I allows to easily
compute the flux surface average toroidal current density jog = Ro(je/R), given by

- 27TRO

This current density is involved in the expression for the ohmic power density popm = E JoH-

The safety factor and current density profiles are then given by

F 1 F 0 (I,
_ l j=—— - (), 2
q = GoeGo 1’ J 97Ro Gg Op (F) (3 8)
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Note that this last equation relates j to the integrated current, and can be used to compute

Jcp from the current drive profile given as output by a separate code

-~ _ 2r dICD _ ICD dF
JCD hant R0<R__2>

v~ F av (3:29)
where Icp(p) is the integrated driven current inside the surface of radius p. In particular
both I¢p and dIgp/dV are provided by the TORAY-GA output. The radial derivatives
of the total pressure profile and of the toroidal covariant component of the magnetic field,
p'(p) and FF'(p) respectively, are used as source terms in the Grad-Shafranov equation
solved in PRETOR by a 2D coupled equilibrium solver

PU PV 10V
OR?2 " 92 ROZ  RoBp,

Ry + 5 7‘:)‘)2 =FF'|. (3.30)
The 2D fixed boundary equilibrium solver uses a defined plasma boundary as boundary
condition. The solver uses a mesh in R and Z on the poloidal cross section on which the
poloidal magnetic flux W is defined. Such a mesh allows very fast solutions of the Grad-
Shafranov equation, but is not particularly adequate to treat short length scale variations
of the input profiles in the plasma centre. For specific applications a large number of mesh
points on R and Z and an appropriate smoothing of the input profiles is needed. The
updated magnetic equilibrium allows the calculation of all the metric functions needed
in the transport equations. In particular, V' = dV/dp is obtained computing the volume
enclosed in each flux surface of the R, Z mesh corresponding to a point of the grid on the
p coordinate. The flux surface average < |Vp|? >, which occurs in the heat and particle

diffusion equations, is given by

_ (R?B))

= BB (3.31)

<|Vp|* >
The functions Gg and Gy are computed using Eq. (3.23).

Radial electric field

We must also mention that PRETOR does not compute the radial electric field E,. This
can be easily justified by the fact that the RLW transport model does not involve E,.
Therefore for simulations with this model the radial electric field is not necessary. Nev-
ertheless, accurate calculations of the radial electric field are today of great relevance for
the fusion community. The application of theory based transport models, in particular
in the simulation of regimes with improved confinement or internal transport barriers
(ITB), especially in the ion transport channel, calls for the inclusion of the effects due to
the wg«p shearing rate. This term plays an important role in the stabilization of drift—

wave turbulence and is commonly regarded as a very crucial factor in the ITB formation,
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both in theories and experiment analysis [27]. The wgxp shearing rate can be computed

following Ref. [28]

RB;‘: 0 E,.
B, 0¥ RB,

The radial electric field profile is therefore the only term which is not yet computed in

WExB =

.

PRETOR in order to evaluate wgypg. It can be computed by the radial component of the

momentum balance equation for the main plasma ions

_ 1 8p,~
" Zen; Op

— Up Bt + ’Uth.

Here v, and v, are the poloidal and toroidal velocities. The calculation of the radial
electric field profile involves the knowledge of the poloidal and toroidal plasma, rotations.
Usually, the poloidal rotation is assumed neoclassical, and the toroidal rotation is obtained
by experimental measurements. The assumption of neoclassical poloidal rotation implies
that the pressure term and the poloidal rotation term in the expression of F, are usually
similar and of opposite signs [27]. Therefore the dominant contribution is the one given
by the toroidal rotation which calls for careful measurements. These are usually provided
by charge exchange spectroscopy using an intrinsic impurity, like carbon for TCV. This
diagnostics has been very recently installed on TCV. It should allow further transport
investigations beyond the results of the present thesis.

3.4 Energy sources and losses in PRETOR

Energy sources

The intrinsic energy source in tokamaks is that provided by ohmic heating. As already
mentioned, the ohmic power involved in the source term of the electron heat transport
equation [Eq. (3.14] is computed as follows

Potem = E Jon. (3.32)

The flux surface averaged parallel electric field E is given by Eq. (3.21), while the flux
surface average toroidal current density jom is given by Eq. (3.27).

Auxiliary heating sources are governed by complex physics. The plasma absorbed power
densities must be generally computed by separate codes, interfaced or coupled with the
transport code. For instance, PRETOR has been coupled with the code PION [29],
computing the ion cyclotron resonance heating (ICRH) source, and used for predictions
of ITER performances with various ICRH schemes [30]. As already mentioned, during the
present thesis work, interfaces with a few codes computing RF or NBI heating sources have
been implemented in PRETOR for applications on two tokamaks, TCV and JET. Details
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are provided in Section 3.5. Nevertheless, for fast predicting simulations it is useful in a
transport code to have the option of modelling the effect of a heat source by means of a
set of simple gaussian power density profiles absorbed by the plasma, whose total powers,
locations along the minor radius and widths can be provided as input. In PRETOR we
have implemented the possibility of taking into account up to six different independent
gaussian power density profiles, simulating for instance the power depositions due to the
six X2 gyrotrons available on TCV, Section 4.3. The corresponding power density profile

is given by

N EPRY: 1 IPRY: -1
prr =Y P exp [—Lp—Azpi} { / exp [—(LA—QKQJ V’dp} :
=1 ! 0 !

where P, is the total power in MW produced by the [-th gaussian profile, whose center
is p; and standard deviation A;. These three quantities, for each gaussian, are all time
dependent, allowing the simulation of power ramps or modulations, and deposition sweeps.
Each power P, is divided into two fractions, one to be included in the ion heat sources,

and the other in the electron heat sources.

Energy Losses

Radiation losses arise from several different physical mechanisms. In a pure hydrogen
plasma, they can be ascribed basically to the radiation emitted by charged particles when
accelerated. Because of their lighter mass, only electrons need to be considered, while
ions can be neglected. Two different accelerations affect the electron motion, the first
ascribed to collisions with ions, the second to the cyclotron gyro—motion. The conse-
quent radiations are usually called bremsstrahlung and cyclotron radiation respectively.
The bremsstrahlung radiation losses pyrems can be easily evaluated considering the Hertz
formula, giving the radiated power in the dipole approximation, and taking into account
quantum mechanical effects which determine the effective cross section of Coulomb colli-

sions. An easy and somewhat standard formula [23] is obtained

Pbrems = 5.35107° >~ Z2n; n T, (3.33)
j

where Pyrems 1S given in MW /m3, temperatures in keV, densities in 10 m~3. The sum-
mation is extended over all the ion species of the plasma. Note that impurities contribute
significantly because of the higher values of the charge number. The plasma cyclotron
radiation losses p.y. are, on the contrary, quite difficult to evaluate. Indeed they involve
emission and absorption at harmonics of the cyclotron frequency in spatially varying
plasma and magnetic field. Moreover the plasma behaves as optically thick to radiation

at the fundamental cyclotron frequency. The principal energy loss occurs at harmonics
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of the cyclotron frequency, generated through relativistic effects, for which the transition
from optically thick to optically thin behaviour occurs. Several formulae are available in
the literature in order to take into account all these effects [31]. In PRETOR the following
formula has been implemented, derived from [32]

184 T3 B,1/?
& = 2151074 |1+ 1 — Ryan) =—|
™ [( &ﬁg(}%wme
®
Peye = 6.20107* 1+f1’>lm B! T,n,, (3.34)

where pgy. is in MW/m3, lengths are in m temperatures in keV, densities in 10'° m~3, and
B;in T. R,y is a wall reflection coefficient to be given in input, and the term involving
&1y, takes into account the plasma optical thickness. Note however that cyclotron radiated
losses are generally negligible. In particular for TCV they are usually below 10 W/m3,
which is small compared to other loss mechanisms. When cyclotron radiation losses are
important, more precise separate computations can be performed using coupled codes. In
particular PRETOR has been coupled with the routine described in Ref. [33]. Due to
the very low values for TCV, in the present thesis work this routine was never used, and
cyclotron radiation losses were always computed by Eq. (3.34) The presence of impurities
not only implies an increase in the radiation losses due to bremsstrahlung, but involves
atomic processes causing additional and usually dominant radiation losses, namely line
radiation and recombination. Simple formulae evaluating radiation losses due to atomic

processes are usually strongly approximated, and has the general form
Pimp = Ne Ty Rp(Te) (335)

where the radiation parameter Rp is a function of the electron temperature. The option
which has been adopted in PRETOR in all the simulations performed in the present thesis
work has been to use the following very simple formula

4
B (1) =P e T (5.36)

More complicated formulae can be used, obtained by interpolating atomic data tables
[34], but they will not be discussed here. Note that atomic processes become important
usually in the edge region, r/a > 0.8. Since the usual boundary condition used in the
simulations imposes the temperature at the edge, the temperature profile is less sensitive
to the power balance in the edge region, where atomic radiation losses become dominant.
An additional energy sink must be ascribed to ionisation losses. These are evaluated in
PRETOR as follows

Pron = 1.6 1078 E; 20 oy (n; + ny), (3.37)

where E; = 10V is the ionisation energy, to be expressed in eV in the formula.
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3.5 Numerical details about PRETOR

The radial coordinate

As already mentioned, the radial coordinate p in PRETOR is defined to be the average
horizontal minor radius at the vertical position of the magnetic axis. Let us consider a
given flux surface and denote by d the horizontal diameter of this flux surface, measured
at the vertical position of the magnetic axis. In other words, d is the midplane width of
the flux surface. We denote with D the horizontal diameter of the LCFS, still measured at
the vertical position of the magnetic axis. Then, for each flux surface, we define p = d/2,
so that 0 < p < D/2. On this radial coordinate the radial mesh is chosen in order to
allow a more dense distribution of points close to the edge. The points of the radial mesh
are equidistant with a small step Ap; from the edge up to a given radial positon p,,
and then with a larger step Ap, up to the centre. In the simulations we have chosen
pm = 0.9. The number of points N on the radial mesh has usually been taken equal to
39. For simulations involving short range variations of the pressure or current profile, we
have used higher values of IV, up to N = 72 for some simulations of the sawtooth period
(Section 5.3).

Time evolution and sequence in the solution of the transport equations

As we have pointed out in Section 3.1, the transport equations are coupled. Their numeri-
cal solution would therefore involve the inversion of a single large non-tridiagonal matrix.
A strong simplification is provided by solving the set of transport equations in sequence.
This does not involve large errors as long as little time steps in the time evolution are
considered. On the other hand, this allows very fast computation. Transport equations
are solved by an implicit scheme in time and by a finite difference scheme in space. Solv-
ing the equations in sequence implies that only tridiagonal matrices must be inverted. In
particular, the highest error is introduced in the equipartition term, which is not exactly
the same in the electron and ion heat transport equations at each time step. Indeed it
is evaluated with both the old electron and ion temperatures in the ion heat transport
equation, and with the old electron temperature and the updated ion temperature in the
electron heat transport equation. PRETOR runs with a non constant time step dt. The
value of 6t is determined by the following relation

AWo(p) 1 o
(new) __ o
ot = Cgpeed {max [a‘bs ( §t(old) We,i(p = a))] } .

Here cgpeeq is an input parameter and W, ; are the profiles of the electron and ion energy

contents respectively. The parameter cgpeeq determines the order of magnitude of the
value of §t and therefore the speed of the simulation. As a rule of thumb, one can choose

this parameter as given by 1/20 of the confinement time expressed in seconds (in other
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words, for a plasma with 7z ~ 2 1072 5, one takes cspeeq =~ 1 1073). If the previous formula

provides a value of 6t < 1 us, the minimum value of 1 us is considered.

Interfaces with codes computing the heating sources

For the simulation of heated discharges we have implemented interfaces with the output
of specific codes computing the heat sources. These codes are routinely run as post—
processing codes after the experiments and use as input the experimental profiles. This
approach can be considered self-consistent only as long as the simulated plasma profiles
are close to the experimental ones, since the output of the auxiliary heating codes depends
on the plasma and equilibrium profiles used in input. On the other hand, this approach
allows to simulate the discharges using the most realistic estimation of the heating sources,
and therefore becomes more stringent in assessing the role of the transport model. During
this thesis work, specific interfaces have been implemented with different codes: TORAY-
GA [26] for electron cyclotron resonance heating in TCV (Sections 4.6 and 5.3), PENCIL
[35] and PION [29] for neutral beam injection (Section 5.4) and ion cyclotron resonance
heating respectively in JET.

A different approach, which is completely independent of any experimental data, is to
couple the auxiliary heating codes to the transport code, using as input the plasma and
equilibrium profiles directly computed by the transport simulation. This approach, as
already mentioned, has been used coupling PRETOR with PION for predictions of the
ITER performance with ICRH [30].

3.6 Transport models

Several different transport models have been developed by the fusion community over
the years. They can be divided in two main groups: the semi—empirical models and
the theory based models. Semi—empirical models can involve physical ideas like simplified
theoretical models, dimensional analysis, critical gradients, but they mainly determine the
parameter dependence and magnitude of particle and heat diffusivities by experimental
comparisons. On the other hand, theory based models are completely derived from first
principle physics, and can eventually include a few fitting parameters which arise from
theories which are not entirely developed, like for instance for the turbulence saturation
levels. A comprehensive and very recent review of all the main transport models currently
used and developed can be found in Ref. [21], together with a complete list of References.
Another important, although less recent, review which must be cited is Ref. [36]: it
includes the first detailed comparisons of the predictions of several different models with
the experimental results. A more specific application and comparison of the simulations
and predictions of the most recent theory based models is presented in Ref. [37].
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The predictions of these models can strongly disagree. For instance the predicted ITER
fusion power can differ by a factor 6 among the most pessimistic and most optimistic
models [21]. The validation of a transport model over a wide experimental database,
including data from the largest possible number of exisiting tokamaks, is therefore of
major importance in order to obtain the most reliable predictions of the performance
of the designed future devices. Nevertheless, as already mentioned, in what follows we
shall not enter in this research domain, and we shall not compare results given by the
application of different transport models in the simulation of TCV discharges. During the
present thesis work we have almost completely focused (and limited) our analysis to the
application of one specific model, the semi—empirical RLW transport model, regarded as
a tool to investigate the nature of the heat electron transport in TCV.

3.6.1 The Rebut—Lallia—Watkins local transport model

The Rebut-Lallia—Watkins transport model has been derived with the assumption that
confinement degradation in tokamaks due to the presence of anomalous transport must
be ascribed to a single underlying phenomenon. This physical phenomenon has been
identified in the model as turbulence in the magnetic topology. In Ref. [38] a theoretical
model has been developed in order to evaluate the effect on the heat flux of the inter-
action of several sets of almost overlapping small magnetic islands and the consequent
surrounding ergodisation of the magnetic field lines. These results have been revised on
the basis of a dimensional analysis [39], in which a set of normalized structural parameters
have been identified, representing the power flow, the plasma pressure, the resistivity and
the thermal diamagnetic drift speed, and assuming that a single relationship must exist
among them. From experimental observations suggesting a large resilience to changes
in the electron temperature profile in JET [40], such relationship has been interpreted as
defining a critical value for the electron temperature gradient, above which the anomalous
transport starts to be at play. The power balance between the kinetic energy associated
to the flow of electrons around the islands, at the diamagnetic velocity, and the resistive
dissipation of the induced currents needed to mantain the perturbed magnetic topology
of the islands provides an expression for the critical electron temperature gradient [39],
Eq. (3.40). When the electron temperature gradient exceeds the critical value, also the
overlapping parameter of magnetic islands exceeds a corresponding critical value, and
islands overlap radially, involving a chaotic behaviour of the field lines. On the basis of
the evaluations of the heat flow generated by this turbulent magnetic topology [38], a
global scaling law and a complete model both for electron and ion heat conductivities
has been proposed in [15]. This model exhibits a gyro-Bohm nature. In [14] the model

has been extended also to particle transport, assuming that the same underlying phe-
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nomenon is responsible for both particle and heat anomalous transport. Moreover, the
ion heat conductivity has been modified introducing factors which imply a Bohm nature
to capture ITER-89P [41] scaling law. This model has been applied also by the ITER
1D Modelling Working Group [21, 25] and identified by the acronym RLWB. This model
has been implemented in PRETOR and will be presented in this form in the following
paragraph.

3.6.2 Transport coefficients in PRETOR

The transport coefficients are made up of the neoclassical and anomalous contributions.

Hence, for the heat conductivities we can write:

Xe = Xe,neo T Xe,an Xi = Xineo + Xi,an (338)

The neoclassical contribution can be evaluated using formulae given in Section 2.4. The
different terms can be easily identified by means of the general expressions for the ther-

modynamic fluxes given in Egs. (2.40). The anomalous contribution x. ., is given by

e,.an [4 Te _
N

RY? n
) H(VT, — VTriw) (3.39)

where H(x) is the Heaviside function, and where the notation VT, simply means dT,/dp.

The critical electron temperature gradient is given by the expression

nj B\
ne\/Te) ’

where 7 is the neoclassical resistivity, as given in Section 2.4. For the anomalous ion heat

1
VTrw = Cgcrt E ( (340)

conductivity, we use the following expression
2T, 0.3 Ry B, TN
(T, +T))% 1+ Zegs i+ mp

No heat pinch contribution has been introduced in the model, therefore vpr, = vpr; = 0.

(3.41)

Xian = Xe,an Ci,an

Particle diffusion coeflicients and pinch velocities can be written in the same way
Di = Di,neo + Di,an Dp = Dp,neo + Dp,an ' (342)

Up; = UPineo T VUPi,an Upp = UPpneo + UPp,an (343)

The neoclassical particle pinch velocity is essentially given by the Ware pinch [42]. For
instance, this can be easily related to formulae given in Section 2.4

F E
. -~ F 31
RoB,, By 13(Fretr):

VPineo =
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where Fi3 is given by Eq. (2.27c) and f3%, taking into account collisional effects, by Eq.
(2.33a). The anomalous particle diffusion coefficients are assumed proportional to Xe,qn
while the ratio of the anomalous pinch terms to the particle diffusivities are assumed

proportional to the magnetic shear s = p dlng/dp,
s
Di,an = -Dp,an = CD,an Xe,an UPi,an = UPp,an = CP,zm Di,an ‘p‘ H(S) (344)

The coefficients Cgert, Ce,ans Cign and Cp gn, Cpan have been determined on the basis of

a set of simulations of JET discharges and fixed as follows
Ccrt = 6, Ce,an = 2, Ci,an = 2, CD,an = 05, Cp’,m = 0.5. (345)

Values close to these ones have been found adequate to simulate the temperature profiles
of recent JET discharges, in a work dedicated to the simulation of the sawtooth period
during neutral beam injection, Section 5.4. On the contrary, this choice has not been found
appropriate to simulate the temperature and density profiles in TCV, subsection 4.5.2.
Note that since TCV does not yet have accurate T; measurements, C, 4, has been always

kept equal to 2, consistently with Eq. (3.45).

The expressions for the anomalous heat conductivity and the critical electron tempera-
ture gradient will be largely discussed in the applications on TCV in the next Chapter.
Nevertheless, at this stage, some comments can be useful in order to introduce what will
follow. We note first that, even if the RLW local transport model involves a threshold
on the temperature gradient, it can not be considered similar to theoretical models based
on drift-waves microinstabilities, which involve a critical value of the normalized gradient
R/Lt. = R|VT,|/T.. Actually, the expression for VIgpw is inversely proportional to the
electron temperature, which is a somewhat opposite behaviour than the one predicted by
theoretical models. Furthermore, the strong dependence on the magnetic field as well as
its independence on the magnetic shear have been largely analyzed in Ref. [43] and found
inadequate. In this Reference it was proposed to modify the expression for the critical

gradient VIgrrw, eliminating the B, dependence as follows
15 ( nj )1/ 2
vT = — ( .
REWH ™ "¢ \neVT.
This formula recovers Eq. (3.40) for B, = 1.8 T. In TCV the toroidal magnetic field is
not largely flexible and operation is performed usually at a fixed value of B;, around 1.4

T. As it will be discussed in detail in subsection 4.5.1, this low value of the magnetic field,
consistently with the findings of Ref. [43], plays a favourable effect for the satisfactory
application of the RLW model to TCV plasmas. We shall show that the RLW formula
gives values of the critical gradient which are well below the measured temperature gra-
dients in TCV.
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The expression of the heat conductivity involves the term

T,
(V . +2Vne> gp

T, Te s

which can lead to singularities for s = 0. For this reason in the numerical implementation
we add 1/100 to the absolute value of the term s/(gp). Local minima or maxima of the ¢
profile imply local spikes in the transport coefficients which do not modify essentially the
temperature profile, as long as they remain sufficiently localized. In the case of extended
plasma regions with flat ¢ profiles, like for instance in the plasma centre, on the contrary,
the formula implies an effective increase of transport. Note this is somewhat balanced,
since the increase of x. due to g flattening reduces the temperature and density gradients,
which imply in their turn a reduction of x.. Low temperature gradients imply also lower
values of the term (1 — VTrw/VT.). The two effects ascribed to low temperature
gradients are usually dominant as compared with the effect due to low shear. We shall
show that temperature profile broadening obtained by off-axis electron heating implies a
broader central region with flat ¢ profile, but also a low central heat conductivity from
the RLW model (subsection 4.6.5, Figures 4.37 and 4.38). On the contrary, with this
model it is almost impossible to obtain strongly peaked temperature profiles when the
shear is too flat in the centre. This has been found to have important implications in
the simulation of discharges in TCV in which a regime of improved confinement has been
obtained by on-axis counter current drive (Section 4.6). We must also stress that, in
the case of negative shear, we do not involve any additional reduction of the transport
coefficients. The reduction of transport is just the one provided by the corresponding
increase of shear, due to the dependence x, x |1/s|. However, it must be mentioned that
in the literature different options have been chosen on this point. In particular in Ref.
[44], for the simulation of the JET PEP mode, the ion and electron transport coefficients
were reduced to the ion neoclassical levels within the region of negative shear. The term
\/fm plays also an important role, in particular when the critical gradient becomes
negligible as compared with the temperature gradient, like in the case of TCV plasmas
with auxiliary heating. In this case this term allows an overall dependence of the heat
conductivity on the electron temperature of the kind x, o< T*. In subsection 4.5.4 we
shall show that due to this specific dependence, the model allows one to reproduce in the

simulations the experimentally observed stiff behaviour of the electron temperature.

In PRETOR, the simulation of H-mode profiles is produced by a reduction of the transport
coefficients from the edge up to a given position on the minor radius. This position can
be chosen by the user. The level of this reduction needs also to be given in input. Note
that even if the edge pedestal temperature is fixed by the boundary condition, a factor

reducing transport close to the edge becomes necessary in order to prevent the simulated
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profile to assume non—monotonic oscillations close to the edge, when the pedestal is large.
The L-H transition is automatically triggered during a simulation when the edge value of
the electron heat source, including equipartition, exceeds a threshold whose value must
be provided in input. This empirical model has been used in the simulation of H-mode
profiles in JET, in the work dedicated to modelling and simulation of the sawtooth period

during neutral beam injection (Section 5.4).

For the prediction of ITER burning plasma profiles, the RLW coefficients in PRETOR are
multiplied by a factor which allows the simulation to follow the global plasma performance
predicted by a prescribed scaling law. Let us assume that at a given time step the
confinement time in the simulation is 7g and that, adopting the plasma parameters of the
simulation at the same time step, the scaling law provides a value 7;. At the next time
step, after a time dt, all the transport coefficients are then reduced by the factor

TE
1 — — 1) 6t
+ (H TL )
where H is a supplementary factor enhancing the plasma performance as compared with

the scaling law.
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Chapter 4

Modelling transport in TCV

4.1 Introduction

In this chapter we present an analysis of electron transport in TCV, with particular em-
phasis on heat transport in discharges with dominant electron cyclotron heating (ECH).
This study has been performed with the PRETOR code, described in the previous Chap-
ter, developing some specific numerical tools intended for data analysis related to heat
transport, in particular for power balance calculations. This work had the preliminary
purpose of validating the RLW local transport model in the simulation of TCV plas-
mas over a set of different heating and plasma conditions. The high shape flexibility
and the powerful ECH system of TCV enable interesting and relevant transport studies.
Auxiliary-heated TCV plasmas have low density, due to the cut—off for the X2-mode,
and large ratios of electron to ion temperature. The model turns out to be remarkably
successful in these conditions. We investigate the reasons for this good agreement, in an
attempt to infer information on the nature of anomalous electron transport. In partic-
ular the model correctly reproduces the record electron temperature gradients obtained
during discharges with improved confinement in TCV. The successful application of this
transport model has allowed us to supply the tokamak with a set of numerical tools suited
for transport analysis, adopting user—friendly interfaces and automatic procedures which
allow one to use the code as a complete TCV simulator and predictor. The continuous in-
teraction between experiment and modelling has significantly supported the research and
the identification of a quasi-stationary regime of improved confinement in TCV. A large
part of this Chapter, Section 4.6, will be dedicated to the presentation of the experimental
observations, simulation results and discussion of this regime.

4.2 Brief description of TCV

The Tokamak & Configuration Variable (TCV) at the Centre de Recherches en Physique
des Plasmas (CRPP) is a medium size tokamak, designed to investigate the effects of
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plasma shape on confinement and stability [1]. The principal design parameters of the
machine are presented in Table 4.1. In Figure 4.1 is shown a schematic view of TCV.
TCV is equipped with an air core transformer and the toroidal magnetic field is produced
by 16 toroidal field coils, connected in series. The flexibility of TCV to produce both
diverted, single and double null, and limited highly shaped plasmas is due to its unique
shaping control system, which consists of active feedback—controlled coils both outside
and inside the vacuum vessel. The 16 external coils are mounted in two vertical stacks on
both external sides of the vacuum vessel and are driven by slow power supplies. The fast
internal coils (time response ~ 0.1 ms) are placed behind the graphite tiles and allow the

stabilisation of highly elongated plasmas [1].

O<1J
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Figure 4.1: Schematic view of TCV



4.3. THE TCV ELECTRON CYCLOTRON HEATING SYSTEM 81

Parameters | Symbol | Value |
Major radius Ry 0.88 m
Minor radius a 0.25 m
Nominal aspect ratio A=Ry/a 3.5
Vacuum vessel elongation krcv 2.9
Maximum plasma current I, 1.2 MA
Maximum central magnetic field By 1.54T
Maximum loop voltage Vioop 10V
Discharge duration <4s
edge plasma elengation k, 1-2.82
edge plasma traingularity da (-0.8) - (+0.9)

Table 4.1: Main TCV parameters

Since the beginning of operations, in November 1992, TCV has produced a wide range of
different plasma configurations (Figure 4.2), limited (a), single null (b, ¢), and double null
(d) diverted, obtaining low confinement (L-mode) and high confinement (H-mode) modes
of operation in both limited and diverted configurations. Plasmas have been substained
with currents up to 1 MA (e), and several different plasma shapes have been obtained,
from standard D shapes to more exotic shapes, such as pear (g) and rectangular (1) shapes
as well as doublets (h). The extreme plasma shapes produced so far are also illustrated by
the case of maximum elongation as well as maximum negative and positive triangularity

and squareness, Figure 4.2(i), (j), (k) and (1) respectively.

4.3 The TCV Electron Cyclotron heating system

TCV is equipped with a very flexible ECH system [2], which was designed to provide a
maximum coverage of the poloidal cross section, because of the wide variety of plasma
shapes, and which allows one also to modify the toroidal injection angles, thus permitting
the generation of substantial electron cyclotron current drive (ECCD), both in co and
counter directions. The system consists of two clusters of three gyrotrons each operating
at the second harmonic frequency, fo.e = 82.7 GHz, and one cluster of three gyrotrons
at the third harmonic frequency, f3.e = 118 GHz. The nominal power for each 82.7 GHz
gyrotron is 465 kW and for each 118 GHz gyrotron is 480 kW, resulting in a total radio
frequency power of 4.2 MW for a maximum pulse length of 2 s. Each gyrotron couples the
electron cyclotron beam to an evacuated transmission line through which it propagates to
a quasi-optical launching antenna installed on the TCV vessel. The polarization of each
beam can be varied and is usually set for a propagation in the extraordinary mode (X2
and X3). The cut—off density for the X2-mode is n, ~ 4.2510'® m~3, while the X3-mode
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X3 system (118GHz)

X2 system (82.7GHz)
Launcher2, 3, 5,6

Launcher 1, 4

Figure 4.3: X2 and X3 ECH launching system on TCV

As shown in Figure 4.3, X2 launchers are placed on two equatorial (L1, L4) and 4 upper
lateral ports (L2, L3 and L5, L6). Each launcher has two degrees of freedom. One provides
steering of the microwave beam in a fixed plane, changing the poloidal injection angle,
even during the discharge, allowing experiments with a sweep of the power deposition
location. The other degree of freedom allows the rotation of the sweep plane between
discharges, permitting experiments with different amounts of ECCD.

The three beams of the recently added X3 cluster are combined at one launcher at the
top of the vessel, Figure 4.3. The mirror can be displaced radially (Ar = +a/3) between
discharges to inject the beam either from the low or the high field side of the resonance.
In order to maximize the absorption by increasing the path length through the plasma,
the beam is injected nearly tangential to the resonant surface. The mirror can also be
rotated during the discharge by +5 degrees for fine adjustment of the beam direction.

In the present work, we have considered only discharges with Ohmic heating or ECH
additional heating in X2.
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4.4 Electron temperature behaviour with ECH in TCV

Several investigations have been undertaken to analyze both the global and local features
of electron transport and electron temperature profiles in Ohmic discharges in TCV, [3]
— [8]. For discharges with ECH, a more specific study of the global plasma response to
auxiliary heating has been performed, deriving a TCV scaling law for the confinement
time [9], but no detailed analysis on the local features of the electron temperature profiles
in response to ECH has been carried out. This has motivated a preliminary investigation,
in order to obtain a deeper understanding of the experimental behaviour to be simulated
by transport modelling. This has also enabled us to supply TCV results to a comparative
study of electron transport in different tokamaks [10], recently performed with the aim of
identifying normalized plasma parameters related to electron transport whose value turns

out to be independent of the machine and of plasma conditions.

In the tokamak plasma cross-section we can identify three regions relevant for transport
studies: a central region, inside the mixing radius, in which transport is believed to
be mainly determined by sawtooth activity in conventional scenarios; the confinement
region, in which the intrinsic transport of both heat and particles plays the crucial role in
determining the plasma profiles; and the edge region, close to the limiter or the separatrix,
in which convection, radiation losses and atomic physics, as well as transport barriers
and ELMs in H-modes should play the most important role, determining the boundary
conditions for the profiles in the confinement region. In what follows we are directly
concerned with the description of the electron temperature behaviour in the confinement
region. We call central heating the auxiliary heating provided to the plasma inside the
central region, hence without affecting directly the confinement region, whereas we shall

refer to power depositions inside the confinement region as off-axis heating.

4.4.1 Central heating

TCV plasmas show a stiff behaviour in the confinement region in response to strongly
increasing heating power in the centre. Indeed when the heating power is varied from
Ohmic, to 1.35 MW ECH and then up to 2.7 MW ECH, the electron temperature pro-
files show a remarkable similarity in the confinement region when plotted in logarithmic
scale, Figure 4.4. The power balance analysis of this discharge shows that the electron
heat conductivity increases strongly in the confinement region, whereas the normalized
dimensionless electron temperature gradient remains almost the same, independently of
the power level, and essentially constant along the minor radius, Figure 4.5. Note also
that in the central region, the electron heat conductivity does not respect the gyro-Bohm
scaling, since X, /T.? /2 in the plasma center becomes lower and lower with increasing heat-
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ing power.

In order to show the profile stiffness behaviour, a particularly important test is to plot
the value of the electron temperature at the inside boundary of the confinement region,
roughly r/a = 0.4, versus the value of the electron temperature at the ouside boundary of
the same region, roughly r/a = 0.8. We have considered 6 time slices among 5 different

shots, with increasing power from Ohmic up to 2.25 MW ECH, with on—axis deposition,
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Figure 4.5: Power balance analysis for shot $18224, highlighting the stiff behaviour of the
electron temperature in response to increasing central heating power (Ohmic heating is
plotted with dash-dotted lines, 1.85 MW ECH with dashed lines and 2.70 MW with solid
lines).

hence with the centre of the deposition located at pg, = 0 and all the power absorbed
inside r/a = 0.4. The result of this analysis is shown in Figure 4.6. As already shown in
the specific case of shot §18224, Figure 4.5, the normalized dimensionless electron tem-
perature gradient, R/Lr., remains almost constant as a function of both space and power
in the confinement region. Indeed, in Figure 4.7, we have plotted the profiles of R/Lp,
for 20 time slices among 10 shots, from Ohmic up to 2.70 MW ECH. All these discharges
have central heating, ps, < 0.4, with line average density n.i, =1 — 2 10"°m™2 and
different degrees of power localization, enabling the power density to range from 5 up to
150 MW/m3, with corresponding levels of heat flux at p,; = 0.4, computed by power
balance analysis, from 0.02 to 0.5 MW /m?2. At p,, = 0.6, roughly in the middle of the
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confinement region, R/ Ly, ~ 10+ 30%. The same behaviour of the electron temperature
has also been observed in other tokamaks, with typical values of R/ Lz, very close to the
TCV value [10]. This analysis leads to the conclusion that indeed with central heating,
the electron temperature in TCV shows a stiff behaviour in the sense that a dimensionless
parameter, R/Lre, can be identified, which is largely independent of the level of radial
heat flux. In particular the value of R/Lz. turns out to be independent of the ratio
T./T;, which can vary by more than a factor of 5 from ohmic to ECH plasmas. This
behaviour suggests the existence of a critical value of this parameter, possibly determined
by microinstabilities producing the relevant anomalous transport, above which transport

increases strongly, preventing the plasma profile from evolving further.

4.4.2 Off—axis heating

The stiff behaviour of the electron temperature in the confinement region with central
heating motivates the investigation of the behaviour of the electron temperature when
ECH is deposited inside the confinement region. A good example is provided by shot
#19696, in which a stationary scenario has been obtained in a highly elongated plasma, k =
2.4, with 0.9 MW of ECH power deposited at p,o = 0.5 and pyoy = 0.8 [11]. This discharge
is characterized by very high values of gegqe, larger than 10 during the ECH phase, with
qo largely above 1 and without sawteeth. The corresponding electron temperature profile,
compared to the profile during the Ohmic phase, is shown in Figure 4.8. We see clearly
that in this situation the profile can no longer be described as stiff. Indeed the ECH is able
to “bend” the profile, changing the profile convexity, which is concave in Ohmic, typical
for a highly elongated plasma with low plasma current and high g4y, and becomes convex
with additional off-axis heating. The power balance analysis comparing the two situations
is shown in Figure 4.9(a). The Ohmic heating in the central region is strongly reduced
during the ECH phase, but, in spite of this, the electron temperature profile, as shown in
Figure 4.8 remains peaked in the centre. This implies a very strong reduction of the power
balance heat conductivity in the centre, to values of 0.3 — 0.5 m?/s. This is largely below
the Ohmic level (2 — 3 m?/s), and remarkably close to the neoclassical level (~0.1 m?/s).
Around the region in which the auxiliary heating power is deposited, the values of R/Lre
with ECH are below the corresponding values with only Ohmic heating [Figure 4.9(b)].
This can be regarded as consistent with the picture of a critical value of R/Ly. below
which profile modifications are possible, and above which profile modifications are not
permitted. Close to the edge, outside the deposition, R/Ly, becomes larger and larger,
with edge values of the temperature which are below the corresponding values in Ohmic.
This behaviour is somewhat opposite to the one observed with central heating, in which,

increasing the auxiliary heating power in the centre, an increase in the value of the edge
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Figure 4.8: Electron temperature profiles for shot §19696 in the Ohmic (circles in light
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grey) and in the ECH phase (diamonds in black). Solid lines show best fits to the data.

temperature is observed, Figure 4.4. In any case this point needs further investigation,

and a definitive statement about the connection between the edge and the centre of the

plasma in response to different heating conditions cannot be formulated yet. The new

diagnostic devoted to measuring the electron temperature at the plasma edge, by Thomson

scattering with a high spatial resolution, will be very useful in order to assess this issue.

Note that the strong reduction of the heat conductivity in the centre as a consequence of

localized off-axis heating has not been observed only in the absence of sawtooth activity.

Rather, this is a very general phenomenon. An example is given in Figure 4.10, showing

the electron heat conductivity for the sawtoothing shot §17766.

In TCV the local power balance heat conductivity has always been found to be positive.
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Figure 4.9: (a) Power Balance analysis for shot $19696, comparing the Ohmic (light grey)
and the ECH phase (black) of the discharge. (b) Corresponding dimensionless electron
temperature gradient lengths R/Lr..

This is different from previous observations in DIII-D [12], and recent observations in
FTU [13], in which the heat conductivity turns out to be locally negative in the centre,
owing to the very high densities leading to very high radiation loss even in the plasma
centre. This has suggested the presence of an inward heat pinch, which would restore a
positive heat conductivity. In TCV, in which ECH operation is performed at very low
plasma densities, there is pratically no radiation loss in the centre. Therefore, a power
balance analysis cannot distinguish between the reduction of the effective transport arising
from a lower electron heat conductivity or from the presence of an inward heat pinch.
Only experiments with modulated electron cyclotron heating (MECH) could distinguish
between the two cases, and would generate conclusive information about the presence or
absence of a heat pinch with off-axis ECH in TCV. At this stage, we can only conclude

that, with off-axis heating, in the interior of the deposition region, transport is strongly
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Figure 4.10: Power Balance electron heat conductivity for shot £17766, comparing the
Ohmic (dashed line) and the ECH (solid line) phase of the discharge.

reduced, largely below the Ohmic level. Recent experiments in ASDEX Upgrade have
shown an analogous behaviour of the power balance electron heat conductivity, with very
low transport in the plasma centre, a step at the location of the off-axis ECH deposition,
and high transport outside {14]. The analysis of MECH experiments have confirmed such
a difference between transport levels inside and outside the deposition region and have
shown that the transport reduction must be completely ascribed to a reduction of the

heat conductivity, with no contribution coming from an inward heat pinch {14].

As a concluding remark we would like to emphasize that, as previously shown for the case
of shot #19696, with sufficiently high levels of ECH power and correspondingly of ECH
power densities compared to the Ohmic power density, (note that from this point of view
TCV can reach regimes of operation which are not possible in other devices), the electron

temperature profile can be strongly modified in the confinement (stiff) region, producing
locally lower values of R/ L.
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4.5 The RLW transport model applied to TCV dis-
charges

The experimental observations described in the previous Section suggest that transport
models which can be considered as good candidates to correctly simulate the electron
temperature are those involving a critical value in R/Lt.. This is not the case for the
semi-empirical model RLW [16], which involves a critical value of the electron temperature
gradient VT, and not of V7, /T, (subsection 3.6). On the other hand, the RLW global
scaling has been found a valuable predictor of TCV global plasma performance both in
Ohmic [4] and in ECH L-mode [9].

Moreover, the expression of the electron heat conductivity provided by this model has al-
ready been found to be in good agreement with several experiments, [17, 18, 19, 20], and
more recently in [21]. In this last Reference a detailed analysis has allowed the authors
to state that in the RLW model the plasma parameter dependence of the anomalous heat
conductivity is correctly described, whereas the expression for the electron temperature
critical gradient was found inadequate. In particular the model has been found to be in
agreement with the experimental observations when the electron temperature gradient is
well above the critical value provided by the model. Note also that the expression for the
electron heat conductivity in the RLW model has a weak dependence on the ion temper-
ature profile, as it only involves the ratio T./T; to power 0.5, which is nearly independent
of T; at very high values of T, /T;. This turns out to be particularly appropriate for the
typical TCV regime of operation with ECH, in which low plasma densities, imposed by
the density cut—off for X2 absorption, imply that electron and ions are completely decou-
pled, with ratios of T, /T; ranging in general from 10 to 30. Note that this is also fortunate

for TCV, in the absence of precise measurements of the ion temperature profile.

On the basis of all these elements, it can be stated that the RLW local transport model
remains a good candidate for modelling the electron transport in TCV plasmas, in par-
ticular in the presence of ECH. We shall show, in subsection 4.5.4, that this model, even
though it does not involve a critical value of the normalized electron temperature gradient
|VT.|/T., allows one to reproduce the stiffness features observed in EC heated plasmas
in TCV, by means of the specific dependence of the transport coefficient expression on
plasma parameters in typical TCV plasma conditions. On the grounds of the results of
Ref. [21], the first step in order to validate the RLW model for TCV transport modelling
is to compare the experimental values of the electron temperature gradient to the corre-

sponding critical values provided by the model.
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Figure 4.11: Electron temperature profiles for shots $9588 and 89589, experimental mea-
surements (symbols) and simulation results (solid lines). The experimental points have

been mapped to the major radius on the midplane by means of the equilibrium reconstruc-
tion.
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Figure 4.12: Electron temperature profiles for shots 9594 and 39592, experimental mea-
surements (symbols) and simulation results (solid lines). The ezperimental points have

been mapped to the major radius on the midplane by means of the equilibrium reconstruc-
tion.

4.5.1 The RLW critical gradient in TCV plasmas

Ohmic plasmas
In Figure 4.11 and Figure 4.12 we have shown the simulated profiles for 4 different Ohmic
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limited discharges during a phase of stationary operation. The four shots have been cho-
sen in order to cover a sufficiently wide range of variation of two plasma parameters,
density and current, keeping the plasma shape almost constant, with edge triangularity
around 0.3, and edge elongation 1.55. Shots #9588 and #9589, Figure 4.11, have the same
plasma current, I, = 450 kA, with a corresponding g.45. = 2.45, but differ strongly in the
value of the volume average plasma density, 7.4 101°m~3 and 2.4 10 m~2 respectively.
By contrast, shots $9594 and 9592 have a lower value of plasma current, I, = 250kA,
Qedge = 4.3, and volume average densities 2.8 10’ m~3 and 6.8 10*® m~3 respectively. We
have carefully simulated the experimental electron temperature and density profiles, in
order to consistently compute also the plasma current density profile, which appears in
the RLW critical electron temperature gradient, VIgrw. In Figure 4.13 we show the com-
puted RLW critical electron temperature gradient and we compare it with the simulated
gradients, which match closely the experimental ones. The region affected by sawtooth
oscillations can be identified roughly with the central region characterized by low tem-
perature gradients. The radial extent of this region strongly depends on the value of the
plasma current, being large at high current, Figure 4.13(a), and narrow at low current,
Figure 4.13(b). The confinement region is located somewhat outside the region affected
by sawtooth oscillations, and therefore the plasma current determines its radial extent.

The RLW critical gradient is inversely proportional to the square root of the electron

HIGH CURRENT LOW CURRENT
|p =0.45 MA, Yeage = 2.45 lp =0.25 MA, Yedge = 4.3
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Figure 4.13: (a) Electron temperature gradient profiles for shots $9588 and $9589 compared
to the corresponding RLW critical gradient. (b)Electron temperature gradient profiles for
shots 9592 and 9594 compared to the corresponding RLW critical gradient.
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shot #18518 at 0.5 s

-0.2 0 0.2 0.4 0.6
z-position [m]

Figure 4.14: Electron temperature profile for shot 18518 simulated, solid line, and ez-
perimental measurement, symbols, on the z-position of the vertical chord on which the
experimental measurements are performed.

density: this dependence can be seen in the respective confinement regions in Figure 4.13,
comparing the critical gradient VT w plotted with solid lines for high densities and
with dashed lines for low densities. Also the temperature gradient |VT,| is larger for low
densities and lower for high densities. In all the situations presented, in the confinement
region the temperature gradient |V7T,| is larger than VTgrw at least by a factor of 2 or
more. This explains why except for discharges with extreme plasma shapes, the RLW
scaling law has been found in good agreement with the experimental thermal electron
confinement time for a wide database of TCV discharges in Ohmic operation [4]. This is
indeed consistent with what was found on Tore Supra [21], namely the RLW model is in
agreement with the experimental observations only when VT, > 3 VTrrw. The electron
thermal conductivity in Tore Supra turns out to be significantly different from the one
predicted by the RLW model when the ratio V7,/VTgrw is below 2. Note that Vg is
proportional to Bf /2 As already mentioned, in a series of shots where B; ranges from 1.3
to 3.9 T in Tore Supra this dependence has been found in disagreement with the experi-

mental data and a correction to the RLW formula was proposed in which the dependence
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Figure 4.15: (a) Electron temperature gradient profiles for shot §18518 at 0.5s compared
to the corresponding RLW critical gradient. (b) Plot of (1 — |VTrrw/VT,]), with, dashed
line, the power density profile computed by TORAY-GA in arbitrary units.

on the toroidal magnetic field was completely eliminated [21]. In the case of TCV, there is
limited flexibility in modifying the magnetic field, and the operation is performed always
around 1.4 T, which is a low value compared to other tokamaks. For this reason, the
strong dependence of the RLW critical gradient on the toroidal magnetic field cannot be
tested, and on TCV VTgow is always well below the experimental electron temperature
gradients. The anomalous transport contribution is added to the neoclassical transport in

the whole confinement region, and a factor (1 — |VTrLw /VTe|) appearing in the electron
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thermal conductivity provides a reduction which is usually between 1/2 and 2/3, almost
constant along the minor radius (|VTrrw/VTe| ~ 2 — 3). In this sense we can conclude
that the RLW critical electron temperature gradient for TCV Ohmic discharges does not
play a crucial role in determining the heat transport level of the plasmas.

Electron cyclotron heated plasmas

When ECH is added, the situation becomes even more extreme and it can be stated that
the RLW critical gradient becomes pratically negligible outside the deposition region. In
Figure 4.14 we show the simulated electron temperature profile for shot $18518, with 1.35
MW of ECH deposited around r/a = 0.35, and we compare it with the experimental pro-
file. By means of the equilibrium reconstruction, the simulated profile has been plotted
versus the z-position of the vertical chord on which the experimental profile is measured
by Thomson scattering. In Figure 4.15 the corresponding comparison between VT, and
VTgiw for this shot is presented. In the presence of auxiliary electron heating, with
the corresponding increase of the electron temperature, the critical gradient, inversely
proportional to the electron temperature, is strongly reduced, whereas the electron tem-
perature gradient increases. For the case presented in Figure 4.14, with a normal level of
auxiliary heating for TCV operation, VT, is well above VT along the whole profile
outside the deposition region, and the factor (1 — |[VTgrw /VT.|) is everywhere constant
and between 0.8 and 0.9 (|VTgrLw /VTe| ~ 5— 15). Inside the deposition region the tem-
perature gradient goes rapidly below the critical gradient but not as fast as the power
balance evaluation of the electron heat conductivity suggests. Indeed, as presented in
subsection 4.4.2 and shown in Figure 4.16, dashed line, with off-axis heating the electron
heat conductivity computed by power balance analysis drops rapidly very close to zero
inside the deposition region, which suggests that the real level of the critical gradient is
substantially higher than the value provided by the RLW formula. When comparing the
RLW heat conductivity and the PB heat conductivity, Figure 4.16, we sce that it is indeed
in the region just inside the deposition that the two curves differ the most. Neverthe-
less, the RLW model provides a formula which gives on average exactly the same level of
transport along the minor radius on the one evaluated by power balance from the experi-
mental data. This allows us to obtain simulated profiles which are in very good agreement
with the experimental ones, Figure 4.14. Note also that with typical off axis depositions
with pge, ~ 0.35, the central part of the plasma, inside the deposition region, is also af-
fected by sawtooth activity, which modifies the profiles continuously during the sawtooth
ramp both in the experiment and in the simulation, and which renders the comparison
of the transport coefficients less accurate in this region and relaxes the need for a precise
agreement between the simulated and the experimental profiles. When the ECH power

deposition is on—axis the RLW critical gradient becomes completely negligible. Indeed in
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Figure 4.16: Electron heat conductivity for shot §18518 at 0.5s, from the RLW model (solid
line), and from PB analysis of the ezperimental data (dashed line). Inside the vertical
dash-dotted line, |VT,| < VIgLw, and only the neoclassical contribution remains.

this case the electron temperature gradient is considerably larger than the critical value
along the whole minor radius, and the factor (1 — |[VTrLw /VT,|) in the expression for the
electron heat conductivity is higher than 0.9 everywhere. From all these considerations,
we can conclude that the RLW localitransport model is indeed a very good candidate
for modelling the electron transport in TCV, particularly in discharges with strong ECH,
since TCV plasmas are in the validity domain of the model, as identified by previous
studies comparing the model predictions to experimental data in other tokamaks.

4.5.2 Ohmic plasmas

As we have presented in Section 4.2, the principal specificity of TCV is that it allows
very different plasma shapes. In Ref. [4] it was found that the RLW global scaling law is
in remarkable agreement with the Ohmic TCV database, including very different plasma
shapes and a large range of different plasma conditions. Nevertheless, it was found that
the spread of the points obtained when plotting the experimental confinement time versus
Trew could be significantly reduced by introducing a shape enhancement factor Hg (3]

which takes into account the effects of plasma shape on the flux surface configuration.
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Indeed it was found that the dependence of confinement time on plasma shape, namely the
increase of confinement time with plasma elongation and its decrease with positive plasma
triangularity, can be explained by the geometrical effects of flux surface expansion and
compression on the temperature gradients together with the effects of power degradation,
without the need to invoke a specific shape dependence of the transport coefficients. In this
sense one should expect that profiles in discharges with very different plasma shapes can
be simulated keeping the same expression for the transport coefficients, and even keeping
a fixed choice of the free parameters allowed by the model, introduced in Section 3.6,
provided the terms describing the flux surface configuration of the toroidal geometry in
the transport equations are properly taken into account, as described in subsection 3.2.

In order to verify this hypothesis, we have simulated 58 shots on 152 available in the
TCV database of Ohmic shots [22], in the following range of variation of four parameters

which have been chosen as the main independent parameters determining the different

discharges:
210" < Telin < 1210®m™3; 1.1 < elongation < 1.9
0.0 < triangularity < 0.6 b 2 < Qedge < 5 (4.1)

where ney, is the line average density. In this range, the variation of the plasma current
is from 0.1 MA to 1 MA. The simulations, performed with the transport code PRETOR,
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Figure 4.17: (a) Ezperimental and simulated electron thermal energy. (b) Ratio between
simulated and experimental electron thermal energy as a function of triangularity.

are aimed at correctly reproducing the electron temperature and density profiles, the loop
voltage, and the effective charge number, in stationary plasma conditions, using as input

the total plasma current, the vacuum central magnetic field, the volume average density,
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Figure 4.18: (a) & (b) Standard deviations in the profiles as a function of elongation.

the edge temperature, and the plasma boundary. The plasma equilibrium is computed
self-consistently with the updated density and temperature profiles at almost every time
step. In agreement with expectations, we have shown that a single choice of the free
parameters allows a satisfactory simulation of almost all the discharges, without invoking
a specific dependence of the transport coefficients on the plasma shape parameters. The

fixed values assigned to the parameters, defined in Section 3.6, are the following:
Ccrt =6 Ce,an =0.4 CD,an =3 CP,an = 0.8 (42)

These values have been chosen in order to minimize the average error between simulation
and the experimental data, as presented below, in the whole domain defined by Eq. (4.1).
Obviously a fine tuning of some coefficients, in particular C. 4, and Cpgp, can reduce
the discrepancies in any given shot so as to obtain an almost perfect agreement with the
experimental profiles, as shown for the cases of Figure 4.11 and Figure 4.12. Note that
the choice proposed in Ref. [19], respectively 6, 2, 0.5 and 0.5, Eq. (3.45), which has been
validated on JET, results in temperature values which are always too small as compared
with the experimental ones in TCV. In the simulations we have also included a model for
the sawtooth period and amplitude in order to simulate the sawtooth activity, Section 5.2.
Even though a detailed simulation of the sawtooth period in stationary Ohmic plasmas
is not necessary in order to correctly model the plasma profiles, the correct simulation of
the sawtooth inversion radius turns out to be very important, in particular with Ohmic
heating. Indeed, current and pressure profiles in Ohmic plasmas are seen to be strongly
correlated with the value of the inversion radius, since both the inversion radius and the
peaking factor of the pressure profile (< p. > /pep) are inversely proportional to the value
of gos [6]. As will be presented in subsection 5.3.1, because of the specific dynamics of
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the ¢ = 1 surface during the sawtooth ramp, the sawtooth inversion radius can be more
easily reproduced than the sawtooth period itself. For this reason, in the simulations
performed in the present analysis, a simplified sawtooth crash trigger condition, s; > 0.2,
has been adopted instead of Eq. (5.20), namely a sawtooth crash is triggered when the
shear at ¢ = 1 is larger than 0.2. Following [23], we have chosen a number of tests to
compare simulation and experiment. We have considered the electron thermal energy,
the electron thermal confinement time, and the standard deviation in temperature and
density profiles. These four test parameters are defined as follows:

3
Wthe = / 577'6 Te av Tthe = Wthe/Pohm (43)

\/ S (Toprr — Torev)?
Y (Torev)?
\/ > (ne,prr — ne,TCV)2

St. Deviation in ne profile = (4.4)

Z (ne,TCV)2

We have analyzed the results as functions of the four independent plasma parameters,
in the whole domain described by Eq. (4.1), and we have found that almost all the
simulations are in agreement with the experimental data, to within 20% in all the test

parameters. Nevertheless, some specific features under particular plasma conditions are

St. Deviation in Te profile =

not completely reproduced by the model, and require further investigation. Firstly, we
see in Figure 4.17 that the highest values of the thermal electron energy, obtained at high
density and low triangularity, are generally underestimated by the model. Secondly, at
high edge safety factor, geqge ~ 5, only shots with low density, low elongation [Figure 4.18]
and high triangularity [Figure 4.17(b)] can be satisfactorily simulated. In the other cases,
the experimental temperature profiles are in general more peaked than the predicted ones,
and the sign of the convexity is opposite in the confinement region. Other geometrical
effects can be seen on the density profile at high elongation and low edge safety factor,
k ~ 1.8, as shown in Figure 4.18(b). The experimental density profiles are very steep
close to the edge possibly with non-monotonic “shoulders”, which are not reproduced by
the model. On the other hand, as we can see in Figure 4.18(b), a good agreement in

temperature profiles is found at low g4 even at high elongation.

In order to present a clearer investigation of these features, we show the simulation re-
sults of two selected configurations, following the choice of Ref. [4], Figure 3. We have
considered two shots with exactly the same plasma shape, £9933 and #11101, but which

differ by more than a factor of two in gg5. The flux surface configurations of the two
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shots are shown in Figure 4.19. In Figure 4.20 we have plotted the corresponding pro-
files, experimental and simulated. The simulation has been performed with the choice of
coefficients presented in Eq. (4.2). The simulation results correctly distinguish between
the two situations, producing a broader profile for shot §9933, geqpe = 2.5, and a narrow
profile for shot #11101, geqge = 5.5. As will be better clarified later, this must not be
interpreted as an indication that the transport model correctly describes the real physics
that governs transport. In order to better exhibit the difference between the profiles, in
Figure 4.21 the profiles have been rescaled to the corresponding values at the centre. We
note in these specific cases a general feature of the density profiles: they are broader than
the corresponding temperature profiles. This is also correctly reproduced by the model,
even though clearly in the case at low geqqe, the simulated profile is not as broad as the
experimental one (best fit plotted with a dash—dotted line), and in particular the steep
gradient at the edge, typical of high elongations, is not at all reproduced. The simulated
density profiles are almost proportional to the corresponding profiles of 1/q, dashed lines
in the figure (actually proportional to (1 /q)CPva"). This is a direct consequence of the
expression chosen for the anomalous particle pinch, Eq. (3.44). Note that this choice
is consistent with theories on turbulent equipartition [24] which has been found recently
in good agreement with the TCV sawtoothing Ohmic behaviour of the electron density
[25]. On the other hand, in Figure 4.21(a), we see clearly that increasing the value of
Qedge the profile not only changes in width, but also in convexity, being convex at low
Qedge, and becoming increasingly concave when gegge > 5. The best fit of the experimental
points plotted with a dash—dotted line shows clearly that this specific feature is missed by

TCV #9933 0.800 s TCV #11101 0.500 s

Ip=560KA, q95=2.2, k=1.8, 3=0.3 Ip=255KA, q95=4.8, k=1.8, 8=0.3

Figure 4.19: Fluz surface configurations for shots §9933 and §11101
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Figure 4.20: (a) Ezperimental electron temperature (a) and density (b) profiles (symbols
with error bars), and corresponding simulated profiles, (solid lines) for shots §9933 (light
grey) and §11101 (black).

the model. The discrepancy, which could be considered negligible at this level, becomes
increasingly significant at higher values of the edge safety factor. This has motivated us
to modify the RLW expression of the heat conductivity for discharges with g4ee > 5,
as presented in the following subsection. It is also interesting to note that, consistently
with what was presented in subsection 4.5.1, there is no apparent correlation between the
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Figure 4.21: (a) Ezperimental electron temperature (a) and density (b) profiles (error bars
at the position of the measurements), and corresponding simulated profiles, (solid lines)
for shots $9933 (light grey) and $11101 (black), rescaled by the corresponding values at
the plasma centre. The dash-dotted lines show the best fits of the experimental points in
the case of the temperature profile for shot $11101, and the density profile for shot $9933.
The profiles of the corresponding inverse safety factor are plotted with dashed lines.
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Figure 4.22: (a) Electron temperature gradient, and critical temperature gradients, RLW
and ETG, for shots §9933 (a) and §11101 (b).

electron temperature gradient and the RLW critical gradient, Figure 4.22. We have also
plotted the term

VTgre =CL T, <§> (1 + Zegr E) ,
q T;

which gives an estimation for the critical threshold gradient for the ETG turbulence
(26, 27], with Cf, = 3/ 2\/7r_/§. The electron temperature gradient behaves very similarly
to VIgre, in particular to 7, (s/q). This is in any case due to the strong correlation
that exists between the electron temperature profile and the current profile in Ohmic
plasmas [4], which involves a form of degeneration in such analysis, as the Ohmic heating
power profile also follows the current density profile. The agreement between the ETG
turbulence formula and the electron temperature gradients hence can not be considered
conclusive, as in Ohmic plasmas the two profiles are correlated. Note that in ECH plasmas
in TCV, in which the strong auxiliary electron heating breaks the degeneration, the ETG
turbulence is not expected to be excited. The ETG critical gradient exceeds by far the
experimental values of the temperature gradients, since the ratio Z.g T./7; ranges from
10 to more than 50 in TCV with ECH.

In conclusion, it must be emphasized that, when simulating Ohmic plasmas, the most
important tasks are to treat properly the coupling between the transport equations and
the field diffusion equation, with a consistent 2D magnetic equilibrium reconstruction,
and to describe with a reliable model the sawtooth activity. Once the poloidal magnetic
field, and thus the Ohmic heating power density are correctly computed, this determines
directly the width of the temperature profiles. The profile remains essentially flat from the
centre up to the inversion radius, because of sawtooth relaxations. The effects of sawteeth,

in particular a good profile relaxation model, must necessarily be taken into account in
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order to correctly simulate sawtoothing Ohmic discharges. The profile width is mostly
determined by the position of the ¢ = 1 surface at the sawtooth crash (or the sawtooth
inversion radius), while it is quite insensitive to the detailed physics governing transport
in the confinement zone. Once even a single free parameter has been adjusted in order to
correctly reproduce an integral parameter, such as the global plasma energy content, as
we have done in the case of the coefficient C, 4, in Eq. (4.2), the most important profile
features and values are determined. The specific transport model then determines the
profile behaviour from the inversion radius out to the edge, where usually in simulations
the experimental temperature is given as a boundary condition. Therefore, the profile
features on which the detailed physics involved in the model can be identified are strongly
limited when simulating Ohmic plasmas: only an accurate inspection of specific features of
the profiles in the confinement zone, such as the concavity at high edge safety factor shown
in Figure 4.21 for shot #11101, can allow one to discriminate between the predictions of the
different models. However this needs very precise measurements of the plasma profiles,

which are not always available.

4.5.3 Adapting the RLW model to plasmas with large g.q.

As we have shown in the previous paragraph, for high values of geqqe, the concavity of the
experimental temperature profile is not well reproduced by the model, even by changing
the free parameter C,,,. The predicted profiles, for plasmas with low current, ge4ge > 5,
turn out to be too convex, whereas the experimental profiles are clearly concave in the
confinement region. This is important for TCV, as the usual target plasmas in ECH
operation and in particular in experiments dedicated to improved confinement scenarios,
are at relatively low plasma current, with values of g.4pc between 5 and 8. In order to
better simulate the temperature profile in these conditions, a geometrical factor has been
introduced in the'expression of the electron heat conductivity, Eq. (3.39),

VT. .Vn.\qp| (TN . _,
Al (=) B
(E ) (2) =

1 p\° VTrw
<§+5) (1— o )H(VTe—VTRLW) (4.5)

Cean 172 1/2
Xe,an — WE (1+Z€ff)

where the exponent « is given by
. Qedge)
a=2 int (—
9

The function int gives the integer part. The coefficient C, 4, in the simulation of TCV
discharges is usually equal to 0.4 for normal density values, but for very low densities
(nes19 < 2), like in the case of some ECH discharges, it must be increased to higher values
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up to almost a factor 2. The dependence on density has been analyzed over a large number

of discharges, and can be expressed in the form

1 ) 5
Cean = 3 [3 + int (nel 19)] . (4.6)

Note that, since reliable measurements of the ion temperature are not yet available on

TCV, such a dependence on density may be an artefact introduced by an incorrect simu-
lation of the ion temperature, which results in a miscalculation of the equipartition term.
Hence it can not be assessed whether it is the electron heat conductivity or the ion heat
conductivity that must be corrected. The former option has been chosen [Eq. (4.6)] for
the practical reason that x. more directly affects the electron temperature, whose experi-
mental profiles are available. In this sense this last formula must be considered merely as
a rule of thumb for the simulation of the electron temperature profile in TCV discharges,
and not as a universally reliable correction to the RLW model. This issue calls for further

investigation once measurements of the ion temperature profile will be available on TCV.

This transport model has been applied on a regular basis to the simulation of several TCV
experiments, in particular for discharges with ECH and ECCD, and it has been found in
agreement with several different experimental observations, obtained with different heat-

ing and current drive schemes. A set of examples of these simulations will be presented

3.5/ |— PRETOR
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%  DATA

1200 kW

Figure 4.23: Comparison between simulated electron temperature PRETOR profiles (lines)
and TCV ezperimental measurements, Thomson scattering, (symbols), for shot $14337;
(a) Ohmic heating, (b) and (c) two different power steps of ECH with absorption location
at p = 0.2. Profiles before (solid triangles) and after sawtooth crash (solid circles) are
shown.
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in the following section. The model is in fact sufficiently reliable that it has been used in

the planning of experiments, that is to predict specific dependences.

4.5.4 Electron cyclotron heated plasmas

Power scan

The first application of the transport model presented in the previous subsection to dis-
charges with ECH has been dedicated to the simulation of power scan experiments [9].
These experiments have been performed with a broad power deposition profile, located
slightly off-axis. The goal of the simulations was to check whether the values of the
central electron temperature predicted by the model were in agreement with the exper-
imental measurements, keeping fixed the parameters included in the expression of the
heat conductivity, Eq. (4.5). In Figure 4.23 we show an example of these simulations [9],
for shot #14337, comparing the profiles before and after the sawtooth crash for Ohmic
heating and two different ECH power levels. The sawtooth relaxed profiles as well as the
sawtooth period have been determined following prescriptions provided by the sawtooth
model presented in Section 5.2. The agreement between experimental data and simula-
tions is good, confirming the general agreement found between the RLW scaling law and
the experimental confinement time [9)].

Heat conductivity with off-axis heating

We have already mentioned that when ECH is deposited off-axis, a step in the power bal-
ance electron heat conductivity is found, located at the power deposition, subsection 4.4.2.
In Figure 4.14 we have shown an example of the application of the transport model pre-
sented in subsection 4.5.3, simulating the electron temperature profile at a specific time
of a discharge with ECH localized at pge, = 0.35. The simulated profile compares very
well with the experimental points. The corresponding electron heat conductivity has been
shown in Figure 4.15, compared to the experimental profile obtained by power balance.
As already discussed in subsection 4.5.1, the disagreement between the power balance con-
ductivity and the RLW formula calls for a transport model in which such an abrupt step of
Xe at pgep is produced by the temperature gradient being above the critical value outside
Pdep, and below inside [14]. This is not the case for the RLW model. The critical gradient
VTriw remains below the temperature gradient |VT,|, even inside pgep. Although this
does not reproduce the rapid step of x. at the location of the power deposition found with
power balance, the RLW heat conductivity is strongly reduced in the central region of the
plasma, with a behaviour which on average describes correctly the conductivity computed
by power balance. For this reason, as already mentioned in subsection 4.5.1, the model

still allows satisfactory simulations of the temperature profiles with off-axis heating.
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Profile stiffness with central heating

We have shown in Section 4.4 that the electron temperature profiles in TCV remain stiff
outside the power deposition region, and we have pointed out that this would suggest
the existence of a critical |VT,|/T.. This is not at all the case for the RLW model, as
VTgrw is almost negligible as compared with the measured temperature gradients in the
confinement region. We call that we have defined stiff behaviour in TCV the fact that,
outside the deposition region, the value of |VT,|/T, remains constant and independent
of the amount of power deposited in the plasma centre and consequently independent of
the heat flux propagating radially through the plasma. Therefore a necessary further step
in the validation of the model is to check whether this general feature of experimental
response of the electron temperature to ECH is adequately reproduced. As already men-
tioned, the most direct interpretation of such a stiff behaviour is to assume the existence
of a critical value in the normalized electron temperature gradient |VT,|/T.. In this pic-
ture, the experimental value of the normalized temperature gradient is expected to remain
relatively close to the normalized critical gradient, (|VT,|/T¢)crit- An expression for the

heat conductivity consistent with this hypothesis is [14]
Xe =T (& + &r¢ G(R/Lre — R/ Lrcrit)], (4.7)

where £, represents transport when the temperature gradient (T'G) turbulence is not ac-
tive, R/Lre = R|VT.|/T. is the dimensionless temperature gradient length, and &r¢ G
gives the transport enhancement caused by the temperature gradient turbulence. This
simple model reflects the expression for the heat conductivity arising from microinstabili-
ties generated by trapped electron modes (TEMs) or electron temperature gradient modes
(ETG), and it has been found in agreement with the observations obtained in some dedi-
cated experiments on profile stiffness recently performed in ASDEX Upgrade [14, 15]. We
have shown in subsection 4.5.1 that, on the contrary, these features of the heat conductiv-
ity are not at all encompassed by the RLW model. In particular the RLW critical gradient
does not play any role in determining the local transport level, and it can be practically
neglected for plasmas with central ECH. From the analysis of subsection 4.5.1, one could
expect that the stiffness features presented in subsection 4.4.1 are completely missed by
such a model. Somewhat surprisingly, this is not the case, because of the overall depen-
dence of the transport coefficient expression on electron temperature. We have simulated
a power scan, from Ohmic up to 3 MW of ECH power, in three steps, with on—axis power
deposition, in a plasma with volume average density (nq)vo =~ 1.5 10**m™3, a typical
value of TCV operation with ECH, and I, = 200kA. The Ohmic power in the Ohmic
phase is 0.28 MW, and becomes negligible as compared with ECH power during the three
ECH cases, at most 15% of the total heating power with IMW ECH, and considerably

less in the other cases. The resulting electron temperature profiles, in logarithmic scale,
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together with the power deposition profile, are shown in Figure 4.24. The edge temper-
ature has been imposed as a boundary condition and has been slightly increased with
increasing power, whereas the density profile has been kept fixed during all the power
steps. The electron temperature profiles of the three ECH power steps turn out to be

strongly parallel. Only the Ohmic profile shows a different slope.

A simple analytical model

In order to explain this stiff behaviour, obtained with a transport model which does not
involve a critical |VT,|/T, it is useful to consider the simulated plasma conditions in
cylindrical geometry, which allows a simple analytical treatment. We consider a station-
ary plasma, with central auxiliary electron heating strongly dominant compared to Ohmic
heating, in such a way that the Ohmic contribution to the radial heat flux is neglected.
In this case, outside the deposition region, the heat transport equation in the absence of

4 1
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Figure 4.24: (a) Electron temperature profiles for PRETOR simulations of three central
ECH power steps, compared to the corresponding Ohmic profile. The deposition profile is
shown in (b).
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source terms reads

1d T
;a_ere__O, where @, = —neXeE';

is the heat flux. The solution of the first equation gives simply Q. = P/r, where P is an
integration constant proportional to the amount of heating power deposited in the plasma
centre. Therefore we can write

nexeit =T (48)
If we now assume that x, = K(r) T, where K(r) is some given function of the minor
radius, independent both of 7, and of the amount of heating power, Eq. (4.8) can be

easily solved by separation of variables with the result

1 dr'

T (r) = ~(a+1) P /TW—T,— + T**(a), (4.9)

where a is the minor radius at the plasma edge. From Eq. (4.9) we see that if the edge
temperature is sufficiently close to zero, or/and if it increases with increasing central
heating power as T>*1(a) o< P, the electron temperature is simply proportional to the
power 1/(a + 1) of the central power. The electron temperature profiles with increasing

central heating power show the same normalized gradient (dT./dr)/T, given by

1dT, ([ P 1
T dr - (T:H) r (K@) (4.10)

which is a function of radius r, independent of the value of the central heating power P.
This simple analytical derivation shows that the features of a stiff electron temperature
behaviour, in the sense presented in subsection 4.4.1, are adequately reproduced by an
electron temperature heat conductivity which is proportional to the electron temperature,
provided that the edge temperature varies accordingly, but without involving any critical
value of the temperature gradient in the expression of the heat conductivity. Whether
this specific edge condition, namely T,(a) o< P/(*+1)_is or is not satisfied in experiments
is difficult to ascertain, considering the errorbars in the measurements. A visible increase
of the edge temperature is certainly recorded, in L-mode, when passing from Ohmic to
strong auxiliary central heating, creating a sort of pedestal, see Figure 4.4, whereas fur-
ther increase of the central ECH power, a factor of 2 in the specific case of shot £18224,
does not seem to cause a corresponding increase of the edge temperature. Note that re-
cent accurate measurements in ASDEX Upgrade have shown that the edge temperature
increases significantly with increasing central heating power at each power step [15]. In
any case, regardless of the specific behaviour of the electron temperature at the edge,
the proportionality between the heat conductivity and the electron temperature in the

confinement region guarantees that electron temperature profiles obtained with increasing
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central heating power remain essentially parallel when plotted in semi-logarithmic scale,
as shown in simulations presented in Figure 4.24. In the simulations the edge temperature
has been increased without following the proportionality to the square root of the central
power prescribed by Eq. (4.9).

T, dependence of the RLW .,

In Figure 4.25 we have plotted the ratio x./T. corresponding to these four PRETOR
simulations. The overall dependence of the RLW electron heat conductivity on the elec-
tron temperature in the three simulated cases with central ECH heating is exactly the
one assumed in the simplified analytical model, with o = 1, justifying the profile stiff-
ness behaviour obtained in the simulations. Consistently with the experimental profiles,
when plotted in semilogarithmic scale, the profiles are essentially straight lines in the
confinement region. This feature of the RLW model must be ascribed mainly to the term
\/JT/T,- included in the electron heat conductivity, noting that when T, /7; > 1, as in the
present case with (ng)vel ~ 1.5 10'® m~3, the model gives also T, < 1/T;. In the case of
Ohmic heating the power is no longer localized in the centre, and the heat conductivity
shows a different behaviour. Also, contrary to the ECH cases, the RLW critical gradient is

not completely negligible compared to the temperature gradient; this introduces an extra

102 [ T 2 T T T T ]
XS/Te [m /s, keV] ]
10'
0 <n> =15m>"
10 1 1 1 1 e 191 ]
0.4 0.5 0.6 7 0.8 0.9 1

vol

Figure 4.25: RLW electron heat conductivity profiles, divided by the electron temperature
profiles, corresponding to the simulations shown in Figure 4.23, computed with the model
presented in subsection 4.5.83. Curves corresponding to simulations with ECH: 1 MW
(dash—dotted line), 2 MW (dashed line) and 3 MW (solid line).
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Figure 4.26: (a) Temperature profiles in semi-logarithmic scale, for 8 ECH power steps
and Ohmic heating, at high plasma density. The profiles are still parallel (stiffness), but
not straight.

dependence in the heat conductivity which affects the proportionality to the electron tem-
perature. Nevertheless, the Ohmic profile also turns out to be almost parallel to the ECH
profiles, even though not as much as in the experimental case, and the difference would be
difficult to distinguish experimentally. Note that this specific feature of the RLW model
occurs also at high density, but a different value of the exponent « appears in the relation
between x, and T,. We have performed a second set of simulations, always with central
heating, increasing the density up to (n.)ve =~ 6.0 10!® m~3, and with a plasma current of
430 kA, with a consequent Ohmic power of 1.1 MW (with Ohmic heating). In this case,
provided the auxiliary heating power does not exceed a few MWs, neither ohmic heating
nor equipartition is negligible compared to the ECH power. The ratio T,/T;, which was
equal to 60 in the plasma centre at low density and 3 MW ECH, is now reduced, at the
same power level, by a factor of ten, leading to regimes in which electron and ion temper-
atures are almost of the same order of magnitude. Figure 4.26 shows that in this case the
model still gives stiff electron temperature profiles, as in semilogarithmic scale the curves
are parallel, but the profiles are not straight lines in the confinement region. In contrast
with both the experimental observations and the model predictions at low density, at
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Figure 4.27: With high density the RLW heat conductivity is not proportional to the
electron temperature, as shown in (a), but proportional to the square of the temperature

(b).

high density |VT,|/T, is not constant along the minor radius in the confinement region.
The stiffness can still be explained by the relation x, o< T2, but, with a volume average
density (n.) = 6.0 10’ m~3 we find a = 2, as shown in Figure 4.27. Plasma and heating
conditions explored by this second set of simulations are far outside the accessible exper-
imental domain of TCV. Note that in the near future, transport analysis at high density
will become possible, thanks to the three gyrotrons of the X3 cluster, with 1.35 MW,
Section 4.3. This should allow one to experimentally assess the issue of profile stiffness
at high density in TCV, with ratios of T, /T; < 5. In this plasma regime, which cannot
be explored in TCV with the X2 clusters, discrepancies with the predictions of the RLW
model could be identified, the key signature being a constant |VT,|/T, in the confinement

region as in the low density case.

Profile stiffness with off-axis heating

When heating off-axis, as shown in subsection 4.4.2, the electron temperature profile can
be strongly modified, while stiffness features can still be identified outside the deposition
region. When the heating power is localized close to the edge, the effect of the edge
temperature on the profile up to the deposition region becomes important, and general
considerations become difficult. We have performed a set of three simulations, showing



114 CHAPTER 4. MODELLING TRANSPORT IN TCV

10

10

L . 1 L - Il
T M L L 1

PECH de.;position pr?files [a.u.]

-

0.6 0.7 0.8 0.8 1 1.1
R [m]

Figure 4.28: (a) Electron temperature profiles corresponding to power depositions located
at three different positions on the minor radius, shown in (b).

the effect of a deposition scan on the electron temperature, with ECH power dominant
compared to Ohmic heating, and again a plasma close to the experimental conditions,
hence with very low density (n,)ve =~ 1.5 10!® m~3. The same amount of ECH power, 1.5
MW, has been deposited in three different positions in the plasma, keeping the value of
the temperature at the edge and the density profile fixed. The resulting electron temper-
ature profiles are shown in Figure 4.28. Again, consistently with the result of the simple
analytical model presented above, the electron temperature profiles coincide outside the

respective depositon regions, with the ratios x./7T, aligned on the same curve.

Concluding remarks

In conclusion, the overall dependence of the RLW heat conductivity on the electron tem-
perature in plasmas with T, /7; > 1, typical of TCV with ECH, allows the model to
properly reproduce the most important stiffness features presented by the experimental
behaviour of the electron temperature with ECH. We have shown that this is peculiar of
the low density regime, used in TCV operation because of density cut-off. The experi-
mentally observed stiff behaviour is reproduced in this case by a model which does not
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involve any critical value of the temperature gradient, particularly in the domain of the
TCV plasma parameters.

Recently in ASDEX Upgrade the application of physics—based models in the simulation
of both modulated and steady state ECH experiments [28, 10|, has shown that the best
agreement with the experimental results is provided by the Weiland model for TEMs [29].
It is found that the critical gradient (VT,/T.)ei: provided by the theoretical model is
lower than the experimentally measured VT, /T, by a factor of about 2. An analogous
result has been found applying an empirical model like Eq. (4.7) and determining the
value of the critical gradient in order to match the experimental behaviour of the electron
temperature in modulated experiments [30]. These results indicate that the stiff electron
temperature behaviour observed in several tokamaks does not justify equating the exper-
imental temperature gradient with the critical gradient. The plasma reacts to increasing
heating power by keeping a constant value of |VT,|/T, at a working point which is largely
above the threshold. Therefore, the temperature profiles, even though stiff, are not merely
determined by the critical gradient, rather by the global parameter dependence of the heat
conductivity that describes transport. In this context, a transport model which does not
include an adequate expression of the critical temperature gradient, like the RLW, can
still provide useful indications on the parameter dependence of the heat conductivity,
when found in good agreement with the experimental results.

4.6 Improved Central Electron Confinement

In TCV, significant amounts of current can be driven non-inductively with the ECH
system, even sufficient to sustain the whole of the equilibrium current density profile
[31, 32, 33]. Therefore, global modifications of the current density profile are possible
[34]. In the absence of diagnostics measuring the current profile in TCV, a transport code
like PRETOR, consistently coupled with a 2D magnetic equilibrium solver, and directly
interfaced with the experimental measurements as well as with the auxiliary heating
and current sources computed by a ray-tracing code, like TORAY-GA [35], becomes an
indispensable tool. It provides information on the current density and safety factor profiles
produced by specific heating and current drive scenarios. In particular, with experiments
involving strong amounts of counter-ECCD in the centre in order to obtain reverse shear
configurations, this numerical tool allows investigations of the effects of current profile
modifications on transport. On the other hand, as the modelling has provided several
simulations in very good agreement with the experimental observations, it has been useful
also in the opposite direction, namely in planning new experiments, in order to predict

the effect of different heating conditions, and choose the best one to obtain specific plasma
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responses. This is useful and economical to minimize the number of test shots necessary in
order to obtain the desired plasma scenario. A good example of such interaction between
predictive modelling and experiment is given by the results presented in Ref. [11]. In this
work different heating schemes have been modelled in order to investigate the effects on
current profile broadening, with the ultimate goal of increasing the plasma shape through
ECH. The simulations, involving the coupling between TORAY-GA and PRETOR, led
to the selection of the simple scheme of off-axis ECH, pge, ~ 0.7, over off-axis co-ECCD
or on-axis counter-ECCD: these results have later been confirmed experimentally. The
main applications of this numerical tool, composed by the 1D transport code PRETOR,
the 2D equilibrium solver, and the interfaces with the experimental data and the output
of the ray-tracing code TORAY-GA, have been the analysis and simulation of discharges
with high plasma performance, namely central electron temperature enhancement with
central counter—-ECCD [36] and improved central electron confinement (ICEC) [37, 38]. In
subsection 4.6.1, the general methodology applied for the simulation of the time evolution
of a full EC heated discharge is outlined. In subsection 4.6.2 we present the experimental
observations of the central electron temperature enhancement with counter-ECCD, and
their interpretation by means of transport simulations as due to sawtooth stabilization.
In subsection 4.6.3 the main experimental features of the ICEC regime are described. In
subsection 4.6.4 and 4.6.5 the analysis of the experimental observations and the simulation

results are presented.

4.6.1 Simulation methodology for the time evolution of an ECH
discharge

A direct and user—friendly procedure has been optimized to automatically perform PRE-
TOR transport simulations of TCV discharges, in particular in order to follow the com-
plete time evolution of a full EC heated discharge [38]. The code takes as input the
plasma boundary, the experimental traces of the time evolution of the plasma current,
the toroidal magnetic field, the volume average electron density, as well as the heating
power and external current drive sources. These are obtained by means of an interface
with the output of the ray-tracing code TORAY-GA [35]. The outputs of the code are
the temperature and density profiles, the safety factor and the equilibrium magnetic field
profiles, the loop voltage and the effective charge number. In the case of ECH/ECCD
discharges, at very low density with strong central heating, the simulated electron density
profiles are too peaked on—axis compared to the experimental ones, which on the contrary
remain considerably flat and become even hollow with central heating due to particle
pump-out effects [39]. This effect is not included in the PRETOR particle transport
model. Therefore, in order to properly focus the analysis on heat transport effects, in the
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simulation of the time evolution of a full discharge with ICEC regime, we have also used as
an input the experimental density profiles, measured every 50 ms by a 35 chord Thomson
scattering system [40]. TORAY-GA uses as input the toroidal and poloidal microwave
injection angles and the experimental electron temperature and density profiles, and it
is interfaced with the TCV equilibrium reconstruction code LIUQE [41]. It provides the
power absorption percentage, the CD efficiency, and the power and driven current density
profiles. TORAY-GA is run for each time slice at which the electron temperature and
density Thomson scattering profiles are measured.

4.6.2 Central electron temperature enhancement with counter—
ECCD

In experiments performed with weakly elongated plasmas (k = 1.2, § = 0.2, I, = 170kA),
it was observed that when counter-ECCD was applied at the magnetic axis the central
electron temperature was strongly enhanced [36]. In these experiments the plasma was
moved vertically during each discharge, across the EC beam, in order to study the influ-
ence of the ECCD depostion location on fast electron generation [42]. With other heating
schemes, both heating or co-ECCD, the central electron temperature remained a factor
of 2 lower, even when the beam power was absorbed at the plasma centre. A strong
dependence of the plasma performance on the direction and magnitude of the central
driven current was observed in response to a systematic variation of the toroidal injection
angle. The resulting electron temperature profiles, Figure 4.29, obtained with 1.35 MW
of auxiliary heating, remain very similar independently of the heating conditions in the
confinement region. On the contrary, in the centre, with counter—-ECCD the profiles are
strongly peaked, with peaking factors, Teo/ < T, >, of 6 to 8, which exceed by far the
values obtained with ECH and co-ECCD T,/ < T, >~ 3. As the profile peaking in-
volves only the most central plasma region, this implies that, even if the central electron
temperature is increased by a factor of 2 in the case of counter injection, the electron
thermal confinement time is not significantly increased. In the case of counter-ECCD,
Tge ~ 4ms, whereas in the case of ECH or co-ECCD 7g, is about 3ms: therefore, the
global plasma performance is improved by about 30%. However, the enhanced temper-
ature phase cannot be maintained for a long time. It usually lasts for about 150 ms, a
time which is comparable to the current redistribution time, and it is then terminated by
a “catastrophic” event accompanied by sudden energy loss: during the enhanced temper-
ature phase no sawtooth activity is observed. The situation is different from co-ECCD
or ECH, in which the temperature growth remains limited and sawteeth are present. We
have performed simulations of the discharges with the three different current drive con-

ditions. Representative temperature and safety factor profiles are shown in Figure 4.30.
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The difference between the counter-ECCD, co-ECCD, ECH and Ohmic profiles is well
reproduced. The sawtooth crash trigger conditions, presented in Section 5.2, have been
taken into account. The simulation shows that in the case of counter-ECCD the safety
factor profile remains everywhere above unity, in contrast to the other situations. In order
to assess the role of sawteeth in the plasma performance, the co-ECCD and ECH cases
were simulated again with an artificially increased sawtooth crash threshold, hence stabi-
lizing sawteeth in the simulation. In this case the same central temperature was obtained
as in the counter—-ECCD case. This indicates that the temperature enhancement is just
produced during this temporary phase by a very long period of sawtooth stabilisation.
The poorer global confinement observed with ECH and co-ECCD is due to the periodic
core energy loss caused by sawtooth crashes. The “catastrophic” event terminating the
enhanced temperature phase can be interpreted as a “monster” sawtooth crash, occurring
when the current density and pressure profiles become too peaked for ideal MHD stabil-
ity. Therefore, the simple heating scheme of counter-ECCD is not sufficient in order to
obtain a stable configuration involving an improved plasma performance. Moreover, as

we have already mentioned, while the central temperature is strongly increased by saw-
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Figure 4.29: (a) Electron temperature profiles obtained with central deposition of 1.35 MW,
with perpendicular injection, ECH only, parallel injection, co-ECCD, and antiparallel
injection, counter—ECCD. A corresponding Ohmic profile is also plotted for comparison.
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Figure 4.30: PRETOR simulations for the three different heating schemes, counter-
ECCD, co~-ECCD and ECH, and for Ohmic heating. (left) Simulated temperature profiles
(lines) and ezperimental measurements, (symbols with errorbars). (right) Corresponding
safety factor profiles.

tooth stabilisation, the global plasma performance is not enhanced as dramatically, as the
confinement time increases only from 3 to 4 ms. In order to stabilize this configuration
and broaden the temperature profile, off-axis heating has been added, and a particular
heating scheme has been identified leading to a stable regime of improved confinement,
as will be described in the following subsection.

4.6.3 Experimental observations of ICEC

A quasi-stationary regime of improved central electron confinement (ICEC) has been
obtained in TCV, under conditions of dominant ECH and with strong current profile
tailoring by counter-ECCD [37]. This regime characterized by central electron tempera-
tures near and above 10 keV and global electron energy confinement times 3 to 4 times
higher than those predicted by the RLW scaling law. The heating scenario consists of two
different phases, separated by a time delay which is longer than the current redistribution
time 7.. The first is a preheating phase with localized off-axis power deposition (con-
stant plasma current). This phase broadens the temperature profile and consequently
the current density and safety factor profiles. In accordance with what has been pre-
sented in subsection 4.4.2, off-axis heating also lowers the transport level in the plasma
centre. After 300 ms, the high performance phase is generated with additional power
injected in the plasma centre in counter-ECCD orientation, with a toroidal component
of the beam launching angle of about —30 degrees. Power levels of 0.9 and 1.35 MW
are used for the preheating phase, injected at a normalized radius p ~ 0.3, whereas 0.9
MW are used for on-axis heating and counter-ECCD. The target plasma for these ex-
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Figure 4.31: Comparison of the central electron temperature in the case of a shot with
ICEC phase, obatined with on—azxis counter-ECCD, and a reference shot in which only
on—azis heating is applied.

periments, in limiter configuration, is described by the following parameters: line average
density n = 1.510' m™3, plasma current I, = 200kA, elongation k ~ 1.7, triangular-
ity 6 >~ 0.2 — 0.22, gegge > 7. In Figure 4.31 the time evolution of the central electron
temperature, measured every 50 ms by a 35 chord Thomson scattering system [40], in
the case of a discharge with a ICEC phase (shot #18639), is compared with a similar
discharge ($18604) in which the same heating power was applied, but without counter—
ECCD during the second power step. The effect of counter—ECCD is remarkable, causing
the central temperature to increase by more than a factor of two. As we have already
mentioned in subsection 4.5.2, an important and appropriate reference confinement time
for TCV is that given by the RLW scaling, which has been found to agree with experiment
in Ohmic [4] and in L-mode conditions with ECH auxiliary heating [9]. Hence the con-
finement enhancement can be characterized by the factor Hrrw = 7Tg. / TrLw, the ratio
of the electron energy confinement time 7g,, obtained from Thomson scattering data (as-
suming 100% absorption as computed with TORAY-GA), to the confinement time Trrw
predicted by the scaling law. In Figure 4.32 we show the time evolution of the Hgrpw
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factor in three discharges, shots $18639, §18604, and §18636. Even though substantial
confinement improvement is observed with ECH alone, with Hgrrw ~ 2, it is clear that
counter-ECCD is essential to reach the best confinement, with Hgpw > 3. In Figure 4.32
we have also presented the case of shot 18636, in which the time sequence involving a
delay between the off-axis and on—axis heating phases was not respected, with counter—
ECCD applied on—axis directly from the beginning of the heating phase. In this case the
plasma, response is particularly unstable, and after a brief phase of improved confinement,
the Hgrrw factor drops to values close to the ones obtained in the case of pure heating.
Remarkably, the confinement time undergoes almost no power degradation in the case of
shot #18604 with heating alone, remaining around 4.5 ms both in the first and second
power steps, and even increases in the case of the ICEC regime, from 4.5 up to 5.5 ms
when adding central ECCD to off-axis heating. The electron temperature and density
profiles during the three phases, Ohmic, off-axis heating, off-axis heating and on-axis
counter-ECCD are shown in Figure 4.33. We note that the electron temperature during
the ICEC phase turns out to be strongly peaked in the centre, with local gradients up to
more than 100 keV /m, consistent with a transport level remaining considerably low in the
central region, where intense and localized electron heating is produced, with correspond-
ing power densities up to 50 MW /m?. The temperature profiles in the confinement zone
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Figure 4.32: Comparison on the Hppw = Tge/TrLw for three shots, one presenting the
ICEC phase, obtained with on—azis counter-ECCD (open circles), with only on—azxis heat-
ing without counter—ECCD (open squares), and with on—azis counter—ECCD but without
respecting the time sequence (full stars). The corresponding ECH pulses are sketched in
the bottom of the figure.
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Figure 4.33: Electron temperature and density profiles from Thomson scattering during
the three heating phases (Ohmic, pre-heating with off-azis ECH, and ICEC with on—azis
counter-ECCD and off-azis ECH), for shot §18518.
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Figure 4.34: (a) Electron temperature profile from Thomson scattering during the three
heating phases (Ohmic, pre-heating with off-azis ECH, and ICEC with on—azis counter—
ECCD and off-azis ECH), for shot $18518 in semi-logarithmic scale. (b) Corresponding
profiles of R/ Lte = R|VT,/T.|, computed by fitting and smoothing the raw data.
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Figure 4.35: Simulated and measured electron temperature on-axis for shot $18604. The
PRETOR trace is plotted in light grey solid line, the Thomson scattering measurements
are plotted with symbols linked by a dash-dotted line, the temperature measured by the two
foil-absorption method is plotted with a dark solid line.

show a stiff behaviour, in the sense presented in subsection 4.4.1, with a fixed and almost
constant value of the normalized temperature gradient length R/Lt. ~ 10, independently
of the heating power, and hence of the radial heat flux, as shown in Figure 4.34. Note that,
in contrast to the usual plasma profiles, in the case of the ICEC regime the dimensionless
electron temperature scale length R/L, has a strongly non—monotonic behaviour. The
dimensionless electron temperature scale length R/Lr. increases up to more than 20 at
r/a ~ 0.3, and drops rapidly for larger radii, remaining almost constant around 10 in the
confinement region, outside r/a ~ 0.5, Figure 4.34(b). The electron density profiles show
rather little change during the different heating phases of the discharge. apart from a ten-
dency towards centrally hollow profiles during the on—axis heating phasc. an effect which
is known as particle pump-out [39] and which becomes significant at low triangularity

(6 <0.2), as in the case of plasmas used for the improved confinement experiments.

4.6.4 Central heating, simulation of shot {18604

As we have mentioned in subsection 4.6.3, with on—axis heating alone, without producing
counter-ECCD, improved confinement is obtained as compared with the RLW scaling law,
with Hprw =~ 2. Therefore, even though the central counter-ECCD has indeed a very
strong influence on the plasma response, allowing it to reach Hgrw > 3.5 in the ICEC
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regime, the investigation of the ICEC must begin with the analysis of the heating only case,
whose performance shows that a non negligible component of the ICEC is independent
of the specific current profile modifications produced with ECCD. In Figure 4.35 we
have shown the time evolution of the central temperature as measured with Thomson
scattering (open circle) and as given by the PRETOR simulation for shot #18604. In this
discharge a first ECH phase has been produced with 1.35 MW deposited off-axis (pgep >~
0.35), then 0.9 MW has been added on-axis after 300 ms, with injection perpendicular
to the magnetic field, producing no significant current drive. A good agreement between
simulation and measurements is obtained in all the different phases of the discharge. This
agreement may seem surprising, as PRETOR uses a x. expression based on the local
RLW transport model, while the experiment exhibits Hrpw =~ 2 during the latter part of
the discharge. To better understand the physics mechanism involved, we have performed
the following simulations presented in Figure 4.36, using the transport model described in
subsection 4.5.3. Three different values of deposition width in a gaussian ECH deposition
profile have been considered, Figure 4.36(a), with two power steps at 1.35 and 2.25 MW.
In the same figure an illustrative y. profile is shown, as typically produced during the off-
axis pre-heating phase, which clearly displays a region with good confinement properties
in the central part of the plasma cross section. Indeed, as the heat transport coeflicient
is usually lower in the central plasma region and larger towards the edge, it is reasonable
to foresee that the global plasma performance will be directly related to the amount
of ECH power deposited inside the good confinement region. With a broad deposition
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Figure 4.36: Comparison between the confinement time with three different deposition
widths and the RLW global scaling law.
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profile, A p = 200%, case (a) in Figure 4.36, only the 11% of the total power is deposited
in the good confinement region and the RLW global scaling is recovered. When more
localized power deposition profiles are considered, the confinement time rapidly exceeds
the global RLW scaling. With Ap = 25%, 87% of the power is inside p = 0.3, case
(c), and a much better global confinement time is obtained, with a Hg,w factor of 1.75,
even though the same RLW expression for the local x, is used, Eq. (4.5). The actual
power deposition profile for shot §18604, as computed with TORAY-GA and used in the
simulation presented in Figure 4.35, is similar to case (c). For this reason PRETOR can
reproduce the temperature profiles correctly without lowering the x, coefficient even with
a high Hgpw factor. Note that this effect is encouraging for reactor plasmas as a—heating
of the electrons is predicted to be rather peaked, concentrated in the plasma region with

good confinement properties.

4.6.5 ICEC discharges

As we have already presented in previous subsections, the ICEC regime is obtained with a
specific heating scheme, involving a preheating phase with ECH at pge, ~ 0.3 — 0.4 and a
high performance phase with a large amount of counter-ECCD highly localized on—axis.
The amount of driven current is usually —Icp > 0.51,. Therefore, the simulation of
the ICEC regime is much more challenging than the case presented in subsection 4.6.4,
since not only does the experimental behaviour exhibit very peaked electron temperature
profiles with a stronger improvement of the internal confinement, but a strong localized
source term must also be taken into account in the field diffusion equation, involving
the radial derivative of the driven current density profile (Section 3.3). Owing to the
strong current drive, as computed by the ray-tracing code TORAY-GA, the poloidal
magnetic field, and consequently the plasma current density and safety factor, turn out
to be very sensitive to the ECCD current density profile. Very small differences in the
driven current profile can result in very different safety factor profiles in the plasma core.
The heat transport coefficient strongly depends on the magnetic shear, therefore the ap-
plication and validation of the transport model is crucially related to the reliability of
the ECCD current density profile reconstruction, which is known only to within a non
negligible uncertainty due to the experimental errorbars on the electron temperature and
density profiles and, even more importantly, on the magnetic equilibrium reconstruction,
in particular involving the determination of the plasma vertical position. Indeed when
the standard methodology, as described in subsection 4.6.1, is applied to two discharges
presenting an ICEC phase, very different results are obtained. In Figure 4.37(a) the sim-
ulated central electron temperature for shot #18518 is compared with the experimental

data measured by Thomson scattering and by the two foil-absorption method. A very
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good agreement is found in all the phases of the discharge. As shown by the safety factor
profiles, Figure 4.37(b), the central counter-ECCD produces a largely reversed safety fac-
tor profile in the centre, which results in a low transport coefficient in the centre, at the
same level as in Ohmic even with 2.25 MW, Figure 4.38(a), and in agreement with the ex-
perimental estimations obtained by power balance analysis from the Thomson scattering
profiles. Note the increasing broadening of the safety factor profile obtained in the sim-
ulation, first with off-axis ECH and then adding on—axis counter—-ECCD. The simulated
temperature profiles are in very good agreement with the experimental measurements

in all the phases of the discharge, Figure 4.38(b). This very good agreement has not

—

shot #18518 g, shot #18518
12}«  PRETOR § 7 ] R P TR R RS’
10} e~ - Thomson sl 15} X AL
7
= 8 —— Twofolls 51 VT
= o :
of 405 : :
3 0 02| o4 0.6
F 225 MW at1.15s
2
2r 1 WM .......................................
0! N \ 0 N N . N (b)
() 02 04 06 08 1 12 14 0 0.2 04 , 06 0.8 1
time {[s] vol

Figure 4.37: (a) Simulated and measured T, on—azis for shot £18518. (b) Safety factor
profiles for £18518 at three time slices of the simulation.
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Figure 4.38: (a) x. profiles for 418518 compared to the experimental profiles computed
by power balance. (b) Electron temperature profiles for §18518 compared to the Thomson
scattering measurements.

been found in the simulation of all the ICEC shots. Figure 4.39(a) shows the simulated
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Figure 4.39: (a) Simulated and measured T, on-azis for shot $18639. Simulated and
Thomson measured T, profile (b) and simulated current densities and safety factor profiles
(c) for shot $18639 at 1.0 s, with 1.80 MW ECH and -125 kA ECCD.

and experimental central temperature for shot $18639. The result of the transport sim-
ulation is largely below the experimental data. The temperature, current density and
safety factor profiles are shown in Figure 4.39(b). In the simulation, the on—axis heating
and counter—-ECCD deposition are too far from the centre to allow a sufficient increase
in the temperature. Correspondingly the Ohmic current is not able to increase enough
to compensate the strong negative effect of counter-ECCD and this results in a “hole”
in the total current profile. The corresponding safety factor profile is not favourable for
confinement in the RLW local transport model: this then produces a loop in which the
simulated temperature drops indefinitely.

Steady—state current density and safety factor profiles

In order to investigate in more detail the reasons of these apparently contradicting re-
sults, we have performed the following analysis on shot $18639. We have assumed a quasi
steady-state situation during the ICEC phase. Therefore we can assume from Eq. (3.20)
that the parallel electric field is constant up to the magnetic axis and its value simply
given by Ey = Vieep/2m Ry, which can be taken from the experimental measurements.
From Eq. (3.21), the relation between the total steady—state current density profile jgg
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and the ECCD density profile jcp can then be written

Eq

Jjss = + 7Bs + Jcb, (4.11)

"77180

in which the first two terms of the right hand side, involving the neoclassical resisitivity
and the bootstrap current, are computed from the experimental data, using formulae pre-
sented in Chapter 2 [see Eq. (3.19) and subsection 3.3 for the definition of 7]. We have
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Figure 4.40: (a) Range of possible steady—state q profiles for shot 418639 as obtained in
PRETOR using the experimental density and temperature profiles and varying slightly the
power deposition location with respect to the TORAY-GA results. (b) Contributions to
the current density profile corresponding to the dashed q profile in (a), which is obtained
with on—azis counter—-ECCD as indicated by the jcp profile.

implemented this simple calculation in PRETOR. In this interpretative mode of operation
PRETOR takes directly the experimental temperature and pressure profiles, by-passing
all the transport package of the code, and it can therefore be considered an equilibrium re-
construction code which consistently takes into account the experimental pressure profiles
and the current density sources in order to determine the magnetic equilibrium profiles,
assuming steady-state conditions. We have computed the safety factor profiles corre-
sponding to a set of different ECCD current density profiles, within the expected errors.
A set of very different safety factor profiles in the plasma core is obtained, varying inside
the patched area presented in Figure 4.40(a). The current profiles resulting in the dashed
g profile are shown in Figure 4.40(b). This illustrates clearly the difficulties encountered
in simulating the ICEC regime. Indeed the high central temperature leads to very good
counter-ECCD efficiency, that is to a large negative jop contribution. To compensate
this current, a large centrally peaked Ohmic current is generated, consistently with the
peaked temperature profile. Therefore the total current density profile is the result of
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the difference of two large contributions in a relatively small central volume. Moreover a
slight shift, Ap ~ 0.1, of the peaked jop towards an off-axis position, or a change in the
deposition width changes the current density profile considerably. The fact that PRETOR
can simulate the ICEC phase is mainly due to the possibility to obtain a reverse shear
and a low ¢ profile in the plasma core. Since x., Eq. (4.5), is proportional to |VT,|/T.
and to g/|s|, a large shear is beneficial, and in particular it becomes necessary precisely
in the region in which the temperature gradient is large. But the fulfillment of this pre-
cise condition directly depends on the ECCD current density profile, and a small error
in its reconstruction can lead to completely different electron temperature behaviours in
the simulation. Hence, as we have a wide range of safety factor profiles consistent with
the experimental measurements, within the error bars, we cannot conclusively validate or
invalidate the transport model. On the other hand, a testable prediction of the model is
the high sensitivity of the electron temperature and of the confinement time 7g, to small
changes in the exact location of the on—axis power deposition. Indeed, from the simu-
lations presented above, as shown in Figures 4.37(a) and 4.39(a), a small outward shift
of the on—axis deposition, with Ap ~ 0.1, should result in a drop of the central electron
temperature roughly from 10 keV to 5 keV.

Further experiments

A series of specific experiments have been performed to test this effect, obtaining results
in remarkably good agreement with the modelling predictions. In these experiments the
orientation of the 2 beams used for central counter—-ECCD has been varied by a small
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Figure 4.41: (a) Profiles of the EC power deposition as obtained from TORAY-GA for
shots §19425, optimized for central power deposition, and 519428, shifted off-azxis by 3
degrees in the poloidal launching angle. (b) Central electron temperature for shots £19425
and $19428: the slight shift in the on—axis deposition reduces both the central temperature
and the global energy content by almost a factor 2.
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amount, a few degrees in the poloidal launching angle. The equilibrium reconstruction of
these shots has been run carefully in order to correctly identify the plasma vertical po-
sition. With such reconstruction, accurate TORAY—-GA runs have been performed. The
effect of a shift of 3 degrees in the poloidal launching angle on the ECH power deposition
profile is shown in Figure 4.41(a), as computed by TORAY-GA. The corresponding time
evolution of the experimental central electron temperature for the two shots $19425 and
#19428 is shown in Figure 4.41(b}, in complete agreement with the PRETOR predictions.
Note that not only is the central temperature strongly reduced when the ICEC regime is
not achieved, as in shot 119428, but so are the total electron energy content W, and the
thermal electron confinement time 7z, also reduced: for shot 19425, W, ~ 9.5kJ and
Tee = 5.8 ms, typical values for the ICEC regime, whereas for shot 19428 W, ~ 5k.J
and 7g, ~ 3 ms. In order to investigate the effect of the TORAY-GA ECCD current
density profiles on the safety factor profile, we have again used PRETOR in the inter-
pretative mode, as presented above, in order to reconstruct the current density balance
and derive the safety factor profile consistently. The results of such a calculation are
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Figure 4.42: (a) Contributions to the total current density for optimized on—azis counter—
ECCD (shot $19425) with only 80% of the TORAY-GA total amount of driven current
and with a broader deposition profile than predicted by ray—-tracing. Values chosen in order
to keep the total current density positive everywhere along the minor radius. (b) Contri-
butions to the total current density for the off—centered counter—-ECCD (shot $19428) with
95% of the total amount of driven current predicted by TORAY-GA, and considering the
TORAY-GA deposition profile.

presented in Figure 4.42. In the case of shot §19425, an ECCD current density profile as
peaked as that computed by TORAY-GA, similar to the power density profile plotted in
Figure 4.41(a), cannot be run by the code, as it would produce negative current densities
in the plasma centre, which can not be resolved by the coupled equilibrium solver. For
this reason we have used in the calculation a slightly broader deposition profile, driving
80% of the ECCD current predicted by TORAY-GA. In the case of shot 19428, the
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situation is less extreme, and we were able to run the code using the exact TORAY-GA
deposition profile, with 95% of the predicted counter-ECCD. The corresponding safety
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Figure 4.43: Safety factor profiles corresponding to the plasma current densities shown in
Figure {.41, (a) shot $19425, and (b) shot $19428.

factor profiles are shown in Figure 4.43. The safety factor for the off-centered depositon
(shot #19428) is remarkably similar to the one obtained in the time dependent simula-
tion of shot §18639, Figure 4.39(b), representative of a current profile modification not
conducive to lead to the ICEC regime. The case of shot $19425 shows on the contrary a
strongly reversed safety factor profile, with a larger negative gradient than that presented
in Figure 4.37(b), obtained in the time dependent simulation of shot #18518. Note that
the value of the safety factor on—axis depends strongly on the value of the current density
in the centre. Note also that in the time dependent simulation the electric field profile
is never completely flat in the plasma core, rather it peaks on—axis, enhancing ju,, and
reducing qo. From this analysis, and the comparison of the experimental results obtained
with shots §19425 and 19428, respectively with and without an ICEC phase, the shear
reversal appears to be a necessary ingredient for ICEC. In order to verify this conclu-
sion, but taking into account the exact current drive density profiles and total amounts
of driven current given by TORAY-GA, we have computed the current density balance
with a simple numerical procedure which uses all the data provided by the experimental
measurements. We use again Eq. (3.21), but at this stage we do not make the assumption
of steady-state conditons, thus leaving E as an unknown function of p. In Eq. (3.21),
the neoclassical conductivity and the bootstrap current are computed with the Thom-
son scattering temperature and density profiles, averaged on the quasi-stationary time
intervals of the discharge. The effective charge number, crucial to the determination of
7, is left as a free parameter and determined as explained later. Moreover we consider

the experimental loop voltage as an edge boundary condition to the parallel electric field
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Figure 4.44: Current density balance, like the one presented in Figure 4.41 assuming
steady—state conditions, but this time computed taking into account the exact ECCD cur-
rent density profiles and amounts of driven current predicted by TORAY-GA, matching
the value of the total plasma current by adjusting the effective charge number and conse-
quently the neoclassical conductivity. (a) for shot}19425, (b) for shot $19428.

profile. All the calculations are performed taking into account the most accurate magnetic
equilibrium reconstruction computed by LIUQE. Eq. (3.21) is applied iteratively, using
the exact TORAY-GA ECCD profiles and amount of total driven current. Convergence
is reached once the value of the effective charge number allows the integral of the total
plasma current density to match the experimental value of the plasma current. At this
point a hypothesis must be made on the behaviour of the parallel electric field. A possibil-
ity, as in Eq. (4.11), is to assume that the duration of these quasi-stationary discharges is
sufficient to assume steady-state conditions, and therefore take the parallel electric field
as spatially uniform. From the previous PRETOR analysis, Figure 4.42(a), we expect
that this assumption, in the case of shot $19425 will lead to a total current density profile
strongly negative in the center. A second possibility is to assume that small oscillations
of the plasma parameters in the core, always present even in stationary non sawtoothing
plasmas, prevent the attainment of true steady—state conditions. This implies that, at
least in the plasma core, the parallel electric field is not flat, but strongly peaked. The
electric field profile can be determined imposing that the current density profile does not

drop below zero.

Let us consider the former option first. The current density balance as produced by such
a procedure for the two shots 19425 and 419428 is shown in Figure 4.44. These results are
conipletely consistent with the results obtained with PRETOR. In the case of shot 19428
the PRETOR simulation was able to take into account almost the totality of the amount
of the driven current computed by TORAY-GA. The profiles presented in Figure 4.41(a)
and Figure 4.44(a) are very similar, except for the locally negative current density ob-
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tained by allowing the totality of the driven current predicted by TORAY-GA. In the
case of optimized on—axis counter-ECCD, which leads to the ICEC regime (shot $#19425)
consistently with the PRETOR reconstruction, the TORAY-GA ECCD density profile
and total amount of driven current involve a strongly negative current density profile in
the plasma centre, with the assumption of steady-state conditions. Indeed, the Ohmic
contribution to the current density, jog = E/n, within the experimental errorbars on the
electron temperature profile, cannot be so peaked on—axis as to compensate the effect of
counter-ECCD. The effective charge numbers resulting from the iterative procedure are
3 and 2.7 for shots 19425 and {19428 respectively. These values are somewhat below
the value usually estimated for TCV during ECH operation, which is around 4. Note, in
this context, that the neoclassical theory could underestimate the effective plasma con-
ductivity, which can be modified by the presence of a hot tail in the electron distribution
function, due to current drive [43, 44].

On the contrary, the current density balance for shot #19425 obtained by imposing that
the total current density not drop below zero, namely jix > 0, gives the result shown
in Figure 4.45(a), with a value of the effective charge number of 3.9. The corresponding
parallel electric field profile is plotted in Figure 4.45(b). This implies a value of |0E/dp|
of about 4 V/m? in the plasma centre: this value provides an estimate of the order of
magnitude of the oscillations of the poloidal magnetic field in T/s. In the absence of
measurements of the current density profile, it is difficult to state which description is the
more realistic between Figure 4.44(a) and Figure 4.45. Nevertheless, the present analysis

suggests that in the ICEC regime effects similar to those recently observed in extreme
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Figure 4.45: (a) Current density balance for shot £19425, computed imposing s > 0. (b)
Corresponding profile of the parallel electric field.



134 CHAPTER 4. MODELLING TRANSPORT IN TCV

shear reversal scenarios in JET are produced [45].

4.7 Summary and Conclusions

In this Chapter we have presented an analysis of the properties of electron transport in
the TCV tokamak and a set of simulations performed with the transport code PRETOR,

focusing in particular on experiments involving predominant ECH.

Experimental observations show that, with central heating, the electron temperature has
a stiff behaviour, in the sense that the temperature gradient length L. is independent of
the amount of power deposited in the centre and almost constant in the confinement re-
gion. With off—axis heating, the same behaviour is observed outside the deposition region,
whereas in the plasma centre a low transport level is estimated by power balance, with
a steep step of the heat conductivity at the location of the power absorption. Localized
power deposition allows profile modifications in the confinement region, indicating that
stiffness is not a universal property preventing any profile modification. These experi-
mental observations, as well as recent observations and transport analysis performed on
other tokamaks, indicate that the physical phenomena responsible for the anomalous elec-
tron transport are likely to be forms of drift—-wave turbulence (TEMs, ETGs) involving
a critical value in the normalized temperature gradient R/Lr.. Nevertheless, the success
of the global RLW scaling in ohmic and ECH L-mode discharges in TCV and the sat-
isfactory results obtained with the RLW local transport model in modelling the electron
transport in other tokamaks have motivated us to apply the semi—empirical RLW local
transport model in the simulation of a large set of TCV discharges, with very different
heating conditions. The RLW model gives in general very satisfactory results; this can be
explained, consistently with previous analysis in the literature, by the fact that the ex-
perimental values of the electron temperature gradient are well above the RLW threshold
(|VTe|/Vrow ~ 2 — 3 in Ohmic and |VTe|/Vgrw ~ 5 — 15 with ECH). In this situation,
the parametric dependence of the RLW heat conductivity is found to be adequate to sim-

ulate the TCV electron heat transport.

We have simulated a large database of ohmic discharges, with very different plasma shapes.
We have shown that, provided that the geometrical factors are correctly taken into ac-
count in the transport equations, there is no need to include an explicit shape dependence
in the expression for the transport coefficients. The most important requirements in the
simulation of ohmic plasmas are, firstly, to consistently solve the transport equations and
the field diffusion equation, coupling them with a 2D magnetic equilibrium reconstruc-
tion, and, secondly, to employ a reliable sawtooth period and post—crash relaxation model
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for sawtoothing discharges. This enables one to determine consistently the width of the
ohmic power density profile and consequently the most important features of the tempera-
ture profile, which turn out to be almost insensitive to the specific transport model. Good
simulations of the density profiles have also been obtained for ohmic plasmas with a model
involving an anomalous pinch term whose ratio to the particle diffusivity is proportional
to s/p, with p the minor radius and s the magnetic shear (in Ohmic n,/n.(0) o (¢(0)/q),
with o ~ 0.8, works in general remarkably well). A detailed inspection of the ohmic elec-
tron temperature in the confinement region has revealed that a factor must be included
in the RLW heat conductivity expression in order to reproduce in the simulations the
concave profiles observed at high values of the edge safety factor. This is particularly
relevant in the simulation of discharges with ECH, usually produced with low plasma

current.

Although the RLW model apparently does not involve any stiffness feature in the ex-
pression of the heat conductivity, in particular with central ECH, since the RLW critical
temperature gradient turns out to be negligible as compared with the experimental gradi-
ent, we have shown that the experimentally observed stiff behaviour is well reproduced by
the model. We have pointed out that this is due to the specific temperature dependence
of the heat conductivity (x. x T,) obtained with plasma parameters in the domain of
TCV ECH operation, namely relatively low densities and ratios T; /T, < 1.

The numerical tool consisting of the transport code PRETOR, the coupled 2D equilibrium
solver, and the interfaces with the ray—-tracing code TORAY-GA as well as with the ex-
perimental data, allows one to perform transport simulations of the time evolution of full
ECH discharges. The code has provided several simulations in very good agreement with
the experimental observations and has been used to predict specific dependences in the de-
sign of new experiments. We have shown the application of the code in the simulation and
analysis of TCV discharges with phases of improved confinement. Intense counter—-ECCD
on—axis is beneficial to enhance the central temperature by means of sawtooth free phases,
but does not allow stable scenarios. Adding off-axis heating before the high performance
phase with counter-ECCD on-axis leads to a stable regime of improved central electron
confinement, which can last for the whole duration of the gyrotrons pulse, and which
can be either sawtoothing or not. The ratio of the confinement time to the RLW scaling
can exceed 3.5 during the ICEC phase with counter-ECCD, whereas in experiments with
pure heating only, the Hrpw factor is limited to values around 2. The latter is already an
improved plasma performance, as compared with the global RLW scaling. Nevertheless,
satisfactory simulations have been obtained with the local RLW transport model. We

have shown that power localization in the plasma centre, where the heat conductivity is
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low, allows one to successfully simulate global plasma performances which largely exceed
those predicted by the power degradation of the global scaling. The ICEC regime leads
to confinement times exceeding the global scaling even further. Nevertheless, satisfactory
simulations of some ICEC discharges have been obtained, but not in all the cases. An
inspection of the causes of the disagreement has revealed that the safety factor profile,
which plays a crucial role in the expression of the heat conductivity, depends dramatically
on the ECCD density profile. Very different g profiles and correspondingly very different
results in the transport simulations can be obtained within the expected uncertainties
on the ECH power deposition and ECCD density profiles. Simulations suggested that
magnetic shear reversal in the core is likely to be the crucial ingredient for ICEC. Sim-
ulations predicted also that when specific shear conditions are not obtained, owing to
very small modifications of the ECCD density profile, the plasma performance could be
strongly degraded. Dedicated experiments have confirmed the predicted high sensitivity
of the plasma performance on the location of the counterg—~ECCD. An accurate analysis
of these discharges indicates that during the ICEC phase strongly negative shear profiles
are produced in the plasma core, or that the central plasma region may even have zero or
negative current density. The ICEC experiments provide further evidence for the crucial

role of magnetic shear in determining the level of anomalous electron transport.
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Chapter 5

Sawtooth period modelling

5.1 Introduction

Sawtooth oscillations in tokamak discharges are periodic relaxations of the plasma tem-
perature, density and other plasma parameters, which develop when the safety factor
on-axis, o, drops below unity [1]. In a standard triangular sawtooth, a slow rise of the
plasma parameters in the central region of the discharge (the sawtooth ramp) determined
by heat deposition and transport, is followed by a rapid drop (the sawtooth crash) re-
sulting in an expulsion of energy and particles from the plasma core. The sawtooth crash
is assumed to be triggered by the destabilization of an internal kink mode with toroidal

n = 1 and dominant poloidal m = 1 mode numbers.

Pressure profiles in tokamak plasmas can be strongly influenced by sawtooth activity. The
temperature and density profiles are strongly and rapidly modified after each sawtooth
crash, up to a certain position on the minor radius which is somewhat larger than theq = 1
radius of the pre—crash ¢ profile. The plasma current density also changes during this
sequence of events, and consequently also the safety factor profile. Hence, for sawtooth-
ing discharges, realistic simulations and predictions of temperature and density cannot be
made purely on the basis of a transport model, but must also incorporate a model for the
sawtooth period and amplitude. This is particularly important when predicting plasma
profiles in the proposed International Thermonuclear Experimental Reactor (ITER)[2].
It is envisaged that this device will have relatively high values of plasma 8 and, for in-
ductive operation scenarios, low values of safety factor ¢ at the plasma edge. In these
circumstances sawtooth activity is expected to play an important role, and perhaps a
favorable one, since such activity may facilitate helium ash removal. On the other hand,
long sawtooth periods, as the ones which should be produced by a—particle stabilisation in
a burning plasma, can have negative effects, providing seed islands able to trigger pressure
limiting neoclassical tearing modes (NTMs) [3], or other MHD instabilities. Prediction of

the sawtooth period and theoretical investigation of the experimental tools that could be
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used for controlling sawtooth activity are thus of particular importance.

A sawtooth period model has been proposed to predict the sawtooth period and ampli-
tude in ITER [4]. This model has been implemented in the PRETOR transport code,
including a prescription for the relaxed profiles immediately after the sawtooth crash,
and applied directly to a prediction of the sawtooth period and amplitude in projected
ITER discharges. Preliminary versions of the model were used to simulate the sawtooth
behaviour at the Joint European Torus (JET) under a variety of plasma conditions, go-
ing from Ohmic [5] to auxiliary heated discharges [6] and discharges with non-inductive
current drive [7]. However, in these previous works, only single instability regimes were
separately compared with the experimental data, and the numerical implementation of
the model was not included in a transport code which could consistently compute all the
plasma and magnetic equilibrium parameters involved in the stability thresholds. Note,
indeed, that the conditions for the trigger of a sawtooth crash involve several plasma
profiles and local plasma parameters at ¢ = 1, whose evolution has to be followed during
the sawtooth ramp; in particular, the current density profile and the magnetic shear. In
the absence of experimental measurements of such crucial parameters, a consistent appli-
cation of the sawtooth period model requires reconstructions of the magnetic equilibrium
profiles which are at least consistent with the available experimental data. For this reason,
in order to describe the time evolution of all the terms involved in the stability thresh-
olds, the numerical implementation of the sawtooth period model must be coupled with

a transport code and an equilibrium solver.

In this sense, the first application of the sawtooth period model, as described in the fol-
lowing Section 5.2, simulating an experimentally observed sawtooth period behaviour, has
been presented in Ref. [8], in which the crash condition for the resistive internal kink has
been shown in good agreement with all the TCV Ohmic L-mode discharges with triangu-
larity 6 > 0.1, gegge < 4.5, elongation 1 < k < 2 and line average density 2 < nein 19 < 12
(subsection 5.3.1). A further step has been to apply the model to ECH discharges in TCV
[9, 10]: these results indicate that the magnetic shear and pressure scale length at the
g = 1 surface play indeed a crucial role in destabilizing the resistive internal kink mode
and triggering the sawtooth crash, as prescribed by the model (subsections 5.3.2 - 5.3.5).
The application of this model in the detailed simulation of the sawtooth period of several
TCV discharges, including ECH and current drive effects, and the successful prediction
of the sawtooth behaviour in several different heating conditions has provided, in addi-
tion, a theoretical understanding of how ECH can be used to control the sawtooth period
(Section 5.3). In this model a sawtooth crash is triggered by the destabilization of one
of several magnetohydrodynamic (MHD) modes, which can be either ideal or non-ideal,

depending on the values of the plasma parameters involved.
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The instability thresholds triggering a sawtooth crash are determined within the frame-
work of the resisitive MHD linear theory. It must be emphasized that the aim of such
a model is just to determine the sawtooth period by the identification of the relevant
instability thresholds at which a sawtooth crash can be destabilized. The model does not
describe the time evolution of the sawtooth crash itself. The theoretical description of the
crash event is indeed an incomparably more demanding problem, and it has been subject
of many works. In particular multidimensional models have been developed in order to
describe the evolution of the magnetic topology during the crash event [11, 12, 13] or to
compute the crash time exploring the non-linear growth of the mode [14] — [19]. The
description both in space and time of the crash event is relevant for the present sawtooth
period model, intended for applications in transport simulations, only if one can derive
prescriptions for the relaxed profiles (i.e. the profiles at the end of the crash event). The-
oretical evaluations of the crash time or multidimensional descriptions of the magnetic
topology during reconnection are of little importance, since the relevant transport time—
scales are such that the sawtooth crash can be considered in any case instantaneous. The
correct application of the present model is, in principle, to sawtooth periods in which no
signature of MHD activity is registered during the sawtooth ramp. The occurrence of
saturated modes (already in the non-linear phase of their growth) during the sawtooth
ramp, as for instance in the case of the so—called saturated and partially saturated saw-
teeth [20], could imply that such sawtooth periods do not fall within the validity domain
of the model. Nevertheless, it turns out that in general the sawtooth period model gives
correct simulations of the sawtooth period in several applications which seem not to belong
to its strict domain of application. This suggests that in general the sawtooth period is
nevertheless strongly determined by linear theory prescriptions, and that saturated modes
occuring during the ramp are not the ones directly responsible for the sawtooth crash.
This is confirmed by recent results obtained in TCV, concerning the different effects on
the sawtooth period due to increasing ECH power, in plasmas with different shapes [21],
with which the model has been found consistent. Indeed, the sawtooth period increases or
decreases with increasing additional heating power, depending on the plasma shape. This
shape dependence has been found consistent with the prescriptions given by the sawtooth
period model, determining the role of ideal or resistive MHD in triggering the sawtooth
crash, namely sawteeth are triggered by the ideal internal kink at low triangularity and
high elongation, and by the resistive internal kink elsewhere. The threshold between these
two different behaviours has been found in agreement with the shape dependence of the
critical 8,1 [23] as calculated by the ideal MHD code KINX [24]. These results can be
regarded as a physical basis to the underlying assumption that the relevant thresholds
determining the sawtooth crash, and hence the duration of the sawtooth period, are cor-

rectly described by linear theory.
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Recent JET discharges have provided a new interesting validation for the sawtooth pe-
riod model. Strong experimental evidence for fast ion stabilisation of sawteeth has been
observed during neutral beam injection (NBI) experiments [25, 26]. In order to simulate
the sawtooth behaviour in these discharges, we have included a beam ion contribution to
the internal kink energy in the sawtooth period model proposed in [4]. This contribution
has been validated by specific calculations performed with the hybrid kinetic/MHD code
NOVA-K [27] and it has been implemented in the 1-1/2 D transport code PRETOR.
Detailed analysis and simulation of a few representative recent JET discharges has been
carried out [25] (Section 5.4). The predictions of the sawtooth period model are shown
to be in good agreement with the experimental results. This confirms the hypothesis
that the observed time evolution of the sawtooth period is determined largely by beam
ion stabilisation and validates the theoretical model for quantitative predictions of the
sawtooth period, at least for plasma and heating conditions similar to those prevailing in
JET experiments. It also confirms the main assumptions made in predicting the sawtooth
period in ITER-like plasmas [4].

5.2 Sawtooth period model

In this section we present an overview of the sawtooth period model, involving the in-
stability thresholds, subsection 5.2.1, and the post—crash relaxed profiles prescriptions,
subsection 5.2.2, implemented in PRETOR and applied in the simulations presented in
Section 5.3 and Section 5.4.

5.2.1 Sawtooth crash triggering conditions

We use the notation and normalisations adopted in Ref. [4]. The dimensionless internal
kink mode energy functional 6W is defined such that, in the ideal MHD limit, v =
—86W /T4, where v is the growth rate and 74 = v/3Ry/ca, Ry being the major radius
and ¢4 = B/(uonim;)'/? the Alfvén speed. Quantities evaluated at the ¢ = 1 surface are
indicated by the subscript “1”; for instance the magnetic shear at the ¢ = 1 surface is
indicated by s;. Obviously, in the ideal MHD limit, the ideal internal kink is unstable

when the ideal growth rate is positive, hence simply when, in the adopted notations,
~SWinHD = Yideat T4 > 0, (5.1)

The ideal internal kink growth rate can be evaluated, using linear ideal MHD, as follows

oW W Bussac + OW,
Yideal =— — MHD = — B * elong C,s. (52)

TA TA

The term 6Wgyssae, first calculated in Ref. [23], takes into account the effects of toroidicity,

for a circular plasma cross section, whereas the additional elongation term §Welmg and
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the triangularity factor Cs give the necessary corrections due to the plasma shape. For
the first term we use the well-known analytical expression of Ref. [23]

Wassae =~ (1 = 05) € (65— B2 X
where ;; is the internal inductance inside the g = 1 surface, By = (210/B2;) ({p)1 — p1),
in which ( ); denotes volume averaging within the ¢ = 1 surface, involving the total
plasma pressure (background plasma + fast particles), and B, = 0.3 (1 — 57,/3a). Note
that for elongated cross sections, this expression remains valid provided that effective
radii are introduced in the form 7, = ki/ 2p, and @ = k'/2q, where k and k; are the
elongations at the edge and at the ¢ = 1 surface respectively. For the term 5Welmg
several different expressions are available in the literature, which in general neglect the
effect of triangularity, hence taking C; = 1 [4, 28]. A recent improvement [29] has been
obtained by interpolating the numerical results of the MHD code KINX [24], which has
been found consistent with the experimental observations on TCV [21], starting from
the analytic formula for elongation given in Ref. [4]. Several runs of the code KINX
at different plasma shapes, but with a fixed aspect ratio of 10, has given the possibility
to obtain an interpolating formula with a large validity domain. Further calculations,
in particular at lower aspect ratio, have been undertaken. Therefore, following [29], the

elongation additional term and the triangularity factor read

2
Watong = — 57 (11 — 0.5)° (kl - 1) , (5.4)
S1 2
Cs = 16 [(01 +0.128)** (0.105 — 6,)** (0.5 — &1)], (5.5)

where Cs will need to be modifed according to the results at low aspect ratio.

In Eq. (5.1) we have neglected all kinetic effects. In particular it can be assumed that the
ideal internal kink remains stable as long as its growth rate can be stabilized by plasma
rotation, provided by diamagnetic effects. Eq. (5.1) is then modified in the following form
[30]

~6Wap > 0.5 wai Ta, (5.6)

where w,; = (T;dp;/dr)/(eBp;ry) is the ion diamagnetic frequency. Furthermore, it has
been shown that trapped thermal particles in the banana regime involve a non negligible
contribution to the internal kink potential energy, due to perpendicular compressibility.
This contribution, first pointed out in Refs. [31, 32|, turns out to be strongly positive
and hence stabilizing [33, 34, 35] for standard tokamak profiles. Note that collisionality
plays a different role in the electron and in the ion responses. Indeed assuming a typical
mode growth rate of the order of w,;, the condition for trapped-particles to be considered

in the banana regime is v,, < w,;, where v,, is the ratio of trapped particle bounce
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time to collision time and the subscript ¢ refers to ions or electrons. The condition is
easily satisfied by ions, which can be considered collisionless in the timescale of the mode
growth, but is not satisfied by electrons, even with plasma parameters corresponding to
the hot core of a reactor. Therefore thermal electrons must be assumed collisional in the
characteristic instability timescale y~!, and the compressional electron contribution can
be neglected. Following the results of [33] and [34], the following expression has been
proposed in Ref. [4] to take into account the contribution of thermal trapped ions

Wko =06 ¢, <p 2 = > / 1 dz z°py(z), (5.7)

51 2/

where S; is the central ion toroidal beta, computed at r = 0, x = r/r;, and p; =

p(z)/p(xz = 0). Therefore, the effective internal kink potential energy is modified in the
form

Weore = SWirup + Wxo, (5.8)

and Eq. (5.6) is modified in the so—called Kruskal-Oberman criterion,
—0Woore > 0.5 wyi Ta, (5.9)

in which the stability threshold provided by diamagnetic effects has been included in the
right hand side. When this condition is satisfied, an internal kink with a structure similar
to the ideal mode is destabilized. Therefore it will be referred to the ideal internal kink,
even if in Eq. (5.9) non-ideal effects are included. In the absence of fast particles, Eq.
(5.9) will be considered as the relevant trigger condition for a sawtooth crash due to the

destabilisation of an ideal internal kink.

In the presence of fast ions, another important kinetic effect can be at play, which in-
volves a strong stabilizing effect. This stabilisation arises from the conservation of the
third adiabatic invariant ® [36], which, in a tokamak equilibrium and to the leading
order in a Larmor radius expansion, corresponds to the flux of the poloidal magnetic
field through the area defined by the trajectory of the toroidal precession of the trapped
particles guiding centres. The conservation of @ is ensured if the guiding center of the
banana orbit performes a toroidal revolution in a time 7p; which is short compared to
the instability growth timescale y~!. Fast trapped particles, therefore, introduce a new
relevant frequency, the bounce-averaged toroidal precessional drift frequency of fast ions
wph = cEy [ (4eBRyr;), which, already for fast ion energies Ej, of the order of 50 keV, is
usually larger than the diamagnetic frequency w,;. Therefore, in this situation, Eq. (5.9)
changes its stability threshold in the right hand side, and becomes [6]

_6Wcore > ChLWDKR TA, (510)
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where ¢, is a numerical factor of order unity. Following [4], the value of ¢, has been
set equal to 0.4 in all the simulations performed. On the other hand, if —Wopre <
Ch WphK T4, fast particles provide a second non-—negligible kinetic contribution 6Wfast to
the internal kink potential energy, which is usually positive and therefore stabilizing. The
detailed expression of (5Wfast strongly depends on the nature of the fast ion population,
in particular whether the fast particle distribution is isotropic or localized in pitch—angle,
and, in this case, whether the fast ion population is localized in the plasma center or
localized off-axis [37]. The underlying physics is particularly complexe and, since 6Wfast
is usually dominant over the other terms 6WMH p and 6WKO, particular care is necessary
in its evaluation, which can imply the use of specific hybrid kinetic/MHD codes, at least in
order to validate the analytical formulae. A well known analytical expression for 5Wfast,
valid in the limit 1 — ¢ — 0 and magnetic shear s — 0 inside the ¢ = 1 surface, without

including finite Larmor radius effects and assuming isotropic energetic ions, reads [38, 39]

% Bon /” ( r )3/2 dpn
MWipet = —————~ — —dr. 5.11
ot V25167 Jo \m dr (510)

Here Sy, is the toroidal fast ion beta at the magnetic axis and py(r) is the normalized fast
ion pressure profile. Note that this is the expression used in Section 5.4 in order to take
into account the stabilizing contribution of beam ions. It has been tested in this specific
application by a comparison with the results of the hybrid kinetic/MHD code NOVA-K
[27], as it will be discussed in subsection 5.4.2. The resulting global internal kink potential
energy is modified in the form

W = §Warp + 6Wko + 0Wias (5.12)

and Eq. (5.9) is replaced by
—0W > 0.5 wy; Ta. (5.13)

When both Eq. (5.10) and Eq. (5.13) are not satisfied, we shall say that the ideal internal
kink is stable. However, the internal kink can still be destabilized in this situation. Indeed,
when the internal kink potential energy is sufficiently close to zero. the mode dynamics
and linear growth rate are determined by microscopic non—ideal effects in a narrow layer
around the ¢ = 1 surface, where reconnection of magnetic field lines can occur. In this
sense the relevant stability threshold becomes a threshold against n = 1/m = 1 magnetic
reconnection. The internal kink changes its structure from that of an ideal mode to
that of a reconnecting mode and in these conditions will be referred to the resistive
internal kink. Furthermore, when the dimensionless internal kink potential energy SW is

positive and larger than a certain threshold, identified in Ref. [4] as basically given by
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the normalized ion—sound Larmor radius p, the mode structure is again modified from
that of a global resistive internal kink to that of a drift-tearing mode [40, 41|, strongly
localized near the ¢ = 1 surface, and assumed too localized to destabilize a sawtooth crash
(6 = \/(p? + p2) /71, where p; is the thermal ion Larmor radius and p, is the same quantity
evaluated using the electron temperature rather than the ion temperature). Hence the

domain in which the resistive internal kink can be destabilized is given by
—c,p < —6W < 0.5 wy Ta, (5.14)

where c, is a dimensionless numerical factor determining at which level the internal kink
changes towards a drift-tearing mode character. This parameter has been kept equal to
1, following Ref. [4], in all the present work. Note that this value plays a crucial role
in the case of fast particles stabilisation, and it has been found strongly consistent with
the experimentally observed periods in JET, in discharges with neutral beam heating and

consequent beam ion sawtooth stabilisation, Section 5.4.

In the reconnecting regime defined by Eq. (5.14), the reconnection layer width is de-
termined by either the resistive layer width 4,) or by the ion thermal Larmor radius p;.
Depending on the values of these scale lengths, the resistive internal kink has different
linear growth rates. If 6, > p;, finite resistivity makes it possible for the resistive internal

kink to become unstable, with a growth rate given by [42]
Yy =810 ST LY, (5.15)

where S = 7,/74 is the magnetic Reynolds (Lundquist) number, with 7, the resistive
diffusion time. If, on the other hand, p; > d, > ¢/wpe, Where c is the speed of light and
wpe is the electron plasma frequency, the reconnection layer width is determined by the ion
Larmor radius p;, and the electron inertia can be neglected in the generalized Ohm’s law.
This is referred to as the semi—collisional ion—kinetic regime. The internal kink growth

rate is then given by [43]

2(1 2/7
'yp=< (‘:' T)> pilt ST ST T, (5.16)

where 7 = T,1/T;1, and p; = p; / r1. Therefore, in the interval —c, p < —6W < 0.5 wy Ta,

we shall consider the internal kink with an effective growth rate given by

Vet = MaxX(Yp, Vyy ---)- (5.17)

Eq. (5.17) is easily generalized, including the growth rate of resistive internal kink type
modes in any new instability regime (ves is the maximum among all the resistive type

growth rates). The physics of this mode is quite complexe, since a number of different
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effects can be simultaneously important. However it is believed that stabilization is mainly
provided by diamagnetic and drift wave effects [4, 17, 18, 35, 44, 45, 46, 47]. As a general
simple expression, one expects the mode to be destabilized if

Yot > € (W Wi w3 wie) M eTeTiestad, (5.18)
where wg, = (T,dn,/dr)/(eBnyry) is the drift frequency and ¢, is a dimensionless nu-
merical factor, also depending on plasma parameters. In particular, it depends on plasma
shape [48] and on the collisionality regime. For circular cross sections, in the collision-
less limit ¢, ~ 1, while ¢, ~ (D/9)'/? in the collisional limit [49], where D, the ratio of
resistive time to perpendicular ion momentum diffusion time, is approximately equal to
0.38e1/miTe/m.T;, with Bo; = pe1/(B%/2p0). The exact form of Eq. (5.18) can not be
determined analytically, as realistic plasma conditions are never in asymptotic limits. For
ITER plasmas the condition

Yo > Cp Wy

was proposed [4], on the basis that plasma parameters are such that always p; > §, and
only the ion—kinetic regime and ion dynamics are relevant [note that in Ref. [4] ¢, = 1/c,].
However, both theoretical works and experimental observations [50] indicate that both
density and temperature gradients of both species can in principle play a role. Therefore

in Ref. [8] the following more general condition has been proposed

1/2

max(fyp, 711) > Cr (w*i w*e) (519)

This choice turns out to be successful in modelling the sawtooth period in Ohmic and
ECRH discharges in TCV, as it will be shown in Section 5.3, as well as in Ohmic in JET,
Section 5.4. As first noted in Ref. [5], since both growth rates -y, and =, involve s;, the

triggering condition can be rewritten in the form
81 > S1crit) (5.20)

where s;.4, the critical shear at ¢ = 1, is given by different expressions depending on
whether the internal kink becomes unstable in the resistive or ion—kinetic regime. The
expressions for s sy, Obtained inverting Eq. (5.16) and Eq. (5.15) respectively and
implemented in the transport code PRETOR, are the followings

R 7/6 T 72 7/12 1o
1196 ~1/2 1 i 1 g1/6 71 , 5.21
81 Crltp c’r pz Fl Tel Lpll Lpel /87,1 ( a")
Rl 3/2 T f2 3/4 a4
S1crivn = 1.355 ¢¥/2 pi/? (—) S L) s 5.21b
teritn Py ™ Te1 Lpil Lpel ! ( )

81 crit = min (51 crit py S1 crit n) . (5-210)
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Note that in both cases there is a strong dependence on the local plasma parameters at ¢ =
1. Eq. (5.20) provides an instability condition involving a critical value of the magnetic
shear at ¢ = 1 which is similar to the one proposed in Ref. [18]. The theoretical model
developed in this Reference was found in agreement with the experimental observation
of stabilization and onset of sawteeth in TFTR [51]. Note that the stability threshold
against the ideal mode has been seen violated in TFTR experiments [51], leading the
authors in Ref. [18] to state that the ideal mode theory is irrelevant to the onset of
sawtooth oscillations and the ideal threshold not to be considered. This is not consistent
with what was recently observed in TCV [21]. Note also that in Refs. [18, 51], no kinetic
effects, like diamagnetic, trapped thermal particles or fast particles effects, which can be
strongly stabilizing, have been considered in the stability threshold of the ideal kink. This
is in contrast with Egs. (5.10) and (5.13) considered in the present model.

Since both inequalities Egs. (5.14) and (5.19) need to be satisfied for the onset of a
resistive internal kink, there are two ways to prevent a crash, namely s; < Sje; OF
W > p. Therefore the sawtooth crash and the duration of the sawtooth period are
determined by the last of these two previous stability conditions to be violated. In one
case the inequality given by Eq. (5.14) is satisfied during most of the sawtooth ramp,
a crash being triggered when the reconnecting mode drive is strong enough to offset
stabilizing diamagnetic effects: this corresponds to s; exceeding the critical shear, Eq.
(5.20). In the other case s; > ;.4 throughout the relevant phase of the sawtooth ramp,
and the mode is destabilized by the condition —6W > ~ p- The latter situation was found
in Ref. [4] to be the one most likely to be relevant for ITER operation, where the strong
stabilizing effect of a—particles makes it possible for —6W to be less than —p during the
sawtooth ramp. In Section 5.4, we show that this is the situation occurring in JET during
the NBI heated discharges, with the role of a-particles in ITER being played by NBI fast
ions in JET. |

The present sawtooth period model, whose crash trigger conditions are given by Egs.
(5.10, 5.13, 5.14, 5.19), that is

—O0Weore > ChWDRTA,
—SW > 0.5w.Ta,

—c, p < W < 05wuTa and vg > ¢ (w*,-w,,e)l/2

bl

can be also summarized in the form of 2D graphs, in which the assumed underlying disper-
sion relation and the corresponding stability thresholds are represented. In Figure 5.1(a)
we have sketched the dispersion relation providing the mode growth rate -y versus the
potential energy 6W. We have normalized the ordinate by the effective growth rate in
the resistive regime, defined by Eq. (5.17), and divided the abscissa by the dimensionless
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Figure 5.1: Diagrams providing an overview of the stability thresholds involved in the

sawtooth period model.

quantity Ta¥ess. If —6W/7'A is large and positive, we are in the ideal limit and we have
Y = Yideal = —5W/7'A. In this situation, when —6W /74 > 0.5w,; the ideal internal kink
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is unstable, as represented in the stability diagram given in Figure 5.1(b). For simplicity
in the figure we have assumed w,, = w,; = w.. When ——6W/TA is sufficiently close to
zero, namely —c,p/T4 < —5W/7'A < 0.5w,;, we are in the regime in which the resistive
internal kink can be destabilized. In this region v = .5 and the mode is unstable if
Yess > ¢rwy [Eq. (5.19)]. The shaded region reflects the range of variation of the parame-
ter ¢, € [0.5 1.25] obtained in our simulations. For values —6W /74 large and negative the
mode takes the structure of a localized tearing mode. These modes are weakly unstable
or completely stabilized by other effects which depend on parameters (e.g. collisionality)
which are not included in the two variables chosen to describe stability in a 2D plot. These
modes can be even destabilized during the sawtooth ramp, but, due to their very local-
ized structure, they do not drive a sawtooth crash. Therefore, beyond the value —c,p/74,
the internal kink is regarded as stable. The parameter c, thus determines the threshold
at which the mode structure can be considered too localized for the destabilisation of a
sawtooth crash. In the presence of fast particles a supplementary contribution 6Wfast
is included in 6W, which is usually positive and therefore stabilizing. As shown in Fig-
ure 5.1(c), when -—6Wco7~e/TA = —((5W - 5Wfast)/TA is larger than c,wpp, with wpp > w,,
then the ideal internal kink is unstable. Note that high values of 6Wfast, due for instance
to very low values of the shear, can imply that —(5W/7'A < 0.5w,;, even if at the same
time very peaked pressure plasma profiles imply that — W e /T4 > cpwpp. In this case,
although —6W € [~c,p/Ta 0.5w.q), it is a mode of ideal type which is destabilized.

5.2.2 Prescriptions for the relaxed profiles

Once a sawtooth crash is triggered, the crash event is considered instantaneous compared
to the relevant transport time—scale. Hence, in a transport simulation with PRETOR, at
the same time step at which a sawtooth crash is triggered, the profiles are relaxed fol-
lowing a set of prescriptions, based on the Kadomtsev complete reconnection model [52].
This model has not always been found consistent with the experimental observations. In
particular the model predicts a crash time, due to resistivity and plasma incompressibil-
ity, which is much longer than the one experimentally observed [53]. Several theoretical
works have been performed later exploring different physical mechanisms than resistivity
which could determine the layer width in which the reconnection process takes place.
In particular it has been shown that the layer width could be determined by the iner-
tial skin depth when including electron inertia [16], or by the ion-sound Larmor radius
in a two—fluid model [17]. This leads to modifications of the Sweet—Parker-Kadomtsev
[54, 55, 52] scaling, with reconnection times which are much shorter and closer to the ex-
perimental values, even if still longer by a factor of 2-3. Afterwards, non-linear theories

have shown that the reconnection rate is strongly increased as the early non-linear phase
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is entered, namely for magnetic islands widths comparable with the plasma skin depth
[18, 56, 19], accounting for the remaining difference with the experimental observations.
Unfortunately, a fully consistent non-linear theory describing the island dynamics is not
yet available, therefore different ideas exist on the basic collapse mechanism. In particular
in several works the underlying hypothesis that the collapse takes place in the form of
an accellerated Kadomtsev reconnection is assumed (16, 17, 19, 57]. The same assump-
tion has been made in the present thesis work. While a correct theoretical prediction of
the sawtooth crash time would be in any case not relevant for transport timescales, a
fully consistent non—linear theory would be able to provide prescriptions for the relaxed
state, which is of particular importance for transport studies. From this point of view,
a second debated prediction of Kadomtsev model regards the value of the safety factor
on-axis, g, in the relaxed state. This is set equal to one at the end of the complete recon-
nection process in Kadomtsev model. The point is controversial, as in certain tokamak
experiments g has been observed to remain below unity after the crash [58, 59, 60, 61]
whereas in other experiments it does not depart significantly from unity, like for instance
in Refs. [62, 63]. The different experimental observations have motivated the development
of alternative theoretical models. In particular in Ref. [64] a model for the post—crash
state, involving the instability of localized resistive interchange modes and Taylor relax-
ation [65], has been found in good agreement with TEXTOR experiments, and predicts
a safety factor which can remain significantly below unity after the crash. Moreover, in
some experiments [61, 66] where go is observed to remain below unity, there is evidence
of the formation of a shoulder of low magnetic shear close to the new ¢ = 1 surface after
crash. This would suggest that relaxed states in which the safety factor remains below

unity can be explained by incomplete reconnection processes.

This is consistent with the theoretical model for the sawtooth period presented in subsec-
tion 5.2.1, for which the internal kink is stable in the presence of gy even strongly below
unity, provided that the shear is low at the ¢ = 1 surface. In TCV, measurements of the
safety factor profile are not available, and this issue remains open. Nevertheless, the anal-
ysis of precursors and postcursors of the sawtooth crash in the soft X-ray and magnetic
coils traces, for all the different types of sawteeth observed, has suggested that in TCV
the reconnection process is always complete, in the sense that a phase of total poloidal
symmetry is observed at the end of each sawtooth oscillation [67]. Moreover, although
the Kadomtsev model is fairly old, its consequences in the presence of localized auxiliary
heating have only recently been fully appreciated. In Ref. [13] it was proposed that the
“filament” temperature structures observed in RTP [68] and in TEXT Upgrade [69] may
be consistent with the Kadomtsev model. In Ref. [67] we have shown that the same

model may also account for the variety of the experimental observations in sawtoothing
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TCV discharges. In particular it has been found consistent with specific features of the
sawtooth behaviour in the presence of localized ECH, like the formation of a hot ring after
crash with peaked pre-crash temperature profiles obtained with localized central heating,
or like non-standard sawtooth traces, “humpbacks”, obtained with off-axis heating [67].
In this sense, the application of the Kadomtsev complete reconnection model can be con-
sidered consistent with the experimental observations in TCV. Incomplete reconnections,
yielding a post—crash safety factor profile with ¢ below 1 on the magnetic axis and a
low local shear at the ¢ = 1 surface, imply that the next crash trigger is reached after
a sawtooth period which is shorter than the one obtained after a complete reconnection
[4]. Therefore the simulated sawtooth period turns out to be sensitive to the adopted
profile relaxation model, particularly when the sawtooth period is comparable with the
confinement time. The analysis of the dynamics of the parameters involved in the sta-
bility thresholds during the sawtooth ramp shows that the relevant role is played by the
value of the shear at the ¢ = 1 surface, particularly when the trigger conditions are the
ones of Egs. (5.14) and (5.19). However partial relaxations of the safety factor profile,
even though they imply shorter values of 7y, do not change the global dependence of
the sawtooth period on the plasma parameters. Sawtooth period simulations obtained
assuming systematic post—crash incomplete reconnections can thus be consistently repro-
duced with the complete reconnection model, provided that the free parameters of the
sawtooth period model, in particular ¢, in Eq. (5.14) and ¢, in Eq. (5.19), are adequately
rescaled. In this sense, most of the conclusions obtained in the present work, performed
while systematically assuming that a complete reconnection occurs after a sawtooth crash,

does not imply a lack of generality.

The Kadomtsev model is based on two major assumptions, and it can be applied only
with monotonic safety factor profiles. The first is that magnetic surfaces of equal helical

flux ¥, reconnect. The helical flux is given by
,(r) = / B, (1—q) dr. (5.22)
0

In Figure 5.2 we have shown with a solid line the helical flux corresponding to pre-crash
profiles of the safety factor and the poloidal field, as computed by a realistic PRETOR
run. Note that if the safety factor goes below 1 in the center, as it must be the case for a
pre—crash profile, the helical flux is not monotonic: the helical flux has a maximum where
the safety factor is equal to 1 (radius r; in Figure 5.2). The second assumption is that
the toroidal flux @1 is conserved during reconnection. In what follows, we identify how
these two assumptions can give prescriptions in order to obtain the relaxed profiles after
crash in a 1D transport code. For each radius r, < 71, see Figure 5.2, it exists a radius

Ty, With 71 < 7y < T With the same helical flux. The mixing radius r,,;;, as shown in
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Figure 5.2: Pre—crash and post—crash helical flux in the Kadomtsev complete reconnection
model, as computed by a PRETOR run

Figure 5.2 is simply defined by the condition
U, (Tmiz) = V. (0). (5.23)

The conservation of the toroidal flux can be translated in the conservation of areas. The

radii r, and 7, will reconnect in a magnetic surface of radius r; such that
T =1/ (r? —r2). (5.24)

This equation implies circular concentric flux surfaces, which is usually a reasonable ap-
proximation in the central plasma region, up to the mixing radius, for sufficiently large
edge values of q and for not extremely high values of edge elongation and triangularity.
Once the corresponding radius r; has been identified for each radius between 0 and ry,
the profile of the post—crash helical flux is determined, as plotted by the dashed line in
Figure 5.2. The new helical flux permits the computation of the post—crash profile of the
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poloidal magnetic field. Indeed, from Eq. (5.22), one can write

dv,
Bp = d'f' + (q Bp)

Note now that the product (¢ B,) involves quantities which in first approximation can

be considered not affected by the reconnection process, from Egs. (3.25) and (3.28),

o Ge F
B o) = ’
(9 Bo) 21 Ry
where G = V' (R™2) / (27)? [Eq. (3.23)] and F = 2rRBg/us. Hence we can conclude
that the poloidal magnetic field profile consistent with the post—crash helical flux is given

by

d \I’* 4 Ho Gq; F
dr 27 Ry
Once the new profile of the poloidal magnetic field has been determined, the consistent

Bpo = (525)
toroidal integrated current density profile I; and F' are updated with the usual equations,
Egs. (3.25) and (3.26),

21 Ry 2V’ 1 3[2
I, = G B,o, F2:F2+/h“ / 5.26
T TP * L oGe 5/) Go¢Go O (5.26)
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Figure 5.3: Pre-crash and post—crash safety factor profiles as computed by PRETOR for
a JET plasma with additional central electron heating.
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The safety factor and current density profiles are then given by [Eq. (3.28)]

F . 1 F 0 (I
q= GoGQI—t, j= on e Ca O (f) )

In Figure 5.3 we have shown the relaxation of a the safety factor profile as computed with
PRETOR by the previous equations in the case of a JET plasma with additional central
electron heating. The relaxation of the density and temperature profiles can be simply
obtained prescribing a flat profile up to the mixing radius, keeping the total number of
particles and the total energy conserved. The resulting electron temperature profiles pre—
crash and post—-crash for the same PRETOR run of Figure 5.3 are shown in Figure 5.4,
respectively with a solid and a dashed line. Note that this is not completely consistent
with the Kadomtsev complete reconnection model. Indeed this model implies that density
and energy are conserved inside each reconnecting layer during the reconnection process.
Always in the limit of circular concentric flux surfaces, this means

2 2

/ Cnd(r?) dr? = / " ni(r2) dr?, (5.27)
0 T

2
a

2 2

/lc pé(r2) dr? = / ’ pfl(’I‘Q) dr?, (5.28)
0 T

2
where the subscript a refers to each particle species, the radii r,, 7, and r; are the ones
introduced in Eq. (5.24), and the superscripts “i” and “f” refer to pre-crash and post—-
crash conditions respectively. This involves precise prescriptions for the relaxed density
and temperature profiles, which therefore turn out to be not necessarily flat. Indeed, flat
relaxed profiles are obtained only with pre—crash profiles which are exactly parabolic, and
in this sense the prescription of flattening the profiles up to the mixing radius can be
considered a first order approximation. After differentiation of Eqs. (5.27) and (5.28),
one obtains the simple conditions

nl(ry) = 0.5 [nﬁ!(ra) + nfl(rb)} pl(ry) = 0.5 [pfl(ra) + pfl(rb)] . (5.29)

For a pre—crash temperature profile more peaked than parabolic, as the one shown in
Figure 5.4 obtained with additional central electron heating, these rules imply the for-
mation of a hot ring close to the pre—crash ¢ = 1 surface, as shown by the dash—dotted
line in Figure 5.4, still computed by PRETOR, and which has been experimentally ob-
served in TCV in 2D tomographic reconstructions of the soft X-ray emissivity [67]. Note
that differences in the relaxed density and pressure profiles obtained flattening up to the
mixing radius or applying the rules given by Egs. (5.27) and (5.28), do not imply signi-
ficative differences in the simulated sawtooth period, also because in the two cases, the
same relaxed current density and safety factor profile are considered. For this reason, in
PRETOR flat post—crash plasma profiles are usually considered.
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Figure 5.4: Pre—crash and post—crash electron temperature profiles as computed by PRE-
TOR for a JET plasma with additional central electron heating. The solid line shows the
pre—crash profile, the dashed line shows the post-crash profile flattening the profiles up to
Tmiz, the dash—dotted line shows the post—crash profiles computed following entirely the
Kadomtsev model, Eq. (5.29).

5.3 Sawtooth period modelling of TCV discharges

The TCV device is a unique facility to explore the influence of plasma shape and ECH on
the sawtooth activity. Many types of central relaxation oscillations have been observed in
TCV plasmas with ECH [20, 67]. TCV has also allowed a detailed study of the effects of
plasma shape on sawtooth period, in Ohmic and electron heated plasmas [21]. Moreover
the effects of ECH and current drive on sawteeth can be experimentally analyzed in detail
by means of the powerful and highly flexible ECH system available in TCV [50, 70]. All
these experiments give the possibility to perform valuable tests for the validation of a

sawtooth period model.

5.3.1 Ohmic discharges

The sawtooth period model presented in the previous Section has been applied to 17
Ohmic L-mode shots [8], covering the following range of parameters: 2.3 < geqq4e < 4.6, 0.1
MALI,<1MA,2<n.19<12,01<6<0.6,1 <k <19 Thesawtooth period ranges
from 2 ms to 8 ms and the inversion radius from 20% to 60% of the minor radius. When

performing the simulation of the sawtooth period, as the triggering conditions involve
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Figure 5.5: (a) Simulated sawtooth period vs the erperimental period for the 17 shots of
the database considered. (b) The value of ¢, is detailed with respect to elongation.

several local plasma parameters at ¢ = 1 and plasma profiles inside ¢ = 1, particular care
must be taken in the transport simulation and the consistent calculation of equilibrium
profiles during the sawtooth ramp, in particular the current density and the safety factor
profiles. In Figure 5.5 we present the results of the simulations of the 17 Ohmic L-mode
shots. Figure 5.5(a) shows that in such a wide domain of parameters, the sawtooth period
can be simulated with a relatively small variation of the free parameter c,., between 0.5 and
1. The values of ¢, are detailed in Figure 5.5(b) versus elongation. It can be concluded that
for most cases we obtain a satisfactory simulation of the sawtooth period with ¢, ~ 0.75.
Also the inversion radii have been reproduced in good agreement with the experimental
observations. As it will be explained later, the correct simulation of the inversion radius
is less demanding than that of the sawtooth period. This allows an easier approach when
one is only interested on transport effects due to sawtooth activity. For this reason, for
transport simulations in subsection 4.5.2, we have adopted the simplified crash condition
s1 > 0.2, which does not allow to reproduce exactly the sawtooth period in all cases,
but nevertheless permits a correct simulation of the inversion radius. In Figure 5.6 we
have shown the sawtooth period simulation of a typical TCV Ohmic plasma, obtained in
shot §9841. The plasma shape is almost circular, with small elongation, ¥ = 1.18, and
medium triangularity, 6 = 0.25. The average volume density is 3 - 10°m~3, and the
safety factor value at the edge is geqpe = 3. In Figure 5.6(a) we have plotted the time
evolution of the terms involved in Eqgs. (5.9) and (5.14). The ideal growth rate is always

negative and therefore well below the diamagnetic threshold 0.5 w,; 74, indicating that the
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Figure 5.6: Application of the sawtooth period model to the TCV discharge 19841, at 0.8
s, exmaple of a typical plasma with only Ohmic heating. (a) Egs. (5.9) and (5.14) are
plotted. The ideal internal kink remains stable, the potential energy 6W always satisfies
Eq. (5.14), indicating that the destabilized kink is a resistive mode. (b) The triggering
condition for a sawtooth crash is given by Eq. (5.20).

ideal internal kink remains stable. We identify in this way that the relevant regime for a

typical TCV Ohmic discharge is the one given by Eq. (5.14), leading to resistive internal
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Figure 5.7: Time evolution of the critical shear for the ion—kinetic internal kink, Sicritp,
Eq. (5.21a), and for the resistive internal kink, $ycrin, Eg. (5.21b), as computed by
PRETOR in the simulation of the TCV discharge $9841. Also the time evolution of the
shear at ¢ = 1, s1, and of the normalized ¢ = 1 radius, 71/a are plotted.

kink instabilities. In this regime, the instability threshold is given by the comparison
between the resistive, Eq. (5.15), or the ion—kinetic, Eq. (5.16), growth rates and the
stabilizing term involving the diamagnetic frequencies, Eq. (5.19). The time evolution of
the corresponding triggering condition, Eq. (5.20), is shown in Figure 5.6(b). Note that
in TCV plasmas both instabilities, resistive and ion—kinetic, have very similar growth
rates, and the resulting time evolution of the corresponding critical shear is pratically
the same for the two different modes, Figure 5.7, determining the same sawtooth period
at the trigger. The free parameter c, has been fixed in this simulation equal to 0.67,
which is, as previously stated, within the range of values on average most consistent with
the experimental sawtooth periods in TCV Ohmic discharges. The resulting simulated
sawtooth period, 74, =~ 3.3 ms is indeed in good agreement (within 10%) with the
experimentally observed period of 3 ms. Obviously the parameter ¢, can be matched
in order to exactly reproduce the experimental sawtooth period. In Figure 5.7 we have
also plotted the time evolution of the normalized ¢ = 1 radius. Note that during a first
phase the ¢ = 1 radius moves rapidly outwards, reaching values relatively close to the
value at the crash. Therefore the ¢ = 1 radius at the crash is not too sensitive to the
effective duration of the sawtooth period. This makes it possible to satisfactorily simulate

the inversion radius more easily than the sawtooth period. After a sawtooth crash, the
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critical shear also increases rapidly, with a time scale determined by the confinement
time, and then has tendency to saturate. This is because the critical shear is almost
proportional to the pressure gradient at ¢ = 1. The pressure gradient at ¢ = 1 falls to
zero as a consequence of the profiles relaxation, but builds up rapidly after the crash by the
combination of two effects: the central Ohmic reheating peaks the pressure profile more
and more and the ¢ = 1 surface moves rapidly outwards, towards plasma regions in which
the pressure gradient is larger. On the contrary the shear at ¢ = 1, s, increases more
slowly in this first phase, during which ¢ = 1 is moving outwards but always remaining in
regions in which the safety factor profile remains flat. Once ¢ = 1 is sufficiently off—axis,
than the shear begins to build up more rapidly, being able to reach the value of sy cpi;-
If the time evolution of s; and sy are very close and almost parallel, and this occurs
when the confinement time and the resistive time inside the ¢ = 1 surface are similar,
the sawtooth period is not well determined: small changes in the time evolution of the
several terms involved can imply strong non—physical variations of the simulated sawtooth
period. In this case, also, the relaxation model becomes more important, which can make
the sawtooth period simulation less reliable. Note nevertheless that, at least in Ohmic
plasmas, the relaxation model adopted, subsection 5.2.2, allows a correct prediction of
both the sawtooth amplitude and the inversion radius in all the discharges analyzed. In
this database the experimentally determined inversion radius varies from 0.2 to 0.6 of the

minor radius, and there is no experimental correlation between the inversion radius and

the sawtooth period.

5.3.2 Adding electron cyclotron heating

From a theoretical point of view, as the sawtooth period depends on local values of the
plasma parameters at ¢ = 1, one expects that experimentally the sawtooth period would
turn out to be vefy sensitive to the electron cyclotron power deposition location. This
is indeed the case, as ECH can be highly localized, directly altering both the electron
temperature and thereby the current density and safety factor profiles, all crucially in-
volved in the sawtooth crash triggers. Moreover, the possibility of driving current by the
ECH system gives a supplementary possibility of altering the sawtooth period, locally
modifying the current density profile and the magnetic shear. Experimentally it has been
observed on TCV that small alterations of the EC deposition or seemingly negligible
amounts of ECCD close to the ¢ = 1 surface can strongly change the sawtooth period
and shape [50, 67]. Moreover it has been shown that the sawtooth response to precise
heating conditions is highly reproducible: in this sense sawteeth can be used as an ECH

deposition detector [50].

In particular, when the power deposition is moved vertically in the poloidal plasma cross
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Figure 5.8: (a) Experimental sawtooth period in shot $16053. (b) Poloidal view of the
TORAY-GA results at 4 different time slices during the poloidal sweep of shot £16053.

section from the bottom to the top, it is found experimentally that two specific loca-
tions maximize the sawtooth period: this gives a first precise test on the sawtooth period
model. In particular, as shown in Figure 5.8(a), the first maximum is of lower amplitude
and broader, whereas the second one is of higher amplitude and narrower. This has been
explained as due to the geometrical configuration of the ECH launcher, which implies
that when heating at the bottom of the plasma the deposition width (=~ beam width) is
broader and a small amount of counter-ECCD is produced, whereas when heating at the
top the deposition width is narrow and accompanied by a small amount of co-ECCD,
Figure 5.8(b). Both the beam deposition width and the amount of current drive can
affect the sawtooth period. The first affects the local power density, which can modify
the pressure gradients at ¢ = 1, the second directly modifies the local magnetic shear.
For this reason, a simulation of the sawtooth period performed considering the poloidal
sweep of a fixed-width power deposition profile, without taking into account power den-
sity and current drive effects, allows one to identify a deposition location maximizing
the sawtooth period, but does not reproduce the detailed features of the experimental
behaviour as described above, shown in Figure 5.8(a). Therefore, the sawtooth period
simulation of the whole shot must carefully take into account not only the sweep of the
deposition, but also the combination of both the effects of the deposition width and of
current drive, subsection 5.3.5. Dedicated experiments have been designed and performed
in order to identify separately the two physical phenomena [70]. First, the dependence
of the sawtooth period on the power density is discussed in subsection 5.3.3. Second,

as shown in subsection 5.3.4, the effects of very small amounts of current drive close to
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Figure 5.9: (a) Ezperimental sawtooth period in shot §16487. (b) TORAY-GA ECH
deposition profiles at two time slices in shot §16487.

the ¢ = 1 surface, less than 1% of the plasma current, can strongly change the sawtooth
period. The triggering condition for a sawtooth crash given by Eq. (5.20) for resistive
internal kink instabilities allows sawtooth period simulations consistent with the experi-
mental observations for all the heating and current drive conditions described above. The
free parameter ¢, involved in Eq. (5.20) is determined by matching the sawtooth period
during the Ohmic phase of the discharges, and is then kept fixed during the heating phase.
Note that in all the experiments considered, the low heating power, less than 0.5 MW,
does not change significantly the regime of collisionality of the plasma: this supports the
described simulation methodology.

5.3.3 Sawtooth period and ECH power density

A dedicated experiment has been performed in TCV shot $16487 which has definitely
confirmed the influence of the power density on the sawtooth period. The deposition
radius maximizing the sawtooth period was identified in a previous discharge by sweeping
two beams in the poloidal plane as described above. Then two launchers were swept in
opposite directions across this radius, in such a way as to keep the total power inside the
corresponding flux surface constant, while modifying the power density at this location.
The experimental result, together with the power deposition densities from TORAY-GA
[71] at two instants during the discharge are shown in Figure 5.9, (a) and (b) respec-
tively. The power density at pgep = 0.37 increases progressively between the two time

slices presented, as does the sawtooth period, increasing from 12 ms up to almost 20
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Figure 5.10: (a) Simulated sawtooth period of $16487. (b) and (c) Shear at ¢ = 1 and
critical shear with sawtooth period of 11 ms around 0.3 s (b) and sawtooth period of 18
ms around 0.75 s (c). Steps in the time evolution of the critical shear must be ascribed to
numerical discreteness.

ms. Performing the same crossed sweep with PRETOR, the sawtooth period variation
of Figure 5.10(a) has been found consistent with the experimental results. In particular
the relative change of 7y, is well reproduced even if details of the evolution are not fully
recovered (e.g. the maximum period, which occurs at 0.75 s in the experiment is found at
0.85 s in the simulation). Note that, similarly to the experiments, we had, first, to identify
the position maximizing the sawtooth period in the PRETOR simulation and then have
used this position as the reference for the cross-sweep. This position is 0.43 in PRETOR,
which is within the experimental uncertainty on the power deposition due to the error
bars on the temperature and density measurements, and perhaps most importantly on
the equilibrium reconstruction. Analyzing the effect of the power density on the crash
trigger, Eq. (5.20), two effects are produced by the larger power density, Figure 5.10(b).
First, the shear s, after the crash increases more slowly; second, the critical shear also
increases because of the enhancement of the pressure gradient at ¢ = 1 due to the more
localized power deposition outside ¢ = 1. Both these effects imply a longer sawtooth
period and explain the experimental results.

Hashes in the evolution of the critical shear, clearly visible in Figure 5.10, must be as-
cribed to the numerical scheme. As already stressed, s;.; depends essentially on the
pressure gradient at ¢ = 1. As r; moves outwards during the sawtooth ramp, it crosses
successively the points of the radial mesh. Since the pressure gradient is computed by
linear interpolation and finite differences, when r; goes over a mesh point, the gradient
is computed on the next segment of the pressure profile. This leads to steps in the time
evolution of the critical shear, which can be particularly evident when the auxiliary heat-
ing power is deposited off-axis, close to the position of the ¢ = 1 surface at the sawtooth

crash. Indeed in this situation the pressure profile can have short scale variations around
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Figure 5.11: Sawtooth period variation (above) and central T, (below) computed in the
simulation of shots §15278 and §15282. Two experimental sawtooth periods from the soft
X-ray traces of the two shots, have been also plotted, rescaled in amplitude.

the deposition region. The hashes in the time evolution of the critical shear provide an
estimate of the numerical error involved in the simulation of the sawtooth period. Note,
in this context, that simulations resulting in sawtooth periods shorter than ~2 ms must

be considered below the numerical precision.

5.3.4 Sawtooth period and current drive

Two shots have been produced with identical plasma conditions, changing only the amount
of CD deposited near ¢ = 1. In one case, shot #15278, the ECH power deposited close to
the ¢ = 1 surface is accompanied by a small amount (less than 1% of the total current)
of current drive in counter direction. In the other case, shot §15282, the same power
deposition is accompanied by a similar amount of current drive, but in co direction [70].
The sawtooth period turns out to be strongly sensitive to this seemingly negligible inver-
sion of current drive. This variation is well reproduced by the model. In Figure 5.11 the
results of the simulation are shown. The amount of current drive is changed from -2.8 to
+2.8 kA, which corresponds to a local modification of the current density profile of less
than 3%, with a plasma current of 330 kA. The simulated sawtooth period changes from
7 ms to 11 ms. This is in very good agreement with the experimental results, as shown
by the simulated central electron temperature trace, on which two experimental sawtooth
periods from the soft X-ray traces of the two shots (rescaled in amplitude but not in time)
have been plotted. In this case, as the ECH power deposition is the same in the two shots,
the pressure gradient at the ¢ = 1 surface is not modified and the critical shear behaviour
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Figure 5.12: Simulated sawtooth period for 3116053. Sawtooth periods between 0.8 and
1.05 s turn out to be shorter than 2 ms in the simulation and too affected by numerical
uncertainties. Therefore they have not been plotted.

does not change in the two situations, remaining constant at the trigger. However, the
small amount of CD, localized close to the ¢ = 1 surface, changes the dynamics of the
shear at ¢ = 1. It increases more quickly after the crash with the counter—CD contribution
and more slowly with co—CD. This is sufficient to alterate the time at which the crash
condition is triggered, changing the sawtooth period from 7 ms up to 11 ms.

5.3.5 Simulation of a full poloidal sweep

In the simulation of the sawtooth period for a discharge with a poloidal sweep (TCV shot
#16053) all the different effects presented above, in particular the variation of the power
density and the small amounts of CD involved, must be carefully taken into account.
This is possible by interpolating the ray—tracing results, calculated with TORAY-GA
every 50 ms. In Figure 5.12 the sawtooth period evolution obtained in the simulation is
presented. The main features of the experimental results are well reproduced by the model.
In particular the presence of two maxima, the first less localized with shorter sawtooth
period, the second more localized with longer sawtooth period. Also the magnitude of
the sawtooth period variations is in agreement with the experiment. Between 0.8 and
1.05 s, with power depositions close to the magnetic axis, irregular sawteeth shorter than
2 ms have been obtained in the simulations. As already mentioned, when the simulated
periods are as short as this, they are too dependent on the relaxation model and on
numerical uncertainties in the evaluation of the local gradients at ¢ = 1; therefore, in this

situation they can not be considered reliable and have not been plotted in Figure 5.12.
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The experimental behaviour also shows irregular sawteeth during the same time interval
of the discharge, Figure 5.8; although, the sawtooth periods are on average a factor
of 2 longer than those obtained in the simulations. From the simulation it is found
that the deposition radius maximizing the sawtooth period is clearly outside the ¢ = 1
surface, and even outside the mixing radius for broad deposition profiles; but, closer to
the ¢ = 1 surface with more localized power. Although some experimental evidence
suggests that the deposition radius maximizing the sawtooth period is indeed outside the
experimental inversion radius (calculated from soft X-ray tomography), this issue would
be finally assessed only with the help of accurate equilibrium reconstructions, involving
experimental constraints on the current profile, which are not available on TCV. Hence
this prediction amounts to a further validation test for the model. In any case, it must be
stressed that the simulations show that local modifications of the plasma parameters at
q = 1 producing the strongest effect in stabilizing the sawtooth period are not the ones
performed by a power deposition localized exactly on the ¢ = 1 surface. Power depositions
located outside the ¢ = 1 surface are those which allow most efficiently the slowing down
of the shear build up and the increase of the pressure gradients on ¢ = 1 and thereby of
the local diamagnetic frequencies, providing stabilisation. How much outside depends on
the power localization, the more the deposition profile is narrow the more it needs to be

located close to ¢ = 1 to produce the maximum effect.

5.4 Sawtooth stabilisation by NBI in JET

Dedicated experiments have been recently performed in the Joint European Torus (JET)
in order to assess the effect of fast ions arising from neutral beam injection (NBI) on
sawtooth activity. Strong experimental evidence for fast ion stabilisation of sawteeth has
been observed during these experiments [26]. Previously, in JET tritium experiments
with NBI, the sawtooth period was observed to increase with beam tritium concentration
[72]: this phenomenon was attributed to a stabilizing effect of beam ions, whose energy
content increased with beam tritium concentration due to the mass dependence of the
slowing-down time. Analysis of internal kink stability in these discharges, in terms of
thresholds given by a sawtooth period model [4], indicated that in JET hot-ion H-mode
deuterium—-tritium operation the contribution to the kink energy of the beam ions was
greater than that of a—particles, and produced a delay in destabilisation of the ideal
internal kink [72].

The stabilizing effect of fast ions, in particular those arising from ion cyclotron resonance
heating (ICRH), has already been investigated experimentally [73, 74] and theoretically
(6, 75]. When the fast ions are produced either by ICRH or fusion reactions, the highest
particle energies are in the MeV range, whereas in the case of NBI the highest energies are
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of the order of 100 keV. As already mentioned in subsection 5.2.1, fast particle stabilisation
arises from conservation of the third adiabatic invariant ® for trapped fast particles whose
bounce orbits precess around the torus in a time which is shorter than the characteristic
time scale of the relevant MHD mode [6]. Unstable m = n = 1 modes have growth
rates of the order of the diamagnetic frequency of thermal ions w,;, evaluated at the
g = 1 surface. Thus, a necessary condition for fast particle stabilisation is that wp, >
w.i [6], where wpy, is the bounce-averaged toroidal precessional drift frequency of fast
ions. In JET this condition is easily satisfied by ICRH ions with energies in the MeV
range, even in discharges with very high ion temperature: this gives rise to delays in
the sawtooth crash for periods of up to a few seconds [73, 76]. In the case of particles
with energies of the order of tens of keV, on the other hand, the condition is generally
only marginally satisfied. Sawtooth stabilisation by NBI fast ions was first observed in
TEXTOR [77]. In those experiments, the combination of a beam injection energy ~50
keV, low densities n, ~ 1.5 x 10! m~3 and low ion temperatures T; ~ 1 keV made it
possible to stabilize sawteeth for periods of up to 200 ms. In recent discharges in JET,
with beam injection at energies 80 keV and 140keV, powers up to 10 MW, densities in
the range n, ~ 2 — 4 x 10'®m™3 and ion temperatures of a few keV (T; ~ 2 — 3 keV),
sawtooth periods of up to 500 ms have been observed. The ratio wpp/w.; ~ 5 satisfies the
condition for stabilisation. An overview of the recent observations in JET experiments is
given in subsection 5.4.1.

In order to investigate more deeply the physical processes determining the period of
sawtooth oscillations we have applied the model described in Section 5.2, including a
beam ion contribution to the internal kink potential energy. The need of including the
sawtooth period model in a transport code, in order to consistently compute several
time—evolving parameters which are difficult to measure, such as the position of the g = 1
surface, the magnetic shear and local gradients at this surface, implies that it is desirable
to keep the model in a relatively simple formulation. However, simplifying the model to
this extent makes it necessary to neglect additional effects, such as plasma rotation, or
to simplify the description of physical effects which are taken into account. For instance
one makes the assumption of isotropic distribution function in the expression describing
the beam ion contribution to the internal kink potential energy. This limits somewhat
the degree to which one can draw firm conclusions regarding the validity of quantitative
model predictions. On the other hand, separate calculations can be performed in order to
investigate the validity of the assumptions made in the modelling, and to test the simplified
expressions used in the transport code, using more rigorous and complete MHD codes.
In particular, in order to check the validity of assuming isotropic beam ions, we have

computed more realistic fast particle distribution functions, for certain specified time
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slices, with the post-processing transport analysis code TRANSP [78]. We have used
these distribution functions as input for the hybrid MHD /kinetic code NOVA-K [27], in
order to calculate accurately the contribution of beam ions to the internal kink energy
and compare with estimates based on the approximate formula included in the sawtooth
period model. The analytical expression used in the model for the beam ion contribution
and the comparison with NOVA-K calculations are described in subsection 5.4.2.

A detailed analysis and simulations of a few representative recent JET discharges have
been carried out. The results are presented in subsection 5.4.3. The predictions of the
sawtooth period model are shown to be in good agreement with the experimental results.
This confirms the hypothesis that the observed time evolution of the sawtooth period
is determined largely by beam ion stabilisation and validates the theoretical model for
quantitative predictions of the sawtooth period, at least for plasma and heating conditions

similar to those prevailing in these experiments.

5.4.1 Experimental observations

Recent experiments in JET with auxiliary heating provided by NBI only have provided
several indications of beam ions playing a role in stabilizing sawteeth. In particular, a
NBI shot database has been built, showing an inverse correlation between the sawtooth
period 7,y and the electron density ne [79, 26]. Note that the inverse density scaling of
the sawtooth period is opposite to the usual Ohmic behaviour, which shows an increase of
Tsaw With density. Since, under steady-state conditions, the beam ion pressure is directly
proportional to the slowing—down time, which varies as T} /n,, it strongly suggests that
the stabilisation of the sawtooth period observed during NBI heating is due to fast particle
effects. Moreover, the strong 7, dependence suggested by collisionality arguments is
confirmed by regression analysis over the sawtooth database, which yields g,y oc 717 2923
[80]. Work is in progress in order to identify separate dependeces on temperature, density
and NBI power. The dedicated experiments considered in the present analysis have been
performed with relatively slow NBI power (Pypy) ramps, in order to obtain sawtooth
period data over a wide power range. The NBI power has been rapidly modulated in
order to optimize the simulation of a continuous linear variation in time, with a power
range up to almost 10 MW. Higher power levels have not been considered, since other
instabilities, such as fishbones, would then be expected to occur, thereby complicating

the sawtooth analysis.

In Figure 5.13 we have shown an overview of shot 53593, with plasma current I, = 2 MA
and vacuum magnetic field By = 2.48 T. The modulated trapezoidal power waveform is

shown in Figure 5.13(a), together with the smoothed total input power, which includes also
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Figure 5.13: Ezperimental traces of shot $53593, with I, ~ 2 MA, By = 2.48 T. (a) NBI
power (solid curve) and smoothed total input power (dashed curve) in MW. (b) Interfer-
ometer central chord line-average density in 10'® m=3. (c) H, emission signal in V and
normalized beta By (dashed line) (Bn = B[%)aBo/I, where the minor radius a is expressed
in m, the vacuum magnetic field By in tesla, and the plasma current I, in MA). (d) Elec-
tron temperature in keV (solid curve) measured by the ECE radiometer and diamagnetic
plasma energy in MJ (dashed curve).

the Ohmic contribution. In this shot the low maximum Pyg; < 5 MW and the relatively
high magnetic field keep the plasma in L-mode throughout the heating phase, with a
resulting line average density, plotted in Figure 5.13(b), which evolves symmetrically in
time. The H, emission signal is shown in Figure 5.13(c), together with Sy = [%] aBy / I,.
In Figure 5.13(d) we have plotted the electron temperature measured by the electron
cyclotron emission (ECE) heterodyne radiometer. The present time trace corresponds
to a point of the plasma which is located, from magnetic equilibrium reconstruction,
approximatively at r/a ~ 0.13, roughly 50% inside the inversion radius. The sawtooth
period increases with increasing power already at these low power levels. Figure 5.13(d)

shows also the plasma diamagnetic energy.
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In all these experiments, the beam power is injected slightly in the co—direction and
therefore plasma rotation increases with NBI power. The beam trajectories, in the JET
upshifted alignement, allow a strong localization of the power absorption and of the fast
particle pressure in the central region of the plasma. This is particularly important in
order to obtain a visible effect of fast particles on the sawtooth period, since, from theory,
the most important parameter determining sawtooth stabilisation is roughly given by the
volume-averaged fast particle energy content inside the ¢ = 1 surface with respect to
the value of the fast particle energy at that surface. Both simple ramp-up followed by
a rapid drop or trapezoidal Pyp; waveforms, involving power ramp-up and ramp-down
with the same time scales have been analyzed. A linear relation between the sawtooth
period and the fast ion energy content Wj,,: has been observed in all the discharges.
Moreover, the plot of the evolution of the sawtooth period versus the NBI power exhibits
a hysteresis behaviour as Pyp; rises and decays, which is slightly reduced when Pyp; is
plotted versus the energy content W, s, [26]. This suggests that the variations in 7y,
are better correlated with changes in W s, than with changes in Pyp;, supporting the

idea that fast ions are responsible for sawtooth stabilisation.

5.4.2 Numerical computation of 5Wfast and validation of an an-
alytical expression

In order to compute accurately the contribution 5Wfast of beam ions to the internal
kink potential energy, we have used [82] the NOVA-K code [27, 81], developed to study
low-n kinetic-MHD instabilities, and already used to calculate the nonadiabatic resonant
response of fast particles to a given eigenmode structure. The code has been extended
in order to evaluate the full fast particle response to the internal kink mode [83]. A
perturbative method is used to compute the kinetic effects, while the ideal eigenmode
structure is computed by the ideal MHD code NOVA. The perturbative approach is
justified, since the fast particle beta on-axis, By fq4st, is about 30% of the plasma f; in the
NBI experiments considered in the present work. The code includes fast ion finite orbit
width and finite Larmor radius effects in the kinetic contribution to the MHD quadratic
form of the mode energy, provided by the various fast particle groups. The code takes
into account the realistic flux surface geometry and the plasma rotation profile. This is
particularly important in order to describe properly the fast particle toroidal precession,
and estimate correctly the precession drift frequency of the banana orbits. The code
is particularly well-suited to this kind of application. Moreover, NOVA-K can be run
taking as input realistic numerical calculations of the fast particle distribution function,
both in energy and pitch—angle. It is important to use a realistic form of the distribution

function in order to estimate correctly the stabilisation effect, since it is primarily due to
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trapped particles. This also tests the validity of analytical approaches to the problem.
The distribution function was taken from the TRANSP Monte-Carlo package and fitted
into a factorised form f; = f, fp, f,, where v is speed, P, is canonical toroidal momentum,
and x = (v? /v?)(Bo/B), v, denoting the velocity component perpendicular to the local
magnetic field B. The factor fp, represents essentially the radial dependence of the
distribution, and was taken from the TRANSP code [78]. The speed distribution f, is
assumed to be slowing-down, which is also supported by TRANSP modelling. For the
NBI ion pitch-angle distribution f,, we used the form

f = e~ 00 /A (5.30)

which gives the distribution function in the equatorial plain at the low field side. Com-
parison with the TRANSP code shows that it can be assumed that yo ~ 0.5 within the
numerical accuracy, and it has been verified that it does not change significantly within
the ¢ = 1 surface. The pitch—angle width depends strongly on the particle energy, and
must be computed from the collisional operator in the Fokker-Planck equation [84], which
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Figure 5.14: NOVA-K results, showing the fast particle stabilizing contribution 6Wfast to
the m = 1 internal kink potential energy, for different values of the fust ion pitch—angle
distribution width [equation (5.30)]. Circles and square symbols give the NOVA-K results
obtained respectively with and without the inclusion of finite Larmor radius effects. The
fast iton distributions in energy and space were taken from the results of ¢ TRANSP run
corresponding to a specific time slice of a JET discharge (shot §53595). The solid hori-
zontal line represents the value of 6Wfast computed by NOVA-K taking into account also
the TRANSP pitch—-angle distribution. The dashed line gives the corresponding analytical
result [equation (5.11)].
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also determines the speed of a particle as it slows down:

v = (V3 + of)) e/ — 93 (5.31)

cr

Here vy is the beam injection speed and v, is the speed at which a beam particle slows
down on ions and electrons at the same rate. The collisional pitch—angle scattering dif-
fusion coefficient has the form D,, = v3 /(7,.v*®), and the pitch—angle width at a specific
time ¢ is A2 = Af+ fot D, dt, where particle speed must be treated as a function of time,
according to Eq. (5.31). It is straightforward to show that

2 o 1 o3 (1+ 3 /viy)
AX:AO—gln[ v3+;§r ”OJ. (5.32)
Like the parameter xo, also Ay can be easily determined from the distribution functions
given by TRANSP. Figure 5.4.2 shows the sensitivity of the fast particle contribution
5Wfast to the width A, of the pitch-angle distribution. With open circles we have plot-
ted the code results including FLR effects, whereas open squares indicate the excess of
stabilisation obtained when FLR effects are neglected. Two different behaviours can be
identified: with a localized distribution function in pitch-angle, roughly A, <1, 5Wfast
shows a strong dependence on A,, while for A, > 1, 6Wfast becomes almost a con-
stant function of Ay, rapidly reaching the isotropic limit. The distribution functions
fitted from the TRANSP results have in general pitch-angle widths which turn out to
be complicated functions of both the normalized poloidal flux averaged over the particle
trajectory v = 9(x, P,,v) and of the particle energy £. For example, for a specific time
of a JET discharge (shot $53595) at which the TRANSP distribution was computed the
fitting expression for the pitch—angle width used as input for NOVA-K was

(£/130)*% (1 + 0.729)
(£/130)*% +0.729

A2 =0.13+0.45\/% — 0.151n

where £ is expressed in keV. The corresponding value of 5Wfast computed with this
distribution function, fitted from the TRANSP result for this specific time, is shown with
an horizontal solid line. This allows us to identify an “effective” value of the pitch angle
width A, =~ 0.3, where this horizontal line crosses the curve with open circles. This
example shows that the “effective” pitch—angle widths corresponding to the experimental
conditions are in general in the region in which JWfast varies strongly with A,. This
implies that numerical calculations properly taking into account the realistic distribution
function are indeed necessary. The dashed horizontal line shows the corresponding value of
(SWfast provided by the analytical formula given in Eq. (5.11). The analytical expression
clearly underestimates the contribution of fast particles, when compared with NOVA-K

results obtained with large A, values, i.e. in the isotropic limit. This is partly due to the
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fact that in NOVA-K only co—going particles, in the direction of the plasma current, have
been considered, consistently with the experimental set—up. Taking into account both co
and counter injected beams, the fast particle contribution in the isotropic limit is reduced
from 6.49 1073 to 4.74 1073, which reduces the discrepancy with the analytical formula
to less than a factor of 2. Moreover, NOVA-K uses realistic magnetic geometry and
includes rotation effects, which may account for the remaining difference. On the other
hand, it turns out that the analytical evaluations are very close to the NOVA-K results
obtained using the realistic fast particle distribution function computed by TRANSP.
This can be explained considering that, since the pitch—angle distribution is narrower at
higher energies, less trapped fast ions contribute to the stabilisation than in the case of an
isotropic distribution. We have performed several NOVA-K runs, for specified time slices
at different levels of NBI heating power, both considering an isotropic distribution function
and the realistic distribution computed by TRANSP. These calculations have shown that
Eq. (5.11) in general underestimates the term 5Wfast by a factor of about 3 if compared
to the results provided by NOVA-K with isotropic distribution functions, but provides a
surprisingly good estimate, within 15%, of the fast particle contribution when the realistic
distribution functions are taken into account. This makes it possible to use Eq. (5.11) to
describe the effect of fast particles on the internal kink in similar JET discharges with NBI
heating, when performing simulations of the sawtooth period with a transport code such
as PRETOR. The coupling of PRETOR with an MHD code such as NOVA-K at each
time-step of the transport simulation would require a prohibitive amount of computation
time. The formula given in Eq. (5.11) is straightforward to include in a transport code,
as it involves only the global beam ion pressure profile, together with variables such as
the shear and inverse aspect ratio at ¢ = 1 which are routinely computed using transport
codes. This approach can be extended to other heating schemes producing fast ions in the
plasma, such as ICRH. In this case the fast ion distributions are generally more complex
than those resulting from NBI, in both velocity and coordinate space, and require more
complicated analytical descriptions [85, 37]. In principle these analytical distributions can
be benchmarked against the results of rigorous numerical modelling, carried out using
interfaced Monte—Carlo codes. The simulations presented in the next Section use fast ion
pressure profiles computed a steady-state Fokker—Planck code PENCIL [86]. This is a
post—processing code for JET discharges, run on a regular basis to determine the NBI
heating power absorbed by the plasma, the particle sources, and the beam ion pressure
profiles. By computing the fast ion pressure profile from a steady-state solution of the
Fokker-Planck equation, time-dependent effects arising from the finite slowing—down time
are neglected. The slowing—down time of beam ions in JET is usually between 50 and
100 ms, while in the NBI power ramp—up experiments considered here the characteristic
time of the power ramp is of the order of 1s. The use of a steady-state Fokker—Planck
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equation to compute the fast ion pressure is thus justified. The slowing—down time is also
smaller than the energy confinement time, which is of the order of 200 ms in the discharges

considered here.

5.4.3 Comparison between theory and experiment

In order to identify the relevant stability thresholds, we have computed the time evolution
of all the quantities involved in the sawtooth period model, taking data directly from the
available JET diagnostics and post—processing codes such as PENCIL. We have analyzed
in this way five discharges, with NBI power ramps, performed in two different recent JET
campaigns, with different NBI power levels, with a L-H mode transition or remaining in
L-mode during the NBI heating phase. Figure 5.15 shows the results of this analysis for
two shots, $50725 during the power ramp-up phase, before the occurrence of fishbones,
and #53593, with lower maximum power, with a complete trapezoidal power waveform.
For all the time slices, we have considered a safety factor profile, and the corresponding
current density profile, computed using an equilibrium reconstruction which is consistent
with the experimental pressure profiles. The inversion radius has been experimentally de-
termined for all the sawtooth crashes and used as a constraint on the reconstructed safety
factor profile. We have assumed a constant “average” value of the safety factor in the
center go = 0.9. In this way we have computed the instability thresholds taking data the
most directly as possible from the experimental measurements, considering the measured
profiles as the ones occurring on average at the middle of a sawtooth ramp. Thus we
have evaluated the order of magnitude of the different terms occurring in the sawtooth
crash trigger conditions [Egs. (5.10, 5.13, 5.14)] at various phases of the discharges. The
safety factor profiles, computed as previously described by the equilibrium code coupled
with PRETOR, and which play a crucial role in sawtooth calculations, compare also very
well with measurements provided by motional Stark effect diagnostics, when these are

available.

In Figure 5.15(a) and (b) we have plotted the time evolution of the heating NBI power,
during the power ramp phases, for the two shots. In Figure 5.15(c) and (d) the soft X-ray
traces are shown, highlighting the sawtooth period behaviour during the power ramps.
The time evolution of the sawtooth period for both discharges is plotted in Figure 5.15(e)
and (f). In both cases the sawtooth period increases during the power ramp, and, in the
case of shot § 53593, decreases correspondingly during the ramp-down phase. In Fig-
ure 5.15(g) and (h) the terms involved in the first sawtooth crash condition, [Eq. (5.10)]
are plotted. 5Wcm remains clearly below 0.4wpp T4, indicating that plasma conditions
are such that fast particle stabilisation of the ideal internal kink is indeed possible. In
Figure 5.15(i) and (l) we have plotted the quantities in Eqgs. (5.13) and (5.14). The
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Figure 5.15: (a) and (b) NBI power for shots 50725 and 53593; (c) and (d) central
chord Soft X-ray signals; (e) and (f) corresponding sawtooth periods; (g) and (h) stability
threshold described by equation (5.10); (i) and (1) relevant stability threshold terms in
equations (5.18) and (5.14), used in the sawtooth period model. All the terms are computed
directly from ezperimental measurements, as described in subsection 5.4.8. In (g) - (1)
symbols indicate time slices of the experimental measurements; 0.4 wpp T4 1S plotted with
triangles pointing down, 0.5 w,; T4 with triangles pointing right, —0W,,,e with circles, —Cpp
with stars, and —6W with squares.
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fact that —6W is always less than 0.5w,;74 indicates that the ideal kink mode was stable
throughout these discharges. In both cases, and in all the other discharges we have ana-
lyzed, the instant at which the sawtooth period starts to increase corresponds to the time
at which the fast ion stabilizing contribution is such that —§W becomes smaller than —p,
thereby stabilizing the resistive internal kink mode. Corresponding agreement is found
during the ramp—down phase in the case of shot $53593. Note that in this analysis effects
on magnetic shear due to rapid time variations in the current profile are neglected, and
the analysis cannot therefore reproduce every detail of the sawtooth period behaviour.
Transient current profile modifications could account for the sawtooth period variations
observed during the power flat top phase in shot £53593. In the first part of the heating
phase, before the power ramp, with either purely Ohmic heating [shot $53593] or with very
low auxiliary heating power [shot $50725], the sawtooth period remains almost constant,
around 100 ms. In our picture this is the signature of a situation in which equation (5.14)
is already satisfied during the sawtooth ramp, and the crash is triggered by the fulfillment
of equation (5.19), when the magnetic shear s; exceeds the critical shear s; . [equation
(5.20)]. In this case the term 6Wfast does not play any role in determining the sawtooth
period. During the NBI power ramp, with the consequent increase of the fast ion pressure,
—&W drops strongly below —p, due to the growth of the term (5Wfast. At this point, the
condition determining the sawtooth period is switched from equation (5.20), involving the
critical shear, to equation (5.14), i.e. —W > —p, and it is the JWfast term, being the
dominant contribution to the kink energy, which directly determines the sawtooth period.
This accounts for the linear correlation experimentally observed between the sawtooth

period and the fast particle energy content inside the ¢ = 1 surface.

In order to test this hypothesis we have carried out sawtooth period simulations with
PRETOR. These simulations were performed with density profiles taken directly from
experimental measurements, and kept constant during the sawtooth evolution. This
approximation is consistent with analysis of the interferometer central line-integrated
density signals, which in general do not show a strong signature of sawtooth activity,
particularly during the H-mode phases. It thus appears that sawtooth relaxations in
these discharges did not significantly affect density profiles, which were very flat inside
the inversion radius. The experimental temperature profiles were simulated by adapt-
ing the values of transport coefficients, in order to reproduce correctly the experimental
pressure profiles: this is crucial for a reliable evaluation of all the contributions to the
kink energy. Particular care must be taken on this point, since an L-H transition usually
occurs during the power ramp. The sawtooth period behaviour was nevertheless unaf-
fected by this event. We have analyzed shots that remained in L-mode, such as shot
153593, shots in which the L-H transition occurred after the phase characterized by an
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increase of the sawtooth period, and shots in which the L-H transition clearly occurred
before the beginning of that phase, such as shot $50725. In this last example the L-H
transition occurred at 67.58 s: from Figure 5.15 it is apparent that the sawtooth period
increased only during the H-mode phase. No significant differences in the sawtooth period
behaviour were observed in all these different situations. The plasma current density and
safety factor profiles in PRETOR are computed by solving a diffusion equation for the
poloidal magnetic field, in which the plasma conductivity is assumed to be neoclassical
and computed using formulae which take into account collisionality and plasma shape
effects at finite aspect ratio, Section 2.4. The 1D transport code is coupled, at each time
step, with a self-consistent equilibrium solver. It must be emphasized that application of
the sawtooth trigger conditions requires detailed knowledge of several quantities, which
must be computed consistently. In particular, the time evolution of the current density
and safety factor profiles, involving the radial position of the ¢ = 1 surface, as well as
the evolution of the pressure profiles, and their related gradients at ¢ = 1, play a crucial
role in the calculation of all the contributions to the kink potential energy functional. As
indicated in the previous section, the fast ion pressure profile, as well as the NBI heating
power source, were taken directly from the PENCIL output.

We now concentrate on the power ramp-up phase of shot $50725. Figures 5.16, 5.17, 5.18
show the results of the PRETOR simulations for three representative time slices: 67.0 s, in
Figure 5.16, during the phase in which the sawtooth period is still constant and sawtooth
activity clearly repetitive; 68.6 s, in Figure 5.17, at the middle of the NBI power ramp,
during the phase of increase of the sawtooth period; and 70.5 s, in Figure 5.18, at the
top of the power ramp, with the longest sawtooth periods. Figures 5.16(a), 5.17(a) and
5.18(a) show the time evolution of the terms involved in Eq. (5.10), while Figures 5.16(b),
5.17(b) and 5.18(b) show the behaviour of the contributions of the kink energy and related
stability thresholds for the terms involved in Eq. (5.13) and Eq. (5.14). In Figures 5.16(c),
5.17(c) and 5.18(c) we have shown the time evolution of the magnetic shear s; and the
critical shear sy o4, Eq. (5.20).

At 67.0 s [Figures 5.16], the 6Wfast term is not yet large enough to be dominant in trig-
gering the sawtooth crash. The condition —6W > —p is reached during the sawtooth
ramp before the shear s; crosses the critical shear s; .. In this situation it is Eq. (5.19),
or equivalently Eq. (5.20), which provides the triggering condition, and the destabilized
mode is the resistive internal kink in the ion-kinetic regime. During this low NBI power
heating phase, not only Eq. (5.10) is largely satisfied [Figure 5.16(a)] but even —6W o
remains negative, showing that in this situation the ideal internal kink remains stable,

independently of the stabilizing effect of fast particles.
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Figure 5.16: Time evolution of the relevant terms involved in the stability thresholds of
the sawtooth period model in a PRETOR simulation of shot 50725 at time 67.0 s.

At 68.6 s [Figure 5.17], W has not yet crossed p when s, crosses si . 1The condition
given by Eq. (5.20) [Figure 5.17(c)] is before —6W exceeds —p, and hence no longer plays
the dominant role in triggering the crash. In this case the condition —W > —p [Eq.
(5.14)] triggers the crash. The beam ion stabilizing term —5Wfast, being the dominant
contribution to the internal kink energy —6W, thus plays the crucial role in determining
the sawtooth period in the simulation, yielding a value of 74, of 150 ms, whereas the
experimental value is 125 ms. The destabilized mode is still the resistive internal kink in
the ion-kinetic regime. The ideal kink is still largely stable, as shown in Figures 5.17(a)
and (b): Egs. (5.10) and (5.13) are both satisfied. Figure 5.17(a), in contrast to Fig-
ure 5.16(a), shows also that the ideal internal kink would be close to instability without
the stabilisation provided by energetic ions, as (5Wcm ~ 0 at the sawtooth crash.

At 70.5 s [Figure 5.18] the behaviour is similar. The sawtooth crash is still determined by
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Figure 5.17: Time evolution of the relevant terms involved in the stability thresholds of
the sawtooth period model in a PRETOR simulation of shot 50725 at time 68.6 s.

the condition —6W > —p since Eq. (5.20) is satisfied earlier. In this case we note from
Figure 5.18(a) that the term ——6Wcore becomes positive during the sawtooth ramp, because
of the strong NBI central heating and the consequent strongly peaked profiles. Without
the fast ion stabilisation, the ideal internal kink would be destabilized after approxima-
tively 160 ms, well before both the simulated crash, which occurs at 7., = 350 ms, and
the actual crash, which occurs after 325 ms. This strongly indicates the necessity of taking
into account fast ion stabilization in order to explain experiments. Figure 5.18(a) shows
also that at the time of the sawtooth crash the condition Yeore = —5Wme/ Ta < Wph,
which is necessary for fast particle stabilisation, is satisfied only marginally. Thus, with
strong NBI heating power, the consequent high ion temperature starts to destabilize more
efficiently the ideal kink than the fast ions stabilizing effect, even if large fast ions densi-
ties are produced. The beam injection energy is then too low for beam ions to stabilize

efficiently the internal kink. This indicates that the experiments have been performed in
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Figure 5.18: Time evolution of the relevant terms involved in the stability thresholds of
the sawtooth period model in a PRETOR simulation of shot 50725 at time 70.5 s.

a stability window of parameter space, within which beam ion stabilisation can be effec-
tive. The value of the shear s; at the crash is larger for sawteeth delayed by beam ion
stabilisation [Figures 5.17(c) and 5.18(c)] than it is for the case in which s; is limited by
S1crit at the crash [Figure 5.16(c)]. This may help to account for the excitation of NTMs
in JET after long sawtooth periods, resulting from stabilisation by NBI or ICRH [34].

With a completely analogous procedure, we have analyzed two other discharges and per-
formed simulations at time slices with different levels of NBI power [see Ref. [26] for the
complete analysis of another shot, §53595, not shown in the present thesis]. The simulated
sawtooth periods, determined by the triggering condition involving fast ion stabilisation,
as in the case of 68.6 s and 70.5 s for shot #50725 [Figures 5.17 and 5.18], are found in ev-
ery case to be in reasonable quantitative agreement, within 20%, with the experimentally

observed sawtooth periods.
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5.5 Summary and Conclusions

We have presented and discussed in large detail a sawtooth period model and a set of
prescriptions to compute the post—crash relaxed profiles [4] suited for implementation in
any 1-1/2 transport code. The present results are the first full integration of a sawtooth
model in a transport code for detailed comparison with experimental results. Moreover
the simulations of very different regimes have enabled us to test almost all the aspects of
the model.

This model allows us to include a physical description of the sawtooth activity in trans-
port simulations. This is important for sawtoothing discharges, in particular to predict
plasma profiles in designed future devices. On the other hand, the model is correctly ap-
plied provided that it is included in a 1-1/2 transport code. Various plasma parameters,
such as local gradients of the plasma profiles and the magnetic shear at the ¢ = 1 surface,
which are difficult to measure, are crucially involved in the stability thresholds and their

time evolution must be described consistently.

We have applied this model to the simulation of the sawtooth period in discharges of
two tokamaks, TCV and JET. This has enabled us to investigate the effects of different
stability thresholds in very different plasma conditions. The simulation of a large set of
TCV Ohmic discharges, with very different plasma shapes, allows the identification of the
relevant instability regime for the internal kink for TCV operation. The corresponding
stability threshold, involving a critical value for the magnetic shear at the ¢ = 1 surface
(81 > S1crit), has been found adequate to simulate the sawtooth period with a limited
variation of one free parameter included in the crash condition. The sawtooth period sim-
ulations have also allowed us to have an insight into the dynamics of the different relevant
plasma and equilibrium parameters, in particular the time evolution during the sawtooth
ramp of the location of the ¢ = 1 magnetic surface and of the magnetic shear at that
position. These parameters are important in order to determine in the simulations the
position of the mixing radius at the sawtooth crash, and thus of the inversion radius. This
plays a crucial role in the simulation of plasma profiles for sawtoothing Ohmic discharges.
The model results have been found in good agreement with the experimental profiles in
this large set of Ohmic discharges.

The critical shear criterion is also the relevant stability threshold at play in TCV dis-
charges with ECH. We have analyzed and simulated a set of experiments performed in
order to assess the role of ECH on sawtooth activity. As a first experimental observation
it has been seen that moving the power deposition vertically in the poloidal cross—section

from the bottom to the top, two specific locations on both sides of the magnetic axis
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and close to the sawtooth inversion radius are experimentally observed to maximize the
sawtooth period. Two main effects are at play during these experiments: the variation of
the heating power density and the current drive. These two effects must be regarded as
powerful tools provided by ECH to modify and control the sawtooth period. The experi-

mental and theoretical investigation of this issue is therefore of large interest.

It has been observed that increasing the value of the power density close to the sawtooth
inversion radius, at the position maximizing the period in the vertical sweep, the saw-
tooth period is further stabilized. This effect has been quantitatively reproduced by the
model, highlighting that the parameter dependence of the expression for the critical shear
is consistent with the experimental observations. In particular the critical shear is almost
proportional to the local pressure gradient at the ¢ = 1 surface, due to the theoretical
expressions of both the resistive and ion—kinetic growth rates. The pressure gradient is
the relevant parameter mostly modified by localized ECH. Simulations show clearly that
higher values of the power density imply larger pressure gradients, and thus increase the

value of the critical shear, stabilizing sawteeth.

Another plasma parameter which plays a crucial role in the stability threshold and which
can be locally strongly modified with ECH is directly the magnetic shear. Changing very
small amounts of current drive from counter— to co—direction, close to the inversion radius,
increases the sawtooth period. The stabilizing effect of co-ECCD and the destabilizing
effect of counter—-ECCD has been simulated successfully by the model. The magnetic
shear dynamics is strongly affected by local amounts of current drive. The shear at ¢ =1
builds up more quickly in the presence of counter~-ECCD, whereas it increases more slowly
with co-ECCD. Therefore with counter—-ECCD the critical shear value is reached earlier,
leading to shorter sawtooth periods, whereas the opposite occurs with co-ECCD, leading

to longer periods.

These two major effects, due to power density and to current drive, are both at play
during the vertical sweeps of the ECH beams in the poloidal cross section. The sawtooth
period model is able to reproduce with satisfactory agreement the rather complex exper-
imental behaviour, provided that the heating and current drive sources are accurately
taken into account in the simulation. In particular, the two maxima of the sawtooth
period at two heating locations on opposite sides of the magnetic axis are also obtained
in the simulations. The presence of these two maxima must be ascribed to the increase
and decrease of the level of the heating power density close to the ¢ = 1 surface during
the sweep. The simulations allow us to exactly determine the maximizing locations rel-
ative to the position of the ¢ = 1 surface. It turns out that the location maximizing the
sawtooth period is outside the ¢ = 1 surface at the sawtooth crash, contrary to what is
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usually assumed from the crash conditions, in particular from s; > 8; .. Narrow power
deposition profiles imply that the maximum of the sawtooth period is obtained close to
g = 1, while broad power depositions imply that the maximum occurs farther outside the
g = 1 surface, sometimes even outside the mixing radius. Due to the uncertainties in the
magnetic equilibrium reconstructions, which are not constrained by any measurement of
the current density profile in TCV, these locations are difficult to determine experimen-
tally with the accuracy which would be necessary for a reliable comparison. Therefore
this prediction of the model calls for further validation with experiments performed in

tokamaks in which accurate measurements of the current profile are available.

Heating systems like ECH which are able to control the sawtooth activity are of crucial
importance for future fusion devices. It has been recently discovered that long sawtooth
periods provide large seed islands which can efficiently destabilize undesirable pressure
limiting neoclassical tearing modes [3], which would reduce the fusion yield. a—particles
arising from fusion reactions have been predicted by the present sawtooth period model
to strongly stabilize the sawtooth period up to about 100 s [4]. Therefore, if on the one
hand it is important to investigate theoretically how the heating systems can modify and
control the sawtooth period, on the other hand it is also of specific interest for fusion
research to validate the model predictions on sawtooth stabilization due to fast ions. For
this reason we have applied the model to the simulation of the sawtooth period in JET
discharges in which experimental evidence of sawtooth stabilization due to NBI has been
observed. |

We have included in the model a simplified expression assuming isotropic ions taking
into account the beam ion contribution §W;,, to the internal kink potential energy SW.
This expression has been validated with detailed calculations performed with the hy-
brid kinetic/MHD code NOVA-K, using realistic distribution functions calculated by the
plasma analysis code TRANSP. Sawtooth period simulations have provided results which
reproduce the experimental observations with remarkably good agreement. This allows a
clear physical explanation of the observed phenomena and indicates that the main phys-
ical effects are well described by the theoretical model. The relevant unstable mode is
still the resistive internal kink, in the ion—kinetic regime. But the fast ion contribution
6Wheas, implies that the relevant stability threshold, with fast ion stabilization, is not the
critical shear criterion any more (note however that the value of s; is still of importance
as 6Wfast o« 1/s;). Large negative values of W imply that the mode becomes strongly
localized at the ¢ = 1 surface, taking the structure of a tearing mode which is assumed to
be insufficiently global to destabilize a sawtooth crash. Therefore the relevant threshold
with fast ion stabilization is related to the value of the internal kink potential energy
(—=6W > —j). Since the fast particle contribution is dominant in —8W , this criterion is
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able to explain the experimentally observed linear relation between the sawtooth period
and the fast particle energy content. It allows simulations in good quantitative agree-
ment, within 20%, with the experimentally observed sawtooth periods and confirms the
role of NBI fast ions in sawtooth stabilization. The same criterion was found in Ref. [4]
to be the sawtooth trigger most likely to be relevant to burning plasmas with a—particle
stabilization. It should be applicable and should provide satisfactory results also in the
simulation of sawtooth stabilization observed with fast ions arising from ICRH. But in this
case more complicated analytical descriptions of the fast particle contribution Wiast are
needed, since the fast ion distributions are generally more complex than those resulting
from NBI, in both velocity and coordinate space. This calls for further research.
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Chapter 6

Conclusions and outlook

Physical systems relevant for thermonuclear fusion are of high complexity. Pure theo-
retical models usually require numerical tools suited to provide the connection with the
experimental observations. These tools enable one to perform simulations whose results
can be directly compared with the experimental measurements. The reliability of the
simulations, and therefore of the physical models adopted, is of major relevance. The
increasing cost of experiments in nuclear fusion calls more and more for accurate simula-
tions in order to verify the feasibility of future projects and predict their performances.
In this way, simulations can guide the research activities, reduce costs, and increase the

level of public confidence and support.

During this thesis we have been mainly involved in the development and application of
numerical tools which are intended for tokamak plasma simulations, with particular in-
terest to transport phenomena. Two main topics have been tackled in this framework:
the analysis and simulation of electron transport in TCV, mainly focusing on the electron
temperature response to ECH, and the simulation of the sawtooth period in Ohmic and
ECH discharges in TCV as well as in NBI discharges in JET. For this purpose, an existing
transport code, PRETOR, has been further developed and now it can routinely supply the
TCYV device with transport analysis and predictions in a user-friendly numerical environ-
ment. Simulations have been performed by describing diffusive and convective transport
with the semi—empirical Rebut-Lallia-Watkins transport model and by taking into ac-
count with a specific model the rapid transport phenomenon due to sawtooth activity. In
order to correctly describe parallel transport, which is usually assumed neoclassical, we
have also included in the plasma transport code the results of neoclassical calculations
that we have undertaken in order to provide formulae for all the neoclassical transport
coefficients valid for arbitrary aspect ratio and collisionality in realistic axisymmetric ge-
ometries. These results on neoclassical transport have been obtained in the framework of
a third topic related to plasma transport, which adopts a kinetic description, and have
been presented in the first part of the thesis.

193
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Neoclassical Transport

The work on neoclassical transport first identified analytically a set of equations suited
for implementation in exisisting Fokker—Planck codes (Section 2.2), performed numer-
ical computations of the transport coefficients taking into account effects arising from
both the realistic magnetic flux surface configuration and different collisionality regimes
(Section 2.3). The analysis of the numerical results and the comparison with an ana-
lytical limit has allowed us to identify the adequate geometrical parameters, namely two
definitions of the trapped particle fraction, which allow us to encapsulate the geometri-
cal effects (subsection 2.3.2). In this way the numerical results obtained with different
magnetic equilibria for each coefficient turn out to overlap on a single simple function of
the appropriate trapped fraction parameter. This has enabled us to obtain very simple
formulae for all the transport coefficients, by fitting the numerical results (Section 2.4).
Parallel transport coefficients, namely the plasma conductivity and the bootstrap current
coeflicients, have been computed also at different values of collisionality (subsection 2.3.3).
Since physically the effect of collisionality is to destroy the trapped particle orbits, the
fit of the numerical results at arbitrary collisionality has been efliciently performed in-
cluding directly the collisional parameter v, in the expression of the trapped particle
fraction, leading to expressions for the effective trapped particle fractions in the presence
of collisionality (subsection 2.4.2). The normal extension of this work is to perform the
same kind of calculations at arbitrary collisionality also for all the perpendicular trans-
port coefficients. This is a somewhat straightforward task at this stage, but demands
very long computational times. For this reason, comparing the collisionality dependences
obtained for the parallel transport coefficients with those of previous semi-analytical for-
mulae available in the literature, we have proposed a set of combined formulae, including
collisionality, for all the perpendicular transport coeflicients (subsection 2.4.3). In this
way we have provided simple numerical routines which compute all the transport coef-
ficients by means of the present formulae, to be directly coupled with the experimental
data in tokamaks or with existing transport codes. In the first case, this allows a direct
and precise evaluation of neoclassical effects by means of a fast post—processing code after
each discharge. This has been done on TCV to obtain the most accurate evaluation of
the amount of ECCD in discharges with full non—-inductive plasma current, obtaining in
this way a reliable estimate of the current drive efficiency. In the second case, this allows
a more precise computation of neoclassical coefficients in transport codes, in which neo-
classical transport is usually poorly described, adopting relatively old and approximated

formulae.

An interesting extension of the formulae is that of calibrating the dependence on the
effective charge number Z. of the present formulae with the results obtained by the



195

multi-species code NCLASS [1]. An interesting and more ambitious development could
be to include in these formulas also effects due to the presence of potato orbits, which
provide a non-negligible contribution close to the magnetic axis [2, 3], and effects due to
the presence of steep gradients, whose characteristic length is comparable to the banana
orbit width, which in general imply a reduction of the neoclassical transport [4, 5, 6]. A
development of neoclassical theory has been done also to take into account the effect of
non-Maxwellian distribution functions due to ECH on the bootstrap current [7], whose
inclusion in our formulae would be particularly interesting for TCV operation. Note that
neoclassical transport is acquiring now a new relevance in fusion community, in both data
analysis and predictions, due to the new proposed devices with very low aspect ratio
producing very large amounts of bootstrap current favourable to steady-state operation,

and because of the discovery of improved confinement regimes, with internal transport
 barriers and high values of the plasma gradients. In this improved confinement scenarios
neoclassical transport can play a non—negligible role, not only because high pressure gra-
dients are able to drive large amounts of bootstrap current, but also because transport,
particularly in the ion channel, is observed to be reduced inside the transport barrier to
levels comparable to those given by neoclassical theory.

Electron transport

Thanks to the shape flexibility of the TCV device and its powerful ECH system, specific
issues relevant to transport studies can be experimentally adressed in this tokamak. This
provides a large amount of experimental results to be analyzed and simulated in order to
validate transport models. The analyses of Ohmic discharges in TCV in a wide range of
plasma shapes, densities and plasma currents, have pointed out that the crucial role in
the simulation of Ohmic sawtoothing discharges is mostly played by the description of the
current profile, and therefore of the plasma conductivity and of the field diffusion, as well
as by the modelling of the sawtooth activity, more than by the specific transport model
adopted (subsection 4.5.2). In the presence of ECH, an investigation of the experimental
observations has allowed us to identify the most important characteristics of the electron
temperature behaviour with ECH in TCV (Section 4.4). Due to the low density cut-off
for X2 absorption, ECH operation in TCV is characterized by low densities and low val-
ues of T;/T,. The electron temperature response to central auxiliary heating shows a stiff
behaviour in the confinement region, in the sense that the gradient scale length turns
out to be independent of the heating power and essentially constant along the minor ra-
dius. With off-axis heating, the same behaviour is observed outside the deposition region,
‘whereas in the plasma centre power balance analysis reveals a strongly reduced conductiv-
ity, since the temperature profiles remain peaked in the core despite the low level of ohmic

power. These characteristics have recently been found to be common to several tokamaks
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[8]. We have also shown that due to very high levels of power density available in TCV,
evident modifications of the temperature profile can be produced even when the power
is deposited in the confinement (stiff) region. We have shown that all these characteris-
tics are correctly reproduced by the RLW transport model (subsection 4.5.4), which has
allowed us to simulate heat electron transport in TCV with remarkable good agreement,
even in some extreme plasma conditions. This has confirmed the very high reliability of
this model in predicting electron transport, in particular within the plasma parameter
domain which is relevant for TCV operation. This domain has been identified (namely
[VT.| <« Vgrw due to the low toroidal magnetic field in TCV) and discussed, and it has
been found consistent with previous analysis on the validity of the model performed on
the TORE SUPRA tokamak [9], which allows complementary experiments as compared
with TCV (subsection 4.5.1). The new three gyrotrons at the third harmonic, with a
much higher density cut—off, will allow transport analysis of discharges with densities up
to 102 m~3. This should also allow us to assess whether the temperature profiles exhibit
a constant temperature gradient scale length along the minor radius even at high density,
and thus when plotted in semilogarithmic scale look like straight lines, or appear more
parabolic, at least with low auxiliary heating powers, consistently with the RLW model

predictions.

From a theoretical point of view, experimental observations strongly indicate that the
physical process most likely to be at play in the electron anomalous transport involves
a threshold in the critical electron temperature gradient scale length [10], like drift wave
turbulence of TEMs and ETGs. We have pointed out that, due to the very high values of
T./T; and relatively high values of Zeg, the threshold for the ETG turbulence is far above
the experimentally observed gradients. Recently the Weiland model for TEMs has been
found in agreement with the experimental observations in the ASDEX Upgrade tokamak
[11, 8]. This model has already been implemented in PRETOR and it is foreseen to be
applied to TCV discharges in the near future, in particular once also the ion temperature

measurements will be available.

It is also envisaged to start the comparison of the results of gyrokinetic codes developed
at the CRPP with TCV experiments. Work has already been undertaken in the compar-
ison of the code results including the effects of the wgyp shearing rate with discharges
of ASDEX Upgrade presenting internal transport barriers and phases of improved con-
finement [12]. In this context, the new diagnostics very recently installed on TCV will
allow new experimental investigations on electron transport and even on ion transport
with electron heating at high density. In particular the electron cyclotron emission het-
erodyne radiometer should allow transport investigations extended to modulated ECH
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experiments [13], while the charge exchange spectroscopy using the carbon impurity [14)
will reveal the behaviour of ions and allow measurements of the plasma toroidal rotation,
which are essential for the evaluation of the radial electric field profile and thus of the
wEgxp shearing rate.

Several experimental observations in TCV indicate that ECH allows important global and
local current profile modifications, by both localized heating and current drive. Global
current profile modification have been observed to modify the global plasma performance.
Local current profile modifications have evident effects on sawtooth activity.

Dedicated experiments in TCV have identified a quasi—stationary regime of improved
central electron confinement (Section 4.6). This regime has been widely investigated
and simulated: very good agreement has been obtained even for regimes for which
Tee/TRLw =~ 3.5. The continuous interaction between the code simulations and predic-
tions and the experiments has been particularly fruitful in this context and has provided a
valuable example of the role of simulations in support of the experimental activity. We can
state that, out of the unavoidable uncertainties on the current density profile reconstruc-
tion, the reverse magnetic shear is the key for TCV improved central electron confinement
(subsection 4.6.5). Further experimental investigations on the ICEC regime should be en-
visaged. Indeed some questions remain. In particular, power ramps and systematic scans
on the toroidal injection angle in a set of similar discharges should point out if there is
any threshold for obtaining this regime, that is a minimum amount of ECH power or of
counter-ECCD. Power ramps could also explore the possibility of a hysteresis behaviour
in the achievement and loss of the improved confinement. Moreover, the preheating phase
could be assisted, or perhaps even replaced, by plasma current ramp—up, favouring the
shear reversal formation. We have already performed some simulations for this scenario,
pointing out that the effect of frozening the current penetration by increasing the electron
temperature profile should produce strong beneficial effects in shaping the safety factor
profile for improved plasma performances. These proposed experiments are intended to
answer the very basic question: can the TCV plasma performance be further improved

as compared with ICEC at the same power level and in quasi-stationary operation?

Experimental investigations on improved confinement regimes are of great relevance for
future developments in nuclear fusion research. They allow experimentally to identify
plasma parameters which are the keys in suppressing or increasing anomalous transport
and therefore are suited to provide non—ambiguous tests for the validation of transport
models. Moreover, in future fusion reactors, they allow the fusion yield to be increased,
at the same cost of the fusion device and at the same level of input power.
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Sawteeth
Several experiments in TCV have clearly assessed the potentialities of the ECH system

in controlling the sawtooth period. A sawtooth model first introduced to predict the
sawtooth period in ITER [15] has been generalized and used on a regular basis in the
transport simulations performed with PRETOR (Section 5.2). Sawtooth activity implies
a non—negligible and fast radial transport effect, which can not be ignored in transport
simulations of sawtoothing plasmas. We have applied the sawtooth model in the simu-
lation of the sawtooth period of TCV discharges in order to investigate theoretically the
physical mechanisms by which the ECH can control the sawtooth activity (Section 5.3).
This analysis has provided results in very good agreement with the experimental obser-
vations. This allows us to state that the parametric dependence of a stability threshold
which compares the linear resistive growth rate of the internal kink with the stabilization
provided by the ion and electron diamagnetic frequencies is consistent with the exper-
imental observations in TCV. Low values of the magnetic shear due to ECCD in the
co—direction, or large values of the local pressure gradient at the ¢ = 1 surface, due to
localized ECH, lead to sawtooth stabilization. In particular ECCD in the co—direction
induces a slower build up of the magnetic shear s; at the ¢ = 1 surface after the crash,
while localized ECH not only implies a slower build up of s; but also implies larger pres-
sure gradients, which increase the stabilization provided by diamagnetic rotation. These
effects have been found to be most effective when ECH and ECCD are localized outside
the pre-crash ¢ = 1 surface, or even outside the mixing radius for broader deposition
profiles.

Several experimental observations indicate that in TCV at high elongation and low tri-
angularity the sawtooth crash is triggered by the destabilization of the ideal internal kink
[16]. This plasma shape domain should be investigated by PRETOR simulations once a
dependence of the ideal growth rate in terms of elongation and triangularity computed

for plasmas with the same aspect ratio of TCV will be available.

Another stabilizing effect of particular importance for burning plasmas must be ascribed
to the presence of fast particles. This has been investigated in JET with experiments
and simulations in discharges with NBI. This work has allowed us to demontrate the role
of beam ions in sawtooth stabilization and validate a sawtooth crash stability threshold
which was predicted as the one most likely to be relevant for burning plasmas [15] (Sec-
tion 5.4).

The detailed modelling results presented here are the first comparison of a sawtooth model
fully integrated in a transport code with experimental data. The simulation of Ohmic,
ECH and ECCD experiments in TCV, of NBI effects in JET and the effect of shape on
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sawtooth period [16] have allowed an accurate test of all the main characteristics of the
sawtooth model described in Section 5.2. Sawtooth activity can not be ignored when
predicting the plasma performance in future devices. Not only sawteeth produce a strong
effect on the plasma profiles, but also, as recently demonstrated, can provide seed islands
able to destabilize pressure limiting NTMs [17], which reduce the plasma performance
and the fusion yield. Therefore, the reliability of a sawtooth model in predicting effects
due to fast particle stabilization and to auxiliary heating systems available to control the
sawtooth activity must be considered of major importance in future research in nuclear fu-
sion. A direct development of the work done so far is to extend and apply the model to the
simulation of discharges with ICRH and with both ICRH and NBI. This is a much more
demanding task, since fast ions arising from ICRH have much more complex distribution
functions, which call for a very accurate description of the 5Wfast term [18]. Moreover,
with ICRH, current drive and power localization are also significant, and therefore sev-
eral effects can be at play at the same time, whose consequences on the sawtooth period
are difficult to be distinguished. In this sense the work undertaken so far, namely the
simulations of ECH and NBI discharges, must be considered as a first step analyzing two
simple and independent heating schemes which allow the model to be validated in view
of next applications in the simulation of more complex and combined effects, as those due

to ICRH. Preliminary work in this direction has been already undertaken [19].

During this thesis we have been involved in several research topics in the field of toka-
mak plasmas, from kinetic calculations up to the design and analysis of new experiments.
The results, fruit of both individual work and collaborations with other theoretical and
experimental researchers, can be considered of relevance and utility for the design and op-
eration of next devices towards a fusion reactor, and are of interest for the fusion physicists

community.
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