
THÈSE NO 2432 (2001)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE AU DÉPARTEMENT DE MATHÉMATIQUES

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

ingénieur mathématicien diplômé EPF

de nationalité suisse et originaire de Bagnes (VS)

acceptée sur proposition du jury:

Prof. Th. M. Liebling, directeur de thèse
Dr H.-R. Bircher, rapporteur
Prof. A. Mocellin, rapporteur

Dr D. Müller, rapporteur
Prof. A. Quarteroni, rapporteur

Dr M. Sawley, rapporteur

Lausanne, EPFL
2001

dynamic triangulations for efficient
3d simulation of granular materials

Jean-Albert FERREZ

à Colette, Jean, Willy,
Pierre, Eliane et Jacques

v

Acknowledgements

Even though this thesis bears only my name, several persons were involved in its making.

My supervisor Tom Liebling is the kind of scientific and human leader that every young re-
searcher wants to have. His extensive knowledge, his long experience, his numerous relations
and involvements at EPFL and outside have opened many doors and allowed me to conduct this
research in excellent conditions. Furthermore, I want to thank him above all for his uncondi-
tional respect of my decisions to focus on some new aspects or on the contrary to discard some
of his many ideas.

This thesis is largely inspired from the pioneering work of Didier Müller, and I am grateful that
he stopped at some point and left me one dimension to play with. Hansruedi Bircher provided
inspiration and experimental data for packing spheres. I further thank Alain Mocellin, Alfio
Quarteroni and Mark Sawley for taking part in the jury.

Claude Indermitte, Michel Bierlaire and Jean-François Hêche have provided portions of code
for inclusion in my programs. Branko Glisic inspired section 6.2. Lionel Pournin helped me
understand many of the physical aspects reported in chapter 3. Lionel and my brother Pierre
have accepted the ungrateful task of proofreading the report. Several students have contributed
to this thesis by accomplishing their semester or diploma projects under my supervision: Eliane
Meichtry, Sandrine Paroz, Beatriz Andrade, Stefan Reinmann, Roland Berger, and especially
Christophe Weibel who wrote a first draft of the parallel code.

Partial funding was provided by the Swiss National Science Foundation and the Swiss Defense
Procurement Agency. I am grateful to both institutions for having made this research possible.

Working away from the mountains was balanced by the everyday pleasure of being part of
the lively ROSO group. At the risk of forgetting someone, I would especially mention Alain
Prodon, with whom I could improve my theoretical background while judging the benefits
to think different; Michel Bierlaire, for the numerous scientific, technical, organizational and
political lunch-time discussions; Christine Lütolf, for a very pleasant and motivating office at-
mosphere at MA128; Frank Crittin, for sharing hotel rooms around the globe, with or without
luggage; and Noëlle Lieber, for being so efficient. I will also remember a very fruitful collabo-
ration with our IT manager Jean-Claude Berney.

Last but not least, the amicable consideration from my friends – members of the Ficelle Fan’s
Club and others – and especially the logistical, financial, and loving support from my family
have been essential driving forces throughout these years.

vii

Abstract

Granular materials are omnipresent in many fields ranging from civil engineering to food, min-
ing and pharmaceutical industries. Often considered a fourth state of matter, they exhibit spe-
cific phenomena such as segregation, arching effects, pattern formation, etc. Due to its potential
capability of realistically rendering these behaviors, the Distinct Element Method (DEM) is a
very enticing simulation technique. Indeed it makes it possible to analyze and observe phenom-
ena that are barely if at all accessible experimentally. DEM works by tracking every particle in
the system individually, maintaining for each a trajectory influenced by external factors such as
gravitation or contacts with boundary objects and by the interactions with other grains.

The mathematical problem of identifying pairs of grains that interact and locating precisely
where the contact occurs is highly dependent on the shape of the grains. We focus in this
thesis on 3D spherical grains and use dynamic weighted Delaunay triangulations to track the
collisions. The triangulation is built on the centers of the grains and evolves to follow their
motion. We prove that all potentially colliding pairs of spheres are adjacent in the triangulation.
As there are 6n to 8n edges for n spheres in most practical cases, the complexity of the collision
detection becomes linear instead of quadratic in the number of particles, with a small overhead
in maintaining the triangulation with efficient local operations.

For the physical problem of realistically rendering the collision in a numerical contact model
suitable for computer simulation, we have used widely accepted theories such as the viscoelastic
model of Cundall, but have also tested some recent, more sophisticated developments in the
field.

The collision detection and contact models have been implemented in a modular DEM sim-
ulation code with advanced features in data structures storing the triangulation, in numerical
robustness of the geometric computations, and in parallel processing on shared memory com-
puters.

Optimal packing of powders is important in many industrial processes, yet no theoretical result
exists when dealing with grains of different sizes. We have performed simulations of such cases
and could compare our results with experimental data. Preliminary results have been obtained
regarding the relation between the size and proportion of grains and the density of the packing.

Other simulations have also been performed, such as the granular flow through an hourglass. As
no efficient simulation method is currently known for non-spherical 3D grains, we propose an
intermediate approach of gluing spheres together into arbitrary shaped clusters and show some
examples based on this approach.

viii

Résumé

Les matériaux granulaires sont omniprésents dans plusieurs domaines tels que le génie civil,
ou les industries agro-alimentaire, minière ou pharmaceutique. Souvent considérés comme un
quatrième état de la matière, ils exhibent des phénomènes propres : ségrégation, effets d’arches
et de surface, etc. De par son potentiel à reproduire de manière réaliste ces comportements, la
méthode des éléments distincts (Distinct Element Method, DEM) est une technique de simula-
tion attrayante. Elle rend en effet possible l’analyse et l’observation de phénomènes difficile
voire impossible à obtenir expérimentalement. DEM fonctionne en suivant chaque particule du
système indépendamment, tenant à jour pour chacune d’elles une trajectoire influencée par des
facteurs externes tels que la gravité ou les contacts avec les parois, ainsi que par les interactions
avec les autres grains.

Le problème mathématique consistant à identifier les paires de grains qui interagissent et à situer
précisément le point de contact dépend fortement de la forme des grains. Nous considérons dans
cette thèse des grains sphériques en 3D et utilisons une triangulation de Delaunay dynamique et
pondérée pour détecter les collisions. La triangulation est construite sur les centres des grains et
évolue de manière à suivre leurs mouvements. Nous prouvons que toutes les paires de sphères
pouvant être en contact sont adjacentes dans la triangulation. Comme il y a en pratique entre 6n
et 8n arêtes pour n sphères, la complexité de la détection des collisions devient linéaire au lieu
de quadratique, avec un léger surcoût lié à la maintenance de la triangulation par des opérations
locales efficaces.

Pour ce qui est du problème physique de rendre fidèlement le contact dans un modèle numérique
destiné à la simulation, nous avons utilisé des théories universellement reconnues telles que le
modèle viscoélastique de Cundall, mais nous avons également pu tester certains développe-
ments récents dans ce domaine.

La détection des collisions et les modèles de contact ont donné lieu à un code de simulation
DEM modulaire ayant des catactéristiques avancées dans les structures de données pour la
représentation de la triangulation, dans l’évaluation exacte et rapide des prédicats géométriques,
et dans le calcul parallèle sur des machines à mémoire partagée.

Les mélanges de poudres jouent un rôle important dans plusieurs processus industriels, néan-
moins aucun résultat théorique n’existe lorsqu’il s’agit de mélange de poudres de calibres dif-
férents. Nous avons simulé ces cas et pu comparer nos résultats à des données expérimentales.
Nous avons ainsi obtenu des résultats préliminaires concernant la relation entre la taille et la
proportion des divers grains d’une part et la densité du mélange d’autre part.

D’autres simulations ont été réalisées, telles que le flux granulaire dans un sablier. Comme
aucune méthode efficace n’est connue à ce jour pour des grains non-sphériques en 3D, nous
proposons une étape intermédiaire consistant à coller ensemble des sphères pour obtenir des
amas de forme quelconque et présentons quelques exemples basés sur cette approche.

Contents

Introduction 1

I Methods 3

1 Building blocks and Motivation 5

1.1 Computer simulation of granular materials . 5

1.2 Collision detection . 6

1.3 3D dynamic triangulations . 7

1.4 Contact models . 9

1.5 Existing software . 10

1.6 Parallel computing . 11

2 Three-dimensional dynamic triangulations 13

2.1 Introduction . 13

2.2 Static case . 14

2.2.1 A set of grains . 14

2.2.2 The power function with respect to a grain 15

2.2.3 The Laguerre complex . 16

2.2.4 The Delaunay triangulation . 17

2.3 Geometric predicates . 18

2.3.1 Orient3D . 19

2.3.2 Insphere3D . 20

x CONTENTS

2.3.3 WeightedInsphere3D . 21

2.4 Dynamic case . 24

2.4.1 Local operations on triangulations . 24

2.4.2 In 2D . 25

2.4.3 In 3D . 26

2.4.4 Scheduling exact event times . 26

2.4.5 Discretizing time . 28

2.5 Degenerate cases . 28

2.5.1 Non-uniqueness of the Delaunay triangulation 29

2.5.2 Delaunay triangulation with superlinear number of edges 29

2.6 Conclusion . 30

3 The Distinct Element Method 31

3.1 Introduction . 31

3.2 The DEM algorithm for spherical grains . 32

3.3 The contact models . 34

3.3.1 Simple contacts . 35

3.3.2 Multiple contacts . 37

3.3.3 Contacts with walls . 38

3.4 Integrating the motion equations . 39

3.4.1 Linear damping . 40

3.5 Beyond spherical grains . 40

4 Computational aspects 45

4.1 Design objectives . 45

4.2 Implementation of the triangulation . 46

4.2.1 Operations required on the triangulation 47

4.2.2 Triangulation based on Facet-Edges 50

4.2.3 Triangulation based on Triangles . 54

CONTENTS xi

4.3 Numerical stability in Computational Geometry 55

4.3.1 Exact floating-point computations . 56

4.3.2 Adaptive sign computation for determinants 57

4.4 The simulation loop . 59

4.5 The parallel simulation loop . 59

4.5.1 The parallel algorithm . 59

4.5.2 The parallel machines . 61

4.5.3 Performance of the parallel code . 63

4.6 Measures . 64

4.7 I/O functionalities . 65

4.7.1 The checkpointing mechanism . 66

4.7.2 The exportation of data for visualization 66

4.8 Parameter management . 66

4.9 Adding new features . 68

4.9.1 Integrating new contact models . 68

4.9.2 Integrating new boundary shapes . 69

4.9.3 Integrating new export formats . 69

II Applications 71

5 Sphere packing 73

5.1 Introduction . 73

5.2 The setup for the simulations . 74

5.3 The first attempts . 77

5.4 Selecting the correct vibration . 81

5.5 Filling the space between the large grains . 88

5.6 Covering one large grain . 91

5.7 Other simulations . 94

xii CONTENTS

5.8 Experimental validation of the simulation . 99

5.8.1 Unimodal case . 100

5.8.2 Narrow distribution . 100

5.8.3 Wide distribution . 109

5.9 Other possible approaches . 114

5.9.1 Face-centered cubic packings . 114

5.9.2 Exact computation . 116

5.10 Conclusion . 117

6 Other applications 119

6.1 Introduction . 119

6.2 Sensor in concrete . 119

6.2.1 Concrete at early and very early age 119

6.2.2 The SOFO monitoring system . 121

6.2.3 Basic assumptions . 122

6.2.4 Experiments . 123

6.2.5 Numerical results and discussion . 123

6.2.6 Conclusion . 124

6.3 Hourglass flow . 128

6.3.1 Simple flow in a regular hourglass . 129

6.3.2 Grains of different sizes . 133

6.3.3 Various hourglass shapes . 134

6.3.4 Rotating the hourglass . 135

6.4 Clusters of spherical grains . 139

6.4.1 Validation of the concept . 139

6.4.2 Calibration of the internal gluing force 142

6.5 Force visualization . 144

Conclusion 147

Bibliography 149

For every complex problem, there is one solution which is simple, neat and wrong.
– Henry Louis Mencken

Introduction

Improve. Upgrade. Revise. Develop. Enhance. Refine. Rationalize. Optimize.

This constant need to be more efficient drives most economic and industrial activities. Whether
to improve the quality of the products, to reduce toxic emissions or to satisfy greedy sharehold-
ers, engineers are constantly developing new manufacturing procedures, and mathematicians
now have decades of experience in various optimization techniques. However, for optimization
to be successful, indepth knowledge of the equipment and phenomena involved is necessary.
Man has successfully build devices to accomplish certain tasks in a predictable manner, many
aspects of our environment are controlled, but nature still has many secrets of its own to keep
generations of scientists busy.

Ongoing efforts to understand the atomic structure of matter, the origin of the universe, the
hereditary transmission of diseases, the encoding of the human genome, to cite but a few, are
universally recognized and often make their way in the mainstream media.

In contrast, looking at a simple sand pile may sound like a flagrant lack of ambition. Can one
think of a simpler element than a grain of sand? Is there some hidden collective intelligence
in a heap? One is easily convinced that both questions call for negative answers, yet the actual
behavior of the average sand pile, pepper pot, pill, grain elevator, box of corn flakes, or any
other granular material one can think of, calls for better understanding.

Attempts were made to deduce a theoretical model for some aspects of granular materials, either
by fitting these behaviors to that of better known solids, gas or liquids, or by original approachs.
Experiments have been and are still performed to verify these models. However, computer
simulations are increasingly seen as a means to not only replicate experimental measures but
also to broaden the scope of situations that can be actually observed and measured.

As usual with numerical simulations of natural phenomena, a balanced mix of mathematics,
physics, and computing is required to obtain an efficient and accurate model of reality. Gran-
ular materials are no exception. In recent years, a simulation technique that considers each
grain in the system individually and lets them interact, the Distinct Element Method (DEM),
has emerged as the most promising approach. The accuracy of DEM crucially hinges on the
physical laws that drive the elements, while the efficiency requires not only powerful computers,
but also clever algorithms to orchestrate the interactions.

In this thesis, we use an advanced structure of discrete geometry, the three-dimensional De-
launay triangulation, as the underlying model keeping track of the collective behavior of an
assembly of spherical grains. Taking applied mathematics to the letter, we implemented this
structure in a simulation code that allowed us to study several real-life problems, whenever
possible in tight collaboration with scientists of the relevant fields.

2 INTRODUCTION

Organization of this report

This thesis report is organized in two major parts, the first describes the methods and tools, and
the second presents some applications.

Chapter 1 recalls the scientific environment of this work with a non-exhaustive enumeration
of prior work and existing solutions in the major areas covered, from discrete mathematics
(triangulations) to physics (numerical contact models) to computing science (parallelism).

Mathematical issues are dealt with in chapter 2 where we present and proove the major the-
oretical result of this thesis concerning the detection of collisions among spheres in 3D with
dynamic triangulations. The classical notions of Voronoi diagrams and Delaunay triangulations
are extended to weighted cases. We then explain how to maintain these structures in order to
reflect the motion of the generating sites.

Chapter 3 adds a physical layer to this collision detection scheme by discussing the force models
used to transform a geometric event — the collision of two spheres — into an accurate repre-
sentation of a granular material. With all elements available, the complete simulation algorithm
is presented.

Last but not least, we conclude the first part in chapter 4 by addressing some rather tedious
implementation issues. Most of them come from the mathematical part, since the dynamic
triangulation requires extreme care in the choice of data structures and the precision of the
computation. The parallel version of the algorithm and some other minor issues are also dis-
cussed.

In the second part, chapter 5 presents the simulations we performed to study the packing of
spheres of three different sizes. To our knowledge, it is the first time that this problem is
tackled by computer simulation. This work was conducted in collaboration with scientists of
the Energetic Material Labs of Swiss Defense Procurement Agency at Thun, who also provided
us with results of experiments to which we could compare our simulations.

Several other applications are presented in chapter 6. These include the study of a sensor mea-
suring deformations of concrete at early and very early age, and the granular flow in an hour-
glass. A new idea concerning grains formed by gluing spheres together is also presented.

This report, especially its second part, contains numerous color illustrations taken from the
various simulations. Due to technical limitations, you may be looking at a black and white
printed version in which most of those illustrations have lost a significant part of their im-
pact. Should this be the case, you are encouraged to access a color version on the web at
http://rosowww.epfl.ch/jaf/3dwdt/. Other technical limitations have prevented us to in-
clude animations of various phenomena in the present report. These animations are a natural
complement of this thesis and are available as movies or three-dimentional models from the
same web page.

http://rosowww.epfl.ch/jaf/3dwdt/

Part I

Methods

Originality is the fine art of remembering what you hear
but forgetting where you heard it.

– Laurence J. Peter

Chapter 1

Building blocks and Motivation

The work we present in this thesis was achieved by integrating theories and concepts from var-
ious domains, mainly discrete geometry, numerical physics, and scientific computing. The next
three chapters will focus on each of these aspects, but before that, we present here a selection
of previous work that has inspired our developments. In particular, alternative collision detec-
tion methods, applications of triangulations, history of numerical contact models, and existing
software in the field will be shortly reviewed.

1.1 Computer simulation of granular materials

Granular materials and flows are everywhere in nature, in various industrial processes, in ev-
eryday life. You find them in landslides and avalanches, erosion, raw minerals extraction and
transport, cereal storage, powder mixing in chemistry or pharmaceutics, on your table as sugar,
salt or pepper, just to cite a few examples. Granular materials are sometimes considered as a
fourth state of matter, different from the classic solid, liquid and gas: they are not solid, because
they do not resist stretching, but are not gaseous either, because they resist compression. And
unlike liquids, their surface at rest needs not be flat. They exhibit specific phenomena that call
for better understanding. To this end, experimental studies have been and are being conducted,
but numerical simulation is increasingly seen as a means to understand and predict their behav-
ior. Indeed, simulation has become a common tool in the design and optimization of industrial
processes (see Cleary, 1998; Cleary and Sawley, 1999).

Attempts have been made to adapt standard fluid simulation methods to granular flows with-
out much successes (see among others Jenkins and Savage, 1983). The continuous increase in
computing power is now enabling researchers to implement more ambitious methods that do
not focus on the granular assembly as an entity, but rather deduce its global characteristics from
observing the individual behavior of each grain. This method is commonly referred to as the
Distinct Element Method (DEM). Several variants exist, but two main issues are found in all of
them: the localization of the collisions among the grains and the modeling of the actual contact
between two grains. We will discuss the latter in section 1.4, but we first take a closer look at
the collision detection.

6 CHAPTER 1. BUILDING BLOCKS AND MOTIVATION

Figure 1.1: Two examples of industrial processes involving granular materi-
als: transportation by conveyor belt and storage.

1.2 Collision detection

A major algorithmic problem within DEM is the efficient detection of the interactions between
the elements. Collision detection between objects has been studied for applications such as
geometric modeling (Mantyla, 1988), computer graphics (Rogers, 1985; Feiner et al., 1990),
robotics (Mirtich and Canny, 1995). The methods commonly used in DEM are in two stages.
The first stage identifies the pairs of grains that can potentially be in contact at a given time by
maintaining for every grain a list of neighbors. The second stage decides for every pair defined
by the neighborhood whether or not there actually is contact, and in case there is locates it
precisely on the grains involved.

Several neighborhood techniques have been used for the first stage, see Allen and Tildesley
(1987) for a broad coverage of the topic. We mention briefly some of the most widely used,
which are illustrated in figure 1.2. Verlet lists keep track of all neighbors within a given range,
but are expensive to update1. Grid subdivisions allow only checking grains within a few adja-
cent cells, but require each cell to keep track of relevant grains. If the cells are small enough to
contain at most one grain, the test in neighborhood cells is trivial, but the number of cells will be
very large. If the cells are larger, collisions must be checked with all grains in the surrounding
cells. Sigurgeirsson et al. (2000) discuss in great detail the optimal size of the cells with respect
to the grain size, based on standard statistical assumptions.

These neighborhoods were not designed for populations of multiple sized grains. Adaptive grid
subdivisions such as quadtrees (see Samet, 1984) can be used, but are more complex to update
in order to reflect grain movements.

The second stage, the actual localization of the contact between two grains, is highly dependant
on the shape of the grains. For spheres, the isotropic properties of the grains basically mean

1Furthermore, the range, well defined in the original context of Molecular Dynamics, is difficult to determine
precisely since there is no notion of decreasing potential and cutoff distance in granular media simulations where
forces only come from direct contacts.

1.3. 3D DYNAMIC TRIANGULATIONS 7

Coarse gridFine gridAll − to − all

Cutoff distance Quadtree Triangulation

Figure 1.2: Various strategies for the first stage of the collision detection.

that there is nothing special to do. However, more complex geometries often require heavy
algorithmic work: see Basch et al. (1999) for non-convex polyhedra; Erickson et al. (1999),
Chung and Weng (1996), and Mirtich (1997) for convex polyhedra; Müller (1996a) for non
convex polygons; O’Connor (1996) for superquadrics.

Since we deal only with spherical grains, only the first stage requires our attention. Müller
(1996a) pioneered a new approach to efficient dynamic neighborhood in two dimensions by
using triangulations. Among his ideas, at least the one concerning the discs could and should
be extended to the three-dimensional case.

1.3 3D dynamic triangulations

2D and 3D dynamic triangulations have already been used as underlying structures in several
modeling and simulation projects. Telley (1989) used 2D Laguerre complexes - the dual struc-
ture of the weighted Delaunay triangulation - to represent polycrystals and simulate normal
grain growth in its long-term evolution. The model was then extended to 3D by Righetti (1992)
and Xue (1995). Indermitte (1995) extended the 2D Delaunay triangulation to piecewise linear
surfaces and used it to describe and model morphogenesis aspects of mycelial growth mech-

8 CHAPTER 1. BUILDING BLOCKS AND MOTIVATION

anisms. All these projects have been conducted in tight collaboration with researchers in the
relevant field and resulted in validated models and efficient simulation schemes.

Müller (1996a) jumped into that train and used a triangulation based collision detection for
distinct element simulations of granular media in two situations, see figure 1.3:

Figure 1.3: The neighborhoods used by Müller in 2D for discs and polygons.

� Grains represented by discs: In this case, a weighted Delaunay triangulation is built on
the centers of the discs. Using the edges of the triangulation to detect possible contacts
allowed to reduce the number of tests from n

�
n � 1 ��� 2 to 3n, for n discs.

� Grains represented by polygons: A constrained triangulation is built in the interstices be-
tween the grains. Observing the dynamic evolution of the triangulation given the move-
ments of the polygons allowed efficiently detecting the next collision and therefore com-
pute for each grain an exact trajectory.

Müller concluded his thesis with the remark that the extension of those models to the three-
dimensional case would be very interesting. But he also warned that the mathematical bases
would require much more attention, that the computational implementation will be tedious, and
that some of the grain interaction models might not be applicable anymore. In that sense, this
thesis is the extension of his work.

Classically, the major application field of three-dimensional triangulations, and in particular the
Delaunay triangulation, is mesh generation. Therefore, most attention was given to the creation
of such triangulations, and not their evolution. Even the more recent trends in adaptive meshes
do not qualify for the specific needs of DEM.

The dynamic behavior of the triangulation subject to the movement of the generating sites is the
key issue for our purposes. Local transformations that maintain a given property while minimiz-
ing the changes to the triangulation are required. Such operations, called flips, were used by Joe
(1989, 1991) as part of an insertion method to build the triangulation. Edelsbrunner and Shah

1.4. CONTACT MODELS 9

(1996) have a very comprehensive coverage of the flipping method for regular triangulations
(i.e. weighted Delaunay) in Ed . Yet, none of those authors use the local operations to update a
triangulation after some points have moved.

The weighted Delaunay triangulation works for our purpose because it is the dual structure of
the Laguerre complex which exhibits the key properties we rely on, as we will explain in chap-
ter 2. While Aurenhammer (1987) remains the reference in this area for much of the theory,
Aurenhammer (1988) is an extension towards applications to some geometric problems. In par-
ticular, the sweeping procedure described by Hopcroft et al. (1983) is cited there as being more
efficient than the Laguerre complex – Delaunay triangulation approach for collision detection
among spheres in dimensions higher than two. While not in practice, this affirmation with the
potential of obliterating our work is true in theory. The worst-case complexity of our scheme re-
mains indeed in O(n2) because of degenerate cases (see section 2.5) while the method proposed
by Hopcroft et al. has a complexity of O(n logn). However, even if the worst-case complexity
speaks against us, practical experience has established that such cases are extremely rare and
our linear scheme wins in practice. Furthermore, Hopcroft et al. only deal with individual col-
lision detection and do nothing to continue tracking the collisions when the elements change
position.

Guibas and Zhang (1998), as part of several results concerning Kinetic Data Structures (KDS)
(see also Basch et al., 1997a,c,b), use the same tools as we do to solve a slightly different prob-
lem: they track the (single) pair of d-dimensional spheres that achieve the minimal distance,
and prove that they are adjacent in the weighted Delaunay triangulation. Guibas et al. (1991)
present the problem of queries among moving points and how the Voronoi can be used in this
case as well. It is limited however to two-dimensional cases.

To close this brief review, let us mention two major reference books of the field by Sugihara et al.
(1992) and Boissonnat and Yvinec (1995).

Once the contacts have been localized efficiently, the problem remains of doing something
physically realistic with them.

1.4 Contact models

Two approaches have been adopted to update the trajectories of colliding grains. A first cate-
gory of models, the hard body methods, act directly on the trajectories: whenever a collision is
detected, the trajectories of the two grains are updated to reflect the situation immediately after
the shock. This approach imposes individual and instantaneous collisions and is well suited for
collision-oriented behaviors such as gases. They are event driven: the simulation is performed
as a sequence of collisions. The second category of models, the soft body models, act on the
forces that drive the elements: each collision produces a force, and the sum of all forces gen-
erates the acceleration, velocity and position of the elements. These models allow the grains to
overlap and compute a force from the size and variation of these overlaps. They are continuous
by nature, and the simulations based on them discretize time.

Numerical modeling of contacts between grains in a granular material must cover several situ-
ations: individual dynamic collisions, quasi-static motion, or static contacts. In order to repro-

10 CHAPTER 1. BUILDING BLOCKS AND MOTIVATION

duce all cases within the same model, soft body methods are often preferred to hard body meth-
ods, the latter suffering from inelastic collapse in dense situations, see McNamara and Young
(1992).

The force computed by soft body models must be repulsive and dissipative. Repulsiveness
is a result of the elasticity of the materials. Energy dissipation is a delicate topic as sev-
eral mechanisms are responsible for the decrease of the total energy: plastic deformation (see
Walton and Braun, 1986), noise (see Tejchman and Gudehus, 1993), temperature increase,...

For a single collision, those dissipative phenomena can be summarized by a coefficient of resti-
tution, defined as the ratio of the relative velocities of the two grains after and before the col-
lision (see Walton and Braun, 1986, and references therein for a complete collision theory).
Ideally, this ratio would be chosen according to the real characteristics of the material, and the
numerical model would render energy dissipation. Unfortunately, most models fail to do that
accurately.

The history of numerical contact models begins in the late seventies with the linear viscoelas-
tic model of Cundall and Strack (1979), and continues with non-linear viscoelastic models
(Kuwabara and Kono, 1987), elasto-plastic models (Walton and Braun, 1986), hysteresis-based
models... Most advances in the realism of these models come from the comparison of simple
numerical simulations with the corresponding lab experiment (whenever such data is available)
thus allowing designing and calibrating models.

1.5 Existing software

As most of the implementation effort for our work would be devoted to triangulations, we
looked for available codes in this area. Software follows the same trend as the theory, with
several mesh generation codes available. In particular, the FORTRAN implementation of the
incremental procedure described in Joe (1991) is available. Mücke (1993) describes DETRI2,
a robust implementation for 3D Delaunay Triangulations. Other implementations, including
parallel algorithms, can be found in Cignoni et al. (1993, 1995); Teng et al. (1993). Sugihara
provides code for weighted Delaunay triangulations3. On the other hand, no efficient support
for dynamic three-dimensional triangulation of moving points could be found until a few years
back.

This situation is changing, as at least two libraries are being developed in the field: the Library
of Efficient Data structures and Algorithms, LEDA4 (see Mehlhorn and Näher, 1999) and the
Computational Geometry Algorithm Library, CGAL5. When we started this project in 1997,
none of them (LEDA 3.7 and CGAL 1.0) offered satisfactory support for 3D triangulations.
A later attempt (Berger, 1999) to use LEDA v3.8 showed that the way they are implemented
makes it difficult to deal with moving points. This situation has changed now, and especially
CGAL offers some of the functionalities required in this context. The implementation of the

2Available at http://www.geom.umn.edu/software/cglist/GeomDir/ .
3Available at http://www.simplex.t.u-tokyo.ac.jp/~sugihara/opensoft/opensofte.html .
4http://www.algorithmic-solutions.com/
5http://www.cgal.org/

http://www.geom.umn.edu/software/cglist/GeomDir/
http://www.simplex.t.u-tokyo.ac.jp/~sugihara/opensoft/opensofte.html
http://www.algorithmic-solutions.com/
http://www.cgal.org/

1.6. PARALLEL COMPUTING 11

DEM simulation loop and physical contact models on top of CGAL is thus left as an exercise
for the reader.

1.6 Parallel computing

Realistic DEM simulations require large sets of elements and therefore high performance com-
puting (HPC) infrastructure. Over the last ten years or so, HPC has increasingly involved some
form of parallel computing where the total work is split among several processors. With EPFL
being the first non-US site to receive a Cray T3D massively parallel machine in 1994, it was
tempting to adapt the 2D simulations of Müller on that machine. This was done a year later
when 2D rockfall simulations with 20’000 grains were performed more than 30 times faster on
that machine than on a standard workstation (see Ferrez et al., 1996). The Cray T3D was a fast
machine, but its potential was difficult to exploit. Single CPU performance was relatively poor,
because of the absence of second level cache. On the other hand, an efficient scheme (shmem, see
Barriuso and Knies, 1994) provided transparent access to the total distributed memory, which
enabled us to parallelize the code quickly and efficiently. The next generation of parallel ma-
chines, represented at EPFL by the SGI Origin2000, brought additional performance and the
ease of use of a globally shared memory. However, experiments performed for another project
(see Ferrez et al., 1998a,b) showed that the shared memory advertised by this machine did not
deliver the expected performance and that the algorithms needed to be adapted for the underly-
ing distributed memory in order to achieve good results (see also Chandra et al., 1997).

At about the same time, low cost PCs based on Intel Pentium processors began to threaten the
dominance of expensive RISC-based workstation in terms of processing power6. This trend
was enforced by the worldwide emergence of computing farms built with hundreds or thou-
sands of PCs connected with traditional networking equipment and running Linux. Those
systems are commonly designed as beowulf7. The EPFL has also followed this trend, even
though it took a biased approach. The Swiss-Tx project (see Kuonen and Gruber, 1999, and
http://capawww.epfl.ch/swiss-tx/), in which the author took a minor part, built machines
based on Alpha processors running a proprietary Unix and devoted a major part of its resources
to the development of custom high performance networking hardware and software.

6See for example a brief comparison made by the author using the HINT benchmark of Gustafson et al. (1999)
available at http://rosowww.epfl.ch/jaf/HINT/ .

7See http://www.beowulf.org/ for lists of such systems worldwide.

http://capawww.epfl.ch/swiss-tx/
http://rosowww.epfl.ch/jaf/HINT/
http://www.beowulf.org/

In mathematics you don’t understand things.
You just get used to them.

– Johann Von Neumann

Chapter 2

Three-dimensional dynamic triangulations

2.1 Introduction

Our collision detection scheme is based on a three-dimensional dynamic weighted Delaunay
triangulation such as the one shown in figure 2.1. This chapter is devoted to a presentation
of this geometric data structure and its properties. In particular, we show that this scheme
works as advertised, in the sense that under very mild hypothesis no collisions are missed.
This chapter addresses only the theoretical issues, chapter 3 will insert the detection scheme in
the global DEM framework, and chapter 4 will join theory and practice by discussing various
implementation details.

We introduce the concept of Laguerre cells, also known as power cells, and the resulting La-
guerre complex or power diagram. They have been extensively studied by Aurenhammer (1987)
and used by Telley et al. (1996a,b) and Xue et al. (1997). We also use their dual structure, the
weighted Delaunay triangulation or regular triangulation for which important results are due to
Edelsbrunner and Shah (1996). We recall their definitions and mention some of their properties
that are useful to our purpose, but the reader is referred to those papers and references therein
for a thorough discussion. Boissonnat and Yvinec (1995) also have a very complete coverage
of those issues.

We assume in a first approach that the centers of the grains are in general position: no three
of them are collinear, no four of them are coplanar and no five of them are cospherical1. This
simplifies the discussion by asserting the existence and uniqueness of some concepts. Then in
section 2.5 we shall discuss in greater detail the implications of this hypothesis. In particular,
we shall see that violating this condition only for short periods of time does not hinder our
objective.

We focus on the three-dimensional case because our application is modeling and simulation
of 3D granular media. For clarity’s sake, illustrations will show a two-dimensional situation
whenever possible.

1These are the standard criteria of non-degeneracy. Since we use weighted points the criteria are slightly
different.

14 CHAPTER 2. THREE-DIMENSIONAL DYNAMIC TRIANGULATIONS

Figure 2.1: Some almost translucent spheres in a cubic box showing the
edges of the weighted Delaunay triangulation used to detect potential con-
tacts among them.

2.2 Static case

2.2.1 A set of grains

Consider a set K of n spherical grains Gi, i � 1 ����� n, in three-dimensional Euclidean space E3

where grain Gi has center
�
ci and radius ri. In typical applications n will be relatively large, in

the 105 to 108 range. No assumption is made on the distribution of the radii ri. The spatial
distribution of the centers is expected — but not required — to be relatively compact, that is the
grains fill some arbitrarily shaped container with a relatively high density.

From the point of view of geometry, the grains we consider are really balls, in that they are the
set of points at distance less or equal than r from the center

�
c: Gi � � �

x � E3 ��� �x � �
ci
�
	 ri � .

Occasionally we refer to the surface or border of G, the set of points at distance exactly r from
�
c

that we note G: Gi � � �
x � E3 ��� �x � �

ci
� � ri � , and the interior of G, the set of points at distance

less than r from
�
c that we note Gi �

� �
x � E3 ��� �x � �

ci
�
� ri � � Gi � Gi

The grains are allowed to overlap slightly, thus allowing the use of soft particle contact models
where the physics of the shock is simulated by a small deformation of the grain (see chapter 3),
resulting in overlaps no larger than a few percent of the diameters. If overlaps larger than half
the radius of the smaller grain are encountered, then this method cannot be used anymore. This
restriction on the size of the overlaps also guarantees that at least some portion of each grain is

2.2. STATIC CASE 15

not covered by any other grain or, in other words, that no grain is completely included in the
union of other grains, see figure 2.2.

Figure 2.2: The situation on the left is allowed: the light grain in the center
is completely surrounded, but not completely covered. The situation on the
right is forbidden: the dark grain is completely covered by the two others.

Thus, we distinguish three cases for the relative positions of two given grains Gi and G j, see
figure 2.3. If �Gi � G j

� � 0, they are disjoint, if �Gi � G j
� � 1, they touch, and if �Gi � G j

��� 1,
they overlap. We say that two grains collide if they touch or overlap.

A B

C

Figure 2.3: Relative positions of grains: B and C are disjoint, A and B touch,
A and C overlap. The collisions to be detected are between A and B and
between A and C.

2.2.2 The power function with respect to a grain

Given a grain G and a point x in E3, the power function of x with respect to G is given by

P
� �
x � G � � � �c � �

x � 2 � r2 (2.1)

see figure 2.4. We will use the following simplified notation

Pi
� �
x � � P

� �
x � Gi � (2.2)

whenever there is no ambiguity.

We associate a weight wi to grain Gi with wi � r2
i , thus sometimes referring to the couples

(
�
ci,wi) as weighted sites. Pi

� �
x � is then referred to as the power distance to the (weighted) site

�
ci.

16 CHAPTER 2. THREE-DIMENSIONAL DYNAMIC TRIANGULATIONS

O

F
C

A D

P
X

H
E

G B

Y

Figure 2.4: The power function of a point X outside the disk is defined as
the dot product XA � XB for any choice of the (collinear) points A and B on
the boundary. In particular, it is equal to XP � XP � � XP � 2, thus � 0, and
to XC � XD � � � XO � � r � � � XO � � r � � � XO � 2 � r2. The power function
of a point Y inside the disk is also defined as Y E � Y F , thus � 0, and in
particular equal to Y G � Y H � � �

r
� � YO � � � r � � YO � � � � �

r2 � � YO � 2 � �� YO � 2 � r2. These definitions carry over to three dimensions where the disk
becomes a ball.

2.2.3 The Laguerre complex

To each grain Gi we associate a portion of E3 called the Laguerre cell Li (see figure 2.5) defined
as:

Li � � �
x
�� Pi

� �
x � 	 Pj

� �
x ��� j �� i � (2.3)

The center of Gi
�
ci is the generating site of Li. This definition is similar to that of the well-known

Voronoi cell. It essentially means that Li contains all the points that are "closer" to Gi than to
any other grain, but using the power function with respect to a grain as a "distance". It can be
seen as a weighted extension of the Voronoi cell. The two are equivalent if all the weights wi

are equal, in our case if all the grains have the same size.

PSfrag replacements

G1

G2

G3

G4

L1

L2
L3

L4

Figure 2.5: The grains Gi and their Laguerre cells Li.

Each Laguerre cell is a convex polyhedron. Voronoi cells of distinct points are never empty, but
Laguerre cells can be empty for some values of the weights. However, our assumption that a

2.2. STATIC CASE 17

grain may not be completely covered enforces the non-emptiness of our cells: For each grain
Gi there exists at least one point

�
pi � Gi such that

�
pi �� G j � j �� i. Thus, by definition of the

power function,
Pi

� �
pi � � 0 and Pj

� �
pi � � 0 � j �� i (2.4)

and Li contains at least
�
pi. The union of these cells is the entire space. If the centers of the

grains are in general position, the intersection of two cells Li and L j is either empty or a convex
polytope contained in the chordal plane orthogonal to

� �
ci
�
c j � . Figure 2.6 shows the position of

this chordale. For the set K of grains Gi, the Laguerre cells Li yield a partition of E3 called the
Laguerre complex LC (K), see again figure 2.5.

B

A

Figure 2.6: The thick dashed line is the chordale between two adjacent La-
guerre cells. In the disjoint case (left), it splits the segment AB in two equal
parts.

If a grain Gi touches or overlaps none of the others, it is entirely contained in its Laguerre cell
Li. If two grains Gi and G j touch at a point

�
xij, then we have Pi

� �
xij � � Pj

� �
xij � � 0 and therefore�

xij � Li and
�
xij � L j and the two Laguerre cells Li and L j have a non-empty intersection. If Gi

and G j overlap, the set of points
�
xij such that Pi

� �
xij � � Pj

� �
xij � � 0 is exactly Gi � G j and is a

circle in the chordal plane. There are also points
�
pij such that Pi

� �
pij � � Pj

� �
pij � � 0, these points

are in Gi � G j. The two Laguerre cells Li and L j have again a non-empty intersection.

Thus, detecting collisions may be done only for the pairs of grains for which the corresponding
Laguerre cells have a non-empty intersection.

2.2.4 The Delaunay triangulation

The Laguerre complex LC (K) has a dual structure, called the weighted Delaunay triangulation
DT (K), see figure 2.7. Under the same hypothesis about the grains being in general position, it
is uniquely defined:

�
ci and

�
c j are adjacent in DT (K) if and only if Li and L j have a non-empty

intersection in LC (K). This finally brings us to our property:

Detecting colliding grains in K need only be done among the pairs that are
adjacent in DT (K).

18 CHAPTER 2. THREE-DIMENSIONAL DYNAMIC TRIANGULATIONS

PSfrag replacements

G1

G2

G3

G4

L1

L2
L3

L4

Figure 2.7: The grains Gi, their Laguerre cells Li (thin lines), and the
weighted Delaunay triangulation (thick lines) on the center of the grains.

If edge (i � j) is not in the triangulation, then the grains are disjoint. Note that the converse is not
true, as there are edges in the triangulation between pairs of disjoint grains. This is an overhead
of the method, but it is reasonable: Instead of the n

�
n � 1 � � 2 possible pairs, the number of edges

in a 3D weighted Delaunay triangulation is O(n) if the centers
�
ci are in general position. Typical

3D granular media simulations result in DT having between 6n and 8n edges.

2.3 Geometric predicates

The triangulation is built on the centers of the grains, and thus every vertex of the triangulation is
associated with a point in Euclidean space E3. However, we are not really using this continuous
geometric information for the collision detection2: only the discrete adjacency information,
that is the pairs of grains identified by edges of the triangulation, is useful for our purpose.
In other words, we are interested in the topology of the triangulation, and not its actual shape.
Nevertheless, this topology is completely determined by the geometric information contained in
the coordinates (and weights) of the generating sites. The abstraction step from the continuous
(and continuously changing, as we will see in the next section) coordinates of the grains to
the discrete topology of the triangulation represented by the set of edges is provided by the
weighted version of the insphere predicate.

A geometric predicate is a function of real parameters that returns a result in the set {-1, 0,
1}. From the continuous coordinates of a set of points it produces a discrete left-center-right
or inside-on-outside answer. One of the simplest examples is the two-dimensional orientation
predicate: given three points A, B and P in E2, it will decide whether P is on the left or the
right of the (directed) line AB, and the special case where the three points are collinear is also
detected. Another example is the incircle predicate that decides whether a point P lies inside,
outside or exactly on the circle defined by three non-collinear points A, B and C. Those two
bi-dimensional predicates are illustrated in figure 2.8.

2At least not for the first phase, the definition of a neighborhood. The actual localization of the contact point
(pahse 2) obviously requires the exact coordinates

2.3. GEOMETRIC PREDICATES 19

P1

B

P2

P3

A

A

B
C

P2P3

P1

Figure 2.8: The Orient2D and Incircle2D predicates.

The predicates often reduce to the computation of the sign of a matrix determinant, yielding a
positive or negative answer, with zero being the special value resulting from a degenerate imput.
Two predicates are heavily used for the three-dimensional weighted Delaunay triangulation.
Orient3D and WeightedInsphere3D.

2.3.1 Orient3D

Given three non-collinear points A, B and C in E3, the Orient3D predicate answers the following
question: on which side of the hyperplane defined by A, B and C does a point P lie ? Possible
answers are left or right, the orientation being decided by the orientation of the triangle ABC,
or again the special degenerate case if the four points are coplanar.

The Orient3D predicate is computed as the sign of the volume of the oriented tetrahedron built
on the four input points. Elementary geometry and linear algebra yield the following equivalent
expressions:

Or3D
�
A � B � C � D � � sign

��������

Ax Ay Az 1
Bx By Bz 1
Cx Cy Cz 1
Dx Dy Dz 1

��������
(2.5)

� sign

������

Ax � Dx Ay � Dy Az � Dz

Bx � Dx By � Dy Bz � Dz

Cx � Dx Cy � Dy Cz � Dz

������
(2.6)

The order of the four points obviously plays a role. The sign of the determinant changes when
rows are permuted, but these changes correspond to the changes of geometric orientation.

The Orient3D predicate is used when we create the initial triangulation, as described in §4.2.1.

20 CHAPTER 2. THREE-DIMENSIONAL DYNAMIC TRIANGULATIONS

2.3.2 Insphere3D

Four non-coplanar points A, B, C and D in E3 define a unique sphere. The insphere predicate
answers the following question: Does a point P lie inside or outside that sphere ? Possible
answers are inside or outside, or again the special degenerate case if the five points are cospher-
ical.

In §2.2.4 we have introduced DT (K) as the dual of LC (K), but the Delaunay triangulation
has some remarkable properties on its own. Among all possible triangulations it is the only one
satisfying the insphere3 criterion: the sphere defined by the four vertices of every tetrahedron of
DT (K) contains no other points of K . Figure 2.9 illustrates this property in 2D. It extends to
the weighted Delaunay triangulation by using a weighted version of the insphere criterion, see
below.

1
2

3

4

Figure 2.9: The incircle criterion: in the left triangulation, the gray triangle
is not valid. The slightly different triangulation on the right is valid. It is the
Delaunay triangulation.

One possible implementation for the insphere predicate is to explicitly compute the center Z of
the sphere and then compare the distances AZ and PZ. A more efficient approach is to write
implicitly the equation of the sphere using the coordinates of A, B, C and D as parameters and
those of P as variables. We give here a different method.

We add one more dimension and project the points on a paraboloid in E4: A, of coordinates (Ax,
Ay, Az) is projected onto A � of coordinates (Ax, Ay, Az, A2

x
�

A2
y
�

A2
z) and likewise for B, C, D

and P. The four points A � , B � , C � and D � define a hyperplane in E4. If P is in the sphere, then
its projection on the paraboloid P � will be below the hyperplane. Thus, the three-dimensional
insphere predicate may be implemented as a four-dimensional orientation predicate and we fall

3There is an unfortunate name clash here. The term insphere refers to the the property of a given point to be
inside or outside a sphere, and not to the choice of the sphere with respect to the tetrahedron.

2.3. GEOMETRIC PREDICATES 21

back on a volume sign computation. Figure 2.10 illustrates this concept for the one-dimensional
case.

A BP1 P2

P1+ B+

P2+

A+

Figure 2.10: The one-dimensional insegment predicate. P1 is inside the
segment AB because P1 � is below A � B � while P2 is outside because P2 �
is above A � B � .

InSph3D
�
A � B � C � D � E � � Or4D

�
A � � B � � C � � D � � E � �

� sign

����������

Ax Ay Az A2
x
�

A2
y
�

A2
z 1

Bx By Bz B2
x
�

B2
y
�

B2
z 1

Cx Cy Cz C2
x
�

C2
y
�

C2
z 1

Dx Dy Dz D2
x
�

D2
y
�

D2
z 1

Ex Ey Ez E2
x
�

E2
y
�

E2
z 1

����������

(2.7)

� sign

��������

Ax � Ex Ay � Ey Az � Ez
�
A2

x
�

A2
y
�

A2
z � �

�
E2

x
�

E2
y
�

E2
z �

Bx � Ex By � Ey Bz � Ez
�
B2

x
�

B2
y
�

B2
z � �

�
E2

x
�

E2
y
�

E2
z �

Cx � Ex Cy � Ey Cz � Ez
�
C2

x
�

C2
y
�

C2
z � �

�
E2

x
�

E2
y
�

E2
z �

Dx � Ex Dy � Ey Dz � Ez
�
D2

x
�

D2
y
�

D2
z � �

�
E2

x
�

E2
y
�

E2
z �

��������
(2.8)

Incidentally, equation (2.7) is one way to write the equation of the sphere defined by A, B, C and
D for the variables Ex, Ey and Ez since it is of the form E2

x
�

E2
y
�

E2
z
� αEx

� βEy
� γEz
� δ � 0

and is verified by all four points A, B, C and D.

2.3.3 WeightedInsphere3D

To account for the weighted case, one must first determine the sphere defined by four weighted
points in E3. In the previous section, we introduced the Laguerre complex as the weighted
extension of the Voronoi diagram using the power function as a "distance". It seems reasonable
to consider a point in E3 whose power functions to all four weighted points A, B, C and D are

22 CHAPTER 2. THREE-DIMENSIONAL DYNAMIC TRIANGULATIONS

equal as the center of that sphere. Then, to decide whether the fifth weighted point is inside, on,
or outside the sphere one uses again the power function.

Furthermore, since the weights of our points are the square of the radii of the spherical grain
they represent, we can use the notion of orthogonal spheres: spheres S1 of center

�
c1 and radius

r1 and S2 of center
�
c2 and radius r2 are orthogonal if

� �c2 � �
c1
� 2 � r2

1
�

r2
2 (2.9)

or equivalently if
P1

� �
c2 � � r2 or P2

� �
c1 � � r1 (2.10)

see figure 2.11.

PSfrag replacements

S1

�
c1

P2
� �
c1 �

S2

�
c2

P1
� �
c2 �

Figure 2.11: Two orthogonal spheres.

The sphere defined by four grains used for the weighted insphere predicate in 3D is the unique
sphere orthogonal to all four grains4, see figure 2.12.

We have the criterion, it remains now to actually write an expression similar to equation (2.7)
for the weighted case. One can achieve it by rewriting the equation of the sphere using the
power function as the distance. We will proceed differently, with yet another property of the
Delaunay and weighted Delaunay triangulations. Consider the set K of points in E3 and lift
them again on the paraboloid in E4, thus obtaining the set K � . Consider now the edges of the
convex hull of K � . Looking from above, only exterior edges are visible and once projected
back on the original hyperspace E3 they correspond to the edges of the convex hull of K .
Looking from below, all edges are visible as the points of K � are on the paraboloid. Those
edges, once projected back on the original hyperspace E3 are exactly the edges of the Delaunay
triangulation DT (K).

This extends to the weighted case if instead of lifting point A on the paraboloid, that is at an
altitude of A2

x
�

A2
y
�

A2
z , it is lifted at a slightly lower altitude of A2

x
�

A2
y
�

A2
z � Aw, where

Aw is the weight of A. Using again the orient4D predicate, we deduce from this property the
following expressions for the WeightedInsphere3D predicate:

4Such a sphere is unique, but may not exist. If it does not exist, we have the weighted equivalent of four
coplanar points, and the weighted sites are not in general position.

2.3. GEOMETRIC PREDICATES 23

P2

A

B

P1

C

Figure 2.12: The weighted incircle predicate in 2D: the dashed circle is or-
thogonal to the circles representing the weighted points A, B and C. P1 is
"outside" while P2 is "inside".

WInSph3D
�
A � B � C � D � E � � sign

����������

Ax Ay Az
�
A2

x
�

A2
y
�

A2
z � � Aw 1

Bx By Bz
�
B2

x
�

B2
y
�

B2
z � � Bw 1

Cx Cy Cz
�
C2

x
�

C2
y
�

C2
z � � Cw 1

Dx Dy Dz
�
D2

x
�

D2
y
�

D2
z � � Dw 1

Ex Ey Ez
�
E2

x
�

E2
y
�

E2
z � � Ew 1

����������

(2.11)

� sign

��������

Ax � Ex Ay � Ey Az � Ez
�
A2

x
�

A2
y
�

A2
z � Aw � � �

E2
x
�

E2
y
�

E2
z � Ew �

Bx � Ex By � Ey Bz � Ez
�
B2

x
�

B2
y
�

B2
z � Bw � � �

E2
x
�

E2
y
�

E2
z � Ew �

Cx � Ex Cy � Ey Cz � Ez
�
C2

x
�

C2
y
�

C2
z � Cw � � �

E2
x
�

E2
y
�

E2
z � Ew �

Dx � Ex Dy � Ey Dz � Ez
�
D2

x
�

D2
y
�

D2
z � Dw � � �

E2
x
�

E2
y
�

E2
z � Ew �

��������
(2.12)

If all four weights are equal, elementary linear algebra shows that we fall back on the standard
unweighted orient3D predicate.

The expressions (2.5) and (2.6), (2.7) and (2.8), and (2.11) and (2.12) are pairwise equivalent
and require approximately the same amount of computation. Generally, the second forms —
obtained by algebraic operations that map to the translation of the origin on one of the points
— are less prone to numerical problems. Nevertheless, if standard floating-point computations
are used, special techniques must be used to evaluate correctly the sign of these determinants,
see section 4.3.

24 CHAPTER 2. THREE-DIMENSIONAL DYNAMIC TRIANGULATIONS

2.4 Dynamic case

So far we have only addressed the case where the positions
�
ci are fixed. However, for the

purpose of our simulations, we need to track the dynamic behavior of the grains and update the
set of potential neighbors for which collisions are tested. This essentially means deleting edges
from resp. adding edges to DT . More precisely, if the centers

�
ci become time-dependent, so

will the values of Pi
� �
x � and over time the minimum for a given

�
x can be attained for a different

i. This yields a topologically different Laguerre complex and a topologically different weighted
Delaunay triangulation, as shown in figure 2.13. Failing to update the adjacency information
contained in the triangulation will most likely result in collisions being missed.

Figure 2.13: As the grains move, the original Delaunay triangulation may
fail to detect contacts. Maintaining the triangulation is mandatory: a new
edge should appear to reflect the new potential contact, and another one
should disappear to maintain the triangulation structure.

2.4.1 Local operations on triangulations

Clearly, recomputing the whole triangulation from scratch is not an option: it takes too much
time and the expected benefit of the method vanishes. Fortunately, in dimensions two and three
it is possible to transform any triangulation into any other triangulation by applying local opera-
tions called flips. Performing a flip results in alternating between the two possible triangulations
of a set of four points in 2D or of five points in 3D.

Starting from the initial Delaunay triangulation, and given the motion of each center
�
ci, the

triangulation remains valid as long as the weighted insphere predicate applied to all facets says
so. If a portion of the triangulation becomes invalid, a topological change takes place and the
triangulation must be updated accordingly. With our strong assumption that no Laguerre cell
may become empty and thus never disappear5, the only operations required are flips.

We now have a criterion to determine where our triangulation differs from the Delaunay trian-
gulation, and local operations to transform it back into such a triangulation. For a given set of

5Disappearing Laguerre cells and the corresponding topological operations were used in another context by
Xue et al. (1997).

2.4. DYNAMIC CASE 25

points, the Delaunay triangulation is the only one that maximizes the minimal angle in a trian-
gle. Performing a flip wherever the insphere criterion is violated increases the minimal angle
found in the triangles involved in the flip. These nice results allow us to assert that this pro-
cedure of flipping wherever detected by the insphere criterion will always yield the Delaunay
triangulation after a finite number of flips. In practice, the number of flips to perform depends
on the volatility of the media, but for most practical uses is very low.

2.4.2 In 2D

For didactical purposes, we shall first illustrate the triangulation maintenance in 2D. Looking at
the situation in figure 2.9, the incircle predicate applied to the triangle {1,2,3} says that point 4
violates the criterion.

The flip replaces triangles {1,2,3} and {1,3,4} by triangles {1,2,4} and {2,3,4}. If we look at the
edges of the triangulation only, then the flip is just the exchange of diagonals in the quadrilateral
{1,2,3,4}. Of course, for this operation to be possible, {1,2,3,4} must be convex.

If we consider the quadrilateral {1,2,3,4} as the planar projection of a simplex in 3D, then the
flip can also be interpreted as alternating between a view from the top and a view from the
bottom of that simplex, see figure 2.14.

2

4

top view bottom view

3D view
1 3

4

1 2

3

4

1 2

3

Figure 2.14: The flip in 2D seen as alternating between top and bottom view
of a 3D polyhedron. The grayed surface is the intersection with the projec-
tion plane, irrelevant in this perspective.

The flip is a symmetric operation, and is the only one required to transform a 2D triangulation.

26 CHAPTER 2. THREE-DIMENSIONAL DYNAMIC TRIANGULATIONS

Furthermore it preserves the number of edges and triangles in a triangulation, which simplifies
the implementation.

2.4.3 In 3D

The same principle applies in 3D, but is slightly more complicated because two kinds of flips
exist, flip1 and flip2, as shown in figure 2.15.

Flip1 adds an edge between 1 and 5, and replaces tetrahedra {1,2,3,4} and {2,3,4,5} with tetra-
hedra {1,2,3,5}, {1,3,4,5} and {1,2,4,5}. It is performed when the insphere predicate applied to
the tetrahedron {1,2,3,4} says that the point 5 violates the criterion and that facet {2,3,4} should
be flipped. Again, {1,2,3,4,5} must be convex for flip1 to be possible.

Flip2 is the inverse operation and removes the edge between 1 and 5, and replaces tetrahedra
{1,2,3,5}, {1,3,4,5} and {1,2,4,5} with tetrahedra {1,2,3,4} and {2,3,4,5}. It is performed if the
following conditions are met:

� edge {1,5} belongs to exactly three facets (or equivalently three tetrahedra) of the trian-
gulation, and

� the incircle predicate applied to the suitable tetrahedra indicates that all three facets
{1,2,5}, {1,3,5} and {1,4,5} should be flipped.

The two configurations shown in figure 2.15 can also be interpreted as the two views of a 5-
vertex simplex in 4D projected onto a 3D hyperplane, the projection being looked at from each
of the two half-spaces defined by the projection hyperplane.

The limit we impose on the relative sizes of the overlaps guarantees that the topological event
causing the addition of an edge happens at a time when the two corresponding grains are still
disjoint. So, even if they collide, there is a small time difference between the two events, and
DT is ahead of time. Thus, a reasonably small delay in the update of DT will not miss any
collision. We conclude this section on dynamic triangulations of moving sites by discussing
two ways to deal with time and their influence on the simulation of granular media.

2.4.4 Scheduling exact event times

Suppose we start at time t0 with a correct situation, and all the center trajectories
�
ci

�
t � are known

for some time interval
�
t0 � t0
�

h0 � , where h0 is the length of the horizon at time t0. One can
compute the exact date t1 � �

t0 � t0
�

h0 � of the next event. At this stage, we may want to update
some of the trajectories to make them valid for a new horizon

�
t1 � t1
�

h1 � , and then compute t2
and so on.

Two categories of events may occur: the collision of two grains, in which case we update their
respective trajectories to reflect an instantaneous shock, or a portion of DT becoming invalid,
leading to performing the suitable flips, the trajectories remaining unchanged.

2.4. DYNAMIC CASE 27

Flip 1

Flip 2

1

2
3

4

5

Figure 2.15: The flips in 3D. The set of five points can be triangulated into
either two tetrahedra and no internal edge, or three tetrahedra and one inter-
nal edge. Flipping is alternating between the two configurations.

Between two successive events, the grains move along known trajectories. For each pair of
grains given by the edges (i � j) of the triangulation, the time t1 of the next collision during time
interval

�
t0 � t0
�

h0 � is the smallest root of

�
�
�
ci

�
t � � �

c j
�
t � �

� � ri
�

r j (2.13)

larger than t0, if one exists. If the grains are only subject to a constant acceleration field such
as gravity, then the above equation is quadratic, trivial to solve. The method remains per-
fectly valid for movements constrained by non-constant acceleration fields, as discussed by
Sigurgeirsson et al. (2000). These happen for example when the grains flow in a viscous fluid.

The detection of the topological events follows similar rules. The determinants of the predicates
are built with time dependent coordinates, and finding when they change sign reduces to finding
the smallest root of a 5th order polynome larger than t0. A computationally efficient method for
solving this is given in Müller (1996a).

This method is used in 2D granular media simulations based on hard body contact models where
the grains never overlap and the trajectories of the colliding grains are updated to reflect their
motion after the instantaneous shock, see Müller and Liebling (1995) or Müller (1996a). It is
well suited for sparse media: low density, grains moving fast, few collisions... However, these
models tend to be inaccurate in static, dense situations because of inelastic collapse due to the
inappropriate treatment of the lasting contacts, see McNamara and Young (1992). Furthermore,
computing the event dates is very sensitive to rounding errors and scheduling them limits the
parallel processing potential of the DEM.

28 CHAPTER 2. THREE-DIMENSIONAL DYNAMIC TRIANGULATIONS

2.4.5 Discretizing time

In this second approach to dealing with it, time is sliced into small intervals δt and events
occurring during such an interval are postponed for treatment at the end of the interval. The
trajectories

�
ci

�
t � during

�
tk � tk
� δt � should be known at tk and δt should be small enough. This

approach means that the triangulation may violate the Delaunay criteria during at most δt, but
we have seen that this is acceptable for the collision detection. However, aside from taking the
risk of not detecting a collision — or more precisely detecting it too late: at tk � 1 a collision
that started between tk and tk � 1 — the risk of ending up with a geometric structure that does not
represent a valid triangulation anymore must be considered. This can be the case if a tetrahedron
becomes degenerate before a flip occurs (see figure 2.16) or if a grain was completely swallowed
by another due to an overlap that grew too large.

This is the method we use in our simulations based on soft body force models since they also
discretize time. The choice of the timestep δt is driven by the force model as these models usu-
ally require a much higher sampling rate, yielding a "safe" δt for the triangulation maintenance.

Figure 2.16: The small grain has moved too far between two triangulation
updates, the triangulation is not valid anymore. Both the incircle test and the
flips are useless to recover from this situation.

2.5 Degenerate cases

So far we have assumed that the centers of the grains were in general position: no three points
are collinear, no four points are coplanar and no five points are cospherical. The latter condition
is equivalent to saying that no point in E3 belongs to more than four Laguerre cells, which is
also equivalent to saying that the weighted Delaunay triangulation DT (K) is unique. In 3D,
points in general position also guarantee that the number of edges, facets and tetrahedra of DT
is linear, see Boissonnat and Yvinec (1995).

Although the probability of encountering such degenerate configurations is conveniently be-
lieved to be zero, we cannot assume that they will never appear. In particular, since we are using
standard floating-point arithmetic for our computations, the coordinates of the grains are con-
strained to a discrete subset of � . Therefore, the chances that some of them line up are higher.
However, we will show that those configurations do not affect the validity of the triangulation-
based neighborhood, and that they do not cause major implementation difficulties.

2.5. DEGENERATE CASES 29

2.5.1 Non-uniqueness of the Delaunay triangulation

The non-uniqueness of the Delaunay triangulation does not constitute a threat to the collision
detection scheme since pairs of grains associated with the non-mandatory edges will only col-
lide if very large overlaps are allowed. Consider four grains of equal size in 2D such that their
centers make a perfect square. The corresponding Delaunay triangulation has as its edges the
four edges of the square and either one of its diagonals. Selecting one or the other does not miss
a collision, unless the overlap amounts to

�
2 � �

2 ��� 0 � 58 times the radius (see figure 2.17)
which is explicitly forbidden in our case. Furthermore, since grains move, if either pair of op-
posite grains gets closer, the degeneracy will be removed. That property extends to the weighted
as well as the 3D case. From a practical point of view, if we encounter such a degenerate situa-
tion, it will suffice to just pick up one of the possible triangulations. Care must be taken, though,
to ensure the consistency of the triangulation. In other words, in the situation mentioned above,
any diagonal can be chosen, but exactly one of them must be part of the triangulation. If none
or both are taken, the resulting structure is not a valid triangulation anymore.

Figure 2.17: If the grains are not in general position, the Delaunay triangula-
tion is not uniquely defined, but no collision is missed. Overlaps larger than
shown here would lead to such a situation, but they are explicitly forbidden
in this context.

2.5.2 Delaunay triangulation with superlinear number of edges

If the centers are temporarily in a configuration that yields a triangulation with a quadratic
number of tetrahedra, triangles and edges, the method will again not fail, but waste a non-
negligible amount of time generating the triangulation, detecting contacts, and at some point
reducing the triangulation to a linear number of elements once the configuration will no longer
be degenerate. However, the configurations for which the only possible triangulations all have
a quadratic number of elements are very unlikely in the context of granular media simulations,
see such an example in figure 2.18. Should such cases occur too frequently in some situations,
the techniques of Edelsbrunner and Mücke (1990) or of Alliez et al. (1998) could be used to
lift the degeneracies. Configurations for which there are several possible triangulations, among
which some quadratic, are more common. In those cases, the Delaunay triangulation generally
minimizes the number of elements (Fukuda, 2001).

30 CHAPTER 2. THREE-DIMENSIONAL DYNAMIC TRIANGULATIONS

Figure 2.18: A configuration that yields a triangulation with a quadratic
number of edges. There are n points lined up on each one of two non-
coplanar lines: the only possible triangulation contains n2 � 2

�
n � 1 � edges.

If a new point is added in the interior of the convex hull, or if one of the ex-
isting 2n is slightly shifted within the hull, then the Delaunay triangulation
will have O(n) edges.

2.6 Conclusion

The validity and efficiency of our approach to collision detection among spheres is established,
at least from a theoretical point of view. We are now ready to build a complete DEM algorithm
around the three-dimensional weighted Delaunay triangulation, which we will do in the next
chapter.

As far as the laws of mathematics refer to reality, they are not certain,
and as far as they are certain, they do not refer to reality.

– Albert Einstein

Chapter 3

The Distinct Element Method

3.1 Introduction

The Distinct Element Method (DEM) is an approach to numerical simulation where statistical
measures of the global behavior of a phenomenon are computed from the individual motion
and mutual interactions of a large population of elements. It is commonly used in situations
where state-of-the-art theoretical knowledge has not yet provided complete understanding and
mathematical equations to model the physical system. The major idea behind DEM is to cir-
cumvent the complexity of a large assembly by considering instead many simple elements, the
behavior of which can be simulated accurately. Because of this approach, DEM requires careful
calibration and validation with real experiments in order to produce trustworthy results.

Many other simulation methods exist. When the suitable equations are known to hold for the
system, for example the century-old Navier-Stokes equations for fluid flows, numerical simula-
tion can be reduced to the numerical integration of said equations given suitable boundary and
initial conditions, most often a very difficult problem. The choice of a simulation method for
a given problem is influenced by factors such as the level of theoretical knowledge on which
the model can rely, the nature of the application, or the computational resources available. The
DEM does not rank very high on the specialists’ wish list because, as we just mentioned, it
requires careful calibration and validation but also because it usually requires huge number of
elements in order to produce realistic results. Such large-scale simulations in turn are very de-
manding in terms of raw computational power, but also in terms of memory, online storage, pre-
and post-processing, etc.

Due to their highly discontinuous nature, one should expect that granular media require a dis-
continuous simulation method. Indeed, to date DEM is the leading approach to those problems.
Modeling is straightforward: the grains are the elements, they interact through local, pairwise
contacts, yet are also subject to external factors such as gravitation or contacts with surrounding
objects, and they otherwise obey Newton’s laws of motion. This is enough for dry granular
media where grains of any size, shape and material interact. Wet granular media where the
influence of an interstitial fluid (liquid or gas) cannot be neglected require more attention. Sim-
ple attempts have been made to integrate this influence in the numerical contact model or the

32 CHAPTER 3. THE DISTINCT ELEMENT METHOD

equation of motion (see §3.4.1), but to achieve a sufficient degree of realism, the tight coupling
of DEM for the grains with the relevant flow simulation may be necessary. That is the price to
pay for simulations of wet sand piles, landslides or snow avalanches. Some preliminary results
in this direction are available, see Muguruma et al. (2000) and Sigurgeirsson et al. (2000).

The DEM approach is very similar to — and in fact mostly inspired from — Molecular Dynam-
ics (MD). One of the major differences between the two is the driving force: in MD, particles
follow the gradient of a global potential, which in turn depends on the relative positions of the
particles, while DEM particles interact through local pairwise contacts. Another difference is
induced by scale: while MD usually deals with particles at the atomic level and time ranges of
pico- or nanoseconds, the sizes in DEM range between macroscopic (rocks) and mesoscopic
(powders) and durations of the order of a few seconds. This scale difference in turn induces
specialized practices: MD often use periodic boundary conditions to get rid of surface effects
and artificially increase the size of the population, while most DEM simulations deal explicitly
with a given geometry.

Even if we restrict our scope to DEM simulations of granular media, we can find several differ-
ent algorithms in the recent literature. The major criteria to distinguish them include the shape
of the grains, the modeling of the contacts, the way to deal with time, the method to detect
collisions. We have restricted ourselves in this thesis to spherical grains in 3D, with soft body
contact models and discretized time. Chapter 2 presented the core element of our approach,
the efficient detection of collisions using a dynamic triangulation, this chapter will now build
a complete simulation method around it. Again, most implementation details are postponed to
the next chapter.

3.2 The DEM algorithm for spherical grains

Setup

Detect Collisions

Apply Contact Model

Update Trajectories

Update Neighborhood

1:

2:

3:

4:

5:

�

�

�

�

�

��

�

��

δt

10
δt

–
10

0δ
t

every 10 – 100 iterations

Figure 3.1: The DEM algorithm for spherical grains.

Figure 3.1 gives a schematic representation of the algorithm. We describe now each step in
detail:

3.2. THE DEM ALGORITHM FOR SPHERICAL GRAINS 33

1. Setup
Setting up the simulation consists in generating an initial set of n grains and arranging
them in the medium (although more grains can be added later), defining boundaries for the
container, and initializing any internal structure used during the simulation. In our case,
the initial triangulation is built incrementally as the grains are generated, see section 4.2.1.

2. Detect collisions among the grains
Locate pairs of colliding grains. To avoid performing this detection among all n

�
n � 1 � � 2

potential pairs, some sort of neighborhood information is used. This is where the dynamic
triangulation shows its strength reducing the complexity of this step from O(n2) to O(n).

3. Apply the appropriate contact model at every collision
Once all collisions have been identified, proper action must be taken according to the
nature of the simulation. This is achieved by applying a numerical contact model based
on values like the size of the overlap, relative normal and tangential speeds, particle types,
etc.

4. Update the trajectories of the grains
After summing the forces contributed by the contacts in step 3 and external forces (grav-
itation, contact with the boundaries, etc), it is now possible to integrate the motion equa-
tions over the duration of the iteration, resulting in new particle velocities, positions, spin
and orientation.

5. Update neighborhood
Advance clock by δt and shift grains to their new positions. However, since the grains
move, the neighborhood information used in step 2 remains valid only for a limited period
and has to be updated every few iterations.

6. Go back to step 2

The setup is not critical. Some implementation details will be given in chapter 4, and each ex-
periment in chapters 5 and 6 will describe what kind of grains, boundaries and other conditions
are used. Steps 2 and 5 were addressed in chapter 2. Sections 3.3 and 3.4 describe the remaining
two steps of the algorithm.

The iteration duration δt is dictated by the computational model used to represent the contact in
step 3 and the numerical integration of Newton’s equations of motion in step 4. The soft body
theory assumes a contact duration of about 10 �

5 seconds and requires at least 100 iterations per
contact to guarantee numerical stability, thus setting δt � 10 �

7. This is too small for today’s
computers, though, and most authors admit using a much larger value, in the 10 �

4 to 10 �
5

range. This value is also acceptable for step 4. How often the neighborhood must be updated
in step 5 depends on the neighborhood technique used, but also on the volatility of the media.
Usually this happens only every 10 to 100 iterations, which reduces the impact of this step on
the overall computation time.

34 CHAPTER 3. THE DISTINCT ELEMENT METHOD

3.3 The contact models

In the DEM algorithm outlined in section 3.2, step 3 relies on a numerical contact model for
the proper simulation of the collision between two grains. The full description of the physical
phenomena involved in such an interaction and the mathematical tools used to accurately repli-
cate them is an ongoing effort of many researchers. We have used some of the widely accepted
models, but have also been able to test the latest development of Pournin et al. (2001). We now
present the steps required to go from the geometric event represented by the collision of two
spheres to the physical force exerted at the contact point. We are using soft body models that
compute a force from an overlap and we discretize time. At each iteration the force model is re-
sponsible to update the force to reflect the new situation. Figure 3.2 shows the contact between
two grains and the various quantities used.

PSfrag replacements

G1

G2

r1
r2

�
c1

�
c2

�
v1

�
v2 �

ω1
�
ω2 �

vn

�
vt

�
un

�
ut

�
dn

�
vc

P

Figure 3.2: A schematic view of a contact between two grains.

Grains G1 and G2 collide at time1 t when the distance � �c1 � �
c2
� between their centers is smaller2

than the sum of their radii r1
�

r2. The size of the overlap

dn � r1
�

r2 � � �c1 � �
c2
� (3.1)

is extremely exaggerated in figure 3.2, as it is in general limited to a few percent of the grain
sizes. From now on we consider the collision of grain G2 on grain G1, thus generating a force�
F12 on G1. Elementary physics tells us that a force

�
F21 � �

�
F12 is then exerted on G2 by the

1For the clarity’s sake, we have omitted the time dependence in some equations. All quantities except the radii
ri are in fact time-dependent.

2The soft body models do not generate any force when the grains touch each other without overlap.

3.3. THE CONTACT MODELS 35

same contact, the ordering of the grains serves only to orient the various vectors used in the
discussion. Let �

un �
�
c2 � �

c1� �c2 � �
c1
� (3.2)

be a unit normal vector for the contact and P the contact plane normal to
�
un. The relative

velocity at the contact point is given by

�
vc � ˙�c2 � ˙�c1

� �
un

� �
r2
�
ω2
�

r1
�
ω1 � (3.3)

We can project
�
vc on

�
un, thus obtaining the normal part of the relative velocity

�
vn � � �

vc
�
un � �un (3.4)

Note that � �vn
� � ḋn (3.5)

as one would expect.

We can also project
�
vc on the plane P, thus obtaining the tangential part of the velocity

�
vt � �

vc � �
vn � �

vc � � �
vc
�
un � �un (3.6)

If
�
vt � �

0 then the collision is purely normal, the force
�
F will be collinear with

�
un and no torque

will be generated. If
�
vt �� �

0, the unit tangential vector

�
ut �

�
vt� �vt
� (3.7)

can be defined but is usually not required.
�
vt is the instantaneous tangential relative velocity

at the contact point. Integrating this value over the duration of the contact gives the distance
covered by the initial contact points along the surface of the grains, a value used by some contact
models: �

dt �
� �

vtdt (3.8)

3.3.1 Simple contacts

The above discussion is sufficient to introduce a first class of contact models that deal with
isolated contacts. Such contacts are divided in two phases, a loading, when ḋn

� 0 followed by
an unloading, when ḋn

� 0. A soft body model must provide a pair of functions Fn and
�
Ft that

will compute a normal and a tangential component for the repulsion force from the normal and
tangential overlap and their first time derivative:

�
F � Fn � dn � ḋn � �un

� �
Ft � �dt �

�̇
dt � (3.9)

Note that the normal component is one-dimensional, as the normal force always follows the
normal vector of the contact, while the tangential component is a

�
d � 1 � -dimensional vector

— a two-dimensional vector for 3D simulations — as the tangential force always follows the
contact plane P.

36 CHAPTER 3. THE DISTINCT ELEMENT METHOD

In fact, equation (3.9) must be slightly modified because Coulomb’s law of friction limits the
tangential force � Ft �
	 µ � Fn � (3.10)

where µ is the friction coefficient.

Much more effort has been devoted to normal forces than to their tangential counterparts in
the design of models and in the fitting of the parameters. In fact, some contact models give
elaborate expressions for the normal part and fall back on traditional linear expressions for the
tangential part. The reason for this is mostly due to the fact that one of the most critical effects
of numerical contact models, the dissipation of energy, is almost entirely carried by the normal
force. However, tangential forces play a central role in some phenomena such as convection
and interaction with boundary objects.

One of the simplest contact models, first introduced by Cundall and Strack (1979), mimics a
double linear spring and dashpot system, as shown in figure 3.3. The normal and tangential
components Fn and

�
F t of the force are obtained by adding an elastic and a viscous contribution,

both of them computed as linear functions of the overlap size and relative velocity:

Fn � kndn
�

cnḋn (3.11)�
Ft � kt

�
dt
�

ct

�̇
dt (3.12)

tk

ct
nk nc

Coulombian friction

Figure 3.3: Schematic representation of Cundall’s model for the contact be-
tween two grains.

In the original model by Cundall, the elastic and viscous coefficients kn and cn introduced
as parameters of the simulation cannot be matched to physically measurable or interpretable
quantities. Choosing realistic values for them is a problematic task, especially with regard
to energy dissipation. It is possible, though, to map the simulated behavior with available
experimental data for a single collision between two grains, thus providing expressions for kn

and cn as function of the duration of the contact tc and the energy dissipation ratio en:

kn � meff

t2
c

�
π2 � ln

�
en � 2 � (3.13)

cn � � 2meff

tc
ln

�
en � (3.14)

3.3. THE CONTACT MODELS 37

where meff ��� 1
mi

� 1
m j � �

1
is the equivalent mass for the two grains i and j of mass mi and m j.

Cundall and Strack themselves suggested choosing kt and ct equal to their normal counterparts.

3.3.2 Multiple contacts

This is not sufficient yet: calibrating the parameters using experimental data for a single colli-
sion does not provide accurate energy dissipation whenever a particle is involved in several con-
tacts at the same time. This is due to the fact that such contacts do not follow the same loading
- unloading scheme as isolated contacts, but generally involve several reloading phases. Purely
viscoelastic models fail to provide accurate energy dissipation during the reloading phases.
Elastoplastic models such as the one introduced by Walton and Braun (1986) improve this dis-
sipation, but have other problems of their own such as loss of control on the maximal size of
the overlaps. Recently, Pournin et al. (2001) proposed a new approach designed to allow full
control on the energy dissipated during the successive phases of a contact. To achieve this, the
behavior of every new unloading phase is set according to the amount of energy dissipated so
far and the total amount of energy to be dissipated by the whole contact. If further reloading
phases occur, a new marginal dissipation will occur during the next unloading phase, as shown
in figure 3.4.

4 5 6 7 8321

en

Number of reloading phases

Figure 3.4: Adaptive energy dissipation as proposed by Pournin et al. The
large dots give an experimental approximation of the energy dissipation in an
n-reloading contact, the numerical models dissipate at each reloading phase
the amount given by the thick line.

Furthermore, the individual control of each reloading phase lifts the strong hypothesis made by
other models that contacts involving the same grain are independent. Since energy dissipation
at every new reloading phase is re-evaluated, the hysteresis of the contacts can be integrated in
each new phase.

To understand how Pournin’s new model works, it helps to look at the force-overlap diagrams
for various contact models, see figure 3.5. A purely elastic force model dissipates no energy.

38 CHAPTER 3. THE DISTINCT ELEMENT METHOD

Cundall’s model introduces energy dissipation through the viscous component, yielding the
elliptic trajectory on the diagram. The grayed area, the integral of this trajectory, is the amount
of energy dissipated. Walton’s model accounts for a plastic deformation, but the reloadings
follow the same trajectory and thus fail to dissipate more energy, unless the reloading occurs
relatively late (dark gray area). Pournin’s model chooses independent slopes for each loading
and unloading phase, yet controls the total deformation by the non-plastic return phase.

Pournin

Purely elastic

Walton (elastoplastic)

Cundall (viscoelastic)

PSfrag replacements

dn

dn

dn

dn

Fn Fn

FnFn

Figure 3.5: Force-overlap diagrams for some contact models. The arrows
represent the various loading and unloading phases. The gray part represents
the energy dissipated by the contact.

3.3.3 Contacts with walls

The theory developed for the contacts between two grains may be applied to the contact of a
grain with a wall. It suffices to assimilate the wall with a grain of infinite radius. In particular,
it means that the vector

�
un is perpendicular to the wall at the contact point, the plane P is the

3.4. INTEGRATING THE MOTION EQUATIONS 39

tangential plane to the wall at the contact point. Planar walls as well as cylindrical, conical and
spherical walls have been used in our simulations.

Fixed walls can be seen as having an infinite mass and are thus motionless, but mobile walls
such as the piston used to compress grains in some of the experiments described in chapter 5
will have a mass of their own and their behavior will also depend on the forces exerted on them
by the grains.

3.4 Integrating the motion equations

In step 4 of the algorithm we assume that all the forces acting on a grain are known. These forces
come from contacts with other grains — as computed in step 3 and discussed in the previous
section — or from contacts with the walls or floor, or from external factors like gravitation. We
can thus compute the total force acting on grain i at time t

�
Fi

�
t � � ∑�

i � j ��� DT

�
Fi j

�
t � �

�
Fiwalls

�
t � �

�
Figravity

�
t � (3.15)

Note that we take the sum over all edges of DT incident to grain i, yet there may be edges
along which no contact occur. Those edges will have to return no force. Similarly, the tangential
components of these forces, computed separately by most numerical contact models and limited
by Coulomb’s law of friction, generate a torque

�
Ti

�
t � � ∑�

i � j ��� DT
ri
�
un

� �
F t

i j
�
t � � ri

�
n � �

Ft
iwalls

�
t � (3.16)

where
�
un comes from equation (3.2) and

�
n is a unit vector normal to the wall at the contact point

directed towards the grain, which explains the minus sign. We can then use Newton’s equations
of motion to translate and rotate each grain:

mi ¨�ci
�
t � � �

Fi
�
t � (3.17)

Ii
˙�ωi
�
t � � �

Ti
�
t � (3.18)

where Ii is the moment of inertia of grain i, with Ii � 2
5 mir2

i if the grains are homogenous.

Numerical integration of these equations goes as follows. The sum of the forces
�
Fi yields an

acceleration
�
ai at time t for grain i �

ai
�
t � � 1

mi

�
Fi

�
t � (3.19)

From the current positions and velocities
�
ci

�
t � and ˙�ci

�
t � we can then predict new positions

�
xi

and velocities
�
vi at time t

� δt:
�
vi

�
t
� δt � � ˙�ci

�
t � � δt

�
ai

�
t � (3.20)

�
xi

�
t
� δt � � �

ci
�
t � � δt ˙�ci

�
t � � 1

2
δt2 �ai

�
t � (3.21)

To obtain sufficient precision for long time steps, predictor-corrector methods use now
�
xi

�
t
� δt �

and
�
vi

�
t
� δt � to compute the forces and accelerations at time t

� δt, and use this information to

40 CHAPTER 3. THE DISTINCT ELEMENT METHOD

correct the predicted values
�
xi

�
t
� δt � resp.

�
vi

�
t
� δt � into

�
ci

�
t
� δt � resp. ˙�ci

�
t
� δt � , then iterate

from there. However, as the numerical contact models we use impose very short time steps, this
correction step is usually not required.

Likewise, the torque
�
Ti generates an angular acceleration

�
αi at time t for grain i

�
αi

�
t � � 1

Ii

�
Ti

�
t � (3.22)

Angular velocity and positions are then computed like their directional counterparts.

3.4.1 Linear damping

Cundall and Strack (1979) introduced a linear approximation for the friction caused by the in-
terstitial fluid in the form of directional and rotational damping. The standard equations of
motion are modified and become

mi ¨�ci
�

C ˙�ci � �
Fi (3.23)

Ii
˙�ωi
�

C �
�
ωi � �

Ti (3.24)

where C and C � are the directional and rotational damping coefficients. This is sufficient for
the cases where the friction is limited, but does not provide feedback from the grains to the
fluid, a key issue for realistic coupling of DEM and fluid models. Due to the dry nature of our
simulations we do not use them at all.

This damping effect dissipates energy, albeit not at the level of the contact between the grains
but at the level of the grains trajectories. However, the net effect on the granular assembly is
indeed increased energy dissipation, and its use somehow conceals the lack of dissipation of the
contact model itself.

3.5 Beyond spherical grains

By looking at spherical grains, we have not only been able to use our triangulation-based col-
lision detection, we have also simplified the actual treatment of the collisions on the grains.
However, as Abraham Maslow said, "When the only tool you own is a hammer, every problem
begins to resemble a nail". If a mathematical model based on spherical grains is sufficient for
a first approach of many phenomena, if many granular materials are indeed composed of "al-
most" spherical grains, other cases require different grain shape to obtain realistic results. In
the remaining part of this chapter we will identify some of the difficulties that prevented so
far the extension of the polygonal model of Müller and Liebling (1995) to three dimensional
polyhedral grains, then we present an extension of our spherical model in the direction of more
general grain shapes.

Müller’s idea in 2D works as follows (see figure 1.3 on page 8): A triangulation is built on the
vertices of the grains and constrained by the edges of the grains, resulting in a decomposition

3.5. BEYOND SPHERICAL GRAINS 41

of the empty space between the grains. Any movement - translation, rotation or both - of the
grains will thus be transmitted to the triangulation, possibly causing a degeneracy, that is the
disappearing of a triangle due to one of its vertices reaching the opposite edge.

� If that edge belongs to a grain, then there has been a contact, and an appropriate hard
body, instantaneous collision model is used to update the trajectories of those two grains.

� If that edge does not belong to a grain, a flip is performed to guarantee the triangulation
remains valid.

Given the positions and trajectories of all the grains, therefore of all vertices, it is possible to
compute exactly for every triangle when it will become degenerate. All these events are inserted
in a scheduler. The simulation then loops forever, taking care of the next degeneracy, updating
the triangulation and adjusting future events.

That technique cannot be used in 3D as it is, because a 3D polyhedral shape may not admit a de-
composition in tetrahedra. The smallest and simplest example of a non-triangulable polyhedron
was already given in 1928 by Schönhart (reported, among others, by Boissonnat and Yvinec,
1995) and is shown in figure 3.6. This means, if at any time the position of the grains is such
that some part of the space between them cannot be triangulated, the whole detection process
fails.

Figure 3.6: Schönhart’s polyhedron, 3D view (left) and deformed top view
(right). It is basically a twisted, triangle-based cylinder.

Here are two ways to possibly get around this limitation and still apply this method in 3D, both
of which are still under theoretical study:

1. Restrict the shapes of the grains
Even the restriction of the grains to regular tetrahedra of the same size may not be enough
to guarantee the existence of a triangulation between them. Furthermore, such a restricted
model would not be a big improvement over spheres. Using non-regular tetrahedra cer-
tainly leads to potentially non-triangulable area such as Schönhart’s polyhedron.

2. Use additional points
By adding enough auxiliary points (Steiner points), any space bounded by piecewise lin-
ear surfaces can be triangulated. The problem here is to balance between adding enough

42 CHAPTER 3. THE DISTINCT ELEMENT METHOD

points to succeed, and not adding too many (or even remove some when they are not
needed anymore) in order to remain efficient, especially in a dynamic context.

It is not clear whether that detection scheme will ever work in 3D. If it does, it will probably
require as in 2D a hard body contact model. Work on soft body models for 3D polyhedral
grains has already started, see Matuttis et al. (2000), but their dependency on overlaps might
well defeat this approach to collision detection.

In the mean time, we tried to build grains of various shape by gluing together spheres into
clusters, as shown in figure 3.7. This is achieved by replacing, between pairs of spheres that
belong to the same cluster, the traditional repulsive force by another force model responsible
of keeping them together. From the point of view of the triangulation nothing special must be
done. External edges that link spheres from different clusters will support traditional contact
models, while internal edges that link spheres within the same cluster will support the gluing
force model. Since we consider only convex clusters, internal edges will never disappear, while
external edges will come and go to reflect the necessary flips to maintain the Delaunay triangu-
lation. This simply means that we now have a constrained Delaunay triangulation. The set of
constraints on the triangulation is given by the internal structures of the clusters, and somewhat
limited by their relative position. In particular, if we forget the spheres and look at the polyhedra
defined by the triangulation within each cluster, we see that those polyhedra will never collide.

Figure 3.7: Some non-spherical grains obtained by gluing together spheres.

The internal gluing force model still produces a repulsive force when the grains overlap, but
also produces an attractive force when the grains are separated. Two such forces have been
implemented and tested.

The first force is a simple power of the distance from the equilibrium:

F � A
� � �ci � �

c j
� � ri � r j � α

(3.25)

This expression is purely artificial. It was not derived from any physical property but was chosen
because it gave a very rigid behavior to the clusters. Some simulations involving tetrahedra and
short rods built with this cohesion force are presented in section 6.4. This first approach allowed
us to validate the concept of clusters.

3.5. BEYOND SPHERICAL GRAINS 43

And indeed, validation was necessary. Recalling the comments of section 2.5 about non-
degeneracy, we see that these clusters run into two potential problems: the way they are built
by placing spheres of equal radii in a face-centered cubic packing means that within a clus-
ter the centers are often collinear. And whenever two long rods are not parallel with nothing
in between, we create exactly the situation of figure 2.18 (on page 30). In such cases, if m1

and m2 are the lenths of the rods, there will be some O(m1m2) edges between them. Theory
warns us that there might be difficulties, and practice has shown that our implementation of the
triangulation could very well manage such delicate situations.

Once this approach was validated, we went on to provide a more physically realistic force
model between the grains, inspired from the behavior of the atoms in a molecule. The widely
used potential of Lennard-Jones is given by:

V � Ax �
α � Bx �

β with α � β � 0 (3.26)

where x � � �ci � �
c j
� is the distance between the centers and A, B, α and β are parameters. The

general shape of such potentials is shown in figure 3.8.

0

r1 + r2

Figure 3.8: Two examples of cohesion potentials.

Deriving this potential yields a force:

F � � αAx �
α

�
1 � βBx �

β
�

1 (3.27)

The problem of assigning pertinent values to the four parameters shows up again. There is a
condition of equilibrium when the distance between the centers is exactly r1

�
r2. This must

correspond to the minimum value of the potential V and to a force F equal to zero. This
condition gives us a first constraint for the set of parameters.

αA
�
r1
�

r2 � �
α

�
1 � βB

�
r1
�

r2 � �
β

�
1 � 0 (3.28)

We can use this relation to express B as function of A, α and β:

B � � α
β

A
�
r1
�

r2 � β
�

α (3.29)

Section 6.4 presents preliminary experiments intended to map the values of the remaining pa-
rameters to physical quantities describing the material such as Young’s modulus.

Computers are useless. They can only give you answers.
– Pablo Picasso

Chapter 4

Computational aspects

The dynamic triangulation presented in chapter 2 used as collision detection mechanism in the
framework of the DEM algorithm presented in chapter 3 offers new perspectives in terms of
applications. However, the computational bridge between theory and practice remains to be
built. Aside from the traditional implementation issues of the DEM, the dynamic triangulation
requires extra attention in two crucial areas of computational geometry: efficient data structures
for storing and manipulating the triangulation and robustness of the computation with respect
to rounding errors. We will first discuss the overall architecture of the simulation environment
we have developed, and then address these two major issues. The particularities of the paral-
lel code are then presented, and we conclude with some remarks about other features of our
implementation.

4.1 Design objectives

Several modules are involved in the simulation environment. A geometric module provides an
implementation for three-dimensional dynamic weighted Delaunay triangulations. It deals with
weighted points, segments, triangles and tetrahedra in 3D and provides core functionalities such
as insertion of new points and maintenance of the triangulation with respect to the motion of
the points.

This geometric module supports the DEM module. The latter deals with physical grains, nu-
merical contact models, and physical boundaries.

The geometric module can be used for other purposes. An attempt was made to reconstruct full
dynamic meshes for efficient visualization of SPH1 simulations but was not pursued. Another
example would be to maintain a dynamic mesh for numerical integration wherever it makes
sense to have the integration points follow a given path. It would also be possible to use the
DEM module with another underlying method for the collision detection.

1Smoothed Particle Hydrodynamics (SPH) is a simulation method in which the equations of a flow are solved
on a set of virtual particles, see Monaghan (1992).

46 CHAPTER 4. COMPUTATIONAL ASPECTS

The modules also use low level functionalities related to the management of the parameters, the
generation of pseudo random numbers, etc. Every class of every module is able to dump and
restore itself, thus implementing a checkpointing mechanism useful for error recovery or for
slicing computations in case of limited resource availability.

A container module that actually stores most objects provides data management. It is responsi-
ble for providing controlled access to every element of the simulation either to other elements
requesting information (for example a grain that wants to add all the forces acting on it) or to
the pool of exporters that produce statistics or files of various formats.

On top of the geometric and DEM modules, a simulation loop orchestrates the various elements
and implements the DEM algorithm of section 3.2. Two such loops exist: one for single-
processor computations and one multi-threaded designed specifically for shared memory multi-
processor machines.

This structure is shown in figure 4.1.

Geometry

Container

Simulation

DEM

facet−edgeedgevertex delaunay

bigtetra

loop

contact

P−loop

cohesion

clusters

flat

cylindric

conic

wall
AVS

POVRay

exporter

VRML

V
is

ua
liz

at
io

n
density

flow M
ea

su
re

s

Cundall

Pournin

grain

Walton

Figure 4.1: The structure of the simulation environment, split in modules
and classes.

All the code is written in C++. This choice was driven by the wide availability of the lan-
guage, the built-in support for intermediate data structures through the Standard Template Li-
brary (STL), and the support of the object oriented programming paradigm.

4.2 Implementation of the triangulation

We describe now the implementation of the core of the simulation environment, the triangula-
tion. Most functionalities required for the simulations will be offered through operations on the

4.2. IMPLEMENTATION OF THE TRIANGULATION 47

triangulation. We shall first recall those operations, and then present two alternative implemen-
tations.

4.2.1 Operations required on the triangulation

For the triangulation-based neighborhood to fulfill its role, several functionalities are required:
insert a grain, iterate over all potential collisions, add all forces acting on a grain, iterate over all
grains. From the perspective of the triangulation, these features map to a set of basic operations
to which are added the internal requirements for the triangulation maintenance: iterate over all
facets, evaluate the insphere criterion, perform flips wherever they are required.

4.2.1.1 Create an initial triangulation

As mentioned in chapter 1, the construction of a Delaunay triangulation is a well-covered topic.
However, our purpose here is not limited to obtaining the triangulation, we need to have access
to the triangulation structures in a format that allows easy and efficient updates. Therefore,
this initial step does not reduce to producing a mere list of edges, facets and tretrahedra. On
the other hand, the performance of this step is not critical, as it is only performed once at
the beginning of a simulation, not even when we reload a previous situation to continue the
simulation. Furthermore, we wanted to be able to keep adding new grains to the simulation,
thus requiring some sort of incremental method.

The scheme we have chosen uses one large tetrahedron enclosing the whole simulation area.
Grains are then incrementally added inside this external tetrahedron.

4.2.1.2 Insert a new vertex in the triangulation

The external tetrahedron guarantees that we are always inserting new points inside an existing
tetrahedron, which allows us to use the following procedure, illustrated in figure 4.2:

1. Start from any existing tetrahedron of DT .

2. Is the new point inside the current tetrahedron ? If yes, go to 4.

3. Choose a separating facet for the new point from the current tetrahedron among the facets
of the latter, move to the adjacent tetrahedron on the other side of this facet, and go back
to 2.

4. Split the current tetrahedron into four new ones, thus adding the new point.

5. Optional: enforce the Delaunay property by checking and eventually flipping the facets
of the newly added tetrahedron.

48 CHAPTER 4. COMPUTATIONAL ASPECTS

G

E

H
V

F

A

B

C

D

Figure 4.2: Traversing the triangulation to find the tetrahedron in which the
point to be inserted lies. Starting from a tetrahedron A,B,C,D, the check
on facet B,C,D shows the point V on the bad side of the facet. The adja-
cent tetrahedron {B,C,D,E} is thus selected. From there the path goes to
{C,D,E,F}, {D,E,F,G} and finally to {E,F,G,H}.

The last step is optional: If we do not perform it, we proceed with a perfectly valid triangulation
that may not be the Delaunay triangulation. This is intolerable when adding grains during the
simulation, but acceptable when building up the initial situation, before any collision detection
takes place. The transformation of this incremental triangulation into the Delaunay triangulation
is done only once when all grains have been added.

The efficiency of this incremental method for the initial construction of DT is highly dependant
on the choice of the starting tetrahedron in step 1. Guibas et al. (1992) proposed a randomized
approach to guarantee a reasonable amortized complexity. As we are usually inserting grains
according to a certain pattern, for example on the vertices of a lattice, we can usually choose
a starting tetrahedron close to the one containing the new point, thus reducing the number of
iterations required to find it.

Step 3 uses the orient3D predicate described in section 2.3. Numerical problems are avoided by
using the techniques described below in section 4.3.

The actual implementation of step 4 depends on the underlying data structure, which we will
describe later. It consists in adding one new vertex, four new edges, 6 new facets, and updating
all the necessary topological information contained therein.

Clearly, if the new point lies exactly on one face of an existing tetrahedron, the insertion pro-
cedure will fail, as one of the newly created tetrahedra will be flat. Fortunately, the predicate
detects those situations and the application has the choice of either dropping this grain or slightly
shifting it in order to remove the degeneracy.

4.2.1.3 Enforce the Delaunay criteria on the triangulation

There are two occasions during the simulation when the triangulation may not be the Delaunay
triangulation and thus needs to be updated in order to fulfill the requirements of the collision
detection.

4.2. IMPLEMENTATION OF THE TRIANGULATION 49

� When the grains move, the adjacency relations in the underlying Laguerre complex may
change, thus the topology of the Delaunay triangulation changes also. This affects the
whole triangulation.

� When one new grain is added, the Delaunay criterion must be enforced locally where the
insertion took place.

Both cases follow the same algorithm:

1. Build a list of facets to be checked. This includes either all the internal facets of DT , or
only those that were involved in the insertion.

2. Apply the weighted insphere predicate (see below, section 4.3) to the facets and make a
list with the invalid ones.

3. Iterate over that list and perform the flips where they are required and possible, remove
the corresponding facets from the list, check the newly created facets and add them to the
list if they are invalid.

4. Go back to step 3 until the list is empty.

Unlike in 2D where only one kind of flip is possible, step 3 must decide, for a given invalid
facet, which flip to apply. The conditions given in §2.4.3 are used to decide whether an edge
will be added or deleted.

Edelsbrunner and Shah (1996) proved that this algorithm works. Work means here that the
list of invalid edges will be empty after a limited number of flips, but also that the resulting
triangulation is the Delaunay triangulation.

4.2.1.4 Access the vertices of the triangulation

Obviously the vertices of the triangulation, and thus the grains of the simulation, must be stored
in a way that allows iterating through them all.

4.2.1.5 Access the edges of the triangulation

Just like the vertices, it must be possible to iterate through all edges of the triangulation, mostly
for the efficient computation of the forces but also for exportation purposes. Unlike the ver-
tices, though, this requirement must be accounted for explicitly, as the internal triangulation
management may not provide such functionality.

50 CHAPTER 4. COMPUTATIONAL ASPECTS

4.2.1.6 Access the edges incident to a vertex

When computing the total force acting on a grain, all edges incident to a vertex must be con-
sidered. As this operation is not trivially provided by a 3D triangulation, efficiency suggests
that each vertex keeps a list of those incident edges, the list being updated whenever an edge is
added or deleted.

One could do without this by simply adding the newly computed force to the corresponding
grains, thus effectively combining step 3 and part of step 4. This would be valid in a sequential
algorithm where concurrent accesses do not occur, but when we compute the forces in parallel
(see section 4.5), this methods creates race conditions that must be explicitly avoided by using
some sort of locking mechanism. Since it does not involve any overhead, we chose to keep the
computation of the contact force and the computation of the total force separated.

This concludes the list of functionalities that the geometric module must provide for the rest of
the simulation to be performed. We describe now two potential implementations and discuss
their forces and weaknesses.

4.2.2 Triangulation based on Facet-Edges

Inspired by the previous work of Xue (1995) and Müller (1996a), we have used doubly con-
nected facet-edge lists (DCFL) introduced by Dobkin and Laszlo (1989). They are a natural
extension of the doubly connected edge lists (DCEL) of Guibas and Stolfi (1985) commonly
used in 2D. Though not trivial to implement, they are very powerful since they give immediate
access to all the connectivity information we require, yet allow local, constant time updates.

4.2.2.1 The basic elements

The data structure comprises three kinds of basic elements: the vertex, the edge and the facet-
edge. Since we deal with weighted generating sites, the vertex is defined as three coordinates
and a weight:

class Vertex
double x, y, z
double w

end

The edge connects two vertices. It is oriented, thus has a starting and an ending vertex:

class Edge
Vertex start
Vertex end

end

4.2. IMPLEMENTATION OF THE TRIANGULATION 51

The facet-edge is the core element of the DCFL, as it holds the complete topological structure
of a 3D triangulation. A facet-edge, as the name implies, is the combination of a facet and an
edge of the triangulation. It follows from this choice that every facet in the triangulation will be
represented by three facet-edges and every edge will be represented by as many facet-edges as
facets (or tetrahedra) there are incident to it.

T1

T3

D
E

C

A

B
T2

T

C

B

A

Figure 4.3: Left: Connections attached to a facet-edge inside a facet:
TAB.Enext gives TBC while TAB.Eprev gives TCA. Right: Connections
attached to a facet-edge around an edge: T1AB.Fnext gives T2AB while
T1AB.Fprev gives T3AB.

The facet-edges are connected together in two different ways. Within a facet, each facet-edge
gives direct access to the two others through Enext and Eprev operations. Around an edge,
Fnext and Fprev operations provide traversal through of all of them. Figure 4.3 illustrates
those double links.

Facet-Edges are oriented, in that they have a starting Vertex and an ending Vertex. A boolean
flag indicates if this orientation corresponds to that of the underlying edge. Thus, a facet-edge
is implemented by the following structure:

class FacetEdge
Edge edge
Boolean dir
FacetEdge Enext, Eprev
FacetEdge Fnext, Fprev

end

in which Enext, Fnext, Fnext and Fprev are really pointers to other facet-edges, and edge is
also a pointer to the suitable edge.

52 CHAPTER 4. COMPUTATIONAL ASPECTS

Note that the Eprev and Fprev pointers are somehow redundant, as it is possible to visit all
neighbors by continuously moving forward. However, they are present for efficiency.

Aside from direct access to the components of the structures described so far, a number of access
functions are implemented as an interface to higher-level objects. In particular, a facet-edge T
provides direct access to the five vertices of the two tetrahedra sharing its associated facet, see
figure 4.4.

� T.V1 is the starting vertex of the underlying edge if it is oriented like T, the ending vertex
if the orientations differ.

� T.V2 is the ending vertex of the underlying edge if it is oriented like T, the starting vertex
if the orientations differ.

� T.V3 = T.Enext.V2 = T.Eprev.V1 is the third vertex of the facet.

� T.V4 = T.Fnext.Enext.V2 = T.Fnext.Eprev.V1 is the fourth vertex of the tetrahedron on
the positive side of the facet.

� T.V5 = T.Fprev.Enext.V2 = T.Fprev.Eprev.V1 is the fourth vertex of the tetrahedron on
the negative side of the facet.

5

3

4

1

2

T

Figure 4.4: Accessing vertices from a facet-edge.

One can deduce that a tetrahedron is uniquely identified by a facet-edge and an orientation.

As mentioned before, we start with four auxiliary vertices defining a tetrahedron large enough to
contain the whole simulation area, and then insert vertices inside it. For this initial triangulation,
four vertices, six edges and twelve facet-edges are required.

4.2.2.2 The insertion of a new vertex

The insertion of a new vertex follows the algorithm presented in §4.2.1. The directed traversal
of the triangulation is easy to perform by a succession of calls to the Enext, Eprev, Fnext and
Fprev primitives, first to identify a separating facet of the current tetrahedron, then to move
to the next one. Such a path was shown in figure 4.2. The point is then inserted as shown in
figure 4.5.

4.2. IMPLEMENTATION OF THE TRIANGULATION 53

A

V

D
B

C

Figure 4.5: Inserting one new vertex. Four new edges {A,V}, {B,V}, {C,V}
and {D,V} are created. Six new facets thus eighteen new facet-edges are also
created. They are connected to each other within the newly created facets
and around the newly created edges, and are inserted in the lists around the
corresponding edges of the original tetrahedron {A,B,C,D}.

4.2.2.3 The fips

Once a portion of the triangulation has been identified as violating the Delaunay criterion — by
means of the insphere predicate — it is updated by performing flips. As shown in figure 2.15,
either flip reduces to adding or removing one edge and some facet-edges.

4.2.2.4 Inserting and removing a facet-edge

We conclude the description of this data structure by showing what really happens when insert-
ing and removing facets since most operations reduce to a combination of them.

When a new facet appears in the triangulation, three new facet-edges are generated and con-
nected to each other by the two doubly connected lists within that facet, thus setting the Enext
and Eprev fields of the facet-edges. Then each facet-edge is inserted in the two doubly con-
nected lists of facet-edges around their supporting edges, thus setting their Fnext and Fprev
fields. The removal of a facet basically involves performing the same operation backwards: the
facet-edges are removed from the lists of their supporting edges, then destroyed, thus destroying
the facet. The insertion and removal of a facet-edge around an edge are simple procedures (see
figure 4.6):

procedure InsertFacetEdge(T1, T2)
T1 is the new FacetEdge to be inserted before T2
Order of the operations is important !
T2.Fnext.Fprev = T1 # T3.Fprev = T1, used to be T2
T1.Fprev = T2
T1.Fnext = T2.Fnext # T1.Fnext = T3
T2.Fnext = T1 # used to be T3

end

54 CHAPTER 4. COMPUTATIONAL ASPECTS

procedure RemoveFacetEdge(T1)
T1.Fprev.Fnext = T1.Fnext # ie T2.Fnext = T3
T1.Fnext.Fprev = T1.Fprev # ie T3.Fprev = T2

end

E
C

A

B

E
C

D

A

B
T3

T2

T3

T1

T2

Figure 4.6: Insertion and removal of a facet-edge in the lists of facet-edges
around the edge {A,B}.

4.2.3 Triangulation based on Triangles

An alternative to the DCFL was also implemented to store the triangulation. Aside from the
Vertex and the Edge, the third basic element of this approach is the Triangle. Each triangle is
uniquely defined by its three vertices, but also keeps a pointer to the 4th vertex of both tetrahedra
it belongs to (see again figure 4.4). The triangles are stored in a dictionary that provides O(logn)
access to the set of 5 vertices indexed by the 3 base vertices. Successive retrieval thus provides
complete connectivity information in the triangulation.

This approach was designed when persistent access to the triangles was necessary for drawing
purposes. The support offered by the advanced data structures of the standard template li-
brary (STL) of C++ (Stroustrup, 1997) made this implementation fairly straightforward. It was
however not used much because the retrieval of connectivity information from the dictionary,
however efficient, is still more time consuming than with the DCFL.

Operations on the triangulation are relatively easy to implement with this representation. The
insertion and deletion of facets maps to the creation and deletion of a triangle, and the connec-
tivity is maintained by suitably updating the 4th and 5th vertex referenced by each triangle.

Comparing the DCFL and the dictionary of triangles yields expected conclusions: the former
is more mathematical, designed for the problem at hand, fairly complex to understand and

4.3. NUMERICAL STABILITY IN COMPUTATIONAL GEOMETRY 55

implement, and extremely efficient. The latter is more computational, based on general-purpose
data structures and functionalities, relatively easy to understand and implement, and provides
poor performance. Efficiency has its cost.

4.3 Numerical stability in Computational Geometry

The major problem with the geometric predicates described in section 2.3 is that their numeri-
cal evaluation with standard limited precision floating-point arithmetic commonly provided by
today’s computers is very error prone, and that false evaluation of the predicates usually opens
the door to all kinds of problems in the triangulation (inconsistencies in the data structures) and
in the simulation (contacts not detected).

The correct evaluation of the sign of any of the determinants (2.5) to (2.12) is especially crucial
when the points are "close" to being in degenerate position. In those cases, the absolute value of
the determinant will be very small, since we are in fact computing a volume. And it is precisely
when that value is close to zero that rounding errors are likely to happen, as the determinant
is computed by adding and subtracting products of coordinates, that is, adding and subtracting
large numbers whose sum or difference may have a very small modulus. Many significant digits
of the operands are lost in such computations.

Efficient exact evaluation methods for these determinants have been proposed for restricted
cases with integer or rational input, see for example Bronnimann and Yvinec (1997). For
generic input, libraries for extended precision arithmetic exist, but they usually slow down com-
putation by one or more orders of magnitude and are not suited for our purposes. The solution
we used comes from Shewchuk (1997) and is based on two advanced techniques.

The first is a set of efficient algorithms for performing elementary operations (+, -, *) with
arbitrary precision by relying on features of the IEEE 754 floating-point standard. It is inspired
by the previous work of Priest (1991).

The second uses the fact that we only need the sign of those determinants, not their exact values.
Therefore, it is often possible to guarantee an exact result for the predicate without an exact
computation. Fortune and Van Wyk (1993) suggested using standard arithmetic to compute the
determinant ∆ and a certificate of validity τ. If the latter cannot assert that ∆ has the correct sign,
then an exact computation is performed by means of extended precision arithmetic. Shewchuk
improved this scheme by computing a sequence of successively more accurate approximations
of the determinant.

The idea of computing such arithmetic filters for the predicates is also used in CGAL. Our
implementation is based on Shewchuk’s code2, slightly extended to support the weighted ver-
sion of the Orient3D predicate. Practical usage has shown that the first approximation can be
validated in more than 99% of the cases, thus achieving computational efficiency, and that the
configurations where this approximation is wrong are very rare, but they do indeed happen and
are fully detected, thus achieving geometric exactness.

2Available from http://www.cs.cmu.edu/~quake/robust.html .

http://www.cs.cmu.edu/~quake/robust.html

56 CHAPTER 4. COMPUTATIONAL ASPECTS

We describe summarily the exact floating-point computations and the adaptive sign evaluation
proposed by Shewchuk. The rest of this section is largely inspired by his papers. We have used
the same names and symbols so that the interested reader can pursue the exploration by reading
either the short report (Shewchuk, 1996) or the complete paper with detailed proofs (Shewchuk,
1997).

4.3.1 Exact floating-point computations

Floating-point numbers are represented in modern processors as a sign bit, a significand of
p bits, and a base-2 exponent: x ��� bbbb � � � � pbits � � � � bbbb � 2exponent. In double precision,
p � 53 which translates to roughly 15 significant decimal digits (see Goldberg, 1991, for a
complete survey of floating-point formats). Rounding errors occur when p bits are not enough
to express the result of a computation. For example, if p � 4, 11010 + 101.1 gives 11110
instead of 11111.1 and two digits are lost. The solution consists in having more than p bits
to represent the result. Instead of allocating very long vectors of bits (p � 1000), the idea
is to use expansions: x � xn

� � � � � x2
�

x1 where each xi is a normal floating-point number.
Two conditions are imposed: the xi are ordered by magnitude (xn largest, x1 smallest) and non-
overlapping, in the sense that the least significant bit of xi � 1 is more significant than the most
significant bit of xi. Note that several expansions may represent the same value and that xn

provides immediate access to an approximation of x. In particular, if xn �� 0, x and xn have the
same sign.

Basic arithmetic operations can be performed with expansions, but before we describe them, let
us see how addition, subtraction and multiplication of two standard floating-point numbers can
return an exact value represented by an expansion. We use the symbols � , � and � for the p-bit
operations performed by the processor. The following algorithms assume that these operations
are performed with exact rounding: if the result of a computation can be expressed with p bits,
then the result is exact; if it cannot, the result is rounded to the nearest p-bit floating point value.

If a and b are two p-bit floating-point numbers such that � a ��� � b � , FAST-TWO-SUM produces an
expansion x

�
y such that a

�
b � x
�

y, where x is an approximation of a
�

b and y accounts for
the rounding error.

procedure FAST-TWO-SUM(a, b)
x � a � b
bv � x � a
y � b � bv

return
�
x � y �

TWO-SUM lifts the hypothesis on � a ��� � b � :

4.3. NUMERICAL STABILITY IN COMPUTATIONAL GEOMETRY 57

procedure TWO-SUM(a, b)
x � a � b
bv � x � a
av � x � bv
br � b � bv
ar � a � av
y � ar � br

return
�
x � y �

TWO-DIFF and FAST-TWO-DIFF are implemented similarly. To account for the propagation
of the rounding error y one must now be able to add two expansions. Let e and f be two
expansions of length m and n. Simply merging the two gives the correct result, but breaks
the non-ovelapping condition. LINEAR-EXPANSION-SUM starts with the merged expansions and
produces an expansion h for the result in linear time:

procedure LINEAR-EXPANSION-SUM(e, f)
Merge e and f in a sequence of non-decreasing magnitude g�
Q2 � q2 � � FAST-TWO-SUM(g2 � g1)

for i � 3 to m
�

n�
Ri � hi

�
2 � � FAST-TWO-SUM(gi � gi

�
1)�

Qi � qi � � TWO-SUM(Qi
�

1 � Ri)
hm � n

�
1 � qm � n

hm � n � Qm � n

return h

Multiplication is based on the fact that a p-bit floating-point processor will multiply without
errors two � p

2 � -bit values. The exact product of two p-bit floating-point numbers a and b is
performed by splitting each term, performing four exact multiplications, and reconstructing
an expansion x

�
y � ab from the four results. Full details on the splitting, the TWO-PRODUCT

procedure and how it can be used to multiply two expansions are given in the original papers of
Shewchuk.

4.3.2 Adaptive sign computation for determinants

Looking at the code of FAST-TWO-SUM or TWO-SUM above, one sees that the first line computes
the approximation x and the remaining lines compute the rounding error y. If the precision
of x is sufficient, one could avoid computing the unnecessary y, or at least delay it until more
precision is really required.

Consider the two-dimensional orientation predicate given by

Or2D
�
A � B � C � � sign

����
Ax � Cx Ay � Cy

Bx � Cx By � Cy

���� (4.1)

58 CHAPTER 4. COMPUTATIONAL ASPECTS

The coordinates of A, B and C are supposed to be p-bit floating-point numbers. After a first
round of computation, one has the following expansions of length two:

q2
�

q1 � Ax � Cx

r2
�

r1 � Ay � Cy

s2
�

s1 � Bx � Cx

t2
�

t1 � By � Cy

Recall that ε � q2
��� � q1

� (and likewise for the three others) with ε � 2 �
p as the expansions have

non-overlapping components.

The next round produces two expansions of length four:

4

∑
i � 1

xi � �
Ax � Cx �

�
By � Cy �

� �
q2
�

q1 �
�
t2
�

t1 �
� q2t2

�
q2t1
�

q1t2
�

q1t1
4

∑
i � 1

yi � �
Bx � Cx �

�
Ay � Cy �

� �
s2
�

s1 �
�
r2
�

r1 �
� s2r2

�
s2r1
�

s1r2
�

s1r1

Note that the previous equations do not mean that q2t2
�

q2t1
�

q1t2
�

q1t1 is a valid expan-
sion for x as these terms may overlap. However, q2t2 can be chosen to be x4. Before fully
constructing the two expansions x and y, we see that

ε � q2t2 � � � q2t1 �
ε � q2t2 � � � q1t2 �
ε � q2t1 � � � q1t1 �
ε � q1t2 � � � q1t1 �

ε2 � q2t2 � � � q1t1 �

q2t2 � s2r2 is a first approximation of the value of the determinant (4.1). If its modulus is large
enough, its sign will not change when adding the rest of the expansions x and y. In fact, if

� q2t2 � s2r2
� � A

� � q2t2 � � � s2r2
� � (4.2)

then q2t2 � s2r2 gives the correct sign for the determinant (4.1).

The factor A in equation (4.2) is a bound for the forward propagation of rounding errors due to
the computation of q2t2 � s2r2 instead of the exact value of the determinant, which is given if
test (4.2) fails by a last expansion of length eight:

8

∑
i � 1

∆i � �
Ax � Cx �

�
By � Cy � �

�
Bx � Cx �

�
Ay � Cy �

� 4

∑
i � 1

xi �
4

∑
i � 1

yi

4.4. THE SIMULATION LOOP 59

4.4 The simulation loop

As can be seen in figure 4.1 on page 46, the actual implementation of the DEM algorithm pre-
sented in section 3.2 takes place in a specialized class that accesses all the relevant information
through the container. The core of this class simply performs the requested number of itera-
tions, checks for collisions along the edges of DT and with the walls, and then updates the
positions of the grains. This loop is also responsible to call at given intervals the triangulation
maintenance routine, the statistics computation, the instantaneous exportation of snapshots of
the simulation, and a few other minor functionalities.

The sequential simulation loop is thus a straightforward implementation of the algorithm. The
benefit of the layered design discussed in section 4.1 is that this sequential loop can be replaced
by a parallel loop without any change in the rest of the code. Using this feature, we wrote two
other loops, one specialized for SGI parallel machines using their proprietary multiprocessing
compilers and libraries, the other implemented with standard POSIX threads compatible with
virtually any parallel machine running some UNIX-like operating system. In particular, low
cost dual- and quad-Pentium machines running Linux have proven to be very cost efficient
machines to run our simulations. The two parallel loops differ only in their implementation
syntax. We shall now describe the steps required to go in parallel.

4.5 The parallel simulation loop

4.5.1 The parallel algorithm

The DEM algorithm of section 3.2 is well suited to a medium grain3 parallelism. Each iteration
is divided in two main phases:

� In step 3, compute the forces along each edge of the triangulation as a function of the
position (and velocity, spin,...) of the grains.

� In step 4, compute the positions (and velocity, spin,...) of the grains as a function of the
forces in the incident edges and external forces.

These two phases account for the major part of the computational effort. As mentioned before,
they cannot be interleaved, due to data dependencies. However, each phase exhibits a very
high degree of parallelism since each force, resp. the position of each grain, may be computed
independently. It is fairly easy to divide the simulated area into layers and assign the grains and
edges in a layer to a given processor, as shown in figure 4.7. That processor is then responsible
for updating all values in that layer, eventually reading values from a neighbor layer.

3The term grain here has nothing to do with granular materials. It is a measure of the size of the blocks of code
that are distributed over the processors. In fine grain parallel codes, very small portions are executed with a very
tight synchronization. In coarse grain parallel codes, very large procedures are executed by almost independent
processors. Medium grain codes are somewhere in-between.

60 CHAPTER 4. COMPUTATIONAL ASPECTS

Figure 4.7: The simulated area is divided in layers that are assigned to pro-
cessors.

Since the workload associated with each layer is directly proportional to the number of ele-
ments, the layers will be chosen such that all of them contain an approximately equal number
of vertices and edges. If grains are added during the simulation, it is necessary to reform the
layers in order to rebalance workload, as shown in figure 4.8. Even without adding new grains,
it is better to reform the layers now and then in order to minimize the number of accesses to
elements of neighboring layers. The assignment of grains and edges to the processors is easily
achieved as part of the triangulation update in step 5.

Figure 4.8: Five consecutive snapshots of grains being poured in a cylinder.
The color of a grain indicates which of the four processors is responsible for
computing its trajectory. The dynamic subdivision into layers implies in this
case that the horizontal boundaries vary with time.

Most of step 5 deals with checking the validity of the triangulation through the computation of
geometric predicates. That can again be performed in parallel for each layer. The short phase
of topological changes and layers redistribution that takes place if the triangulation is not valid

4.5. THE PARALLEL SIMULATION LOOP 61

anymore is performed in a sequential block, as is the initial construction of the triangulation
(step 1), the computation of the various statistics and the exportation of the simulation results.

Figure 4.9 gives the pseudo-code for the parallel version of the algorithm. Steps performed by
all processors in parallel and steps performed by only one processor are distinguished, and the
necessary synchronization points between the various phases (barriers) are shown.

1 Setup the simulation, create the initial triangulation

BARRIER

For each edge do
2 If the grains at each end of the edge overlap
3 Compute the forces at the contact point

BARRIER

For each grain do
4a Check for contact with the walls and

compute the corresponding forces
4b Sum all forces acting on this grain
4c Update its position, velocity and spin

Every 10 to 100 iterations do
BARRIER

5a check the triangulation
BARRIER

5b flip invalid edges
re-balance workload

BARRIER

6 Go to 2 for another iteration

Figure 4.9: The pseudo-code of the parallel version of the algorithm. Steps
in bold are computed in parallel by each processor, while steps in italics
are done sequentially by only one processor. The synchronization points
(BARRIER) also appear.

4.5.2 The parallel machines

The major drawback of this parallel algorithm is that it relies on transparent remote memory
accesses. Transparent means here that if in order to update an element assigned to it, processor
A needs data from an element assigned to processor B, A must be able to read that data with no
explicit intervention of B. Such remote memory accesses can be provided intrinsically by the
hardware, or can be simulated by specialized hardware and software.

62 CHAPTER 4. COMPUTATIONAL ASPECTS

Truly shared memory hardware, such as SMP PCs or workstations with few processors, offers
uniform memory access to every processor. In other words, accessing data from elements in
neighboring layers does not cost any additional overhead4. Unfortunately, such hardware does
not scale well beyond 8 processors.

Shared memory can also be provided by intrinsically distributed hardware in so-called single
memory image, Non Uniform Memory Access (NUMA-SMP) machines such as the SGI Ori-
gin servers with 8 or more processors. However, in this case remote memory accesses may be
several orders of magnitude slower than local accesses, thus maximizing data locality is crucial.
Indeed, previous experience of the author gained in a different project (about the parallel compu-
tation of graph diameters, see Ferrez et al., 1998a,b) has shown that the performance drastically
decreases if one blindly trusts the shared memory scheme advertised by these machines instead
of accounting explicitly in the algorithm for the distributed hardware.

The Cray T3D, one of the precursor of the massively parallel programming paradigm, did not
offer shared memory but customized hardware and a specific library, shmem, provided efficient
and transparent remote memory access, exactly what we needed to parallelize the two dimen-
sional simulation code of Müller, see Ferrez et al. (1996). The reduced complexity of the 2D
triangulation also made things much easier. In particular, with a fixed convex hull and as long
as no new grain is added in the simulation, the number of edges of the triangulation remains
constant. In 3D, every flip involves creating and deleting edges and facets, thus rendering the
memory management more tedious.

The current trend in High Performance Computing, however, is clusters of machines that do
not provide any remote memory access5. In this case, the data structures and algorithms must
be adapted to account for explicit exchanges of information between two processors commonly
performed in the framework of the Message Passing Interface (MPI). Indeed, a processor that
requires remote data will only receive it if the remote processor knows about this requirement
and explicitly transmits the information. Minimizing remote accesses is even more crucial
in this case, not just because the communication bandwidth is generally smaller, but because
latencies are up to several orders of magnitude higher and the communication actually interrupts
both processors.

The DCFL data structure, already fairly complex in a sequential algorithm, becomes tedious to
maintain in a message-passing context. An efficient, distributed memory implementation of the
dynamic triangulation will require careful attention and eventually an alternative data structure.

Another possible approach would be to differentiate the role of the processors: one of them, the
master, would take care of the whole triangulation and do nothing else, while the others, the
slaves, would compute forces and trajectories in the layers. This model implies large volume
of communications between the master and the slaves — all the grains coordinates must be
exchanged every time the triangulation must be updated — thus creating a significant bottleneck
that might also restrict scalability to only a few processors.

Aside from reducing computation time, parallel machines are sometimes required to satisfy
4We assume here that contentions due to concurrent memory accesses to a read-only variable have no impact.

This is true for the validity of the method, but may indeed influence the memory throughput and therefore the
overall performance.

5Software emulations exist (see for example Carreira et al., 1995) but at the price of very poor performances.

4.5. THE PARALLEL SIMULATION LOOP 63

huge memory needs. This is not a problem with the current models since a standard workstation
with 512Mb of memory will host a simulation of 100’000 spherical grains. However, more
complex geometries or contact models that keep a history of the collision might change this
situation.

4.5.3 Performance of the parallel code

The scalability of the shared memory parallel code has been tested on an SMP PC with 4
Pentium III Xeon processors. The simulation comprised approximately 12’000 grains of three
different sizes packed in a cylinder. 1000 iterations were performed with the triangulation
being checked and updated every 10 iterations. Running times and speedup compared to the
sequential code running on the same machine are given in table 4.1 and figure 4.10.

Step of the algorithm 1 CPU 2 CPUs 3 CPUs 4 CPUs
Setup 1 272 267 273 267
Grain-grain forces 3 450 235 181 140
Grain-wall forces 4a 106 55 48 38
Trajectories 4b&c 475 235 182 133
Triang. verification 5a 178 92 69 52
Triang. maintenance 5b 161 163 181 167
Other (export...) 128 83 75 63
Total time 1770 1130 1009 860
Speedup — 1.56 1.75 2.06
Total time (w/o setup) 1498 863 736 593
Speedup (w/o setup) — 1.73 2.04 2.53

Table 4.1: Timing of the shared memory parallel code. Times are given in
seconds of wall clock time, averaged over three runs that gave results within
at most 2%.

These values call for some comments. First of all the setup time may seem very long, taking
approximately 15% of the total time on one CPU. This incompressible sequential portion would
have less influence if more iterations had been performed. Total times and speedup without this
part are provided to give a better idea of what happens on long simulations.

The sequential triangulation maintenance further limits the scalability. If longer intervals are
chosen, such as every 20 or 50 iterations, the impact of this step on the overall computation
time, especially on several processors, is reduced.

The computation-intensive steps (3, 4a,b,c and 5a) scale almost linearly on 2 CPUs and reson-
ably well on 3 and 4 CPUs, where memory contention effects appear. The triangulation main-
tenance is again sequential, and no explanation could be found for the degraded performance of
this step on 3 CPUs in all three runs.

To conclude, despite the fact that the lack of a parallel code adapted to message-passing pre-
vents us from using machines with more processors, we are satisfied with our approach that
makes the most of hardware nowadays commonly found on the desktop of any computational

64 CHAPTER 4. COMPUTATIONAL ASPECTS

1

2

3

4

1 2 3 4

linear speedup
Setup

Grain-grain forces
Grain-wall forces

Trajectories
Triang. verification

Triang. maintenance
Total time

Total time w/o setup

Figure 4.10: Speedup of the shared memory parallel code.

scientist. Furthermore, as the parallel versions are obtained by selecting the relevant compo-
nent of the modular code, all versions remain synchronized and benefit from all improvements.
The traditional approach of forking the development to produce a specialized parallel version,
followed by the back-porting of new features, is avoided.

4.6 Measures

Characteristics about the simulations may be computed every few iterations as functions of
position, velocity, size, etc. of the particles. For example, the average density of a packing of
homogenous grains in a vertical cylinder at any time is given by:

density � ∑i
4
3 πr3

i

B HM
(4.3)

where B is the surface of the base of the cylinder and HM � max
�
Hi � is the height of highest

grain. If the number of grains remains constant, only HM need to be tracked (during step 4
of the algorithm), the rest may be precomputed for efficiency. Other global measures include
kinetic, potential and total energy, maximal and average velocity or spin of a grain, etc.

Aside from global measures, local or internal measures can be performed. When suitably cho-
sen, these values give a detailed and precise description of the actual behavior of the assembly.

4.7. I/O FUNCTIONALITIES 65

Furthermore, they are usually not observable in a lab experiment. Examples include local densi-
ties per horizontal layers used to track wave effects induced by vibrations, average flow through
a given area,...

Horizontally layered densities are fairly straightforward to compute with equations

VolBelow
�
Gi � h � �

������ �����
0 if h 	 yi � ri

π
3

�
h � yi
�

ri � 2 � 2ri � h
�

yi � � if yi � ri
� h 	 yi

2π
3 r3

i
� π

3

�
yi � ri � h � 2 � 4ri � yi

�
h � if yi

� h 	 yi
�

ri

4π
3 r3

i if yi
�

ri
� h

(4.4)

for the volume of the portion of grain Gi of radius ri and vertical coordinate yi under the plane
of altitude h and

VolInSlice
�
k � ∆h � � ∑

i
VolBelow

�
Gi � k∆h � � ∑

i
VolBelow

�
Gi �

�
k � 1 � ∆h � (4.5)

for the volume of the portions of all grains in the kth horizontal slice of thickness ∆h.

With many experiments taking place in vertical cylinders, the computation of vertical concentric
layered densities is of uttermost interest. Unfortunately, such a computation requires the volume
of the intersection of a sphere with a cylinder, a quantity more easily defined than computed:

VolIntSphCyl
�
r� R � d � � 2

� �
�
x

�
d � 2 � y2 � R2

x2 � y2 � r2

�
r2 � x2 � y2 dxdy (4.6)

where r is the radius of the sphere, R the radius of the cylinder, and d the distance between
the center of the sphere and the axis of the cylinder. If the intersection is not empty, that is if
d � r
�

R, this integral can be rewritten as

VolIntSphCyl
�
r� R � d � � 4

� min
�
d � R � r �

max
�
d

�
R �

�
r �

dx
� min � � R2

�

�
x

�
d � 2 ��� r2

�
x2 	

0

�
r2 � x2 � y2 dy (4.7)

which is not easier to compute numerically. Fortunately, Lamarche and Leroy (1990) have pro-
posed an alternative expression that can be computed directly as well as a sample FORTRAN
implementation, from which we could derive a C++ version. An equation similar to (4.5) can
then be used to compute local concentric densities.

4.7 I/O functionalities

The I/O functionalities provided by the simulation environment belong to two categories. Check-
pointing allows dumping the current status of the simulation to a file and reloading it later.
Exporting at suitable times provides a partial view of the simulation in a format that allows
post-processing by another tool.

66 CHAPTER 4. COMPUTATIONAL ASPECTS

4.7.1 The checkpointing mechanism

Checkpointing is a common feature of many High Performance Computing environments. Its
objective is to dump a running application and its data to disk in order to remove it from the
system, thus freeing memory and CPU. On highly loaded systems, this is used to slice and
distribute resources to several users. The checkpointing mechanism can be offered by the op-
erating system or by the batch management system. Why implement our own checkpointing
mechanism ? Our main objective was to be able to save the current state of the simulation and
to retrieve it later, continuing the simulation, possibly with a different set of parameters.

The structure of the simulation code, with one module responsible for the storage of (lists of)
elements made such a checkpointing fairly simple to implement: Every class has a unique
identifier and is able to dump and restore itself from a stream. The container is then responsible
to call every object of the simulation, telling it to dump itself. The restoring mechanism is
similar, the container reads a class identifier and creates an object of the correct type, the object
being initialized with data coming from the stream.

4.7.2 The exportation of data for visualization

An important way to extract information from a computer simulation is visualization. Unfor-
tunately, while the choice of spherical grains simplifies the simulation, it restricts the interac-
tive visualization possibilities as 3D spheres are among the most difficult objects to draw on a
computer screen and even most recent high-end visualization servers do not allow comfortable
online observation of large data sets. Two trends emerge in the transformation of the computa-
tional results into visual experience:

High-resolution images of instantaneous snapshots of the simulation can be rendered using
various techniques such as ray-tracing. Eventually, series of such images are assembled into
video clips. This approach is suited for static and non-interactive representation such as book or
poster illustrations, web pages, etc. In fact, this report contains more than 200 images produced
this way. The main drawback — aside from a considerable post-processing effort — is the lack
of interactivity. It is not possible to view a certain situation under a different angle, to perform
projections, clippings, boundary removal, etc. without repeating the whole process.

On the other hand, online interactive visualization is possible on small cases containing 100
to 1000 spheres. Aside from comfortably studying small cases during the development of the
method, this allows for example to track only a few selected particles or to restrict the visual-
ization to a very small portion such a the opening of a hopper. However, the lack of a global
vision in these cases is a strong obstacle to the overall comprehension of the phenomenon.

4.8 Parameter management

Aside from a limited number of options that are given on the command line, among which the
level of debugging information to be produced, all the parameters are read from an initialization

4.8. PARAMETER MANAGEMENT 67

file. This file is meant to be as readable as possible: it is organized in logical sections, allows
comments to be inserted wherever they make sense, and uses meaningful parameter names. A
short example is given in figure 4.11.

[General]
Gravity = (0.0, -9.81, 0.0)
nbPoints = 100000
nbIter = 200000
deltaT = 1e-5
NbThreads = 4

The next section contains the names of the files
used during the simulation. Each filename is built
by adding the corresponding extension to BaseName.
[Files]
BaseName = "test-22"
OutputFile = ".wdt"
The %d will be replaced by the iteration number.
VRMLFile = ".%d.wrl"

Figure 4.11: An minimal example of initialization file.

Reading such a file in a safe and efficient way is no trivial task. We have used the standard tools
flex and bison, or more precisely their C++ enabled cousins flex++ and bison++, to achieve this
goal. flex++ generates the code that implements the lexical analyser, while bison++ generates
the code that implements the actual parser. The latter has been used in such a way that it returns
a unique Params class with a private member of the correct type for each parameter found in
the initialization file, and public access methods that the program can use for actually retrieving
the values assigned to the parameters.

The set of parameters evolves a lot during the development of such a simulation program. Every
time a new parameter is added, changed or removed, the scanner and parser description files as
well as the interface and implementation of the Params class had to be edited accordingly. This
fastidious and error-prone process has been replaced by an automatic file generation scheme that
produces those files from a sample initialization file. This process is sketched in figure 4.12.

The automatic generation of the four files is itself based on the same tools flex++ and bison++.
It supports four data types: integer and floating-point numbers, strings and three dimensional
vectors, but can easily be extended to support other types.

A side effect of this process is that it became trivial to provide default values to all the pa-
rameters, so that the end user of the simulation code is only required to provide values for the
parameters he wants to set, and does not need to understand every detail of every feature of the
code in order to perform basic simulations.

This parameter management module is not specific to the rest of the code or even to DEM sim-
ulation. It is in fact shared with Biogeme, an optimization toolbox for econometric applications

68 CHAPTER 4. COMPUTATIONAL ASPECTS

scanner.l parser.y params.hh params.cc

flex++ bison++

class params

automatic file generator

default.ini

C++ compiler

Figure 4.12: The automatic generation of the Params class based on a sam-
ple initialization file. Without the automatic generation scheme (above the
dashed line), the programmer is required to maintain four files.

(Bierlaire, 2001), and could probably benefit other scientific codes. Two extensions are planned:
a graphical user interface (GUI) for the input of the parameters and the ability to remotely con-
trol a running instance, thus allowing to modify some parameters after the computation has
started.

4.9 Adding new features

We conclude the description of our implementation by presenting the framework in which new
functionalities may be added to the code. As shown in figure 4.1 on page 46, this is provided
for new contact models, new boundaries and new measures and exportation facilities. Writing
new derived classes should be possible with only minimal knowledge of the internal structures
of the whole code.

4.9.1 Integrating new contact models

A virtual base class for all the contact models provides:

� input access to the values used for computing a force at a contact point, namely the normal
and tangential values of the overlap as well as their first time derivatives,

4.9. ADDING NEW FEATURES 69

� output access for the normal and tangential components of the newly computed force,

� a virtual function updateforce that is called at every iteration for every contact.

The parameter management subsystem described in section 4.8 makes it trivial to introduce new
parameters for the new force model in an efficient and user-friendly manner. Furthermore, it is
relatively easy to extend those facilities by adding more functionalities to the new derived class.

4.9.2 Integrating new boundary shapes

A virtual base class for all the boundary elements provides the framework for interacting with
the grains. In particular, in order to implement a new shape one must provide the methods

� distance to compute the distance of a point in the Euclidean space E3 to that shape,

� normal to provide a normal unit vector at a contact point

The existing framework will then use these methods to determine whether a given grain is in
contact with a given boundary and if necessary take suitable measures to apply a force model at
the contact point. The class should also provide whatever is needed for drawing the boundary.
The current version of the environment contains classes for flat walls, cylindrical and conical
containers, and a few other specialized items.

4.9.3 Integrating new export formats

Likewise, a virtual base class provides a framework for calling derived classes implementing
exportation in various formats. An exporter may be called either every few iterations or at
the end of the simulation, or both. The exporter has full access to all internal data structures
of the simulation and thus can produce any sort of output. The parameter management system
provides a uniform and convenient way to deal with filenames. Currently, classes exist that write
VRML files for online interactive visualization, POVRay files for post-processing, producing
high resolution images by ray-tracing, scene description files for the AVS visualization package.
Other classes in this framework are responsible for computing statistics on the simulation, in
particular the measures described in §4.6.

Part II

Applications

A designer knows he has achieved perfection not when there is nothing left to add,
but when there is nothing left to take away.

– Antoine de Saint-Exupéry

Chapter 5

Sphere packing

5.1 Introduction

An interesting application was proposed by the Energetic Material Labs of Swiss Defense Pro-
curement Agency at Thun. The problem is to reach high densities in packings obtained by
mixing three different powders. These powders are distinguished by the size of the grains and
classified in fine, medium and coarse, with average diameters having ratio of 1 to 5 to 35. The
general objective is to determine the optimal quantities of each type of powder — within certain
limits — that result in the densest packings. We consider here only the density of such packings.
Other factors like segregation, homogeneity, stress distribution, etc, are not addressed.

The mathematical model assumes spherical grains. Optimal space packings of spheres of equal
size have kept physicists, chemists, geometers and mathematicians busy for several centuries.
It was commonly agreed that the face-centered cubic packing1 achieved the highest density, but
no one had been able to prove this assertion, known as the Kepler conjecture and included by
Hilbert in his famous list of Problems in Mathematics at the International Congress of Mathe-
maticians in Paris in 1900:

”I point out the following question [...] important to number theory and perhaps
sometimes useful to physics and chemistry: How can one arrange most densely in
space an infinite number of equal solids of given form, e.g., spheres with given radii
or regular tetrahedra with given edges (or in prescribed position), that is, how can
one so fit them together that the ratio of the filled to the unfilled space may be as
great as possible ?” 2

1There is an infinity of equivalent optimal packings distinguished by the periodic arrangement of their layers.
The face-centered cubic is one of them (with periodicity 3), the compact hexagonal is another (with periodicity 2).
These two packings stand out because they play an important role in materials science (see for example Kurz et al.,
1991, page 64–68), yet any rearrangement of the layers yields an density-optimal packing. For clarity’s sake, we
shall improperly use the term face-centerd cubic packing to designate them all.

2Quoted from Proceedings of Symposia in Pure Mathematics, AMS, vol 28, 1976.

74 CHAPTER 5. SPHERE PACKING

The conjecture was finally proved by Hales (1998) who used very elaborate modeling and large-
scale linear programs solved by state-of-the-art methods of mathematical optimization to elim-
inate all other candidates.

However spectacular, this result is of little practical help for our purpose. There is already a
gap between the theoretical face-centered cubic packing that yields a density of 74.018% and
realistic densities of poured materials that usually yield values around 65%. The situation gets
even worse for packings of grains of various sizes since there exist no theoretical results. The a
priori calculation of the density of a packing of spheres of different radii remains a challenge.
In practice, experimentation has already provided some observations of the relation between
the relative proportion of each powder and the resulting density. The computer simulations are
expected to reinforce these observations and provide new insights, even though we have no
ambition to settle this question completely.

If we focus here on the measure of the density obtained by a given mixture, the long-term
objective remains the reverse procedure: optimize the mixture for reaching a maximal density.
We start by presenting the general setup in which the simulations were conducted, then present
several results. The last section briefly mentions other approaches to the problem, in particular
the gap between Kepler’s theoretical result and actual powder packings.

5.2 The setup for the simulations

We describe in this section the global setup shared by most simulations. That setup was inspired
by the experiment performed at the Energetic Material Labs of Swiss Defense Procurement
Agency at Thun with the original powders. Over time, some simulations were performed with
different setups. Those changes are mentioned in the description of the simulations in the
following sections.

The simulations are performed in a vertical cylinder closed at the bottom and open at the top.
The grains are subject to gravitation.

One way of improving the density of powder packings is to vibrate them. The idea behind
this is to temporarily increase the space around the grains, thus allowing them to rearrange
themselves, and by going from one locally stable configuration to another improve the global
density. However, global vibrations cannot control local behavior and no promise can be made
that vibrated packings will be better. Indeed, along the vibration process, the density fluctuates.

The parameters of the vibrations include frequency (usually in the 1Hz to 10Hz range), ampli-
tude (absolute or relative to the size of the grains) and shape (sinusoidal, tapping, continuous or
intermittent,...). All of them certainly have an impact on the packing process. At the Energetic
Material Labs, the vibrations are generated by the eccentric rotation of a non-symmetric plate,
yielding a form of tapping with a frequency of about 4Hz and an amplitude of 3mm3. The
vibrations used in the simulations follow this pattern, see figure 5.1.

3A picture of the installation can be found on page 99.

5.2. THE SETUP FOR THE SIMULATIONS 75

3mm

T

T / 5

Figure 5.1: The shape of the vibration used in the simulations. T is the
period.

The simulation is started by placing spheres of various radii in the cylinder. This happens in
three phases, each corresponding to one category of grains: large, medium and small. The
parameters for each phase i are:

� The average radius Ri of the grains, to which a small random perturbation of at most � 2%
can be added.

� The distance Di between two consecutive grains of phase i. Since we are using a face-
centered cubic packing (see Bircher, 1998; Hales, 1998) and not just a regular grid, the

actual distances between consecutive layers of grains are Di, � 3
2 Di and � 2� 3

Di. This allows
having a higher initial density, closer to actually pouring grains, and avoids having grains
pile up independently.

� A maximal filling height Hi for grains of phase i, mainly used to guarantee that the larger
grains will be covered by enough smaller ones.

� A probability Pi of actually placing a grain of phase i at a given position. This avoids
generating regular arrangements and provides finer control on the relative proportion of
grains of each size.

Thus, some large grains are placed in the cylinder, then the remaining space is filled with
medium grains, and again the remaining space is filled with small grains. A check is performed
to avoid overlapping grains in the initial placement. This filling process is shown in figure 5.2.
As the initial placement of the large grains has a strong influence on the packing quality, we
introduced a finer control on their individual location.

The average density of the packing is computed as the proportion of the space filled by grains,
and is therefore inversely proportional to the height of the granular assembly in the cylinder.
Density is usually reported as a percentage, with values between 60% and 70% depending on
the caliber distribution.

Due to the vibration, this measure is usually not very significant during the simulation, but its
final value after the vibrations have stopped and the granular assembly has stabilized is the key
measure for the whole process.

76 CHAPTER 5. SPHERE PACKING

Figure 5.2: The filling process in 3 phases, top and side view. This example
has 3363 grains, 14 large (R1 � 9mm), 185 medium (R2 � 3mm) and 3164
small (R3 � 1mm). Thus, the proportion in mass is 55.6% (large), 27.2%
(medium) and 17.2% (small).

Finer density measures by horizontal layers are also provided in some cases. They give a bet-
ter understanding of the packing evolution during the vibrations, in particular regarding wave
propagation, and are also a good indicator of strong segregation effects.

One major problem for the simulation of packings of grains with large to small ratio in the range
20 to 30 is the number of grains required to fill the space between the large grains, as shown on
figure 5.3. On the other hand, when enough grains are involved, it is possible to visualize the
rearrangement of medium and small grains that takes place when they leave space for the large
one. Figure 5.4 gives snapshots of this phenomenon.

Various artifacts were used to circumvent this problem:

� reducing the size gap between small, medium and large grains

� truncating large grains

� focusing on local phenomena

but the current limitation on the number of grains that can be reasonably simulated remains the
major obstacle preventing us from replicating exactly the original experiment.

5.3. THE FIRST ATTEMPTS 77

Figure 5.3: Bottom view of a simulation with a total of 4326 grains (12
large, 362 medium, 3952 small), early in the packing process. The large
grains will not be covered by the others, so the measured density is too low
for any practical use.

Other parameters for the simulations include the energy restitution coefficient, set to 0.3, and
the friction coefficient, set to 0.1. The contact duration is 10 �

3 seconds, thus the iteration
duration is δt � 10 �

5 seconds. The simulations are performed for up to 12 seconds, so that up
to 1’200’000 iterations were computed. The triangulation is updated every 100 iterations, and
complete snapshots of the situation are taken at various time interval.

5.3 The first attempts

A first set of simulations involves one large grain of diameter 26mm, medium grains of diameter
3mm and small grains of diameter 1mm. Simulations with only one large grain can certainly
not yield global results on the packing. However, they helped us understand how medium and
small grains rearrange themselves around the large one. These cases also served as the first
validation tests for the simulation method and environment. Four cases were studied, with
various numbers of grains, as shown in table 5.1:

The evolution of the densities is given in figure 5.5. They can be decomposed in two phases:

1. a quadratic increase, corresponding to each grain falling down subject only to gravity,

78 CHAPTER 5. SPHERE PACKING

t � 1 � 00s t � 1 � 05s t � 1 � 10s

t � 1 � 15s t � 1 � 20s t � 1 � 25s

t � 1 � 30s t � 1 � 35s t � 1 � 40s

Figure 5.4: During the packing process, the medium and small grains rear-
range themselves to leave space for the large one (bottom view).

One1 One2 One3 One4
Large grains (26mm) 1 1 1 1
Medium grains (3mm) 715 378 1406 706
Small grains (1mm) 161 498 355 1055
Total number of grains 877 877 1762 1762
Density at t=0.0s [%] 20.1716 15.3337 30.4842 20.4489
Density at t=0.5s [%] 63.5726 52.2700 62.7705 65.1489
Density at t=3.0s [%] 63.5868 53.2042 64.3458 68.7132

Table 5.1: Main characteristics of the first set of simulations.

2. a slow increase, corresponding to the rearrangement of the grains. Cases One1 and One3
(more medium grains) and cases One2 and One4 (more small grains) have a similar be-
havior.

Case One2 is not very significant with only single-value density computation, since the large

5.3. THE FIRST ATTEMPTS 79

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5 3

de
ns

ity
 (

%
sp

ac
e)

time (seconds)

One1
One2
One3
One4

Figure 5.5: The densities for the cases One1, One2, One3 and One4.

grain was not fully covered, leaving a large empty space in the density computation. For cases
One1 and One2, the "optimal" densities seem to have been reached earlier, while the larger
cases One3 and One4 needed more time but they also reached a higher density.

The initial density is strictly proportional to the total quantity of material used in the experiment.
The comparison of One1 and One4 shows that with the same mass of raw material, higher
densities are reached with more and smaller grains.

Snapshots at various time intervals for the cases One1 and One3 are given in figures 5.6 and
5.7. In these two cases the proportions of medium and small grains are roughly the same. In
One1, the height of the packed media is 31mm, just above the diameter of the large grain, while
in One3 it is 53mm, about twice that diameter. The expected higher overall density of the latter
case can be explained by noting that large grains tend to reduce the density because of the empty
space they generate around them. To fill up that space and further increase the density, grains
up to 1000 times smaller might be needed.

80 CHAPTER 5. SPHERE PACKING

t � 0 � 0s t � 0 � 1s t � 0 � 2s
d � 20 � 1716% d � 21 � 1774% d � 25 � 0179%

t � 0 � 3s t � 0 � 4s t � 0 � 5s
d � 35 � 9413% d � 63 � 1300% d � 63 � 5726%

Figure 5.6: The packing of case One1 at every tenth of second.

t � 0 � 0s t � 0 � 1s t � 0 � 2s
d � 30 � 4842% d � 32 � 0021% d � 37 � 7953%

t � 0 � 3s t � 0 � 4s t � 0 � 5s
d � 54 � 3121% d � 62 � 4121% d � 62 � 7705%

Figure 5.7: The packing of case One3 at every tenth of second.

5.4. SELECTING THE CORRECT VIBRATION 81

5.4 Selecting the correct vibration

A new set of simulations was performed to study the influence of the vibration frequency on
the overall packing process. These simulations involve 5592 grains, all approximately 2mm in
diameter. The amplitude of the vibration is set to 2mm. Vibrations are active at 2Hz, 4Hz, 5Hz
or 10Hz for 10 seconds, then stop and the packing is left to stabilize for another 2 seconds.

Figure 5.8 shows snapshots of the packings after a few seconds of vibrations. At low frequen-
cies, the packing is dense but there has not been much rearrangement among the grains, as
shown by the layered colors. At medium frequencies, the packing remains quite dense, yet with
more rearrangements. In these two configurations, the optimal face-centered cubic packing is
clearly visible in several places. Finally, at high frequencies, the packing suffers from too much
shaking: the time between two consecutive peaks of the tapping cycle is too short for the grains
to stabilize, introducing wave effects, and yielding a lower average density. However, this be-
havior could be interesting in a preliminary phase where the goal would be to guarantee a good
spatial distribution of the various grain types, and denser packing would be attained in a second
phase with a lower frequency. Applying such a technique to grains of different sizes requires
special attention to be paid to undesired segregation effects.

Figure 5.8: Snapshots at various frequencies: 2Hz (left), 5Hz (center) and
10Hz (right).

The above deductions obtained by simple visualization are fully confirmed by the detailed mea-
surements taken during the simulation. Figures 5.10, 5.11, 5.12 and 5.13 on pages 84 to 87
show for each frequency the average density of the packing, a mobile average of said density,
the maximal velocity attained by a single grain, and 20 local densities measured by horizontal
layers. The dashed vertical grid-lines indicate the beginning of the tapping cycles.

All densities are expressed here as the percentage of volume occupied by the spheres. For
reference, the theoretical maximum is approx. 74% (for an infinitely large cylinder), while

82 CHAPTER 5. SPHERE PACKING

values obtained in practice range between 60% and 66%.

Due to the way it is computed, the average density is very chaotic during the vibrations. How-
ever, as soon as the vibrations stop, its value increases and stabilizes at a peak. At 10Hz, no
special behavior was observed. At 5Hz on the other hand, short series of local peaks and little
variations – just reflecting the movement of the vibrating plate – are separated by larger gaps.
This is clearly an indication that important rearrangements occur from time to time. At 4Hz
the curve is smoother, but a larger rearrangement takes place at 8.75s. The maximal density is
reached by the 2Hz simulation.

The moving average of the density is computed as the (unweighted) average over the last second.
At 10Hz it is relatively low, in the 0.45 to 0.55 range, while at 5Hz, 4Hz and 2Hz it is not only
higher, in the 0.55 to 0.6 range, but also shows a tendency to increase.

The maximal velocity among the grains is mainly used to detect the moment of complete settle-
ment of the packed media. At 5Hz, it takes place around half a second after the last vibration,
whereas at 10Hz more than a second is required. The rearrangement occurring at 8.75s in the
4Hz case is clearly visible.

The local densities measured by horizontal layers also help understand the behavior of the
media. At the top, the values obviously decrease and remain zero, this is a side effect of the
way the packing is initiated. At 10Hz, the middle part is very chaotic while the bottom part
seems more stable. About once per second, a relatively large number of grains are propelled
at quite some height, yielding non-zero densities in the high-middle low-top area. At 5Hz the
overall behavior seems less chaotic. The variation in the lowest layer is transmitted to the top
through the dense media. The 4Hz case is similar, up to the few grains ejected upwards at
8.75s. Finally, at 2Hz, the time between two tapping cycles is sufficient for the whole assembly
to stabilize, yielding a sequence of independent yet similar density changes.

These results tend to prove that a medium frequency of 4Hz to 5Hz gives better results than a
high one of 10Hz. A low frequency such as 2Hz does not induce enough reorganization in the
assembly, therefore the final quality of the packing depends too much on the initial state before
the vibration. This is confirmed by the final value of the density shown in table 5.2:

Frequency 10Hz 5Hz 4Hz 2Hz
Density 59.92% 60.40% 60.61% 60.60%

Table 5.2: Final densities for various vibration frequencies.

These values can be compared with an artificial value of 63.32% obtained by intersecting an
infinite optimal face-centered cubic packing and the test cylinder, as shown in figure 5.9. It is
also interesting to compare them with the values obtained with many more smaller grains as
shown in section 5.8.

5.4. SELECTING THE CORRECT VIBRATION 83

Figure 5.9: Artificially filling the cylinder with a face-centered, theoretically
optimal packing.

84 CHAPTER 5. SPHERE PACKING

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12

Average density [%vol]

[Time in second]

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12

Moving average of the density over the last second [%vol]

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12

Maximal velocity [m/s]

0 1 2 3 4 5 6 7 8 9 10 11 12

Densities per layer

bo
tto

m
m

id
dl

e
to

p

Figure 5.10: Measures computed at 10Hz.

5.4. SELECTING THE CORRECT VIBRATION 85

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12

Average density [%vol]

[Time in second]

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12

Moving average of the density over the last second [%vol]

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12

Maximal velocity [m/s]

0 1 2 3 4 5 6 7 8 9 10 11 12

Densities per layer

bo
tto

m
m

id
dl

e
to

p

Figure 5.11: Measures computed at 5Hz.

86 CHAPTER 5. SPHERE PACKING

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12

Average density [%vol]

[Time in second]

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12

Moving average of the density over the last second [%vol]

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12

Maximal velocity [m/s]

0 1 2 3 4 5 6 7 8 9 10 11 12

Densities per layer

bo
tto

m
m

id
dl

e
to

p

Figure 5.12: Measures computed at 4Hz.

5.4. SELECTING THE CORRECT VIBRATION 87

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12

Average density [%vol]

[Time in second]

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12

Moving average of the density over the last second [%vol]

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12

Maximal velocity [m/s]

0 1 2 3 4 5 6 7 8 9 10 11 12

Densities per layer

bo
tto

m
m

id
dl

e
to

p

Figure 5.13: Measures computed at 2Hz.

88 CHAPTER 5. SPHERE PACKING

5.5 Filling the space between the large grains

When considering grains with size ratio 1:5:35 and mass ratio 70:20:10, there must be more
than 6000 small grains for each large grain. To study the behavior of medium and small grains
near the large ones, we have set up some cases where the large grains are fixed and truncated,
thus only considering a small portion of the space comprised between large grains.

These simulations give a qualitative insight of how the spaces between the large grains are filled,
but no quantitative results that could be extended to the global packing. In particular, no density
measures were made due to the strong bias induced by the truncated geometry.

The large pseudo-spheres have a diameter of 35mm, and are placed on the vertices of a face-
centered cubic grid. The mesh size of this grid was chosen between 35mm (spheres are touch-
ing) and 40mm. The medium and small spheres have a diameter of 5mm and 1mm.

Two configurations were tested. In the first one, a section was cut by 6 vertical planes forming
a hexagon. In the second, a section was cut by a vertical cylinder. Figure 5.14 shows vertical
projections of these geometries.

Figure 5.14: Hexagonal and cylindrical sections cutouts, the 6 discs repre-
sent two layers of large grains disposed in a loose face-centered cubic pack-
ing

Figure 5.15 shows 9 snapshots at various time intervals of an hexagonal section, with the large
grains at distance 35mm (ie touching). The simulation comprised 33 medium and 5929 small
grains. Figure 5.16 shows 9 snapshots at various time intervals of a cylindrical section, with the
large grains at distance 40mm. The simulation comprised 178 medium and 24360 small grains.

5.5. FILLING THE SPACE BETWEEN THE LARGE GRAINS 89

t � 0 � 00s t � 0 � 01s t � 0 � 02s

t � 0 � 03s t � 0 � 04s t � 0 � 08s

t � 0 � 12s t � 0 � 16s t � 0 � 20s

Figure 5.15: First example of interstitial view, based on an hexagonal cut.
Close-up of the interstice between three touching large grains.

90 CHAPTER 5. SPHERE PACKING

t � 0 � 02s t � 0 � 04s t � 0 � 06s

t � 0 � 08s t � 0 � 10s t � 0 � 12s

t � 0 � 14s t � 0 � 16s t � 0 � 18s

Figure 5.16: Second example of interstitial view, based on a cylindrical cut.
Global view of an area truncated by 3 large grains and 3 half large grains.

5.6. COVERING ONE LARGE GRAIN 91

5.6 Covering one large grain

Another set of simulations concerns the rearrangement of medium and small grains around the
large ones. We have selected in this case one large grain whose diameter is equal to the inner
diameter of the cylinder. Medium and small grains are then stacked above the large one and the
whole assembly is vibrated.

Figure 5.17: Covering a large grain that fills the cylinder, initial situation.

Figures 5.18 and 5.19 give snapshots of the interesting layers during the first second of the sim-
ulation. One can notice the rearrangement of the small grains along the border of the cylinder.

Density measures were taken, but the dominance of the large grain introduces a strong bias, even
in the layered densities. They are given in figure 5.20 but should be considered with extreme
care. Aside from the usual average density, the moving average of said density and the layered
densities, we have added the structure of the layered densities at every tenth of a second during
the first second. As expected, layers 1 to 11 are dominated by the large grain and reflect the
variation due to the vibrations, while layers 12 to 18 see a mixture of all grains. The density
decrease in this part is due to the increase in the surface of the large grains in each layer, which
itself yields a loss similar to the boundary effect near the border of the cylinder.

92 CHAPTER 5. SPHERE PACKING

t � 0 � 0s t � 0 � 1s t � 0 � 2s t � 0 � 3s

t � 0 � 4s t � 0 � 5s t � 0 � 6s t � 0 � 7s

t � 0 � 8s t � 0 � 9s t � 1 � 0s

Figure 5.18: Side view of medium and small grains covering one large grain
in a narrow cylinder at various time intervals.

t � 0 � 0s t � 0 � 1s t � 0 � 2s t � 0 � 3s

t � 0 � 4s t � 0 � 5s t � 0 � 6s t � 0 � 7s

t � 0 � 8s t � 0 � 9s t � 1 � 0s

Figure 5.19: Side view of medium and small grains covering one large grain
in a narrow cylinder at various time intervals.

5.6. COVERING ONE LARGE GRAIN 93

0

20

40

60

80

0 1

Average density [%vol]

[Time in second]

0

20

40

60

80

0 1

Moving average of the density over the last second [%vol]

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Densities per layer at every tenth of second [%vol]

0 1

Densities per layer

bo
tto

m
m

id
dl

e
to

p

Figure 5.20: Density measures for a half-covered large grain.

94 CHAPTER 5. SPHERE PACKING

5.7 Other simulations

More experiments were performed with one or two large grains. Figure 5.21 shows the result
of selecting the number of medium and small grains according to a 70% – 20% – 10% mass
distribution. With grain sizes of 35mm, 5mm and 1mm this yields 1 large, 98 medium and 6125
small grains, see table 5.3.

large medium small
grain diameter [mm] 35 5 1
volume of one grain [mm3] 22’450 65.45 0.5236
relative mass [%] 70 20 10
number of grains (fig 5.21) 1 98 6125
number of grains (fig 5.22) 2 196 12250

Table 5.3: Number of grains for the first try.

However, with only one large grain it is not possible to enforce this distribution: either the
cylinder is too large, and there is not enough material to cover the large grain as shown in
figure 5.21, or the cylinder is too narrow and the large grain will block the medium ones, as
shown in figure 5.22. In this case, the layered densities show very large variations, as shown in
figure 5.23. In the third graph, the green line corresponds to 0.1s, the blue line to 0.2s. After
0.2s the simulation was stopped.

Figure 5.21: Two views of the simulation with a large cylinder: the large
grain is not covered.

dmv95� org 95

Figure 5.22: Three views of a simulation with a small cylinder, introducing
strong segregation among the grains.

http://dmv95.org/

96 CHAPTER 5. SPHERE PACKING

0

20

40

60

80

0 1

Average density [%vol]

[Time in second]

0

20

40

60

80

0 1

Moving average of the density over the last second [%vol]

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Densities per layer at every tenth of second [%vol]

0 1

Densities per layer

bo
tto

m
m

id
dl

e
to

p

Figure 5.23: Densities measures when medium grains are blocked.

5.7. OTHER SIMULATIONS 97

The simulation was then repeated with more material, see table 5.4 and figure 5.24. This time
the large grain is almost covered, and density measures can be taken. They are shown in fig-
ure 5.25. Since only one grain of 35mm was used in the 10cm high cylinder, only the bottom
layers give interesting results. No vibrations were used in this short simulation. The abnor-
mally high density achieved by the first layer is due to the penetration of the large grain in the
floor — permitted by the contact model — which was not accounted for in the layered density
computation.

large medium small
grain diameter [mm] 35 5 1
volume of one grain [mm3] 22’450 65.45 0.5236
relative mass [%] 55.4 12.3 32.3
number of grains 1 76 24971

Table 5.4: Number of grains for the second try.

Top view Middle view Bottom view

Figure 5.24: Three views of the simulation with the grains of table 5.4: the
large grain is almost covered.

98 CHAPTER 5. SPHERE PACKING

0

20

40

60

80

0 1

Average density [%vol]

[Time in second]

0

20

40

60

80

0 1

Moving average of the density over the last second [%vol]

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Densities per layer at every tenth of second [%vol]

0 1

Densities per layer

bo
tto

m
m

id
dl

e
to

p

Figure 5.25: Densities measured for the second try.

5.8. EXPERIMENTAL VALIDATION OF THE SIMULATION 99

5.8 Experimental validation of the simulation

Even if the results obtained by simulation seem reasonable, it is necessary to further assess
the validity of the method and of the computer program by comparing simulated values with
a similar real experiment. As mentioned before, the powders currently used at the Energetic
Material Labs are much too fine for the simulation. With particle sizes in the 10 �

6m to 10 �
3m

range, filling up a 35mm by 100mm cylinder requires at the very least several million grains,
which is currently out of reach.

The validation effort has thus been directed towards larger spheres with diameters between
1mm and 25mm, in cylinders of 30mm and 36mm. The spheres are made of hard steel and have
a density of 7.78 g/cm3. Figure 5.26 shows the complete experimental setting used by Folly
(2000). Three categories of experiments were conducted.

Figure 5.26: The experimental setup as used at the Energetic Material Labs
of Swiss Defense Procurement Agency at Thun.

100 CHAPTER 5. SPHERE PACKING

5.8.1 Unimodal case

A first case involves only spheres of 1mm of diameter, in an experiment similar to the simu-
lations we performed to select the best frequency, as discussed in section 5.4. Approximately
26’000 spheres of diameter 1mm are poured into the cylinder and vibrated. The resulting as-
sembly is shown in figure 5.28. In the 30mm cylinder, the density reached 66%, while in the
36mm cylinder it was 64%. Several simulations were conducted with approximately 13’000
spheres in a 30mm cylinder and produced packings with densities between 63.8% and 65.1%.
Various pictures are shown in figure 5.27.

Visual comparison of the experiment and the simulation indicates a relatively good match, de-
spite the fact that the simulation only lasted two seconds. However, the various simulations
showed a strong dependence of the resulting packing to the initial placement of the grains. A
possible way to overcome this is to start with an empty cylinder and pour grains one by one
from the top. Such a setup has already been tested on small cases and should be tried in future
simulations.

The simulations reached slightly lower densities than the experiment. We believe this is because
fewer grains were used (13’000 vs. 26’000) and again a shorter duration, in other words fewer
vibration cycles.

Figure 5.27: Top and side view of the simulation with 13’000 spheres of
diameter 1mm in a 30mm cylinder.

5.8.2 Narrow distribution

A second set of experiments involved spheres of three different sizes with a relatively narrow
distribution: 4mm, 7mm and 15mm. Two cylinders were used: 30mm and 36mm, see fig-
ure 5.29. Both cases used the same set of 4 large spheres (15mm), 56 medium (7mm) and
293 small (4mm). Five repetitions with the 30mm cylinder always gave the same height of

5.8. EXPERIMENTAL VALIDATION OF THE SIMULATION 101

Figure 5.28: Two pictures of the experiment with approximately 26’000
spheres of diameter 1mm in a 30mm cylinder.

62mm, thus a density of 61%. Three repetitions with the 36mm cylinder gave heights of 44mm,
44.5mm and 45mm. Averaged to 44.5mm, this gives a density of 60%.

The simulation produced very similar results. Figures 5.30, 5.31 and 5.32 show the initial grain
population as well as packing after 1 and 10 seconds for three cylinder sizes: 30mm, 36mm
and 40mm. Figures 5.33, 5.34 and 5.35 show the detailed densities for the three simulations.
Table 5.5 lists the grains used and table 5.6 gives a summary of the key results.

large medium small
grain diameter [mm] 15 7 4
volume of one grain [mm3] 1767 179.6 33.51
relative mass [%] 26.3 37.3 36.4
number of grains 4 56 293

Table 5.5: Grains used in the narrow distribution.

30mm 36mm 40mm
simulated density at 1s [%] 59.44 58.42 61.49
simulated density at 10s [%] 60.78 58.84 61.73
experimental density at 50s [%] 61 60 —

Table 5.6: Densities for the narrow distribution.

102 CHAPTER 5. SPHERE PACKING

Figure 5.29: Spheres of 4mm, 7mm and 15mm in a 30mm cylinder (left) and
a 36mm cylinder (right).

5.8. EXPERIMENTAL VALIDATION OF THE SIMULATION 103

Figure 5.30: Simulation of the narrow distribution, initial distribution (left),
after 1 second (center), after 10 seconds (right) in the 30mm cylinder.

104 CHAPTER 5. SPHERE PACKING

Figure 5.31: Simulation of the narrow distribution, initial distribution (left),
after 1 second (center), after 10 seconds (right) in the 36mm cylinder.

5.8. EXPERIMENTAL VALIDATION OF THE SIMULATION 105

Figure 5.32: Simulation of the narrow distribution, initial distribution (left),
after 1 second (center), after 10 seconds (right) in the 40mm cylinder.

106 CHAPTER 5. SPHERE PACKING

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10

Average density [%vol]

[Time in second]

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10

Moving average of the density over the last second [%vol]

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Densities per layer at every tenth of second [%vol]

0 1 2 3 4 5 6 7 8 9 10

Densities per layer

bo
tto

m
m

id
dl

e
to

p

Figure 5.33: Densities for the narrow size distribution in the 30mm cylinder.

5.8. EXPERIMENTAL VALIDATION OF THE SIMULATION 107

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10

Average density [%vol]

[Time in second]

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10

Moving average of the density over the last second [%vol]

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Densities per layer at every tenth of second [%vol]

0 1 2 3 4 5 6 7 8 9 10

Densities per layer

bo
tto

m
m

id
dl

e
to

p

Figure 5.34: Densities for the narrow size distribution in the 36mm cylinder.

108 CHAPTER 5. SPHERE PACKING

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10

Average density [%vol]

[Time in second]

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10

Moving average of the density over the last second [%vol]

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Densities per layer at every tenth of second [%vol]

0 1 2 3 4 5 6 7 8 9 10

Densities per layer

bo
tto

m
m

id
dl

e
to

p

Figure 5.35: Densities for the narrow size distribution in the 40mm cylinder.

5.8. EXPERIMENTAL VALIDATION OF THE SIMULATION 109

5.8.3 Wide distribution

The last set of experiments was performed with 2 large spheres of diameter 25mm, 270 medium
spheres of diameter 4mm, and approximately 8900 spheres of diameter 1mm. Again, the two
cylinders of 30mm and 36mm were used, see figure 5.36.

The packing with the small cylinder seems quite good and reached a density of 81%. With
the large cylinder, on the other hand, there are not enough medium and small sized grains to
cover the large ones and important segregation effects appear. We have dropped that case, but it
confirms that much care must be taken when selecting grains sizes and quantities, and container
size.

The computer simulation of this last case suffered from the difficulty to obtain a good initial
distribution of the medium and small grains. As can be seen in figure 5.37, the medium grains
would not fit in the lower part but instead most of them ended up stacked above the large grains,
then the small grains filled the bottom part. The vibrations could not improve this highly biased
initial distribution.

An attempt was made to improve this simulation by removing the small grains in order to see
if the medium ones would spread over the whole height of the assembly. Several snapshots are
shown in figure 5.38 and the usual density graphs are given in figure 5.39

The simulation in this case could not match the experimental results. This illustrates one key
problem of our approach: the generation of an initial grain distribution as close as possible to
what is done in reality. However, we believe that this difficulty will have less impact on future
simulations where the grain size will be scaled down in order to use more grains and to suffer
less from boundary effects.

110 CHAPTER 5. SPHERE PACKING

Figure 5.36: Spheres of 1mm, 4mm and 25mm in cylinders of 30mm (top,
left and right) and 36mm (bottom).

5.8. EXPERIMENTAL VALIDATION OF THE SIMULATION 111

Figure 5.37: Simulation of the wide distribution: front, side and back view
of the highly biased initial grain placement.

112 CHAPTER 5. SPHERE PACKING

t � 0 � 1s t � 0 � 2s t � 0 � 3s

t � 0 � 4s t � 0 � 5s t � 0 � 6s

t � 0 � 7s t � 0 � 8s t � 0 � 9s

t � 1 � 0s t � 1 � 5s t � 2 � 0s

Figure 5.38: Side view of medium grains flowing around two large ones.

5.8. EXPERIMENTAL VALIDATION OF THE SIMULATION 113

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10

Average density [%vol]

[Time in second]

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10

Moving average of the density over the last second [%vol]

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Densities per layer at every tenth of second [%vol]

0 1 2 3 4 5 6 7 8 9 10

Densities per layer

bo
tto

m
m

id
dl

e
to

p

Figure 5.39: Densities for the large and medium grains.

114 CHAPTER 5. SPHERE PACKING

5.9 Other possible approaches

5.9.1 Face-centered cubic packings

Face-centered cubic packings attain the maximal density of all infinite packings of equal sized
spheres. However, this result is of little help for our purpose. The gap between the face-
centered cubic packing result and a dense packing of grains of various sizes is at least twofold:
the container is bounded and the grains have different sizes.

5.9.1.1 Bounded vs. unbounded container

The face-centered cubic packing is optimal in an unbounded container. When boundaries are
introduced, the situation changes. For example, let us assume we are packing grains of diameter
1 into a spherical container of diameter D. For the degenerate case where D � 1, we have a
density of 0 since no grain will fit. At D � 1, we have a density of exactly 1! From then on,
as long as D � 2, the density will decrease at a rate of 1

D3 until it reaches 1
8 , since only one

grain will fit in a growing container. At D � 2 there is again a discontinuity since two grains
will fit, yielding a density of 1

4 . And so on. The Kepler conjecture only says that for D � ∞,
the density is equal to π� 18

� 0.74048. Replacing a spherical container by anything else —
cubic, cylindrical,... — only adds to the number of different configurations due to the loss of
symmetry.

One would expect that the loss of density due to boundary effects decreases when the ratio
between the grain size and the container size increases. This has been verified by observing the
density reached by packing spheres of radius 1 in a cylinder of diameter D and height H, for
various values of D and H. The results are shown in figure 5.40.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

Optimal
H= 10
H= 20
H=100

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

Optimal
D= 10
D= 20
D=100

Growing D for fixed values of H Growing H for fixed values of D

Figure 5.40: Densities obtained by growing the diameter (left) or height
(right) of the cylindrical container.

This relation between the grain size – cylinder size ratio and the density has also been observed
experimentally by Folly (2000) as shown in table 5.7.

5.9. OTHER POSSIBLE APPROACHES 115

grain diameter 30mm cylinder 36mm cylinder
25mm 47% 35%
15mm 46% 52%
7mm 60% 52%
4mm 58% 57%
1mm 66% 64%

Table 5.7: Experimental densities for various grain size / cylinder size ratios.

Let us now consider given, hopefully large, values of D and H, and the portion of an infinite
face-centered cubic packing that fits in this cylindrical container4. By just shifting the center of
the container by at most 1 (the diameter of the grains) in any dimension, the cutout made in the
infinite packing will change, yielding different density values. This effect is shown in figure 5.41
where the density is plotted with respect to a horizontal shift in the XY plane perpendicular to
the cylinder.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

60

65

Figure 5.41: Density variations due to the variation of the alignment of the
face-centered cubic packing and the cylinder.

One can easily convince oneself that this procedure is not guaranteed to give the highest densi-
ties, since the gaps near the boundaries can be quite large: Thus, even with grains of equal size,
Kepler’s packing may not be optimal in a bounded receptacle.

Interpolating these figures to the packing of powders is hazardous, but one can expect that all
the results obtained in this current study for grains 1000 times larger than those of the real pow-
ders suffer more from boundary effects and therefore achieve slightly lower densities. Future
simulations involving more smaller spheres will most certainly confirm this expectation.

4A picture of such a packing can be found on page 83.

116 CHAPTER 5. SPHERE PACKING

5.9.1.2 Different grain sizes

When grains of two different sizes are considered, even in the case of an infinite container, one
could be tempted to optimally pack the larger grains, then fill up the remaining gaps with the
smaller ones. This however may not be optimal if the small grains do not fit exactly in the gaps.
If we consider the optimal density as a function of the relative proportion of large and small
grains, the Kepler conjecture says that at both ends of this relative proportion — that is only
large or small grains — we have again a density of π� 18

. Between these two extremes, virtually
anything can happen, especially if a certain homogeneity is expected.

The optimization problem — select the proportion of large and small grains that gives the high-
est density — also remains open.

5.9.2 Exact computation

Another possible approach for computing the optimal density of a packing of spheres of various
radii would be to consider the x-, y-, and z-coordinate of each sphere in a cylinder, write a set
of constraints to enforce non-overlapping, and maximize the density expressed as a function of
all the sphere coordinates.

Let N be the number of spheres. For each sphere i, its radius ri is given, and the coordinates xi,
yi, and zi are the decision variables of the problem. Two spheres i and j are non-overlapping if

� �
xi � x j � 2 � �

yi � y j � 2 � �
zi � z j � 2 � ri

�
r j (5.1)

Sphere i is in the vertical cylinder of radius R and of height H if
�

x2
i
�

z2
i

	 R � ri (5.2)

yi � ri
� 0 (5.3)

yi
�

ri
	 H (5.4)

The density can easily be computed as

d � 4
3R2H

N

∑
i � 1

r3
i (5.5)

As expected, since R and ri are fixed, increasing the density is obtained by minimizing H. We
obtain the following problem:

(P) min. H
s.t. � �

xi � x j � 2 � �
yi � y j � 2 � �

zi � z j � 2 � �
ri
�

r j � 2 	 0 � i � j � 1 ��� � � � N
x2

i
�

z2
i � �

R � ri � 2 	 0 � i � 1 � � � � � N
� yi
�

ri
	 0 � i � 1 � � � � � N

yi
�

ri � H 	 0 � i � 1 ��� � � � N
xi � yi � zi � H � 0 � i � 1 ��� � � � N

5.10. CONCLUSION 117

Problem (P) is a non-convex optimization problem with quadratic constraints and a linear ob-
jective function. Advanced resolution techniques combined with state-of-the art optimization
software will produce an exact solution for problem (P) for very small cases with 10 to 20
spheres. Such a solution includes the individual position of each sphere in the assembly. This
information is required for the application that inspired this formulation (see Dai and Sutou,
2000), but not in our case. Furthermore, problem (P) includes too many details by tracking each
individual sphere instead of only considering 3 classes of grains. Therefore, we cannot consider
this approach as a potential candidate for the study of optimal packings of powders.

5.10 Conclusion

Several simulations concerning the packing of irregular spheres were carried out and have
served to fine-tune, calibrate and validate the DEM approach, the triangulation-based colli-
sion detection, the contact models and, last but not least, the simulation program. The results
obtained cover several aspects such as the influence of the vibrations, the interaction between
large, medium and small grains, and the boundary effects induced by the container. Whenever
we were able to compare our simulations with experimental data we obtained similar behav-
ior and numerical figures. In particular, the densities we measured were close to the values
observed in practice.

Parameters introduced by the simulation method seemed not to influence the results with the
notable exception of the initial position of the grains. The three-phase filling process we used,
improved with a much finer control of the placement of the large grains, still introduces an
undesirable bias that prevented us to replicate some experiments. A workaround could be to
start the simulations by pouring grains in the cylinder instead of relying on them being already
positioned.

The most exciting phrase to hear in science, the one that heralds new discoveries,
is not ’Eureka!’ (I’ve found it!), but ’That’s funny...’.

– Isaac Asimov

Chapter 6

Other applications

6.1 Introduction

We present in this last chapter several other applications that have received less attention than
the sphere packing problem. Pursuing the tradition of replicating by computer simulations real
experiments performed at the Civil Engineering Department of EPFL, we teamed with B. Glisic
of the Stress Analysis Laboratory to study the behavior of their deformation sensor for concrete
structures (section 6.2). The traditional hourglass allowed us study some typical phenomena of
granular flows (section 6.3). Finally, some preliminary validation simulations performed with
clusters of grains are presented (section 6.4).

6.2 Sensor in concrete

This section was written in collaboration with B. Glisic of the Stress Analysis Laboratory, Civil
Engineering Department, EPFL. His PhD thesis describes a deformation sensor for concrete at
early and very early age. The problem at hand is to evaluate the perturbation on the measures
induced by the sensor itself. These simulations were easily set up and confirmed the theoretical
assumptions and experimental measures.

6.2.1 Concrete at early and very early age

Fresh concrete is a non-hardened multiphase mixture of different components. It consists of
cement, water and aggregate (sand and gravel), but also contains a small amount of air. Further-
more, certain additives can be added to the basic mixture in order to improve or change certain
characteristics of the concrete (workability, setting time etc.). The part consisting of cement
and water is named cement paste. It is initially plastic, but gradually transforms into a solid

120 CHAPTER 6. OTHER APPLICATIONS

material. Complex physical and chemical processes commonly named the hydration process or
just hydration cause this transformation.

Hydration is an exothermic process. Nevertheless, the heating of concrete does not have the
same intensity during the whole hydration process. The most important heat release begins in
the first few hours that follow the pouring of concrete. It reaches its hottest moments (depending
of the type of cement) after 12 to 48 hours and cools afterwards (Legrand and Wirquin, 1994;
Nonat and Mutin, 1994). The cooling of concrete is usually finished within 7 days, but can be
longer depending on in-situ conditions and dimensions of the concrete elements. The period
which begins with pouring and finishes when all thermal processes in concrete are calmed is
considered here as the early age of concrete (Glisic, 2000a). The period, included in the early
age, during which the concrete is still not hardened, is conventionally called the very early age
(Glisic, 2000a).

Hydration has numerous consequences such as thermal process (heating and cooling), maturity,
setting of the cement paste, hardening and solidification of the concrete as well as variations
of mechanical properties such as Young modulus, Poisson’s ratio, thermal expansion ratio and
strength. An important consequence of the heating and cooling due to hydration is dimensional
variation (deformation) of concrete elements.

Time [hours]

D
ef

o
rm

at
io

n
 [

µε
]

T
em

p
er

at
u

re
 [

̊C
]

Contraction
Expansion

S
ta

b
ili

sa
ti

o
n

 a
n

d

d
o

rm
an

t
p

er
io

d

End of cure

Figure 6.1: Typical ordinary concrete deformation and temperature evolution
curves at early and very early age.

A typical diagram representing the evolution of temperature and deformation obtained by mea-
surements is given in figure 6.1. The very early age deformation is distinguished in the encircled
area.

Recent studies and research (Springenschmid, 1994; Tazawa and Iida, 1983) have shown that
early age deformations can generate premature cracking of concrete that significantly increase
the vulnerability of structures to noxious environmental influences. The cracks form "open
doors" to the infiltration and penetration of noxious substances such as chlorides and sulphate
water. These substances attack the concrete and rebars, and damage the structure, thereby reduc-

6.2. SENSOR IN CONCRETE 121

ing its long-term capacity and durability. That’s why it is important to monitor the deformation
of concrete at early and very early age.

6.2.2 The SOFO monitoring system

The deformation monitoring system named SOFO (French acronym of "Surveillance d’Ouvrage
par Fibres Optiques" - "Monitoring of Structures by Optical Fibers") has been developed at
the Stress Analysis Laboratory of the Swiss Federal Institute of Technology (IMAC-EPFL)
(Inaudi, 1997). It is based on fiber optic technology and is capable of monitoring micrometer
deformations over measurement bases up to a few meters. It is particularly well adapted to the
measurement of structures built with conventional civil engineering materials (concrete, steel
and timber). Since 1993 it has been successfully deployed in different types of structures such
as bridges, tunnels and piles.

The standard SOFO (Glisic, 2000a) sensor is composed of two zones, the active zone which
measures the deformations, and the passive zone that serves as the carrier of information be-
tween the active zone and the reading unit. The sensor is schematically represented in figure 6.2.

Mirrors Reference Fiber Measurement Fiber Protection Tube Coupler Connector

Active Zone
(20cm - 10m)

Passive Zone
(Unlimited)

Anchor
Pieces

Figure 6.2: Standard SOFO Sensor

The active zone is limited by two anchor pieces and consists of two optical fibers placed in a
protection tube. The anchor pieces have a double role: to attach the sensor to the monitored
structure and to transmit the deformation from the structure to the sensing fibers. The measure-
ment fiber is pretensioned between the anchor pieces in order to measure the shortening of the
structure as well as its elongation. The reference fiber is independent of both the measurement
fiber and the deformation of the structure, and its purpose is to compensate for temperature
changes. The length of active zone of the Standard Sensor is comprised between 20 cm and
10 m. Out of these limits, it is difficult to guarantee the independence of the measurement and
reference fibers.

The passive zone transmits the information from the active zone to the reading unit. It is com-
posed of one single-mode fiber, a connector and a coupler, all protected by a plastic tube. The
coupler is placed in the passive zone of the sensor, close to the anchor piece in order to increase
the precision and to facilitate the manipulation during the measurement. The length of the pas-
sive zone can vary from several tens of centimeters to several tens of meters, depending on the
need. If the passive zone is very long a simple fiber optic cable can extend it to up to 5 km. The
protective plastic tube allows for easy manipulation, fast installation and very good protection
of the sensors during the installation and long-term use of the system.

122 CHAPTER 6. OTHER APPLICATIONS

The SOFO sensors can be applied externally, attached to the surface of the structure, but also,
and more importantly, they can be applied internally, embedded in fresh concrete. Installation
of sensors before the pouring of concrete is a mandatory condition for deformation monitoring
at very early age (before the hardening of concrete). The second condition is a good transfer of
deformation from concrete to the sensor. SOFO sensors have a certain stiffness and it is difficult
to estimate what is really measured during the very early age: the real deformation of concrete
or something between the real deformation of concrete and the deformation of the sensor itself
due to hydration heating. The simulations presented in this section address this aspect of the
system.

6.2.3 Basic assumptions

In order to numerically evaluate the transfer of the deformation from the concrete at very early
age, the following assumptions are accepted:

1. The initial stiffness of the very early age concrete is mainly generated by the aggregate
skeleton (Glisic, 2000a). Therefore, the concrete is considered only as a granular medium,
e.g. the influence of the cement paste is neglected.

2. The thermal deformation of the sensor’s active zone itself is restrained by the aggregate
skeleton, and therefore a force is generated in the protective plastic tube (see figure 6.2).
To simplify the modeling, the problem is inverted: instead the heat load (caused by hydra-
tion) applied to the sensor and the aggregate simultaneously, only a force generated in the
plastic tube is applied to the anchor piece, as shown in figure 6.3. The force magnitude of
3.304 N/ � C is calculated using elasto-mechanic parameters of the protective plastic tube
(Glisic, 2000a).

3. The transfer of deformation from the aggregate skeleton to the sensor is considered as
good if the displacement of the anchor piece due to the applied force is less than 2 µε/ � C.
This value is adopted since the thermal expansion coefficient of concrete at very early age
is very elevated and varies between 40 µε/ � C and 10 µε/ � C. The resolution of the SOFO
system is 2 µm and is independent from the length of the active zone. It means that the
resolution of the measured strain is between 10 µε (for an active zone length of 0.2 m)
and 0.2 µε (for an active zone length of 10 m).

Figure 6.3 shows a 2D schematic view of the numerical experiment.

The simulation code has been extended to support a cylindrical anchor piece inserted in the
middle of the granular media. The anchor piece interacts with the surrounding grains, but its
movements are restricted to translations (rotations are not permitted). Furthermore, the anchor
piece applies a force of its own, thus inducing a reaction in the surrounding grains. That force
comes from the dilatation of the active zone of the sensor due to the temperature raise during
hydration. The anchor piece reports its position and forces acting upon it. From these values
trajectories and force-displacement curves are drawn.

6.2. SENSOR IN CONCRETE 123

Applied force

Anchor piece

Aggregate skeleton

Figure 6.3: Schema of modeling

6.2.4 Experiments

The simulations are started by placing an anchor piece inside a cubic box and then filling the
box with spherical grains of various sizes. In a first phase, the anchor piece is left at rest while
the grains are packed under the influence of gravity. This phase lasts one second, which is
enough for the grains to reach equilibrium. Then, an increasing force is applied by the anchor
piece and its trajectory is observed.

The box is square, 200 mm by 200 mm, and filled by a layer of grains approx. 100 mm thick.
The upper surface is free. The diameters of the grains range between 2 mm and 32 mm. The
density of the grains is 2700 Kg/m3.

The anchor piece is a cylinder 16 mm long and 20 mm in diameter, placed in the middle of the
assembly. Its density is 7800 Kg/m3. The force is exerted horizontally, along the main direction
of the cylinder.

The force applied by the anchor piece increases with time according to the following rule:

F
�
t � �

� � �
t

�
t0 � nbstep �
nbstep F if t � t0

0 if t � t0

where F is the reference force, reached after one second, t0 is the time when the anchor piece
starts pulling and nbstep is the number of constant steps to be made to reach this value. In the
experiments, F is set to 2000 N and nbstep to 100, so that the force exerted by the anchor piece
increased by 20 N every hundredth of second.

6.2.5 Numerical results and discussion

Various simulations were performed, with different grain size distributions that resulted in 2800
to 5500 individual grains. All have produced similar results, we discuss those of an average
case, with 3909 grains.

124 CHAPTER 6. OTHER APPLICATIONS

Figure 6.4 shows the results with the sensor placed in the middle of the layer of grains, at a
height of 50 mm. The trajectory of the anchor piece in the horizontal plane, along and perpen-
dicular to its main direction is shown in the top graph. Remember that during the first second,
the anchor piece is artificially fixed. Immediately after, there is a shift of about half a millime-
ter, and then the anchor piece rests in equilibrium for about 6 seconds. At that time the force is
strong enough for the anchor piece to make its way further by shifting the surrounding grains.

This long equilibrium is particularly interesting. It means that even for a force up to 15’000 N,
the anchor piece remains in place. Forces encountered in practice are at least one order of mag-
nitude smaller. The initial displacement on the other hand is irrelevant for the real application.

The bottom graph of figure 6.4 shows the relation between the force and the displacement of
the anchor piece. Low values of the force correspond to the initial shift, but if we look after
that, from 200 N and on, we see that the slope of the curve is very low, that is the increase in
the force induced by a raise of the temperature will have a minimal impact on the position of
the anchor piece and thus will not introduce errors in the measures.

More precisely, a temperature raise of 30 � C generates a force increase of approximately 100 N,
which in turn yields a displacement of less than 0.01 mm, as can be seen in figure 6.4 above
200 N. These 0.01 mm correspond to a value between 1.65 µε and 0.03 µε per � C depending
on the length of the active zone, which has an impact of at most a few percent on the values
measured by the sensor.

Figure 6.5 shows similar results when the sensor is placed near the bottom of the aggregate
skeleton, at a height of 15 mm. We can observe again an initial shift, but the anchor piece
not only settles quicker, but also remains even more stable than in the previous experiment, as
shown by the almost flat curve of the bottom graph. Numerically, we obtain perturbations below
the resolution of the sensor.

Figure 6.6 were obtained by placing the sensor near the top, again at 15 mm. Since the top is a
free surface, it is much easier for the anchor piece to move in response to the force, as stated by
the top graph of figure 6.6. However, the average slope between 0 N and 600 N in the bottom
graph indicates that the perturbation would still be acceptable in this case.

6.2.6 Conclusion

Numerical modeling shows that the Standard Sensor is an appropriate device for the measure-
ment of deformation of concrete at early and very early age. The difference between the mea-
sures and the actual deformation of the aggregate skeleton is estimated to be lower than the res-
olution of the monitoring system. This result is in accordance with results presented in (Glisic,
2000a). The absence of cement paste in the simulated experiments confirms that its mechanical
influence can be neglected in the concrete at very early age, and opens new perspectives for the
use of the SOFO sensors in granular materials.

Both the distinct element method and the simulation code for granular media based on spherical
grains have again proved their versatility. Only minor modifications were required to perform
efficient computer simulations of the SOFO system. Such simulations had not been possible
with existing tools based on other approaches.

6.2. SENSOR IN CONCRETE 125

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9

di
sp

la
ce

m
en

t [
m

m
]

time [s]

Position of the anchor piece in the horizontal plane

along the force
perpendicular to the force

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0 200 400 600 800 1000

di
sp

la
ce

m
en

t [
m

m
]

force [N]

Longitudinal displacement wrt applied force

Figure 6.4: The sensor in the middle of the concrete.

126 CHAPTER 6. OTHER APPLICATIONS

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9

di
sp

la
ce

m
en

t [
m

m
]

time [s]

Position of the anchor piece in the horizontal plane

along the force
perpendicular to the force

0

0.01

0.02

0.03

0 200 400 600 800 1000

di
sp

la
ce

m
en

t [
m

m
]

force [N]

Longitudinal displacement wrt applied force

Figure 6.5: The sensor near the bottom of the concrete.

6.2. SENSOR IN CONCRETE 127

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9

di
sp

la
ce

m
en

t [
m

m
]

time [s]

Position of the anchor piece in the horizontal plane

along the force
perpendicular to the force

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19

0 200 400 600 800 1000

di
sp

la
ce

m
en

t [
m

m
]

force [N]

Longitudinal displacement wrt applied force

Figure 6.6: The sensor near the top of the concrete.

128 CHAPTER 6. OTHER APPLICATIONS

6.3 Hourglass flow

A classical example when dealing with powders and grains is the flow of granular material in an
hourglass, as shown in figure 6.7. Even if this application does not map directly to an industrial
problem, it exhibits several key phenomena:

� The slow movements and rearrangements of the grains in the upper part as they get closer
to the slot

� The flow of grains though the slot

� The free flow of grains falling down in the lower part

� The impact of that flow with the ground

� The accumulation of the grains in the lower part, in particular their rearrangement into a
pile.

Figure 6.7: The flow of grains in an hourglass. The grains are colored ac-
cording to their instantaneous velocity.

Individually, every one of these phenomena plays an important role in industrial processes deal-
ing with granular flows. We performed several simulations with different grain sizes, different
hourglass shape, and grains of two different sizes. By rotating the gravity, we could have a first
approximation of what happens when the hourglass is rotated.

The dimensions of the hourglass are shown in figure 6.8. The simulation is prepared by filling
the upper part with grains, and then the action of gravity will result in the falling of grains
through the opening.

6.3. HOURGLASS FLOW 129

5c
m

10
cm

2cm

10cm

Figure 6.8: The shape and dimension of the hourglass.

6.3.1 Simple flow in a regular hourglass

With grains of equal size, one usually wants that the quantity of material flowing through the
slot depends neither on time nor on the mass in the upper part of the hourglass. This important
property is crucial for using the hourglass to measure time as used to be the case.

Three simulations where performed, they are summarized in table 6.1. Figures 6.9, 6.10 and 6.11
show the actual flow though the slot and a snapshot at three different times. In experiment A
(figure 6.9), the flow is regular throughout the whole period. In experiment B (figure 6.10),
there are too many grains — or more precisely the arrangement of the grains is not optimal
in the lower part — and the slot is blocked. To circumvent this situation, experiment C (fig-
ure 6.11) was performed with less grains and the flow stopped earlier.

Name number of grains grain size [mm]
A 2790 4
B 7236 3
C 5898 3

Table 6.1: Summary of the three experiments.

130 CHAPTER 6. OTHER APPLICATIONS

0

0.5

1

1.5

2

0 2 4 6 8 10

Average flow [% of total number of grains per 1/10th second]

Time [s]

[%] values
average

t � 0 � 0s t � 5 � 0s t � 10 � 0s

Figure 6.9: Experiment A.

6.3. HOURGLASS FLOW 131

0

0.5

1

1.5

2

0 2 4 6 8 10

Average flow [% of total number of grains per 1/10th second]

Time [s]

[%] values
average

t � 0 � 0s t � 5 � 0s t � 10 � 0s

Figure 6.10: Experiment B.

132 CHAPTER 6. OTHER APPLICATIONS

0

0.5

1

1.5

2

0 2 4 6 8 10

Average flow [% of total number of grains per 1/10th second]

Time [s]

[%] values
average

t � 0 � 0s t � 5 � 0s t � 10 � 0s

Figure 6.11: Experiment C.

6.3. HOURGLASS FLOW 133

6.3.2 Grains of different sizes

The same simulation was then run with grains of two different sizes, see table 6.2. This results
in a much more chaotic flow, as can be seen in figure 6.12.

Grain type number of grains grain size [mm] portion of mass [%]
large 273 6 61.67
small 4582 2 38.33
total 4855

Table 6.2: Characteristics of the two grain types.

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

Average flow [% of total number of grains per 1/10th second]

Time [s]

[%] values
average

t � 0 � 0s t � 5 � 0s t � 10 � 0s

Figure 6.12: The flow with two grain sizes.

134 CHAPTER 6. OTHER APPLICATIONS

6.3.3 Various hourglass shapes

Similar sets of grains were used in different hourglasses, as shown in figure 6.13 and 6.14. The
size distribution of the grains is the same, as is the diameter of the slot. In the first case, the
width of the base is shrunk from 10cm to 6cm. The flow in this steep hourglass is very fast. In
the second case the total height is shrunk from 10cm to 6cm. The flow is much slower and even
stops when some large grains block the slot of the hourglass.

t � 0 � 0s t � 1 � 25s t � 2 � 5s

Figure 6.13: The flow with two grain sizes in a tall hourglass.

t � 0 � 0s t � 0 � 75s t � 1 � 5s

Figure 6.14: The flow with two grain sizes in a flat hourglass.

6.3. HOURGLASS FLOW 135

6.3.4 Rotating the hourglass

Two very small simulations were performed with 71 grains in a tall rotating hourglass. Twenty
seconds were simulated, with rotations taking place at 4, 8, 12 and 16 seconds. In the first
case (see figure 6.16), the rotation takes 0.1 second. When it is completed, the grains have
barely started to move and thus fall down quite heavily. In the second case (see figure 6.17), the
rotation takes one second and the grains flow smoothly along the inner wall, which induces a
floating movement near the slot.

During one fast reversal, about a quarter of the grains remained blocked in the upper part of the
hourglass, as shown in figure 6.15.

Figure 6.15: Grains blocked in the hourglass. Left: side view. Right: view
from below the slot.

The tall hourglass of §6.3.3 was also rotated, as shown in figure 6.18. The rotation lasted half a
second and snapshots were taken at 20 frames per second.

136 CHAPTER 6. OTHER APPLICATIONS

t � 4 � 00s t � 4 � 02s t � 4 � 04s

t � 4 � 06s t � 4 � 08s t � 4 � 10s

t � 4 � 12s t � 4 � 14s t � 4 � 16s

Figure 6.16: Individual snapshots during the fast reversal.

6.3. HOURGLASS FLOW 137

t � 4 � 00s t � 4 � 20s t � 4 � 40s

t � 4 � 60s t � 4 � 80s t � 5 � 00s

t � 5 � 20s t � 5 � 40s t � 5 � 60s

Figure 6.17: Individual snapshots during the slow reversal.

138 CHAPTER 6. OTHER APPLICATIONS

Figure 6.18: Rotating the tall hourglass.

6.4. CLUSTERS OF SPHERICAL GRAINS 139

6.4 Clusters of spherical grains

6.4.1 Validation of the concept

We performed two series of simulations with small clusters of spheres glued together by the
artificial force described in section 3.5. The grains are placed in a cubic box with energy brought
in the system by a vibrating floor (2.5Hz). Ten seconds were simulated, but all cases are divided
in two periods: during the first, the grains fall down and rearrange massively according to
their shape, while during the second only local movements, mostly periodic and following the
vibration are observed. Various snapshots of two cases at different time and from different point
of view are given below. The first case comprises 50 short rods built with 15 spheres, the second
comprises 125 tetraheda built with 35 spheres.

Figure 6.19: The tetrahedron and rod used in the simulations.

140 CHAPTER 6. OTHER APPLICATIONS

t � 0 � 0s t � 0 � 25s t � 0 � 5s

t � 0 � 75s t � 1 � 0s t � 10 � 0s

t � 0 � 0s t � 0 � 25s t � 0 � 5s

t � 0 � 75s t � 1 � 0s t � 10 � 0s

Figure 6.20: Front and top view of 50 short rods.

6.4. CLUSTERS OF SPHERICAL GRAINS 141

t � 0 � 0s t � 0 � 25s t � 0 � 5s

t � 0 � 75s t � 1 � 0s t � 10 � 0s

t � 0 � 0s t � 0 � 25s t � 0 � 5s

t � 0 � 75s t � 1 � 0s t � 10 � 0s

Figure 6.21: Front and top view of 125 tetrahedra.

142 CHAPTER 6. OTHER APPLICATIONS

6.4.2 Calibration of the internal gluing force

Several simulations were made as an attempt to give realistic values to the parameters A, α and
β of the force model given by equations (3.27) and (3.29) in section 3.5. Due to the difference
between our macroscopic clusters and the atomic forces that inspired the approach, we could
not use values traditionally assigned to these parameters.

The simulations involve a vertical cylindrical cluster built with 20 layers of approx. 85 spheres
compressed by a piston, as shown in figure 6.22. Once equilibrium is reached where the force
exerted by the piston is balanced by the force generated by the deformation of the cylinder, we
measure that deformation.

We arbitrarily choosed to fix α and A, in this case α � 0 � 2 and A � � 1500, and study the
influence of β on the behavior of the material. Large values of β are supposed to generate
narrow potential and thus hard materials, whereas small values of β widen the area of minimal
potential, thus imitating soft materials.

��
��

��

��
��

��

	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Initial position Final position

l0

∆ l

F
F

Figure 6.22: A cylindric cluster is compressed by a piston to study the influ-
ence of the parameters A, α and β.

The results of 20 simulations are smmarized in table 6.3. For every value of β and of the force
F applied by the pistion, the table gives the value of the dimensionless deformation ε defined as

ε � ∆l
l0

(6.1)

where ∆l is the penetration depth of the piston and l0 the length of the cylinder at rest. Elasticity
curves, see figure 6.23, confirm that the deformation is proportional to the force exerted, and
that higher values of β yield smaller deformations, thus harder materials. (Note that these curves
do not pass by the origin, this is due to a small initial gap between the cylinder and the piston.)

6.4. CLUSTERS OF SPHERICAL GRAINS 143

Value of β Values of ε
10N 50N 100N 500N 1000N

1.0 0.003935 0.006073 0.007750 0.018670 0.031611
2.0 0.002726 0.003337 0.004183 0.009463 0.015267
4.0 0.002239 0.002390 0.002726 0.005473 0.008437
8.0 0.002022 0.002080 0.002175 0.003537 0.005200

Table 6.3: Measures of deformation for various values of β and various
forces.

0

100

200

300

400

500

600

700

800

900

1000

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

F
or

ce

Deformation ε

β = 1
β = 2
β = 4
β = 8

Figure 6.23: Elasticity curves for various values of β and various forces.

144 CHAPTER 6. OTHER APPLICATIONS

6.5 Force visualization

One of the major advantages of computer simulations is to visualize phenomena difficult to
observe in a lab experiment. In particular for granular materials, the internal repartition of the
contact forces creates arching effects difficult to observe. In 2D, one can use materials such as
glass or acetate that polarize light differently in function of the pressure they undergo in order
to observe those effects. It is fairly easy to represent such effects in 2D simulations, as shown
in figure 6.24 taken from Müller’s web page at http://rosowww.epfl.ch/dm/sigma.html.

Figure 6.24: Force arches in 2D.

In 3D the technique is similar: draw a cylinder at every contact point to represent the force, with
large forces shown by large cylinders. Unfortunately, planar projections of such representations
fail to render the volumic information. Furthermore, drawing the grains mostly hides the forces,
and not drawing the grains significantly reduces the realism of the representation. With the help
of transparency, we managed to produce a few illustrations, but we will leave it up to the reader
to decide whether they belong to scientific visualization or to modern art.

A better way to observe these arches is to manipulate interactively 3D models. This can be
achieved for example by exporting the simulation in VRML1 format, and then using special-
ized software to view these. Full details and several examples are given on our web page at
http://rosowww.epfl.ch/jaf/3dwdt/.

1Virtual Reality Modeling Language, see http://www.vrml.org.

http://rosowww.epfl.ch/dm/sigma.html
http://rosowww.epfl.ch/jaf/3dwdt/
http://www.vrml.org

6.5. FORCE VISUALIZATION 145

Top view

Front view Side view

Figure 6.25: Visualization of the forces in a packing of 209 grains in a cylin-
der. The grains are drawn almost transparent, grain-grain forces are drawn in
blue and grain-wall forces in red. Because of the gravitation force acting on
the grains, the forces are larger at the bottom of the assembly. Some arches
are visible.

Life is the process of finding out, too late,
everything that should have been obvious at the time.

– John D. MacDonald

Conclusion

The major theoretical and practical result of this thesis is the successful extension to three-
dimensional space of the pioneering work of Müller concerning the efficient detection of colli-
sion among spheres with dynamic triangulations.

From a theoretical point of view, we proved that if a weighted 3D Delaunay triangulation built
on the centers of spherical grains of any size is maintained to follow the motion of the grains,
then the edges of the triangulation identify all potential collisions. Under mild hypotheses, this
scheme is efficient as the number of edges is proportional to the number of grains, and the
triangulation maintenance can be performed optimally with local operations.

From a practical point of view, we implemented this collision detection scheme in a modular
simulation code for 3D granular materials. This code is based on advanced data structures for
storing and manipulating the triangulation. Special care is taken for the efficient exact evalua-
tion of geometric predicates as these computations are very sensitive to rounding errors. This
code works equally well on standard, single-processor machines and on multi-processor paral-
lel machines offering shared memory access. This yields a significant reduction of computation
time for very large problems.

Simulations performed with this method and this tool have confirmed known facts and provided
new insights for various phenomena of granular materials. The density of powder packings
obtained by mixing grains of various sizes is difficult to determine theoretically. Simulations
concerning the influence of the vibrations used to improve the packing, or the local behavior
of small and medium grains around large ones allowed us to gain better understanding in this
area of uttermost importance to some industrial processes. Other simulations have confirmed
the theoretical and experimental assumptions on the unbiasedness of the measures taken by the
SOFO sensor for concrete at early and very early age.

By looking at grains in an hourglass we observed several key phenomena of granular flows,
namely surface effects, constrained and free flows, arching effects blocking the flow, impact of
a flow on a wall, heap formation, etc.

Preliminary experiments were done based on an original idea of gluing spheres together to form
non-spherical grains. Some artificial test cases allowed validating the approach, and traditional
experiments were replicated in order to fit some parameters of the internal cohesion force.

Many more applications can and hopefully will be studied with the simulation code developed
in this thesis. It was in fact designed with reusability in mind, both at the user or programmer
level. We seem to have achieved this goal, as several students have successfully used and
extended the code during their semester and diploma projects.

148 CONCLUSION

Finally, as the conclusion of this thesis is everything but the conclusion of the research effort in
this domain, we would like to point out some promising ideas for future developments.

As mentioned in chapter 3, the collision detection used by Müller for 2D polygonal grains will
be very hard to extend to 3D polyhedral grains. The constrained triangulation of a general
polyhedral domain in three-dimensional space is still object of specific theoretical research,
and efficient algorithms to maintain such a triangulation are a prerequisite for its application to
collision detection.

In the mean time, more effort can be devoted to the clusters of spherical grains. Aside from al-
lowing a wide range of grain shape, they can also serve as basis for the study of grain deforma-
tion in granular materials and in particular the various breakage phenomena. Such simulations
will of course find immediate application in the mining industry.

The support for clusters of grains called for the ability to have different force models depending
on the nature of the grains involved in the contact. This possibility should be investigated
further, maybe in conjunction with adaptive models that are able to react differently according
to the situation. This is necessary for applications involving heterogeneous materials, and could
be the basis for a first approximation of some wet granular materials where the contact between
two grains is influenced by an interstitial fluid.

Whether to account for clusters of spheres, or to study the packing of grains of very different
sizes, the need for larger simulations is growing. If 100’000 grains seem now reasonable, some
applications will need more. Such large simulations obviously call for more efficient algorithms,
codes and computers. In this context, an implementation for distributed memory computers
would be welcome, yet not trivial. But aside from the actual computation, the management of
those huge data sets requires more and more attention. In particular, the post-processing of the
raw simulation results, whether it involves producing density curves, short movies or 3D models
of the force arches must be improved. An urgent development in this area is a custom visual-
ization procedure for large sets of particles using the low level but highly optimized OpenGL
framework.

All our simulations involved very simple boundary elements: cubes, cylinders, spheres, cones.
In order to fulfill the requirements of most industrial cases, complex boundaries must be ac-
counted for. As those geometries often come from CAD software as triangulated volumes,
there are nice synergies to be found between the triangulation that detects collisions and the
triangulation that describes the objects. In particular, moving boundaries will be easy to man-
age this way. As with the clusters, this is yet another step in the direction of dynamic, partly
constrained 3D triangulations.

Be careful of reading health books,
you might die of a misprint.

– Mark Twain

Bibliography

Algorithmic Solutions Software GmbH (2001). LEDA, a Library of Efficient Data types and
Algorithms. http://www.algorithmic-solutions.com/.

Allen, M. P. and Tildesley, D. J. (1987). Computer simulation of liquids. Clarendon Press,
Oxford.

Alliez, P., Devillers, O., and Snoeyink, J. (1998). Removing degeneracies by perturbing the
problem or the world. In Proc. 10th Canad. Conf. Comput. Geom. INRIA Research Report
3316, 1997.

Andrade, B. and Reinmann, S. (2001). Simulation d’amas de grains sphériques. Projet de
semestre, EPFL-DMA.

Aurenhammer, F. (1987). Power diagrams: properties, algorithms and applications. SIAM J.
Comput., 16(1):78–96.

Aurenhammer, F. (1988). Improved algorithms for discs and balls using power diagrams. J.
Algorithms, 9:151–161.

Bakucz, P., Krause, G., and Stoyan, D. (1999). Force distribution in loaded planar disc systems.
In Gaul, L. and Brebbia, C. A., editors, Computational Methods in Contact Mechanics IV,
pages 273–282. WIT Press, Southampton/Boston.

Barker, G. C. (1994). Computer simulations of granular materials. In Mehta, A., editor, Gran-
ular Matter: An interdisciplinary approach. Springer-Verlag.

Barriuso, R. and Knies, A. (1994). SHMEM User’s Guide for C (Rev. 2.2). Cray Research Inc.

Basch, J., Erickson, J., Guibas, L. J., Hershberger, J., and Zhang, L. (1999). Kinetic collision
detection for two simple polygons. In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms,
pages 102–111.

Basch, J., Guibas, L. J., and Hershberger, J. (1997a). Data structures for mobile data. In Proc.
8th ACM-SIAM Sympos. Discrete Algorithms, pages 747–756.

Basch, J., Guibas, L. J., Silverstein, C. D., and Zhang, L. (1997b). A practical evaluation of
kinetic data structures. In Proc. 13th ACM Symposium on Computational Geometry, pages
388–390. http://graphics.stanford.EDU/~lizhang/interests.html.

Basch, J., Guibas, L. J., and Zhang, L. (1997c). Proximity problems on moving
points. In Proc. 13th ACM Symposium on Computational Geometry, pages 344–351.
http://graphics.stanford.EDU/~lizhang/interests.html.

http://www.algorithmic-solutions.com/
http://graphics.stanford.EDU/~lizhang/interests.html
http://graphics.stanford.EDU/~lizhang/interests.html

150 BIBLIOGRAPHY

Berger, R. (1999). Triangulations dynamiques en 3D avec LEDA. Projet de semestre, EPFL-
DMA.

Berger, R. (2000). Simulation de la chute d’un bloc rocheux sur un remblai. Projet de semestre,
EPFL-DMA.

Bierlaire, M. (2001). A general formulation of the cross-nested logit model. In Proceedings of
the 1st Swiss Transportation Research Conference, Ascona, Switzerland.

Bircher, H. (1998). Berechnung von theoretischen Schüttdichten. private comm.

Bircher, H., Mathieu, J., and Mäder, P. (1999). Einfluss der Korngrössenverteilung/Kornform
von Sprengstoffkristallen auf die rheologishen Parameter von PBX-Sprengstoffen. private
comm.

Boissonnat, J.-D. and Yvinec, M. (1995). Géométrie Algorithmique. Ediscience. Published in
english as Algorithmic Geometry, Cambridge University Press, 1998.

Brönnimann, H., Schirra, S., and Veltkamp, R. (2001). The CGAL Reference Manual.
http://www.cgal.org/Manual/.

Bronnimann, H. and Yvinec, M. (1997). Efficient exact evaluation of signs of determinants. In
Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 166–173.

Carreira, J., Silva, L. M., Silva, J. G., and Chapple, S. (1995). Implementing Virtual Shared
Memories on MPI. In MPI Developers Conference, University of Notre Dame.

Chandra, R., Chen, D., Cox, R., Maydan, D. E., Nedeljkovic, N., and Anderson, J. M. (1997).
Data distribution support on distributed shared memory multiprocessors. In Proc. SIGPLAN
97.

Chung, K. and Weng, W. (1996). Quick collision detection of polytopes in virtual environments.
In Proc. 3rd ACM Sympos. Virtual Reality Software and Technology, pages 125–132.

Cignoni, P., Laforenzy, D., Montani, C., Perego, R., and Scopigno, R. (1995). Evaluation
of parallelization strategies for an incremental Delaunay triangulator in E3. Concurrency:
Practice and Experience, 7(1):61–80.

Cignoni, P., Montani, C., Perego, R., and Scopigno, R. (1993). Parallel 3D Delaunay triangula-
tion. Computer Graphics Forum, 12(3):129–142.

Claudin, P. (1999). La physique des tas de sable. EDP Sciences.

Cleary, P. W. (1998). Discrete element modelling of industrial granular flow applications. TASK
Quarterly, 2(3):385–415.

Cleary, P. W. and Sawley, M. L. (1999). Three-dimensional modelling of industrial granular
flows. In Second International Conference on CFD in the Minerals and Process Industries.
CSIRO, Melbourne, Australia.

Cundall, P. A. (1988). Formulation of a three-dimensional distinct-element model — Part I. A
scheme to detect and represent contacts in a system composed of many polyhedral blocks.
Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 25(3).

http://www.cgal.org/Manual/

BIBLIOGRAPHY 151

Cundall, P. A. and Strack, O. D. L. (1979). A discrete numerical model for granular assemblies.
Géotechnique, 29(1).

Dai, Y. and Sutou, A. (2000). A study of the global optimization approach to
spherical packing problems. Technical Report B-361, Tokyo Institue of Technology.
http://www.is.titech.ac.jp/research/research-report/B/.

Devillers, O., Golin, M., Kedem, K., and Schirra, S. (1996). Queries on Voronoi diagrams of
moving points. Comput. Geom. Theory Appl., 6:315–327.

Dobkin, D. P. and Laszlo, M. J. (1989). Primitives for the manipulation of three-dimensional
subdivisions. Algorithmica, 4:3–32.

Dos Reis, G. (1998). Vers une nouvelle approche du calcul scientifique en C++. Technical
Report RR-3362, INRIA. http://www.inria.fr/rrrt/rr-3362.html.

Drake, T. G. (1991). Granular flow: physical experiments and their implications for microstruc-
tural theories. J. Fluids. Mech., 12(225).

Duran, J. (2000). Sands, Powders, and Grains: An introduction to the Physics of Granular
Materials. Springer.

Edelsbrunner, H. (1987). Algorithms in Combinatorial Geometry. Springer-Verlag.

Edelsbrunner, H. and Mücke, E. P. (1990). Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms. ACM Trans. Graph., 6:66–104.

Edelsbrunner, H. and Shah, N. R. (1996). Incremental topological flipping works for regular
triangulations. Algorithmica, 15:223–241.

Erickson, J., Guibas, L. J., Stolfi, J., and Zhang, L. (1999). Separation-sensitive collision de-
tection for convex objects. In Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, pages
327–336.

Feiner, S., Foley, J., Dam, A. V., and Hughes, J. F. (1990). Fundamentals of interactive com-
puter graphics. Addison Wesley, USA, 2nd edition.

Ferrez, J.-A., Fukuda, K., and Liebling, T. M. (1998a). Parallel computation of the diameter
of a graph. In Schaeffer, J., editor, High Performance Computing Systems and Applications,
pages 283–296. Kluwer Academic Publishers.

Ferrez, J.-A., Fukuda, K., and Liebling, T. M. (1998b). Parallel implementation
of graph diameter algorithms. EPFL Supercomputing Review, 10. Online at
http://sawww.epfl.ch/SIC/SA/publications/SCR98/scr10-page3.html.

Ferrez, J.-A., Glisic, B., and Liebling, T. M. (2000a). Distinct element simulation of the SOFO
sensor for concrete at early and very early age. Technical Report RO001002.

Ferrez, J.-A. and Liebling, T. M. (2000). Using dynamic triangulations in distinct element
simulations. In Deville, M. and Owens, R., editors, Proceedings of the 16th IMACS World
Congress.

http://www.is.titech.ac.jp/research/research-report/B/
http://www.inria.fr/rrrt/rr-3362.html
http://sawww.epfl.ch/SIC/SA/publications/SCR98/scr10-page3.html

152 BIBLIOGRAPHY

Ferrez, J.-A. and Liebling, T. M. (2001a). Dynamic triangulations for efficient collision detec-
tion among spheres with applications in granular media simulations. Submitted to Phil. Mag.
B.

Ferrez, J.-A. and Liebling, T. M. (2001b). An environment for granular media simulations based
on dynamic 3D weighted Delaunay triangulations. in preparation.

Ferrez, J.-A., Müller, D., and Liebling, T. M. (1996). Parallel implementation of a distinct ele-
ment method for granular media simulation on the Cray T3D. EPFL Supercomputing Review,
8. Online at http://sawww.epfl.ch/SIC/SA/publications/SCR96/scr8-page4.html.

Ferrez, J.-A., Müller, D., and Liebling, T. M. (2000b). Dynamic triangulations for granular
media simulations. In Mecke, K. R. and Stoyan, D., editors, Statistical Physics and Spatial
Statistics, Lecture Notes in Physics. Springer.

Ferrez, J.-A., Pournin, L., and Liebling, T. M. (1999). A simulation environment for packings
of 3D spheres. Final Report, Simboules project.

Ferrez, J.-A., Pournin, L., and Liebling, T. M. (2000c). Distinct element computer simulations
for optimal packings of 3D spheres. Final Report, Simboules project, second year.

Foester, S. F., Louge, M. Y., Chang, H., and Allia, K. (1994). Measurement of the collision
properties of small spheres. Phys. Fluids, 6(1108).

Folly, P. (2000). Experimental measures of densities with steel balls. private comm.

Fortune, S. and Van Wyk, C. J. (1993). Efficient exact arithmetic for computational geometry.
In Ninth Annual Symposium on Computational Geometry, pages 163–172.

Fukuda, K. (2001). On quadratic 3d triangulations. private comm.

Ghaboussi, J. and Barbosa, R. (1990). Three-dimensionnal discrete element method for granular
materials. Int J. for Numerical and Analytical Methods in Geomechanics, 14(451).

Glisic, B. (2000a). Fiber Optic Sensors and Behaviour in Concrete at Early Age. Thèse
N � 2168, EPFL.

Glisic, B. (2000b). Limitation de la fissuration au jeune age du béton dans des structures hy-
brides. Research report, MCS, IMAC and ICOM, EPFL, Lausanne, Switzerland.

Goldberg, D. (1991). What every computer scientist should know about floating-point arith-
metic. ACM Computing Surveys, 23(1):5–48.

Guibas, L., Mitchell, J. S. B., and Roos, T. (1991). Voronoi diagrams of moving points in
the plane. In Proc. 17th Internat. Workshop Graph-Theoret. Concepts Comput. Sci., volume
volume 570 of Lecture Notes in Computer Science, pages 113–125. Springer-Verlag.

Guibas, L. and Stolfi, J. (1985). Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams. ACM Transactions on Graphics, 4(2):74–123.

Guibas, L. J., Knuth, D. E., and Sharir, M. (1992). Randomized incremental construction of
Delaunay and Voronoi diagrams. Algorithmica, 7:381–413.

http://sawww.epfl.ch/SIC/SA/publications/SCR96/scr8-page4.html

BIBLIOGRAPHY 153

Guibas, L. J. and Zhang, L. (1998). Euclidean proximity and power dia-
grams. In Proc. 10th Canadian Conference on Computational Geometry.
http://graphics.stanford.EDU/~lizhang/interests.html.

Gustafson, J., Snell, Q., Amit, S., Heller, D., and Todi, R. (1999). The HINT benchmark.
http://www.scl.ameslab.gov/HINT/.

Hales, T. C. (1998). The Kepler conjecture. Web page with an overview of the proof and related
papers, http://www.math.lsa.umich.edu/~hales/countdown/.

Hoomans, B. P. B., Kuipers, J. A. M., Briels, W. J., and Swaaij, W. P. M. V. (1996). Discrete
particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a
hard-sphere approach. Chemical Engineering Science, 51(1):99–118.

Hopcroft, J. E., Schwartz, J. T., and Sharir, M. (1983). Efficient detection of intersections
among spheres. Intl. J. Robotics Research, 2(4):77–80.

Imai, H., Iri, M., and Murota, K. (1985). Voronoi diagram in the Laguerre geometry and its
applications. SIAM J Computing, 14(1):93–105.

Inaudi, D. (1997). Fiber Optic Sensor Network for the Monitoring of Civil Structures. Thèse
N � 1612, EPFL.

Indermitte, C. (1995). Modélisation et simulation de la croissance d’un mycélium. Thèse
N � 1404, EPFL.

Jenkins, J. T. and Savage, S. B. (1983). A theory for the rapid flow of identical, smooth, nearly
elastic, spherical particles. J Fluid Mech, 130:187–202.

Joe, B. (1989). Three-dimensional triangulations from local transformations. SIAM J. Sci. Stat.
Comput., 10(4):718–741.

Joe, B. (1991). Construction of three-dimensional Delaunay triangulations using local transfor-
mations. Computer Aided Geometric Design, 8:123–142.

Joe, B. (1992). Three-dimensional boundary-constrained triangulations. In
Houstis, E. N. and Rice, J. R., editors, Artificial Intelligence, Expert Sys-
tems, and Symbolic Computing, pages 215–222. Elsevier Science Publishers.
ftp://ftp.cs.ualberta.ca/pub/geompack/Papers/Joe92.ps.Z.

Joe, B. (1993). Construction of k-dimensional Delaunay triangulations using local transforma-
tions. SIAM J. Sci. Comput., 14(6):1415–1436.

Joe, B. (1995). Construction of three-dimensional improved-quality triangulations using local
transformations. SIAM J. Sci. Comput., 16:1929–1307.

Johnson, K. (1985). Contact Mechanics. Cambridge Univ. Press, New York.

Kuonen, P. and Gruber, R. (1999). Parallel computer architectures for commodity com-
puting and the Swiss-T1 machine. EPFL Supercomputing Review, 11. Online at
http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page3.html.

http://graphics.stanford.EDU/~lizhang/interests.html
http://www.scl.ameslab.gov/HINT/
http://www.math.lsa.umich.edu/~hales/countdown/
ftp://ftp.cs.ualberta.ca/pub/geompack/Papers/Joe92.ps.Z
http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page3.html

154 BIBLIOGRAPHY

Kurz, W., Mercier, J. P., and Zambelli, G. (1991). Introduction à la Science des Matériaux,
volume 1 of Traité des Matériaux. Presses Polythechniques et Universitaires Romandes,
2ème edition.

Kuwabara, G. and Kono, K. (1987). Restitution coefficient in a collision between two spheres.
Jap. J. Appl. Phys., 26(1230).

Labous, L., Rosato, A. D., and Dave, R. N. (1997). Measurements of collisional properties of
spheres using high-speed video analysis. Phys. Rev. E, 56(5717).

Lamarche, F. and Leroy, C. (1990). Evaluation of the volume of intersection of a sphere with a
cylinder by elliptic integrals. Computer Phys. Comm., 59:359–369.

Legrand, C. and Wirquin, E. (1994). First developments of strength in a microconcrete. In
Thermal cracking in concrete at early age, RILEM International Symposium, Munich, pages
89–100.

Leutwyler, K. (1998). Stack ’em tight. Scientific American. Online at
http://www.sciam.com/explorations/1998/091498sphere/.

Levine, J., Mason, T., and Brown, D. (1992). lex & yacc. O’Reilly, 2nd edition.

Liebling, T. M., Mocellin, A., Telley, H., Righetti, F., Clémençon, H., and Indermitte, C. (1992).
Nouvelles approches dans la modélisation et simulation de processus de croissance en science
des matériaux et en biologie. Cahiers du CERO, 34:117–138.

Luding, S., Clément, E., Blumen, A., Rajchenbach, J., and Duran, J. (1994). Anomalous energy
dissipation in molecular-dynamics simulations of grains: The "detachment" effect. Phys. Rev.
E, 50(4113).

Magnier, S.-A. and Donzé, F. V. (1998). Numerical simulation of impacts using a discrete
element method. Mech. Cohes.-frict. Mater., 3.

Mantyla, M. (1988). An introduction to solid modeling. Computer Science Press, USA.

Matuttis, H.-G., Luding, S., and Herrmann, H. J. (2000). Discrete element methods for the sim-
ulation of dense packings and heaps made of spherical and non-spherical particles. Powder
Technology, 109(1-3):278–292.

Mücke, E. (1993). Shapes and Implementations in Three-Dimensional Ge-
ometry. PhD thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign. Technical Report UIUCDCS-R-93-1836,
ftp://cs.uiuc.edu/pub/TechReports/UIUCDCS-R-93-1836.ps.Z.

McNamara, S. and Young, W. R. (1992). Inelastic collapse and clumping in a one-dimensional
granular medium. Phys. Fluids A, 4(496).

Mehlhorn, K. and Näher, S. (1999). LEDA. Cambridge University Press.

Meichtry, E. (2001). Simulation d’amas de grains sphériques. Projet de semestre, EPFL-DMA.

Meichtry, E. and Paroz, S. (2000). Animations interactives de triangulations 3D. Projet de
semestre, EPFL-DMA.

http://www.sciam.com/explorations/1998/091498sphere/
ftp://cs.uiuc.edu/pub/TechReports/UIUCDCS-R-93-1836.ps.Z

BIBLIOGRAPHY 155

Mirtich, B. (1997). V-clip: Fast and robust polyedral collision detection. Technical Report
TR-97-05, Mitsubishi Electrical Research Laboratory.

Mirtich, B. and Canny, J. (1995). Impulse-based dynamic simulation, The agorithmic Founda-
tions of robotics. A. K. Peters.

Müller, D. (1996a). Techniques informatiques efficaces pour la simulation de mileux granu-
laires par des méthodes d’éléments distincts. Thèse N � 1545, EPFL.

Müller, D. (1996b). Web page with example simulations of granular media.
http://rosowww.epfl.ch/dm/sigma.html.

Müller, D. (1998). Mieux comprendre les milieux granulaires. IAS Bulletin, 9.

Müller, D. and Liebling, T. M. (1995). Detection of collisions of polygons by using a trian-
gulation. In et al., M. R., editor, Contact Mechanics, pages 369–372. Plenum Publishing
Corporation, New York.

Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys.,
30:543–574.

Montani Stoffel, S. (1998). Sollicitation dynamique de la couverture des galeries de protection
lors de chutes de blocs. Thèse N � 1899, EPFL.

Muguruma, Y., Tanaka, T., and Tsuji, Y. (2000). Numerical simulation of particulate flow
with liquid bridge between particles (simulation of centrifugal tumbling granulator). Powder
Technology, 109:49–57.

Ng, T.-T. and Dorby, R. (1994). Numerical simulations of monotonic and cyclic loading of
granular soil. J. of Geotechnical Engineering, 120(338).

Nonat, A. and Mutin, J. C. (1994). From hydration to setting. In Thermal cracking in concrete
at early age, RILEM International Symposium, Munich, pages 171–191.

O’Connor, R. M. (1996). A distributed discrete element modeling environment - Algorithms,
implementation and applications. PhD thesis, MIT.

Pournin, L. (1999). Triangulations dynamiques pour la simulation de milieux granulaires. Projet
de diplôme, EPFL-DMA.

Pournin, L., Liebling, T. M., and Mocellin, A. (2001). A new molecular dynamics force model
for better control of energy dissipation in DEM simulations of dense granular media. to
appear in Phys. Rev. E.

Priest, D. M. (1991). Algorithms for arbitrary precision floating point arithmetic. In Kornerup,
P. and Matula, D., editors, Tenth Symposium on Computer Arithmetic, pages 132–143. IEEE
Computer Society Press.

Pöschel, T. and Buchholtz, V. (1995). Molecular dynamics of arbitrary shaped granular parti-
cles. J. Phys. I, 5(1431).

Radjai, F., Jean, M., Moreau, J.-J., and Roux, S. (1996). Force distributions in dense two-
dimensional granular systems. Phys. Rev. Lett., 77(2):274–277.

http://rosowww.epfl.ch/dm/sigma.html

156 BIBLIOGRAPHY

Righetti, F. (1992). Modélisation 3D d’amas polycristallins et méthodologie et méthodologie
d’analyse de leurs images microscopiques. Thèse N � 1016, EPFL.

Ristow, G. H. (2000). Pattern formation in Granular Materials. Springer Tracts in Modern
Physics. Springer.

Rogers, D. (1985). Procedural Elements for Computer Graphics. McGraw Hill.

Sadd, M. H., Tai, Q., and Shukla, A. (1993). Contact law effects on wave propagation in
particulate materials using distinct element modeling. Int. J. Non-Linear Mechanics, 28(251).

Samet, H. (1984). The quadtree and related hierarchical data structures. ACM Computing
Surveys, 16:187–260.

Sawley, M. L. and Cleary, P. W. (1999). A parallel discrete element method for in-
dustrial granular flow simulations. EPFL Supercomputing Review, 8. Online at
http://www.epfl.ch/SIC/SA/publications/SCR99/scr11-page23.html.

Schäfer, J., Dippel, S., and Wolf, D. E. (1996). Force schemes in simulations of granular
materials. J. Phys. I, 6(5).

Shewchuk, J. R. (1996). Robust adaptive floating-point geometric predicates. In
Proceedings of the Twelfth Annual Symposium on Computational Geometry. ACM.
http://www.cs.cmu.edu/~quake/robust.html.

Shewchuk, J. R. (1997). Adaptive precision floating-point arithmetic and fast ro-
bust geometric predicates. Discrete & Computational Geometry, 18:305–363.
http://www.cs.cmu.edu/~quake/robust.html.

Sigurgeirsson, H., Stuart, A., and Wan, W.-L. (2000). Collision detection for particles in a flow.
http://www.maths.warwick.ac.uk/~stuart/hersir2.ps.

Sondergaard, R., Caney, K., and Brennen, C. E. (1990). Measurements of solid spheres bounc-
ing off flat plates. ASME J. Appl. Mech., 57(694).

Springenschmid, R., editor (1994). Thermal cracking in concrete at early age, RILEM Interna-
tional Symposium, Munich.

Stroustrup, B. (1997). The C++ Programming Language. Addison Wesley, 3rd edition.

Sugihara, K., Okabe, A., and Boots, B. (1992). Spatial Tesselations — Concepts and Applica-
tions of Voronoi Diagrams. John Wiley.

Tazawa, E. and Iida, K. (1983). Mechanism of thermal stress generation due to hydration heat
of concrete. Transactions of the Japan Concrete Institute, 5:119–126.

Tejchman, J. and Gudehus, G. (1993). Powder Technology, 76(201).

Telley, H. (1989). Modélisation et simulation bidimensionnelle de la croissance des poly-
cristaux. Thèse N � 780, EPFL.

http://www.epfl.ch/SIC/SA/publications/SCR99/scr11-page23.html
http://www.cs.cmu.edu/~quake/robust.html
http://www.cs.cmu.edu/~quake/robust.html
http://www.maths.warwick.ac.uk/~stuart/hersir2.ps

BIBLIOGRAPHY 157

Telley, H., Liebling, T. M., and Mocellin, A. (1996a). The Laguerre model of grain growth in
two dimensions: Part I. Cellular structures viewed as dynamical Laguerre tesselations. Phil.
Mag. B, 73(3):395–408.

Telley, H., Liebling, T. M., and Mocellin, A. (1996b). The Laguerre model of grain growth in
two dimensions: Part II. Examples of coarsening simulations. Phil. Mag. B, 73(3):409–427.

Teng, Y. A., Sullivan, F., Beichl, I., and Puppo, E. (1993). A data-parallel algorithm for the
three-dimensional Delaunay triangulation and its implementation. In Proceedings of Super-
computing ’93, Portland, Oregon, pages 112–121.

The CGAL Team (2001). CGAL, Computational Geometry Algorithm Library.
http://www.cgal.org/.

Walton, O. R. and Braun, R. L. (1986). Viscosity, granular-temperature, and stress calculations
for shearing assemblies of inelastic, frictional discs. J. of Rheology, 30(949).

Weibel, C. (2000). Parallélisation d’un algorithme de simulation de milieux granulaires. Projet
de diplôme, EPFL-DMA.

Wenzel, O. and Bicanic, N. (1993). A quad tree based contact detection algorithm. In Pro-
ceedings of the 2nd international conference on discrete element methods (DEM), MIT. IESL
Publications.

Xue, X. (1995). Laguerre models for grain growth. Thèse N � 1466, EPFL.

Xue, X., Righetti, F., Telley, H., Liebling, T. M., and Mocellin, A. (1997). The Laguerre model
for grain growth in three dimensions. Phil. Mag. B, 75(4):567–585.

http://www.cgal.org/

CURRICULUM VITAE 159

Jean-Albert Ferrez rosowww.epfl.ch/jaf
Born March 26, 1971 jaf@verbier.ch

EDUCATION

1990 – École Polytechnique Fédérale de Lausanne (EPFL): www.epfl.ch
1999: Postgraduate course "Operations Research and Statistics".
1997: Postgraduate course "Methods and Applications on Parallel Computers".
1995: Teaching certificate in applied mathematics.
1995: Diploma in mathematical engineering.

1985 – 1990 Secondary school at the Lycée Collège des Creusets, Sion: Maturity C (scientific).

PROFESSIONAL EXPERIENCE

1995 – EPFL – Department of Mathematics, Lausanne: rosowww.epfl.ch
Assistant of Prof. Th. M. Liebling, chair of Operations Research

1993 – 1995 HotSoft Development, Verbier: www.hotsoft.com
Consulting and development, Hotel Management Software

VARIOUS

Languages: Fluent in French and English, good knowledge of German, notions of Swiss-German and Italian.
Substitute Deputy in the Parliament of Canton du Valais. www.vs.ch
Vice-president of the local Linux User Group (GULL). www.linux-gull.ch

http://rosowww.epfl.ch/jaf/
mailto:jaf@verbier.ch
http://www.epfl.ch/
http://rosowww.epfl.ch/
http://www.hotsoft.com/
http://www.vs.ch/
http://www.linux-gull.ch/

	Title page
	Acknowledgements
	Abstract
	Résumé
	Introduction
	1 Building blocks and Motivation
	1.1 Computer simulation of granular materials
	1.2 Collision detection
	1.3 3D dynamic triangulations
	1.4 Contact models
	1.5 Existing software
	1.6 Parallel computing

	2 Three-dimensional dynamic triangulations
	2.1 Introduction
	2.2 Static case
	2.2.1 A set of grains
	2.2.2 The power function with respect to a grain
	2.2.3 The Laguerre complex
	2.2.4 The Delaunay triangulation

	2.3 Geometric predicates
	2.3.1 Orient3D
	2.3.2 Insphere3D
	2.3.3 WeightedInsphere3D

	2.4 Dynamic case
	2.4.1 Local operations on triangulations
	2.4.2 In 2D
	2.4.3 In 3D
	2.4.4 Scheduling exact event times
	2.4.5 Discretizing time

	2.5 Degenerate cases
	2.5.1 Non-uniqueness of the Delaunay triangulation
	2.5.2 Delaunay triangulation with superlinear number of edges

	2.6 Conclusion

	3 The Distinct Element Method
	3.1 Introduction
	3.2 The DEM algorithm for spherical grains
	3.3 The contact models
	3.3.1 Simple contacts
	3.3.2 Multiple contacts
	3.3.3 Contacts with walls

	3.4 Integrating the motion equations
	3.4.1 Linear damping

	3.5 Beyond spherical grains

	4 Computational aspects
	4.1 Design objectives
	4.2 Implementation of the triangulation
	4.2.1 Operations required on the triangulation
	4.2.2 Triangulation based on Facet-Edges
	4.2.3 Triangulation based on Triangles

	4.3 Numerical stability in Computational Geometry
	4.3.1 Exact floating-point computations
	4.3.2 Adaptive sign computation for determinants

	4.4 The simulation loop
	4.5 The parallel simulation loop
	4.5.1 The parallel algorithm
	4.5.2 The parallel machines
	4.5.3 Performance of the parallel code

	4.6 Measures
	4.7 I/O functionalities
	4.7.1 The checkpointing mechanism
	4.7.2 The exportation of data for visualization

	4.8 Parameter management
	4.9 Adding new features
	4.9.1 Integrating new contact models
	4.9.2 Integrating new boundary shapes
	4.9.3 Integrating new export formats

	5 Sphere packing
	5.1 Introduction
	5.2 The setup for the simulations
	5.3 The first attempts
	5.4 Selecting the correct vibration
	5.5 Filling the space between the large grains
	5.6 Covering one large grain
	5.7 Other simulations
	5.8 Experimental validation of the simulation
	5.8.1 Unimodal case
	5.8.2 Narrow distribution
	5.8.3 Wide distribution

	5.9 Other possible approaches
	5.9.1 Face-centered cubic packings
	5.9.2 Exact computation

	5.10 Conclusion

	6 Other applications
	6.1 Introduction
	6.2 Sensor in concrete
	6.2.1 Concrete at early and very early age
	6.2.2 The SOFO monitoring system
	6.2.3 Basic assumptions
	6.2.4 Experiments
	6.2.5 Numerical results and discussion
	6.2.6 Conclusion

	6.3 Hourglass flow
	6.3.1 Simple flow in a regular hourglass
	6.3.2 Grains of different sizes
	6.3.3 Various hourglass shapes
	6.3.4 Rotating the hourglass

	6.4 Clusters of spherical grains
	6.4.1 Validation of the concept
	6.4.2 Calibration of the internal gluing force

	6.5 Force visualization

	Conclusion
	Bibliography
	Curriculum Vitae

