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Abstract

Distributed computing is reshaping the way people think about and do daily life
activities. On-line ticket reservation, electronic commerce, and telebanking are ex-
amples of services that would be hardly imaginable without distributed computing.
Nevertheless, widespread use of computers has some implications. As we become
more depend on computers, computer malfunction increases in importance. Until
recently, discussions about fault tolerant computer systems were restricted to very
specific contexts, but this scenario starts to change, though.

This thesis is about the design of fault tolerant computer systems. More specifically,
this thesis focuses on how to develop database systems that behave correctly even in
the event of failures. In order to achieve this objective, this work exploits the notions
of data replication and group communication. Data replication is an intuitive way
of dealing with failures: if one copy of the data is not available, access another one.
However, guaranteeing the consistency of replicated data is not an easy task. Group
communication is a high level abstraction that defines patterns on the communication
of computer sites. The present work advocates the use of group communication in
order to enforce data consistency.

This thesis makes four major contributions. In the database domain, it introduces
the Database State Machine and the Reordering technique. The Database State
Machine is an approach to executing transactions in a cluster of database servers that
communicate by message passing, and do not have access to shared memory nor to a
common clock. In the Database State Machine, read-only transactions are processed
locally on a database site, and update transactions are first executed locally on a
database site, and them broadcast to the other database sites for certification and
possibly commit. The certification test, necessary to commit update transactions,
may result in aborts. In order to increase the number of transactions that successfully
pass the certification test, we introduce the Reordering technique, which reorders
transactions before they are committed.

In the distributed system domain, the Generic Broadcast problem and the Optimistic
Atomic Broadcast algorithm are proposed. Generic Broadcast is a group communi-
cation primitive that allows applications to define any order requirement they need.
Reliable Broadcast, which does not guarantee any order on the delivery of messages,
and Atomic Broadcast, which guarantees total order on the delivery of all messages,
are special cases of Generic Broadcast. Using Generic Broadcast, we define a group
communication primitive that guarantees the exact order needs of the Database State



Machine. We also present an algorithm that solves Generic Broadcast. Optimistic
Atomic Broadcast algorithms exploit system properties in order to implement total
order delivery fast. These algorithms are based on system properties that do not
always hold. However, it they hold for a certain period, ensuring total order delivery
of messages is done faster than with traditional Atomic Broadcast algorithms. This
thesis discusses optimism in the implementation of Atomic Broadcast primitives,
and presents in detail the Optimistic Atomic Broadcast algorithm. The optimistic
broadcast approach presented in this thesis is based on the spontaneous total order
message reception property, which holds with high probability in local area networks
under normal execution conditions (e.g., moderate load).



Résumé

Les systémes répartis sont en train de modifier profondément nos activités quotidi-
ennes: réservation de billets en-ligne, commerce électronique, telebanking, sont des
exemples de services qui n’étaient pas imaginables avant 'arrivée des systémes ré-
partis. Néanmoins, I'utilisation a grande échelle de systémes informatiques n’est pas
sans conséquence. Plus 'on devient dépendent des ordinateurs, plus leur défaillance
pose des problémes. Jusqu’a récemment, les discussions sur la défaillance des sys-
témes informatiques ne concernaient que des cercles restreints. La situation est en
train d’évoluer.

Cette thése aborde le probléme de la conception de systémes tolérants aux pannes.
Plus spécifiquement, ce travail se concentre sur le développement de bases des don-
nées qui se comportent correctement méme en cas de défaillances. Pour atteindre ce
but, cette thése se base sur les notions de réplication de données et sur les commu-
nications de groupes. La réplication de données est une idée naturelle pour tolérer
les pannes: si une copie d’une donnée n’est pas disponible, il suffit d’accéder & une
autre copie. Par contre, garantir la cohérence des données répliquées n’est pas une
tache simple. La thése propose l'utilisation des mécanismes de communication de
groupes pour garantir la cohérence des données.

La thése comporte quatre contributions majeures. Dans le domaine des bases de
données, elle introduit la "Database State Machine" et la technique de réordon-
nancement. La Database State Machine est une maniére de gérer des transactions
s’exécutant sur un cluster de serveurs de bases de données communiquant par échange
de messages, et n’ayant accés ni & une mémoire partagée ni & une horloge commune.
Dans ce contexte, les transactions de lecture sont exécutées localement sur un serveur,
et les transactions de mise a jour sont d’abord exécutées localement sur un serveur
avant d’étre diffusées aux autres serveurs pour le test de certification et la validation
(commit) éventuelle. Le test de certification, nécessaire a la validation, peut con-
duire & avorter une transaction. Dans le but d’augmenter le taux de transactions que
passent le test de certification, la thése introduit la technique de réordonnancement,
qui réordonne les transactions avant de les certifier.

Dans le domaine de systémes répartis, le probléme de la Diffusion Générique (Generic
Broadcast) et 'algorithme de Diffusion Atomique Optimisite (Optimistic Atomic
Broadcast) sont introduits. La Diffusion Générique est une primitive de communica-
tion de groupes qui permet aux applications de définir ’ordre dont elles ont besoin.
La Diffusion Fiable (Reliable Broadcast) qui ne garantit aucun ordre entre les mes-



sages, et la Diffusion Atomique (Atomic Broadcast) qui garantit l'ordre total pour
la livraison de messages, sont des cas particuliers de la Diffusion Générique. La Dif-
fusion Générique est une primitive de communication de groupes qui permet d’offrir
I’ordre exact nécessaire pour la Database State Machine. La thése présente égale-
ment un algorithme qui résout la Diffusion Générique. Les algorithmes de Diffusion
Atomique Optimiste exploitent les propriétés du systéme pour délivrer efficacement
les messages dans un ordre total. Ces algorithmes sont basés sur des propriétés du
systéme qui ne sont pas toujours satisfaites. Néanmoins, si elles sont satisfaites du-
rant une certaine période de temps, 1’algorithme assure ’ordre total plus efficacement
que les algorithmes de diffusion atomique traditionnels. La thése discute I'optimisme
dans le contexte de la mise en oeuvre de la Diffusion Atomique, et présente en détail
un algorithme. L’optimisme exploité par cet algorithme est basé sur la propriété
d’ordre spontanée, qui est satisfaite avec une probabilité élevée dans des réseaux a
petite échelle dans des conditions d’exécution normale (trafic modéré, par exemple).
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Chapter 1

Introduction

It all depends on how we look at things,
and not on how they are themselves.

Carl Jung

Distributed computing has become an ubiquitous technology in the world. From
global to local area networks, distributed computing seems to be everywhere. Com-
puter specialists point out two reasons for that. Firstly, manufacture improvements
and large scale production have reduced the cost and increased the performance of
computers. Secondly, advances in communication systems have resulted in cheap
and fast data transmission, allowing to connect virtually every two computers in the
world.

It is early to precisely assess how the computer revolution will impact our society,
but some of its effects can already be noticed. On-line ticket reservation, electronic
commerce, and telebanking are examples of services that would be hardly imag-
inable without computers. Nevertheless, widespread use of computers has some
implications. As more applications, and people, depend on computers, computer
malfunction becomes critical. Until recently, discussions about fault tolerant com-
puter systems were restricted to very specific contexts. This picture starts to change,
though.!

This thesis is about the design of fault tolerant computer systems. More specifically,
this thesis focuses on how to develop database systems that behave correctly even in
the event of failures. In order to achieve this objective, this work exploits the notions
of data replication and group communication. Data replication is an intuitive way
of dealing with failures: if one copy of the data is not available, access another one.
However, guaranteeing the consistency of replicated data is not an easy task. Group
communication is a high level abstraction that defines patterns on the communication
of computer sites. The present work advocates the use of group communication in

! Apart from being a historical landmark, the change of the millennium has contributed to enlarge
the discussions about the effects of computer failures on human lives.
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order to enforce data consistency.

1.1 Replicated Databases

Despite the fact that database replication has been an active area of research since
the late 70’s [Gif79, Sto79, ThoT79]|, the problem of designing database replication
protocols that provide good performance and strong data consistency is still far
from having a definitive answer. One reason for this fact is that methods to handle
replication designed in the 80’s have been shown to perform poorly as the number of
replicated database sites increases [GHOS96|. Protocols developed with centralised
settings in mind (e.g., two-phase locking), when implemented in a distributed system,
have been shown to present excessive synchronisation costs, and rapid growth of
distributed deadlocks with the number of database sites.

However, requirements of current applications have increased the demand for high-
performance and high-availability databases [Jaj99|, resulting in the emergence of
new mechanisms to support database replication. Commercial database companies,
for example, have focused on solutions that provide weak consistency guarantees
[Sta95, Jac95|. Nevertheless, weak guarantees are not intuitive and difficult to use.
Furthermore, in many cases, user intervention is necessary to bring the database
back to a consistent state. Weak consistency guarantees may become attractive in
the future, but so far, they lack the theoretical background that allows for strict
protocol specifications and rigorous correctness proofs |[BHG87, Jaj99, Pap79]|.

Transactions are the unit of work of databases [GR93|. Ensuring data consistency in
replicated databases comes down to guaranteeing that transaction properties are
ensured, independently of the number of database replicas and the way data is
distributed among them. Transactions are characterised by the ACID properties:
Atomicity, Consistency, Isolation, and Durability [GR93|. The Atomicity property
states that either all transaction operations are executed or none is. Consistency es-
tablishes that a transaction is a correct transformation of the state. Isolation affirms
that even though transactions may execute concurrently, it appears to each trans-
action that it executes alone. Durability states that once a transaction completes
successfully, its changes to the state survive failures.

1.2 Group Communication

In the context of client-server distributed systems, the mid-80’s and 90’s saw the
emergence of replication protocols based on group communication. Roughly speak-
ing, group communication gathers processes in sets and provides communication
primitives enabling to address sets as individual entities [HT93]. Group communi-
cation has received increasing attention in the past years from both practical and
theoretical viewpoints. The best known group communication system is Isis [BSS91],
which is considered by many as the first system in which the feasibility of the group
communication approach was demonstrated. Furthermore, current trends in middle-



1.3. ABoOuT THIS RESEARCH 3

ware systems seem to confirm the important role played by group communication
primitives [Gro98|. From the theoretical point of view, a sound theory underly-
ing group communication has been developed, and minimal conditions under which
group communication primitives are proved to be fault-tolerant have been formally
identified [CT96, CHT96|.

Group communication primitives can have various semantics, and in particular, they
can guarantee causal, atomic, and total order message delivery [BSS91|. For exam-
ple, Atomic Broadcast, the group communication primitive exploited in this thesis,
enables to send messages to a set of processes, with the guarantee that the destina-
tions agree on the set of messages delivered, a property known as Agreement, and on
the order according to which the messages are delivered, a property known as Total
Order [HT93|. Atomic Broadcast has been shown to guarantee correct propagation
of requests in some distributed system replication techniques [Sch90].

Replication based on group communication has mostly concentrated on client-server
distributed computing [GS97]. More recently, some authors have suggested using
group communication to develop database replication protocols (e.g., [SR96]). In-
deed, similarities between ACID properties and Atomic Broadcast properties suggest
that there might be a relation between these two subjects. For example, the Agree-
ment property of Atomic Broadcast can be associated with the Atomicity property
of transactions, and the Isolation property of transactions can be associated with the
Total Order property of Atomic Broadcast.

1.3 About this Research

This thesis started with the broad objective of investigating the use of group com-
munication primitives to develop database replication protocols in the context of the
DRAGON? project, a joint effort between the Swiss Federal Institute of Technol-
ogy in Lausanne (EPFL) and the Swiss Federal Institute of Technology in Zurich
(ETHZ). As this work evolved, it turned out that looking at database replication
protocols from the viewpoint of distributed systems, and looking at group com-
munication primitives from the viewpoint of distributed databases was, per se, an
interesting way of approaching two different domains.

1.3.1 Research Objectives

The primary goal of this work is to investigate how group communication can be used
to implement database replication protocols. The scope of this research focused on an
architecture based on a cluster of database sites. Database sites do not have access to
shared memory or a global clock, and communicate through message passing. Users
should have the impression that the database cluster is a high-performance and high-
availability centralised database site. Therefore, data consistency is mandatory.

DRAGON stands for Database Replication based on Group Communication. DRAGON is
funded by the Swiss Federal Institute of Technology (EPFL and ETHZ).
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A secondary goal of this research is to better understand the impact of group com-
munication on databases, and database replication protocols on distributed system
mechanisms. For example, group communication evolved essentially to handle pro-
cess replication [BSS91|. Naturally, one may wonder whether a different context will
change the way group communication has been defined, and is usually implemented.

1.3.2 Research Contributions

This thesis provides four major contributions. In the database domain, it presents the
Database State Machine and the Reordering technique. In the distributed systems
domain, this work introduces the Generic Broadcast problem, and the Optimistic
Atomic Broadcast algorithm.

Database State Machine. The Database State Machine is a database replication
approach that defines the way transactions are executed by database sites, and the
way database sites interact with each other to commit transactions. In the Database
State Machine, transactions are executed locally on a database site according to the
two-phase locking concurrency control mechanism, which enforces local data consis-
tency. In order to guarantee global data consistency, database sites interact by means
of an Atomic Broadcast primitive, which is the only communication mechanism used
by database sites. The requirements that database sites have to meet in this context
are discussed in detail. Experimental results show that the Database State Machine
is a promising approach to executing transactions in a cluster on database sites.

Reordering Technique. Global data consistency in the Database State Machine
relies on some sort of optimistic concurrency control mechanism, called certification
test. According to this schema, a transaction that requests a commit operation does
not have a guarantee that it will be committed, since it may fail the certification test.
The Reordering technique is a way of executing the certification test that increases
the chances that transactions are committed. Roughly speaking, the Reordering
technique exploits characteristics of serial executions and rearranges transactions
before they are committed. The Reordering technique has been positively evaluated
using a simulation model.

Generic Broadcast. Generic Broadcast is a group communication primitive that
allows applications to define order requirements based on a conflict relation. Re-
liable Broadcast, which does not guarantee any order on the delivery of messages,
and Atomic Broadcast, which guarantees order on the delivery of all messages, are
special cases of Generic Broadcast. It turns out that for several applications, like
the Database State Machine, Reliable Broadcast offers a semantic that is too weak
to guarantee correctness. Conversely, Atomic Broadcast offers a semantic that is too
strong. Using Generic Broadcast, we can define a group communication primitive
that is stronger than Reliable Broadcast, and weaker than Atomic Broadcast. An
algorithm that implements Generic Broadcast is presented. In order to compare the
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implementations of various group communication primitives, the delivery latency
parameter is introduced.

Optimistic Atomic Broadcast. The Optimistic Atomic Broadcast algorithm ex-
ploits system properties in order to deliver messages fast. The algorithm is optimistic
in the sense that it assumes properties that do not always hold. However, it they
hold for a certain period, guaranteeing total order of messages is done faster than
with traditional Atomic Broadcast algorithms. This thesis discusses optimism in
the implementation of Atomic Broadcast primitives, and presents in detail the Op-
timistic Atomic Broadcast algorithm. The system property exploited by Optimistic
Atomic Broadcast is the spontaneous total order property which states that, in some
networks, it is highly probable that messages are received at their destinations in the
same total order. The spontaneous total order property holds with high probability
in local area networks under normal execution conditions (e.g., moderate load).

1.3.3 Thesis Organisation

The thesis is organised as follows. Chapter 2 discusses system models, defines fault-
tolerant broadcast and related problems, and formalises some database notations
used throughout this thesis. Chapter 3 introduces the Database State Machine and
the Reordering technique. The Database State Machine is first analysed by means
of a simple probabilistic model, and then by means of a simulation model. Chap-
ter 4 presents the Generic Broadcast problem, shows how it can be used to define a
broadcast primitive weaker than Atomic Broadcast, but that still ensures the order
needs of the Database State Machine, and presents an algorithm that solves Generic
Broadcast. Chapter 5 discusses how Atomic Broadcast algorithms can take advan-
tage of optimistic system assumptions, and presents in detail the Optimistic Atomic
Broadcast algorithm. In Chapter 6, we summarise the major results of this work
and outline future research directions.

=

L J
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Chapter 2

System Models and Definitions

A theory has only the alternative of being right or wrong.
A model has a third possibility: it may be right, but irrelevant.

Manfred Eigen

A system model describes precisely and concisely all the hypothesis and important
aspects about the system. A model should be as general as possible, to extend the
applicability of the results stated (this is typically the case when the results are in the
form of impossibility proofs), and compact, to leave out irrelevant details and simplify
the approach to the problem. In this chapter, we recall system models considered in
the literature and used in this thesis, define the properties of fault-tolerant problems
of interest for this work, and present some important database definitions.

2.1 Model Definitions

Distributed system models usually centre their definitions around two basic abstrac-
tions: processes and communication channels. In the following, we present some
common ways of modelling these abstractions.

2.1.1 Process Model

We characterise processes according to four criteria: synchronisation aspects, mode
of failure, information storage, and process membership.

Synchronisation aspects. According to synchronisation aspects, processes can be
synchronous or asynchronous. If processes are asynchronous, then there is no bound
on the time necessary to execute a step. By contrast, if processes are synchronous,
there exists a known bound on their relative speed, that is, for some known bounded
number of steps taken by any process, every other process takes at least one step.



8 CHAPTER 2. SYSTEM MODELS AND DEFINITIONS

Throughout this work, we consider that processes are asynchronous, and to simplify
the presentation, we assume the existence of a discrete global clock, even though
processes do not have access to it. The range of the clock’s ticks is the set of natural
numbers.

Mode of failure. Several modes of failure have been introduced in the literature
(see [Cri91, Sch93| for brief surveys). We concentrate on two modes of failure: the
crash-stop model and the crash-recover model. In the crash-stop model, once a
process has crashed, it never recovers. If a process p is able to execute requests at
a certain time 7 (i.e., p did not fail until time 7) we say that p is up at time 7.
Otherwise, we say that p is down at time 7. A process that never crashes (i.e., it is
always up) is correct, and a process that is not correct is faulty.

In the crash-recover model, a process p is classified according to its behaviour con-
cerning failures as always-up if p never crashes, eventually-up if p crashes at least
once, but there is a time after which p is permanently up, eventually-down if there
is a time after which p is permanently down, and unstable if p crashes and recovers
infinitely many times [OGS97, ACT98|. Process p is good if it is either always-up or
eventually-up, and bad if it is eventually-down or unstable. Both models of failure
rule out faulty processes that execute arbitrary actions (i.e., no Byzantine faults).
We further assume that processes fail independently.

Process state. There are two ways of modelling processes that crash and recover
according to what happens to their local state after recovering from a crash: processes
can either (1) forget the state they had before the crash (i.e., processes only have
volatile memory), or (2) remember the state they had, or a part of it, before the crash
(i.e., processes have stable storage). Even if a process has stable storage, it is wise
to use it sparingly since accessing stable storage is more expensive than accessing
volatile memory.

Process set. We distinguish between a static set of processes, and a dynamic set
of processes. A static set is composed of n processes Il = {p1,pa,...,pn}, and this
configuration never changes throughout the execution. Conversely, if a system has
a dynamic set of processes, then at two different times during the execution, the
system may be composed of distinct sets of processes. Several events may trigger a
change in the current set of processes if this set is dynamic (e.g., a new process joins
the processes that are part of the current set).

Process models in perspective. Process models proposed in the literature can
be defined by combining the parameters presented above (see Table 2.1).

Model M; has been considered by several authors |[FLP85, CT96, Sch97]. The
strongest argument in favour of model Mj is that it provides a relatively simple
framework to rigorously study distributed algorithms. However, in practical scenar-
ios it lacks flexibility since once a process has crashed, it is not allowed to recover
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Model criteria

Model || Mode of failure | Process state | Process set
M, crash-stop — static
M, crash-stop — dynamic
M crash-recover volatile static
My crash-recover stable static

Table 2.1: Process models

or be replaced by another process. This drawback is one way or another overcome
by the other models. Model My was introduced by Isis [BJ87].! It does not permit
processes to recover but it allows a process that has been excluded from a view to
join the other processes with a new identification, which is a way round the problem
encountered in model M;. In Isis, when a new process joins a view, it receives the
state from processes in this view (e.g., the messages that processes have received
in the view). Ouly recent proposals have considered the crash-recover model with
asynchronous processes. Model M3 has been considered in [ACT98|, and model M,
in |OGS97, HMR97, ACT98|.

2.1.2 Communication Channel Model

Communication channels can be characterised according to timing, reliability, and
ordering properties. Before going into detail on each one of these properties, we define
send(m) and receive(m) as the primitives processes use to communicate. Message
m is taken from a set M to which all messages belong. When a process p invokes
“send” with a message m as a parameter, we say that p sends m, and when a process
q returns from the execution of “receive” with a message m as a parameter, we say
that g receives m.

Timing properties. Timing properties are related to guarantees on transmission
delays of messages, which can be bounded or unbounded. This work assumes that
communication delays are unbounded.

Reliability properties. Two characterisations of communication channels accord-
ing to reliability properties are Reliable Channels |[BCBT96| and Quasi-Reliable chan-
nels [ACT97|. Reliable Channels satisfy the following properties:

(NO CREATION) If process g receives message m from p, then p sends m to q.
(NO DUPLICATION) Process g receives m from p at most once.

(No Loss) If p sends m to ¢, and ¢ is correct, then ¢ eventually receives m.

'n Isis, process sets are called views.
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Quasi-Reliable Channels are specified by replacing the No Loss property of Reliable
Channels by the following property:

(Quasi-No Loss) If p sends m to ¢, and p and q are correct, then g eventually
receives m.

Quasi-Reliable Channels define weaker constraints than Reliable Channels, that is,
any execution that satisfies Reliable Channels properties, also satisfies Quasi-Reliable
properties, however, the contrary is not true. Figure 2.1 shows an execution involving
processes p and ¢ that satisfies the quasi-no loss property, but does not satisfy the
no loss property. In Figure 2.1, message m is never received by process q.

p crashes
send(m) a2

P R -

Figure 2.1: Quasi-Reliable Channels

Ordering properties. Reliable and Quasi-Reliable Channels guarantees can be
augmented with ordering properties. Two particular ordering properties are FIFQO
order, and causal order. FIFO order is defined as shown next.

(FIFO orDER) If p sends m to g before sending m’ to ¢, then ¢ does not
receive m’ before m.

Causal order is defined based on Lamport’s happened before relation — [Lam78|.
Let a, b, and ¢ be events in a distributed system. The relation a — b (i.e., a happens
before b) holds if and only if (1) @ and b are events in the same process and a occurred
before b, or (2) a is the event of sending a message m in a process and b is the event
of receipt of message m in another process, or (3) there exists an event ¢ such that
a — ¢, and ¢ — b. Causal order is defined as follows.

(CAUSAL ORDER) If m and m/ are two messages received by some process p,
and send(m) — send(m’), then receive(m) — receive(m’) in p.

Figures 2.2 and 2.3 depict FIFO and Causal Channels. Causal Channels are stronger
than FIFO Channels, that is, Causal Channels preserve FIFO order. The executions
in Figures 2.2 and 2.3 satisfy both Reliable Channels and Quasi-Reliable specifica-
tions.
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send(m) send(m’)
p
q ¢ P
receive(m) receive(m’)
Figure 2.2: FIFO Channels
send(m) send(m’)
p

receive(m’)

receive(m) receive(m”’)

Figure 2.3: Causal Channels

2.1.3 Asynchronous Systems

Asynchronous systems are modelled by asynchronous processes that communicate
through channels with unbounded transmission delays. Asynchronous systems de-
fine a very general model, and several impossibility results have been based on them.
In |[FLP85], it has been shown that Consensus (see Section 2.2) is not solvable in
asynchronous systems subject to crash-stop failures (Model Mj). Impossibility re-
sults have also been presented for asynchronous systems with a dynamic set of pro-
cesses [CHTCB96| (model Ms), and asynchronous systems with processes that can
crash and recover [ACT98| (models M3 and My). The latter result defines minimal
bounds for solving Consensus when processes’ state is volatile and stable.

2.1.4 Failure Detectors

To circumvent the Fischer-Lynch-Paterson impossibility result |[FLP85] (FLP for
short), asynchronous systems with a static set of crash-stop processes have been
augmented with failure detectors [CT96]. Each process p in II has access to a local
failure detector module D), that provides (possibly incorrect) information about the
processes that are suspected to have crashed. A failure detector may make mistakes,
that is, (1) it may suspect a process that has not failed or (2) never suspect a
process that has failed. Failure detectors have been classified according to accuracy
and completeness properties which characterise the mistakes they can make [CT96].
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COMPLETENESS. There are two completeness properties.

> Strong Completeness: eventually every process that crashes is permanently
suspected by every correct process.

> Weak Completeness: eventually every process that crashes is permanently
suspected by some correct process.

AccURACY. There are four accuracy properties.

> Strong Accuracy: no process is suspected before it crashes.

> Weak Accuracy: some correct process is never suspected.

> Fventual Strong Accuracy: there is a time after which correct processes are
not suspected by any correct process.

> Eventual Weak Accuracy: there is a time after which some correct process is
never suspected by any correct process.

Table 2.2 sumimarises all classes of failure detectors. Throughout this work, we do not
consider any failure detector in particular, nevertheless, we assume that the system
is augmented with failure detectors so that Consensus can be solved. Moreover,
Chapters 4 and 5 need a failure detector that guarantees Strong Completeness (i.e.,
Accuracy is not relevant).

Accuracy
Completeness || Strong | Weak | Eventually Strong | Eventually Weak
Strong Perfect | Strong | Eventually Perfect | Eventually Strong
P S OP oS
Weak Weak Eventually Weak
Q w CQ OW

Table 2.2: Failure detectors classes

It has been shown in [CHT96] that GW is the weakest failure detector to solve
Consensus in asynchronous systems subject to crash-stop failures, and [CT96| shows
that any given failure detector D that satisfies weak completeness can be reduced
into a failure detector D’ that satisfies strong completeness, that is, ¢S and OW are
equivalent.

The works presented in [ACT98, OGS97] redefine failure detectors in asynchronous
systems where processes can crash and recover. In this thesis, we concentrate on
failure detectors in the crash-stop model.

2.1.5 Algorithms, Runs and Problems

When discussing distributed protocols, it is important to characterise the notions
of algorithm, run, and problem. In the following, we provide definitions for these
terms in the context of asynchronous processes in the crash-stop model, which is the
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model considered in Chapters 3 and 4. Chapter 2 is based on a formalism specific
to databases, introduced in Section 2.3.

An algorithm A is a collection of n deterministic automata, one per process, and
computation proceeds in steps of A. In the crash-stop model, in each step, a process
atomically (1) receives a (possibly empty) message that was sent to it, (2) queries
its failure detector module, (3) modifies its state, and (4) may send a message to a
single process [CT96].

Informally, a run R of A defines a (possibly infinite) sequence of steps of A. There is
a close relation between system models, algorithms, and problems, in that a system
model M determines the set of runs that an algorithm A can produce in M, and a
problem specification P (or simply a problem) is defined as requirements on sets of
runs.

2.2 Fault-Tolerant Broadcasts and Related Problems

In this section, we define Reliable Broadcast, Atomic Broadcast, Consensus, and
Non-Blocking Atomic Commitment in asynchronous systems with processes that
crash and stop. The Non-Blocking Atomic Commitment definition further assumes
that the system is augmented with failure detectors. The abstractions presented in
this section lay the basis for the work developed in Chapters 3, 4, and 5.

2.2.1 Reliable Broadcast

Reliable Broadcast is defined by the primitives R-broadcast(m) and R-deliver(m),
which satisfy the following properties [HT93].

(VALIDITY) If a correct process R-broadcasts a message m, then it eventually
R-delivers m.

(AGREEMENT) If a correct process R-delivers a message m, then all correct
processes eventually R-deliver m.

(UNIFORM INTEGRITY) For every message m, every process R-delivers m at
most once, and only if m was previously R-broadcast by sender(m).

R-broadcast and R-deliver may be build over Quasi-Reliable Channels, which offer
weaker guarantees than Reliable Broadcast (see Figure 2.4). In the crash-stop model,
Reliable Broadcast can be solved by the following algorithm, resilient to n—1 process
crashes [CT96]. Whenever a process p wants to R-broadcast a message m, p sends m
to all processes. Once a process g receives m, if ¢ # p then ¢ sends m to all processes,
and, in any case, ¢ R-delivers m (see the Appendix for a detailed presentation of this
algorithm).
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Application

1
R-broadcast(m) fR-deliver( m)
]

Reliable
Broadcast

[
send( m& freceive( m)

||
Quasi-Reliable
Channels

Figure 2.4: Communication abstraction

2.2.2 Atomic Broadcast

Atomic Broadcast is defined by the primitives A-broadcast(m) and A-deliver(m). In
addition to the properties of Reliable Broadcast, Atomic Broadcast satisfies the total
order property [HT93|.

(ToTrAL ORDER) If two correct processes p and g A-deliver two messages m
and m/, then p A-delivers m before m’ if and only if ¢ A-delivers m before m’.

The total order induced on the A-deliver is represented by the relation <. Thus, if
message m is A-delivered before message m’, then A-deliver(m) < A-deliver(m’).

Stronger definitions of Reliable and Atomic Broadcast can be obtained by augment-
ing the properties previously presented with FIFO and Causal Order constraints.
The resulting definitions are FIFO Broadcast (FIFO Order + Reliable Broadcast),
Causal Broadcast (Causal Order + Reliable Broadcast), FIFO Atomic Broadcast
(FIFO Order + Atomic Broadcast), and Causal Atomic Broadcast (Causal Order
+ Atomic Broadcast). Figure 2.5 depicts the relationship among broadcast primi-
tives [HT93|.

2.2.3 Consensus

Consensus is defined by the primitives propose(v), and decide(v), which satisfy the
following properties.

(TERMINATION) Every correct process eventually decides some value.

(UNIFORM INTEGRITY) Every process decides at most once.

(AGREEMENT) No two correct processes decide differently.

(UNIFORM VALIDITY) If a process decides v, then v was proposed by some
process.
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Reliable
Broadcast

Total Order

FIFO Order l

FIFO
Broadcast

Total Order

Atomic
Broadcast

l FIFO Order

Causal Order l

Causal
Broadcast

Total Order

FIFO Atomic
Broadcast

l Causal Order

Causal Atomic
Broadcast

Figure 2.5: Relationship among broadcast primitives

Consensus can be solved in crash-stop asynchronous systems augmented with failure
detectors. In [CT96] the authors present two algorithms that solve Consensus. One
uses a failure detector of class S and tolerates f < n failures, and the other uses
a failure detector of class ¢S and tolerates f < n/2 failures. Another algorithm
that solves Consensus in the crash-stop model using a failure detector of class ¢S
is the Early Consensus algorithm [Sch97|. The Early Consensus algorithm tolerates
f < n/2 failures and to a certain extend, is more efficient than the algorithm based
on &8 proposed in [CT96]. The Consensus algorithm presented in [CT96| using a
failure detector of class ¢S, and the Early Consensus algorithm are presented in the
Appendix.

Consensus and Atomic Broadcast have been shown in the literature to be equivalent
in the crash-stop model [CT96|. The equivalence result basically states that Atomic
Broadcast can be reduced to Consensus (see the Appendix), and Consensus can
be reduced to Atomic Broadcast. The Consensus to Atomic Broadcast reduction
consists in having propose(v) execute A-broadcast(v), and decide(v) occurring after
the first A-deliver(v).

2.2.4 Non-Blocking Atomic Commitment

Non-Blocking Atomic Commitment is defined by the primitives A C-vote(v) and AC-
decide(v), v € {commit, abort}, which ensure the following properties.

(UNIFORM AGREEMENT) No two participants AC-decide differently.

(UNIFORM VALIDITY) If a process AC-decides commit, then all processes have
voted commit.

(TERMINATION) Every correct process eventually AC-decides.

(NON-TRIVIALITY) If all processes vote commit, and there is no failure, then
every correct process eventually AC-decides commit.
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Non-Blocking Atomic Commitment has been shown to be unsolvable in asynchronous
systems subject to crash failures, even if augmented with failure detectors of the class
OP or S [Gue95]. However, a weaker version of Atomic Commit (Non-Blocking
Weak Atomic Commit) can be reducible to Consensus. Non-Blocking Weak Atomic
Commit replaces the previously defined Non-Triviality property by the following.

(WEAK NON-TRIVIALITY) If all processes vote commit, and no process is ever
suspected, then every correct process eventually AC-decides commit.

2.3 Database Definitions

In this section, we formally define transactions and histories, present the ACID trans-
action properties, and discuss model assumptions usually associated with databases.
Formal definitions of transactions and histories will be useful to prove replicated
databases protocols correct.

2.3.1 Transactions and Histories

Informally, a transaction is a set of database operations that finishes with a Commit
or an Abort operation. Let I' = {z1,x2,... , 2, } be a database, and r[x] and w]z]
be a read and a write operation on data item xy, zp € I, respectively, and ¢ and a
be the commit and abort operations. Formally, transaction t; is defined as a partial
order on read and write operations with ordering relation <;, where

L. t; C {ri[xg], wilzk] : x € T} U{a;, ¢}

2. a; € t; iff ¢; € t;;

3. let o be ¢; or a; (whichever is in t;), for any other o' € ¢;, 0’ <; 0; and

4. for any two operations 7;[z)] and w;[xg] such that r;[zk], w;[xk] € t;, then either

rilrr] <i wilzy] or wilzk] <; rilxk].

Transactions executing in a database are formalised by histories [BHG87|. Let T =
{ti,t2,... ,t;} be a set of transactions. A complete history H over T is a partial
order on read and write operations with ordering relation <z where

2. Ule <; C<yg; and

3. for any two operations w(zy] and o[zk],0 € {r,w}, issued by different transac-
tions in H, either w(zy| <mg o[xk] or o[xk] <m wlzk].

A history is a prefix of a complete history. Given some history H, the committed
projection of H, denoted C(H ), is the history obtained from H, by eliminating all
operations that do not belong to transactions committed in H.
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2.3.2 Transaction Properties

Transactions satisfy the ACID properties. The ACID acronym stands for Atom-
icity, Consistency, Isolation, and Durability. The ACID properties are defined as
follows |[GR93|.

(ATOMICITY) A transaction’s changes to the state are atomic: either all happen
or none happen.

(CONSISTENCY) A transaction is a correct transformation of the state. The ac-
tions taken as a group do not violate any of the integrity constraints associated
with the state.

(IsoLATION) Even though transactions execute concurrently, it appears to each
transaction t, that other transactions executed either before ¢ or after ¢, but
not both.

(DURABILITY) Once a transaction completes successfully (commits), its changes
to the state survive failures.

From the viewpoint of the history definition presented in the previous section, the
atomicity property states that the study of the correctness of database protocols
(i.e., serialisability), should concentrate on the committed projections of the histories
produced by these protocols.

Consistency is not relevant in the history formalism previously defined, since it deals
with semantic meaning about the transformations performed by transactions on the
database, and the history formalism is not strong enough to capture this abstraction
level.

Isolation has received a lot of attention by database researchers, mainly in the early
70’s. According to the transaction and history formalism presented in the previ-
ous section, a database protocol ensures isolation if the committed projection of
any history it produces does not have cycles [BHG87|. Isolation is also known as
serialisability, or, in the context of replicated databases, one-copy serialisability.

The durability property is highly dependent on the assumptions made about pro-
cesses. For example, most database systems consider that database sites (or pro-
cesses) always recover after a crash, and have access to stable storage. In this sce-
nario, durability can be enforced by carefully storing critical information in stable
storage [Had88|.

2.4 Discussion

A model is a simplification of a real system, allowing to study it in depth, without
having to worry about details. Usually, the more complex the model, the closer to
the reality it is, however, complex models make the approach to the problem difficult.
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In this chapter, we have characterised distributed systems and database systems by
the models usually presented in the literature.

The thesis focuses on two distinct system models. In Chapter 3, we consider that
processes crash and recover, have access to stable storage, and belong to a static set
of processes. In Chapters 4 and 5 we consider that processes crash and stop, do not
have stable storage, and belong to a static set of processes. In Chapters 4 and 5,
processes are fully connected by Quasi-Reliable Channels, and Chapter 4 further
assumes that communication channels are FIFO.

Thus, the two models considered in this thesis differ on the mode of failure of pro-
cesses. This distinction has simplified the work in Chapters 4 and 5. However, the
intuitions behind the ideas proposed in Chapters 4 and 5 do not depend on details
about the crash-stop model, and can be extended to the crash-recover model.



19

Chapter 3

The Database State Machine

First things first, but not necessarily in that order.

Doctor Who

This chapter introduces the first contribution of the thesis, the Database State
Machine. The Database State Machine is, from the user’s point of view, a high-
performance and high-availability database that offers strong consistency (i.e., seri-
alisability). From the system’s viewpoint, the Database State Machine is a mech-
anism to handle replication in a cluster of workstations connected by a standard
communication network.

From the model perspective presented in the previous chapter, the Database State
Machine considers a static set of processes that have access to stable storage. Pro-
cesses communicate through an Atomic Broadcast primitive.

Compared to other database approaches that also provide high-availability, the
Database State Machine does not sacrifice performance (it minimises inter site syn-
chronisation and eliminates distributed deadlocks), nor data consistency. Further-
more, by relying on a cluster of workstations connected by a standard communication
network, the Database State Machine does not depend on specialised hardware.

In this chapter, we recall the deferred update replication technique and the principle
of the state machine approach [Sch90]|, which define the general framework for the
Database State Machine, and present the architecture of the Database State Machine
and the Reordering technique. The performance of the Database State Machine is
analysed with simulation and probabilistic models.

3.1 Deferred Update Replication Framework

Before presenting the Database State Machine approach, we describe the deferred up-
date replication principle in detail and introduce some additional notation. We also
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provide a general algorithm that will lay the basis for the Database State Machine
algorithm.

3.1.1 Deferred Update Replication Principle

In the deferred update replication technique, transactions are locally executed at
one database site, and during their execution, no interaction between other database
sites occurs (see Figure 3.1). Transactions are locally synchronised at database sites
according to some concurrency control mechanism [BHG87|. Hereafter, we assume
that the concurrency control mechanism used by every database site to local syn-
chronise transactions is the strict two phase locking rule. When a client requests the
transaction commit, the transaction’s updates (e.g., the redo log records) and some
control structures are propagated to all database sites, where the transaction will
be certified and, if possible, committed. This procedure, starting with the commit
request, is called termination protocol. The objective of the termination protocol is
twofold: (i) propagating transactions to database sites, and (ii) certifying them.

D

Database
Site 2

read/write
requests

Database
Site 1

Termination
Protocol

commit
request

Database
Site 3

Figure 3.1: Deferred update technique

The certification test aims at ensuring one-copy serialisability. It decides to abort a
transaction if the transaction’s commit would lead the database to an inconsistent
state (i.e., non-serialisable). For example, consider two concurrent transactions, ¢,
and tp, that are executed at different database sites, and that update a common
data item. When t, and t; request the commit, the certification test has to realise
whether consistency may be violated and, if this is the case, sort out the problem by
deciding to abort one or both transactions (e.g., if there is no guarantee that ¢, and
tp arrive at all sites in the same order, both transactions have to be aborted [AAS97],
however, if the certifier knows that ¢, is received before t; at all sites, or the other
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way round, then just ¢,, respectively ¢p, has to be aborted [PGS98]).

3.1.2 Transaction States

During its processing, a transaction passes through some well-defined states (see
Figure 3.2). The transaction starts in the ezecuting state, when its read and write
operations are locally executed at the database site where it was initiated. When the
client that initiates the transaction requests the commit, the transaction passes to
the commutting state and is sent to the other database sites. A transaction received
by a database site in the context of the termination protocol is also in the committing
state, and it remains in the committing state until its fate is known by the database
site (i.e., commit or abort). The different states of a transaction ¢, at a database
site s; are denoted Fxecuting(ty,s;), Committing(t,,s;), Committed(t,,s;), and
Aborted(tq, s;). The executing and committing states are transitory states, whereas
the committed and aborted states are final states.

accept
transaction
request
comrmit
reject
transaction
\ > Aborted
request

abort

Figure 3.2: Transaction states

3.1.3 Deferred Update Replication Algorithm

We describe next a general algorithm for the deferred update replication technique.
To simplify the presentation, we consider a particular client ¢; that sends requests
to a database site s; in behalf of a transaction t,.

1. Read and write operations requested by the client cj are executed at s; accord-
ing to the strict two phase locking (strict 2PL) rule. From the start until the
commit request, transaction {, is in the executing state.

2. When ¢, requests t,’s commit, ¢, is immediately committed if it is a read-only
transaction (nevertheless, read-only transactions may be aborted during their
execution, as discussed later). If not, t, passes to the committing state, and the
database site s; triggers the termination protocol for ¢,: the updates performed
by t,, as well as its readset and writeset, are sent to all database sites.
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3. Eventually, every database site s; certifies t,. The certification test takes
into account every transaction ¢, known by s; that conflicts with ¢, (see Sec-
tion 3.1.4). It is important that all database sites reach the same decision on
the final state of ¢,, which may require some coordination among database
sites. Such coordination can be achieved, for example, by means of an Atomic
Commitment protocol, or, as it will be shown in Section 3.2, by using an Atomic
Broadcast primitive.

4. If t, is serialisable with the previous committed transactions in the system
(e.g., t, passes the certification test), all its updates will be applied to the
database. Transactions in the execution state at each site s; holding locks on
the data items updated by ¢, are aborted.

5. The client ¢ receives the outcome for ¢, from site s; as soon as s; can determine
whether ¢, will be committed or aborted. The exact moment this happens
depends on how the termination protocol is implemented, and will be discussed
in Section 3.2.

Queries do not execute the certification test, nevertheless, they may be aborted dur-
ing their execution due to local deadlocks and by non-local committing transactions
when granting their write locks (see Section 3.5). The algorithm presented above can
be modified in order to reduce or completely avoid aborting read-only transactions.
For example, if queries are pre-declared as so, once an update transaction passes the
certification test, instead of aborting a query that holds a read lock on a data item
it wants to update, the update transaction waits for the query to finish and release
the lock. In this case, update transactions have the highest priority in granting write
locks, but they wait for queries to finish. Read-only transactions can still be aborted
due to deadlocks, though. However, multiversion data item mechanisms can prevent
queries from being aborted altogether. In [SA93|, read-only transactions are exe-
cuted using a fixed view (or version) of the database, without interfering with the
execution of update transactions.

3.1.4 Transaction Dependencies

In order for a database site s; to certify a committing transaction t,, s; must be
able to tell which transactions conflict with ¢, up to the current time. A transaction
ty conflicts with t, if t, and t; have conflicting operations and t;, does not precede
t,. Two operations conflict if they are issued by different transactions, access the
same data item and at least one of them is a write. The precede relation between
two transactions ¢, and ¢, is defined as follows. (a) If ¢, and t; execute at the same
database site, t;, precedes t, if ¢, enters the committing state before t,. (b) If ¢, and
tp execute at different database sites, say s; and s;, respectively, t;, precedes t, if
commits at s; before ¢, enters the committing state at s;. Let site(t) identify the
database site where transaction ¢ was executed, and committing(t) and commit(t)s,
be the events that represent, respectively, the request for commit and the commit of
t at sj. The event committing(t) only happens at the database site s; where ¢ was
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executed, and the event commit(t)s, happens at every database site s;. We formally
define that transaction t; precedes transaction t,, denoted t, — t,, as

by committing(ty) < committing(ty)  if site(ty) = site(ty),
b —lg =
commit(ty) site(t,) 5 committing(t,) otherwise,

where % is Lamport’s order relation between system events [Lam78]. The relation
ty 7> tq establishes that t, does not precede t,. If site(t,) = site(ty), tp / tq is equiv-
alent to committing(ty) /£ committing(t,). Since local events in a site are totally
ordered, committing(ty) /£ committing(t,) = committing(ty) — committing(ty),
and s0, tp, 5 to = to — tp. If site(ty) # site(ty), tp 7 tq is equivalent to
commit(ty) site(t,) £ committing(ty), or committing(t,) — commit(ty) site(ta)-

The deferred update replication does not require any distributed locking protocol
to synchronise transactions during their execution. Therefore, network bandwidth
is not consumed by synchronising messages, and there are no distributed deadlocks.
However, transactions may be aborted due to conflicting accesses. In the next sec-
tions, we show that the deferred update replication technique can be implemented
using the state machine approach, and that this approach allows optimisations that
can reduce transaction abortion due to conflicting accesses.

3.2 A Database as a State Machine

The deferred update replication technique can be implemented as a state machine.
In this section, we recall the principle of the state machine approach, and discuss the
details of the Database State Machine and its implications to the way transactions
are processed.

3.2.1 The State Machine Approach

The state machine approach [Sch90], also called active replication, is a non-centralised
replication coordination technique. Its key concept is that all replicas (or database
sites) receive and process the same sequence of requests. Replica consistency is guar-
anteed by assuming that when provided with the same input (e.g., a client request)
each replica will produce the same output (e.g., state change). This assumption
implicitly implies that replicas have a deterministic behaviour.

The way requests are disseminated among replicas can be decomposed into two
requirements [Sch90]:

(AGREEMENT.) Every non-faulty replica receives every request.

(ORDER.) If a replica first processes request req; before regs, then no replica
processes request reqy before request req.



24 CHAPTER 3. THE DATABASE STATE MACHINE

The order requirement can be weakened if some semantic information about the
requests is known. For example, if two requests commute, that is, independently
of the order they are processed they produce the same final states and sequence of
outputs, then it is not necessary that order be enforced among the replicas for these
two requests.

3.2.2 The Termination Protocol

The termination protocol presented in Section 3.1 can be turned into a state ma-
chine (i.e., made deterministic) as follows. Whenever a client requests a transaction’s
commit, the transaction’s updates, its readset and writeset (or, for short, the trans-
action) are atomically broadcast to all database sites. Each database site will behave
as a state machine, and the agreement and order properties required by the state
machine approach are ensured by the Atomic Broadcast primitive.

The database sites, upon delivering and processing the transaction, should eventually
reach the same state. In order to accomplish this requirement, delivered transactions
should be processed with certain care. Before delving deeper into details, we describe
the database modules involved in the transaction processing. Figure 3.3 abstractly
presents such modules and the way they are related to each other.! Transaction
execution, as described in Section 3.1, is handled by the Transaction Manager, the
Lock Manager, and the Data Manager. The Certifier executes the certification test
for an incoming transaction. It receives the transactions delivered by the Atomic
Broadcast module. On certifying a transaction, the Certifier may ask information to
the data manager about already committed transactions (e.g., logged data). If the
transaction is successfully certified, its write operations are transmitted to the Lock
Manager, and once the write locks are granted, the updates can be performed.

To make sure that each database site will converge to the same state after processing
committing transactions, each certifier has to (1) reach the same decision when certi-
fying transactions, and (2) guarantee that write-conflicting transactions are applied
to the database in the same order (since transactions whose writes do not conflict
are commutable). The first constraint is ensured by providing each certifier with
the same set of transactions and using a deterministic certification test. The second
constraint can be attained if the certifier ensures that write-conflicting transactions
grant their locks in the same order that they are delivered. This requirement is
straightforward to implement, nevertheless, it reduces concurrency in the certifier.

3.2.3 The Termination Algorithm

The procedure executed on delivering the request of a committing update transaction
tq is detailed next. For the discussion that follows, the readset RS(t,) and the writeset
W S(t,) are sets containing the identifiers of the data items read and written by t,,

Tn a database implementation, these distinctions may be much less apparent, and the modules
more tightly integrated [GR93]. However, for presentation clarity, we have chosen to separate the
modules.
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Figure 3.3: Termination protocol based on Atomic Broadcast

respectively, during t,’s execution. Assuming that t, was executed at database site
s;, every database site s;, after delivering ¢,, performs the following steps:

1. Certification test. Database site s; commits ¢, (i.e., t, passes from the commit-

ting state to the committed state at s;) if there is no committed transaction
tp at s; that conflicts with ¢,. The notion of conflicting operations defined in
Section 3.1.4 is weakened, and just write operations performed by committed
transactions and read operations performed by ¢, are considered (i.e., write-
read conflicts). Read-write conflicts are not relevant since only committed
transactions take part in t,’s certification test, and write-write conflicts are
solved by guaranteeing that all ¢,’s updates are applied to the database after
all the updates performed by committed transactions (up to the current time).

The certification test is formalised next as a condition for a state transition
from the committing state to the committed state (see Figure 3.2):

Vi, Committed(ty, s;) :
Committing(t,, s;) ~ Committed(t,, s;) =
ty =ty V (WS(tb) N RS(ta) = @)
The condition for a transition from the committing state to the aborted state
is the complement of the right side of this expression.

Once t, has been certified by database site s;, where it was executed, s; can
inform t,’s outcome to the client that requested t,’s execution.
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2. Commitment. If t, is not aborted, it passes to the commit state, the locks
for the data items it has written are requested, and once granted, ¢,’s updates
are performed. There are three cases to consider on granting the write locks
requested by t,.

(a) There is a transaction tp in execution at s; whose read or write locks
conflict with t,’s writes. In this case ¢, is aborted by s;, and therefore,
all tp’s read and write locks are released.

(b) There is a transaction ty, that was executed locally at s; and requested the
commat, but has not been A-delivered yet at s;j. Since t; executed locally
at sj, tp has its write locks on the data items it updated. If ¢, commits,
its writes will overwrite ¢,’s (i.e., the ones that overlap) and, in this case,
t, need neither request these write locks nor process the updates over the
database. This is similar to Thomas’ Write Rule [Tho79]. However, if ¢,
is later aborted (i.e., it does not pass the certification test), the database
should be restored to a state without t;, for example, by applying t,’s
redo log entries to the database.

(¢) There is a transaction tp that has passed the certification test and has
granted its write locks at s;, but it has not released them yet. In this case,
t, waits for t; to finish its updates and release its write locks.

An important aspect of the termination algorithm presented above is that the Atomic
Broadcast is the only form of interaction between database sites. The Atomic Broad-
cast properties guarantee that every database site will certify a transaction t, using
the same set of committed transactions. It remains to be shown how each database
site builds such a set. If transactions ¢, and t; execute at the same database site, this
can be evaluated by identifying transactions that execute at the same site (e.g., each
transaction carries the identity of the site where it was initiated) and associating
local timestamps to the committing events of transactions.

If t, and t;, executed at different sites, this is done as follows. Every transaction
commit event is timestamped with the order the transaction was A-delivered. The
Atomic Broadcast properties ensure that each database site associates the same
timestamps to the same transactions, and there are no two transactions with the
same timestamp. Each transaction t has a committing(t) field that stores the commit
timestamp of the last locally committed transaction when t passes to the committing
state (see Figure 3.4). The committing(t) field is broadcast to all database sites
together with t. When a database site s; certifies ¢,, all committed transactions that
have been delivered by s; with commit timestamp greater than committing(t,) take
part in the set of committed transactions used to certify t, (¢(2) to t(,,) in Figure 3.4).
Such a set of committed transactions only contains transactions that do not precede
to.

3.2.4 Algorithm Correctness

The Database State Machine algorithm is proved correct using the multiversion for-
malism of [BHG87]. Although we do not explicitly use multiversion databases, our
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approach can be seen as so, since replicas of a data item located at different database
sites can be considered as different versions of this data item |[BHG87].

We first define C(H),, as a multiversion history derived from the system history
H, just containing operations of committed transactions involving data items stored
at s;. We denote wg[z,] a write by ¢, (as writes generate new data versions, the
subscript in z for data writes is always the same as the one in t) and 7,[z;] a read
by t, of data item zy.

The multiversion formalism uses a multiversion serialisation graph (MV SG(C(H)s,)
or MV SGy, for short) and consists in showing that all the histories produced by the
algorithm have a multiversion serialisation graph that is acyclic [ BHG87]. We denote
M VSG{;_ a particular state of the multiversion serialisation graph for database site
s;. The multiversion serialisation graph passes from one state MV .S G’;i into another
]\IVSG’;_Jrl when a transaction is committed at s;.

We exploit the state machine characteristics to structure our proof in two parts.
In the first part, Lemma 3.1 shows that, by the properties of the Atomic Broadcast
primitive and the determinism of the certifier, every database site s; € X p eventually
constructs the same MVSG];Z,, k > 0. In the second part, Lemmas 3.2 and 3.3 show
that every M VSG’;Z. is acyclic.

Lemma 3.1 If a database site s; constructs a multiversion serialisation graph
MVSG’;_,IC > 0, then every database site s; eventually constructs the same mul-
tiversion serialisation graph MVSG];],.

Proor: The proof is by induction. (BASE STEP.) When the database is ini-
tialised, every database site s; has the same empty multiversion serialisation graph
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MVSG(S)],. (INDUCTIVE STEP - ASSUMPTION.) Assume that every database site s;
that has constructed a multiversion serialisation graph M VSG’;J. has constructed

the same MVSGls“j. (INDUCTIVE STEP - CONCLUSION.) Consider ¢, the transac-

k
Sj?

graph M VSG];;FI. In order to do so, database site s; must deliver, certify and
commit transaction t,. By the order property of the Atomic Broadcast primitive,
every database site s; that delivers a transaction after installing MV S Gljj, delivers
tq, and, by the atomicity property, if one database site delivers transaction t,, then
every database site delivers ¢,. To certify Z,, s; takes into account the transactions
that it has already locally committed (i.e., the transactions in MVSG’;J_). Thus,

based on the same local state (MVSG’;J_), the same input (¢,), and the same (deter-
ministic) certification algorithm, every database site eventually constructs the same
MVSGE. O

tion whose committing generates, from MV SGY , a new multiversion serialisation

We show next that every history C(H )s, produced by a database site s; has an acyclic
MV SG,, and, therefore, is 1SR [BHGS87]. Given a multiversion history C'(H)s, and
a version order <, the multiversion serialisation graph for C(H)s, and <, MV SGy;,,
is a serialisation graph with read-from and version order edges. A read-from relation
tq < tp is defined by an operation rp[x,]. There are two cases where a version-order
relation t, < tp is in MV SGg,: (a) for each r.[zp], wp[zp] and wy[z,] in C(H)s,
(a, b, and c are distinct) and z, < zp, and (b) for each r4[x.], we[z] and wplxp]
in C(H)s, and =, < xp,. The version order is defined by the delivery order of the
transactions. Formally, a version order can be expressed as follows: x, < zp iff
deliver(t,) < deliver(ty) and t,, t, € MV SG,.

To prove that C(H)s, has an acyclic multiversion serialisation graph (MV SGy,) we
show that the read-from and version-order relations in MV SG, follow the order of
delivery of the committed transactions in C'(H)s,. That is, if t, — t, € MV SGj,
then deliver(t,) < deliver(t).

Lemma 3.2 If there is a read-from relation t, — t, € MV SGs, then deliver(t,) <
deliver(ty).

PROOF: A read-from relation t, < ¢, is in MV SGy, if rplz,] € C(H)s,,a # b. For
a contradiction, assume that deliver(t,) < deliver(t,). If t, and t, were executed at
different database sites, by the time t; was executed, ¢, had not been committed at
site(ty), and thus, t; could not have read a value updated by t,. If ¢, and t;, were
executed at the same database site, ¢, must have read uncommitted data from ¢,
since t, had not been committed yet. However, this contradicts the strict two phase
locking rule. O

Lemma 3.3 If there is a version-order relation t, — t, € MVSG, then
deliver(t,) < deliver(ty).

PRrROOF: According to the definition of version-order edges, there are two cases to
consider. (1) Let r.[zp], wp[zp] and wy[z,] be in C(H)s, (a, b and c distinct), and
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zq < Tp, which implies ¢, — t, is in MV SG,,. It follows from the definition of
version-order that deliver(t,) < deliver(ty). (2) Let rq[ze], welze] and wplxp] be in
C(H)s,;, and . < xp, which implies t, < t; is in MV SGj,, and we have to show that
deliver(t,) < deliver(t). For a contradiction, assume that deliver(t,) < deliver(t,).
From the certification test, when ¢, is certified, either ¢, — t, or WS(t,) RS (t,) = 0.
But since @ € RS(t,), and = € WS(t), it must be that t, — t,.

Agssume that t, and ¢, were executed at the same database site. By the defi-
nition of precedence (Section 3.1.4), ¢, requested the commit before t, (that is,
committing(ty) = committing(t,)). However, t, reads z. from t., and this can
only happen if ¢, updates = before ., that is, x;, < z., contradicting that z. < xy.
A similar argument follows for the case where t, and ¢, were executed at distinct
database sites, and we conclude that if there is a version-order relation t, — t; in
MV SGys, then deliver(t,) < deliver(ty). 0

Theorem 3.1 FEvery history H produced by the Database State Machine algorithm
is LSR.

Proor: By Lemmas 3.2 and 3.3, every database site s; produces a serialisation
graph MVSG{;_ such that every edge t, — t, € MVSG{;_ satisfies the relation
deliver(t,) < deliver(t,). Hence, every database site s; produces an acyclic multiver-
sion serialisation graph MV S G’;ﬁ_. By Lemma 3.1, every database site s; constructs
the same MV SG¥ . By the Multiversion Serialisation Graph theorem of [BHG87],
every history produced by the Database State Machine algorithm is 1SR. a

3.2.5 Coping with Unilateral Aborts

Once a transaction t is delivered and successfully certified at some database site s;, t
has to be committed at s;. Nevertheless, it can happen that for some “local reason”
(e.g., disk full), s; cannot carry out t’s commit, and has to abort ¢.? This situation
characterises a unilateral abort. The problem with unilateral aborts is that they are
non-deterministic events, and thus, violate the assumption about the (deterministic)
way requests are processed by database sites in the Database State Machine.

One way of coping with unilateral aborts is introducing a coordination phase (e.g.,
Atomic Commitment) before committing transactions. This solution introduces an
additional cost in the transaction processing (additional communication between
sites) which will only be justified in (hopefully rare) abnormal situations. Per-
formance problems aside, introducing an Atomic Commitment phase in the state
machine approach might have major implications. For example, the deterministic
requirement on the manner requests are processed could be reconsidered.

Another way of dealing with unilateral aborts is treating them as site failures. In
this case, as soon as the site recovers (e.g., in case of disk full, the recover procedure
consists in allocating more disk space), the transaction is committed on that site.

2Note that in the Database State Machine, “local reasons” are not related to concurrency control.
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This means that database site s; will not be able to certify and commit any trans-
action t', deliver(t) < deliver(t'), until s; is able to commit ¢ (i.e., after the problem
that prevents ¢ from committing has been removed). It does not make much sense
either to execute transactions locally at s; before committing ¢, and, from the client’s
point of view, this behaviour is similar to a database site failure.

3.3 The Reordering Certification Test

Transactions running without any synchronisation between database sites may lead
to high abort rates. In this section, we show how the certification test can be modified
such that more transactions pass the certification test, and thus, do not abort.

3.3.1 Reordering Principle

The reordering certification test is based on the observation that the serial order in
which transactions are committed does not need to be the same total order in which
transactions are delivered to the certifier [PGS97]. The idea is to dynamically build
a serial order (that does not necessarily follow the delivery order) in such a way that
less aborts are produced. By being able to reorder a transaction ¢, to a position
other than the one ¢, is delivered, the reordering protocol increases the probability
of committing t,.

The Database State Machine augmented with the Reordering technique differs from
the Database State Machine presented in Section 3.2 in the way the certification test
is performed for committing transactions (see Figure 3.5). The certifier distinguishes
between committed transactions already applied to the database and committed
transactions in the Reorder List. The Reorder List contains committed transactions
whose write locks have been granted but whose updates have not been applied to
the database yet, and thus, have not been seen by transactions in execution. The
bottom line is that transactions in the Reorder List may change their relative order.

The number of transactions in the Reorder List is limited by a predetermined thresh-
old, the Reorder Factor. Whenever the Reorder Factor is reached, the leftmost trans-
action t, in the Reorder List is removed, its updates are applied to the database,
and its write locks are released. If no transaction in the Reorder List is waiting to
acquire a write lock just released by t,, the corresponding data item is available to
executing transactions. The reordering technique reduces the number of aborts, how-
ever, introduces some data contention since data items remain blocked longer. This
expected tradeoff was indeed observed by our simulation model (see Section 3.5.3).

3.3.2 The Termination Protocol based on Reordering

Let databases; = tyot(yo--- o t(iast,, (r)) be the sequence containing all transactions
on database site s; at time 7 that have passed the certification test augmented
with the reordering technique (order of delivery plus some possible reordering). The
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Figure 3.5: Reorder technique (reorder factor = 4)

sequence databases, includes transactions that have been applied to the database
and transactions in the Reorder List. We define pos(t) the position transaction ¢
has in databases,, and extend the termination protocol described in Section 3.2.3 to
include the reordering technique.

1. Certification test. Database site s; commits ¢, if there is a position in the Re-
order List where ¢, can be inserted. Transaction ¢, can be inserted in position
p in the Reorder List if both following conditions are true.

(a) For every transaction ¢ in the Reorder List such that pos(t;) < p, either
tp precedes t4, or t, has not updated any data item that ¢, has read (this
is essentially the certification test described in Section 3.1.3).

(b) For every transaction t; in the Reorder List such that pos(ty) > p, (b.1)
tp does not precede t,, or t, has not read any data item written by ¢;, and
(b.2) t, did not update any data item read by t.

The certification test with reordering is formalised next as a state transition
from the committing state to the committed state:

Committing(t,, s;) ~ Committed(tq, sj) =

Iposition p in the Reorder List s.t. Vt,, Committed(ts, s;) :

pos(ty) <p =ty — ta VWS(ty) NRS(ts) =0 A

(ty 4 ta VW S(tp) N RS(ty) = 0)
pos(ty) > p = A
WS(ts) NRS(ty) =0

The condition for a transition from the committing state to the aborted state
is the complement of the right side of this expression.

2. Commitment. If t, passes the certification test, ¢, is included in the Reorder
List at position p, that is, all transactions in the Reorder List that are on the
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right of p, including the one at p, are shifted one position to the right, and ¢,
is included. If, with the inclusion of t,, the Reorder List reaches the Reorder
Factor threshold, the leftmost transaction in Reorder List is removed and its
updates are applied to the database.

3.3.3 Algorithm Correctness

From Lemma 3.1, every database site builds the same multiversion serialisation
graph. It remains to show that all the histories produced by every database site
using reordering have a multiversion serialisation graph that is acyclic, and, there-
fore, 1SR.

We redefine the version-order relation < for the termination protocol based on re-
ordering as follows: x, < xy iff pos(t,) < pos(ty) and t,, t, € MV SGy,.

Lemma 3.4 If there is a read-from relation t, — t, € MV SGs, then pos(t,) <
pos(tp).

ProOOF: For a contradiction, assume that t, — t, € MV SG,, and pos(ty) < pos(t,).
A read-from relation t, — t, is in MV SGy, if rp[z,] € C(H)s;,a # b, resulting in
two cases of interest: (a) t, was delivered and committed before ¢,, and (b) ¢, was
delivered and committed after ¢, but reordered to a position before ¢,. The case in
which ¢, is delivered and committed after ¢, is the same as case (a), and the case in
which t, is delivered before t;, and reordered to a position before ¢, is not possible
since when t, is certified, t; is not in the Reorder List.

In case (a), it follows that ¢, reads uncommitted data (z,) from ¢,, which is not
possible: if ¢, and t; executed at the same database site, reading uncommitted data
is avoided by the strict 2PL rule, and if ¢, and ¢; executed at different database sites,
to's updates are only seen by ¢, after t,’s commit. In case (b), from the certification
test augmented with reordering, when t; is certified, we have that (t, /4 t, VW .S(t,)N
RS(ty) = 0) A WS(ty) N RS(ty) = 0 evaluates true. (Note that since t; is the
committing transaction, the indexes a and b in the expression given in the previous
section have been inverted.) Since t, reads-from t,, WS(t,) N RS(t,) # 0, and so,
it must be that t, 4 t;. If t, and ¢, executed at the same database site, t, /4 tp
implies committing(ty) — committing(t,). However, this is only possible if ¢, reads
x from t, before ¢, commits, contradicting the strict 2PL rule. If ¢, and ¢, executed
at different database sites, t, 7 t, implies commit(ta)site(s,) £ committing(ty),
and so, t, passed to the committing state before t, committed at site(t,), which
contradicts the fact that ¢, reads from ¢,, and concludes the proof of the Lemma. O

Lemma 3.5 If there is a version-order relation t, — t, € MV SGy then pos(t,) <
pos(ts)-

PRrROOF: According to the definition of version-order edges, there are two cases of
interest. (1) Let rc]xp], wplxp], and wglz,] be in C(H)s, (a, b and ¢ distinct), and
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zq < Tp, which implies ¢, — t, is in MV SG,,. It follows from the definition of
version-order that pos(t,) < pos(ty). (2) Let rq[xe], we[ze], and wy[zp] be in C(H)s,
(a, b and c distinct), and z. < xp, which implies t, < t; is in MV SGs,. We show
that pos(t,) < pos(ty). Since t, reads-from t., t. commits before ¢, is certified, and
there are two situations to consider.

(a) t. and t, have been committed when ¢, is certified. Assume for a contradiction
that pos(tp) < pos(t,). From the certification test, we have that either ¢, — ¢,
or WS(ty)NRS(t,) = 0. Since z € WS(tp) and z € RS(t,), WS(ty)NRS(t,) #
(0, and so, it must be that t;, — t,. However, t, reads x from t. and not from
ty, which can only happen if x, < ., contradicting that z. < xy.

(b) t. and t, have been committed when t; is certified. Assume for a contradiction
that pos(ty) < pos(t,). From the certification test, it must be that (¢, /4
ty V WS(t,) N RS(ty) = 0) A WS(ty) N RS(t,) = 0 evaluates true, which
leads to a contradiction since x € WS(t) and = € RS(t,), and therefore,
WS(ty) N RS(ty) # 0. O

Theorem 3.2 FEvery history H produced by the Database State Machine algorithm
augmented with the reordering technique is 1SR.

Proor: By Lemmas 3.4 and 3.5, every database site s; produces a serialisation graph
MVSG’;_ such that every edge t, — t, € MVSG’; satisfies the relation pos(t,) <
pos(ty). Hence, every database site produces an acyclic multiversion serialisation
graph MV SG%. By Lemma 3.1, every database site s; constructs the same MVSG’;_.
By the Multiversion Serialisation Graph theorem of [BHG87], every history produced
by the Database State Machine algorithm augmented with Reordering is 1SR. O

3.4 Simple Probabilistic Analysis

In this section, we evaluate the Database State Machine approach using a simple
analytical model, based on the deadlock analysis presented in [GR93|. Our analyt-
ical model characterises the abort rate of the Database State Machine without the
Reordering technique.

We simplify the analysis by making some assumptions about the system. The
database is composed of DB data items, all with the same probability of being
accessed (i.e., no hotspots). All transactions follow the same pattern, that is, each
transaction executes a fixed number nr of read accesses and a fixed number nw of
write accesses. Only update transactions are considered.

First, we calculate the probability that a transaction passes the certification test. If
there are only two concurrent transactions in the system, ¢, and ¢;, and ¢, comimits
before tp, the probability that a read operation performed by t; does not conflict
with any write performed by ¢, is (1 — nw/DB), and the probability that no read
performed by ¢, conflicts with no write performed by t, (i.e., the likelihood that ¢,
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passes the certification test) is [y ' (1 —nw/(DB—1)). Considering that DB > nr
(much bigger than), this is approximately (1 — nw/DB)™".

For a set G of N concurrent transactions, and assuming a worst case analysis where
all transactions in G' have non-intersecting write sets, the probability that the i-th
transaction passes the certification test after the commit of (i — 1) transactions,
denoted P; y, is

Py (1o G D)™ (3.1)
iIwWN — DB . .
If we consider that (i — 1) nw < DB (much smaller than), expression (3.1) can be
simplified as follows

ro=i (D) () e () (),

Nl_(i—l)nrnw
- DB’

since the high-order terms in (3.2) can be dropped [GR93].

In the average, the probability Po that a transaction ¢t in G passes the certification
test is

N —1) nr nw

1 Y (
PC’%N;PZ"NZF 2 DB (3:3)

Furthermore, considering T'PS,,;, the number of update transactions submitted per
second in the system, and 7 the time in seconds it takes for a transaction to be
delivered and certified, N = T'PS,,, 7. However, not all transactions in G’ may cause
t’s abort since transactions that executed at the same site as ¢ are properly ordered
with ¢ by local locking mechanisms (we assume that the probability of local deadlock
is very small). Excluding such transactions leads to N* = TPS,, 7 (ng — 1)/ng
(recall that ng is the number of database sites). From (3.3), in the average, the
likelihood that a transaction ¢ does not pass the certification test, Pg, is

P~ (N*—1) nr nw
¢~ 2DB

(3.4)

Using Pc we can estimate the abort rate of the Database State Machine. In Sec-
tion 3.5, we compare this probabilistic abort rated with results obtained with our
simulation model.

3.5 Simulation Model

The simulation model we have developed abstracts the main components of a repli-
cated database system (our approach is similar to [ACL87]). In this section, we
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describe the simulation model, analyse the behaviour of the Database State Machine
approach using the output provided by the simulation model, and compare some of
the results obtained with the simulation model with the results obtained with the
probabilistic analysis developed in the previous section.

3.5.1 Database Model and Settings

Every database site is modelled as a processor with some data disks and a log disk
as local resources. The network is modelled as a common resource shared by all
database sites. Fach processor is shared by a set of execution threads, a terminating
thread, and a workload generator thread (see Figure 3.6). All threads have the same
priority, and resources are allocated to threads in a first-in-first-out basis. Each
execution thread executes one transaction at a time, and the terminating thread
is responsible for doing the certification. The workload generator thread creates
transactions at the database site. Execution and terminating threads at a database
site share the database data structures (e.g., lock table).

e ™ e ™
workload workload
generator generator
terminating terminating
6 6 6 6 6 % thread 6 6 6 6 6 %thread
execution execution
threads S threads
\, \,
_ ]
CPU CPU
11T 11T = 11T 11T =
J J
Site 1 D:D: Site n
Networlk

Figure 3.6: Simulation model

Committing transactions are delivered by the terminating thread and then certified.
If a transaction passes the certification test, its write locks are requested and its
updates are performed. However, once the terminating thread acquires the trans-
action’s write locks, it makes a log entry for this transaction (with its writes) and
assigns an execution thread to execute the transaction’s updates over the database.
This releases the terminating thread to treat the next committing transaction.

The parameters considered by our simulation model with the settings used in the
experiments are shown in Table 3.1. The workload generator thread creates trans-
actions and assigns them to executing threads according to the profile described
(percentage of update transactions, percentage of writes in update transactions, and
number of operations). We have chosen a relative small database size in order to
reach data contention quickly and avoid extremely long simulation runs that would
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be necessary to obtain statistically significant results.

We use a closed model, that is, each terminated transaction (committed or aborted) is
replaced by a new one. Aborted transactions are sent back to the workload generator
thread, and some time later resubmitted at the same database process where they
originated. The multiprogramming level determines the number of executing threads
at each database process. Local deadlocks are detected with a timeout mechanism:
transactions are given a certain amount of time to execute (transaction timeout), and
transactions that do not reach the committing state within the timeout are aborted.

Database parameters Processor parameters
Database size (data items) 2000 || Processor speed 100 MIPS
Database sites (n) 1..8 || Execute an operation 2800 instr.
Multiprogramming level (M PL) 8 || Certify a transaction 5000 instr.
Data item size 2 KB Reorder a transaction 15000 instr.
Transaction parameters Disk parameters (Seagate ST-32155W)
Update transactions 10% Number of data disks 4
Writes in update transactions 30% Number of log disks 1
Number of operations 5..15 Miss ratio 20%
Transaction timeout 0.5 sec Latency 5.54 msec
Reorder factor 0,m,2n,3n,4n Transfer rate (Ultra-SCSI) 40 MB/sec
General parameters Communication parameters
Control data size 1 KB Atomic Broadcasts per second | oo,180,800/n
Communication overhead 12000 instr.

Table 3.1: Simulation model parameters

Processor activities are specified as a number of instructions to be performed. The
settings are an approximation from the number of instructions used by the simula-
tor to execute the operations. The certification test is efficiently implemented by
associating to each database item a version number |[ACL87|. Each time a data item
is updated by a committing transaction, its version number is incremented. When
a transaction first reads a data item, it stores the data item’s version number (this
is the transaction read set). The certification test for a transaction consists thus in
comparing each entry in the transaction’s read set with the current version of the
corresponding data item. If all data items read by the transaction are still current,
the transaction passes the certification test. We consider that version numbers are
stored in main memory. The reordering test is more complex, since it requires han-
dling read sets and write sets of transactions in the reorder list. The control data size
contains the data structures necessary to perform the certification test (e.g., readset
and writeset). Atomic Broadcast settings are described in the next section.
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3.5.2 Atomic Broadcast Implementation

We do not consider any specific Atomic Broadcast algorithm in our simulation. In-
stead, we take a more general approach, based on broadcast algorithms classes, ac-
cording to scalability issues. Our simulation is based on these classes of algorithms.

Atomic Broadcast algorithms can be divided into two classes. We say that an Atomic
Broadcast algorithm scales well, and belongs to the first class, if the number of
messages delivered per time unit in the system is independent of the number of
sites that deliver the messages. This class is denoted class k, where k determines
the number of messages that can be delivered per time unit. An Atomic Broadcast
algorithm of class k is presented in [Jal98|. In order to keep a constant delivery time,
the algorithm in [Jal98| relies on special hardware.

If the number of messages delivered per time unit in the system decreases with the
number of database sites that deliver the messages, the Atomic Broadcast algorithm
does not scale well, and belongs to the second class. This class is denoted class k/n,
where n is the number of sites that deliver the messages, and k/n is the number
of messages that can be delivered per time unit. In this case, the more sites are
added, the longer it takes to deliver a message, and so, the number of messages
delivered in the system per time unit decreases exponentially with the number of
sites. Most Atomic Broadcast algorithms fall in this category (e.g., [BSS91, CM84,
CT96, GMS91, LG90, WS95]).

As a reference, we also define an Atomic Broadcast that delivers messages instan-
taneously. Such an algorithm is denoted class oo (i.e., it would allow in theory an
infinite number of messages to be delivered per time unit).

The value chosen for class k/n in Table 3.1 is an approximation based on experiments
with SPARC 20 workstations running Solaris 2.3 and an FDDI network (100Mb/s)
using the UDP transport protocol with a message buffer of 20 Kbytes. The Atomic
Broadcast algorithm used in the experiments is of class k/n, and the results found
allowed to estimate & = 800 in k/n. The value for class k was arbitrarily taken
as 180. Moreover, for all classes, the execution of an Atomic Broadcast has some
communication overhead that does not depend on the number of sites (see Table 3.1).

3.5.3 Experiments and Results

In the following, we discuss the experiments we conducted and the results obtained
with the simulation model. Each point plotted in the graphics has a confidence
interval of 95%, and was determined from a sequence of simulations, each one con-
taining 100000 submitted transactions. In order to remove initial transients [Jai91],
only after the first 1000 transactions had been submitted, the statistics started to
be gathered.

In some of the graphics presented next, we analyse update and read-only transactions
separately, although the values presented were observed in the same simulations (i.e.,
all simulations contain update and read-only transactions).
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Update Transactions Throughput. The experiments shown in Figures 3.7 and
3.8 evaluate the effects of the Atomic Broadcast algorithin classes on the transaction
throughput. In these experiments, each cluster of database sites processed as many
transactions as possible, that is, transaction throughput was only limited by the re-
sources available. Figure 3.7 shows the number of update transactions submitted,
and Figure 3.8 the number of update transactions committed. From Figure 3.7, the
choice of a particular Atomic Broadcast algorithm class is not relevant for clusters
with less than five database sites: whatever the class, transaction throughput in-
creases linearly with the number of database sites. This happens because until four
database sites, all three configurations are limited by the same resource, namely, lo-
cal data disks (see paragraph about Resource Utilisation). Since the number of data
disks increases linearly with the number of database sites, transaction throughput
also increases linearly. For clusters with more than four database sites, contention
is determined differently for each algorithm class. For class co, data contention pre-
vents linear throughput growth, that is, for more than five sites, the termination
thread reaches its limit and it takes much longer for update transactions to commit.
The result is that data items remain locked for longer periods of time, impeding the
progress of executing transactions. For classes k and k/n, contention is caused by the
network (the limit being 180 and 800/n messages delivered per second, respectively).

It was expected that after a certain system load, the terminating thread would
become a bottleneck, and transaction certification critical. However, from Figure 3.8,
this only happens for algorithms of class oo (about 170 update transactions per
second), since for algorithms in the other classes, the network becomes a bottleneck
before the terminating thread reaches its processing limit. Also from Figure 3.8,
although the number of transactions submitted per second for clusters with more
than four sites is constant for class k, the number of transaction aborts increase
as the number of database sites augments. This is due to the fact that the more
database sites, the more transactions are executed under an optimistic concurrency
control and thus, the higher the probability that a transaction aborts. The same
phenomenon explains the difference between submitted and committed transactions
for class k/n. For class oo, the number of transactions committed is a constant,
determined by the capacity of the terminating thread.

Queries Throughput. Figures 3.9 and 3.10 show submitted and committed queries
per second in the system. The curves in Figure 3.9 have the same shape as the ones
in Figure 3.7 because the simulator enforces a constant relation between submit-
ted queries and submitted update transactions (see Figure 3.1, update transactions
parameter). Update transactions throughput is determined by data and resource
contention, and thus, queries are bound to exhibit the same behaviour. If update
transactions and queries were assigned a fixed number of executing threads at the be-
ginning of the simulation, this behaviour would not have been observed, however, the
relation between submitted queries and update transactions would be determined by
internal characteristics of the system and not by an input parameter, which would
complicate the analysis of the data produced in the simulation. Queries are only
aborted during their execution to solve local deadlocks they are involved in, or on
behalf of committing update transactions that have passed the certification test and
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are requesting their write locks (Section 3.2.3). As shown in Figure 3.9 and 3.10,
the values for submitted and committed queries, for all Atomic Broadcast algorithm
classes, are very close to each other, which amounts to a small abort rate.

Reordering. Figures3.11 and 3.12 show the abort rate for algorithms in the classes
k and k/n respectively, with different reorder factors. We do not consider algorithms
in the class co because reordering does not bring any improvement to the abort rate
in this case (even if more transactions passed the certification test, the terminating
thread would not be able to process them). In both cases, reorder factors smaller
than 4n, have proved to reduce the number of aborted update transactions. For
reordering factors equal to or greater than 4n, the data contention introduced by
the reordering technique leads to an increase on the abort rate that is greater than
the reduction obtained with its use (i.e., the reordering technique increases the abort
rate of update transactions). When the system reaches this point, most executing
update and read-only transactions time out and are aborted by the system.

Abort Rate. Figures 3.13 and 3.14 present the detailed abort rate for the Database
State Machine based on algorithms of class k/n without and with the Reordering
technique (reorder factor equal to 3n). Figures 3.13 and 3.14 are not in the same scale
because the results shown differ from more than one order of magnitude. Figure 3.13
also shows the values obtained with the probabilistic model developed in Section 3.4.
The graphics only include the aborts during transaction execution, and, in the case
of update transactions, due to failing the certification test. Aborts due to time out
are not shown because in the cases presented they amount to a small fraction of the
abort rate. Without reordering (Figure 3.13), most transactions fail the certification
test and are aborted.

The results observed are very close to those calculated using the probabilistic model.
In order to draw the probabilistic curve, we have to calculate N, the number of
concurrent transactions. N is expressed as the product of T'PS,,, the number of
update transactions submitted per second, and 7, the time it takes to execute a
transaction. We take the values of TPS,, and 7 from the simulation experiments.

When the Reordering technique is used, the number of transactions that fail the
certification test is smaller than the number of transactions aborted during their
execution (see Figure 3.14).

Response Time. Figure 3.15 presents the response time for the executions shown
in Figures 3.7 and 3.8. The price paid for the higher throughput presented by
algorithms of class oo, when compared to algorithms of class k, is a higher response
time. For algorithms in the class k/n, this only holds for less than 7 sites. When the
number of transactions submitted per second is the same for all classes of Atomic
Broadcast algorithms (see Figure 3.16), algorithms in class oo are faster. Queries
have the same response time, independently of the Atomic Broadcast class. Note
that configurations with less than three sites are not able to process 1000 transactions
per second. This explains why update transactions executed in a single database site



3.5. SIMULATION MODEL

41

Submitted TPS (query)

Committed TPS (query)

2200
2000
1800
1600
1400
1200
1000
800
600
400 g

200 | | | | | |
1 2 3 4 5 6 7 8
Number of Sites

Figure 3.9: Submitted TPS (query)

2200
2000
1800
1600
1400
1200
1000
800
600
400 g

200 | | | | | |
1 2 3 4 5 6 7 8
Number of Sites

Figure 3.10: Committed TPS (query)



42

CHAPTER 3. THE DATABASE STATE MACHINE

0.25 T T T T T T

0.2
=)
=
B

= 0.15
[<D)
=

= 0.1
5
£
<

0.05

0 &
Number of Sites
Figure 3.11: Reordering (class k)
0.25 T T T T T T

0.2
=)
=
B

= 0.15
[«b)
=

= 0.1
8
Q£
<

0.05

0

Number of Sites

Figure 3.12: Reordering (class k/n)



3.5. SIMULATION MODEL

43

Abort Rate

Abort Rate

0.25 T T T T T T
Failed certification test <—
During execution (update) —+-
0.2 + During execution (query) -&-- e
Probabilistic model - ’
0.15 i
0.1 -
0.05 -
0 o e {4

1 2 3 4 5 6 7 8
Number of Sites

Figure 3.13: Abort rate (class k/n, RF = 0)

0.018 T T T T T T

Failed certification test ©— 0
During execution (update) —+- L
During execution (query) -&-- 277 |

I
- 7z

-

0.016

0.014 -
0.012
0.01
0.008
0.006
0.004
0.002

Number of Sites

Figure 3.14: Abort rate (class k/n, RF = 3n)



44 CHAPTER 3. THE DATABASE STATE MACHINE

have a better response time than update transactions executed in a Database State
Machine with two sites (a single site reaches no more than 403 TPS, and a Database
State Machine with two sites reaches around 806 TPS).

Figures 3.17 and 3.18 depict the degradation of the response time due to the Re-
ordering technique. The increase in response time becomes accentuated when data
contention becomes a problem (i.e., RF = 4n).

Resource Utilisation. Finally, Figures 3.19 and 3.20 present the way resource
utilisation varies when the number of sites increases, with and without the Reordering
technique. The values in Figure 3.19 were observed in the same experiments shown
in Figures 3.7 — 3.10, and Figure 3.13, and the values in Figure 3.20 were observed in
the same experiments depicted in Figures 3.14 and 3.18. In both cases, in a Database
State Machine with less than five sites, the limiting resources are data disks. For five
sites or more, the network becomes the bottleneck. The log disk utilisation curve has
a shape similar to the curve that represents committed transactions, since the log
is only used for committing transactions. This explains the superior log utilisation
when the Reordering technique is used.

Overall Discussion. Besides showing the feasibility of the Database State Ma-
chine, the simulation model allows to draw some conclusions about its scalability.
Update transactions scalability is determined by the scalability of the Atomic Broad-
cast algorithm class, which has showed to be a potential bottleneck of the system.
This happens because the network is the only resource shared by all database sites
(and network bandwidth does not increase as more database sites are added to the
system). As for queries, only a slight grow in the abort rate was observed as the
number of sites increase. This is due to the fact that queries are executed only locally,
without any synchronisation among database sites.

The above result about update transactions scalability deserves a careful interpreta-
tion since, in regard to network resource utilisation, techniques that fully synchronise
transactions between database sites (e.g., distributed 2PL protocol [BHG87|) prob-
ably will not outperform the Database State Machine. A typical Atomic Broadcast
algorithm in the class k/n needs about 4n [PGS98] messages to deliver a transaction,
and a protocol that fully synchronises transaction operations needs around m X n
messages, where m is the number of transaction operations (assuming that reads
and writes are synchronised) [BHG87]. Thus, unless transactions are very small
(m < 4), the Database State Machine needs less messages than a technique that
fully synchronises transactions.

Furthermore, the simulation model also shows that any effort to improve the scalabil-
ity of update transactions should be concentrated on the Atomic Broadcast primitive.
Finally, if on the one hand the deferred update technique has no distributed dead-
locks, on the other hand its lack of synchronisation may lead to high abort rates.
The simulation model has showed that, if well tuned, the reordering certification test
can overcome this drawback.
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3.6 Related Work

The Database State Machine is an example of the deferred update technique. In
this section, we situate the deferred update technique in the context of replicated
databases and present replicated database algorithms that are related to the Database
State Machine.

3.6.1 Database Replication

Database replication techniques can be classified according to the way updates are
propagated to database sites, and the way updates are regulated. These two criteria
define two orthogonal attributes that characterise database replication techniques.

Updates can be propagated in an eager or lazy way [GHOS96|. In eager replication,
client update requests are applied to all correct database sites as part of the original
transaction (i.e., the transaction commits in all correct database sites or in none).
In lazy replication, a transaction first commits at one database site, and then the
other database sites are updated as different transactions. Lazy replication may not
preserve one-copy serialisability.

Eager replication admits two variations [BHG87|. Immediate update replication prop-
agates every single client request to all database sites during the execution of the
transaction, whereas in the deferred update replication, a single database site receives
and processes all client requests, and only when the client requests the commit op-
eration, the updates are propagated to the other database sites.

Master and group based replication regulates the way database sites accept update
requests [GHOS96|. In the master based replication, only one database site can
process update requests, while in the group based replication, any database site can
receive update requests from the clients and modify the database. These mechanism
can be considered as a kind of database ownership, where only the database owner
has the right to process updates. In the master based replication there is only one
database owner and in the group based replication there are n database owners. With
Master based techniques, the failure of the Master prevents any update operation
from being processes until the Master recovers. If availability is an important issue,
then some mechanism is necessary to assign a new Master.

Table 3.2 summarises the attributes that characterise database replication protocols.
The Database State Machine is an eager group replication mechanism.

Commercial databases have mostly focused on lazy replication techniques. This is in
part due to the fact that commercial replication has sometimes other goals than high
availability (e.g., replication may aim only at performance, or providing support for
off-line analytical processing).

Sybase Replication Server [Syb99| and IBM Data Propagator [Gol95|, are examples
of master based lazy replication. Although these mechanisms are implemented in
different ways,? they both share the particularity that replication is implemented

3Sybase Replication Server is based on the “push model,” where sites subscribe to copies of data,
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Eager Lazy
Replication Replication
Group N transactions 1 transaction

Ownership | N Database owners | NV Database owners

Master N transactions 1 transaction

Ownership | 1 Database owner 1 Database owner

Table 3.2: Database replication classification

“outside the database engine,” and in both cases, the replication mechanism interferes
as little as possible in the “normal” (i.e., without replication) execution. Oracle
version 7.1 offers mechanisms to implement any replication strategy [Del95]. To keep
database consistency with lazy group and lazy master replication, Oracle provides
conciliation rules that can be used to solve conflicts [Ora95, Jac95].

In the next sections, we present other database replication proposals. This is a diffi-
cult task to accomplish due to the multitude of replicated database algorithms and
the variety of assumptions that they make about the system. Thus, before proceed-
ing with our discussion, we point out that the Database State Machine is at the
intersection of two axes of research. First, relying on a certification test to commit
transactions is an application of optimistic concurrency control. However, terminat-
ing transactions with an Atomic Broadcast primitive is an alternative to solutions
based on Atomic Commitment protocols. Furthermore, we mainly concentrate our
discussion on eager group based replication.

3.6.2 Optimistic Concurrency Control

Although most commercial database systems are based on (pessimistic) 2PL syn-
chronisation [GR93|, optimistic concurrency control have received increasing atten-
tion since it introduction in [KR81| (see |[Tho98, Bha99, OV99| for surveys). It has
been shown in [ACL87| that if sufficient hardware resources are available, optimistic
concurrency control can offer better transaction throughput than 2PL. This result
is explained by the fact that an increase in the multiprogramming level, in order
to reach high transaction throughput, also increases locking contention, and thus,
the probability of transaction waits due to conflicts, and transaction restarts to solve
deadlocks. The study in [ACL87] is for a centralised single-copy database. One could
expect that in a replicated database, the cost of synchronising distributed accesses by
message passing would be non negligible as well. In fact, the study in [GHOS96] has
shown that fully synchronising accesses in replicated database contexts (as required
by 2PL) is dangerous, since the probability of deadlocks is directly proportional to
the third power of the number of database sites in the system.

and changes are propagated from the primary to the backups as soon as they occur, and IBM Data
Propagator is based on the “pull model,” where replicated data is demanded by the backups to the
primary at regular time intervals.
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3.6.3 Transaction Termination

The limitations of traditional Atomic Commitment protocols in replicated contexts
have been recognised by many authors, and several algorithms have been proposed to
terminate transactions in replicated databases without Atomic Commitment. How-
ever, most approaches are not eager group based, or require explicit use of application
semantics.

The fact that Atomic Commitment leads to abort transactions in situations where a
single replica manager crashes has been pointed out in [GOS96]. The authors propose
a variation of the three phase commit protocol [Ske81| that commits transactions as
long as a majority of replica managers are up.

In [DGHT87], lazy based epidemic replication protocols are proposed as an alterna-
tive to traditional replication protocols. Another example of epidemic replication
is proposed in [JMR97|, which relies on semantic knowledge about the application.
Bayou [TTP*95] implements a lazy master replication mechanism, offering weak con-
sistency, while the work in [BK97] presents a lazy master approach that guarantees
one-copy serialisability.

A deferred update replication protocol that guarantees one-copy serialisability is
presented in [AAS97]. In this protocol, transactions that execute at the same process
share the same data items, using locks to solve local conflicts. This protocol is
based on a variation of the three phase commit protocol to certificate and terminate
transactions.

It is only recently that Atomic Broadcast has been considered as a possible candi-
date for terminating transactions in replicated databases. Schiper and Raynal [SRI6]
pointed out some similarities between the properties of Atomic Broadcast and static
transactions (e.g., transactions whose operations are known in advance). Atomi-
cally broadcasting transactions was also addressed in [Kei94], which assumes that
transaction operations are known at the beginning of the transaction execution. The
work in [BK98| investigates relaxed isolation guarantees in order to develop database
replication protocols.

In [AAAS97], a family of protocols for the management of replicated database based
on the immediate and the deferred techniques is proposed. The immediate update
replication consists in atomically broadcasting every write operation to all database
sites. This mechanism requires that every database site execute each transaction
operation in the same way. For the deferred update replication, two Atomic Broad-
casts are necessary to commit a transaction. An alternative solution is also proposed,
using a sort of multiversion mechanism to deal with the writes during transaction
execution (if a transaction writes a data item, a later read should reflect this write).

Amir et al. [ADMSM94] also use Atomic Broadcast to implement replicated databases.
However, the scheme proposed considers that clients submit individual object oper-
ations rather than transactions.
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3.7 Discussion

The Database State Machine is an aggressive approach to building high performance
replicated databases. Its principle is to reduce synchronisation between database
sites to the utmost, requiring a deterministic transaction processing. Deterministic
transaction processing is a delicate issue in the context of a replicated database. We
have chosen to base the Database State Machine on the deferred update replication
technique because this allowed us to concentrate the deterministic requirements on
a very precise part of the system, the certification test. Furthermore, the deferred
update replication technique also permits a fair distribution of load among database
sites, that is, transactions are only executed at one database site, although update
transactions are committed in all database sites.

The optimistic way in which transactions are processed in the deferred update repli-
cation may lead to high abort rates. The Database State Machine reduces the number
of aborts using the Reordering technique, which exploits the serialisability property
to commit transactions that otherwise would be aborted. Reordering transactions
increases the response time, but, as it was observed in our simulations, for certain
reorder factors, this cost is acceptable.

Some issues about the Database State Machine remain open for further studies. For
example, we have not been concerned by the way clients choose the database site that
will execute their requests. This is an important issue for load balancing. Another
interesting issue for future studies is how to pass from full replication to partial
replication. At first glance, this seems not to be possible because of the certification
test. However, if the certification test is augmented with Atomic Commitment (see
Section 3.2.5), partial replication becomes possible. Note that even if the certification
test relies on an Atomic Commitment, propagating committing transactions with
an Atomic Broadcast is still attractive since it increases the chance of committing
transactions [PGS98|.
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Chapter 4

(zeneric Broadcast

All generalizations are dangerous,
even this one.

Alexandre Dumas

The Database State Machine relies on an Atomic Broadcast primitive to propagate
update transactions. Asshown in the previous chapter, Atomic Broadcast is sufficient
to ensure the Database State Machine correctness, however, it turns out that it
is not necessary. In this chapter, we introduce the Generic Broadcast problem, a
broadcast primitive that allows applications to tailor-make their order requirements.
The intuition behind Generic Broadcast is that message ordering has a cost, and
for several applications, like the Database State Machine, total ordering of messages
is stronger than necessary to guarantee correctness. Generic Broadcast allows the
application to define a conflict relation that reflects the semantic meaning of the
messages.

In addition to introducing the Generic Broadcast problem, this chapter presents an
algorithm that solves it, and compares this algorithm to known Atomic Broadcast
implementations using the delivery latency parameter. This chapter is based on an
asynchronous system model. Processes communicate by message passing through
Quasi-Reliable channels, and have the crash-stop mode of failure. The system is
augmented with failure detectors (see Chapter 2).

4.1 Problem Definition

Generic Broadcast is defined by the primitives g-Broadcast and g-Deliver.! When
a process p invokes g-Broadcast with a message m, we say that p g-Broadcasts m,
and when p returns from the execution of g-Deliver with message m, we say that
p g-Delivers m. Message m is taken from a set M to which all messages belong.

'g-Broadcast has no relation with the GBCAST primitive defined in the Isis system [BJ87].
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Central to Generic Broadcast is the definition of a (symmetric) conflict relation on
M x M denoted by C (i.e., C € M x M). If (m,m’) € C then we say that m and
m’ conflict. Generic Broadcast is specified by (1) a conflict relation C and (2) the
following conditions:

(VALIDITY) If a correct process g-Broadcasts a message m, then it eventually
g-Delivers m.

(AGREEMENT) If a correct process g-Delivers a message m, then all correct
processes eventually g-Deliver m.

(INTEGRITY) For any message m, every correct process g-Delivers m at most
once, and only if m was previously g-Broadcast by some process.

(PARTIAL ORDER) If correct processes p and ¢ both g-Deliver messages m
and m', and m and m’ conflict, then p g-Delivers m before m’ if and only if ¢
g-Delivers m before m’.

The conflict relation C determines the pair of messages that are sensitive to order,
that is, the pair of messages for which the g-Deliver order should be the same at
all processes that g-Deliver the messages. The conflict relation C renders the above
specification generic, as shown in the next section.

4.1.1 Instances of Generic Broadcast

We consider in the following some instances of Generic Broadcast. In particular,
we show (a) that Reliable Broadcast and Atomic Broadcast are special cases of
Generic Broadcast, (b) how Generic Broadcast can be defined in a scenario where
operations commute, and (¢) how Generic Broadcast can be defined in the context
of the Database State Machine (see Chapter 3).

Reliable and Atomic Broadcast. Two special cases of conflict relations are the
(1) empty conflict relation, denoted by Cy, where Cy = (), and the (2) M x M
conflict relation, denoted by Cax a1, where Caqxpqr = M x M. In case (1) no pair
of messages conflict, that is, the partial order property imposes no constraint. This
is equivalent to having only the validity, agreement, and integrity properties, which
is called Reliable Broadcast. In case (2) any pair (m,m’) of messages conflict, that
is, the partial order property imposes that all pairs of messages be ordered, which is
called Atomic Broadcast. In other words, Reliable Broadcast and Atomic Broadcast
lie at the two ends of the spectrum defined by Generic Broadcast. In between, any
other conflict relation defines an instance of Generic Broadcast.

Commuting Operations. Conflict relations lying in between the two extremes
of the conflict spectrum can be better illustrated by an example. Consider a repli-
cated Account object, defined by the operations deposit(z) and withdraw(z). Clearly,
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deposit operations commute with each other, while withdraw operations do not,
neither with each other nor with deposit operations.? Let M geposit denote the set
of messages that carry a deposit operation, and M thdraw the set of messages that
carry a withdraw operation. This leads to the following conflict relation CAccount:

/ i
CAccount = { (m,m ) T me Mwithdraw orm & Mwithdraw}~

Generic Broadcast with the Caccount conflict relation for broadcasting the invocation
of deposit and withdraw operations to the replicated Account object defines a weaker
ordering primitive than Atomic Broadcast (e.g., messages in M geposit are not required
to be ordered with each other), and a stronger ordering primitive than Reliable
Broadcast (which imposes no order at all).

The Database State Machine Semantics. The termination protocol of the
Database State Machine is based on an Atomic Broadcast primitive (Section 3.2.2).
Once a transaction passes to the committing phase, its updates, read and write sets
are atomically broadcast to all databases sites to be certified. Atomic Broadcast is
sufficient to guarantee replica correctness, as it was shown in Section 3.2.4, however,
it turns out that it is not necessary.

The following example shows that Atomic Broadcast is stronger than necessary to
guarantee replica correctness. Assume two messages m and m’ that transport two
concurrent transactions t, and t,, denoted by m : t, and m’ : t, respectively, such
that RS, = {x,y} and WS, = {z}, and RS, = {z} and WS, = {w}. In this case,
neither ¢, (if committed) has any influence on the outcome of the certification test of
ty, nor t (if committed) has any influence on the outcome of the certification test of
tqa. To see why, notice that RS, NW S, = 0 and RS, "W S, = (). Furthermore, since
both transactions have disjoint write sets, even if both are committed, the order
their updates are performed in the database does not matter. Therefore, total order
delivery of messages m and m’ is not necessary for the Database State Machine to
be correct.

A conflict relation Cpgps, weaker than Atomic Broadcast, can be derived for the
Database State Machine from the certification test, which checks whether transac-
tions can be committed or not. The conflict relation Cpgas is defined as follows.

Cosnr ={ (m:ta,m i) : (RSaNWS, #0)V (WS, N RSy # 0) V (WS, NWS, # 0)}.

4.1.2 Strict Generic Broadcast Algorithm

From the specification it is obvious that any algorithm solving Atomic Broadcast
also solves any instance of the Generic Broadcast problem defined by C C M x M.
However, such a solution also orders messages that do not conflict. We are interested

This is the case for instance if we consider that a withdraw(z) operation can only be performed
if the current balance is larger than or equal to x.
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in a strict algorithm, that is, an algorithm that does not order two messages if not
required, according to the conflict relation C. The idea is that ordering messages
has a cost (e.g., in terms of number of communication steps) and this cost should be
kept as low as possible. More formally, we define an algorithm that solves Generic
Broadcast for a conflict relation C C M x M, denoted by A¢, strict if it satisfies the
condition below.

(StricTNESS) Consider an algorithm A, and let RYC be the set of runs of
Ac. There exists a run R in Rév C in which at least two correct processes
g-Deliver two non-conflicting messages m and m’ in a different order.

Informally, the strictness condition requires that algorithm A¢ allow runs in which
the g-Deliver of non conflicting messages is not totally ordered. However, even if A¢
does not order messages, it can happen that total order is spontaneously ensured.
So we cannot require violation of total order to be observed in every run: we require
it in at least one run of Ac.

4.2 Solving Generic Broadcast

In this section, we present an algorithm that solves Generic Broadcast. Our solu-
tion relies on an algorithm that solves the Consensus problem. We first provide an
overview of the solution, and then present a detailed algorithm.

4.2.1 Overview of the Algorithm

Processes executing our Generic Broadcast algorithm progress in a sequence of stages
numbered 1,2,... ,k,.... Stage k terminates only if two conflicting messages are g-
Broadcast, but not g-Delivered in some stage k' < k.

g-Delivery of non-conflicting messages. Let m be a g-Broadcast message.
When some process p receives m in stage k, and m does not conflict with some
other message m’ already received by p in stage k, p inserts m in its pending}’; set,
and sends an ACK(m) message to all processes. As soon as p receives ACK(m)
messages from ng., processes, where

Naek > (n+1)/2, (4.1)

p g-Delivers m.

g-Delivery of conflicting messages. Consensus is launched to terminate stage
k if a conflict is detected. The Consensus decides on two sets of messages, denoted
by NCmsgSet* (NC stands for Non-Conflicting) and CmsgSet* (C stands for Con-
flicting). The set NCmsgSet® U CmsgSet* is the set of all messages g-Delivered
in stage k. Messages in NCmsgSet® are g-Delivered before messages in CmsgSet”,



4.2. SOLVING GENERIC BROADCAST 57

and messages in NCmsgSet® may be g-Delivered by some process p in stage k before
p executes the k-th Consensus. The set NCmsgSet® does not contain conflicting
messages, while messages in CmsgSet® may conflict. Messages in CmsgSetF are
g-Delivered in some deterministic order. Process p starts stage k 4+ 1 once it has
g-Delivered all messages in CmsgSetF.

Properties. To be correct, our algorithm must satisfy the following properties:

(a) If two messages m and m’ conflict, then at most one of them is g-Delivered in
stage k before Consensus.

(b) If message m is g-Delivered in stage k by some process p before Consensus,
then m is in the set NCmsgSet”.

(¢) The set NCmsgSetF does not contain any conflicting messages.?

We discuss each of these properties informally. The formal proof of the algorithm is
in Section 4.2.3. Property (a) is ensured by condition (4.1). Property (b) is ensured
as follows. Before starting Consensus, every process p sends its pending{j set to all
processes (in a message of type checking, denoted by CHK), and waits for messages
of type CHK from exactly n.px processes. Ounly if some message m is at least in
[(nepk + 1)/2] messages of type CHK, then m is inserted in majMSet];, the initial
value of Consensus that decides on NCmsgSet®. So, if m is in less than [(nepp+1)/2]
messages of type CHK, m is not inserted in majM Set];. Indeed, if condition

2Maek + Nenk > 2n + 1 (4.2)

holds and m is in less than [(ncnr +1)/2] messages of type CHK, then m could not
have been g-Delivered in stage k& before Consensus. To understand why, notice that
from (4.2) and the fact that nger, nenk, and n € N, we have (see Proposition 4.1)

(n = nenk) + [(nenk +1)/2] < ek, (4.3)

where (n—ngpg) is the number of processes from which p knows nothing. From (4.3),
if m is in less than [(nepx + 1)/2] messages of type CHK, then even if all processes
from which p knows nothing had sent AC K (m), there would not be enough AC K (m)
messages to have m g-Delivered by some process in stage k before Consensus.

Proposition 4.1 If 2ngc + nepe > 2n + 1 and ngek, Nenk, and n € N then (n —
Nenk) + [(Menr +1)/2] < nger-

PROOF: Solving 2ngck + nepk = 2n+ 1 for nger, we have n+ (1 —nepi) /2 < nger. But
n+(1=nenk) /2 = (n—nenk) +(Nenk+1) /2, and so, (n—ncpk) +(Menk+1)/2 < nger. We

3Property (c) does not follow from (a) and (b). Take for example two messages m and m’ that
conflict, but are g-Delivered in stage k as the result of the Consensus terminating stage k: neither
property (a), nor property (b) applies.
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claim that (n—nepk) + (1+nenk) /2 < Nger implies (n—nepk) + [(nepk +1) /2] < ngek-
If nepr is odd, the claim follows directly. Thus, assume that n.py is even, that is, there
is an [ € N, such that n.u,r = 21. We have to show that (n —21) + (1 + 1/2) < nge
implies (n —21)+ [(14+1/2)] < ngek. Since l € N, (n—21) 4 (I+1/2) < ngex, implies
(n—20)+ (14+1) < ngek, and it is not difficult to see that if (n —21)+ (1+1) < ngek
then (n —210) + [(1 4+ 1/2)] < ngex. O

Property (c) is ensured by the fact that m is inserted in majM Set’; only if m is in
at least [(nenr + 1)/2] messages of type CHK received by p (majority condition).
Let m and m’ be two messages in majM Setlg . By the majority condition, the two
messages are in the pendingf; set of at least one process g. This is however only
possible if m and m’ do not conflict.

Minimal number of correct processes. Our Generic Broadcast algorithm waits
for nyqr messages before g-Delivering non-conflicting messages, and n.p, messages if
a conflict is detected before starting Consensus. Therefore, our algorithm requires
max(Ngek, Nenk) correct processes. The minimum of correct processes to solve Generic
Broadcast with our algorithm is (2n + 1)/3, which happens when nge = nepk-

4.2.2 Detailed Algorithm

Provided that the number of correct processes is at least max(ngck, Menk)s Mack >
(n+1)/2, and 2ng4ex + Nepr > 2n + 1, Algorithm 1 solves Generic Broadcast for any
conflict relation C. All tasks in Algorithm 1 execute concurrently, and Task 3 has
two entry points (lines 12 and 31).

Algorithm 1 uses an “underline” notation (e.g., k) to precise the message a process is
waiting for. For example, a process that waits for message (k, pendz’ngf;, ACK) (line
31) will receive a message (i, —,type) such that i = k and type = ACK.

Process p in stage k manages the following sets.

e RR_delivered,: contains all messages R-delivered by p up to the current time,
e G _delivered,: contains all messages g-Delivered by p in all stages k' < k,

° pendz’ng}’;: contains every message m such that p has sent an AC K message
for m in stage k up to current time, and

o localNC g_Deliverﬁ: is the set of non conflicting messages that are g-Delivered
by p in stage k, up to the current time (and before p executes the k-th Con-
sensus).

When p wants to g-Broadcast message m, p executes R-broadcast(m) (line 8). After
R-delivering a message m, the actions taken by p depend on whether m conflicts or
not with some other message m’ in R delivered, \ G _delivered,.
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No conflict. If no conflict exists, then p includes m in pending}’,f (line 14), and
sends an AC'K message to all processes, acknowledging the R-delivery of m (line 15).
Once p receives nger ACK messages for a message m (line 31), p includes m in
localNCg_Deliver;l,gC (line 35) and g-Delivers m (line 36).

Conflict. In case of conflict, p starts the terminating procedure for stage k. Process
p first sends a message of the type (k,pendingg, CHK) to all processes (line 17), and
waits the same information from exactly n.px processes (line 18). Then p builds the
set majM Set]; (line 20).* It can be proved that majMS et’; contains every message
m such that for any process ¢, m € localNC’g_Deliver(’;. Then p starts Consensus
(line 21) to decide on a pair (NCmsgSet® CmsgSet*) (line 22). Once the decision
is made, process p first g-Delivers (in any order) the messages in NCmsgSet” that is
has not g-Delivered yet (lines 23 and 25), and then p g-Delivers (in some deterministic
order) the messages in CmsgSet* that it has not g-Delivered yet (lines 24 and 26).
After g-Delivering all messages decided in Consensus execution k, p starts stage k+1
(lines 28-30).

4.2.3 Proof of Correctness

We first establish some Lemmata that will be used to prove the main result (i.e.,
Properties 4.2 — 4.5). Lemma 4.1 states that the set pending® does not contain
conflicting messages. It is used to prove Lemmata 4.2 and 4.5.

Lemma 4.1 For any process p, and all k > 1, if messages m and m' are in
pendz’ngﬁ, then m and m’ do not conflict.

PROOF: Suppose, by way of contradiction, that there is a process p, and some k > 1
such that m and m’ conflict and are in pendingﬁ. Since m and m’ are in pending}];,
p must have R-delivered m and m’. Assume that p first R-delivers m and then m’.
Thus, there is a time ¢ after p R-delivers m’ such that p evaluates the if statement
at line 13, and m’ € R_delivered,, m' ¢ G _delivered,, and m' ¢ pending];. At
time ¢, m € R_delivered, (by the hypothesis m is R-delivered before m'), and
m & G _delivered, (if m € G_delivered, from lines 27-29 m and m' cannot be both
in pendingﬁ). Therefore, when the if statement at line 13 is evaluated, m and m’ are
in R_delivered\ G _delivered, and since m and m’ conflict, the condition evaluates
false, and m/ is not included in pending’lf, a contradiction that concludes the proof.
O

Lemma 4.2 proves property (a) of page 57.

Lemma 4.2 If two messages m and m’' conflict, then at most one of them is g-
Delivered in stage k before Consensus.

“majMSeth = {m : |ChkF(m)| > (nenr +1)/2}
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Algorithm 1 Generic Broadcast algorithm

1:
2
3
4:
5.
6

Initialisation:
R_delivered «— ()
G _delivered — 0
k1
pending® «— ()
localNCg_ Deliver' « ()

7: To execute g-Broadcast(m): {Task 1}

8:

R-broadcast(m)

9: g-Deliver(—) occurs as follows:

10:
11:

12:
13:

14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:

28:
29:
30:

31:
32:

33:
34:
35:
36:

when R-deliver(m) {Task 2)

R_delivered < R_delivered U{m}

when (R_delivered \ G_delivered) \ pending® # () {Task 3}

if | for all m,m’ € R_delivered \ G_delivered, m # m' : (m,m') & Conflict |
then
pending® «— R_ delivered \ G_delivered
send(k, pending®, ACK) to all
else
send(k, pending®, CHK) to all
wait until [ for n.,, processes ¢ : p received (E,pendingg, CHK) from q |
#Define chkPSet*(m) = {q : p received (E,pendings, CHK) from ¢ and
m € pendingl}
majMSett «— {m : |chkPSett(m)| > [(nens +1)/2]}
propose(k, (majM Sett, (R_delivered \ G_delivered) \ majM Set*))
wait until decide(k, (NCmsgSet®, CmsgSet*))
NCg_Deliver® « (NCmsgSet* \ localNCg_Deliver®) \ G _delivered
Cg_ Deliver® « CmsgSett \ G_delivered
g-Deliver messages in NCg_ Deliver” in any order
g-Deliver messages in Cg_ Deliver® using some deterministic order
G _delivered « (local NCg_Deliver* U NCg_Deliver* U Cg_Deliver®)U
G _delivered
k—Fk+1
pending® — ()
local NCg_Deliver® « ()

when receive(k, pendingf;, ACK) from ¢

#Define ackPSet*(m) = {q : p received (k, pendingl];,AC’K) from ¢ and

m € pendingl’;}
ackM Set* «— {m : |ackPSet*(m)| > ngex
local NCmsgSet* «— ackM Set* \ (G _delivered U NCmsgSet")
localNCg_Deliver® «— local NCg_Deliver* U local NCmsgSet*
g-Deliver all messages in local NCmsgSet® in any order
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Proor: The proof is by contradiction. Assume that there are two messages m
and m’ that conflict and are g-Delivered in stage k before Consensus. Without lack
of generality, consider that m is g-Delivered by process p, and m’ is g-Delivered
by process q. From the Generic Broadcast algorithm (lines 31-36), p (and ¢) has
received ngep messages of the type (k,pending®, ACK) such that m € pending”
(m' € pending®). Since nge > (n + 1)/2, there must be a process r that sends
the message (k, pendingf ,ACK) to processes p and ¢, such that m and m’ are in
pendz’ngf, contradicting Lemma 4.1. O

Lemma 4.3 relates (1) the set Ack¥(m) of processes that send an acknowledgement
for some message m in stage k and (2) the set Chk]’,f of processes from which some
process p receives C HK messages in stage k, with (3) the set C’hk"l’f (m) of processes
from which p receives a C'H K message containing m in stage k.

Lemma 4.3 Let Ack®(m) be a set of processes that execute the statement send(k,
pending®, ACK) in stage k with m € pending®, and let Chk;l,gC be the set of processes

from which some process p receives messages of the type (k, pending®, CHK) in stage
k. If |Ack* (m)| > nger, |Chk§| = Nepk, and 2nger, + Nenk > 2n + 1, then there are at

least [(nepr + 1)/2] processes in Chk]’;(m) = Chk]’,f N Ack®(m).

Proor: We first determine a relation between sets Ack*(m), Chkg, and C’hk’;(m).
Set Chkg(m) contains all processes from set Chk]]; that sent an acknowledgement
message for m. Thus, process p knows that every process ¢ € C’hk"z’f (m) executed
the statement send(k, pending®, ACK) in stage k with m € pending®, but p does
not know anything about the remaining processes in IT '\ C’hk"z’f . Therefore, there are
[I\C hkz| = (n—ncnk) additional processes that might have sent an acknowledgement
for m. We conclude that [Ack¥(m)| < (n — nen) + |Chkf(m)]. By the hypothesis,
|Ack®(m)| > nger, and thus, ngex < (0 — nepk) + |C’hk‘];(m)| (1). Subtracting n
from both sides in (1) leads to neek — n < [ChkE(m)| — nepr (2). By rearranging
2Mgek + Nenk > 2n + 1, we have that nger — n > (1 — nepk) /2 (3). From (2) and (3),
|ChkE(m)| = newr > (1 —nepi)/2, and so, |[ChkF(m)| > (nepi +1)/2. Since nepy, and
|Chkk(m)| € N, we conclude that [ChkE(m)| > [(nenr 4+ 1)/2]. 0

Lemma 4.4 proves property (b) of page 57. It states that any message g-Delivered
by some process ¢ during stage k, before g executes Consensus in stage k will be
included in the set NCmsgSet® decided by Consensus k.

Lemma 4.4 For any two processes p and q, and oll k > 1, if process p executes the
statement decide(k, (NCmsgSet®, —)), then localNCg_Deliverf; C NCmsgSet*.

PROOF: Let m be a message in localNCg_Deliverf;. We first show that if p exe-
cutes the statement propose(k‘,majMSet’;, —)), then m € majMSet];. Since m €
localNCg_Deliverf;, q must have received ng. messages of the type (k, pending®,
ACK) (line 31) such that m € pending®. Thus, there are nge; processes that sent
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m to all processes in the send statement at line 15. From Lemma 4.3, ChkF(m) >
(nenk + 1)/2, and so, from the algorithm line 20, m € majMSet];. Therefore, for
every process ¢ that executes propose(k, (majMSet’;,—)), m € majMSet’;. Let
(NCmsgSet* —) be the value decided on Consensus execution k. By the uniform
validity of Consensus, there is a process r that executed propose(k, (majM Setk, —))
such that NCmsgSetF = majMSetff, and so, m € NCmsgSetF. a

Lemma 4.5 proves property (c) of page 57.

Lemma 4.5 If two messages m and m’' conflict, then at most one of them is in
NCmsgSetF.

PrOOF: The proof is by contradiction. Assume that there are two messages m
and m/ that conflict, and are both in NCmsgSet®. From the validity property of
Consensus, there must be a process p that executes propose(k, (majMSet’;, —)), such
that NCmsgSet® = majMSet];. Therefore, m and m’ are in majMSetI;, and from
the algorithm, p receives [(nenr + 1)/2] messages of the type (k,pending®, CHK)
such that m is in pending®, and p also receives [(nenr + 1)/2] messages of the type
(k, pending®, CHK) such that m/ is in pending®. Since p waits for exactly nepk
messages of the type (k, pending®, C HK), there must exist at least one process ¢ in
C’hk"z’f such that m and m’ are in pendingg, contradicting Lemma 4.1. O

Lemma 4.6 lies the basis for Propositions 4.2 and 4.3. It shows that (a) if some correct
process executes Consensus at some stage k, then all correct processes also execute
Consensus at stage k, and (b) all correct processes g-Deliver the same messages at
stage k.

Lemma 4.6 For any two correct processes p and q, and all k > 1:

(1) If p executes send(k,—,CHK), then q eventually ezecutes send(k,—, CHK).
(2) If p executes propose(k,—), then q eventually executes propose(k,—).

. . . k . k
(8) If p g-Delivers messages in NCg_ Delivery U Cg_ Delivery, then

(3.1) q also g-Delivers messages in NCg_ Deliverf; UCyg_ Deliverf;, and

(8.2) local NCyg Deliver’z’f UNCyg_ Deliver]’; =

localNCyq Deliverf;UNCg_ Deliverf; and Cg_ Deliver;l,gC =Cg_ Deliverf;.

PRrROOF: The proof is by simultaneous induction on (1), (2) and (3). (BASE STEP.)
For k = 1, we first show that (1) holds: if p executes send(1,—, CHK) (line 17),
then ¢ also executes send(l,—,CHK). If p executes send(1l,—, CHK), then p has
R-delivered two messages, m and m/, that conflict. From the agreement of R-
broadcast, g also R-delivers m and m’. Assume that ¢ first R-delivers m, and then m/.
Thus, there is a time after ¢ R-delivers m’ when m and m’ are in R delivered, \
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G _delivered,, and m’ ¢ pending;. So, ¢ eventually executes send(1l,—, CHK)
(line 17).

To prove (2), assume that p executes propose(l,—). From the algorithm, it is
clear that p executes send(l,—,CHK), and from item (1) above, ¢ also executes
send(l,—,CHK) and waits for nc,; messages of the type (1,—,CHK) (line 18).
Since there are ngpy processes correct that execute send(l,—,CHK), q eventually
receives nqpx messages of the type (1, —, CHK) (line 18), and executes propose(1, —).

To prove (3.1), assume that p g-Delivers messages in NC’g_Deliver; UC’g_Deliver;.
Before executing decide(1, (NCmsgSet,, CmsgSety)), p executes propose(1,—). By
item (2) of the lemma, ¢ also executes propose(l,—). By termination and uni-
form integrity of Consensus, g eventually executes decide(1,—) and does it exactly
once. It follows from the algorithm (lines 23-26) that ¢ g-Delivers messages in
NCg_Deliver; U Cg_Deliver;.

To prove (3.2) we show that (a) localNC’g_Deliverll, U NCg_Deliver} =
localNCg_Deliver; U NCg_Deliver;, and (b) C’g_Deliver}, = Cg_ Deliver,.

(a) From the algorithm, line 23, and the fact that initially G delivered, = ), we
have that NCg_Deliver}, = (NCm:sgSetzl7 \ localNCg_Deliver},), and thus,
localNC’g_Deliverll,UNC’g_Deliverll, = localNC’g_Deliverll,U(NCmsgSetl\
localNCg_Deliverzl,). From Lemma 4.4, it follows that local NCg_ Deliver, U
N C’g_Deliver; =N C’msgSetll,. A similar argument follows for ¢, and by
the agreement property of Consensus, we have N CmsgSetzl, =N CmsgSeté.
Therefore, we conclude that localNC’g_Deliverzl, U NC’g_Deliver}, =
localNCg_Deliver; U NCg_Deliver;.

(b) From the algorithm, line 24, Cg_Deliver}) = C’msgSetll, \ G_delivered,.

Since initially G'_delivered, and G _delivered, are empty, C’g_Deliver}, =

CmsgSetll), and C’g_Deliver;}l = CmsgSeté. By agreement of Consensus, for

every p and q, CmsgSetzl, = C’msgSeté, and so, Cg_Deliver}, = C’g_Deliver;.

(INDUCTIVE STEP.) Assume that the Lemma holds for all £,1 < k < I. We pro-
ceed by first showing that (1) if p executes send(l,—, CHK) (line 17), then ¢ also
executes send(l,—,CHK). If p executes send(l,—,CHK), then from line 13, there
is some time ¢ when two conflicting messages m and m’ are in R_ delivered, \
G _delivered,. Since m and m’ are not in G _delivered,, m and m' are not in
Ule(localNCg_Deliver; U NCg_DeliverIi, U C’g_Deliver;). By the induction hy-
pothesis, m and m’ & Ule(localNCg_Deliveré U NC’g_Deliveré U C’g_Deliveré).
By the agreement property of R-broadcast, eventually m and m’ belong to
R _delivered,. From Lemma 4.1, and the fact that m and m’ conflict, there is a time
after which ¢ g-Delivers all messages in U¥_, (localNCg_DeliveréUNCg_DeliverflU
Cg_Deliverf]) such that there exist two messages m and m' in R_delivered, \

G _delivered,, and m and m’ are not both in pendingé. Thus, q eventually executes
send(l,—,CHK).

Suppose that (2) p executes propose(l,—). From the algorithm, p previously ex-
ecuted send(l,—,CHK), and from item (1), ¢ also executes send(l,—, CHK) and
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waits for n.p, messages of the type (I, —, CHK). Since there are ngpj processes cor-
rect that execute send(l,—, CHK), q eventually receives n.p messages of the type
(I,—,CHK), and executes propose(l,—).

We now consider that (3.1) p g-Delivers messages in NC’g_Deliveri,UCg_Deliveer,.
Before executing decide(l, (NC’msgSeté),C’msgSeti,)), p executes propose(l,—). By
item (1) of the lemma, g also executes propose(l, —). By the termination and agree-
ment properties of Consensus, ¢ eventually executes decide(l, —) exactly once. From
the algorithm, g g-Delivers messages in NCg_Deliveré U C’g_Deliveré.

To prove (3.2) we show that (a) localNCg_DeliverIl, U NCg_Deliveré =
localNC’g_Deliveer, U NC’g_Deliveré, and (b) C’g_Deliveer, = Cg_Deliveré.

(a) From the algorithm, line 23, and Lemma 4.4 (i.e., localNCg_DeliverIl, -
NCmsgSeti,), it follows that localNCg_Deliveré U NCg_Deliveer, =
NC’msgSeti, — G _delivered,. To see why, note that from lines 34 and 35,
localNCg_Deliveré N G_delivered, = (). By the agreement property of Con-
sensus, NC’msgSeti, = NC’msgSeth. From the algorithm, G delivered =
UF_(local NCg_Deliver' U NCg_Deliver’ U Cg_Deliver?), and from the

induction hypothesis, G _delivered, = G_delivered,. Therefore, we have
localNCg_DeliveréUNC’g_DeliverIl, = localNC’g_Deliverll,UNC’g_Deliveré.

(b) From the algorithm, line 24, Cg_Deliveer, = C’msgSeti, \ G_delivered,.
But when line 24 is evaluated, G _delivered, = Ule(localNC’g_DeliveT;, U
NCyg_ Deliver, UCg_Deliver,), and it follows from the induction hypothesis
that G_delivered, = G _delivered,. By the agreement property of Consensus,
CmsgSeté = CmsgSetfl, and thus, Cg_DeliverIl, = Cg_Deliveré. O

The following propositions suppose f < max(ngck, Nehk). Proposition 4.2 is stronger
than the agreement property defined in Section 4.1, since it claims that any two
correct processes not only g-Deliver the same messages, but also g-Deliver them in
the same stage.

The proof for Proposition 4.2 considers two cases. The first case assumes that some
correct process p g-Delivers m in stage k£ and executes Consensus in stage k. In
this case, m € localNC’g_Deliver’If U NC’g_Deliver{; U C’g_Deliver’If, and from
Lemma 4.6, every correct process also g-Delivers m. The second case considers that
p g-Delivers m in stage k but never executes Consensus in stage k. The proof proceeds
by showing that if this happens, then all correct processes send an acknowledgement
for m in stage k, and eventually every correct process receives nqq, acknowledgement
messages for m and g-Delivers m.

Proposition 4.2 (AGREEMENT). If a correct process p g-Delivers a message m in
some stage k, then every correct process q eventually g-Delivers m in stage k.

PROOF: There are two cases to consider: (a) p executes Consensus on stage k, and
(b) p never executes Consensus in stage k.
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(a) Since p g-Delivers m in stage k, m € localNC’g_Deliver]’; U NC’g_Deliver}’; U
Cg_Deliver;;, and so, from Lemma 4.6, we have m € localNCg_Deliveré‘C U
]\TC’g_Deliver(’]C U C’g_Deliver(’;. Thus, ¢ either g-Delivers m at line 36 (in
which case m € localNC’g_Deliverf;), or at line 25 (in which case m €

NCg_Deliverf;), or at line 26 (in which case m € Cg_Deliverf;).

k
p )
it must be that p has received n,. messages of the type (k,pendingk,ACK )
(line 30) such that m € pending®. There are ngye, > (n+1)/2 correct processes,
and so, p has received the message (k, pending®, ACK) from at least one correct

process 7.

(b) Since p does not execute Consensus in stage k, m € local NC'g__Deliver}y, and

We claim that every correct process 7' executes the send(k, pending®, ACK)
statement at line 15, such that m € pending®. From lines 12-15, r R-delivers
m, and by the agreement of Reliable Broadcast, eventually r’ also R-delivers
m. Therefore, there is a time ¢t when m € R_ delivered,.

It follows from the fact that m is g-Delivered by p in stage k that m ¢
Ui-“:_ll(localNCg_DeliveréC U NCg_Deliver{j U C’g_Deliver;;). By Lemma 4.6,
we have m & Ufz_ll (localNCg_Deliverff, U NCg_Deliverf, U C’g_Deliverf,),
and so, there is a t’ > t when r’ executes line 13. At time t', m does not conflict
with any other message. To see why, consider that m conflicts with some mes-
sage m' in stage k. In this case, 1’ executes send(k,—, CHK) in stage k, and
from Lemma 4.6 all correct processes also execute send(k, —, CHK) in stage
k. It follows that 7’ eventually executes Consensus in stage k, a contradiction
that concludes the claim.

Since there are g correct processes that execute send(k,pending®, ACK),
such that m € pending®, ¢ will eventually execute the when statement at
line 31, and g-Deliver m. o

Two situations are distinguished in the proof for Proposition 4.3. The first situation
(a) considers that some process ¢ g-Delivers two conflicting messages m and m’ in
the same stage k, and in the second situation, (b) process ¢ g-Delivers m and m/' in
different stages. Considering that ¢ g-Delivers m before m’, it is shown for (a) that
since m and m’ conflict, m’ € CmsgSet*. Assuming, for a contradiction, that p g-
Delivers m’ before m, from a similar argument, it is concluded that m € CmsgSet*.
Therefore, m, m’ € CmsgSet®. However, all messages in CmsgSet® are g-Delivered
in the same deterministic order, and thus, it cannot be that g g-Delivers first m
and then m/, and p g-Delivers first m’ and then m. For situation (b), it follows
directly from Algorithm 1 that if p and ¢ both g-Deliver m, respectively m/, in stage
k, respectively &, then they g-Deliver m and m’ in the same order.

Proposition 4.3 (PARTIAL ORDER). If correct processes p and q both g-Deliver
messages m and m’, and m and m' conflict, then p g-Delivers m before m' if and
only if q g-Delivers m before m/.

PROOF: Assume that g g-Delivers message m before message m’. We show that p
also g-Delivers m before m’. There are two cases to consider: (a) g g-Delivers m and
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m’ at stage k, and by Proposition 4.2, p also g-Delivers m and m’ at stage k, and
(b) ¢ g-Delivers m at stage k, and m’ at stage k' > k, and by Proposition 4.2, p also
g-Delivers m at stage k, and m’ at stage k'.

(a) We claim that if messages m and m’ conflict, and ¢ g-Delivers m before m/,
then m’ € CmsgSet®. To see why, notice that if ¢ g-Delivers m before Con-
sensus, m € localNCmsgSetf;, and from Lemma 4.4, m € NCmsgSet®. From
Lemma 4.5, m and m’ cannot be both in NCmsgSet¥, thus m’ € CmsgSet”,
concluding the proof of our claim.

Suppose, by way of contradiction, that p g-Delivers m’ before m. From an ar-
gument similar to the claim above, m € CmsgSet*. Therefore, m and m/ are in
CmsgSet® and m and m/ are g-Delivered by ¢ and p at line 26. However, since
q g-Delivers m before m’, and messages in CmsgSet® are g-Delivered accord-
ing to some deterministic function, p and ¢ do not use the same deterministic
function. A contradiction that concludes the proof of case (a).

(b) From the algorithm, if p g-Delivers m at stage k, and m’ at stage ¥’ > k, then
p g-Delivers m before m/. O

Proposition 4.4 below proves that Algorithm 1 guarantees the validity property of
Generic Broadcast using two mechanisms [CT96]. The idea is to assume that some
message m is g-Broadcast and never g-Delivered and then reach a contradiction.
First, the proof of Proposition 4.4 shows that if m is never g-Delivered, then there
is a Consensus execution ki when every correct process proposes m. Notice that
this can only be proved for correct processes, since to propose m, a process first has
to R-deliver m, and the properties of Reliable Broadcast only ensure that correct
processes R-deliver all R-broadcast messages. It then shows that from the definition
of faulty processes, there is a Consensus execution ko that no faulty process executes
(they all crash before k). The contradiction follows immediately, since at Consensus
execution k = max(ky, k2), only correct processes propose a value, and m is always
proposed. Thus, m is included in the decision of Consensus k, and will be g-Delivered.

Proposition 4.4 (VALIDITY). If a correct process p g-Broadcasts a message m,
then p eventually g-Delivers m.

Proor: For a contradiction, assume that p g-Broadcasts m but never g-Delivers it.
From Proposition 4.2, no correct process g-Delivers m. Since p g-Broadcasts m, it
R-broadcasts m, and from the validity property of Reliable Broadcast, p eventually
R-delivers m. By Algorithm 1, there is a time after which m € R_ delivered,. It
follows from the agreement property of Reliable Broadcast and the fact that m is
never g-Delivered, that eventually, for every correct process ¢, m € (R_ delivered, \
G _deliveredy).

By the contradiction hypothesis, p does not g-Deliver m, and so, p does not receive
Naek messages of the type (k, pending®, ACK) such that m € pending®. But since
there are ng,.; correct processes that execute the if statement at line 13, there is at
least one correct process ¢ such that, after m € R_delivered,\G _delivered,, g never
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executes the then branch (lines 14-15), and always executes the else branch (lines 17-
30). Thus, g executes send(k,—,CHK). From Lemma 4.6, item (1), every correct
process also executes send(k, —,CHK). Since there are m.py correct processes, no
correct process remains blocked forever at the wait statement (line 18), and every
correct process eventually executes propose(k,—). Thus, there is a k; such that
for all I > ky, all correct processes execute propose(l, (majM Set', (R_ delivered \
G _delivered) \ majM Set')), and m € majM Set' U (R_ delivered \ G_ delivered).

Assume that kg is such that no faulty process executes propose(l, —), > ko, (i.e., at
ko all faulty processes have crashed). Let k = max(kq, k2). All correct processes ex-
ecute propose(k, —), and by the termination and agreement of Consensus, all correct
processes execute decide(k, (NCmsgSet®, CmsgSet*)) with the same (NCmsgSet®,
CmsgSet*). By the uniform validity property of Consensus, some process q exe-
cutes propose(k, (majMSet', (R_ delivered\ G_ delivered) \ majM Set!)) such that
m € majMSet' U (R_delivered \ G_delivered), and so, all processes g-Deliver m,
a contradiction that concludes the proof. a

Proposition 4.5 (UNIFORM INTEGRITY). For any message m, each process g-
Delivers m at most once, and only if m was previously g-Broadcast by sender(m).

PRrooFr: If a process p g-Delivers m at line 36, then p received ng.; messages of the
type (k, pending®, ACK ),m € pending®. Let g be a process from which p received
the message (k‘,pending[’;, ACK),m € pendz’ng(’;. Since ¢ executes send(k,pending(’;,
ACK), q has R-delivered m. By the uniform integrity of Reliable Broadcast, process
sender(m) has R-broadcast m, and so, sender(m) has g-Broadcast m.

Now consider that p g-Delivers m at line 25 or 26. Thus, p executed the state-
ment decide(k, (NCmsgSett, CmsgSet*)) for some k, such that m € NCmsgSet* U
CmsgSet®. By the uniform validity property of Consensus, some process g must
have executed propose(k, (majMSet*, (R_ delivered \ G_ delivered) \ majM Set*))
such that m € majM Set* U(R_ delivered\ G _delivered). We distinguish two cases.

Case (a). If m € majM Set®, then, from Algorithm 1, |Chkk(m)| > [(nen, +1)/2].
Let r € Chkfj(m). Therefore, 7 executed send(k, pending®, CHK), such that m €
pendz’ngf, and thus, r has R-delivered m.

Case (b). If m € R_delivered \ G_delivered, it is not difficult to see that ¢ has
R-delivered m.

In both cases, by the uniform integrity property of Reliable Broadcast, process
sender(m) has R-broadcast m, and so, sender(m) has g-Broadcast m. 0

Theorem 4.1 Algorithm 1 solves Generic Broadcast, or reduces Generic Broadcast
to a sequence of Consensus in asynchronous systems with f < maz(nack, Nenk)-

ProOOF. Immediate from Propositions 4.2, 4.3, 4.4, and 4.5. O
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4.3 Evaluation of the Generic Broadcast Algorithm

The Generic Broadcast algorithm is strict and cheaper than known Atomic Broadcast
implementations based on the same assumptions. We evaluate next the cost of the
Generic Broadcast algorithm using the delivery latency parameter, introduced in this
section.

4.3.1 Generic Broadcast Algorithm Strictness

Proposition 4.6 states that the Generic Broadcast algorithm of Section 4.2.2 is a
strict implementation of Generic Broadcast.

Proposition 4.6 Algorithm 1 is a strict Generic Broadcast algorithm.

PRrROOF. Immediate from Figure 4.1, where process p g-Broadcasts message m and
process s g-Broadcasts messages m’. Process p (respectively s) R-delivers m/ (respec-
tively m) after g-Delivering m’ (respectively m) — not shown in Figure 4.1. Process
p only acknowledges message m, processes q and r acknowledge messages m and m/,
and process s only acknowledges message m/'.

Process p receives the acknowledges from p, ¢, and r and since nge, = 3, p g-Delivers
m. Process p then receives the acknowledgement from s for m’, and g-Delivers m/.
Similarly, s g-Delivers m’ and then m. Therefore, p g-Delivers m before m/, and s

g-Delivers m’ before m. O
g-Broadcast(m) g-Deliver(m)
R-broadcast(m) send(k,{m},ACK) g-Deliver(m’)
\ Rdelwer(m) \
.
q ]

,/'/ g-Deliver(m)
\g-Deiiuer(m')

A
R-deliver(m)
R-delilier{ m’)

r |

T ke S

broadcast(m ’) , g-Deliver(m)
g-Broadcast(m’) send(k,{m’},ACK) g-Deliver(m’)

Figure 4.1: Run R of Generic Broadcast (ng.; = 3)
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4.3.2 Generic Broadcast Algorithm Cost

In order to analyse the cost of the Generic Broadcast algorithm, we introduce the
delivery latency parameter. We analyse the Generic Broadcast algorithm considering
best case runs, when messages can be g-Delivered without conflict, and with conflict.

Delivery Latency. In the following, we introduce the delivery latency as a param-
eter to measure the efficiency of algorithms solving any Broadcast problem (defined
by the primitives a-Broadcast and a-Deliver). The delivery latency is a variation
of the Latency Degree introduced in [Sch97|, which is based on modified Lamport’s
clocks [Lam78|:

e a send event and a local event on a process p do not modify p’s local clock,

e let ts(send(m)) be the timestamp of the send(m) event, and ts(m) the times-

tamp carried by message m: ts(m) © ts(send(m)) + 1, and

e the timestamp of receive(m) on a process p is the maximum between ts(m)
and p’s current clock value.

The delivery latency of a message m a-Broadcast in some run R of an algorithm A
solving a Broadcast problem, denoted dlf(m), is defined as the difference between
(1) the largest timestamp of all a-Deliver(m) events (at most one per process) in run
R and (2) the timestamp of the a-Broadcast(m) event in run R. Let 7% be the set
of processes that a-Deliver message m in run R. The delivery latency of m in R is
formally defined as

def

= max (ts(a-Deliverp(m)) — ts(a-Broadcast(m))).
PET,

difi(m)
For example, consider a broadcast algorithm A where (1) to broadcast a message
m, a process p sends m to all processes, (2) each process ¢ on receiving m sends
an acknowledgement message ACK(m) to all processes, and (3) as soon as ¢ has
received ng.; messages of the type ACK (m), q delivers m. Let R be a run of A, as
shown in Figure 4.2. In this case we have dift(m) = 2.

The delivery latency is a measure of the synchronisation among processes in a given
run produced by some broadcast algorithm A to deliver a message. The delivery
latency can be used to characterise the minimal synchronisation among processes,
required by an algorithm A, to deliver messages. For example, algorithm A requires
that processes send an ACK(m) message only after receiving message m, and so,
no run generated by A, where m is broadcast will have send,(ACK (m)) preceding
receive, (m), for any process p. Nevertheless, algorithm Ay, allows a process ¢ to send
ACK (m) after having received AC K (m) from some process p. Thus, there exists a
run R’ of A, where receive,(ACK (m)) precedes send,(ACK (m)) (see Figure 4.3).
In this case we have di'¥ (m) = 3.
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broadcast(m) delwer( m)
\ send(m) send(ACK(m))
p ﬁ \z
q
send(ACK(m))
delwer( m)

Figure 4.2: Run R of Ay with dIff(m) = 2

broadcast(m) deliver(m)

send(m) send(ACK(m))

send(ACK(m))

deliver(m)

Figure 4.3: Run R’ of Ay with dI® (m) =3

Therefore, when characterising a broadcast algorithm A with the delivery latency
parameter, we will consider best case scenarios, which characterise the minimal syn-
chronisation necessary to deliver messages.

Cost Analysis. We now discuss the cost of our Generic Broadcast algorithm. Our
main result is that for messages that do not conflict, the Generic Broadcast algorithm
can deliver messages with a delivery latency equal to 2, while for messages that
conflict, the delivery latency is at least equal to 4. Since known Atomic Broadcast
algorithms deliver messages with a delivery latency of at least 3,% this results shows
the tradeoff of the Generic Broadcast algorithm: if messages conflict frequently, our
Generic Broadcast algorithm may become less efficient than an Atomic Broadcast
algorithm, while if conflicts are rare, then our Generic Broadcast algorithm leads to
smaller costs compared to Atomic Broadcast algorithms.

Before stating Properties 4.8 — 4.11, we present Proposition 4.7 which defines a lower
bound on algorithms that implement Reliable Broadcast, and Corollary 4.1 which

5 An exception is the Optimistic Atomic Broadcast algorithm (see Chapter 5), which can deliver
messages with delivery latency equal to 2 if the spontaneous total order property holds.



4.3. EVALUATION OF THE GENERIC BROADCAST ALGORITHM 71

states this lower bound in terms of the delivery latency parameter.

Proposition 4.7 Let A, be an algorithm that solves Reliable Broadcast. For every
run R of Ay, where a process p R-broadcasts some message m and a process q #
p R-delivers m, there is a causal chain of events connecting R-broadcast,(m) and
R-deliverg(m).

PROOF. Suppose, by way of contradiction, that there exists an algorithm A,; that
solves Reliable Broadcast such that in some runs of A,;, a process p R-broadcasts
a message m, a process ¢ # p R-delivers m, and there is no causal chain of events
connecting R-broadcast,(m) and R-delivery(m). Let R be such a run of A,; where
R-broadcast,(m) is the first event executed by process p. From the hypothesis, there
is no event e € R so that R-broadcast,(m) — e and e — R-delivery(m).

Consider now a run R’ similar to R except that p does not R-broadcast m. Process
q is not able to distinguish between R and R’, and since q R-delivers m in R, ¢
R-delivers m in R/, violating the uniform integrity property of Reliable Broadcast,
and contradicting our hypothesis that A,; solves Reliable Broadcast. O

Corollary 4.1 There is no algorithm A,y that implements Reliable Broadcast such
that for any message m R-delivered in some run R produced by Ay, dif(m) < 1.

PRrOOF. Immediate from Proposition 4.7 and the definition of delivery latency. O

Propositions 4.8 and 4.9 assess the cost of the Generic Broadcast algorithm when
messages do not conflict. Proposition 4.8 defines a lower bound on the delivery
latency of Algorithm 1 for messages g-Delivered without Consensus (line 36), and
Proposition 4.9 shows that this bound can be reached in runs where there are no
process failures.

Proposition 4.8 There is no run R generated by Algorithm 1 where some message
m is only g-Delivered at line 36 and dIf(m) < 2.

PROOF. Assume for a contradiction that there is a run R and a message m g-
Delivered in R such that dif(m) < 2. Since m is g-Delivered in R, by the integrity
property of Generic Broadcast, there is a process g that g-Broadcasts m. By Algo-
rithm 1, if ¢ g-Broadcasts m, ¢ R-broadcasts m, and every process p that g-Delivers
m first R-delivers m. We define lﬁg = ts(R-delivery(m)) — ts(R-broadcast,(m)), and

l?nj?p = ts(g-Deliver,(m)) —ts(g-Broadcast,(m)), where l?nj?p > lﬁg. By Corollary 4.1,

lfgj > 1, and from the definition of delivery latency and the contradiction hypothesis,

WE < dif(m) < 2.

It follows that 1 < IFB < 197 < diff(m) < 2, and it must be that (15 = i3],
Therefore, after R-delivering m, p does not receive any message m’ such that m — m/,
where — is the happens-before relation defined by Lamport |Lam78]. Since p g-
Delivers m at line 36, p receives nge, messages of the type (k,pending®, ACK),
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such that m € pending®. Let r be a process from which p receives a message
(k,pending®, ACK), at line 18. Since m € pending”, than r has received m, and
so, m — (k,pending®, ACK),, a contradiction. O

Proposition 4.9 Assume that Algorithm 1 uses the Reliable Broadcast implemen-
tation given in [CT96]. There is a run R generated by Algorithm 1 where message
m is g-Delivered at line 36 and dIf(m) = 2.

PrOOF. Immediate from Figure 4.4 where process p g-Broadcasts a message m.
(Some messages have been omitted from Figure 4.4 for clarity.) For all p € {p,q,r, s},
ts(receive,(m)) = ts(send,(m)) + 1, and, for all p' € {p,q,s}, ts(receive,(k,{m},
ACK) from p') = ts(sendy(k,{m}, ACK)) + 1. But ts(sendy(k,{m}, ACK)) =
ts(receive,y (m)), and so, ts(receive,(k, {m}, ACK) from p') = ts(send,(m)) + 2.
From Figure 4.4, ts(g-Broadcast,(m)) = ts(send,(m)), and ts(g-Deliver,(m)) =
ts(receive,(k,{m}, ACK) from p'). By the definition of delivery latency, we have
diff(m) = 2. O

g-Broadcast(m) g-Deliver(m)
R-broadcast(m) R-deliver(m)
\ send(m) \ send(k,{m},ACK)

p o ®

Figure 4.4: Run of Generic Broadcast with diff(m) = 2

The results that follow are about the cost of the Generic Broadcast algorithm in
runs where conflicting messages are g-Broadcast. Proposition 4.10 establishes a
lower bound for cases where messages conflict, and Proposition 4.11 shows that the
best case with conflicts can be reached in runs with no process failures nor failure
suspicions. Proposition 4.10 is based on Conjecture 4.1, which establishes a lower
bound on Consensus algorithms. This lower bound is based on the latency degree
parameter, introduced in [Sch97].

Conjecture 4.1 Assume an asynchronous system model M augmented with a failure
detector that does not satisfy strong accuracy. There is no algorithm Ac in M that
solves Consensus with a latency degree smaller than 2.

Notice that there are algorithms that solve Consensus with a latency degree equal
to 2 in M [Sch97, MR99].
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Proposition 4.10 Assume that Conjecture 4.1 is true. There is no run R generated
by Algorithm 1 in M where m and m’ are the only messages g-Delivered, m and m’
conflict, and dI¥(m) < 4 and dI®(m') < 4.

PROOF. Assume for a contradiction that there is a run R and two messages m and m/’
g-Delivered in R such that m and m’ conflict and dif¥(m) < 4 and dI®(m') < 4. From
Lemma 4.2, at most one message is g-Delivered in R before Consensus. Without loss
of generality, assume that m is g-Delivered after Consensus. We will show that it
cannot be that dif(m) < 4.

For every process p that g-Delivers m, p first executes decidep,(—, (setq, sety)), such
that m € setp. Thus, from the uniform validity property of Consensus, there is a pro-
cess ¢ that executes proposeq(—, (setq, sety)). Let IS = ts(decidey(—, (setq, sety))) —
ts(proposeq(—, (setq, sety))). From Conjecture 4.1 and the definition of latency de-
gree |Sch97|, lg > 2.

From Algorithm 1, before ¢ executes propose,(—, (setq, sety)), q receives npy mes-
sages of the type (—,pending, CHK). Let r be a process from which ¢ receives
message (—,pending,, CHK). We claim that r R-delivers m. To see why, notice
that in Algorithm 1, r only executes send,(—, pending,, CHK) (line 17) after r R-
delivers two conflicting messages: m and m/'. It follows that ts(g-Deliver,(m)) —
ts(R-deliver,(m)) > lg + 1, and since lg > 2, we have (a) ts(g-Delivery,(m)) —
ts(R-deliver,(m)) > 3.

We define (b) IEB = ts(R-deliver,(m)) — ts(R-broadcast(m)), and (c) l%fp =
ts(g-Deliver,(m)) — ts(g-Broadcast(m)). By Algorithm 1, (d) ts(g-Broadcast(m)) =
ts(R-broadcast(m)). It follows from (a), (b), (c), and (d) that If, = I25 + 3.

By the contradiction hypothesis, dif(m) < 4, and by the definition of delivery la-
tency, for all p that g-Deliver m, lgfp < di®(m). Thus, I8 4+ 3 < dif(m) < 4. We

> 'm,p
lRB
m,p

conclude that [;;7 = 0, which contradicts Proposition 4.7 and concludes the proof.O

Proposition 4.11 Assume that Algorithm 1 uses the Reliable Broadcast implemen-
tation given in [CT96/, and the Consensus implementation given in [Sch97]. There
exists a run R of Algorithm 1 where two messages conflicting m and m' are g-
Delivered in some stage k, and di(m) = 4 and dI®(m’) = 4.

Proor. Immediate from Figure 4.5, where process ¢ g-Broadcasts message m, and
process r g-Broadcasts message m’. (The Consensus execution and some mes-
sages have been omitted for clarity.) For all p € {p,q,r, s}, ts(receive,(m)) =
ts(sendy(m)) + 1, and ts(receive,(m’)) = ts(send.(m')) + 1. It also follows that
for all p' € {p,q,7}, ts(receive,(k, —,CHK) from p') = ts(sendy (k,—,CHK)) + 1.
From Figure 4.5, ts(sendy (k, —, CHK)) = ts(receive,y (m)) = ts(receive,y (m')), and
thus, ts(receive,(k, —, CHK) from p') = ts(send,(m)) + 2, p” € {q,r}.

By the Consensus algorithm given in [Sch97|, ts(decide,(—)) = ts(propose,(—)) +
2. From Figure 4.5, ts(propose,(—)) = ts(receive,(k, —,CHK)), and we have that
ts(decide,(—)) = ts(receive,(k,—,CHK)) + 4. We conclude by the definition of
delivery latency and since ts(g-Deliver,(m)) = ts(g-Deliver,(m’)) = ts(decide,(—)),
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ts(g-Broadcasty(m)) = ts(send,(m)), and ts(g-Broadcast,(m)) = ts(send,(m)), that

diff(m) = 4 and diff(m’) = 4. 0
R-deliver(m) propose(k,({ }.{m,m’}))
R-deliver(m’) decide(l,({ },{m,m’}))
send(k,{ },CHK) -
p u
g-Broadcast(m) , , \\
\R-broadcast(m) / |
d |
q \. send(m) .
g-Broadcast(m’) \ /
R-broadcast(m) \ /
send(m’),” ) i
e \ — .
s “ =0 O -
. gt f /
conflict detection Consensus
g-Deliver(m)

g-Deliver(m’)

Figure 4.5: Run of Generic Broadcast with diff(m) = 4 and dif(m/) = 4

4.4 Related Work

Group communication aim at extending traditional one-to-one communication, which
is insufficient in many settings. One-to-many communication is typically needed
to handle replication (replicated data, replicated objects, etc.). Classical tech-
niques to manage replicated data are based on voting and quorum systems (e.g.,
[Gif79, Her86, JM87| to cite a few). Early quorum systems distinguish read opera-
tions from write operations in order to allow for concurrent read operations. These
ideas have been extended to abstract data types in [Her86]. Increasing concur-
rency without compromising strong counsistency guarantees on replicated data is a
standard way to increase system performance. Lazy replication [RL92] is another
approach that aims at increasing performance by reducing the cost of replication.
Lazy replication also distinguishes between read and write operations, and relaxes
the requirement of total order delivery of read operations. Counsistency is ensured at
the cost of managing timestamps outside the set of replicated servers. Timestamps
are used to ensure Causal Order delivery on the replicated servers.

Our approach also aims at increasing the performance of replication by increasing
concurrency in the context of group communication. To the best of our knowledge,
no previous work has defined group communication in this way. Nevertheless, there
are some similarities between our Generic Broadcast algorithm and quorum sys-
tem [Gif79]. From this perspective, our work can be seen as a way to integrate group
communication and quorum systems. There is even a stronger similarity between
quorum systems and our Generic Broadcast algorithm. Our algorithm is based on
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two sets: an acknowledgement set and a checking set. These sets play a role similar
to quorum systems. However, quorum systems require weaker conditions to keep
consistency than the condition required by the acknowledgement and checking sets.
This discrepancy is explained in part by the fact that quorum systems are only
concerned with safety guarantees (e.g., two writes on replicas of the same object
should not be performed concurrently), whereas the Generic Broadcast algorithm is
concerned with safety and liveness guarantees.

4.5 Discussion

Generic Broadcast is a powerful message ordering abstraction. The definition of a
Generic Broadcast primitive is based on a conflict relation derived from semantic
information provided by the application. Reliable and Atomic Broadcast are special
cases of Generic Broadcast, where the conflict relation is the empty set in one case
(i.e., Reliable Broadcast) and the Cartesian Product over all messages in the other
case (i.e., Atomic Broadcast). Reliable and Atomic Broadcast determine the two
ends of a spectrum of order relations. Between these two ends, we defined a conflict
relation to be used by the Database State Machine algorithm, which characterises a
serialisability based message ordering.

The advantage of Generic Broadcast over Atomic Broadcast is a cost issue, where
cost is defined by the delivery latency of messages. The intuition behind the Generic
Broadcast problem is that ordering messages has a cost, and this cost should only be
paid when necessary, that is, when messages conflict. This notion of cost is formally
defined by the strictness property. In this chapter, we have presented a strict Generic
Broadcast algorithm.

On a different issue, the Generic Broadcast algorithm proposed uses mechanisms
that have similarities with quorum systems. This raises an interesting issue and lays
the basis for further investigation aiming at better understanding the differences be-
tween replication protocols based on group communication (e.g., Atomic Broadcast,
Generic Broadcast) and replication protocols based on quorum systems.

Finally, the Generic Broadcast algorithm proposed requires at least (2n+1)/3 correct
processes. Such a condition is usual in the context of Byzantine failures, but rather
surprising in the context of crash failures. These observations suggest that there
might be room for optimised Generic Broadcast algorithms.

5Let n, be the size of a read quorum, and n.,, the size of a write quorum. Quorum systems
usually requires that n, + n., > n+ 1, and n, > [(n+1)/2].
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Chapter 5

Optimistic Atomic Broadcast

A pessimist sees the difficulty in every opportunity;
an optimist sees the opportunity in every difficulty.

Winston Churchill

Broadcast protocols have been shown to play an important role in fault tolerant
systems. For replication mechanisms based on the state machine approach [Sch90]
(e.g., the Database State Machine), Atomic Broadcast guarantees that every replica
delivers requests in the same order. One way of improving the efficiency of such
replication mechanisms is to use broadcast primitives providing order guarantees
that take advantage of application semantics, like Generic Broadcast. Another way
is to exploit system properties to implement fast Atomic Broadcast protocols.

In this chapter, we introduce optimistic approaches to implementing broadcast pro-
tocols (e.g., Atomic Broadcast). These approaches are optimistic because they are
based on system properties that do not always hold, but if these properties hold for
a certain period, messages can be delivered fast. This chapter describes three opti-
mistic approaches in general lines, and presents one in detail, the Optimistic Atomic
Broadcast (OPT-ABcast) algorithm. The optimism in these approaches exploits the
spontaneous total order property, that is, the fact that in some networks it is highly
probable that messages are received in the same total order.

5.1 Degrees of Optimism

The optimistic approaches presented in this chapter exploit the spontaneous total
order property to deliver messages fast. The spontaneous total order property holds
under some circumstances (e.g., moderate load) in local area networks. It can be
stated as follows.

(SPONTANEOUS TOTAL ORDER) Consider a set € of processes. If a process p
sends a message m to all processes in 2, and a process ¢ sends a message m’
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to all processes in 2, then the two messages are received in the same order by
all receivers.

Under abnormal execution conditions (e.g., high network loads), the spontaneous
total order property may be violated. More generally, one can consider that the
system passes through periods when the spontaneous total order property holds,
and periods when the property does not hold.

To illustrate the spontaneous total order property, we conducted some experiments
involving eight workstations (UltraSparc 1+) connected by an Ethernet network
(10 Mbits/s). In the experiments (see Figure 5.1), each workstation broadcasts
messages to all the other workstations, and receives messages from all workstations
over a certain period of time (around 10 sec.). Broadcasts are implemented with IP-
multicast, and messages have 1024 bytes. From Figure 5.1, it can be seen that there
is a relation between the time between successive broadcast calls, and the percentage
of messages that are received in the same order.
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0.86
0.84
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0.78 [ N N N N N N |
05 1 15 2 25 3 35 4 45 5
Time between successive broadcasts (msec)

Messages totally ordered (%)

Figure 5.1: Spontaneous total order property

The approaches presented next assume that in order to deliver a message, an Atomic
Broadcast algorithm proceeds in two phases. In the first phase, the message is
propagated to all processes, and in the second phase, processes determine the order
in which messages have to be delivered.!

In addition to the propagation phase and the order phase, we also consider a check
phase, and a treatment phase to characterise and compare optimistic broadcast ap-
proaches. The check phase determines whether the spontaneous total order property
holds, and the treatment phase represents the processing executed by the application
upon A-delivering a message (e.g., the treatment done by a replica in the context of

Tndeed, several Atomic Broadcast algorithms based on non-centralised control are structured
in a propagation and order phases [AM92, CT96].
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Active Replication [GS97]). The treatment phase has been included to help compare
the overhead introduced by some of the optimistic techniques.

To keep the presentation simple, we focus our attention on one message ordered at a
time. However, the optimistic approaches presented can also be used when messages
are ordered in batches. The beginning of the propagation phase is determined by
the A-broadcast of a message, and the treatment phase starts on a process when the
message is A-delivered by this process.

To assess the efficiency of our optimistic approaches, we associate with each approach
a “cost” A, which includes ordering and processing costs.

5.1.1 Classical Atomic Broadcast Algorithm
with Conservative Treatment

This approach serves as a reference for the optimistic techniques presented next.
Consider that m is a message A-broadcast by a process p. Process p first sends m to
all processes (including itself), and once m is received by some processes, a protocol
is used to decide on the delivery order of m. The number of processes that have to
receive m so that order can be decided depends on the protocol. A process ¢ only
A-delivers message m after m’s order is known by gq.

Figure 5.2 depicts the propagation, order, and treatment phases involved in the
Classical Algorithm with Conservative Treatment approach. In this case, the cost is
Acc = Ay + Ay + Ay, where A, represents the cost of the propagation phase, A, the
cost of the ordering phase, and A; the cost of the treatment phase.

A-broadcast(m) A-deliver(m)

propagation order treatment
phase phase phase

Figure 5.2: Classical approach

5.1.2 Optimistic Atomic Broadcast Algorithm
with Conservative Treatment

The Optimistic Algorithm with Conservative Treatment approach assumes that check-
ing whether the spontaneous total order property holds or not is cheaper than ac-
tually totally ordering messages. Thus, instead of executing the order phase after
receiving a message m, processes try to determine whether m is received in the same
order by all receivers. If this is the case, m can be delivered. Otherwise, processes
have to agree on the order m should be delivered. Figure 5.3 depicts the Optimistic
Algorithm with Conservative Treatment approach, with the check phase, and «, the
probability that the spontaneous total order property holds.
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Figure 5.3: Optimistic Algorithm approach

The messages necessary to execute the check phase introduces an additional cost,
and so, when the spontaneous total order property does not hold, the Optimistic
Algorithm approach is more expensive than the Classical Algorithm approach (see
Section 5.1.1). In this case we define the cost Apc as Ap + Ac + (1 — ) Ay + Ay,
where A, represents the cost of the check phase. Section 5.2 presents in detail an
algorithm that uses the Optimistic Algorithm approach.

An interesting optimisation would be to overlap the check with the order phases to
reduce (or completely eliminate) the overhead with the delivery of messages when
the spontaneous total order property does not hold.

5.1.3 Classical Atomic Broadcast Algorithm
with Optimistic Treatment

A more aggressive way of exploiting the spontaneous total order property than the
previous technique is as follows [KPAS99]|. When a process p receives a message m, p
A-delivers m to the application before executing the order phase. This way, a message
is A-delivered first in a tentative order. Processes also execute the order phase, and
once the definitive order for a message is known, the message is A-delivered again.
Although the order phase is always performed, its execution is overlapped with the
treatment phase. If the definitive order does not correspond to the tentative order,
the application has to “undo” some operations and ‘“redo” them in the correct order
(see Figure 5.4).

For the Classical Atomic Broadcast Algorithm with Optimistic Treatment approach,
the cost is Aco = Ap + (1 — «)(A, + Ay) + A4, where A, represents the cost for
the undo phase, and either (1) Ay < A,, or (2) if the tentative order is not the
same definitive order, once the definitive order is known for some message m, the
application treatment of m can be interrupted. Since messages can be received the
first time in a wrong order, this approach requires the application to be able to undo
the operations of the treatment phase.

As pointed out previously, this technique does not correspond to the Atomic Broad-
cast specification presented in Chapter 2. The new specification is defined by the
primitives Opt-broadcast(m), Opt-deliver(m), and TO-deliver(m), which satisfy the
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Figure 5.4: Optimistic Problem approach

following properties [KPAS99|.

(VALIDITY) If a correct process Opt-broadcasts a message m, then it eventually
Opt-delivers m and TO-delivers m.

(AGREEMENT) If a correct process Opt-delivers a message m then every correct
process eventually Opt-delivers m. If a correct process TO-delivers m then
every correct process eventually TO-delivers m.

(UNIFORM INTEGRITY) For every message m, every process Opt-delivers and
TO-delivers m at most once, and only if m was previously Opt-broadcast by
sender(m).

(GLOBAL ORDER) If two correct processes p and ¢ TO-deliver two messages m
and m/, then p TO-delivers m before m’ if and only if ¢ TO-delivers m before

m'.

(LocAL ORDER) A process does not TO-deliver a message m before Opt-
delivering m.

These properties state that every message Opt-broadcast by a correct process is
eventually Opt-delivered and TO-delivered by every correct process in the system.
Order is guaranteed in such a way that no process TO-delivers a message before Opt-
delivering it, and every message is TO-delivered (but not necessarily Opt-delivered)
in the same order by all the correct processes.

5.1.4 Optimistic Atomic Broadcast Algorithm
with Optimistic Treatment

An algorithm can be devised by combining the two approaches presented before.
That is, processes Opt-deliver messages as soon as they receive them, but only ex-
ecute the order phase if the spontaneous total order property does not hold (see
Figure 5.5).
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Figure 5.5: Hybrid approach

This approach has the advantages of both the Optimistic Atomic Broadcast Algo-
rithm with Conservative Treatment and the Classical Atomic Broadcast Algorithm
with Optimistic Treatment: it overlaps the treatment phase with the execution of
the check phase, and it takes advantage of system properties to deliver messages
(in the definitive order) fast. In this case, the cost is Aoo = Ap + (1 — a)(Ae +
max(Ao, Ay)) + Ay, where (1) Ay < A, or (2) if the tentative order of m is not cor-
rect, the application treatment started by the Opt-delivery of some message m can
be interrupted.

Table 5.1 shows the approaches presented in this section. Each approach is charac-
terised by its cost.

Approach Cost

Conservative Treatment:
Classical Atomic Broadcast Alg. Acc=A, + Ao+ Ay
Optimistic Atomic Broadcast Alg. | Aoc =Ap +Ac+ (1 —a) Ay + Ay

Optimistic Treatment:
Classical Atomic Broadcast Alg. Aco=A,+(1—a)(Ao+Ay) + Ay
Optimistic Atomic Broadcast Alg. | Aoo = Ap + (1 — a)(Ac + max(A,, Ay)) + Ay

Table 5.1: Cost of the various approaches

5.1.5 A Strawman Analysis of the Degrees of Optimism

From the cost characterisation presented in the previous sections, and by making
some simplifying assumptions, we can evaluate and draw some conclusions about
the behaviour of each optimistic approach.

In the following, we “quantify” the cost of a phase by its latency (also known as
communication steps). The values taken for the propagation, order, and check phases
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are based on best case analysis (i.e., no failures nor process suspicions). The cost for
a process to propagate a message to all the other processes (broadcast), supposing n
processes, is A, = 1. To check whether the spontaneous total order property holds,
we consider that one process is chosen a priori as the coordinator and the other
processes send to the coordinator a list with the order of the messages received.
The coordinator determines whether the spontaneous total order property holds and
informs all processes. Therefore, A, = 2. The order phase can be implemented
using the optimised Chandra and Toueg Consensus algorithm with unreliable failure
detectors of class ©S [CT96].2 In the best case we have A, = 3.

We proceed considering two cases: (a) Ay = A, = 0 (i.e., the cost for the treatment
phase and the undo phase are equal), and (b) Ay = A, = A, (i.e., the treatment,
undo, and ordering phases have the same cost). In case (a), the costs of the treatment
and the undo phases are very low (e.g., local resources are much faster than the
network), and in case (b), the costs of the treatment and undo phases are high,
relatively to the send to all, check, and order phases.

Simple calculations lead to the relations shown in Table 5.2, which are depicted in
Figures 5.6 and 5.7.

A=A, =0 Ar=A,=A,

Acc/Aoc || 4/(6 —3a) 7/(9 - 3a)
Acc/Aco 4/(4 — 3a) 7/(10 — 604)
Acc/Aoo 4/(6 — 5a) 7/(9 — 5a)

Table 5.2: Relationships between degrees of optimism

Figures 5.6 and 5.7 show that the Classical Algorithm with Optimistic Treatment and
the Optimistic Algorithm with Optimistic Treatment approaches “perform better” (in
terms of latency) than the Optimistic Algorithm with Conservative Treatment ap-
proach. This is in part because even when the spontaneous total order property
holds, a message can only be delivered using the Optimistic Algorithm with Conser-
vative Treatment approach after the check phase has terminated, which is not the
case with the other techniques. However, this analysis does not take into account
resources utilisation (i.e., processor and network). If resources were considered, the
results might have been different. The reason is that the Optimistic Algorithm with
Conservative Treatment approach never has to undo operations (i.e., it generates less
processor activity), and only orders messages when the spontaneous total order prop-
erty does not hold (i.e., it generates less network activity). Furthermore, as already
stated, there is a fundamental difference between the Optimistic Algorithm with Con-
servative Treatment approach and the approaches based on optimistic treatment, in
that the latter can only be used when the application is able to undo operations.

From Figures 5.6 and 5.7, the Classical Algorithm with Optimistic Treatment ap-
proach is more efficient than the Optimistic Algorithm with Optimistic Treatment

2The optimised Chandra and Toueg Consensus algorithm consists in eliminating the first phase
of the algorithm, when processes send their initial values to the coordinator (see the Appendix),
and having the coordinator propose its initial value as estimate [Sch97].
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approach when the cost of the treatment and undo phases are low, and worse when
they are high. This is explained by the fact that the Optimistic Algorithm with
Optimistic Treatment approach allows an overlap between the order and the undo
phases, with the additional cost of a check phase. The Classical Algorithm with
Optimistic Treatment approach does not have the additional check phase cost, but
treats the order and the undo phases sequentially. If the cost of the undo phase is
zero, the Optimistic Algorithm with Optimistic Treatment approach does not have
any advantage over the Classical Algorithm with Optimistic Treatment approach,
and, actually, further augments the overall cost to deliver a message. Finally, for
values of a very close to one, both approaches based on optimistic treatment have a
similar behaviour.

5.2 Optimistic Atomic Broadcast Algorithm

In this section, we present in detail an algorithm that exploits the Optimistic Ap-
proach introduced in the previous section: the Optimistic Atomic Broadcast (OPT-
ABcast) algorithm. Our interest in the Optimistic Approach comes from the fact
that the OPT-ABcast algorithm can replace classical implementations of Atomic
Broadcast in the Database State Machine without further modifications in the way
transactions are processed (see [KPAS99| for a database replication protocol based
on optimistic treatment).

This section considers an asynchronous system model. Processes communicate by
message passing through FIFO Quasi-Reliable channels, and have the crash-stop
mode of failure. The system is augmented with failure detectors to allow us to solve
Consensus (Chapter 2).
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Figure 5.7: Degrees of optimism (Ay = Ay = Ay)

5.2.1 Overview of the Algorithm

In the OPT-ABcast algorithm, processes progress in a sequence of stages. Messages
can be delivered “during” a stage or at the “end” of a stage, and the key idea is that
during a stage, messages can be delivered faster than at the end of a stage. Figure 5.8
depicts the OPT-ABcast algorithm when messages are delivered during a stage k.3
In order for a process p to deliver messages during stage k, p has to determine
whether the spontaneous total order property holds. Process p determines whether
this property holds by exchanging information about the order in which messages
are received. Once p receives this order information from all the other processes, p
uses a prefiz function to determine whether there is a non-empty common sequence
of messages received by all processes.
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Figure 5.8: Overview of the OPT-ABcast algorithm (stage k)

3In Figures 5.8 and 5.9, (m1,ms,...) denotes the sequence m1, m2, ... of messages.
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Figure 5.9 depicts the way the OPT-ABcast algorithm proceeds from stage k to
stage K+ 1. Whenever the spontaneous total order property does not hold, processes
terminate the current stage, and start a new one. The termination of a stage involves
the execution of a Consensus, which can lead to the delivery of messages. Process
failures are discussed in Section 5.3.3.

A-deliver(my )

Consensus k i 7§l?cide(<1,4>) A-deliver(my)
DR S
: n -
» i

stage k :stage k+1

Figure 5.9: Overview of the OPT-ABcast algorithm (stages k and k + 1)

The notion of efficiency is captured by the delivery latency defined in Section 4.3.2,
which informally defines a measure of the synchronisation needed by the OPT-ABcast
algorithm to deliver messages. We show that messages delivered during a stage have
a deliver latency equal to 2, and messages delivered at the end of a stage have a
deliver latency equal to 4. The additional cost payed to deliver messages at the end
of a stage comes from the Consensus execution.

Known Atomic Broadcast implementations for the asynchronous model augmented
with failure detectors deliver messages with a deliver latency equal to 3 [CT96|. This
means that if the spontaneous total order property is violated too frequently, the
OPT-ABcast algorithm may become inefficient. However, in case the spontaneous
total order property holds frequently, messages can be delivered efficiently using the
OPT-ABcast algorithm.

5.2.2 Additional Notation

The Optimistic Atomic Broadcast algorithm presented in the next section handles
sequences of messages. In the following we define some terminology needed for the
presentation of the algorithm.

A sequence of messages is denoted by seq = (mq, ma,...). We define the operators
@® and © for concatenation and decomposition of sequences. Let seq; and seq; be two
sequences of messages. Then, seq; @ seq; is the sequence of all the messages in seg;
followed by the sequence of all the messages in seq;, and seq; © seg; is the sequence
of all the messages in seg; that are not in seg;. So, the sequence seq; © seq; does
not contain any message in seq;. The prefix function ® applied to a set of sequences
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returns the longest common sequence that is a prefix of all the sequences, or the
empty sequence denoted by e.

For example, if seq; = (m1,mg, m3) and seq; = (my,ma, m4), then seq; ® seq; =
(m1, ma, m3, m1, me, ma), seq; © seq; = (m3), and O(seg;, seq;) = (m1,m2).

5.2.3 Detailed Algorithm

Algorithm 2 (page 89) solves Atomic Broadcast. Processes executing Algorithm 2
progress in a sequence of local stages numbered 1, ..., k, .... Messages A-delivered by a
process during stage k are included in the sequence stgA deliver®. These messages
are A-delivered without the cost of Consensus. Messages A-delivered by a process
at the end of stage k are included in the sequence endA_deliver®. These messages
are A-delivered with the cost of a Consensus execution. We say that a message m
is A-delivered in stage k if m is A-delivered either during stage k or at the end of
stage k.

Every stage k is terminated by a Consensus to decide on a sequence of messages, de-
noted by msgStg®. Algorithm 2 guarantees that if a correct process starts Consensus
(by invoking the propose primitive), all correct processes also start Consensus. Notice
that if not all correct processes invoke the propose primitive in the k-th Consensus
execution, then Consensus termination cannot be ensured.

The sequence msgStg® contains all message that are A-delivered in stage k (i.e.,
during stage k and at the end of stage k) by every process that reaches the end
of stage k. Process p starts stage k + 1 once it has A-delivered all messages in
endA_deliver®, where endA deliver® = msgStgk © stgA_ deliver*.

The correctness of Algorithm 2 is based on two properties:

1. for any correct processes p and ¢, all the messages A-delivered by p in stage k
are also A-delivered by ¢ in stage k (i.e., :stgA_alelz'veréC @ enalA_alelz'ver;l,gC =
stgA_alelz'ver(’]C @ endA_delz'ver(’;), and

2. every sequence of messages A-delivered by some process p in stage k before p
executes Consensus k is a non-empty prefix of the sequence decided in Con-
sensus k (i.e., stgA_delz'ver]’; is a prefix of msgStg").

All tasks in Algorithm 2 execute concurrently. At each process p, tasks GatherMsgs

(lines 11-12) and TerminateStage (lines 25-35) are started at initialisation time. Task

StgDeliver® (lines 13-24) is started by p when p begins stage k. Lines 20 and 21 in

task StgDeliver® are atomic, that is, task StgDeliver® is not interrupted (by task

TerminateStage) after it has executed line 20 and before having executed line 21.

Process p in stage k manages the following sequences.

e R_delivered,: contains all messages R-delivered by p up to the current time,

o A delivered,: contains all messages A-delivered by p up to the current time,
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. stgA_deliver}’,f : is the sequence of messages A-delivered by p during stage k,
up to the current time,

° endA_deliver;; : is the sequence of messages A-delivered by p at the end of
stage k.

When p wants to A-broadcast message m, p executes R-broadcast(m) (line 9). After
p R-delivers a message m (line 11), p includes m in R_ delivered,, and eventually
executes task StgDeliver® (line 13). At task StgDeliver”, p sends a sequence of
messages that it has not A-delivered yet to all processes (line 14), and waits for such
sequence from all processes (line 15). The next actions executed by p depend on the
messages it receives at the wait statement (line 15).

1. If p receives a sequence from all processes, and there is a non-empty prefix
common to all these sequences, then p A-delivers the messages in the common
prefix (line 20). If not, p R-broadcasts message (k, ENDSTG) to terminate the
current stage k (line 23).

2. Once p R-delivers message (k, ENDSTG) at line 25, p terminates task StgDeliver”
(line 26), and starts the k-th Consensus execution (line 27), proposing a se-
quence of all messages p has R-delivered up to the current time but not A-
delivered in any stage k', k¥’ < k. Upon deciding for Consensus k (line 28), p
builds the sequence endA deliver® (line 29) and A-delivers the messages in
endA_deliver® (line 30). Process p then starts stage k + 1 (lines 32-35).

5.2.4 Proof of Correctness

The correctness of the OPT-ABcast algorithm follows from Propositions 5.1 (Agree-
ment), 5.2 (Total Order), 5.3 (Validity), and 5.4 (Integrity). In the following proofs,
we consider the number of times that processes execute lines 13-21 in a given stage.
Hereafter, stgA_delz'verg’l’“ denotes the value of stgA_delz'ver]’; after p executed

line 21 for the lx-th time in stage k, I > 0, and stgA_deliver;;’o denotes € (the
value of stgA_alelz'verf,gC before p executes lines 13-21 for the first time). Likewise,
pre fixé,’c, respectively msgSeq't, denotes the value of pre fixp, respectively msgSeq,
after p executed line 17, respectively 15, for the [x-th time in a given stage. In the
proofs presented next “Vp” means “Vp € 1I”.

The proofs of Lemmata 5.1 and 5.3 use the FIFO property of the communica-
tion channels to conclude that for any process p that executes the [-th iteration
of line 17, pre fixi, = @vqmsgSeqé. This statement holds since when p executes
the [-th iteration of line 17, p has received | messages of the type (—,msgSeqy)
from every process ¢q. The FIFO channels guarantee that all processes that execute
the [-th iteration of line 17 receive the messages (—, msgSeq,) in the same order
(—,msgSeqé), (—,msgSqu), - ,(—,msgSeqé) from every q.

Lemma 5.1 If p and q are two processes that execute the l-th iteration of line 21
in stage k, then stgA delz’verﬁ’l’“ = stgA_ deliverg’lk.
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Algorithm 2 OPT-ABcast algorithm

1:
2
3
4:
5.
6
7

Initialisation (see Section 5.2.3 for a description of the variables):

R_delivered «— e

A _delivered « €

k—1

stgA_deliver® « e

endA_deliver® « e

fork tasks { GatherMsgs, StgDeliver', TerminateStage }

8: To execute A-broadcast(m):

R-broadcast(m)

10: A-deliver(—) occurs as follows:

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

when R-deliver(m) {Task GatherMsgs}
R_delivered «— R_delivered @& (m)

when (R_delivered © A_delivered) © stgA_deliver® # ¢  {Task StgDeliver* )
send (k, (R_delivered © A__delivered) © stgA_deliver®) to all
wait until for Vg € II : received (k, msgSeqq) from q or D, # (]
7w ={q | p received (k,msgSeq,) from ¢}
prefix «— Ovger msgSeqq
if 7 =1II and prefiz # € then
stgDeliver «— prefiz © stgA_deliver®
[ deliver all messages in stgDeliver according to their order in stgDeliver;
stgA_deliver® «— stgA_deliver® @ prefix |
else
R-broadcast(k, ENDSTG)
end task

when R-deliver(k, ENDSTG) {Task TerminateStage}
terminate task StgDeliver”, if executing
propose(k, R_delivered © A_ delivered)
wait until decide(k, msgStg")
endA _deliver® «— msgStg* © stgA_deliver®
deliver all messages in endA_deliver® following their order in endA _deliver®
A _delivered «+ A_delivered @ (stgA_deliver® @ endA _deliver®)
k—k+1
stgA_deliver® «— €
endA _deliver® «— e
fork task StgDeliver®
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Proor. We first show that for any [, 0 < I < [, prefixi, = prefixf]. Since p
and q execute line 21 for the [-th time in stage k, p and ¢ receive a message of
the type (k,msgSeq) from every process in the [-th iteration of lines 15. From
line 17 and the fact that communication between processes follows a FIFO order,
prefixé, = OyymsgSeql, and prefixf] = Oy,msgSeql, where msgSeql is the I-th
message of the type (k,msgSeq,) received from process r, and we conclude that
prefia:é = prefixf]. From line 21, stgA _deliver®™ = stgA_deliver®' =1 & prefix!,

and a simple induction on /i leads to stgA_deliver],f’lk = stgA_deliverI;’lk. O

Lemma 5.2 If some process p executes line 21 1 times, then all processes in 11
execute the send statement at line 14 1 times.

Proor. This follows directly from the algorithm since p can only execute line 21
after receiving message (k,msgSeq) (line 15) from all processes. Thus, if p executes
line 21 [ times, it receives message (k, msgSeq) from all processes [ times, and from
the no creation property of Reliable Channels, all processes execute the send(k,—)
statement at line 14 [ times. O

Lemma 5.3 For any process p, and all k > 1, if p executes decide(k, msgStgF), then
(a) stgA_ alelz'ver]’éC is a prefiz of msgStg®, and (b) stgA_ deliver}’; does not contain
the same message more than once.

PROOF. Assume that p executes decide(k, msgStg*). By uniform validity of Con-
sensus, there is a process ¢ that executed propose(k, R_ delivered, © A _delivered,),
such that R_ delivered, © A_delivered, = msgStgk. Let I be the number of times
that p executes line 21 before executing decide(k, —). From Lemma 5.2, all processes
in IT execute the send statement at line 14 [; times.

We show by induction on I that stgA_delz'verz’l

A _delivered,, and stgA_deliverg’l’“ does not contain the same message more than
once. BASE STEP. (I = 0) In this case, stgA_delz'verz’O = € and the lemma is
trivially true. INDUCTIVE STEP. Assume that the lemma holds for all I, 0 < I}, <

lg. We show that stgA_deliver;;’lk is a prefix of R_delivered, © A_delivered,,

and stgA_deliver],f’lk does not contain the same message more than once. By
P

is a prefix of R_delivered, ©

line 21, stgA_delz'verg’l’“ = stgA_deliver @prefia:ék. Since communica-
tion channels are FIFO, any message sent by some process r in the [i-th execu-
tion of send(k,msgSeq’) (line 14) is received by p in the lp-th execution of the
statement receive(k, msgSeql*) (line 15), and therefore, after p executes line 17,
]97“«9‘)%':1:2c = @vrmsgSeq,lJC. From lines 14 and 15, msgSequv = (R_delivered, ©

A _delivered,) © stgA_deliverf’(l’“_l), and so, prefixék = Ov((R_delivered, ©
A _delivered,) © stgA_deliverf’(lk_l)). By Lemma 5.1, we have prefz’xék =

@vr((R_delz’veredTeA_delz'veredr)@stgA_deliverS’(l’“_1)). So, stgA_deliverpt =
stgA_deliverg’(lk_l) @ (O (R_delivered, © A_delivered, )& stgA_deliverg’(lk_l)).

k,(l—1)

From the induction hypothesis, item (a), we have that stgA _delivery’ is a prefix
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of R_delivered; & A _delivered,. Furthermore, from item (b) of the induction hy-

pothesis, all messages in stgA_deliverI;’(lk_l) are unique. Thus, stgA_deliver,];’lk =

Ovr(R_delivered, © A_ delivered,),* and therefore, stgA_deliver;;’lk is a prefix of
R_delivered, © A_delivered,. It also follows that stgA_alelz'ver,].f’l’c does not con-
tain the same message more than once. For a contradiction, assume that message
m is more than once in stgA_alelz'ver,].f’l’c . Thus, for every process r, m is more than
once in R delivered,. From the algorithm, lines 11 and 12, m has been R-delivered

more than once by r, contradicting uniform integrity of Reliable Broadcast. O

Lemma 5.4 For any two correct processes p and q, and oll k > 1, if p executes line
30 in stage k, then q executes line 30 in stage k.

ProOF. If p executes line 30 in stage k, then p executes the decide(k, msgStg®)
statement at line 28, and the propose(k, —) statement at line 27. Therefore, p R-
delivers a message of the type (k, ENDSTG) at line 25. By the agreement property
of Reliable Broadcast, ¢ eventually R-delivers message (k, ENDSTG), and executes
the propose(k,—) statement at line 27. By agreement of Consensus, ¢ executes the
decide(k, msgStg"®) statement, and line 30. O

Lemma 5.5 For any two processes p and q, and all k > 1, if both p and q execute
line 29, then stgA alelz'veréC @ endA_ alelz'veréC = stgA delz’verf; @ endA_ deliverg.

PROOF. From line 29, endA_delz'ver]’; = msgStgF © stgA_delz'ver;f, and therefore,

stgA_deliver{,f @ endA_deliver’If = stgA_delz'verz @ (msgStgk © stgA_deliver’If).

By Lemma 5.3, :stgA_alelz'ver]’éC is a prefix of msgStg®, and so, stgA_deliver}],f &

endA_deliver]; = msgStg®. From a similar argument, we have stgA_alelz'ver(’]C &)
k

endA_deliverf; = msgStg®. We conclude that :stgA_alelz'veréC ® endA__deliver, =

stgA_deliver[’]~C @ endA_delz'ver(’;. O

Lemma 5.6 For any process p, and all k > 1, if message m € stgA_ alelz'verf,;C &)

endA_delz'verz then there is mo k', k' < k, such that m € stgA_delz'veTz/ ®

endA delz’ver}’;/ :

PRrROOF. The proof is by contradiction. Assume that there exist a process p, a mes-

sage m, some k, and some k' < k, such that m € stgA_delz'veTz G) endA_deliver’If,

and m € stgA_delz'ver]’;, & endA_deliver’zf/. We distinguish two cases: (a) m €
stgA_deliver;;, or (b) m € endA_delz'verg. Note that from line 29, it cannot be
that m € stgA_delz'veT]’; and m € endA_deliver’zf.

Case (a). From lines 21, 17 and 15 stgA_delz'verz is a common non-empty pre-

fix among the messages of the type (k,msgSeq) received by p from all processes.

1Let seq; and seq; be two sequences such that seg; is a prefix of seq;, and messages in seq; are
unique. It can be shown that seq; ® (seq; © seq;) = segq;.
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Thus p has received the message (k, msgSegy) (i.e., a message that p sent to itself),
such that m € msgSeq,. But msgSeq, = R_delivered, © A_delivered, (line 14),
and so, m ¢ A_delivered,. When p executes line 14 at stage k, A_delivered, =
@f;ll(stgA_deliver;@endA_deliver;). This follows from line 31, the only line where
A__delivered is updated. Therefore, m ¢ @f;ll(stgA_deliver; @ endA_deliverIi,),
contradicting the fact that there is a ¥’ < k such that m € stgA_deliver{,fl @
endA_delz'verz/ :

Case (b). From line 29, m € msgStg¥, and from line 28, and validity of Consensus,
there is a process ¢ that executes propose(k, R _delivered, & A _delivered,) such
that m € R_delivered, © A_delivered,. So, m & A_delivered,. Since when
q executes line 27, A delivered, = @fz_ll(stgA_deliveré @ endA_deliver}),m &
Esz_ll(stgA_delz'verf]@endA_delz’verf]), and from Lemma 5.5 @?:—11 (stgA_deliver, &
endA_deliver},) = @fz_ll (stgA_deliver], & endA_deliver}). Thus, we conclude that
m ¢ @f;ll(stgA_deliver; @ endA_delz'ver;), a contradiction that concludes the
proof. a

Proposition 5.1 (AGREEMENT). If a correct process p A-delivers a message m,
then every correct process q eventually A-delivers m.

PRrOOF: Consider that p has A-delivered message m in stage k. We show that ¢ also
A-delivers m in stage k. There are two cases to consider: (a) p A-delivers messages
in endA_deliver’If, and (b) p does not A-deliver messages in endA_delz'verz.
Case (a). From Lemma 5.4 and the fact that p A-delivers messages in endA_delz'verg,
1;7 and from Lemma 5.5, stgA_deliver}’,f o
endA_delz'verg = stgA_deliverl’]~C @endA_delz’verf;. Since p A-delivers m in stage k,
m € stgA_delz'vergEBendA_delz’verg, and so, m € stgA_deliverf;EBendA_deliverf;.

Therefore, ¢ either A-delivers m at line 20 (in which case m € stgA_delz'ver(’;), or

q A-delivers messages in endA _deliver

at line 30 (in which case m € stgA_deliverf;).

Case (b). Since p does not A-deliver messages in endA_delz'ver;f, from Lemma 5.4,
k
i
delivered in stage k by p, and so, it must be that m € stgA_deliver;;. Assume that

no correct process ¢ A-delivers messages in endA _delivery. However, m is A-

m € stgA_deliver;;’lk, where [, is such that for any I} <, m & stgA_deliverg’l;c.
Therefore, p executes the [x-th iteration of line 21 in stage k, and we claim that
q also executes the [g-th iteration of line 21 in stage k. The claim is proved by
contradiction. From the algorithm, ¢ executes R-broadcast(k,—). By agreement
and validity of Reliable Broadcast, every correct process R-delivers the message
(k, ENDSTG) and executes propose(k,—). By agreement and termination of Consen-
sus, every correct process decides on Consensus k, and eventually A-delivers messages
in endA_deliver®, contradicting the fact that no correct process A-delivers messages
in endA_deliver®, and concluding the proof of the claim. Since p and ¢ execute the

li-th iteration of line 21 in stage k, and m € stgA_delz'verg’l’c, from Lemma 5.1,
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m € stgA_delz'verf;’l’c, and from lines 20-21, ¢ A-delivers m. a

Proposition 5.2 (ToTAL ORDER). If correct processes p and q both A-deliver mes-
sages m and m', then p A-delivers m before m' if and only if ¢ A-delivers m before

m'.

PROOF: Assume that p A-delivers message m in stage k, and m’ in stage k', k' >
k. Therefore, m € stgA_delz'ver]’; & endA_deliver’zf, and m’ € stgA_deliver’zf/ o
endA_deliver;fl, and it follows immediately from Lemma 5.5 that ¢ A-delivers m
before m’. Now, assume that m and m’ are A-delivered by p in stage k. Thus, m
precedes m’ in stgA_deliverg@endA_delz’verg, and by Lemma 5.5, stgA_deliverg@
endA_deliver’If = stgA_deliverl’]~C @ endA_delz'verf;.

We claim that if m precedes m/ in stgA_deliver[’]~C @endA_delz’ver(’;, then q A-delivers

k
q

from task stgDeliver®, line 20 (respectively TerminateStage, line 30), ¢ A-delivers m
before m’. Thus, consider that m € stgA_deliverl’]~C and m’ € endA_deliverI;. To
reach a contradiction, assume that g A-delivers m’ before m. Before A-delivering m
at line 20, g executes line 26 and terminates task stgA_delz'verf;, and so, m cannot
be A-delivered in stage k, contradicting that m and m’ are A-delivered in stage k,
and concluding the proof of the lemma. a

m before m’. If m,m’ € stgA_deliver? (respectively m,m’ € endA_delz'verf;), then,

Lemma 5.7 If a correct process p executes line 25 in stage k, then every correct
process q executes line 25 in stage k.

PROOF. The proof is by induction on k. BASE sTEP. (k = 1) Initially, all correct
processes are in stage 1. Thus, if p executes line 25 in stage 1 and R-delivers message
(1, ENDSTG), by the agreement property of Reliable Channels, every correct pro-
cess eventually executes line 25 and R-delivers message (1, ENDSTG). INDUCTIVE
STEP. Assume that if a correct process p executes line 25 in stage & — 1, then every
correct process g executes line 25 in stage £ — 1. We show that if p executes line
25 in stage k, then ¢ also executes line 25 in stage k. From the algorithm and the
termination property of Consensus, after R-delivering message (k — 1, ENDSTG), all
correct processes eventually terminate Consensus in stage k — 1 and execute lines
32-35, starting stage k. Since p R-delivers message (k, ENDSTG), by agreement of
Reliable Channels, every correct process g R-delivers message (k, ENDSTG). O

Lemma 5.8 No correct process p has a task stheliverI;, k > 0, that is permanently
blocked in the wait statement of line 15.

ProOOF. For a contradiction, consider that there exists a correct process p such that
for some I > 0, task stheliverjg is permanently blocked at the l;-th iteration of
line 15. Therefore, (a) there is a process ¢ such that p never receives the message
(k,msgSeq) for the [;-th time from ¢ and (b) ¢ € Dp. From (b), and the completeness
property of Dp, ¢ is a correct process. From Lemma 5.7, if p executes line 25 in stage
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k, then ¢ executes line 25 in stage k, but since p never receives (k, msgSeq) for the
lx-th time from ¢, by the no loss property of Reliable Channels, ¢ does not send
message (k, msgSeq) for the lx-th time to p (line 14).

We now prove the following claim: if ¢ does not execute send(k, msgSeq) for the l;-th
time, g executes R-deliver(k, ENDSTG). When p executes the wait statement for the
lp-th time in stage k, there exists a message m such that m € (R_delivered, &
A deliveredy) © stgA_deliverg’(lk_l). So, (la) m ¢ stgA_delz'verg’(lk_l), and
from line 31, (1b) m & @f;llstgA_deliveT; ® endA_delivert. If ¢ does not send

2
the message (k,msgSeq) for the li-th time to p, then either (i) (R_delivered, &

(ok} (stgA_deliver], & endA_deliveré))) S stgA_deliverI;’(lk_l) is empty (line 13)
or (ii) task stheliver’; is terminated before ¢ sends message (k,msgSeq) for the
l-th time to p (i.e., ¢ terminates stage k). Furthermore, since p executes line 15
for the li-th time, p has executed the (I — 1)-th iteration of lines 13-21, and re-
ceived a message from all processes at line 15 for the (I — 1)-th time. Thus, every
process executes the send statement at line 14 at least I — 1 times, and, from
Lemma 5.1, (2a) stgA_deliverg’(lk_l) = stgA_deliver[];’(l’c_l). From Lemma 5.5,
(2b) for all £',1 < k' < k, stgA_delivergl ® endA_deliver;f’ = stgA_deliverf;I ®

endA_deliverf;/. From (la) and (2a), we conclude that m ¢ stgA_deliver(];’(l’c_l),

and, from (1b) and (2b), m ¢ @f;llstgA_deliveré P endA_deliveré. Since g does
not send message (k, msgSeq) for the lx-th time to p at line 14, m will never be in
R __delivered,. However, by the agreement property of Reliable Broadcast, eventu-
ally m € R_delivered, (item (i) of the claim is false), and so, task stheliveﬂ; is
terminated at line 24 or 26 before ¢ sends message (k, msgSeq) for the lx-th time to
p (item (ii) of the claim is true), and ¢ executes R-deliver(k, ENDSTG), concluding
our claim.

By the agreement of Reliable Broadcast, p eventually R-delivers message (k, ENDSTG),
and so, p executes line 26 and terminates task stheliver’; , contradicting our initial

hypothesis that task stheliveTJ; remains permanently blocked. a

Proposition 5.3 (VALIDITY). If a correct process p A-broadcasts a message m,
then p eventually A-delivers m.

PRrROOF: For a contradiction, assume that p A-broadcasts m but never A-delivers
it. From Proposition 5.1, no correct process A-delivers m. Since p A-broadcasts
m, it R-broadcasts m, and from the validity of Reliable Broadcast, p eventually R-
delivers m and includes m in R_ delivered,. Since no correct process A-delivers m,
m & A_delivered,, and for all k, m ¢ stgA_deliver®, k > 0. From the agreement
of Reliable Broadcast, there is a stage k1 such that for all [ > k;, and every correct
process ¢, m € (R_delivered, © A_delivered,) © stgA_deliveré.

Let ko be a stage such that for all [ > ko every faulty process has crashed (i.e., no
faulty process executes stage [), and let k > max(k, k2). Thus, no faulty process exe-
cutes stage k, and for every correct process ¢, m € (R_delivered,& A _delivered,)&
:stgA_alelz'verf]‘C at stage k. From Lemma 5.8, for every correct p, no task stheliverjg

remains permanently blocked at line 15, and if task stheliveTI; is terminated, task



5.2. OPTIMISTIC ATOMIC BROADCAST ALGORITHM 95

(k+1)

stgDelivery is eventually started by p. Thus, all correct processes execute the
when statement at line 13, and there are two cases two consider: (a) for all I, > 0,
every process executes the then branch of the if statement at line 18 (in which case
there are no faulty processes in the system), and (b) for some [ > 0, there is a
process 1 that executes the else branch, and R-broadcasts message (k, ENDSTG).

Case (a). We claim that there exists an I}, > 0 such that m € Oy,en msgSeqﬁc. From
the algorithm, for every process 7, msgSeq’ = (R_delivered, © A_delivered,) ©
stgA_deliverf’lk, and so, m € msgSeql*. Assume, for a contradiction, that for
every lj > 0, m & Ovren msgSeq,lj“. Since m € msgSeq', for all r, this can only be
possible if for two processes p’ and p”, m precedes some message m’ in msgSeq;’? and

m’ precedes m in msgS eq;’i,. However, in this case, eventually, Ov,.ct msgSeq, = €,
and processes do not execute the then branch, contradicting the assumption of case

(a).

Case (b). By the validity of Reliable Broadcast, r R-delivers message (k, ENDSTG).
From Lemma 5.7, if p reaches line 25 in stage k, then ¢ reaches line 25 in stage
k, and from agreement of Reliable Broadcast, every correct process ¢ R-delivers
(k, ENDSTG) and executes propose(k, R_ delivered, © A_ delivered,), such that m €
R_delivered, © A_delivered,. By agreement and termination of Consensus, every
q decides on the same msgStgF, and by validity of Consensus m € msgStg®. It
follows that g A-delivers m, a contradiction that concludes the proof. a

Proposition 5.4 (UNIFORM INTEGRITY). For any message m, each process A-
delivers m at most once, and only if m was previously A-broadcast by sender(m).

PRroor: We first show that, for any message m, each process A-delivers m only if m
was previously A-broadcast by sender(m). There are two cases to consider. (a) A
process p A-delivers m at line 20. Thus, p received a message (k, msgSeq,) from
every process ¢, for some k, and m € msgSeq,. From line 14, m € R_ delivered,,
and from line 12, p has R-delivered m. By uniform integrity of Reliable Broad-
cast, sender(m) R-broadcasts m, and so, sender(m) A-broadcasts m. (b) Process
p A-delivers m at line 30. Thus, from line 29, m € msgSet®, for some k, and p
executed decide(k, msgStg®). By uniform validity of Consensus, some process ¢ ex-
ecuted propose(k, R_ delivered, © A_delivered,), such that m € R_delivered, ©
A _delivered,. From an argument similar to the one presented in item (a), sender(m)
A-broadcasts m.

We now show that m is only A-delivered once by p. From Lemma 5.6, it is clear that
if m is A-delivered in stage k (i.e., m € stgA_deliver® @ endA_deliver®), then m is
not A-delivered in some other stage K/, ¥’ # k. It remains to be shown that m is not
A-delivered more than once in stage k. There are three cases to be considered: m is
A-delivered at line 20 and will not be A-delivered again (a) at line 20 or (b) at line
30, and (c) m is A-delivered at line 30 and will not be A-delivered again at line 20.

Case (a). After A-delivering m at line 20, p includes m in stgA_deliver];, and from
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line 19, p will not A-deliver m again at line 20.

Case (b). For a contradiction, assume that m is A-delivered once at line 20 and again
at line 30. Thus, when p executes line 29, m & stgA_delz'ver;f. Since m has already
been A-delivered at line 20, it follows that task StgDeliver® is terminated after p
A-delivers m at line 20 and before p executes line 21. This leads to a contradiction
since lines 20 and 21 are executed atomically.

Case (c). Before executing line 30, p executes line 26, and terminates task StgDeliver”.
So, once p A-delivers some message at line 30 in stage k, no message can be A-
delivered at line 20 in stage k by p. O

Theorem 5.1 Algorithm 2 solves Atomic Broadcast.

PRrROOF. Immediate from Propositions 5.1, 5.2, 5.3, and 5.4. a

5.3 Evaluation of the OPT-ABcast Algorithm

Intuitively, the key idea to evaluating the OPT-ABcast algorithm is that if Consensus
is not needed to deliver some message m, but necessary to deliver some other message
m’, then the delivery latency of m’ is greater than the delivery latency of m. Before
going into details about the delivery latency of messages delivered with and without
the cost of a Consensus execution (see Section 5.3.2), we present a more general
result about the necessity of Consensus in the OPT-ABcast algorithm.

5.3.1 On the Necessity of Consensus

Proposition 5.5 states that in a failure free and suspicion free run, Consensus is not
executed in stage k if the spontaneous total order message reception property holds
permanently in k.

Lemma 5.9 For any two processes p and q, and all k > 1, iof p executes line 21 for
the lp-th time in stage k, l, > 0, then q executes line 21 for the (I — 1)-th time in
stage k.

PROOF. If p executes line 21 for the [i-th time in stage k, then p executes the wait
statement at line 15 for the [;-th time in stage k such that p does not suspect any
process and receives a message from every process (furthermore, there is a non-empty
prefix between all messages received by p). From the no creation property of Reliable
Channels, every process ¢q executes the send statement at line 14 for the [;-th time in
stage k. For a contradiction, assume that ¢ does not execute line 21 for the (I —1)-th
time. Then, g executes R-broadcast(k, ENDSTG) (line 23) in the [} iteration of lines
14-24, I}, < (I — 1), and ¢ finishes task StgDeliver® (line 24). Therefore, ¢ never
executes the send statement at line 14 for the [x-th time, a contradiction. O
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Proposition 5.5 Let R be a failure free and suspicion free run of the OPT-ABcast
algorithm.  If for every two processes p and q, all kK > 0, and all Iy > 0,
((R_delivered, & A _delivered,) & stgA_deliver;;’lk) ©® ((R_delivered, ©
A_ delivered,) © stgA_ deliverg’lk) # €, then no process executes Consensus k in
R.

PROOF. Assume that there is a process p that executes Consensus k in R. From
the algorithm, p R-delivers a message of the type (k, ENDSTG), and by uniform
integrity of Reliable Broadcast, some process g executed R-broadcast(k, ENDSTG).
From line 18, either (a) ¢ suspects some process, or (b) there is an iteration I > 0
of lines 14-17, such that prefixff“ = ¢e. Case (a) contradicts the hypothesis that no
process is suspected, so it must be that prefia:ff“ = €.

From Lemma 5.9 and lines 17, 14 and 15, we have prefizl™ = OymsgSeq ™ =
Owr((R_delivered, © A_delivered,) © stgA_delivert™), and therefore,
Ovr((R_delivered, © A_delivered,) © stgA_delivert™) = e. So, there must exist
two processes p and ¢ such that ((R_delz’veredpeA_deliveredp)@stgA_delz'verg’l’“)@
((R_delivered, © A_deliveredy) © stgA_deliver];’lk) = ¢, contradicting the hypoth-
esis. O

Thus, from Proposition 5.5, in a failure free and suspicion free run, Consensus is only
necessary in stage k when the spontaneous total order property does not hold in k.

5.3.2 Delivery Latency of the OPT-ABcast Algorithm

We now discuss in more detail the efficiency of the OPT-ABcast algorithm. For
every process p and all stages k, there are two cases to consider: (a) messages A-
delivered by p during stage k (line 20), and (b) messages A-delivered by p at the end
of stage k. The main result is that for case (a), the Optimistic Atomic Broadcast
algorithm can A-deliver messages with a delivery latency equal to 2, while for case
(b), the delivery latency is at least equal to 4. Since known Atomic Broadcast
algorithms deliver messages with a delivery latency of at least 3, these results show
the tradeoff of the Optimistic Atomic Broadcast algorithm: if the spontaneous total
order message reception property only holds rarely, the OPT-ABcast algorithm is
not attractive, while otherwise, the OPT-ABcast algorithm leads to smaller costs
compared to known Atomic Broadcast algorithms.

Propositions 5.6 and 5.7 assess the minimal cost of the Optimistic Atomic Broadcast
algorithm to A-deliver a message m. Proposition 5.6 defines a lower bound on the
delivery latency of Algorithm 2 for messages A-delivered without Consensus (line 20),
and Proposition 5.7 states that this bound can be reached in runs where no process
A-delivers m at the end a of stage.

Proposition 5.6 There is no run R generated by Algorithm 2 where some message
m is only A-delivered at line 20 (without Consensus) and diff(m) < 2.
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PROOF. Assume that m is only A-delivered during some stage k& > 0 (i.e., with-
out Consensus), and let p be a process that A-delivers m in R. Process p receives
a message (k,msgSeq,) from every process ¢ such that m € msgSet,. Since ¢
executes send(k, (R_delivered, © A_delivered,) © stgA_deliver®) such that m €
(R_delivered, © A_delivered,) © stgA_deliver®, q executes R-deliver(m). By the
way timestamps are assigned to events (see Section 4.3.2), ts(A-deliver,(m)) >
ts(R-deliverg(m)) + 1 (1). By uniform integrity of Reliable Broadcast, there is some
process r that executes R-broadcast(m), which, from Algorithm 2, is the process that
executes A-broadcast(m). Thus, ts(A-broadcast,(m)) = ts(R-broadcast,(m)) (2).

From (1) and (2), ts(A-deliver,(m)) — ts(A-broadcast,(m)) > ts(R-deliverg(m)) —
ts(R-broadcast,(m)) +1 (3). Let IF5 = ts(R-delivery(m)) — ts(R-broadcast,(m)) (4),
and l;,qﬁj = ts(A-deliver,(m)) — ts(A-broadcast,(m)) (5). Therefore, from (3), (4),
and (5), IAB > lﬁ]f] + 1. From the definition of delivery latency, diff(m) > l;,‘llg.

] m7p
It follows that diff(m) > l;%g, > lﬁﬁ + 1. From Proposition 4.7, lﬁ]f] > 1, and we
conclude that dift(m) > 2. 0

Proposition 5.7 Assume that Algorithm 2 uses the Reliable Broadcast implemen-
tation given in [CT96]. There is a run R generated by Algorithm 2 where message
m is A-delivered during stage k > 0, and dI®(m) = 2.

PrROOF. Immediate from Figure 5.10, where process p A-broadcasts message m.
(Some messages have been omitted from Figure 5.10 for clarity.) Let p, p’ € {p,q,r, s}.
It follows that ts(receive,(m)) = ts(send,(m))+1, and ts(receive,(k, (m)) from p’) =
ts(sendy (k,(m))) + 1. But ts(sendy(k,(m))) = ts(receivey(m)), and therefore,
ts(receive,(k, (m)) from p') = ts(send,(m)) + 2. From Figure 5.10, we have that
ts(A-broadcast,(m)) = ts(sendy,(m)), and ts(A-deliver,(m)) = ts(receive,(k, (m))

from p’). By the definition of delivery latency, we conclude that diff(m) = 2. O
A-broadcast(m) A-deliver(m)
R-broadcast(m) R-deliver(m)
send(m) \ send(lc,<m>)
p °® o
q ° o
r \ ®
s °®

Figure 5.10: Run of OPT-ABcast with diff(m) = 2

The results that follow define the behaviour of the Optimistic Atomic Broadcast
algorithm for messages A-delivered at the end of stage k. Proposition 5.8 establishes
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a lower bound for this case, and Proposition 5.9 shows that this bound can be reached
when there are no process failures and no failure suspicions.

Proposition 5.8 Assume that Conjecture 4.1 is true (see page 72). There is no run
R generated by Algorithm 2 where m and m' are the only messages A-delivered, m
and m’ are both A-delivered at line 30, and dI®(m) < 4 and dI®(m’) < 4.

PROOF. Assume for a contradiction that there is a run R such that dIff(m) < 4 and
dI®(m’) < 4. Since p A-delivers m and m’ at line 30, from Algorithm 2, p executes
decide,(—,msgStg), such that m,m’ € msgStg. By uniform validity of Consen-
sus, there is a process ¢ that executes propose,(—, R_delivered, & A _delivered,),
such that msgStg = R_delivered; © A_delivered;. Thus, ¢ R-delivers message
(—, ENDSTG). By uniform integrity of Reliable Broadcast, there is a process r that
executes R-broadcast.(—, ENDSTG). Therefore, r has R-delivered at least one mes-
sage that is neither in A delivered, nor in stgA _deliver, (line 13). Without loss of
generality, assume that this message is m. Since r R-delivered m, there is a process s
that executes R-broadcasts(m), and this is the process that executes A-broadcasts(m).

We define:

l;‘;ﬁ = ts(A-deliver,(m)) — ts(A-broadcasts(m)),
ll(,j = ts(decide,(—, msgStg)) — ts(proposey(—, msgStg)),
l]}%fDSTG,q = ts(R-deliver,(ENDSTG)) — ts(R-broadcast, (ENDSTG)), and
lﬁﬁ = ts(R-deliver,(m)) — ts(R-broadcasts(m)).
It follows that l;,‘% > lg + lngSTQq + lﬁ?. From Conjecture 4.1 and the definition

of latency degree |Sch97|, lg > 2, and from Proposition 4.7, lngSTGﬂ > 1, and
lﬁ? > 1. Thus, I8 > 4. By the definition of delivery latency, diff(m) > A8 and

» "'myp = m,p?

we conclude that dIf(m) > 4. O

Proposition 5.9 Assume that Algorithm 2 uses the Reliable Broadcast implemen-
tation given in [CT96/, and the Consensus implementation given in [Sch97]. There
exists a run R of Algorithm 2 where messages m and m' are both A-delivered at
line 30, and dif(m) = 4 and di¥(m') = 4.

Proor. Immediate from Figure 5.11, where process g A-broadcasts message m,
and process r A-broadcasts message m’. (The Consensus execution and some mes-
sages have been omitted for clarity.) For all p € {p,q,r, s}, ts(receive,(m)) =
ts(sendg(m)) + 1, and ts(receive,(m’)) = ts(send.(m')) + 1. It also follows that
ts(receive,(k, ENDSTG)) = ts(sends(k,ENDSTG)) + 1.  From Figure 5.11,
ts(sends(k, ENDSTG)) = ts(receives(m)) = ts(receives(m’)), and therefore,
ts(receive,(k, ENDSTG)) = ts(sendy(m)) + 2, p’ € {q,7}.

By the Consensus algorithm given in [Sch97], ts(decide,(—)) = ts(propose,(—)) + 2.
From Figure 5.11, ts(propose,(—)) = ts(receive,(k, ENDSTG)), and we have that



100 CHAPTER 5. OPTIMISTIC ATOMIC BROADCAST

ts(decide,(—)) = ts(receive,(k, ENDSTG)) + 4. We conclude by the definition of
delivery latency and since ts(A-deliver,(m)) = ts(A-deliver,(m’)) = ts(decide,(—)),
ts(A-broadcast,(m)) = ts(sendy(m)), and ts(A-broadcast,(m)) = ts(send,(m)), that

diff(m) = 4 and diff(m’) = 4. 0
R-deliver(m) propose(ic,<m,m'’>)
R-deliver(m’) decide(lk,<m,m’>)
R-deliver(k, ENDSTG) /
p i 1 ‘! O_>
A-broadcast(m) ] i y \\
\R-broadcast(m) ! i y ff |
send(m) g / i
q \. u o O—
A-broadcast(m’) / i / : !
KR;broadcast{m) ! ,.»’ ' "
\send(m’)," ! by \ ;
r ® \ = Oo—
[ ! \
\\ !:,"/-'/ | |
4 | \
$ 9 OO
send(k,ENDSTG) Consensus/ N . / /
R-broadcast(lk, ENDSTG) A-deliver(m)

A-deliver(m’)

Figure 5.11: Run of OPT-ABcast with diff{(m) = 4 and dif¥(m') = 4

5.3.3 Handling Failures

In the OPT-ABcast algorithm (line 18), whenever task StgDeliver® does not receive
messages from all processes in II, the current stage k is terminated, which leads to
an execution of Consensus to A-deliver the messages. Therefore, as soon as a process
p € II crashes, the A-deliver of messages will always be slow (i.e., with a delivery
latency of at least 4). This can be solved by adding a membership service to our
OPT-ABcast algorithm as follows. Let v; be the current view of system II (v; C II):

e at line 18, replace condition m = II by m = v;.

Once a process p crashes (or is suspected to have crashed), p is removed from the
view and fast A-deliver of messages is again possible. We do not discuss further
this extension to the OPT-ABcast algorithm, but we note that the instance of the
membership problem needed to remove a crashed process can easily be integrated
into the Consensus problem that terminates a stage.

5.4 Related Work

The work presented in this chapter combines Atomic Broadcast algorithms with
optimistic techniques. The literature on Atomic Broadcast algorithms is abundant
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(e.g., [AMMS™'93, BSS91, CT96, CM84, GMS91, Jal98, LGI0, WS95]). However,
the multitude of different models and assumptions needed to prove the correctness
of the algorithms renders any fair comparison difficult. We base our solution on the
Atomic Broadcast algorithm of [CT96| because it provides a theoretical framework
that permits to develop the correctness proofs under assumptions that are realistic
in many settings (i.e., unreliable failure detectors).

Optimistic algorithms have been widely studied in database concurrency control (see
Chapter 2). However, there have not been attempts, prior to this work, to introduce
optimism in the context of agreement algorithms. The Classical Atomic Broadcast
Algorithm with Optimistic Treatment approach described in Section 5.1 is concep-
tually similar to Virtual Time, and its implementation Time Warp [Jef85]. The
Time Warp mechanism executes operations in a pre-determined virtual time. All
operations have to be executed according this time, but since a process is never
sure whether it has received all the operations that precede a given operation, in
order to guarantee the order constraint, some previously operations may have to
be undone, and processed again. An important difference between these two opti-
mistic strategies is that operations are undone and re-executed at most once with
the Classical Atomic Broadcast Algorithm with Optimistic Treatment approach, but
an unbounded number of times with the Time Warp mechanism.

The closest to the idea exploited by the Optimistic Atomic Broadcast algorithm
is [GLS96], where the authors reduce the Atomic Commitment problem to Consensus
and, in order to have a fast decision, exploit the following property of the Consensus
problem: if every process starts Consensus with the same value v, then the decision
is v. This work presents a more general idea, and does not require that all the
initial values be equal. Moreover, we have here the trade-off of typical optimistic
algorithms: if the optimistic assumption is met, there is a benefit (in efficiency), but
if the optimistic assumption is not met, there is a loss (in efficiency).

5.5 Discussion

The work presented in this chapter originated from the pragmatic observation that,
with high probability, messages broadcast in a local area network are “spontaneously”
totally ordered. Exploiting this observation led to proposing the optimistic ap-
proaches, and developing the Optimistic Atomic Broadcast algorithm. Processes
executing the OPT-ABcast algorithm progress in a sequence of stages, and messages
can be delivered during stages or at the end of stages. Messages are delivered faster
during stages than at the end of stages. For any process, the current stage is termi-
nated, and another one started, whenever the spontaneous total order property does
not hold.

The efficiency of the OPT-ABcast algorithm has been quantified using the notion of
delivery latency. The delivery latency of messages delivered during a certain stage
has been shown to be equal to 2, while the delivery latency of messages delivered
at the end of a stage equal to 4. This result shows the tradeoff of the OPT-ABcast
algorithm: if most messages are delivered during the stages, the OPT-ABcast algo-
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rithm outperforms known Atomic Broadcast algorithms, otherwise, the OPT-ABcast
algorithm is outperformed by known Atomic Broadcast algorithms.

Finally, to the best of our knowledge, there have not been previous attempts of ex-
ploiting optimistic properties for the development of agreement algorithms. If this
property is satisfied the efficiency of the algorithm is improved, if the property is not
not satisfied the efficiency of the algorithm deteriorates (however the optimistic prop-
erty has no impact on the safety and liveness guarantees of the system). We believe
that this opens interesting perspectives for revisiting or improving other agreement
algorithms.

=

L J
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Chapter 6

Conclusion

This is not the end. It is not even the
beginning of the end. But it is, perhaps,
the end of the beginning.

Winston Churchill

Distributed computing has enabled the development of applications and services that
were not feasible before computers started to communicate to each other. Several
current applications show evidence that the distributed computing paradigm is re-
shaping the way people think about and do daily life activities. Consequently, the dis-
semination of distributed applications is increasing the demand for high-availability
and high-performance mechanisms to support these applications.

However, designing high-availability systems that provide good performance has been
the hole grail of fault tolerant computing. In order to reach this objective, some
proposals in the context of database systems have suggested weakening consistency
guarantees. This approach is very attractive in some cases, but to be effective, deep
knowledge about the application is usually necessary. More recently, some researchers
have proposed to use group communication mechanisms to develop high-availability
and high-performance databases that also ensure strong data consistency.

This thesis discusses the details involved in the design of a replicated database pro-
tocol based on group communication primitives, and proposes the use of application
semantics and optimistic techniques to develop efficient group communication prim-
itives.

6.1 Research Assessment

This research has led to four major contributions. In the database domain, the
Database State Machine and the Reordering technique have been proposed. In the
distributed system domain, the Generic Broadcast problem and algorithm and the
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Optimistic Atomic Broadcast algorithm have been introduced.

Database State Machine. This thesis has presented the Database State Machine,
an approach to executing transactions in a cluster of database sites that communi-
cate by message passing, and do not have access to shared memory nor to a common
clock. In the Database State Machine, read-only transactions are processed locally
on a database site, and update transactions do not incur in any synchronisation
among sites during their execution. When an update transaction requests a com-
mit operation, it is atomically broadcast. Local execution of update transactions on
database sites can be seen as a pre-processing, since a transaction can only be com-
mitted (i.e., updates applied to the database) by some sites after the transaction is
delivered and successfully certified on this database site. Consistency is guaranteed
by a local concurrency control mechanism (two phase locking), and the certification
test.

Some important aspects about the Database State Machine are that transactions
are never involved in distributed deadlocks (only local deadlocks are possible), the
load can be fairy distributed in the system (local transactions are executed locally
and update transactions are pre-processed by only one database site), and all com-
munication is encapsulated in the Atomic Broadcast primitive. Basing all database
site interaction on a high level group communication primitive has some benefits.
First, it simplifies the portability of the Database State Machine to systems with
different network characteristics (i.e., only the Atomic Broadcast primitive has to be
re-implemented). Second, it focuses efforts to improve communication performance
on a single point, and finally, it simplifies the proof of correctness of the protocol.

Reordering Technique. The certification test necessary to commit an update
transaction is an optimistic way of processing transactions. Depending on the profile
of the transactions (e.g., number of read and write operations), and characteristics
of the database (e.g., number of data items), optimistic concurrency control may
result in high abort rates. In order to increase the number of transactions that pass
the certification test, we have introduced the Reordering technique. The Reordering
technique originated from the observation that concurrent transactions can be certi-
fied in any order, but since some orders can lead to more aborts than others, instead
of taking a chance, the Reordering technique looks for favourable certification orders.
Simulation results show that this can be very effective.

The Reordering technique was implemented in the Database State Machine by means
of a Reorder List with maximum size determined by the Reorder Factor. At first
glance, the greater the Reorder Factor, the better. Nevertheless, big Reorder Factors
have the undesirable side effect of augmenting the system’s response time. Therefore,
a “good” Reorder Factor is a compromise between abort rate and response time, and
depends on system characteristics. The Reorder Factor allows the Database State
Machine to be tuned according to the system requirements.
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Generic Broadcast. So far, order properties offered by group communication
primitives existed in two flavours: no message order guarantee and message order
guarantee for all messages.! Such primitives, Reliable and Atomic Broadcast, respec-
tively, are important abstractions, however, in several scenarios, Reliable Broadcast
is too weak to ensure system correctness, and Atomic Broadcast is to strong. Since
ordering messages has a cost, to be efficient, applications need group communication
with order guarantees that match their exact necessities. This observation was the
starting point for the conception of Generic Broadcast.

Generic Broadcast permits an application to define any order semantics that it needs.
In addition to defining Generic Broadcast, we have also proposed an algorithm that
solves it. The Generic Broadcast algorithm proposed uses a quorum to determine
when messages can be safely delivered without the cost of a Consensus execution
(whose aim is to order messages), and when messages conflict, and so, Consensus
is necessary. No previous attempt of defining a primitive like Generic Broadcast
is known. When messages do not conflict, the Generic Broadcast algorithm has a
smaller delivery latency than known Atomic Broadcast algorithms, and when mes-
sages conflict, it has a delivery latency greater than the delivery latency of known
Atomic Broadcast algorithms.

Optimistic Atomic Broadcast. We have described three optimistic approaches
in the context of Atomic Broadcast. These approaches take advantage of the spon-
taneous total order property, typical in local area networks. The approaches based
on optimistic treatment guarantee different properties from Atomic Broadcast. We
have also presented in detail an Optimistic Algorithm with Conservative Treatment,
the Optimistic Atomic Broadcast algorithm.

A very simple analysis shows that the approaches based on optimistic treatment out-
perform the Optimistic Atomic Broadcast with Conservative Treatment approach.
Nevertheless, the former two allow messages to be delivered twice, and so, they
cannot replace Atomic Broadcast without changes in the application, which is pos-
sible with the Optimistic Atomic Broadcast with Conservative Treatment approach.
Therefore, applications using the approaches based on optimistic treatment must be
able to cope with messages delivered first in a tentative order that may be different
from a definitive order [KPAS99].

6.2 Future Directions and Open Questions

Besides the contributions presented in the previous section, this work has raised
several issues that deserve further analysis. In the following, we describe some future
directions and open questions related to this research.

!This includes Total Order and Causal Order. Only Total Order has been considered in the
thesis.
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Safety vs. Liveness Database Guarantees. Traditionally, database protocols
have only been concerned with safety properties (i.e., ACID properties) |BHGS87,
GR93], and very few works have addressed liveness properties (e.g., [RSL78, PG97]).
The Database State Machine could be used as a framework to study liveness guar-
antees in replicated databases. The fact that Atomic Broadcast is defined by safety
and liveness guarantees may help characterise the liveness property ensured by the
Database State Machine. As a second step, it would be interesting to study how to
define and achieve stronger and weaker liveness guarantees.

The Database State Machine in Practice. Simulation results have brought
to light some of the characteristics of the Database State Machine. Experiments
using a ‘real setting” would be interesting to take further conclusions about the ap-
proach. The Database State Machine was designed in such a way to simplify its
integration with existing database engines (e.g., without modifying internal code).
Some preliminary studies involving the POET database [Obj97] have shown that
the Database State Machine can indeed be integrated in an existing database en-
gine without changing the database engine’s code. However, additional work is still
necessary to conceive a prototype.

Partial Replication. The Database State Machine assumes that each database
site has a full copy of the database. This hypothesis allows database sites to execute
the certification test independently of one another, and reach the same outcome.
One natural question is whether it is possible to build a Database State Machine
based on a weaker assumption (i.e., partial replication). It seems that this can only
be done by introducing some coordination among database sites, when executing the
certification test. The resulting protocol would be a sort of Atomic Commitment.

One might wonder whether total order is still necessary in this scenario. It turns out
that the answer is affirmative, since it has been shown that if database sites certify
transactions in the same order, the certification test can be much more effective (i.e.,
more transactions pass the test) [PGS98]. The exact way transactions are executed,
broadcast, and certified in this scenario is subject to further investigation.

Group Communication in the Crash-Recover Model. Only recently, group
communication in the (asynchronous) crash-recover model has attracted the atten-
tion of researchers. Works developed so far have focused on solving Consensus in the
crash-recover model [OGS97, HMR97, ACT98|. This is an important step towards
group communication protocols in the crash-recover model since some group com-
munication problems have been shown to be equivalent to Consensus (e.g., Atomic
Broadcast). Although these results were developed in the crash-stop model, it is
reasonable to expect that they have analogues in the crash-recover model. To the
present time, no work has explicitly addressed the problem of group communication
in the crash-recover model where all processes can crash and recover.? This seems

2Some group communication toolkits allow new processes to join processes in execution [BJ&7,
Mal96, vBM96]. This mechanism can be seen as a kind of “recover,” since a process that has
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to be a fruitful research direction for the next years.

Optimistic Generic Broadcast. The ideas underlying Generic Broadcast and
Optimistic Atomic Broadcast are orthogonal, and one could think of combining them.
The result would be an optimistic implementation of Generic Broadcast. For exam-
ple, the Optimistic Generic Broadcast algorithm would only order messages if they
conflict and the spontaneous total order property does not hold. Such mechanism
would reduce the likelihood that messages have to be ordered with a Consensus.

The Optimistic Design Principle. Some thoughts about the Optimistic Atomic
Broadcast algorithm suggest an optimistic design principle. The idea is that in some
circumstances, a problem can be solved by two mechanisms: a fast mechanism,
that ensures the problem properties in most cases, and a slow mechanism, that
always guarantees the problem properties. By being able to detect whenever the
first mechanism does not succeed, and switch to the second whenever this happens,
a system designer can come up with an optimistic way of solving a problem. This
optimistic design principle requires refinements, according to the situation where it is
applied. For example, in same cases, wrong results produced by the fast mechanism
should never be observed by the application, and in other cases, this may be tolerated.
The study about degrees of optimism shows that the optimistic design principle can
be put in practice in both cases. Furthermore, while the implementation of the fast
and the slow mechanisms depend on specific characteristics about the problem being
solved and the model, the detection mechanism might exploit research done on the
detection of global predicates |CL85, BM93]|.

T

L J

crashed can restart again (with a different identification). Nevertheless, correctness is not ensured
if all processes crash and then recover.
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Appendix A

Broadcasts and Consensus
Algorithms

This appendix presents broadcast and Consensus algorithms referenced throughout
this thesis. The Reliable Broadcast (Algorithm 3), Consensus (Algorithm 4), and
Atomic Broadcast (Algorithm 6) algorithms have been proposed by Chandra and
Toueg [CT96|. The Early Consensus algorithm (Algorithm 5) has been proposed
by Schiper [Sch97]. All algorithms assume the asynchronous model augmented with
failure detectors where processes communicate by message passing, using reliable
channels, and fail by stopping their computation (i.e., same model as the one consid-
ered in Chapters 3 and 4). The Consensus algorithms use a failure detector of class
OS.

Algorithm 3 Reliable broadcast algorithm

Every process p executes the following:
To execute R-broadcast(m):

send(m) to all (including p);
R-deliver(m) occurs as follows:

when receive(m) for the first time

if sender(m) # p then send(m) to all;
R-deliver(m);
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Algorithm 4 Chandra and Toueg consensus algorithm

Every process p executes the following:

procedure propose(vp)
estimate, < v
state, < undecided
Tp 0
tsp, — 0

while state, = undecided do
Ty —T1Tp+1
¢p — (rp mod n) +1

send (p, rp, estimatey, tsp) to cp {Phase 1}

if p=c, then {Phase 2}
wait until for [(n + 1)/2] processes ¢: received(q, 7, estimatey, tsq) from g
msgs,[rp] < {(q,rp, estimatey, ts,) | p received (q,rp, estimate,, ts,) from g}

t « largest ts, such that (q,rp, estimatey, tsq) € msgs,[ry)]
estimate, + select one estimate, such that (g, 7, estimateq,t) € msgs,[rp]
send (p, rp, estimatey) to all

wait until [received (cp, 1}, estimatey) from ¢, or ¢, € Dp| {Phase 3}
if |received (cp,Tp, estimate,) from c,| then

estimate, «— estimate.,

tsp «— 1y

send (p,rp, ack) to ¢p
else

send (p, rp, nack) to ¢,

if p=c, then {Phase 4}

wait until [for [(";1)_‘processes q : received (q,rp, ack) or (g,7p, nack)]

if [for [w—‘ processes ¢ : received (g, rp, ack)] then

R-broadcast(p, rp, estimatey,, decide)

when R-deliver(q, rq, estimate, decide)
if state, = undecided then
decide(estimatey)
state, <+ decided
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Algorithm 5 Early consensus algorithm

function propose(v,)
Ty < 0
estimate; «— (i,v;)
cobegin
upon reception of (p;,r;,v;, decide) from p;:
send(p;, rj, v, decide) to all;
return v;

loop
phase,; — 1; currentRoundTerminated; — false;
coordSuspected; «— false; nbSuspicions; «— 0;
coord; — (r; mod n) + 1;

if ¢ = coord; then
send (p;, s, 1, estimate;) to all;

while not currentRoundTerminated;
select
upon reception of (p;,r;,1, estimate;) from p; when phase; = 1:
first reception:
msgCounter; «— 1;
if i # coord; then
estimate; < estimate;;
send (p;, s, 1, estimate;) to all;
other receptions:
msgCounter,; < msgCounter, + 1;
if msgCounter; > n/2 then
send (p;, r4, estimate;.second, decide) to all;
return estimate;.second;

upon coord; € ¢S; when not coordSuspected;:
send (p;, 14, suspicion) to all;
coordSuspected; — true;

upon reception of (p;,r;, suspicion) from p; when phase; = 1:
nbSuspicions; < nbSuspicions; + 1;
if nbSuspicions; > n/2 then
phase; «— 2;
send (p;, i, 2, estimate;) to all;

upon reception of (p;,r;,2, estimate;) from p;:
first reception:
msgCounter; «— 1;
if phase; =1 then
phase,; — 2;
send (p;, s, 2, estimate;) to all;
other receptions:
msgCounter,; < msgCounter, + 1;
if estimate;.first = coord; then estimate; «— estimate;;
if msgCounter; > n/2 then
currentRound Terminated; «— true;
r; «— 1 + 1;
estimate;. first — i;
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Algorithm 6 Atomic broadcast algorithm

Every process p executes the following:

Initialisation:
R _delivered «— €
A _delivered «— €
k0

To execute A-broadcast(m):
R-broadcast(m)
A-deliver(—) occurs as follows:

when R-deliver(m)
R_delivered — R_delivered U {m}

when R_delivered \ A_delivered # )
k—k+1
A_undelivered — R__delivered\ A_delivered
propose(k, A_undelivered)
wait until decide(k, msgSet®)
A_deliver® — msgSet* \ A_delivered

atomically deliver all messages in A _deliver”® in some deterministic order

A_delivered «— A _delivered U A_ deliver®

{Task 1}

{Task 2}

{Task 3}
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