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Résumé

Cette thése présente un apergu de mon travail effectuée ces quatre derniéres
années sur le développement de modules de construction électroniques
analogiques intégrés pour le systéme auditif et leurs applications a certains
modéles de traitement d'information dans le systéme auditif central.

L'anatomie et la physiologie de l'oreille humaine est présentée et est
décomposée en trois éléments-clé: le filtrage ‘passe-bande’ effectué par la
membrane basilaire, la transduction en signal nerveux par les cellules ciliées
internes et la contre-réaction mécanique par les cellules ciliées externes. Un
modeéle é€lectronique est présenté pour les deux premiers éléments et des
résultats de mesures sont montrés afin de comparer leur comportement avec
celui de leur équivalent biologique.

Le reste du systéme auditif consiste en plusieurs groupes de différents
neurones impulsionels. Etant donné que la majeure partie du traitement du
signal dans le systéme auditif central est effectué par ces différents types de
neurones, un bon modéle du neurone impulsionel est essentiel. L'électro-
physiologie et I'anatomie nécessaire a la compréhension du fonctionnement de
base de ces neurones est présentée.

Dans le but de modéliser de grands groupes de neurones, le circuit modélisant
un neurone doit étre suffisamment petit. Je propose un circuit petit et simple,
permettant cependant d’émule les différents types de neurones présents dans le
noyau cochléaire, ainsi que montré par les mesures effectuées sur le circuit.

Grace 24 ces modules de constructions électroniques, je peux envisager la
modélisation d'architectures neurones capable d'extraire en temps réel
différentes caractéristiques du signal auditif. Bien que peu de ces architectures
aient été identifiées dans le cerveau, une fois que les types de neurones y
participant ainsi que leur interconnection sont connues, il est relativement facile
d'en réaliser le modele analogique intégré. J'en présente deux exemples, basées
tous deux sur la détection de périodicité, qui est un mode de traitement pour
lequel les neurones impulsionels semblent particuliérement approprié.

Le premier exemple exploite l'activité synchrone de fibres du nerf auditif
venant de deux positions différentes le long de la membrane basilaire afin
d'obtenir une grande sélectivité fréquencielle et une représentation du signal



auditif indépendante de son intensité. Ce modeéle est complétement
hypothétique, n'ayant pas €té découvert dans le cerveau, mais il donne une
excellente introduction a la puissance du traitement effectué par les neurones
impulsionel pour la détection de périodicité.

Le second exemple est un modele de la sensibilité a la modulation
d'amplitude dans le colliculus inférieur. Ce modele peut étre utilisé par exemple
pour extraire la fréquence de modulation d'un signal modulé en amplitude ou
pour extraire Ja fréquence fondamentale d'un complexe harmonique. Ce type de
signaux sont particuliérement intéressant parce que de nombreux sons naturels
tombent dans cette catégorie. Ce modele a des fondations biologiques plus
solides, des neurones réagissant similairement a la modulation d'amplitude
ayant été mus en évidence dans le colliculus inférieur.
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Abstract

This thesis gives an overview of my work over the last four years on the
development of analogue electronic building blocks for the auditory pathway,
and their application to some models of processing in the auditory brainstem.

The anatomy and physiology of the human ear is presented, and is
decomposed into three key elements, i.e., the basilar membrane ‘band-pass’
filters, the transduction into a neural signal performed by the inner hair cells,
and the mechanical feedback introduced by the outer hair cells. An electronic
model for the first two of these elements is presented and measurement results
are shown to compare these circuits with their biological counterparts.

The remaining part of the human auditory pathway consists of several groups
of different types of spiking neurons. Since the main part of signal processing in
the auditory pathway is performed by these different types of spiking neurons, a
good spiking neuron model is essential. The electrophysiology and anatomy
needed to understand the basics of the spiking behaviour of these neurons is
presented.

If we want to model large groups of spiking neurons, the neuron circuit also
needs to be small. I propose a circuit that is simple and small, yet capable of
emulating several types of neurons found in the Cochlear Nucleus, as shown by
chip measurements.

With these electronic building blocks I can start to model neural architectures
in the brain that extract certain signal characteristics, and these models will
operate in real time. Although only few of such architectures have been
identified to date, once the types of neurons in these brain circuits, and their
inter-connectivity is known, it is then fairly straightforward to create an
analogue VLSI model. I present two examples, both based on periodicity
detection, since this is a domain where spike based operation seems especially
useful.

The first example uses synchronised activity on auditory nerve fibres from
two positions along the basilar membrane to obtain a high frequency selectivity
and a representation of the sound which is independent of intensity. This model
is completely hypothetical, since no evidence has been found in the brain for its
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existence, but it provides an excellent introduction into the periodicity detecting
power of spike based computation.

The second example is a model of amplitude modulation sensitivity in the
inferior colliculus. This model can be used for example to extract the
modulation frequency of an amplitude modulated sound, or to extract the
fundamental frequency of a harmonic complex. These sounds are of special
interest because many natural sounds such as animal calls or speech fall into
this category. This model has a much stronger biological basis, since neurons
have been found in the inferior colliculus that react to amplitude modulation in
a similar way as the model.
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1. Introduction

The work in this thesis was inspired by the ease with which animals perform
perceptive tasks. Perception is the result of neural processing that extracts from
the sensory input the characteristics needed to form an internal representation of
the environment and to interact with this environment. Not only does the
nervous system perform these tasks well (enough to allow the animal to
survive), it does so using imprecise and unreliable processing elements
(neurons) and sensors. It is my conviction that for these perceptive tasks, natural
selection has developed processing strategies that are far more effective than
those found in man-made systems today.

Analogue integrated circuits and most small, cheap sensors also suffer from
imprecision problems. We may hope that by using similar processing strategies
as biological organisms, it might be possible to overcome the imprecision of the
analogue building blocks and to perform perceptive tasks on silicon just as
effectively. The only way to verify this hypothesis is by building analogue
electronic systems that function according to these neural processing strategies.

Neural computation in the brain is performed by an immense variety of
neurons, whose behaviours are diverse and complex; to fully describe them
requires a large number of parameters. However, we might not need to replicate
biological neurons in full detail in order to build effective neural systems. On
the other hand, because of natural evolution it is quite possible that many details
of the behaviour of a biological neuron are not negligible. We will therefore
have to determine the right amount of detail. One approach is to build a
functional model that embodies as many details as possible; once it is built, it
should be possible through experimentation to distil the amount of detail needed
for each specific function and thus derive a simpler model.

A second reason for building electronic models of neural processing is that
these models will allow the study of neural processing of the brain without the
need for living neural tissue and without the need to simultaneously probe
hundreds or thousands of neurons in the brain. Once we have neuron models
with the same characteristics as biological neurons, together with knowledge of
their inter-connections, we may build a hardware model that allows us to study
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the collective behaviour of such a neural network and the individual behaviour
of the single neurons in the network.

In principle, we can do the same using computer models. However, as our
understanding of the actual processes in the brain increases, these models are
becoming more and more detailed. Consequently the computer models are
becoming more and more computationally intensive and memory demanding.
This is a serious problem, which threatens to take the simulation of these
models beyond the range of even the most powerful digital computers.
Electronic building blocks, however, should not suffer from this problem
because their paratlel architectures permit them to operate in real time.

In any case we will not be able to build hardware implementations of neural
processing using just one neuron, albeit carefully modelled. We will need a
large number of neurons in parallel to be able to model anything substantial.
This leads to a trade-off between the size of the single-neuron circuit and the
amount of detail incorporated in it. On the other hand, even if each chip only
models a few hundred neurons, multiple chips may be used in parallel. There is
thus no obvious limit to the number of neurons in an analogue VLSI model.

Most computation in the brain is performed using spikes, i.e., small voltage
pulses of a fixed width and fixed height. A priori, spike-based computation
seems especially efficient when we want to determine whether two signals are
more or less synchronous; a simple coincidence detection operation will do the
job. To study this property, we shall have to look at neural systems that make
use of the temporal relations between signals. The auditory system is an
excellent candidate, since its inputs are just two one-dimensional variables (air
pressure at both ears) that vary with time.

Any neural system in the auditory pathway that we try to model will include
input from at least one ear. Therefore, we should start by developing an
electronic model of the ear. The main signal-processing structure in the ear is
the cochlea. It contains the basilar membrane, which mechanically filters the
sound input, and hair cells, which transduce basilar membrane motion into
neural signals.

Building these elements as separate chips will give us the flexibility to create
different models using the same building blocks. Once a basic library of these
building blocks has been developed we can connect these chips together to
build models of different parts of the auditory pathway. In order to do this,
however, we must be able to control the important parameters of the building
blocks off-chip; we shall also have to include one or more inter-chip
communication possibilities that make flexible connections possible.
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In the first part of this thesis I will present some of these building blocks
along with the biology needed to understand them. In the second part I will then
describe two neural systems implemented with these building blocks.

Chapter 2 will briefly present the anatomy and function of the human ear.
Special attention will be given to the key elements of the cochlea, i.e., the
mechanical filtering of the basilar membrane and the mechanical to neural
transduction by the inner hair cells. The 3 electronic models for each of these
elements will then be presented in Chapter.

In Chapter 4 we shall look at the spike generation process in the biological
nerve cell and discuss the influence of different anatomical parameters on the
behaviour of the cell. Chapter 5 will present an electronic model for this
important building block of the auditory pathway. In different settings, this
circuit can be used to model different types of neurons. The output of the circuit
in response to tone-bursts will be compared with the responses of the different
types of neurons in the cochlear nucleus, which is the first site of innervation of
the auditory nerve.

Chapter 5 will furthermore present several auxiliary circuits used for the
interaction between neurons. One may think of these circuits as the electronic
equivalent of dendrites, axons and synapses.

Chapter 6 will present a first example of application of the building blocks to
the modelling of neural systems. It describes a system that implements a model
of the extraction of periodicity information from the output of the cochlear
filters.

Chapter 7 describes a second example, which models the sensitivity of
neurons in the cochlear nucleus and inferior colliculus to the envelope
periodicity of amplitude-modulated sounds and harmonic complexes. This
system has been implemented using the separate building blocks. Furthermore,
a new dedicated version, which integrates several of the building blocks on a
single chip, will also be presented.

Finally, the conclusions will be presented in Chapter 8, which will sum up the
main strengths and weaknesses of this work, and will give some
recommendations for future research.
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2. The Human Ear

2.1 Introduction

This chapter will describe in some detail the anatomy of the outer, middle and
inner ear. Furthermore the electrophysiology of the cochlea will be discussed.
The basic functions of the cochlea, which is the most important element from a
modelling point of view, will be discussed in section 2.4.

Most information on the anatomy and physiology of the ear is taken from
Dallos (1984), Evans (1982), Kessel and Kardon (1979), and Pickles (1988) and
is based on measurements and observations of different animals. Nevertheless,
the goal of this chapter is to understand the human ear; most of the elements
shown by the animal data also hold true for humans.

2.2 Outer and Middle Ear

The outer ear consists of the pinna, the concha, and the ear canal, which leads
10 the eardrum (Figure 2.1). The main function of the outer ear is to protect the
delicate eardrum from the external environment. Furthermore, the outer ear
performs two signal processing functions. Firstly, for some frequencies it
increases sound pressure at the eardrum due to resonance in its cavity.
Secondly, the outer ear provides cues for sound localisation by altering the
spectrum of the sound depending on the position of the source.

The middle ear is an air-filled cavity within the bone of the skull. The
ossicular chain is suspended in this cavity by small muscles. In humans the
chain consists of three bones: the hammer or malleus, the anvil or incus, and the
stirrup or stapes. The malleus is firmly attached to the eardrum, the incus
comparatively rigidly to the malleus and the stapes is attached to the oval
window. In this manner, the ossicular chain ensures that sound which reaches
the eardrum is only transmitted to the oval window. Without the ossicular chain,
sound would reach both the oval window and the round window of the cochlea
at the same time, and the fluid in the cochlea would hardly move. Furthermore,
together with the eardrum and the oval window, the ossicles provide acoustic
impedance matching. This increases the efficiency with which air-borne sound
energy is transferred to movement of the fluid-and-membrane structure of the
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cochlea. The main mechanism behind this impedance matching is the
concentration of the forces collected over the eardrum to the much smaller area
of the stapes footplate. Other factors are a small lever action due to the different
length of the malleus and incus, and the conical shape of the eardrum which
makes the eardrum buckle as it moves in and out so that the eardrum moves
more than the arm of the malleus.

Concha
Eardrum

Round window

Ear canal

Outer ear Middle ear Inner ear

Figure 2.1 The human outer, middle and inner ear.

The ossicular chain has a certain resistance to displacement. This reduces the
efficiency of the transmission, mostly for low frequency sounds since
displacement is inversely proportional to frequency at constant sound pressure.
At high frequencies the transmission is reduced by many factors, including the
mass of the ossicles and less efficient modes of vibration of the structures. The
pressure gain of the middle ear as a function of frequency therefore has a weak
band-pass characteristic, with maximum gain around 1 kHz.

Two small muscles (not shown above) are attached to the ossicles. The tensor
tympani is attached to the malleus near the tympanic membrane and the
stapedius muscle is attached to the stapes. Both muscles receive descending
connections from the brain. When the muscles contract, the resistance to
displacement of the ossicular chain is increased. The middle ear muscles
therefore influence the gain at frequencies below 1 kHz most, since the
displacement is relatively large at these frequencies. As we shall see later, the
low frequency sounds travel the whole length of the cochlea, and therefore can
potentially damage any part of the cochlea. The contraction of the middle ear
muscles for loud sounds thus protects the inner ear from noise damage to some
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extend. However, it does not protect against impulsive noise, because the reflex
is quite slow. These muscles also contract just before we start talking or
swallowing, reducing the ear’s response to the low frequency part of these

internal noises which could otherwise mask high frequency external sounds.
40,

3

20

1

0)

Pressure gain (dB)

astal L doadaanl A a2 a3l

“1o 100 1000 10000
Frequency (Hz)

Figure 2.2 Transfer function of the middle ear of the cat. Adapted from Nedzelnitsky
(1980).

In general, little attention is given to the modelling of the outer and middle
ear filtering function. The combined effect of outer and middle ear is that of a
band-pass filter with a slight gain between 1 and 6 kHz, a 12 dB per octave cut-
off slope above 6 kHz, and a 6 dB per octave slope below 1 kHz, which may be
steepened by the auditory reflex. Except for this last effect, the outer and middle
ear could be modelled using a simple filter at the input of the cochlea, but for
the purpose of the experiments in this thesis its effect would be negligible. This
filter has therefore not been developed.

2.3 Anatomy of the Inner Ear

This section will present a relatively detailed description of the anatomy of
the inner ear. The information in this section will give a reader who is not
familiar with these details a better background to understand the functioning of
the inner ear. However, only the elements presented in section 2.4 on the
functioning of the cochlea will really be important for the creation of electronic
models.

The inner ear is a fluid-filled bony structure embedded deep in the temporal
bone of the skull and contains the semicircular canals, the vestibule, and the
cochlea. The stapes presses on the oval window, an opening in the vestibule.
Vibration of the stapes causes pressure waves to travel in the fluid inside the
vestibule and the cochlea. The round window provides pressure relief for the
incompressible cochlear fluid. The cochlea itself is a coiled structure and
contains the organ of Corti. In humans the cochlear canal is approximately 35
mm long, has 2.5 turns and is wider at the base (close to the oval window) than
at the apex (far from the oval window). Figure 2.3a shows how the cochlea
would look if it could be uncoiled. Figure 2.3b shows a cross-section through
the uncoiled cochlea.
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Figure 2.3 a) The cochlea uncoiled; b) Cross-section through the uncoiled cochlea; c)
The Organ of Corti, The first outer hair cell (the most basal one) of the middle row is
removed so that three-dimensional aspects of the relationship between supporting cells
and hair cells can be seen. 1, Basilar membrane; 2, Hensen's cells; 3, Deiters’ cells
(outer phalangeal cells); 4, endings of spiral afferent fibres on outer hair cells; 5, outer
hair cells; 6, outer spiral fibres; 7, outer pillar cells; 8, unnel of Corti; 9, inner pillar
cells; 10, inner phalangeal cells; 11, border cell; 12, tectorial membrane; 13, type I spiral
ganglion cell; 14, type II spiral ganglion cell; 15, bony spiral lamina; 16, spiral blood
vessel (found only in the base of the cochlea); 17 cells of the tympanic lamina; 18,
auditory nerve fibres; 19 radial fibre; 20 inner hair cell. Adapted from Kelly (1991)
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The cochlea is divided into the scalae vestibuli, media and tympani by
Reissner’s membrane and the basilar membrane together with the osseous spiral
lamina. The osseous spiral lamina is wide (in the direction of the basilar
membrane) at the base, about 77% of the diameter of the cochlea, and narrows
gradually to only 40% near the apex. A hole in the spiral lamina at the apex,
called the helicotrema, joins the scalae vestibuli and tympani. Both the basilar
membrane and Reissner’s membrane stop before the helicotrema, thereby
terminating the scala media. Whereas the spiral lamina narrows, the basilar
membrane widens from base (about 100 um) to apex (about 500 um). As the
basilar membrane widens, its stiffness decreases more than 100-fold in an
approximately exponential fashion. Reissner’s membrane provides ionic
isolation between the scalae media and vestibuli but serves no mechanical
purpose in the filter function of the cochlea. The fluid contained in the scalae
vestibuli and tympani, called perilymph, is high in sodium content and low in
potassium content, similar to the extracellular fluids in the brain, and is at about
the same potential as the surrounding bone. The scala media is filled with
endolymph, which is low in sodium but rich in potassium and has a potential of
about +80mV with respect to the surrounding bone. The difference in ionic
concentration between the endolymph and perilymph is maintained by the dense
capillary network called the stria vascularis. The potential difference thus
created acts as a low-noise power supply for the hair cells in the organ of Corti.
Since these hair cells are sensitive to very small movements, they must be
isolated from the noise introduced by the circulatory system. There is a small
blood vessel beneath the basilar membrane, as shown in Figure 2.3c, but no
capillaries extend into the organ of Corti.

The organ of Corti resides on top of the basilar membrane in most mammals
and contains the actual mechano-electrical transducers: the hair cells. About
3000 inner hair cells form a single row, while about 9000 outer hair cells are
arranged into three to five rows. The hair cells are spaced about 10 um apart
and are rigidly attached to the basilar membrane by the supporting Deiters' cells
and the pillar cells. Deiters' cells have processes that extend upward to hold the
tops of the outer hair cells, resulting in the rigid upper surface of the organ of
Corti, called the reticular lamina. The inner pillar cells rest on the basilar
membrane just above the end of the osseous spiral lamina, which is the point
around which the complete organ of Corti pivots. Hair cells are so named
because of the stereocilia, or hairs, that protrude from their smooth and stiff
apical surface called the cuticular plate. This can clearly be seen in Figure 2.4,
which is a scanning electron micrograph of the top of the organ of Corti with
the tectorial membrane removed.
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Figure 2.4 Scanning electron micrograph of the organ of Corti after removal of the
tectorial membrane. The single row of inner hair cells (IHC) contains stereocilia that are
arranged linearly. The three rows of outer hair cells (OHC) contain stereocilia that are
arranged in V or W configurations. The surfaces of a number of other cells may also be
distinguished. These include the inner spiral sulcus cells (ISC), heads of the inner pillar
cells (IPC), phalangeal processes (PP) of Deiters’ cells, and Hensen's cells (HC)

Adapted from Kelly (1991)

T'he stereocilia are formed by closely packed actin filaments which make
them rigid. Just above the cuticular plate the stereocilia taper, which allows
them to pivot around this point. Figure 2.5 shows a cross-section through three
rows of stereocilia on a hair cell. This clearly shows that the stereocilia are
linked between rows by horizontal links and tip links. It has also been shown
that stereocilia within a row are linked together by horizontal links. Tip links
however only run from the tip of a stereocilium to the nearest taller
stereocilium

I

1

cells, as shown in Figure 2.6. The stereocilia of the inner hair cells are arranged

e are clear morphological differences between the inner and outer hair

in shallow curves, and in V or W formations for the outer hair cells. The tallest
cilia of the outer hair cells are attached to the tectonal membrane, whereas the
cilia of the inner hair cell are not. The inner hair cells are flask-shaped, flexible,
and are completely surrounded by the inner phalangeal cells. The outer hair
cells are cylindrical in shape, stiff, and only attached to the supporting structure
at their tops and bottoms, so that most of the cell is free to move. The outer hair
cells contain fine tensile filaments that wrap around the cell body to form a kind
of skeleton structure that provides, together with the turgor pressure of the cell’s
cytoplasm, a mechanism to change the length of the outer hair (Ashmore, 1987;
Crawford and Fettiplace, 1985).
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Figure 2.5 Cross-section through three rows of stereocilia on a single guineapig outer
hair cell. The stereocilia of the different rows are joined by honizontal links just below

their tips (arrowheads). The rows are also joined by tip links (arrows) that attach to the

[ the sm

ler stereocilia and to the upper c:.L‘."n‘.t_\ (double arrow-heads) of the t

gnilication

stereocilia. (Scale bar is 200 nm). The inse

tp link. (Scale bar 1s 100 nm). Adapted f
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Figure 2.6 Detailed view of an inner hair cell(left) and an outer hair cell (right) with
their supporting structures and nerve endings. Adapted from Pickles (1988)

The innervation of the hair cells is illustrated in Figure 2.7. The majority of
fibres in the auditory nerve contact the inner hair cells and are afferent fibres,
i.e., fibres that carry the information to the brain. The afferent fibres from the
inner hair cells at a certain point along the cochlea are bundled with the afferent
fibres that contact a range of outer hair cells about 0.6 mm basalward. Most
descending (efferent) fibres contact outer hair cells and come from the
contralateral side of the brain. Synapses from both types of hair cells to the
afferent fibres are excitatory, and synapses from the efferent projections to the
outer hair cells are inhibitory. Very few efferent fibres innervate inner hair cells
(not shown in Figure 2.7), but when they do they form an inhibitory axo-
dendritic synapse on the dendrites of the spiral ganglion cell close to the inner
hair cell synapses.
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Figure 2.7 Innervation of the hair cells in humans. The percentages indicate the
representation of fibres of the given type in the auditory nerve. Adapted from Watts
(1993).

2.4 Function of the Cochlea

Three principal elements in the function of the cochlea may be distinguished,
namely: the sound-induced motion of the basilar membrane in the fluid-filled
cochlea, the transduction of this motion by the inner hair cells into a neural
signal, and the neuro-mechanical feedback introduced by the outer hair cells.
Since these elements are essential for the creation of a good model of the
auditory periphery, we will discuss them in some detail.

2.4.1 Basilar membrane motion

Sound is input to the cochlea through motion of the oval window, created by
movement of the stapes. Sinusoidal movement of the stapes causes a wave,
which is propagated by the combined movement of the fluid and the basilar
membrane. A three-dimensional representation of the basilar membrane
displacement in the uncoiled cochlea is shown in Figure 2.8. The coiling of the
cochlea has no significant effect on the travelling wave; its primary purpose
appears to be to save space.
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Figure 2.8 Three-dimensional representation of the travelling wave on the basilar
membrane in the uncoiled cochlea. The amplitude of the displacement is largely
exaggerated in this figure to show the form of the wave more clearly.

At the basal end of the cochlea, the basilar membrane is stiff, and the
membrane-displacement wave propagates fast. As the wave travels down the
cochlear canal, the stiffness of the basilar membrane decreases. This causes the
wave to slow down, and its amplitude increases. Further down the cochlear
canal, the membrane becomes too flexible to support a wave at the given
frequency, and the energy of the wave is quickly dissipated. For each frequency
there exists therefore a point on the basilar membrane for which the
displacement of the basilar membrane is maximal. This point is called the “best
place”, and its position, measured from the oval window, increases
logarithmically with decreasing frequency down to about 1 kHz. At lower
frequencies the position varies more linearly with frequency. Conversely, for
every point on the basilar membrane, there exists a frequency, the “best
frequency”, that induces maximum displacement of the basilar membrane at that
point.
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Figure 2.9 Frequency responses at six different points on the cochlear partition.
Adapted from von Békésy (1960).
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In Figure 2.9 the amplitude of the travelling wave envelope was measured as
the stimulus frequency was varied with constant peak stapes displacement. If
the data is recalculated for constant sound pressure level, i.e. constant peak
stapes velocity, the low-frequency slopes become flat (Eldredge 1974). The
cochlea thus appears to act purely as a poorly selective low-pass filter whose
cut-off frequency decreases as one travels down the cochlea. Von Békésy’s
measurements, however, were performed on cadavers at very high sound
intensity (130dB SPL). It is now known that not only does the animal have to be
alive, but the cochlea must be in extremely good physiological condition to
show a satisfactory mechanical response. More recent measurements by
Johnstone, et al. (1986), using the Mdssbauer technique, or Ruggero (1992),
using Doppler-shift laser velocimetry, show a more complicated picture (see
Figure 2.10).

In Figure 2.10 it may be seen that at low sound intensity the basilar
membrane acts as a selective band-pass filter with high gain, whereas gain and
selectivity decrease with increasing sound intensity. It may also be seen that
well below the best frequency — e.g. below 6 kHz for the point shown in
Figure 2.10 — the gain does not depend on stimulus intensity; the basilar
membrane response is completely linear in this frequency range. It has been
shown by Sellick et al. (1982) that the response of the basilar membrane after
death of the animal is linear for all frequencies of stimulation and that the gain
relative to the stapes velocity is substantially reduced around the best frequency
of a given point along the basilar membrane. This seems to indicate that there is
an active process in the cochlea which creates the high gain and selectivity. The
most widely accepted hypothesis is that the outer hair cells, together with the
organ of Corti and the basilar membrane, create an active mechanical amplifier.
This hypothesis will be more fully discussed in paragraph 2.4.3.
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Figure 2.10 Frequency response at one point of the basilar membrane of a chinchilla
cochlea for 9 different sound pressure levels. 0 dB SPL corresponds to an air pressure of
20 pPa at the eardrum. The gain is measured as the peak basilar membrane velocity
divided by the peak stapes velocity, the later being constant for a given sound pressure
level. Adapted from Ruggero (1992).

2.4.2 Transduction by the inner hair cells.

Since 95% of the outgoing connections from the cochlea come from the inner
hair cells, we must presume that it is their task to convey information
concerning the basilar membrane movement to the central nervous system.
When the basilar membrane moves, the organ of Corti is displaced. The
stereocilia of the outer hair cells, which are attached to the tectorial membrane,
are displaced due to the shear between the reticular lamina (the rigid upper-
surface of the organ of Corti) and the tectorial membrane. The stereocilia of the
inner hair cells do not touch the tectorial membrane, but fit loosely into a raised
groove known as Hensen’s stripe on the under-surface of the tectorial
membrane. When the reticular lamina moves with the basilar membrane forces
are exerted on the stereocilia, mainly due to the viscous drag of the endolymph.
The displacement of the inner hair cell stereocilia is thus proportional to the
velocity of the basilar membrane motion.
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Figure 2,11 Current opinion on the transduction by the inner hair cells assumes that the
tip links of a stereocilia control the probability that the ion channels on this stereocilia
are open. There are only a few ion channels (1-4) per stereocilia, and they are probably
located at the tip of the stereocilia. Adapted from Pickles (1988).

In the light of recent evidence (for instance Howard, et al. 1988), the
mechano-electrical transduction by the hair cells can be dealt with in terms of
variable resistances and a modern version of the Davis battery theory (Davis
1958). In this theory, the ion channels in the tips of the stereocilia act as
variable resistances. Ions flow into the cell, driven by the battery of the
endolymphatic potential and the intracellular potential. Intracellular
depolarisation causes release of transmitter, and activation of the auditory nerve
fibres via the spiral ganglion cells.

Potassium is most abundant both intracellularly and extracellularly at the
hairs (see Figure 2.11). Furthermore, the ion channels of the stereocilia are
permeable by potassium. The ion flows will therefore be dominated by the
potassium current. Because the basal ends of the hair cells are in contact with
perilymph, which has a low potassium concentration, potassium entering the
hair cell at the apex will automatically diffuse out of the cell at the basal end.
The hair cells thus modulate the potassium current flow from the scala media to
the scala tympani.

There seem to be only a few ion channels per stereocilia; these oscillate
spontaneously between their closed and open state, probably under influence of
thermal energy. At rest, the channels are in their open state about 20% of the
time. Displacement of the stereocilia in the direction of the tallest stereocilia
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stretches the tip-links and thereby increases the amount of time they are open.
Displacement in the opposite direction naturally has the opposite effect. Since
the channels cannot be more than 100% open or 100% closed, the cell’s
response, i.e., the intracellular potential, will vary between two asymptotes. As
can be seen in Figure 2.12, the variation between these two asymptotes has a
form which resembles a sigmoid function.

The fact that the inner hair cell reacts more strongly in one direction than the
other creates, for a periodic stimulation, an average response which is larger
than the resting voltage by an amount which depends on the amplitude of the
input signal as long as the input signal does not drive the cell into saturation.
The membrane of the inner hair cell also has a certain capacitance, and the
leakage through the membrane introduces a resistance in parallel with this
capacitance. Furthermore, the opening and closing of the channels in the
stereocilia modulates the resistance between the inside of the inner hair cell and
the positive voltage delivered by the endolymph. The inner hair cell therefore
acts as a low-pass filter. This means that the amplitude of the variation around
the average voltage will decrease with increasing frequency for a given stimulus
intensity. We can see this effect clearly in Figure 2.13, which shows
measurements of the intracellular voltage of the inner hair cell for different
stimulation frequencies.

-10° 0° Flexion 10°
% H 100
+4
Response % Full
(mV) Response
0
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Displacement (um)

Figure 2.12 Hair cell response as function of hair bundle deflexion. Adapted from
Hudspeth and Corey (1977).
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Figure 2.13 Intracellular voltage changes in an inner hair cell for different frequencies
of stimulation. Note the change of scale for the lower five traces. Adapted from Palmer
and Russell (1986).
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Figure 2.14 Post stimulus time histogram of a single auditory nerve fibre in response to
repeated stimulations with a pure tone as measured in the cat (Pickles 1988), and as
predicted by Meddis’ hair cell model (Meddis 1986). These histograms keep the
temporal relation between the occurrence of the spikes and the stimulus tone.

In humans each inner hair cell synapses with about 20 spiral ganglion cells,
whose axons form the auditory nerve. The spiral ganglion cells transmit the
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information transduced by the inner hair cells to the brain by means of voltage
pulses (spikes). As we will discuss in chapter 4, most neurons interact through
chemical synapses by releasing a special chemical substance (neurotransmitter)
into the synaptic cleft, which is the space between the two cells. Each time an
inner hair cell releases a packet of neurotransmitter into the synaptic cleft, the
spiral ganglion cell on the other side of the cleft spikes. The release of
neurotransmitter by the inner hair cell is not a deterministic process, but the
probability of release is proportional to the intracellular voltage change and the
amount of neurotransmitter available. When the inner hair cell is stimulated, the
neurotransmitter is used partially up, so that the response to the next stimulus is
reduced. This results in a decreasing response of the spiral ganglion cells to a
continuous stimulation of the inner hair cell. A good model of the transmitter
release by the inner hair cell has been developed by Meddis (Meddis, 1986,
1988; Lopez-Poveda, et al., 1997). Typical post stimulus time histograms of
responses of a cat auditory nerve fibre, and of a model fibre, to a high frequency
stimulus are given in Figure 2.14. Figure 2.14a clearly shows the adaptation of
the auditory nerve fibres response to the stimulus. Adaptation effects of
different origins than the consumption of neurotransmitter have also been
shown in hair cells. However, since an adaptation effect is hardly visible in the
intracellular voltage changes shown in Figure 2.13, the adaptation seen on the
auditory nerve signal must be dominated by the conversion of the intracellular
voltage into a neural signal, i.e., by the neurotransmitter release.

2.4.3 Function of the outer hair cells.

Although there are about 3.5 times more outer hair cells than inner hair cells,
only 5% of the afferent nerve fibres transmit information from the outer hair
cells to the brain. Furthermore, the information on these fibres is of very low
spatial and temporal resolution. It must therefore be concluded that the function
of the outer hair cells is not to signal the basilar membrane movement to the
central nervous system. The few fibres that project from the outer hair cells to
the brain probably only carry information about the operating point of the outer
hair cells. It has been hypothesised that the outer hair cells act as an active
mechanical amplifier, of which the gain is controlled by feedback connections
from the central nervous system. The actual details of the way the outer hair
cells perform this task are not yet understood, and there is only indirect support
for this hypothesis.

The strongest indication, initially shown by Kiang et al. (1970) in the cat, is
that selective damage to the outer hair cells reduces the selectivity and gain of
the neural tuning curves around the best frequency, but leaves the low
frequency part unaffected. The same effect may be obtained by stimulation of
the crossed olivocochlear bundle, which descends from the contralateral
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superior olivary complex to inhibit mainly the outer hair cells. Both experiments
are not conclusive though, because it is unclear whether only the outer hair cells
are affected in these experiments, and it has not been shown that the gain of the
basilar membrane movement has been reduced, but only that the response of the
auditory nerve fibres has been influenced.

The aforementioned experiments indicate that the outer hair cells function in
some way necessary for the sharp tuning and sensitivity of the inner hair cells.
They do not prove that this process is necessarily active. The strongest direct
evidence for the existence of active mechanical processes in the cochlea comes
from the observation that under certain circumstances the cochlea can actually
generate sound (Pickles, 1988). Furthermore, there is evidence that this
generation of sound is related to the activity of the hair cells themselves.

Finally, various forms of motility have been demonstrated in isolated outer
hair cells. It has been shown that outer hair cells can change their length when
electrically stimulated (see for instance Ashmore, 1987), and the anatomy of the
organ of Corti, in which the outer hair cells are attached only at both ends, does
not impede this movement. It has also been shown, by Crawford et al. (1985),
that the bundle of stereocilia of a hair cell from a turtle cochlea was able to
oscillate in synchrony with an electrical oscillation inside the cell produced by a
stimulation of the stereocilia at low frequency. It is clear that with the slower
forms of motility the outer hair cells can control the mechanical operating point
of the organ of Corti. It is still unclear whether the faster forms of motility are
fast enough to be able to act on a cycle-by-cycle basis, which is needed to
produce the high gain observed at low stimulus intensity.

2,5 Summary

The human ear, which is the first stage in our auditory system, translates the
mechanical vibrations of sound, i.e., a time-varying pressure signal at the
eardrum, into a time-varying pattern of excitation on the auditory nerve. The ear
can be divided into three parts.

The outer ear captures the incoming sound and the vibration of the eardrum is
transferred by the bones in the middle ear to the oval window of the inner ear.

The most important structure in the ear, from a modelling point of view, is
the cochlea, the fluid-filled, coiled structure of the inner ear. The cochlea is
divided in two by the basilar membrane. Displacement of the oval window by
the middle ear bones creates a pressure wave in the fluids of the cochlea and the
cochlea filters this wave, so that different sound frequencies will cause different
parts of the basilar membrane to vibrate.

The base of the basilar membrane is most sensitive to high frequencies and
the apex to low frequencies. In between, the best frequency decreases
approximately exponentially with position along the cochlea.
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The inner hair cells sense the vibration of the basilar membrane all along its
length and transduce this motion into electrical signals. These electrical signals
are then chemically transmitted to the spiral ganglion cells, whose axons are the
auditory nerve fibres that carry the information from the ear to the brain.

The outer hair cells locally control the gain of the cochlear filter under
control of descending connections from the brain.
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3. The Electronic Ear

3.1 Introduction

In the previous chapter we have identified the cochlea as the most important
sound processing structure in the ear. It filters sound into separate spectral
components and generates auditory nerve signals which transmit acoustical
information to the brain. In this chapter we will concentrate on modelling the
key elements of the cochlear function, i.e., the mechanical filtering by the
basilar membrane and the transduction of this motion by the inner hair cells.

3.2 The basilar membrane model

3.2.1 Background

Once sound is transferred by the middle ear from the eardrum to the cochlea,
it initiates travelling waves of fluid pressure and basilar membrane motion
which propagate from base to apex. For a given frequency, the wave travels
almost loss-less through the basal part of the cochlea, where the basilar
membrane is relatively stiff. As the stiffness of the basilar membrane decreases
the wave slows down and energy starts to accumulate, yielding an increase in
gain at the ‘best place’ for this frequency. More apical of this ‘best place’ the
membrane becomes too elastic for a wave of this frequency and the wave dies
out quickly. The simplest way to capture this behaviour in an electronic
implementation is with a cascade of scaled second-order low-pass filters. A
wave travels loss-less at the start of the cascade, has a certain gain at the ‘best
place’, and dies out quickly after the best place. The first “analog electronic
cochlea”, published by Lyon and Mead in 1988, was based on this idea. Since
then several other analogue VLSI models have been proposed which try to
capture more of the details of the biological cochlear function (Lyon, 1991; Liu
et al.,, 1991; Sarpeshkar et al., 1996; Watts et al., 1992; Watts, 1993). The
design of the basilar membrane model in this section is based on an improved
version of Lyon’s original analogue electronic cochlea, as presented by Watts et
al. (1992). I have chosen this realisation, because it is the simplest and thus
smallest cochlear model, allowing for a large number of filters in the cascade,
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and because a certain amount of experience has accumulated over the years with
this implementation, published by Watts et al. (1992).

In the following sections we shall first discuss the second-order low-pass
filter which is used in the filter cascade and is identical to the filter used by
Watts et al. The improvements 1 have made to the silicon cochlea will then be
presented. These are a new implementation of the differentiation of the low-pass
filter output, and a new implementation of the exponential bias current
generation for the silicon cochlea. Finally, measurements of the silicon cochlea
will be presented and discussed.

3.2.2 The transconductance amplifier

A standard building block that will be used for the implementation of the
second-order low-pass filter is the transconductance amplifier. Figure 3.la
shows the circuit of such a transconductance amplifier. When biased in weak
inversion it has a hyperbolic tangent transfer function given by :

V,,—V-)

Iouz=lbiastanh[ 2n Uy 1)

with Iy, V. and V_ as in Figure 3.1, and n is a slope factor between 1 and 2.
The thermal voltage Ur = kT/q, with k the Boltzmann constant, T the
temperature in Kelvin, and q the charge of an electron. Ut is about 25 mV at
room temperature.

The transconductance amplifier is biased in weak inversion when the current
through the differential pair transistors T; and T, is much smaller than their
specific current, i.e.:

Tpias << Is = 2 n p Cox W/L Uy? )

where W is the channel width of the transistor, L the length, i the mobility of
the minority carriers, and C,, the gate oxide capacitance per unit area.

For small inputs (JV, — V_| < 60 mV) we can approximate the amplifier as a
linear transconductance:

Low=8a (Vi = V) 3
with the transconductance given by:
Ibias
ga= 2n Uy 4)

This last equation shows that the transconductance of the amplifier is
proportional to the bias current when the amplifier operates in weak inversion.
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For auditory processing, the amplifiers will necessarily operate in the weak
inversion range. When we want to build filters for frequencies in the auditory
range, we will need long time constants, thus either large capacitors or small
conductances. Since it is not reasonable to create large capacitors on-chip, we
will have to create small conductances, i.e., use small bias currents. These small
currents will thus bias the amplifier in the weak inversion range, unless we
make the W/L ratio of the transistors very small. That, however, would mean
using extremely long transistors though, which would lead to a large area
consumption and is therefore not a practical option.

V. ¥ Tou
V- — -
biag
<)
Vids Lo
V. -
bias
b) d)

Figure 3.1 A basic transconductance amplifier: a) schematic and c) symbol; a

transconductance amplifier with an enlarged linear range: b) schematic and d) symbol.

Watts, et al., (1992) also used a transconductance amplifier with an enlarged
linear range as shown in Figure 3.1b. The transfer function of this amplifier is
given by:

V,-V.
L= Tyias tanh 2n(n+ 1) Ug (5)
and
Tpias
B=2n(m+1)Up ©

The linear range of this amplifier is thus enlarged by a factor n + 1, where n is
about 1.5, and the transconductance is reduced by a factor n + 1 with respect to
the normal transconductance amplifier with the same bias current.

The transfer functions of both amplifiers are shown in Figure 3.2.
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Figure 3.2 Transfer function of the transconductance amplifier (heavy line) and the
modified transconductance amplifier.

3.2.3 The second-order low-pass filter

A second-order low-pass filter is made of three transconductance amplifiers
(A1, Az, Az as shown in Figure 3.3) and two capacitors.

Figure 3.3 One section of the cochlear cascade, with differentiator.

The transfer function of this filter is given in the Laplace domain by:

Vou 1
H(s) = Vie 1+ /Q+ (1s)? )
where s = j , j° = -1, and @ is the angular frequency, the time constant T =

C/g. when both A, and A, have a conductance g, and both capacitors have
capacitance C. The quality factor Q of the filter can be expressed as:

1
SRER ®

where g is the conductance of the amplifier A;.
The gain and phase response of the filter described by equation (7) are shown
in Figure 3.4 for two values of Q.
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Figure 3.4 a) Gain and b) phase response of the second-order low-pass filter for Q=1
(heavy line) and Q=10 when 1/t = 1000 s™.

3.2.4 Stability of the filter

From equation (8) we can see that when gq = 2 g, Q becomes infinite. From
equation (7) we can then see that when = 1/1, the gain of the filter becomes
infinite and the filter will be unstable. This gives gq < 2 g, as the small-signal
stability limit of the filter.

The filter of Figure 3.3 also has a large-signal stability limit. In order to
obtain the transfer function of equation (7) we have treated the filter as a linear
system. This approximation is only valid for small input signals. It has been
shown by Mead (1989) that large transient input signals can create a sustained
oscillation in this filter. During most of this oscillation all three amplifiers are
saturated so that their output is either plus or minus their bias current. We can
therefore adopt a piece-wise linear approach in which we treat the amplifiers as
current sources to analyse this behaviour. The following analysis is mostly
adapted from Mead's, but is more general since it does not assume that the
amplitude of the oscillation is equal to the supply voltage.

When V;, suddenly increases by a large amount, the amplifier A; will saturate
and will charge the capacitor at its output with the maximum output current I..
If, at the same time, V| is larger than V,,, A; will also charge the capacitor with
its maximum output current I and we can write for V;:

dv, I+l
d_t = C where Vg, << V<< Vi, )]

V, will thus rise at its maximum rate. Once V, catches up with Vj,, the output
current of A, changes sign and we write for V:
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dVl IQ - Ir
T where V,, << Vi, << V, (10)

In order to have Q larger than one, I has to be larger than I; so that in this
case V; will continue to increase with a smaller slope until it reaches the
positive power supply Vpp or until V,, catches up with V. As long as V), stays
larger than V,, we can write in our piece-wise linear approach for V.

dVou L
T C where V,, << V, 11

Once V,, catches up with V|, the sign of the output of A3 will change, and V,
will start its steep descent, until V; goes below Vi,, when the sign of the output
of A, changes and V, descents more slowly to the negative power supply Vss,
or until Vg, catches up again. Figure 3.5 sketches the behaviour of the circuit
according to the above equations. The thick line shows the evolution of V, and
the thin line shows the same for V,,. Whenever V,, catches up with V,, the
change in both voltages will change direction.

time

Figure 3.5 Piece-wise linear approximation of the waveform for V; (bold) and V. The

slope of each line is indicated next to it.

By comparing the voltages at which V,,, catches up with V, at the start and
the end of a single rise and fall cycle, we can determine the nature of the
oscillation. If AV (see Figure 3.5) is positive, the amplitude of the oscillation
will decrease during each period and the oscillation will cease after a certain
time. The limit of stability is reached when AV becomes zero, so that the
amplitude of the oscillation stays constant. For the rising part of the oscillation
we write:

C C
Totl Vvt Io-1,

where Vi and Vy are as shown in Figure 3.5. Similarly, for the falling part,
we write when AV equals zero:

C
Vu=1"(Vi+ Vi) (12)
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C c
ot L VH ¥ o1

Equations (12) and (13) can only be satisfied when Vi, = Vy. Substituting V
for Vi and Vy in either equation, and dividing by CV/I; yields:

C
VL=E(VL+VH) (13)

1 1
Il +1 1 I ~1"

Rewriting this equation we obtain the following solution:

IQ2 IQ IQ 1 +\/§
S
This gives the critical value for large signal stability of the low-pass filter of
Figure 3.3. Since the conductance of the amplifiers is directly proportional to
the bias currents, this large-signal stability condition also limits go/g: to this
value, and thus limits Q to a maximum value of 2.63 (see equation (8)). The
large-signal stability limit therefore severely limits the maximum quality factor
of the filter.

2 (14)

=1.62 15)

3.2.5 The stabilised second-order low-pass filter

The filter can be improved by using two wide-range transconductance
amplifiers to implement A, and A, (Figure 3.6) and a basic transconductance
amplifier for A; (Watts, et al, 1992). In this case we can write for the
conductance ratio:

g:(n+1)—‘ (16)

which ensures that go/g. becomes 2 before Io/l; becomes 1.62, since n is
larger than 1, so that the filter is always large-signal stable whenever it is small-
signal stable.

Figure 3.6 Modified second-order low-pass filter.
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With the two wide-range transconductance amplifiers A; and A; and the one
normal transconductance amplifier A; we have a second-order low-pass filter
for which we can set the cut-off frequency and the quality factor using the bias
currents of these amplifiers. By cascading these filters, and biasing the
amplifiers with exponentially decreasing currents we can create a model of the
basilar membrane.

3.2.6 Differentiation
The voltage V,, (Figure 3.6) at the output of each second-order stage in the
cochlear filter cascade represents the displacement of a small section of the
basilar membrane. However, since the stimulation of the inner hair cells in the
biological cochlea is proportional to the velocity of the basilar membrane, the
output of each second-order stage has to be differentiated. This can be done by
creating a copy of the output current Iz of amplifier A, at every stage as in
Watts, et al. (1992). Since the voltage on a capacitor is proportional to the
integral of the current onto the capacitor, Iy is effectively proportional to the
basilar membrane velocity. Yet, with equal displacement amplitudes, velocity
will be much larger for high frequencies than for low frequencies, yielding
output signals with amplitudes that decrease from the beginning of the cochlea
to the end. This can be corrected by normalising Iy to give equal amplitude at
every output. A second resistive line with identical tilt controlling the gain of
the current mirrors that create the copies of Iy at each stage is used for this
purpose by Watts, et al. However, relying on an identical tilt on the second

resistive line introduces an extra source of mismatch in the circuit.
Output 4

A )
3 t Vo Vi

o[~

Vou  tO next section

from prev.

section I

Figure 3.7 One section of the cochlear cascade, with differentiator.

An alternative solution which does not need normalisation is to take the
difference between V,, and V, (see Figure 3.7). We can rewrite equation (3)
applied to A; as:

gc(Vi— Vo) = Ly 3)
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or:

it 5CVau
vl‘vou(=g_t= g =15 Vou an

This is equivalent to differentiating V., with 0 dB gain at the cut-off
frequency for all stages. Figure 3.8 shows the gain and phase response of the
filter after differentiation. We can see that a single filter only has a shallow high
frequency cut-off slope of 20 dB per decade. In the filter cascade, however, the
40 dB per decade cut-off slopes (Figure 3.4) of the individual low-pass filters
will be accumulated. This can yield very steep high frequency cut-off slopes, as
we will see in the measurements later on in Figure 3.12.

20 10 100 (o(rad/s) 1000 10000
Gain 0.52 - +
dB) 10 +
“8) Phase
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0 100 1000 100Q0

101 0
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30 +
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40 0.5n

Figure 3.8 a) Gain and b) phase response of the second-order low-pass filter with
differentiator for Q=1 (heavy line) and Q=10 when 1/1=1000s™".

The subtraction of equation (17) can be implemented with a combination of 2
transconductance amplifiers, as shown in Figure 3.7, which ensure that:

Vit = Vier = Vi—=Vou =18 Vou (18)

Since V. is constant, Vg will vary around Vs by an amount equal to T s
Voul-

The two amplifiers implementing this can have a large bias current, so they
may also be used to buffer the cascade voltages before connecting them to the
output pins of the chip, to avoid charging the cochlear cascade with the extra
capacitance introduced by the output pins.

3.2.7 Exponential bias generation

Since there is an exponential relationship between position along the basilar
membrane and best frequency in the real cochlea, we will need to use filters
with exponentially decreasing cut-off frequencies in our model. In all the silicon
cochlear models mentioned in the introduction of this chapter, the exponential
dependency is obtained using a linear decreasing voltage on the gates of MOS
transistors operating in weak-inversion. In weak-inversion, the drain current of
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a saturated nMOS transistor with its source tied to the bulk, and its gate voltage
referred to the same bulk, can be expressed by:

VG-V'm
ID=Ise nUr (19)

with Is as defined in equation (2) and Vi the threshold voltage of the
transistor. This shows that the drain current depends exponentially on the gate
voltage. A spatial voltage distribution which decreases linearly with distance is
easily created using a resistive polysilicon line; if there is a voltage difference
between the two ends of the line, the voltage on the line will decrease linearly
all along its length. It is therefore possible to create a filter cascade with an
exponentially decreasing cut-off frequency by biasing the amplifiers of Figure
3.6 using MOS transistors whose gates are connected by equal lengths of the
polysilicon line (Lyon and Mead, 1988).

As we can see in equation (19), however, the drain current also depends
exponentially on the threshold voltage and small variations in Vi will
introduce large variations in the drain current. Because both the cut-off
frequency and the quality factor of the filters are proportional to these drain
currents, large parameter variations are generated by small Vg variations. An
RMS mismatch of 12% in the drain current of two identical transistors with
equal gate and source voltages is not exceptional (Vittoz, 1985), even when
sufficient precautions are taken.

I have circumvented this problem by using CMOS Compatible Lateral
Bipolar Transistors (CLBTSs) as bias transistors. A CLBT is obtained if the drain
or source junction of a MOS transistor is forward-biased in order to inject
minority carriers into the local substrate. If the gate voltage is negative enough
(for an n-channel device), then no current can flow at the surface and the
operation is purely bipolar (Vittoz, 1983; Arreguit, 1989). Figure 3.9 shows the
major flows of current carriers in this mode of operation, with the source, drain
and well terminals renamed emitter E, collector C and base B.

Vgc<0

Sub B 0—

hy) Ty m?v‘ﬁ_?_ T g 4
Lyt
E

Z *~ electrons n

Figure 3.9 Bipolar operation of the MOS transistor : carrier flows and symbol.

Since there is no p+ buried layer to prevent injection to the substrate, this
lateral npn bipolar transistor is combined with a vertical npn. The emitter
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current Ig is thus split into a base current I, a lateral collector current I¢ and a
substrate collector current Is,,. Therefore, the common-base current gain o = -
Ic/Ig cannot be close to 1. However, due to the very small rate of recombination
inside the well and to the high emitter efficiency, the common-emitter current
gain B = Ic/Ig can be large. Maximum values of o and P are obtained in
concentric structures using a minimum size emitter surrounded by the collector
and a minimum lateral base width.

For V¢e = Vgg-Vpe larger than a few hundred millivolts, this transistor is in
active mode and the collector current is given, as for a normal bipolar transistor,
by

Ve

Ic=Is, e Ur (20)

where Ig, is the specific current in bipolar mode, proportional to the cross-
section of the emitter-to-collector flow of carriers. Since I¢ is independent of the
MOS transistor threshold voltage Vp, the main source of mismatch of
distributed MOS current sources is suppressed, when CLBTs are used to create
the current sources.

A disadvantage of the CLBT is its low Early voltage, i.e., the device has a
low output resistance. Therefore, it is preferable to use a cascode circuit as
shown in Figure 3.10. This yields an output resistance several hundred times
larger than that of the single CLBT, whereas the area penalty, in a layout as
shown in Figure 3.10b, is acceptable (Arreguit, 1989).

CO £ =
n+ diffusion poly-Si p+ diffusion
@ = ®

Figure 3.10 CLBT cascode circuit (a) and its layout (b).

Another disadvantage of CLBTSs, when biased using a resistive line, is their
base current, which introduces an additional voltage drop on the resistive line.
However, since the cut-off frequencies in the cochlea are controlled by the
output current of the CLBTs and since these cut-off frequencies are relatively
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small (typically 20 kHz or less), the output current of the CLBTs will be small.
If the common-emitter current gain 3 is much larger than 1, the base current of
these CLBTs will be very small compared to the current flowing through the
resistive line and the voltage error introduced by the small base currents will be
negligible. Furthermore, since the cut-off frequencies of the cochlea will
typically span 2 decades with an exponentially decreasing cut-off frequency
from the beginning to the end, only the first few filters will have any noticeable
influence on the current drawn from the resistive line.

3.2.8 The ssilicon cochlea

The final design of the silicon cochlea is shown in Figure 3.11. It uses the
cochlear sections shown in Figure 3.7, CLBTs as the bias transistors of each
filter, and one resistive line to bias all CLBTs.

4 4 Vdiff; [d
Cochlear| .. _JlCochlear| . . _JCochlear
Section Section Section ‘Icf '
Icfi § ‘lqi bl

Lt | | Pive

4

resistive line

Figure 3.11 The improved silicon cochlea.

The cut-off frequencies of the first and the last low-pass filters in the cascade
can be set by applying voltages to both ends of the resistive line, and the
intermediate filters will have a cut-off frequency decreasing exponentially from
the beginning to the end. Yet, if we directly apply a voltage to the ends of the
resistive line, the actual cut-off frequency obtained will depend on the
temperature, since the current depends exponentially on the applied voltage
normalised to the thermal voltage Ur. It is therefore better to create the voltages
at both ends of the resistive line on-chip using a current biasing a CLBT with its
base connected to its collector. If this base voltage is buffered, so that the
current through the resistive line is not drawn from the input current, the bias
currents of the first and last filter — and thus the cut-off frequencies of all
filters — can be set, independent of temperature.

A similar structure is used to create the voltage source Vg to control,
independent of temperature, the actual quality factor of each section. The actual
bipolar current mirrors implemented use the cascode structure shown in Figure
3.10a; however, this is not shown in Figure 3.11 for clarity.
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3.2.9 Test results

The proposed silicon cochlea has been integrated using the ECPDI1S5 (1.5 pum)
technology of ES2 and contains 104 second-order stages on a 4.77mm X
3.21mm die. Every other stage is connected to a pin so its output voltage can be
measured. In Figure 3.12, frequency response curves after on-chip derivation
are shown for the output taps of both the cochlea described by Watts, et al.
(1992) (a), and the improved version (b). This clearly shows the improved
regularity of the cut-off frequencies and the gain obtained using CLBTs. The
drop-off in gain for the higher frequency stages Figure 3.12(b) is a border
effect, since at the beginning of the cochlea no accumulation of gain has yet
taken place. In the figure on the left this is not visible, since the first nine
outputs are not presented.
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Figure 3.12 Measured frequency responses at the different taps for a) the original
cochlea by Watts, et al. and b) the improved version.

Figure 3.13 shows the cut-off frequency versus tap number of both chips.
Ideally, this should be a straight line on a log-linear scale, since the cut-off
frequency decreases exponentially with tap number. This also clearly shows the

improved regularity using CLBTSs as current sources.
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Figure 3.13 Cut-off frequency (Hz) versus tap number for a) the silicon cochlea by
Watts, et al. and b) the improved version.

3.2.10 Discussion

In the above section we have seen that the silicon cochlea using CLBTs
offers an improvement over previously realised silicon cochlea. Because of the
reduction of mismatch in the bias currents of the different filter sections, the
maximum gain is almost the same for each output and spacing of the cut-off
frequencies is almost perfectly exponential. In Figure 3.14 we compare the
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shape of the biological filter functions with the ones from the silicon cochlea.
The basilar membrane displacement in the squirrel monkey was measured by
Rhode (1991) at two points, 1.5 mm apart on the basilar membrane. The gain is
the ratio between the basilar membrane displacement and malleus displacement.
The two sets of points are the actual measurements, and the curves are the best
fits as calculated by Rhode.
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Figure 3.14 a) Filter gain in the squirrel monkey at 2 points (Rhode, 1971), and b) gain
of the silicon cochlea at S different output taps.

Since the scale factor in both graphs is the same, the curves from the silicon
cochlea should ideally have the same form. The main difference between the
electronic and biological curves lies in the region of the peak gain, the silicon-
cochlea curve being much wider around this point. A higher Q factor setting for
the cochlear filters would make the filters more selective, but the gain would
quickly increase to very large values, and the internal noise accumulated over
all the previous sections in the filter cascade will be amplified to values that
saturate the transconductance amplifiers in the filters so that the filters do not
function properly anymore. It is also worth noting that the biological curves
were measured at an intensity of 80 dB SPL, which is quite high; in Figure 2.10
we have seen that this yields response curves with a low selectivity. So one
output of the silicon cochlea is even less selective than a point on the basilar
membrane of a biological cochlea when the latter is at its least selective.

Another problem with the use of the current filter cascade, which is not
shown in the above measurements, is that the delay between the output signal at
a given filter stage and the input signal depends on the number of stages before
the current stage. This means that if we increase the resolution, i.e., the number
of filters in a given frequency range, the delay accumulated over this frequency
range increases. In the biological cochlea, the delay over the auditory frequency
range is fixed and is about 5 ms at the apex of the cochlea (von Békésy, 1960),
which limits the maximum number of filters we can have in the cascade.

Notwithstanding these disadvantages of the current implementation, the
second-order low-pass filter cascade offers a simple way to implement
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exponentially scaled filters that approximate the shape of the auditory filters,
with their shallow low-frequency slope and their steep high-frequency cut-off.

3.3 The inner hair cell model

3.3.1 Modelling the static inner hair cell voltage response

Although the fine details of the operation of the inner hair cell are still not
fully understood, we know enough of the input/output relation of the inner hair
cell to construct an electrical model. Figure 2.12 shows us that the relation
between bundle deflection and the percentage of open ion channels has a
sigmoidal form with a certain offset, so that 20% of the channels are open at
equilibrium.,

This can be easily modelled using a differential pair (see Figure 3.15) for
which the current I, through transistor T, is a sigmoidal function between 0
and I, of the input voltage Vin = Vi, — Voo, as we will see in the measurement
of Figure 3.18. By using a differential pair with one transistor (Ty) four times as
large as the other (T,), only 20% of the bias current will flow through the
smaller transistor (T,) when Vj, equals zero.

Compressive Bias * Low-pass
IO function :: generation :i filtering

Figure 3.15 Circuit model of the frequency dependence of the intracellular voltage
changes on the stimulus frequency.

3.3.2 Modelling the dynamic inner hair cell voltage response

The inner hair cell not only functions as a saturating non-linearity. As we can
see in Figure 2.13, the inner hair cell also functions as a low-pass filter with a
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cut-off frequency of about 1kHz. This means that we will have to create a low-
pass filter with a time constant equal to T = 1/2nf = 0.16 ms to model this
effect.

Obtaining such large time constants is one of the main problems in modelling
comparatively slow brain elements with analogue VLSI circuits. If the linearity
of the filter is not an important issue, then large ‘time constants’ can be realised
using the current mirror shown in the low-pass filter blocks in Figure 3.15. This
current mirror creates a non-linear low-pass filter for which I, controls the
maximum rise speed and Lyoun Sets the maximum fall speed of the voltage on the
capacitor C;. We will take a closer look at the behaviour of this non-linear low-
pass filter in the following section.

3.3.3 Analysis of the non-linear low-pass filter

It is complicated and not very informative to analyse such a non-linear filter
completely, but we may obtain an intuitive understanding of the behaviour of
the circuit by looking at its response to a large increase and a large decrease in
the signal current I, ‘Large’ in this context means a change in I, larger than
either I, or Lyown. Since we want large time constants, I, and Ly,uy will be very
small, so that any change in I, will be large by default.

With an increase in I larger than I,;, the voltage V; will quickly rise to a
voltage close to the positive power supply. This will make the diode-connected
transistor Ts in series with T3 conduct, which raises the drain voltage of T, so
that T is saturated. We assume that the starting level of I, was higher than
Isown, and transistors with a common gate connection in Figure 3.15 have the
same device geometry. In this case the difference in source and gate voltages
will be small for T, so that we can ignore its contribution. We can then write
for the voltage V on the capacitor:

dvc Vip - Vpo-n Ve Vi - Vo _'&
C_dt—=IS3e nUs =Is;e "Ur eUr 21)

with I5; defined as s in equation (2) applied to transistor Ts.

The bias voltage V., is generated using I, and a copy of L, which ensures
that V,; adapts to the signal level. With V,, independent of the signal current,
there would be a limit to the capacitor voltage V. above which C, can not be
charged. Furthermore, the maximum current through T; would then depend
strongly on the level of Ig,.

With I, much larger than I, we can simplify the calculation of the bias
generation, assuming only l,; going through T’ and only I,; going through T;'.
Also, because V,;, will change much faster with a change in I, than V, we will
assume the change in V, to be instantaneous. We can then write for V,:
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-L—V “Vm Isig 5 _\ﬁ';
Ise nUr =1, (E] e Ur (22)

and substituting (22) in (21) yields:

dv, L) YmVe
3t =l )¢ Ur (23)
which we can rewrite as:
Ve NV Vg
A3 L Lig) -2
eUrdV, =17 |e Urdt (24)
Isy

and solve for V.

Yoo Ip (Igg) Yoo Yo
eV (_Je Urg +eUr (25)

o

T =C Uy

where Vg is the value of V. immediately before the input signal change.
With ;

Vc - Vm
Lu=Isie " Ur (26)
we obtain for the output current:
t Inp 1/n
L= ETJ_T. Lig + fouo 27

where I, is the output current immediately before the input signal change.

The above equation is only valid as long as V, remains high enough to keep
the transistors charging the capacitor saturated. When I, approaches Lz, V)
will approach V. and at equilibrium V; will be equal to V.. As an approximation
we can assume equation (27) to be valid until the moment I, becomes equal to
Lig, after which it stays constant.

For a large decrease in I, Vy will decrease to a value close to the negative
power supply. The diode-connected transistor prevents the capacitor from
discharging through Ti. With V| so close to the negative power supply, the two
transistors T,' and T form a approximate current mirror so that we can write for
the voltage on the capacitor :

dv,
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which yields for Iy, :

-Tsows t
Ioul = IoulO € CoUr (29)
Again this equation is only a valid approximation as long as V) stays close to
the negative power supply. However, to simplify this analysis, we will assume
that (29) is valid until I, becomes equal to I, and that I, is constant after
that.
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Figure 3.16 Step response of the low-pass filter block of Figure 3.15 compared with an

ideal low-pass filter.

Figure 3.16 shows the results of equations (27) and (29) for two different
input steps, 90 nA and 10 nA, when I, is 10 nA at rest. In these figures, I is
the input to the filter, Izc the output of an ideal low-pass filter, and I, the
waveform obtained by applying equations (27) and (29). As we can see, this
waveform is asymmetric and its ‘time constant’ isn’t constant, but increases
with signal level.

Louz (Figure 3.16) is the response obtained by fixing V., independently of the
signal level to an arbitrary value chosen to obtain a slightly slower response to
the 90 nA increase of .. However this setting responds much too fast to a
small positive change in I, as shown by the response to a 10 nA step, where
Iouz follows the rising flank of I, instantaneously. Therefore, although this
solution is simpler, it can not be used when the amplitude of the input signal
changes over an order of magnitude or more.

The response to the decreasing step of I is also faster for the smaller step,
but not by so much as to rule out the use of this solution.

3.3.4 Hair cell adaptation

Finally, Figure 2.14 shows that the conversion of the intracellular voltage
into neuro-transmitter release shows adaptation to the stimulus. (In fact, Figure
2.14 shows a histogram of the spikes measured on a single auditory nerve fibre,
but since the spiking probability of a spiral ganglion cell is directly proportional
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to the probability of neuro-transmitter release by the inner hair cell it contacts,

: : A i u
Compressive Bias : Low-pass i Low-pass

IO function i generationi; filteing i filtering

Figure 3.17 An electronic inner hair cell model

A form of adaptation similar to the one shown in Figure 2.14 can be obtained
by taking the difference between I, and a second low-pass filtered version of
Lig. The same structure as shown in Figure 3.15 can be used to create the second
low-pass filtered version of I,. When we use a larger capacitor in the second
low-pass filter, I will react more slowly to an onset of Iy, than I, does. In the
circuit I have used C, = 3C,. The final circuit modelling the input/output
relation of the inner hair cell is given in Figure 3.17. The actual output current
will be created with an additional current mirror, not shown in Figure 3.17 for
clarity. This yields Ly = Ij - AL + Lo, where A is the gain of the mirror and
controls the ratio between the peak response and the sustained response of the
circuit. A should be smaller than one in order to keep a sustained response to
the input signal. kon sets the ‘spontaneous rate of firing’ of the inner hair cell
model.

3.3.5 Test results

The four inner hair cell circuits have been realised in ES2’s ECPD10 (1.0
um) technology on a 1 mm?® die. All parameters are shared between the four
IHC circuits, but they have separate inputs and outputs.

Figure 3.18 (right) shows the measurements of the current I, which is the
equivalent of the intracellular voltage in the real inner hair cell, as a function of
the input voltage. Comparison with the intracellular voltage response to hair
displacement of the real inner hair cell shows good agreement between the two.
Although the differential pair has been designed to have an output current equal
to 20% of the maximum current at zero input voltage, the measurement shows
an output current equal to 30% of the maximum current in this case. This is
probably due to the mismatch of the differential pair transistors.
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Figure 3.18 Measured voltage response to hair displacement of the inner hair cell (left)
and measured output current as function of input voltage from the IHC circuit (right) for
constant input signals.
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Figure 3.19 Intracellular voltage response of the inner hair cell (left) and measured I,
changes from the [HC circuit for different frequencies of pure tone stimulation. Note the
change of scale for the lower five traces.
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Figure 3.19 compares the response of I; (measured before the adaptation
stage) with the intracellular voltage response of an inner hair cell to pure tone
stimulation at frequencies between 300 Hz and 5 kHz. The difference in the
onset and offset of the response between the inner hair cell and the IHC circuit
in Figure 3.19 is due to differences in the stimulus tone. In our measurements
we used a tone burst with a square envelope, whereas Palmer and Russell
(1986) used a stimulus with a gentle onset and offset.
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Figure 3.20 Auditory nerve fibre response (left) and the output of the electronic inner
hair cell circuit after the adaptation stage (right).

The final output current of the circuit in is given by: Iy, = G(I; - Al; + Ipon).
Using Igpon, A, G, Vyp and Vgoun allows us to create an output signal (Figure
3.20b) similar to the PSTH of a single auditory nerve (Figure 3.20a) when
stimulated with a 5 kHz pure tone.

3.3.6 Discussion

Even though we can get good agreement between the measurements of the
inner hair cell and of the IHC circuit, several discrepancies must be noted.
These are related to the non-linearity of the low-pass filter, the fact that we use
a continuous output current instead of spikes, and the manner in which
adaptation is obtained.

Low-pass filtering

The fact that the time constant of the non-linear low-pass filter gets smaller
for smaller changes in I, shows up in Figure 3.19 in the lower traces. In the 5
kHz trace, the a.c. component should be invisible, but because the time constant
is short for a very small input change, the time constant will also be short for the
first small part of a very large input change. This makes the a.c. component
larger than it should be for the high frequency traces, but this has negligible
effect on the spike timing of the spiking neurons for which this IHC signal is
the input, as we will see in later chapters.
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The fact that the match between the receptor potential and I, depends on the
level of the input current and thus ultimately on sound intensity is another
discrepancy, also related to the fact that the real inner hair cell behaves more
like a linear low-pass filter than the IHC circuit.

A solution to these problems might be obtained by the use of so-called log-
domain filters (Frey, 1993). These allow low-pass filters to be implemented in
the current domain with only a few transistors; the filters will stay linear as long
as the MOS transistors stay in weak inversion, or over a much larger range
when bipolar transistors are used. I have discovered the possibilities offered by
these circuits too late to implement and test the behaviour of such filters, and
therefore 1 shall not present them here. However, if they work as well in
practice as in theory, they should correct the sound intensity dependence of the
current IHC circuit. Moreover, they would also allow the differential equations
of existing models, such as Meddis' inner hair cell model, to be directly mapped
onto silicon.

Spikes vs. current output

Figure 3.20 shows that the output current of the IHC circuit to a 5 kHz tone
burst can be made to resemble the average number of spikes of an auditory
nerve fibre after multiple stimulations at this frequency. However, the output
current of the circuit is a continuous variable, whereas a spike is either present
or absent. When a packet of neurotransmitter is released into the synaptic gap
between the inner hair cell and a spiral ganglion cell, the ganglion cell almost
always generates an auditory nerve spike. The number of AN spikes at any
given time in Figure 3.20 is thus proportional to the instantaneous probability of
transmitter release, which is a continuous variable. We can therefore use the
output current of the IHC circuit as an analogue of the instantaneous spike
probability. Since about ten spiral ganglion cells synapse with a single inner
hair cell, and neighbouring inner hair cells receive almost the same stimulus
from the basilar membrane, an alternative way to think of the circuit’s output
current is as an analogue of the average spiking rate of a group auditory nerve
fibres that contact inner hair cells along a small zone along the basilar
membrane. In chapter 5 we will return to the relation between the IHC circuit’s
output and the spikes on the auditory nerve, when we will compare the spiking
behaviour of the spiking neuron circuit with some neurons in the cochlear
nucleus which are innervated by the auditory nerve.

Adaptration

Although subtracting the two low-pass filtered currents as in Figure 3.20b
yields an adaptation that looks similar to the adaptation due to the depletion of
available neuron transmitter as in Figure 3.20a, there is a basic difference
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between the two adaptations. The reduction of available neurotransmitter
changes the gain between receptor potential and the amount of neurotransmitter
released and is thus a multiplicative process, and not a subtractive process as in
the circuit. This is visible in Figure 3.20 after the off-set of the tone burst.
Whereas the gain of the inner hair cell remains reduced and slowly recovers, the
value of Loy = G(I; - Al + Iipon) becomes negative when Igpon is small. Because
the actual output current of the circuit passes through a current mirror, which
truncates the signal to values larger than or equal to zero, we do not see this
clearly in Figure 3.20b. Consequently, there is only a small difference between
the reaction of a real inner hair cell and the circuit to the offset of tone burst.

The situation is different, however, when the inner hair cell is stimulated with
a continuous high frequency tone which is stepped up and down in amplitude.
We can see in Figure 3.20a that after adaptation the gain between the input of
the inner hair cell and the spike rate on the auditory nerve is only a third of what
it was at the onset. This is shown by the fact that the onset spike rate is three
times higher than the sustained rate. Now let us consider the case where 50 ms
after the onset of the tone the amplitude of the tone is increased again by a
factor of three instead of being switched off. At first this will increase the spike
rate by a factor of three, i.e., again to 150 spikes per bin width, but a new
adaptation will take place so that the sustained rate will be lower. However, the
sustained rate for the higher intensity sound will remain higher than the
sustained rate for the lower intensity. Let us assume that the gain adapts from
one-third to one-fifth. The sustained rate will then become 90 spikes per bin
width for the second tone. When we now reduce the amplitude of the tone by a
factor of three to its original value, the spike rate will first reduce by a factor of
three to 30 spikes per bin width, and then slowly adapt back to a sustained rate
of 50 spikes per bin width. I have schematically drawn this in Figure 3.21a.
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Figure 3.21 Schematic representation of the response of an inner hair cell (a) and the
IHC circuit (b) to changes in amplitude of the stimulus tone.
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The inner hair cell circuit will behave differently. The output current of the
circuit is given by: Loy = G(I; - Al + Igpon) and I is almost zero. If we assume
for the sake of simplicity that I; follows the change in the input signal
instantaneously, and only 1, is a low-pass filtered signal, it is easy to see that the
adaptation gain A has to be 2/3 in order to obtain a sustained output of 50 nA
when the peak output is 150 nA as in Figure 3.20b. In reality I, is also low-pass
filtered but with a time constant shorter than I; I, doesn’t change
instantaneously, but still a lot faster than [,. Ignoring this, we can write in the
adapted situation: GI; = 150 nA and GAI; = 100 nA. Both G and A are
constants which can be modified externally, but do not vary as a function of the
input signal. Increasing the input amplitude by a factor of three, 50 ms after the
onset of the tone, will thus yield a peak current of 3*150-100 = 350 nA, and I,
will then start to increase to a three times higher value, so that the sustained rate
becomes 150 nA. Reducing the input amplitude by a factor of three will make
GI, equal to 150 nA again, and GAl; will stay at first at 300 nA so that I,
should become -150 nA, but since it is limited to positive values, I, reduces to
O nA.

I've drawn this behaviour in Figure 3.21b. Of course the assumption that I;
responds instantaneously exaggerates the onset and offset response of the IHC
circuit, but it serves its purpose in showing clearly how the IHC circuit’s
response — a subtractive process — differs from the response of an inner hair
cell — a multiplicative process.

This problem with the THC circuit will have to be corrected if we want to
build an electronic hearing system which behaves like the human auditory
system in every situation. However, in the more limited experiments currently
performed in the domains of auditory physiology and psycho-acoustics,
relatively simple stimuli are used, and the IHC circuit can be set to respond
nearly correctly for a given stimulus. One of the stimuli often used is a short
burst of sound, like in Figure 3.20, for which the adaptation can be set correctly.
Other stimuli used are those with relatively long durations, for which the onset
and offset responses are not important because most information is taken from
the sustained rate. This is for instance the case in the pitch detection
experiments presented in chapter 7, for which amplitude modulated continuous
pure tones are used. Although the modulation of the amplitude at very low
frequencies has an effect on the adaptation by the inner hair cell, this effect is
negligible for modulation frequencies in the 100 Hz range. In these experiments
we can thus switch the adaptation in the IHC circuit off (A = 0), and adapt the
gain G to reflect the gain in the sustained situation.
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3.4 Summary

In this chapter, I have presented a working analogue VLSI model of the
basilar membrane. This silicon cochlea has been tested and showed a good
regularity in its frequency gain curves and the spacing of its cut-off frequency.
Even though the silicon cochlea is much less-frequency selective than the
biological cochlea, even at high sound intensities, it still offers a relatively
simple way to model the exponential filtering of the basilar membrane.

I have also presented an electronic inner hair cell model. This IHC circuit has
also been tested and measurements of the equivalent of the intracellular voltage
of the inner hair cell shows good agreement with measured voltages in the
biological inner hair cell. Furthermore, an adaptation similar to the adaptation
seen on the auditory nerve can be obtained.
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4. The Spiking Neuron

4.1 Introduction

In the previous chapter I have shown that it is possible to simulate the
auditory periphery using analogue VLSI hardware with a certain amount of
fidelity. While further design improvements are certainly possible, we can say
that it is now possible to simulate the response of the human ear using
electronic circuitry. This will provide the necessary basis for extending the
scope of VLSI circuits into the auditory pathway, in which the bulk of the signal
processing is performed by spiking neurons (Figure 4.1).

Auditory Cortex
Medial Geniculate Body

Inferior Colliculus and
Lateral Lemniscus Nuclei

Cochlear Nucleus
Superior Olivary Complex—
Cochiea

Figure 4.1 Simplified diagram of the auditory pathway. The projections to the Inferior
Colliculus on the left are omitted for clarity.

Before we can start creating electronic models of neural circuits in the
auditory pathway, we will therefore have to understand and model these spiking
neurons. In this chapter we will look at the electrophysiology and anatomy
underlying the spiking behaviour, and in the next chapter 1 will develop an
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electronic model of this spiking behaviour. Most information on the operation
of the spiking neuron in this chapter is taken from Kandel, et al. (1991)
and Alberts, et al. (1983).

4.2 Passive membrane properties

Figure 4.2 shows a drawing of a typical nerve cell, or neuron. Although they
come in many different shapes and sizes, most neurons possess the different
features shown in this figure. The neuron receives input from other nerve cells
by synapses on its dendrites and on its soma (cell body), and the output of a
neuron travels as a spike on its axon to other neurons.

pre-synaptic  post-synaptic  synaptic potential action potential
action potential potential + action potential

4~ A 1

Dendrites Axon hillock Node of
Ranvier

-« Axon
Myelin sheeth

Synapses

Figure 4.2 A typical nerve cell and the potentials at the different sites

The inside (cytoplasm) of the neuron is separated from the extracellular fluid
by the cell membrane, which envelops the whole neuron. Like all other cells in
the body, neurons expend about 30% of their metabolic energy in pumping
sodium ions out of the cell and potassium ions into the cell. The cell membrane
contains ion pumps, embedded enzymes that transfer 3 Na* ions out of the cell
for every 2 K ions pumped into the cell. This charges the interior of the cell
negatively and creates a concentration gradient for these ions, with a high
potassium concentration inside the cell and a high sodium concentration
outside. These gradients serve to actively transport other molecules into or out
of the cell by chemically binding to these ions. Most cells in the body have
membranes that are mainly permeable to potassium; the concentration gradient
causes potassium ions to leak out through ion channels selective to K*. This
charges the cell even more negatively with respect to the extracellular fluid,
which in turn reduces the flow of the positively charged potassium ions. At the
same time, sodium slowly leaks into the cell through sodium channels in the
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membrane. Equilibrium is reached when the passive currents of both ions
through the cell membrane are counter-balanced by the Na*-K* pump.

A third ion influencing the resting potential of the neuron is chloride. All
neurons contain chloride channels. Because the chloride concentration is largest
outside the cell, CI" leaks into the cell until the electrical force generated by the
membrane potential counter-balances the chemical force created by the
concentration gradient and no more Cl' jons pass the membrane. This
equilibrium potential for an ion is called the Nernst potential, after the German
chemist Walter Nernst, and can be calculated with the following formula:

ion
Eion=2ZUrln ([i%ﬂ]f] (30)

where Z is the valence of the ion, Uy is the thermal voltage kT/q (27 mV at
body temperature), and (ionl, and [ion); are the ion concentrations outside and
inside the cell. In neurons that do not have a CI" pump in addition to the Na*-K*
pump, the Nernst potential for the chloride ions E¢) will be equal to the resting
potential of the cell, Ez. Some neurons do have a chloride pump that actively
pumps out chloride, which increases [Cl']/[Cl']; and thus makes Ec more
negative than Eg.

Vu Inside
ENa 243 gcl
—cCy
Ena Eg Ec
Outside

Figure 4.3 Equivalent electrical circuit for the membrane at rest.

It is the local charge separation across the cell membrane that creates the
local membrane potential. Changes in membrane potential during activity of the
neuron are thus created by changes in local charge separation across the
membrane, not by changes in bulk concentration. For normal operation we can
therefore consider the concentrations of the different ions inside and outside the
cell to be constant and use them to calculate the Nemnst potentials for each ion.
In the nerve cells in the brain the Nernst potentials of the three ions are
approximately: Ex=-75 mV, En,=+55mV, and Ec=-60 mV. Whenever the
membrane potential Vy is moved away from the Nernst potential for a given
ion, the electromotive force will drive the ions into or out of the cell, depending
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on the direction of change of V). The amount of ions crossing the cell
membrane is directly proportional to the potential change and to the
permeability of the membrane for that ion, which is proportional to the number
of ion channels for that ion in the membrane. This chmic relation can be
modelled with an equivalent electrical circuit in which conductances are
connected in series with batteries representing the Nernst potentials of the ions,
as shown in Figure 4.3.

4.3 Action potential generation

Apart from the ion channels which are always open, the nerve cell also has
ion channels whose conductance of a particular ion depends on the membrane
voltage. These voltage-dependent conductances control the generation of the
action potential (spike). The simplest neurons have only one voltage-dependent
type of jon channel for potassium and one for sodium, but more complex
neurons, such as the fusiform cell in the dorsal cochlear nucleus of the central
nervous system, have at least three types of voltage-dependent potassium
channels and two types of voltage-dependent sodium channels. We can
incorporate these voltage-dependent conductances in the equivalent electrical
circuit. Since the passive conductances of Figure 4.3 do not change, we can
simplify the circuit by lumping these together and connecting them to a battery
with a value equal to the resting potential of the neuron. In the simplest case this
yields the circuit of Figure 4.4.

A model as in Figure 4.4 was originally developed by Hodgkin and Huxley
(1952) to describe the generation of action potentials in the squid giant axon.
According to their model, the following sequence of events takes place: A
depolarisation of the membrane, i.e., an increase in Vy, causes rapid opening of
sodium channels, and sodium is thus driven into the cell following its
concentration gradient. The influx of sodium depolarises the membrane further,
causing more sodium channels to open and resulting in even more sodium
entering the cell. This positive feedback generates the action potential, which
causes the membrane potential to rise towards En,. Two factors limit the
duration of the action potential. (1) A second, slower process gradually
inactivates the sodium channels, which stops the sodium influx. (2)
Depolarisation of the cell also opens voltage-gated potassium channels with
some delay, which creates an outflow of potassium ions. The first factor alone
would be sufficient to slowly return the membrane potential to the resting
voltage, due to the leakage of sodium ions across the cell membrane. However,
the opening of the potassium channels increases the speed of repolarisation of
the cell by a large factor. The sodium channels stay inactivated and the
potassium channels remain activated for a while after an action potential. This
causes the so-called refractory period of the neuron, divided in two parts: the
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absolute refractory period during which it is impossible to generate a new action
potential because the sodium channels are still inactivated, and the relative
refractory period, during which a stronger than normal stimulus is needed to
generate an action potential, because the potassium channels are still open after
the sodium channels de-inactivate.

Inside

537

Outside

Figure 4.4 Equivalent electrical circuit including two voltage-dependent conductances.

Although the voltage-dependent conductances always change in a strictly
graded manner, this model still exhibits a threshold-type behaviour for the
generation of action potentials. A depolarisation will create a net influx of
sodium, but will also increase the outward potassium current, and an outward
leakage current through the passive ion channels. If the depolarisation is below
threshold, the inward sodium current will be counterbalanced by the outward
currents. However, the great voltage sensitivity of the sodium channels, together
with the rapid kinetics of these channels, ensure that the inward sodium current
exceeds the outward currents from the threshold voltage onward, and an action
potential will be generated.

Other voltage-dependent conductances can be readily included in this model.
They will alter the reaction of the cell to a given stimulus, thereby creating
some of the more complex spiking behaviours.

4.4 Leaky-integrate-and-fire neuron model

Although the Hodgkin-Huxley model presented in the previous chapter is
excellent for gaining insight in the way neurons generate spikes, it is not suited
for implementation on silicon, since it will yield very large neuron circuits due
the complexity of the Hodgkin-Huxley model. In their model, each voltage
controlled conductance is governed by a set of equations. For instance, the
equations for the sodium channels are:
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gNa = ENaMaxTh,
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where Vi is the membrane potential normalised to 1 mV and gnama is the
maximum sodium conductance, m is the sodium activation variable and h is the
sodium inactivation variable, both dimensionless quantities between 0 and 1.
The values in the expressions for Om, PBm, Oy, and P, where determined
empirically using curve-fitting for the squid giant axon by Hodgkin and Huxley.
Other voltage-dependent membrane conductances can be modelled with similar
sets of equations.

A much simpler way to capture the essentials of neural spike generation is
used in the leaky-integrate-and-fire (LIF) neuron model (Lapique, 1907). In this
model only the passive membrane properties of the Hodgkin-Huxley model are
kept, i.e., the 'leaky integrator' consisting of the membrane capacitance and the
leakage conductance. Instead of modelling the voltage-dependent conductances,
the model introduces an explicit spiking threshold for the membrane potential.
We can describe this model with the following equations:

dvum()
Cv—gr =iM)-8.Vm(®), VM <V (32)

If Vm(t) = Vg : set t, =t and generate a spike,

att=t;+ Ts:set V(1) =0, (33)

where i(t) is the input current, Cy the membrane capacitance, g, the leakage
conductance, Vy(t) the membrane voltage, Vy the threshold voltage, Ts the
width of the spike, and t; is the time t when Vy(t) reaches V4. Equation (32)
describes the leaky-integration of the input current on the membrane
capacitance. In the absence of an input current, Vy will return to zero due to the
leakage conductance. Equation (33) describes the spike generation process.
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Whenever Vy reaches the threshold V, a spike is generated and after a short
delay Ts Vy is reset to its resting value. Normally Ts is considered zero in the
LIF model, but since in the next chapter we will be dealing with a real circuit
for which it is impossible to generate a spike of zero width, I will explicitly
inciude Ts in the model here.

With a constant input current i, the LIF neuron will need a constant time T,
after the reset operation to reach the spiking threshold. Integrating (32) and
solving for Vy = Vj yields:

Tyt ] 34
e \i-aVe (34)
The LIF neuron will thus spike regularly, for a constant input current, with a
frequency given by:

1
fspike = m—s

The above model does not model the refractory period of a neuron, although
this is an important element in the spike generation process. It is however
straightforward to add this to the model by introducing a time Ty after the
generation of a spike during which the membrane potential is forced to zero (see
for instance Tuckwell, 1988). In this case the spike frequency for a constant
input current is given by:

35)

1
fspike = T] + Ts + TR

We can furthermore force the membrane potential of the LIF neuron to Vg
whenever a spike is generated. This serves no functional purpose, but is a
simple way to model the evolution of Vy at the axon hillock of a neuron. This
evolution is shown in Figure 4.5 when the neuron is stimulated with a constant
input current.

(36)
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Figure 4.5 Typical evolution of the membrane potential in the modified LIF neuron for
a constant input current.

4.5 Interactions between neurons

Neurons send their spikes to other neurons over their axon and contact other
neurons through synapses. Longer axons are myelinated, which increases the
distance between the intracellular fluid in the axon and the extracellular fluid,
thereby reducing the capacitance of the axon. This increases the transmission
speed of the action potential along the axon. The myelin sheet is furthermore
interrupted at regular distances along the axon, at the so-called “nodes of
Ranvier”, to allow regeneration of the action potential by the opening of sodium
channels in the membrane.

Synapses come in many different shapes and sizes, and the details of their
operation vary widely. Some synapses are entirely electrical, but most synapses
release a chemical substance (neurotransmitter) into the cleft between the pre-
synaptic and the post-synaptic membrane upon arrival of a spike at the pre-
synaptic terminal. This neurotransmitter binds with special receptors in the post-
synaptic cell, causing specific ion channels to open. The type of
neurotransmitter used depends on the type of synapse and its effect depends on
the type of receptor.

The most common neurotransmitter in the brain is glutamate, which is always
excitatory; at least four different classes of glutamate receptors have been
identified however. The end effect of glutamate release is the opening of ion
channels which are permeable both to sodium and potassium ions, and
sometimes to calcium ions. Because the channels are more permeable to sodium
than to potassium, their effect on the post-synaptic cell is still a net influx of
positively charged ions. This creates an Excitatory Post-Synaptic Potential
(EPSP).

The principal inhibitory neuro-transmitters in the brain are GABA and
glycine, which open CI' channels in the post-synaptic cell. If the Nernst
potential for chioride is lower than the resting potential of the post-synaptic
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neuron, then the opening of chloride channels will hyperpolarise the cell and
create an Inhibitory Post-Synaptic Potential (IPSP). However, if the post-
synaptic cell doesn’t contain a C1" pump, the Nemnst potential for chloride will
be the same as the resting potential of the cell and no IPSP will be created. The
increased chloride conductance will make it harder for excitatory synapses in
the neighbourhood to increase the membrane potential, resulting in so-called
shunting inhibition.

It takes time for neurotransmitter released from a pre-synaptic cell to bind to
the different ion channels. This introduces a delay, typically 1 ms or more,
between the arrival of the pre-synaptic spike and the opening of the ion
channels. Once the transmitter is bound to the channel it will have to be
removed chemically, which will also take a certain amount of time, so that the
ion channels will stay open for a short duration. Once the ion channels are
closed again, the neuron will return to its resting state; the time course will
depend on the time constant of the neuron.

Both the dendrites and the soma are relatively poor in voltage-dependent
sodium channels. Potential changes at these sites will not create an action
potential, but are passively transmitted along the cell membrane. At the start of
the axon — the axon hillock — the voltage-dependent sodium channels become
numerous, and it is here that the action potential is generated and transmitted
along the axon.

Up to now, we have considered the neuron to be without internal resistance,
so that any charge added to the membrane instantaneously increases the
membrane potential at the axon hillock, where the spike is generated. Although
this assumption is reasonable for post-synaptic potentials from synapses on the
soma, the small diameter of the dendrites will introduce a resistance in the
pathway to the cell body. Thus compared to an excitation on the soma itself, an
excitation at a distal dendrite will create a smaller but longer lasting variation of
the membrane potential measured at the soma. In the same way, an inhibitory
synapse at a proximal dendrite will have a stronger influence on the excitation
for more distal synapses on the same dendrite, than for the excitation at
synapses on the soma. The neuron therefore does not merely add up excitatory
and inhibitory inputs until the spiking threshold is reached at the axon hillock; it
performs a spatial and temporal summation which depends critically on the
passive properties of the cell, specifically its time and length constants.

4.6 Anatomical influences

From a signal processing point of view, spikes are the end result of a
computation performed by the neuron on its input; they transmit this result to
other neurons, possibly over long distances. A great deal of the computation
performed by the neuron is determined by several anatomical factors.
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Consider first the case of a larger cell. The size of the cell determines its
membrane capacitance, which increases linearly with the membrane’s surface. If
the density of the passive ion channels in the membrane remains constant, then
the leakage conductance g; will also increase linearly with membrane area. The
time constant of the cell, Cy/g . will then be independent of the cell’s size.
However, the total charge needed to reach the threshold voltage of the cell will
increase with the cell size, resulting in a decreased relative strength of the
individual synapses.

Next, suppose the number of leakage channels is reduced, increasing the time
constant of the cell. Although the total charge needed on the membrane
capacitor to reach the threshold voltage remains the same, each charge
generated by an excitatory input will remain longer in the cell; this increases the
time period in which several excitatory inputs can arrive at the cell and still
create an action potential.

Finally, a large part of the computational function of a neuron is determined
by its connectivity. If we know the different types of neurons from which a
certain neuron gets its inputs, and if we know whether the synapses from these
input neurons are excitatory or inhibitory, then we can make an educated guess
about the operation of the neuron, based on the membrane properties of the cell.
Physiologically, although the synapses and the membrane properties can be
determined by studying a single cell, it is hard to trace back the synapses to
determine where the inputs are coming from. In the auditory pathway, it is the
cochlear nucleus that has been studied in most detail (see for instance Merchan,
et. al.,, 1993). Its main source of input is known since most inputs to the neurons
in the cochlear nucleus are from the auditory nerve (see Figure 4.1), which
makes it a good site to test hypotheses about the influence of synapses and
membrane properties on the computational performance of a neuron. In the next
chapter we will present a silicon spiking neuron and use the knowledge
gathered from physiological studies of the cochlear nucleus (CN) to model its
neurons. Then we will compare the output of the circuit with the response of
typical CN neurons in response to tone bursts.

4.7 Summary

In spiking neurons, the intracellular fluid is separated from the extracellular
fluid by the cell membrane which contains selectively permeable ion channels.
At rest, the membrane potential is negative and potassium is most concentrated
inside the cell, whereas sodium is most concentrated outside the cell.

A spike is generated under the control of voltage-dependent ion channels at
the axon hillock when the cell membrane is depolarised above a critical value.
First, sodium channels open, which creates an influx of positive charge; this
depolarises the cell even more, which opens more sodium channels. This
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positive feedback creates the upswing of the spike. A second slower process
inactivates the sodium channels, and allows the charge to be removed from the
cell. The downswing of the spike is accelerated by the delayed opening of
voltage-dependent potassium channels.

After a spike, the potassium channels stay activated for a while and the
sodium channels inactivated. This creates a refractory period, during which it is
impossible — or much more difficult — to stimulate the cell to create another
spike.

Interactions between neurons take place at the synapses; the effect of a pre-
synaptic spike can be either excitatory or inhibitory.

The potential at the axon hillock result from spatio-temporal summation of all
excitatory and inhibitory inputs; the characteristics of this summation process
depend critically on the passive properties of the nerve cell.
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5. The Silicon Neuron

5.1 Introduction

As we have seen in the previous chapter, much is known about the details of
action potential generation. Various voltage-dependent ion channels influence
the neural spiking behaviour. Although theoretically it might be possible to
incorporate all known details into our electronic model, we shall have to make a
trade-off between the detail incorporated in the model and the actual size of the
circuit. One approach, started by Mahowald and Douglas (1991) is to
implement neuron circuits which are analogue approximations of the Hodgkin
and Huxley model. This can yield highly detailed single neuron models, but
takes up a lot of area. For instance, a recent publication based on this approach
(Rasche, et al., 1997) describes a silicon neuron that emulates a cortical
pyramidal cell. They were able to put a single neuron featuring about 30
adjustable parameters on a 4 mm’ chip. However, in most cases, building a
single neuron model is not the ultimate goal, but only a necessary step in order
to simulate the collective behaviour of a large group of neurons. It is thus
important to minimise the amount of detail in order to reduce the circuit size,
allowing more neurons to be put on the same chip.

5.2 An electronic spiking neuron model

5.2.1 Implementation

A very simple neuron model is shown in Figure S.1. The membrane of a
biological neuron is modelled by a membrane capacitance, Crem; the membrane
leakage current is controlled by the current source, Ij.,. In the absence of any
input (i=0), the membrane voltage will be drawn to its resting potential
(controlled by V_) by this leakage current. Excitatory inputs (1>0) simply add
charge to the membrane capacitance. Inhibitory inputs are modelled by a
negative input current (i<0). If an excitatory current larger than the leakage
current is injected, the membrane potential will increase from its resting
potential. This membrane potential, Vy.n,, is compared with a controllable
threshold voltage Vines, using a basic transconductance amplifier driving a high
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impedance load. If Vi, exceeds Vi, an action potential will be generated. I
will discuss the generation of the action potential in detail in the next section.

In the biological neuron spikes are sent to other neurons over the axon of the
neuron. In order to send the spike over reasonably long distances, the spike is
regenerated on the axon at specialised nodes, called nodes of Ranvier. Although
the membrane potential at the axon hillock changes slowly when it integrates an
excitatory input current, spikes which are regenerated on the axon do not reflect
this, and only the event of an action potential is transmitted. On-chip, we do not
have to regenerate the spikes because the metal wires have little resistance, at
least for the distances we are dealing with. We could thus in principle transmit
the membrane potential V., but in order to be able to use spike-based
computation as in biological neural systems, we shall have to send spikes.
However, we do not need to add a node of Ranvier model to the circuit in order
to generate a fixed width, fixed height spike; we will see in section 5.2.2, we
can simply use the spike shown in the top right of Figure 5.1 as the output of
our model. This signal is inverted with respect to biological spikes, i.e., the
spike goes downward. We could of course invert the spike and we will see in
section 5.4.3 that we will need to do so to create inhibitory synapses, but the
downward spike is directly compatible with excitatory synapses.

The above circuit is very similar to the sodium-potassium neuron circuit
described by Sarpeshkar et al. (1992) in an internal report of the California
Institute of Technology. Their implementation uses the current in the left branch
of the comparator in Figure 5.1 to create the upswing of the spike and to charge
the capacitor Cx. This allows them to use a few transistors less than in my
implementation, but also results in less freedom to control the different
parameters of the neuron independently. This circuit is only slightly smaller,
since most area is taken up by the two capacitors anyway. They claim that
reducing the number of parameters to adjust is also important to reduce the
physical size of a network of neurons, since each parameter is routed by a wire
of non-zero width. However, this is only important when each neuron has to
receive its own set of parameters that have to be routed to each neuron
individually. In most cases, a large number of their parameters will be shared,
while other parameters vary in orderly fashion along the array. This means that
each extra parameter only introduces one extra metal or resistive wire, or only a
few transistors to control the parameters as in the dendritic tree circuit which we
will discuss later in this chapter (shown in Figure 5.14). Again, the savings in
area are small due to the relatively large capacitors, and I have preferred to keep
the circuit more a flexible building block by introducing a few extra parameters.
Sarpeshkar's circuit is a good and straightforward way of simplifying my circuit
though when the extra options are not needed.
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I have realised 32 copies of the neuron shown in Figure 5.1, together with
some circuitry to facilitate communication of signals on- and off-chip (see
section 5.4.1) on a 1 mm x 2.5 mm die, using the ECPD10 (1 pum) technology of
ES2. All transistors have a W/L ratio of 10 pm/ 10 pm except for the switches
and inverters, which are 2 pm/10 pm, and Ck and Cg,,, are 10 pF.

Output

IKup

Vin\Q

Ilcak

Figure 5.1 A simple electronic neuron circuit.

5.2.2 Spike generation

The generation of the action potential in the neuron circuit is patterned after
the biological neuron, in which an increased sodium conductance creates the
upswing of the spike and in which the delayed blocking of the sodium channels
plus delayed increase of the potassium conductance creates the downswing. The
circuit models this as follows: If Vi, rises above Vi, the output voltage of
the comparator V., Will rise to the positive power supply. The output of the
following inverter Vi,,; will thus go low, thereby allowing the "sodium current"
INa to pull up the membrane potential. At the same time, however, a second
inverter will allow the capacitance Ci to be charged at a rate controlled by the
current Ikwp. As soon as the voltage Vi, on Cg is high enough to allow
conduction of the NMOS whose gate it controls, the "potassium current” Ix will
be able to discharge the membrane capacitance. Although the operation of the
circuit differs slightly from the biological neuron model in that the potassium
current only creates the downswing of the spike and that the sodium current
only switches off again when V. drops below Vi the spiking behaviour of
the neuron does not seem to be affected by this.
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Two different potassium channel time constants govern the opening and
closing of the potassium channels. The current Ix,, which charges Ck controls
the spike width, since the delay between the opening of the sodium channels
and the opening of the potassium channels is inversely proportional to Ig,,. If
Vimem NOW drops below Vi, the output of the first inverter V,,,; will become
high, cutting off the current In,. Furthermore, the second inverter will then
allow Ck to be discharged by the current Ixdown. If Ikdown is small, the voltage on
Cx will decrease only slowly, and as long as this voltage stays high enough to
allow Ik to discharge the membrane, it will be impossible to stimulate the
neuron if I, is smaller than Ix. Therefore Ix4oun can be said to control the
‘refractory period’ of the neuron.

Finally Ig, and Ig; are two bias currents needed to limit the power
consumption of the circuit; they do not influence the spiking behaviour of the
neuron in any major way.

All current sources in Figure 5.1 are implemented with single transistors.
These transistors of course will only behave like current sources when their
drain-source voltage is larger than about 100mV, since they operate in weak
inversion. If we ignore this limitation and assume that these transistors behave
like current sources until their drain-source voltage becomes zero, we can adopt
a piecewise linear approach. If furthermore we assume that V_ = 0, we can
describe the circuit model with the following equations:

dV mem(t)
CmemT = l(t) - Tieaxs Vmcm(t) < vlhrcs (37)

If Vinem(t) = Vires 2 SEL L =TT,
while ty<t<t;+ Ts:set V() =V,

while t, + Te<t <t + Ts + Tq : set Vien(t) =0, (38

where i(t) is the input cumrent, Cpy.m the membrane capacitance, Iy the
leakage current, V. (t) the membrane voltage, Vi, the threshold voltage, V.,
the power supply voltage, Ts the width of the spike, Tr the duration of the
refractory period, and t, is the time t when Vpenm(t) reaches V.. Equation (37)
describes the leaky-integration of the input current on the membrane
capacitance. In this circuit the leak comes not from a conductance in parallel
with the membrane capacitance, but from a leakage current. In the piecewise
linear approach, I will flow as soon as Viyen> V_. The membrane potential
will decrease until it reaches its resting value as long as i(t)<lj.;x. Only when
i(t)>Ix will the membrane potential increase.
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Equation (38) describes the reset operation. Whenever Vpen reaches the
threshold Vines, Viem i drawn quickly to the positive power supply V,, and
after a delay Tg it 1s reset to its resting value, where it will stay for a duration
Tk.

With a constant input current i (i>lie.), the neuron will reach the spiking
threshold in a constant time Tj after it leaves its refractory period. Integrating
(37) and solving for Vyem = Vi, yields:

Vg

Ti= Cmcmi - Leax

(39
The spike frequency is given by:
1
fspxkc = T+ Ts+ Tx (40)

An example of this spiking for a constant input current is given in Figure 5.2.
membrane
potential
A
V.4

Vlhres‘ I

-

T '1:5 TR ) time

Figure 5.2 Typical evolution of the membrane potential in the neuron circuit for a
constant input current.

The main difference between the (simplified) circuit model and the modified
LIF neuron presented in the previous chapter (see also Tuckwell, 1988) is the
fact that the circuit model has a leakage current and the LIF model a leakage
conductance. In the neuron circuit, the membrane potential will stay at the
resting potential when the stimulation current is smaller than the leakage
current. When the stimulation current is larger than the leakage current, the
membrane potential will always reach the spiking threshold after a time T
directly proportional to i - I;.5. The leakage current thus not only functions as a
leak which returns the membrane potential to its resting value, but also as a
stimulation threshold. A stimulation current below this threshold will not cause
spikes.

This is not that much different from the role of the leakage conductance g in
the LIF neuron. In this model the threshold voltage Vg will never be reached
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when i/g; < V,, so that we can define a stimulation threshold equal to g .V
below which the input current will never generate spikes.

5.3 Modelling cochlear nucleus neurons

5.3.1 Background

To test the circuit I have tried to model several different types of neurons in
the cochlear nucleus, using different bias voltages and currents. The obvious
reason to start modelling the auditory pathway with the neurons in the Cochlear
Nucleus (CN) is that it is the first site of innervation of the auditory nerve.
Furthermore, it is also the best-studied part of the auditory pathway. While
many questions remain unanswered concerning the CN, we now know enough
to begin the process of developing VLSI models of CN functioning. A surge of
recent anatomical and physiological studies has revealed an unexpectedly
complex structure at this early stage in the signal processing sequence. A recent
collection of papers on the cochlear nucleus, edited by Merchan, et al., (1993)

gives an authoritative account of current knowledge in this area.
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Figure 5.3 Different cell types in the cochlear nucleus and their innervation.
Abbreviations: ias intermediate acoustic stria, AN auditory nerve, IC inferior colliculus,
MSO/LSO medial/lateral superior olive, MNTB/LNTB medial/ lateral nucleus of the
trapezoid body, PO periolivary nuclei, VNLL ventral nucleus of the lateral lemniscus.
Adapted from Meddis and Hewitt (1993).

It is clear that a considerable amount of analysis takes place as soon as the
signal enters the brain. This is achieved using a parallel processing strategy.
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(Figure 5.3) When the Auditory Nerve (AN) enters the CN it immediately
divides into two branches and later subdivides further. Each AN fibre makes
contact with a large number of morphologically different cell types, each of
which processes the signal in a different way. For example the AN fibres are
known to innervate spherical bushy, globular bushy, stellate, octopus, vertical,
giant and fusiform cells (Figure 5.3). Each of these cells reacts differently to a
given acoustic stimulus, emphasising (or filtering out) particular features of the
input. The various cells also project out of the nucleus to a range of different
destinations. Even within a given morphological cell type, there are indications
of further variation in the signal processing operations carried out. This is
particularly true of the stellate cell class which appears to encompass a number
of response types, including both excitatory and inhibitory ones.

Progress in modelling auditory signal processing has been greatly assisted by
the observation that the variation in the responses of individual types of neurons
can be understood in terms of two critical features of the cells: firstly, the input
connectivity of the cell and secondly, the membrane characteristics of the cell.
By input connectivity we mean the number of AN fibres contacting the cell,
their origin along the cochlea and whether these inputs contact the cell soma
itself or the cell dendrites. Synaptic events impinging on the soma give rise to
rapid and strong membrane voltage changes at the axon hillock while contacts
on the dendrites only give rise to slow and weak changes. By membrane
characteristics we refer loosely to the response of the cell to depolarising and
hyperpolarising (sub-threshold) currents. For example, Oertel (1983) has shown
that stellate cells have linear voltage-current relationships (ohmic) while bushy
cells show a saturating voltage-current relationship, i.e., the membrane voltage
increases in response to an increase of current up to a certain voltage, after
which the voltage tends to stay constant. This saturation is caused by an
increase in the membrane's conductance resulting from the opening of fast
potassium ion channels in response to depolarisation. This also results in a rapid
membrane time constant when the cell is excited. Furthermore, the membrane
characteristics are not only influenced by the types of ion channels in the
membrane, but also by the density of these channels and the morphology of the
cell. A larger cell will have a larger membrane capacitance and room for more
leakage channels. The cell will then need more synaptic inputs, or stronger
synaptic inputs in order to reach threshold. Differences in these key respects can
result in substantial differences in the response of the cell to stimuli.

Almost all of the simulation work so far has used conventional computer
programming techniques (see for instance Hewitt, et al., 1992 or Merchan, et
al., 1993). This has proved satisfactory particularly when modelling the
response of a single cell to a short burst of acoustical energy. However, the
computer runs are typically very time-consuming and it is increasingly difficult
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to envisage the simulation of large assemblies of such neurons without recourse
to the real-time parallel processing capabilities of VLSI implementations.

The studies using computer models showed that the known physiological
observations of single cells in the auditory brainstem can be successfully
replicated using relatively simple models. This is true whether we use very
detailed Hodgkin/Huxley type cell representations (Hodgkin and Huxley, 1953)
or more schematic accounts such as those proposed by MacGregor (1987). It
appears that good analogue models can be built if, as a minimum, the known
connectivity is replicated and the cell membrane characteristics of the cells are
reflected in the hardware design. The input to most of the cells in the ventral
cochlear nucleus is dominated by direct connections from the auditory nerve,
and therefore offers the possibility to test the influence of the circuit settings on
the membrane characteristics, and to compare them with real neurons.

5.3.2 Methods

In this section we will test the functionality of the neuron circuit by
comparing the response of the chip in different settings with the response of
Ventral Cochlear Nucleus (VCN) neurons to tone bursts. VCN neurons are
often characterised by their Post Stimulus Time Histogram (PSTH) — a
histogram of the neuron’s output spikes as result of repeated presentations of a
stimulus, in this case a pure tone at a frequency that best stimulates the cell (for
instance Rhode and Greenberg, 1992).

In our test, the tone burst is passed through the silicon cochlea, although the
only effect of the cochlear filtering is to change the amplitude of the input
signal somewhat, when measured at the output of the filter with a best
frequency close to 5 kHz. The output of the cochlea is then passed through the
inner hair cell circuit in order to half-wave rectify and low-pass filter the signal
(see section 3.3). The IHC circuit also performs the temporal adaptation as
shown in Figure 3.20.

The spiking neurons’ PSTHs were created from the summed response of the
32 neurons on the chip to 20 presentations of the tone burst. If summation over
multiple neurons is considered equivalent to summation over multiple
stimulations, this can be thought of as the result of 640 stimulations.
Statistically however both types of summation are not equivalent, although they
both introduce variation in the neuron’s response through device mismatch and
noise respectively. Alternatively, we may think of both the neurophysiological
and electrical PSTH as the result of repeated stimulations of a group of neurons.
The neurophysiological PSTH is always measured on a single neuron, but the
summed PSTH of a group of single neurons will have the same appearance as
the PSTH of a single neuron in this group, if the neurons are almost identical.
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5.3.3 Results

We will now briefly discuss the different types of neuron in the ventral
cochlear nucleus of the cat, and compare their PSTHs with the PSTHs of the
neuron chip in different settings. Most neurophysiological and anatomical
information is taken from Popper and Fay (1992) and Webster, et al. (1992).
Please refer to Figure 4.1 in chapter 4 to situate the different brainstem nuclei of
the auditory pathway that will be mentioned in the following paragraphs.
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Figure 5.4 Primarylike PSTH. (a) Physiological response measured in the VCN of the
Cat. (Based on data from Rhode and Greenberg (1992)). (b) Measured response of the
chip.

Primarylike

The first type of response that I've tried to model is the Primarylike response.
The Primarylike PSTH is the typical response of a spherical bushy cell, mainly
found in the AnteroVentral Cochlear Nucleus (AVCN). This cell receives input
from only one auditory nerve fibre through a large synaptic contact on its soma,
called the endbulb of Held. This cell outputs one spike for every input spike, so
it comes as no surprise that its PSTH is very similar to the PSTH of an auditory
nerve fibre (compare Figure 5.4 with Figure 2.14 in chapter 2). The Primarylike
cell is thus the least interesting to replicate, but is also traditionally the first
VCN neuron presented in neurophysiological textbooks. In keeping with this
custom it is also the first one to be presented in this section. It also shows that
we can use this circuit to convert the output of the THC circuit into spikes
similar to those on the auditory nerve, should auditory nerve spikes be needed
for a certain type of processing.

The spherical bushy cells also receive inhibitory inputs on their dendrites and
might be implicated in some form of spectral sharpening. The Primarylike cells
project almost exclusively to the Lateral Superior Olive (LSO) and the Medial
Superior Olive (MSO), which are both part of the Superior Olivary Complex
(SOC). The LSO and MSO are the brain nuclei that underlie sound localisation
based on interaural intensity difference and time difference.

The chip's response was obtained by giving the neurons a medium-level
membrane leakage current (1)) to avoid long term integration of the input
signal and a short refractory period, so that the neurons are ready to fire when
the next input arrives.



72 The Electronic Auditory Pathway

(@ PL, 400 (b PL,

g '™ 2 300

= x

& = & 20

100
0+ ' 0 . .
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

time (ms) time (ms)

Figure 5.5 Primarylike with Notch PSTH. (a) Physiological response measured in the
VCN of the Cat. (Based on data from Rhode and Greenberg (1992)).(b) Measured
response of the chip.

Primarylike with Notch

A second type of response is the Primarylike With Notch response. Its PSTH
is very similar to the Primarylike PSTH and is the typical response of a globular
bushy cell, which is also mainly found in the anteroventral cochlear nucleus
(AVCN). The globular bushy cell receives synaptic contacts from a few
auditory nerve fibres that originate in the same region of the cochlea. Therefore,
its PSTH is still similar to the PSTH of an auditory nerve fibre. However, the
probability of the cell firing at the onset of the stimulus is almost one, because
at least some of its input fibres will carry a spike at onset, due to the higher
auditory nerve spiking probability at the onset of the stimulus (see Figure 2.14).
If the cell always spikes at the onset of the stimulus, it will always be in its
refractory period just afterwards. This creates the notch in the PSTH. The
globular bushy cell thus enhances the onset of a stimulus. Furthermore, the cell
typically needs several simultaneous auditory nerve spikes in order to generate
an output spike. This means that the cell only responds to correlated action
potentials of several fibres and thereby suppresses random activity present on
the auditory nerve, particularly during silence. The globular bushy cell therefore
may be said to improve the signal to noise ratio.

The globular bushy cells project to neurons in the Medial Nucleus of the
Trapezoid Body (MNTB), which in turn project with inhibitory connections to
neurons in the contralateral lateral superior olive. These LSO neurons also
receive ipsilateral contacts from the spherical bushy cells. This neural circuit is
probably the substrate for auditory localisation based on interaural intensity
differences. The globular bushy cells also project to the Lateral Nucleus of the
Trapezoid Body (LNTB) and to other PeriOlivary nuclei (PO). Both the LNTB
and several other PO nuclei have efferent projections to the cochlear nucleus
and the cochlea itself. Therefore, they are thought to be part of one or more
feedback loops that modify the gain of the cochlea and that inhibit several
neurons in the cochlear nucleus. Several of these periolivary nuclei also have
reciprocal connections with other nuclei in the superior olivary complex and
also with the [nferior Colliculus (IC), which is the next stage in the auditory
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pathway towards the auditory cortex. The periolivary nuclei thus seem to
regulate the operating point of many different neurons in the auditory pathway.

The Primarylike With Notch response is obtained from the chip by using a
relatively high I, to avoid long term integration of the input signal, a threshold
voltage that assures that the neuron will always fire at the onset of the stimulus,
and a refractory period that matches the duration of the notch.
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Figure 5.6 Onset Locker PSTH. (a) Physiological response measured in the VCN of the
Cat. (Based on data from Rhode and Greenberg (1992)).(b) Measured response of the
chip.

Onset Locker

A third response type is the Onset Locker response. Its PSTH is similar to the
Primarylike With Notch PSTH, but with a lower and less constant sustained
rate. This PSTH is the typical response of the large octopus cells found in the
PosteroVentral Cochlear Nucleus (PVCN). It is obtained by the same high
probability of spiking at the onset, which creates the onset peak and the notch in
the PSTH. Having a higher leakage current than the globular bushy cell, and
more synaptic inputs, it needs even more synchronous action potentials in order
to generate a spike. Therefore, its signal-to-noise ratio will be even higher than
the signal-to-noise ratio of the Primarylike With Notch response.

The onset spikes of the octopus cells have a very short latency, i.e., the cell
reacts very quickly to the start of a stimulation, sometimes within 100 us.
Octopus cells project to some of the periolivary nuclei, which in turn inhibit the
Outer Hair Cells (OHC) in the cochlea and also inhibit other cochlear nucleus
neurons. They are therefore probably implicated in some fast feedback loops.
They also project to the Ventral Nucleus of the Lateral Lemniscus (VNLL),
which is known to be part of the neural circuit that mediates the fast acoustic
startle response. Some neurons of the VNLL also have inhibitory projections to
the Inferior Colliculus. Octopus cells might thus provide fast inhibition within
the Inferior Colliculus. In general, octopus cells are probably part of the neural
circuitry implicated in the detection of sound and the initiation of some reflexes.
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Figure 5.7 Onset Ideal PSTH. (a) Physiological response measured in the VCN of the
Cat. (Based on data from Rhode and Greenberg (1992)).(b) Measured response of the
chip.

Onset Ideal

A fourth type of response is the Onset Ideal response, which is a far less
common response of the octopus cells. Its PSTH only shows an initial peak
followed by hardly any activity. This could be because the input is only large
enough to provoke firing at the onset of the stimulus. Alternatively, the cell
might receive direct excitatory contacts from the AN and delayed inhibitory
contacts. However, this inhibition has been shown to be absent in physiological
experiments. The few cells that have been measured stay depolarised after the
first spike, i.e., once the cell has fired, its membrane potential stays above the
spiking threshold and the cell can not generate another spike as long as the
input activity persists.

The Onset Locker and Onset Ideal responses are obtained from the chip by
progressively increasing the leakage current from the setting that produces the
Primarylike With Notch PSTH. Alternatively, the Onset Ideal response might be
obtained by having an Ik only slightly larger than Iy, so that the cell cannot
reset as long as there is an excitatory input current.

Onset Chopper

A fifth type of response, the Onset Chopper response, is the response of a
different neuron, the large, multipolar stellate cell. It is mainly found in the
PVCN, but is also relatively frequent in the AVCN. This type of stellate cell has
its soma largely covered by synaptic contacts, and also has a very short onset
latency. The post-synaptic potential created by a spike arriving at a synapse on
the cell soma will be less low-pass filtered than spikes arriving at synapses on
the dendrites; each spike thus received will create a relatively abrupt membrane
voltage variation. The cell receives many synapses from auditory nerve fibres
and requires many inputs to fire. However, it has a smaller leakage current than
the other two onset cells, so that the spikes are integrated over a longer time.
This neuron is also thought to produce the Transient Chopper response, which
is like the Sustained Chopper response (Figure 5.9), but with a less regular form
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of chopping. This would also be caused by the many somatic contacts of the
cell, generating many abrupt variations of the membrane potential.
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Figure 5.8 Onset Chopper PSTH. (a) Physiological response measured in the VCN of
the Cat. (Based on data from Rhode and Greenberg (1992)).(b) Measured response of
the chip.

Chopping is the standard behaviour of a spiking neuron that completely
resets after spiking. After an action potential is generated, such a cell cannot be
activated during its refractory period. Once its refractory period is over, the cell
starts to integrate input spikes over a time that is controlled by the leakage
conductance of this leaky integrator. This yields fairly regular firing in response
to an input signal whose mean spike rate is constant, thus generating the typical
chopping behaviour. If the sustained input level (from the auditory nerve) is too
low to reach the firing threshold, the cell will only spike during the higher
transient stimulation from the auditory nerve after a stimulus onset.

The Onset Chopper cell projects directly to the inferior colliculus and is
therefore part of the shortest and fastest pathway from the auditory periphery to
the forebrain. It also projects to several other neurons in the cochlear nucleus
and to the superior olivary complex and the lateral lemniscus. The mean firing
rate of the Onset Chopper increases with the intensity of the input signal and
only saturates after an 80dB intensity increase of the input signal from the
spiking threshold. Because of this very large dynamic range, this neuron is
therefore thought to be part of the neural substrate that codes the intensity of
sound. However, its output is inhibitory, so it only can serve to inhibit other
neurons, for example to keep them at an operating point within their dynamic
range.

This behaviour is obtained from the chip by having a relatively low leakage
current and a high threshold voltage. Furthermore, an input signal with a high
onset to sustained ratio is used, corresponding to the somatic contacts which
perform less low-pass filtering than the dendritic contacts of the Sustained
Chopper cells.
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Figure 5.9 Sustained Chopper PSTH. (a) Physiological response measured in the VCN
of the Cat. (Based on data from Rhode and Greenberg (1992)).(b) Measured response of
the chip.

Sustained Chopper

Finally, the Sustained Chopper response is typical of another type of stellate
cell. This stellate cell hardly has any synapses on its soma and thus receives
most of its inputs on its dendrites. Because the dendrites low-pass filter the
incoming spikes, the membrane potential will rise smoothly. This explains the
regularity of this cells chopping response, shown in Figure 5.9. Regularity is
however diminished due to the integration of noise over time, which adds a
small random component to the interval between two successive spikes. The
more spikes there have been between the current spike and the onset spike, the
more uncertain its timing becomes. This effect is clearly visible for the last
10ms of the PSTH in Figure 5.9.

The Sustained Chopper cells have a dynamic range of only 30dB, much
smaller than that of the Onset Chopper cells. They receive inhibitory
connections from the Onset Chopper cells, which might keep the cell’s
operating point within its dynamic range. The Sustained Chopper cell has
excitatory projections to the Inferior Colliculus and also to several neurons in
the Dorsal Cochlear Nucleus. Together with the Onset Chopper cells they might
be used to code intensity. Furthermore, they lock to the modulation frequency of
amplitude modulated sound if the modulation frequency is well below 1kHz.
Therefore, they are probably used in the extraction of the AM frequency and
pitch of a speech signal (Hewitt, et al., 1992; Hewitt and Meddis, 1994). Several
Sustained Chopper cells with the same best modulation frequency may project
to the same coincidence-detecting neuron in the Inferior Colliculus, which is
thus activated if a certain modulation frequency is present in the input signal.
One of the system examples, which I will present in chapter 7, is based on this
effect.

5.3.4 Discussion

Although the proposed neuron model is very simplistic, this neuron model
already allows us to simulate the spiking behaviours characteristic of different
neuron types by changing its biases. As shown in the previous section, Post



Chapter 5: The Silicon Neuron 77

Stimulus Time Histograms closely resembling the PSTHs of ventral cochlear
nucleus neurons can be obtained with the circuit. An advantage of the analogue
VLSI implementation is that one may change the bias voltages and see the
neuron model react in real time. This largely simplifies the task of determining
the settings to use. Because of its simplicity, the neuron model is small;
hundreds of neurons can be put on a reasonably sized chip. This makes it
possible to implement and study the neural architectures of the auditory
pathway and determine their utility as auditory signal processors.

Measuring the PSTH of a neuron, however, is not the only way to
characterise a neuron and certainly doesn’t characterise the neuron completely.
One would have to measure spike rate versus frequency, spike rate versus
intensity, with and without masking by another tone or noise; one would also
have to generate the interspike interval histogram. The latter can be determined
from the current set-up by measuring only a single neuron of the 32 on the chip.
The measurement of the rate-intensity curve needs a model of the AN input
which with the right output activity for a given input tone intensity. As I have
shown in chapter 3, the time constant of the current IHC circuit depends on
signal level, which makes it impossible to use this circuit in rate-intensity
measurements without having to change the settings for the THC circuit for
every stimulus intensity. For the rate-frequency curve measurement, the IHC
model needs to be connected to our electronic model of the cochlea, and the
proper IHCs need to be connected to the neuron chip to model its frequency
response.

Having an electronic model of a neuron is interesting in itself, but most of the
neural processing in the brain is carried out by interactions between neurons. In
the previous chapter, we have seen that (most) neurons communicate by sending
spikes over axons which make synapses with the cell bodies and dendrites of
other neurons. In this section, we will look in more detail at these different
aspects of neural interaction.

5.4 Neural interactions

5.4.1 Spikes

The fact that the PSTHs of the circuit can be made to look similar to the
neural PSTHs, even when the input of the neuron circuit is a continuous
analogue signal (the output of the THC circuit) instead of spikes, highlights a
cardinal question in the research domain of neuroscience: "Why does the brain
use spikes?"

There is an obvious, albeit not very satisfactory, answer to this question. It is
clear that spikes are used to transmit information over relatively long distances
in the brain and the entire nervous system. It would be impossible to
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communicate analogue signals over these distances because of the internal
resistance and membrane capacitance and leakage of the neuron. We might
imagine points along the axon where the signal will be regenerated. However, if
the waveform codes the information, we have to regenerate the exact waveform
of the signal, which is an impossible task. If the waveform does not code the
information, then there will be no need to communicate the complete analogue
waveform, and we could use spikes for instance. It is generally accepted that
the exact form of a spike is not important, but that the spike signals an event,
and that most information is coded by the timing of the spike, the average rate
of spikes on the axon, and/or the position of the neuron which originates the
spike.

Spikes are indeed regenerated along the axon at the nodes of Ranvier. A
spike arriving at such a node will depolarise the local membrane potential, and
trigger the spike generation process. As we have seen in the previous chapter,
the spike generation process includes a refractory period, and this ensures that
the spike only travels in one direction along the axon. Actually, the regenerated
spike will travel in both directions along the axon to its neighbouring nodes of
Ranvier, but since the node closer to the axon hillock has just spiked before, it
will be in its refractory period. This means that it impossible to trigger the spike
regeneration process at this node and that the voltage-dependent potassium
channels are still open, which shunts further diffusion of the spike in this
direction. The node of Ranvier farther away from the axon hillock will not be in
its refractory period, and here the regeneration process will be activated.
Without a refractory period in the spiking mechanism each node of Ranvier
would stimulate the others when it spikes, and spiking would never stop.

Just as the spiking itself, the refractory period is thus needed for
communications between neurons. However, as we have seen in section 5.3.3
when we discussed the chopping behaviour of some neurons, the refractory
period is also an important factor which determines the maximum chopping rate
of the neuron. In the next chapter, I will show that this can be used to tune the
chopper and make it sensitive to particular amplitude modulation frequencies in
its input signal. This example shows that although the refractory period is
necessary to transmit spikes over an axon, it also serves an important function
in the signal processing performed in the brain. This brings us to the actual
question about spikes: "Are spikes just needed for communication in the brain,
or do they also play a major role in neural signal processing?" And, more
importantly to us engineers: "Does signal processing with spikes offer important
advantages over other types of signal processing?"

The answer to the first question is certainly that spikes do play an important
role in the actual signal processing, for the simple reason that the brain evolved
as a system which uses spikes as its information carrier. However it is still
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largely unclear what the signal processing operations are that the brain performs
in treating the auditory sensory input with spikes. What is more, the way in
which information is coded with spikes is still an issue of debate, and as long as
we don’t understand how the information is coded, then how can we hope to
understand the operations that the brain performs on the information?

Information can be coded by an average rate of spikes, averaged either in
time, or over a group of similar neurons, or both. In this case the precise timing
of the individual spikes has no importance. On the other end of the scale,
information can be coded by the arrival time of an individual spike; all the
information is in the timing. The brain, however, does not have to choose
between one code or the other and uses both, sometimes even at the same time.
Furthermore, the brain will have to use group coding, be it a temporal or
average rate code, because single neurons have too low maximum spike rates
and are too prone to error, noise or cell death. For this reason all computation in
the brain will have to be collective, and for the same reason collective
computation is an interesting option for analogue VLSI. Especially in the lower
centres of the auditory pathway, timing seems to be important, but it costs effort
to keep the timing between different events in the different stages in the
auditory pathway, and I believe that at the higher stages of processing the brain
uses codes which are more like average rates.

Relative timing of spikes hints at signal processing operations like
coincidence detection and correlation of different signals, a multiplicative
operation. On the other hand, average rates represent analogue variables, and
hint of addition and subtraction of signals using excitatory or inhibitory
synapses. It has been recently shown by Maass (1996, 1997) that it is
theoretically possible to build a Turing machine from multilayer perceptrons
using temporal coding with spikes, and leaky-integrate-and-fire neurons. Most
of the standard neural network theory to date however has been based on the
assumption that the information is coded by spike rates. These mathematical
constructions tell us that in principle all computational operations are possible
with neurons using either temporal coding or average rate coding. They do not
tell us, however, which operations can be implemented efficiently and which
cannot.

Another approach is to look at operations we can perform particularly
effectively with spikes. Three such operations are discussed below; all are
believed to occur in the brain.

Perhaps the simplest such operation is coincidence detection: using spikes,
only a digital AND operator is needed to implement it. The brain, however,
does not use an AND operator, but a spiking neuron to implement coincidence
detection. This results in fuzzy coincidence detection; because an incoming
spike creates a change in a neuron’s membrane potential lasting longer than the
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spike itself, a second spike can add to the influence of the first spike. Although
membrane depolarisation is greatest when the spikes coincide, two not-quite-
coincident spikes are still more likely to generate an action potential than a
single, isolated spike. The temporal sensitivity of this process, controlled by the
leakage conductance and membrane capacitance of the neuron, will be different
for different cell types.

Applying fuzzy coincidence detection to spike trains results in synchronicity
detection; a coincidence detecting neuron will fire most when two spike trains
are synchronous; its response will decrease as the synchrony between the two
spike trains decreases.

As third operator, consider cross-correlation of two signals: synchronicity
must be detected between one signal and delayed versions of the other. A delay
line is simpler to implement for spikes than for analogue signals, because no
information is contained in the form of the spike; we can just regenerate each
spike after a certain delay. In the case of an analogue waveform, we have to
somehow reproduce the entire waveform after a certain delay.

In summary, one advantage of spike coding seems to be the fact that it is
simple to implement synchronicity detection, which provides a powerful way of
comparing two temporal signals. The ease with which coincidences can be
detected also allows the brain to use synchronicity as a way of coding
information. It has been shown for instance that many different types of neurons
in the cochlear nucleus are synchronised by amplitude modulation at a
particular modulation frequency; in absence of this modulation component these
neurons automatically desynchronise (Frisina, 1990; Rhode and Greenberg,
1994). The synchronisation of a certain group of neurons is thus a way to code
the presence of a particular feature, the amplitude modulation frequency in this
case. In chapter 7 we will see an example where the synchronisation of
sustained chopper neurons from the ventral cochlear nucleus and coincidence
detection performed by inferior colliculus neurons are used to extract this
amplitude modulation frequency.

5.4.2 Inter-chip communication with spikes

Although it has nothing to do with the spiking of neurons in the brain, there
is a good engineering reason to adopt spike coding of signals for inter-chip
communication. Whenever we have a large number of outputs in parallel, as is
the case when we have a large group of neurons on chip, we cannot simply
connect each output to another chip with a dedicated wire. The traditional
solution in this case is to scan serially through the output. This means that at
each clock cycle the output of a different element is read, so each output is only
read once every N clock cycles, where N is the total number of outputs. When N
grows large, the clock frequency will also have to become large in order to
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maintain enough temporal resolution on each output. In the case of a large array
of neurons, we would be scanning all neurons, most of which would be inactive
most of the time. It makes more sense just to transmit the fact that a certain
neuron spiked at a certain time. This type of communication has been termed
‘event driven communication’ (Lazzaro, et al., 1993; Mortara, 1995).

Rather than providing a wire for each output, we can communicate spike
events using a single data channel shared by all the neurons on a chip. Each
neuron has a unique address; when a neuron spikes, its address is sent onto the
channel. The address pulse can be very short if the address detector on the other
end is fast enough; we can regenerate a spike with biological duration on the
receiving end of the data channel. With spikes lasting only about 1 ps and a
maximum spike rate limited to a few hundred Hertz (as it is in biological
neurons), even the most active neuron will occupy the data channel less than
0.1% of the time.

In the most direct implementation of this idea (Mortara, 1995), every neuron
may access the data channel at any time, which thus preserves perfectly the time
structure of the output signals. The only problem with this communication is
that it is possible for two or more neurons to access the data channel at the same
time, resulting in an address collision. Using a special address coding scheme,
for instance always the same numbers of ones and zeros in the address code of
each neuron, we can detect these collisions and decide to ignore these
addresses. This introduces noise in the communication process, but if collisions
are rare, this noise level is very low.

One situation, in which the chance of having collisions is increased, is when
information is coded by synchronous activity of a group of neurons. This
situation is of particular interest to us and warrants special attention, since we
have identified synchronicity as an important property in spike-based
computation. In this case several neurons spike at the ‘same’ time to signal a
salient feature. The ‘sameness’ in time of two spikes is however measured at a
biological time scale, in the order of 1 ms. So two spikes about 100 us apart are
still considered synchronous on this scale, but on the time scale of the
communication process they can be quite far apart, if for example each
communication pulse only lasts 1 us. After regenerating spikes of biological
duration on the other end of the data channel, we can easily detect the
synchronicity of the spikes on the biological time scale again. The problem is
therefore not as bad as it looks, but still it increases the probability of collisions
with respect to an activity of the neurons which is evenly distributed in time.

I have used this communication scheme for the neuron chip discussed in
section 5.2. The circuit for the input decoding and output encoding is shown in
Figure 5.10. The address of each of the 32 neurons on chip is coded with three
ones and four zeros, yielding a seven-bit communication bus. Note that the
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minimum number of bits needed to code for 32 addresses is five, so the
overhead created by this encoding (which allows collision detection) is only
two wires. At the input side of the array, an address-decoding block, stimulates
with a spike the neuron at a position corresponding to the address that has been
detected. The address-decoding block may be set either to stimulate none of the
neurons when an address collision is detected (col=1), or to stimulate all the
neurons with addresses that could have created this collision code (col=0).
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Figure 5.10 Input and output coding of the neuron chip

When a neuron spikes, apart from sending its address on the bus, it also sends
a current spike on a wire common to all neurons. This allows us to measure the
number of spikes by measuring the total current on the wire and dividing it by
the unit current used to send a single spike. This has been used in section 5.3.3
to create the PSTHs in that section.

No circuits were included to reduce the spike width at the output side or to
restore the biological spike width at the input side. With only 32 neurons on a
chip, collisions will not happen very often even with the wider spikes, unless
we are synchronising the neurons with the input signal. If that is the case, we
will be interested specifically in the synchronicity of the neurons on the chip;
we can use the single common output wire to detect this.

Note that the address is coded on the output bus by current pulses, but by
voltage pulses on the input bus. We have to use current pulses on the output bus
because all neurons will drive the same bus wires, and currents injected on a
single wire will just add up. Voltages cannot be used directly because if two
neurons drive the same wire, one trying to impose 0V and the other 5V, we will
have a conflict, the voltage on the wire will be undefined, and a lot of current
will flow through the output transistors of the two neurons. Using current pulses
on the output bus also allows combining the output buses of two chips into a
single bus, i.e., combining two seven-bit buses into a single seven-bit bus. In
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this way neurons with the same address on the two chips will both send their
pulses to a neuron which detects this address on a third chip.

For the input bus, however, voltages are preferable so that we can contact the
inputs of each address decoding block with the same bus wires. Each chip will
receive input addresses coded by current pulses and will convert these to
voltage pulses. Furthermore, the output pin of the sending chip and the input pin
of the receiving chip, plus the external wire, will add a substantial capacitance
to the communication link. Therefore we would need a lot of current to change
the voltage on the wire quickly. However, using a virtual ground at the input of
the receiving chip to sense the current, we can keep the voltage on the wire
constant. The circuit which does this for each input wire is shown in Figure
5.11a. The structure with the two PMOS transistors in the top left of the circuit,
together with the current source I, serves to keep the voltage on the input line
constant while conveying the input cumrent to an internal node. The input
current is then copied by the current mirror, and this current is compared with
the current I, to determine if the line is at 1 or 0.
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Figure 5.11 Current conveyors: a) with comparator, b) with line driver.

In some cases though, the input to the chip will not be in the form of pulsed
addresses, but in the form of an input current, as in the measurements of section
5.3.3, where the input of the chip is the output current of the IHC circuit. Again,
we can hold the voltage on the input line constant and use a current mirror with
32 outputs to create copies of the input current for each neuron. Creating 32
copies of the current means driving 33 gates which together have a considerable
capacitance. To drive this capacitance, we can use the inverse of the current
conveyor structure, as shown in the top right of Figure 5.11b. This avoids
drawing the current needed to charge or discharge the capacitance from the
input current. We can thus make more current available to drive the capacitance
than the input current would allow, which will speed up the communication.
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5.4.3 Synapses

In the previous chapter, we have seen that neurons communicate through
synapses and that the result of a spike arriving at a synapse can be excitatory,
inhibitory, or shunting inhibitory, depending on the neurotransmitter released
by the pre-synaptic cell, and on the type of receptors in the post-synaptic cell.
An excitatory input will increase the membrane potential; an inhibitory input
will decrease the membrane potential, and a shunting inhibitory input will draw
the membrane potential towards the resting potential. The effect of these
synapses can be modelled with the circuit of Figure 5.12a. The thin lines
represent spikes arriving at the different types of synapses. Note that to control
the excitatory synapse, the spike has to be inverted with respect to the biological
spikes. The figure also shows the part of the neuron circuit that models the
passive membrane properties, i.e., the membrane capacitance, and the leakage
current towards the resting potential.
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Figure 5.12 Circuit for three different types of synapses. a) basic circuit, b) corrected for

hyperpolarisation.

In this circuit, an excitatory input will increase the membrane potential by an
amount:

Ts(Iex - 1
_ s( E:xmmlcak) ’ @l

where Ts is the duration of the spike. Both the inhibitory and the shunting
inhibitory decrease the membrane potential by a similar amount. However, this
is only true when Vpen is above E.q, because the output current of transistor
Tieax is only equal to Ly when Vien is at least about 100 mV larger than E.
When V., is equal to E, the current through Ti..x is obviously zero.

The implementation of Figure 5.12a is limited t0 Vpem 2 Ereo; When Ve, is
below E. the current through Ty will be inverted, effectively drawing the
membrane potential up towards the resting potential, but the amount of current
with which it will do this will now increase exponentially with decreasing V . p,.
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Therefore, this current will get very large for a V., only a few hundred
millivolts below E,.. A simple way to attempt to correct this problem would be
to use a diode-connected transistor in series with T, so that the current can
only flow through this branch when Vy,, is larger than E.y and add a second
branch using PMOS transistors to model the leakage current when Vi is
below E.. Furthermore, because the current source I, will be implemented
in a similar way as I, we will have to do the same for the shunting inhibitory
synapse. This then yields the circuit of Figure 5.12b.

The problem with this solution is that normally E.. will be closer to Eg than
to En.. The PMOS transistors that have their bulk at the Ey, and their source at
E.. will thus have their threshold voltage increased due to the body effect. This
will mean that these branches can only conduct properly when Vi is well
below Eqcq, which is not possible if Ery is close to Ex. Furthermore, we cannot
solve this by placing the PMOS transistors in well that is tied to E,, because
this would forward-bias the drain-well junction of the diode-connected
transistors when Ve, rises above E . We could design a bias circuit that
correctly biases the well of the PMOS transistors as a function of Vmem, but it
is clear that having hyperpolarisation and inhibitory synapses complicates the
circuit considerably.

The neuron chip presented in section 5.2 does not allow for
hyperpolarisation. This also means that inhibition can only be in the form of
shunting inhibition, because the inhibitory synapse can not draw the membrane
potential to a value lower than its resting potential. The two possible synapses
for this neuron are thus the excitatory and shunting inhibitory synapses shown
in Figure 5.12a.
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Figure 5.13 Schematic representation of an EPSP in a biological neuron (a) and in the
electronic neuron (b). The dotted trace represents the timing of the pre-synaptic
membrane depolarisation, but is not necessarily on the same voltage scale. The post-
synaptic depolarisation is often much smaller than the pre-synaptic depolarisation.

In the biological neuron, the change in membrane potential is mediated by
changes in the ion conductances and thus a voltage-dependent current injection,
whereas in the electronic circuit it is caused by direct (voltage-independent)
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current injection. This causes some differences in the shape of the Excitatory
Post Synaptic Potential, as shown in Figure 5.13 a and b. However, in both
cases the EPSP shows a steep rising flank and a shallow falling slope, the most
important features of the EPSP shape. An excitatory input will have its
maximum effect only at a certain time not too long after the arrival of the spike
at the synapse and after this time the influence of the excitatory input on the
membrane potential slowly decreases. This means that two spikes arriving at the
same time at two excitatory synapses will yield a larger increase of the
membrane potential than two spikes that arrive within a short time of each
other, and two spikes arriving within a long time interval will have the same
effect as just the second spike by itself.

Another difference between the biological synapse and the electronic synapse
is that the chemical transmission at the synapse of the biological cell causes a
synaptic delay, which is absent in the electronic circuit. Although this changes
the absolute timing of the spikes, it does not alter the relative timing of the
spike, at least not if the biological synaptic delay is considered constant. Of
course, the relative timing between two different pathways is only retained if
the number of neurons in each pathway is the same. Although an extra synapse
in one pathway will not change the delay in the electronic circuit, in both the
biological and the electronic case an extra neuron will add a considerable delay
to this pathway. If we take care that the electronic neuron adds a delay in the
pathway which is equal to the sum of the neural and synaptic delay in the
biological case, then both systems are equivalent again, from at timing point of
view.

5.4.4 Dendrites

Equation (41) shows that the synaptic strength can be controlled using L, or
the spike width Ts. This means however that we need a different current source
for each synapse, or a way to adapt the spike width locally at the synapse, since
a neuron sends a spike of the same width to all the synapses it makes with other
neurons. Furthermore, the output of the neuron will have to be physically
connected with a wire to each synapse it makes, and these connections would
use up most of the silicon area when each neuron makes multiple synapses with
other neurons. As we have seen in the previous chapter, the effect of an
excitatory input at a synapse on the membrane potential also depends on where
the synapse is situated on the dendritic tree. Because of the internal resistance of
the dendrites combined with the membrane leakage current, a synapse situated
more apically on a dendrite will change the membrane potential at the axon
hillock less than a synapse closer to the cell body, even if they both create the
same local membrane depolarisation. The circuit of Figure 5.14 models this
effect. (See also Elias, 1993 for electronic-dendrite models.)
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At the top of Figure 5.14 we recognise a number of excitatory synapses,
modelled as before by current sources with switches controlled by the input
spikes. When a spike arrives at synapse 3 for instance, the current Iyy,; will flow
through the switch for the duration of the spike. Part of this current will flow
directly through the conductance Gs; the output current I,; will be equal to this
current. The rest of the current flows into the network to either side of the node
which connects the different synapses laterally. If we assume that the network
extends infinitely to the left and to the right, equal amounts of current will flow
left and right. At the neighbouring nodes these currents will split again, partially
continuing to flow through the lateral transistors, and the rest creating the
output currents I, and Is. In this way, a current injected at a certain node in
the network creates a symmetrical distribution of output currents; The largest
output current occurs at the same node as the injection, and the amplitudes of
the output currents decrease as the node gets farther away.

Figure 5.14 An electronic dendrite with resistors.

Mead (1989) has shown that in such a resistive network the voltage on node j
as a function of the voltage at the input node i can be approximated by:

el L=1ARG, L>1 (42)

where d; is the distance between nodes i and j measured as the number of
intervening lateral resistors, R the value of the lateral resistance, and G the
value of the vertical conductance. We can calculate the current distribution from
this equation, since the current I.,; through the output conductance at node j is
proportional to the voltage on node j and an input current Ly, at node i will
create a certain node voltage Vi. We can therefore write:

1“—"=~.ou=.h. L=1ARG, L>1 (43)
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where O is a constant. We can calculate the value of a using the fact that the
sum of all output currents has to be equal to the input current. If we assume that
the resistive network is infinite, we can write:

- 4
2 aek =1 (44)

d=—co

where d is the distance between the output node and the input node measured
in lateral elements. Because the distribution of output currents is symmetrical
about d=0 we can also write:

>4
—0+2), ael =1 (45)
d=0
where the '~ term corrects for the fact that we count the term at d=0 twice.
The summation term is a standard geometrical series, so that we can solve for o

1—e 't
a=—"—"77 (46)
l+e

Hence, we can determine ¢ as a function of L.

It has been shown (Vittoz, 1994) that such a network of resistors as in Figure
5.14 can be implemented with MOS transistors in weak inversion, as long as we
are only interested in the input and output currents and not in the voltages on
the nodes. This can be explained by the following analysis.

The current through a MOS transistor operated in weak inversion as a
function of the voltages on its terminals referred to the local substrate is given

by:
Vo:-Vn Vs Vo
Ips =Ig e ?Ur (gUr-elr) @n

with Vg the voltage at the gate, Vs the voltage at the source and Vp the
voltage at the drain terminal respectively, all referred to the local substrate. Vg
is the threshold voltage of the MOS transistor, Ut is the thermal voltage and I
is the specific current (defined in chapter 3, equation (2)).

The linear behaviour of the transistor in the current domain can be made
visible by defining a pseudo-voltage V* as:

-V
V¥ =_.VyeUr ‘ (48)
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where Vg is and arbitrary scaling value. We can then rewrite equation (47):

Ips = g* (Vp* - Vs*) 49)
with:
ls V(; - V-m
* = nU
gr=y e "YU (50)

This shows that with respect to the current, the MOS transistor in weak
inversion behaves as a conductance of which the value can be controlled by its
gate voltage. Furthermore, from (48) we can see that as soon as Vp becomes
larger than a few Uy, Vp* becomes almost zero and the drain terminal can thus
be considered as a pseudo-ground. We can combine these pseudo-conductances
in a network as long as we use the same definition of pseudo-voltage for all
transistors, and the same V.

It is not a real constraint in our case to operate the transistors in weak
inversion. If we want small neurons, the membrane capacitance Cpep, in the
neuron circuit of section 5.2 will have to be small (a few pico-Farad) since a
capacitor consumes a large silicon area. Furthermore, the spike width T will be
close to 1 ms to stay in the same range as the biological spikes. Equation (41)
shows that I, and thus I, will have to be small if we want to limit AV. So the
transistors in the dendritic tree can easily be operated in weak inversion.

Replacing the conductances G and R in Figure 5.14 with pseudo-
conductances Tg and Ty, results in the circuit of Figure 5.15.

6§

TGli Ief{fozi I“zim L’E;’rc‘ti LX‘I‘:{’GS
Ve | i i =

Figure 5.15 Electronic dendrite with pseudo-conductances.

Equation (43), still valid for this circuit, is now a function of the pseudo-
conductances:
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We can use equation (51) to express the pseudo-conductances G* and (1/R)*
as a function of the control voltages Vcg and Vcr. Assuming that Tr and Tg
have the same geometry, we can write for L:

VG - Ver

Together with equation (51) this shows us how the strength of a synapse i
decreases with increasing distance, when seen from node j. Now imagine that
each output current L,; charges the membrane capacitance of a different neuron.
Equations (51) and (52) then describe how a given synapse i influences a
neuron at position j. Because the diffusion network is completely linear, we can
apply the superposition principle. Summing up the influence of all synapses on
each neuron, we see that although all synapses influence all neurons, each input
has maximum effect on the neuron it is closest to; its strength decreases with
increasing distance. This structure can also be extended to a two-dimensional
structure in which each input connects to a group of neurons in a 2-D map, and
the strength of an input is maximal at the position of its synapse and falls off
with distance.
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Figure 5.16 Input and output structure of the neuron chip, including two dendritic
structures.

The dendritic structure gives us a nice way to connect the output of a neuron
to a group of other neurons which are close to each other in an array, without
the need to draw a connection wire from this neuron to all the neurons it
influences. I have included two such structures at the inputs of the 32 neurons
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on the neuron chip of section 5.2, one for the excitatory synapses, and one for
the inhibitory synapses. This allows the excitatory and inhibitory inputs to have
different diffusion length. Each address received from another chip will have
one bit indicating if it is excitatory or inhibitory in addition to the seven bits
which codes for position. Figure 5.16 shows the final structure.

The circuit of Figure 5.15 does not model the effect that a synapse more
distal on the dendrite will generate a post synaptic potential that starts later and
lasts longer in addition to being weaker, because the dendritic membrane
capacitance has not been modelled in this circuit. We could model these
temporal effects by adding a capacitor at each node in the circuit of Figure 5.14.
However, in this case we are not only interested in the network currents
anymore, but also in the node voltages at the nodes to which the capacitors are
connected. If we want to do this for the circuit with the pseudo-conductances in
Figure 5.15 we have to add a (pseudo) capacitor, which is compatible with
pseudo-voltages in this circuit. Although this is certainly possible, it will take
up space, and since I have not had the need for such a circuit, it has not been
implemented.

5.4.5 Axons

In principle it is not necessary to model the regeneration of a spike in an axon
at the nodes of Ranvier, because the resistance of the metal wires on chip is low
enough to ensure proper transmission of a spike. However, a biological axon
will also add a delay which increases with increasing length of the synapse.
This delay may be used in certain neural computations; it is a lot easier to model
than the dendritic delay because the form of the spike remains the same. In
principle, we may use the same circuit as the neuron circuit in Figure 5.1 to
model the nodes of Ranvier, since both have the same membrane properties.
However, in the neuron circuit Cp.m models the capacitance of the cell body,
whereas for the node of Ranvier circuit we only have to model the capacitance
of the node plus a section of the axon. We can thus use a smaller capacitance in
this circuit. Moreover, since in the electrical circuit there is no coupling from
the output of the circuit to its input, unidirectional transmission of the spike is
guaranteed and we do not need to model the refractory period of the neuron in
the node of Ranvier circuit. Modelling the refractory period in the neuron
circuit of Figure 5.1 will be sufficient to ensure that there will be no spikes on
the axon for a certain period after each spike. This means that the capacitor Cx
can be reduced in size too, since it is only used for controlling the spike width,
which is in general much shorter than the refractory period of the neuron. For
the input of the node of Ranvier circuit we can use the same circuit as for the
excitatory synapse, which will allow us to control the delay created by the
circuit. Since this circuit only charges the capacitance during the input spike,
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the delay created by the node of Ranvier circuit will not be larger than one spike
width, because each input spike has to create an output spike. For this same
reason, we do not need to model the leakage properties of the membrane, which
simplifies the node of Ranvier circuit even more.
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Figure 5.17 The node of Ranvier circuit.

5.4.6 Discussion

In this section we have looked at the different elements of neural interactions
and presented the circuits for several of them. In contrast with previous sections
concerning neural hardware we have presented no measurements in this section
(5.4). It is of course trivial to characterise the synapse circuits, since they are
nothing more than current sources with a switch in series. The dendritic circuit
has been successfully used on the neuron chip in combination with both
excitatory and inhibitory synapses, and also in a neural system for pitch
detection which I will present in the next chapter. However, this circuit is
embedded within these systems, and no direct measurements of its output
currents are possible. The node of Ranvier circuit is the only circuit that has not
actually been built, but its correct operation can be inferred from that of the
neuron circuit with Ix and Ixgoun set to large values and I, set to zero.

5.5 Summary

In this chapter I have presented an electronic circuit modelling the spike
generation process in the biological neuron. This neural circuit integrates charge
on a capacitor which models the membrane capacitance of a nerve cell. When
the voltage on the capacitor reaches a certain threshold value, a positive
feedback cycle is activated, which quickly increases the capacitor voltage. After
a short delay, a second feedback restores the resting voltage on the capacitor.
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After the generation of a spike, during the refractory period, it is harder or
impossible to create a new spike, due to the dynamics of this second feedback.

Comparison of the output of the circuit with the output of biological neurons
in the ventral cochlear nucleus in response to tone bursts filtered by the cochlea
and inner hair cells shows that the circuit is able to model the spiking behaviour
of different types of neurons by changing its biases.

Neural computation obtains its power not from a single neuron, but from the
interaction between a large number of neurons. Neurons typically communicate
by sending spikes over axons which make synaptic contacts with the dendrites
and cell bodies of other neurons. Circuits that model these interactions have
also been presented in this chapter. They include the circuits for excitatory,
inhibitory and shunting inhibitory synapses, a circuit which models the
regeneration of spikes on the axon at the nodes of Ranvier, which can be used
as a delay line, and a circuit which models the reduction of input strength with
the distance of the synapse to the cell body on the dendrite of the cell.

5.6 References for chapter 5

Elias, J. (1993) “Artificial dendritic trees,” Neural Computation, Vol. 5., pp.
648-663.

Hewitt, M.J., Meddis, R., and Shackleton, T.M. (1992) “A computer model of a
cochlear-nucleus stellate cell: Responses to amplitude-modulated and
pure-tone stimuli.” Journal of the Acoustical Society of America, Vol. 91,
pp- 2096-2109.

Hewitt, M.J. and Meddis, R. (1994) “A computer model of amplitude-
modulation sensivity of single units in the inferior colliculus.” Journal of
the Acoustical Society of America, Vol. 95, pp. 1-15.

Hodgkin, A.L. and Huxley, A.F. (1953) “A quantative description of membrane
current and its application to conduction and excitation in nerve.” Journal
of Physiology, Vol. 117, pp. 500-544.

Lazzaro, J., Wawrzynek, J., Mahowald, M., Sivilotti, M., and Gillespie, D.
(1993) “Silicon auditory processors as computer peripherals,” [EEE
Journal of Solid State Circuits, Vol. 26, pp. 523-528.

Maass, W. (1996) “Lower bounds for the computational power of networks of
spiking neurons,” Neural Computation, Yol. 8, pp. 1-40.

Maass, W. (1997) “Fast sigmoidal networks via spiking neurons,” Neural
Computation, Vol. 9, pp. 279-304.

MacGregor, R.J. (1987) Neural and Brain Modelling, Academic Press, San
Diego.

Mahowald, M. and Douglas, R. (1991) “A silicon neuron,” Nature, Vol. 354,
pp- 515-518.



94 The Electronic Auditory Pathway

Mead, C.A. (1989) Analog VLSI and Neural Systems, Addison-Wesley, Reading
MA.

Meddis, R. and Hewitt, M. (1993) “Computational modeling of cochlear
nucleus functioning,” in Merchan, et al. (eds), The Mammalian Cochlear
Nuclei: Organisation and Function, Plenum Press, New York.

Merchan, M.A., Juiz, .M., Godfrey, D.A., and Mugaini, E. (eds) (1993), The
Mammalian Cochlear Nuclei: Organisation and Function, Plenum Press,
New York.

Mortara, A. (1995) Communication Techniques for Analog VLSI Perceptive
Systems, Ph.D. Thesis, Ecole Polytechnique Fédérale, Lausanne.

Oertel, D. (1983) “Synaptic responses and electrical properties of cells in brain
slices of the mouse anteroventral cochlear nucleus,” Journal of
Neuroscience, Vol. 3, pp. 2043-2053.

Popper, A.N. and Fay, R.R. (eds) (1992), The Mammalian Auditory Pathway:
Neurophysiology, Springer-Verlag, New York.

Rasche, C., Douglas, R.J., and Mahowald, M. (1997) “Characterization of a
Pyramidal Silicon Neuron,” Proceedings of the EWNS'97.

Rhode, W.S. and Greenberg, S. (1992) “Physiology of the Cochlear Nuclei” in
Popper and Fay, (eds), The Mammalian Auditory Pathway:
Neurophysiology, Springer-Verlag, New York, pp. 94-152.

Rhode, W.S. and Greenberg, S. (1994) “Encoding of Amplitude Modulation in
the Cochlear Nucleus of the Cat,” Journal of Neurophysiology, Vol. 71,
No. 5, pp. 1797-1825.

Sarpeshkar, R., Watts, L., and Mead, C. (1992) “Refractory Neuron Circuits,”
CNS Technical Report, No. CNS-TR-92-08, California Institute of
Technology, Pasadena, CA.

Tuckwell, H.C. (1988) Introduction to theoretical neurobiology, Cambridge
University Press, Cambridge UK.

Vittoz, E.A. (1994) “Analog VLSI signal processing : why, where, and how,”
Journal of VLSI Signal Processing, Vol. 8, pp. 27-44.

Webster, D.B., Popper, A.N., and Fay, R.R. (eds) (1992), The Mammalian
Auditory Pathway: Neuroanatomy, Springer-Verlag, New York.



6. Periodicity Extraction

6.1 Introduction

While the simulation of the activity of individual neural units or the signal
processing in the cochlea is of scientific interest in its own right, the goal of my
research was to build and understand the signal processing of a system
containing cochlear pre-processing followed by further processing by large
ensembles of spiking neurons. In fact, VLSI architectures are probably not the
best way of modelling activity in single neurons. Too many compromises are
required to make the circuit design problem tractable. The flexibility of
computer programming is much better suited to this purpose. However the
massive parallel processing capability of VLSI circuits and their real-time
functioning will make them the preferred medium for studying large numbers of
interacting neurons.

Anatomy can supply us with some information concerning the connectivity
between nuclei in the auditory brainstem. To a more limited extent it can even
identify which specific cell types within a nucleus project to which other
specific cell types within another nucleus, although this information is
sometimes speculative. Anatomical techniques also exist for identifying
whether certain connections are excitatory or inhibitory. The job of the modeller
is to propose and evaluate anatomically plausible circuits which could give rise
to the observed physiological response of the ensemble of cells to acoustic
stimulation. Only then will we be able to understand the fine points of the signal
processing performed by this ensemble of cells. This necessarily involves
models that begin with acoustic input and follow the processing through all of
the peripheral stages as well as the neural responses, and this is the reason why
the electronic building blocks have been created. Thus, although the anatomical
and physiological picture is far from complete, we have enough information to
begin the process of generating some simple models to mimic some known
circuits in the auditory brainstem. The electronic building blocks are far from
being perfect, but they already allow us to start building electronic models of
some simple circuits in the auditory brainstem. Only by building operational
neural systems with the building blocks we can prove their usefulness.

95
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In this chapter and the next I will present two neural systems that use the
building blocks to extract periodicity. The first system extracts the periodicity
that corresponds to the frequency of a pure tone or to the carrier of an amplitude
modulated tone. The second system extracts the periodicity of the envelope of
the signal. In both systems, the periodicity of the signal or envelope corresponds
to the repetition rate of the peaks of the waveform amplitude.

6.2 Biological background

The inner hair cell measurements in chapter 2 show that for frequencies
above about 4 kHz the inner hair cell receptor potential has lost its a.c.
component almost completely; no information can thus be available in the brain
about the temporal properties of the input waveform. For these frequencies, the
spectrum of the sound can only be coded by the position of the active auditory
nerve fibres and the mean spiking rate of these fibres. On the other hand, at
lower frequencies the inner hair cell receptor potential has a noticeable a.c.
component and the auditory nerve fibres spike with a probability roughly
proportional to the half-wave rectified basilar membrane velocity waveform at
the cell’s position (Palmer and Russell, 1986). Therefore, for these lower
frequencies, the spectrum of the input waveform, is not only encoded in the
form of an average spiking rate of different fibres along the cochlea (place
coding), but also in the periodicity of spiking of the individual auditory nerve
fibres.

It has been shown that this periodicity information is a much more robust cue
than the spatial distribution of average firing rates. Some periodicity
information can already be detected at intensities 20 dB below the intensity
needed to obtain a change in average rate (Evans, 1982). Periodicity
information is retained at intensities in the range of 60-90 dB SPL, for which
the average rate of the majority of the auditory nerve fibres is saturated (Rose,
et al.,, 1971). Moreover, the positions of the fibres responding best to a given
frequency move with changing sound intensity, whereas the periodicity
information remains constant. Furthermore, the frequency selectivity of a given
fibre's spiking rate is drastically reduced at medium and high sound intensities.
The robustness of periodicity information makes it likely that the brain actually
uses this information, although no direct evidence for this has been found.

6.3 Modelling periodicity extraction

6.3.1 Existing models

We shall first look at some existing models for extracting periodicity in this
section. In the next section I will then describe the improvement of one of these
models and its implementation.
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Several models have been proposed that extract periodicity information using
the phase encoding of fibres connected to the same inner hair cell (Delgutte,
1984; Lyon, 1984, Sachs and Young, 1988; Seneff, 1988). Others propose using
synchronicity of firing on auditory nerve fibres connected to different inner hair
cells (Deng, et al, 1988; Ghitza, 1988; Shamma, 1988). However, to date no
evidence has been found in support of any of these models and they remain
therefore hypothetical.

The simplest of the phase encoding schemes compares the output of the
cochlea at a given position with a delayed version of itself. It is easy to see that
for pure tones, the comparison:

sin2uft)=sin@Rrf(t-A) (53)
is only true for:

f=N/A (54)

where N is an integer. Thus only for frequencies that are a multiple of 1/A,
the signals are in perfect synchrony and thus perfectly correlated. We can adapt
the delay A to each cochlear output, so that 1/A equals the best frequency of that
cochlear output. In this case higher multiples of 1/A will be suppressed due to
the very steep cut-off of the cochlear filters for frequencies above the best
frequency. Each synchronicity detector will then only be sensitive to the best
frequency of the filter to which it is connected. If we code the signals by a spike
train, with one spike per period at a fixed phase, it becomes a very simple
operation to detect this synchronicity. A simple digital AND operator will be
enough to detect overlap between two spikes. These spikes will overlap
perfectly when f = 1/A, but some overlap will still be present for frequencies
close to 1/A, since the spikes have a finite width. The bandwidth of the AND
output can thus be controlled by the spike width.

It is possible to create a silicon implementation of this scheme using the
artificial cochlea and IHC circuit of Chapter 3, the spiking neuron of Chapter 5
and the axon hillock circuit to create the delays. A similar chip has been
developed by John Lazzaro (1991) and functioned correctly.

A disadvantage of this scheme is the fact that the delay associated with a
cochlear output has to be matched to the inverse of the best frequency of that
cochlear output. For a cochlea whose best frequency changes exponentially with
filter number in the cascade from 4 kHz (the upper range of phase locking on
the auditory nerve) to 100 Hz, we will have to create delays that range from
0.25 ms to 10 ms. In the brain, such a large variation in delays is unlikely to be
provided by an axonal delay circuit because that would require an excessive
large variation in axon length.
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6.3.2 Improved model

A possible solution comes from the observation that the phase of a pure tone
of a given frequency on the basilar membrane increases from base to apex, and
the phase changes rapidly around the best frequency. For the silicon cochlea,
the filter cascade also functions as a delay line, and each filter adds a delay
which corresponds to n/2 at the cut-off frequency of that filter. If we monitor
the output of filter i and filter i-4, under the assumption that the filters have
exactly the same cut-off frequency, then we have a delay corresponding to 27 at
the cut-off frequency.
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Figure 6.1 a) Accumulated gain at output i and i-4; b) phase curves of the individual
stages between output i and output i-4.

In reality, the filters along the cochlea will have different cut-off frequencies,
as shown in Figure 6.1. This figure shows the accumulated gain at the outputs i
and i-4, and the delay added by each individual filter between these two outputs
as a function of frequency normalised to the cut-off frequency of filter i. The
vertical line represents this cut-off frequency, and we can see that only filter i
adds a delay of /2, and the other filters add less. However, if we move the
vertical line to the right, the delay added by each filter will increase relatively
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quickly, and at some frequency slightly higher than the cut-off frequency of
filter i, the sum of the delays will become 27 (dashed line). At this frequency
neither filter i nor i-4 has maximum gain, but if the cut-off frequency of both
filters is not too different, e.g., four filters per octave or more, the gain will still
be high enough for both filters at the correlator frequency to yield output signals
with reasonable amplitudes. For the same reason, we should use the minimum
number of filters between the two outputs that we correlate.

It is possible to obtain a phase difference of 2r with three filters already, but
only at a frequency well above the cut-off frequency of each of the filters. In
this case the response has a very small amplitude. For this reason I have chosen
to use four filters between the two outputs. The phase difference between two
such outputs is given by:

i -fifc,
Ap= < arcta m (55)

where fc, is the cut-off frequency of filter x. Actually the arctan function
jumps from -7/2 to /2 at f=fc, and we will have to subtract 7t from the output of
the function whenever f>fc, to keep the function continuous. The equation
shows that A9 is not only a function of frequency, but also of the quality factor
of the filters. Again, when the four filters have very similar cut-off frequency,
the signal frequency that will yield a A¢p= -2t is very close to the cut-off
frequency of these filters and the term (1-(f/fc)®) will become very small, so that
A¢ becomes almost independent of Q.
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Figure 6.2 Implementation of the periodicity extraction model.
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6.4 Implementation with the building blocks

I have implemented this system using my building blocks as shown in Figure
6.2. The silicon cochlea is used to filter and delay the signal, and has been
adjusted so that the cut-off frequency decreases by one octave every twenty
stages, so that the cut-off frequencies of neighbouring filters are almost equal.
The IHC circuit is used to half-wave rectify the signal, but its low-pass filter
function has been disabled in the first series of experiments, in order to avoid
reduction of phase-locking with increasing signal frequency. The 32 spiking
neurons on the neuron chip are used as 32 spiral ganglion cells that take their
input from the same inner hair cell.

To simplify the system in the first tests, I have adapted the settings of the
neurons on a chip so that they behave as a single neuron that always gives
exactly one spike per period of the input signal. A digital AND gate is used to
compare the output spikes of the two chips, and the spike rate at the output of
the AND gate is the measure of activity used. The spike width of the neurons
will control the frequency selectivity of the system. The digital AND gate only
changes the output spike width when spikes overlap partially, but the spike rate
will stay the same; measured this way, the temporal resolution of the system is
defined by the spike width. This is not a fully realistic model with respect to
biology.

Auditory nerve spikes arriving on a real nerve cell performing the synchrony
detection will yield excitatory post synaptic potentials (EPSPs) which have a
clear maximum at a given time after the arrival of the spike, as shown in Figure
5.13a. Because of this temporal maximum, two EPSPs integrated on the cell's
membrane capacitance will yield a maximum voltage change when both spikes
arrive together, and a smaller voltage change when spikes overlap only
partially. The biological cell could use this fact to create a temporal resolution
better than the width of a spike. In the following experiments the neurons have
therefore been set to a 100 ps spike width, about five times shorter than the
width of auditory nerve spikes, to reflect a hypothetical enhanced temporal
resolution in the biological system.

6.5 Test results

6.5.1 OQutput at different filters

In the first experiment, I have measured the number of spikes per second at
the output of the AND gate as a function of input frequency and using different
cochlear filters. The silicon cochlea has been adjusted to have twenty filter
sections per octave; I have measured twelve filter combinations, each
combining a filter output with the output of a filter four sections earlier in the
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cascade. The best frequency of the filter with the lowest best frequency of the
two filters ranged from 200 Hz to 880 Hz. I have measured the output every
four sections. The results are shown in Figure 6.3a
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Figure 6.3 a) measured output rate at different cochlear positions, and b) spike rate
normalised to best input frequency, plotted on a log frequency scale.

The maximum spike rate increases approximately linearly with frequency;
this is to be expected, since we will have approximately one spike per signal
period. Furthermore the best response frequencies of the filters sensitive to
higher frequencies are further apart, due to the exponential scaling of the
frequencies along the cochlea. Finally, a given time delay corresponds to a
larger phase delay for the higher frequencies, so that the absolute bandwidth of
the coincidence detectors, i.e., the range of input frequencies to which they
respond, is larger. When we normalise the spike rate, and plot the curves on a
logarithmic frequency scale, as in Figure 6.3b, we see that the best frequencies
of the correlators follow the exponential scaling of the best frequencies of the
cochlear filters, and that the relative bandwidth is fairly constant.

It is also interesting to note that although I use only one out of every four
silicon cochlear outputs, I have access to one out of every two cochlear outputs
on the cochlea chip. So in between each curve in Figure 6.3a I can measure one
other curve, and this would just about cover all the possible input frequencies,
with little overlap between the selectivity curves of the correlators. A shorter
spike width would yield more selective correlator outputs, but input frequencies
that fall between two peaks would not elicit a response at all. For a setting with
20 stages per octave of the silicon cochlea, Figure 6.3 thus represents the
situation with the most frequency selective settings for the correlator that covers
all input frequencies.

6.5.2 Amplitude dependence

Using the same settings as in the previous experiment, I have measured the
output spike rate of the system for different input amplitudes, when connected
to the cochlear filters with a 710 Hz and 810 Hz best frequency respectively. In
principle, the amplitude of the input signal should have no effect on the output
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of the system, since the system only uses phase information. However, this is
only true if the spikes are always created at the same phase of the output signal
of the cochlear filters, for instance at the peak, or the zero crossing. Figure 6.4
shows however that the resulting filter selectivity shifts to lower frequencies for
higher intensity input signals.
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Figure 6.4 Frequency selectivity for different input intensities.

This is a result of the way the spikes are created on the neuron chip. The
neurons have been adjusted to spike once per period, but the phase at which
they spike with respect to the half-wave-rectified waveform depends only on the
integration time T; of the neuron, which is the time needed with a given input
current to reach the threshold voltage Vy from the zero resting voltage. This
time depends on the amplitude of the input current, which in turn is proportional
to the amplitude of the input signal. Since the amplitude gain of the two
cochlear filters used is not the same, the amplitude of the current input to the
two neuron chips is different. Therefore, they do not spike at the same phase
with respect to their respective input waveforms. The output spike trains of the
two neuron chips are therefore perfectly synchronous, not when A¢ = -2m (as
defined in and below equation (55)) but when A¢ + Ap= -27, where AQ; is the
difference in spiking phase with respect to the local IHC output. Even though
A¢ is independent of the input amplitude, A¢, isn't and this changes the
frequency for which the two spike trains are in synchrony.

To analyse the dependence of A¢, to the input amplitude, we will start to
determine the phase at which a given neuron chip spikes with respect to its
input signal. We can write for the integration of the input current on the
membrane capacitance:

dv
I=GIosin(27tft)=CI (56)
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where G is the accumulated amplitude gain between the input signal of the
cochlea and the output of the filter used. Furthermore, Ij is the amplitude of the
THC output current when G is one, and C is the membrane capacitance. When
we integrate both sides of the equation for the duration of the integration time
T, we obtain:

T,
SGlysin@nft)dt=C Vg 57
0
or:
Glo
Snf (1-cos(2mf Tp)) = C Vg (58)

which we can rewrite as:

2nfC VT
—GT]=¢S 59)

For values of its argument between 0 and 1, the arccos function decreases
monotonously. The interesting section is from /2 to 0, which are the phases of
the positive half cycle of the input current. This is the only phase range allowed
for a one-spike-per-period setting. This means that (59) can only be used when
Gl 2 2nfCVy and that ¢s becomes almost zero for very large input signals. For
the difference in spiking phase of the two neuron chips with inputs (via the IHC
circuit) from different cochlear filter outputs we can thus write:

2nfCVr 2nfCVqp
Ads = ds; - dsy = arcco I-W - arcco l-—mo— 60)

where G, and G; are the amplitude gains of the two respective cochlear
filters. With this equation we can calculate that Ads is positive and decreases for
increasing input amplitude when G, is larger than G,. This is the case in the
current example, because the best frequency (BF) of the first filter is 710 Hz
and 810 Hz for the second filter; the frequencies which yield synchronisation
are above 810 Hz, so that the 810 Hz BF filter will have higher gain than the
710 Hz BF filter. If Ads decreases with intensity, then A¢ will have to increase,
i.e., become less negative, in order to keep their sum constant at -27 and we can
see in Figure 6.1 that Ad decreases with decreasing signal frequency.

The analysis above explains why the frequency selectivity of the system
shifts to lower frequencies with increasing intensity, but this is an artefact of the
spike generation used to simplify the system. On the auditory nerve, spikes

21th,=arccox(1 -
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arrive with a probability roughly proportional to the half-wave rectified
waveform. The most probable phase for a spike is therefore always at the
maximum of the waveform, independent of intensity. In such a system, the
frequency selectivity will therefore be independent of amplitude. A second
advantage of coding (at least half of) the waveform in spike probability is that it
does not assume that the input waveform is sinusoidal. Coding a waveform with
one spike per period can only code the frequency and phase of a waveform, but
not its form.

6.5.3 Amplitude modulated signals

To test the model with a more complex waveform, I have used a 930 Hz sine
wave 100% amplitude-modulated at 200 Hz generated on a computer. Because
of the way the input frequency is varied on the computer during playback — by
playing the whole waveform a certain percentage slower or faster — the actual
modulation frequency changes with the same factor as the carrier frequency.
The results of this test are shown in Figure 6.5 for three different input
amplitudes.
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Figure 6.5 Frequency selectivity for different input intensities with AM input.

Compared to the measurements in Figure 6.4, we see that the filter is less
selective and centred at a higher input frequency. The shift towards a higher
frequency can be explained by the fact that the average input amplitude of an
amplitude modulated signal is lower than in a pure tone with the same
maximum amplitude. Furthermore, the amplitude of the positive half-cycle of
the output of the THC circuit changes from cycle to cycle because of the
amplitude modulation. We have seen that the amplitude of the input signal
changes the frequency for which the two spike trains are synchronous, which
means that the frequency which yields the best response changes from cycle to
cycle with a periodicity equal to the modulation frequency. This introduces a
sort of “roaming” of the frequencies in the input signal, effectively reducing the
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selectivity of the filters. Finally, because of the 100% depth of the amplitude
modulation, the amplitude of the input will be too low during some cycles to
create a spike, which therefore reduces the total number of spikes which can
coincide.

6.5.4 Periodicity vs. spectral content

Figure 6.5 shows that this model detects periodicity and not spectral content.
The spectrum of a 930 Hz pure tone 100% amplitude modulated at 200 Hz
contains, apart from a 930 Hz carrier component, components both at 730 Hz
and 1130 Hz, with half the amplitude of the carrier component. When the speed
of the waveform playback is varied so that the carrier frequency is either 765 Hz
or 1185 Hz, one of these spectral side bands will be at 930 Hz, but the system
does not respond to these spectral components. This is explained by the fact that
the periodicity of the zero crossings, and thus of the positive half cycles of the
THC output, is always equal to the carrier frequency.
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Figure 6.6 Response of six cormelators with different best frequencies to a) four
different pure tones, and b) three different mixes of pure tones.

The difference between periodicity detection and spectral content extraction
is even clearer in Figure 6.6. This figure is different from the previous ones in
the fact that it is not the input frequency that varies on the x-axis, but the best
frequency of the synchronicity detector; the different curves are for different
input signals. Figure 6.6a shows the response for four different pure tones at the
best frequencies of the four middle synchronicity detectors. This shows that
effectively only one detector reacts for each input signal, and thus signals the
presence of an input signal with a periodicity that is within its pass-band.

However, when we mix two of such pure tones at equal amplitude, we obtain
the result of Figure 6.6b, which shows that the two spectral components are not
separated, and sometimes not even detected. Again this can be explained by the
periodicity of the input signal. When the intervals between for instance two
successive peaks or zero-crossings are measured, we see that these intervals
vary from cycle to cycle. Therefore, within the range of delays we are interested
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in, it is impossible to find a single delay different from zero that will line up all
the peaks in the two cochlear outputs. There are several delays that will line up
some of the peaks, making certain synchronicity detectors respond weakly;
these delays do not necessarily correspond to the inverse of the pure tone
frequencies used in the mix. For instance in the mix of a 1040 Hz and a 830 Hz
sine wave, we find time intervals between successive peaks that correspond to
instantaneous frequencies in the range of 750-870 Hz, and not a single one in
the 1000 Hz region. In Figure 6.6 we can see that indeed only the detectors in
the low frequency range respond.

6.5.5 Noise

The fact that the system is quite a good periodicity detector is shown by the
measurements of Figure 6.7. In these measurements, white noise has been added
with different gains to a 930 Hz pure tone with a 20 mV amplitude to create
different signal to noise ratios (SNRs). The noise has been generated with the
same maximum amplitude as the pure tone and with a 11025 Hz sample
frequency. The addition of a small amount of noise to the signal results in phase
jitter in the spike trains, which increases the range of frequencies which are able
to elicit coinciding spikes, but also changes the flat topped frequency selectivity
curve to a pointed one, and thus renders the best frequency more visible. When
the noise increases, the average number of spikes in the pass-band decreases,
and the average number of spikes outside the pass-band increases. With a noise
gain as high as 2, there still is a clear difference between the average spike rate
in the pass-band and outside. Finally, at a noise gain of four, the average spike
rate is constant, except that there is a noticeable spike rate increase at best
frequency only. In this case the signal does not respond strongly to a signal at
best frequency, but it does respond very selectively!
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Figure 6.7 Frequency selectivity for a 930Hz pure tone with white noise added with
different gains. The noise gain is given in the legend. .
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6.5.6 Temporal behaviour

Traditional band-pass filters with a very high quality factor (Q) can also yield
a narrow pass-band, but their step response takes about 1.5Q cycles at the centre
frequency to settle. The periodicity selectivity of the synchronicity detector
shown in Figure 6.7 corresponds to a quality factor of 14 at 30dB SNR; a
traditional band-pass filter would take about 21 cycles of the 930Hz input signal
to settle. Figure 6.8 shows the temporal aspect of the synchronicity detection in
our system. The top trace in this figure shows the output of the cochlear filter
with the highest best frequency (index i-4 in Figure 6.1) and the spikes
generated based on this output. The second trace shows the same for the output
of the cochlear filter with the lower best frequency (index i in Figure 6.1). The
third trace shows the output of the AND gate with the above inputs, which are
slightly above its best periodicity. Coincidences are detected at the onset of the
tone, even when it is not of the correct periodicity, but only for the first one or
two cycles. The bottom trace shows the output of the AND gate for an input at
best frequency. The system thus responds to the presence of a pure tone of the
correct periodicity after only a few cycles, independent of the filters selectivity.
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Figure 6.8 Oscilloscope traces of the temporal aspect of synchronicity detection. See
text for details. The vertical scale is 20mV per square for the cochlear outputs, the
spikes are 5V in amplitude.

To show this more dramatically, I have reduced the spike width to 10 s, to
obtain a high periodicity selectivity as shown in Figure 6.9. The bandwidth of
this filter is only 20 Hz at 930 Hz, equivalent to a quality factor of 46.5. A
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traditional filter with such a quality factor would only settle 70 cycles after the
onset of the signal, whereas the periodicity detector still settles after the first
two cycles, as shown in Figure 6.10. Note that, because of the very short spikes,
coincidences are not detected at every cycle, reflected by a lower maximum
spike rate in Figure 6.9.
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Figure 6.9 Frequency selectivity with a 10us spike width.
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Figure 6.10 Cochlear output (top, 40 mV scale) and coincidences (bottom) for a signal

at best frequency with a 10 ps spike width.

We can compare this result with the response of a classic RLC band-pass
filter with a 930 Hz centre frequency and a quality factor of 46.5 as shown in
Figure 6.11 and Figure 6.12. After 18 cycles of the input signal, the output of
the band-pass filter has only reached 69% of its final value.
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Figure 6.11 Simulated frequency sclectivity of the RLC band-pass filter.
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Figure 6.12 Simulated transient response of the RLC band-pass filter. Scale units are
40 mV

6.5.7 Biological spike distribution

In the previous sections we simplified the model to use one spike per period
in order to understand the principle behind the periodicity detection. However,
we have seen that the implementation using the 32 neurons behaving as a single
neuron (to give one spike per period) leads to a shift in best periodicity with
changing amplitude, because the phase at which the 'single neuron’' spikes
changes with intensity. Next, we change the settings to be more realistic, so that
none of the 32 neurons can spike at each period, and we reduce the output gain
of the IHC circuit so that the neurons receive less signal current, and thus have a
lower input SNR. The resolving spike distribution resembles the spike
distribution on the auditory nerve more. This is shown in Figure 6.13 for a
group of 32 neurons stimulated by and IHC circuit connected to a single
cochlear output. The bottom trace shows the sum of spikes over the 32 neurons.
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Figure 6.13 Cochlear output (top) and population average of the AN spikes (bottom).
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Figure 6.14 Periodicity selectivity with auditory nerve like spike distribution.

When we use spike distributions as shown in Figure 6.13 and repeat the pure-
tone detection experiment of Figure 6.4 at different input intensities, we obtain
the periodicity selectivity curve of Figure 6.14. Indeed, in this case, the best
periodicity does not change; the curves are remarkably independent of input
intensity. The selectivity curve is about twice as wide at the base as the ones in
Figure 6.4. Furthermore, we do not get coincidences at each period, so the
maximum number of spikes is lower. Finally the slopes of the selectivity curve
rise and fall much more gradually, just as in the added-noise case in Figure 6.7.
This also means that we can easily increase the selectivity of these curves by
setting a higher threshold, e.g., discarding spike rates below 70 spikes per
second. Because of the steep slopes in Figure 6.4 such an operation would
hardly increase the selectivity for that case.

This first application of the building blocks clearly demonstrates the
advantages of using spikes in the detection of periodicity and that simplification
of the system might help to better understand the principle behind the operation;
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it is also clear that simplification can also introduce artefacts which are not
present in a system which mimics the biology more closely.

6.6 Summary

In this chapter I have presented a neural system implemented with the
building blocks from the previous chapters. The system uses the delay between
the outputs at two points along the cochlea to detect a periodicity in the input
signal.

An especially useful property of the cochlea is that the delay between two
points with a fixed distance between them corresponds to a full period at a
frequency that scales in the same way as the best frequency scales along the
cochlea, 1.e., it decreases exponentially.

If we always create spikes at the same phase of the output signal at each
filter, or simply have the highest spiking probability for the maximum
instantaneous amplitude of the output signal, then both outputs will only have
synchronous spikes for a certain periodicity, and we can easily detect this
synchronicity with coincidence detectors.

This system offers a way to obtain very selective filters using spikes. Even
though they react to a very narrow range of periodicities, these filters are able to
react after only a few periods. Furthermore, the range of periodicities it
responds to can be made independent of input intensity, which is not the case
with the cochlear output itself.
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7. Envelope periodicity extraction

7.1 Biological background

Another form of periodicity detection that I have tried to model with the
electronic building blocks is envelope periodicity detection, i.e., the extraction
of the repetition rate of the peaks in the waveform envelope. This can be used to
extract the fundamental of a harmonic complex, or the modulation frequency of
an amplitude-modulated signal.

Amplitude Modulated (AM) sounds are of particular interest because this
class of signals includes music and voiced speech, where the pitch of the sound
is related to the rate of modulation. It has recently been discovered that stellate
cells can be entrained to AM sounds; that is, they fire in synchrony with the
peaks of the modulation envelope (Frisina, et al., 1990; Kim, et al., 1990).
Sustained chopper cells, in particular, are entrained by a limited range of AM
frequencies only. In other words, they have a band-pass transfer function for
amplitude modulation which suggests they might be involved in pitch
perception.

It is important to note that in most situations the firing rate of the chopper cell
is only minimally affected by changes in the frequency of modulation of the
signal. It is mainly the coherence of the cell’s activity with respect to the
acoustic stimulus that is influenced. Because different cells respond to different
AM frequencies, we infer that pitch is represented spatially in the cochlear
nucleus. Computer studies that simulate sustained chopping activity in response
to AM signals suggest that the preferred rate of modulation is limited by the
natural rate of chopping of the cell (Kim, et al., 1990). This, in turn, is related to
intrinsic properties of the cell such as membrane capacitance or the time
constant of recovery of potassium channels.

We can however go further than this, because it is known that some cells in
the inferior colliculus (IC) also respond selectively to AM rates, but this time by
increasing the firing rate of the cell as the rate of modulation approaches the
cell's preferred frequency. It has been shown that this effect can be replicated by
directing the output of a number of simulated cochlear nucleus (CN) chopper
cells (with the same best modulation frequency) into a coincidence-detector
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type of neuron (Hewitt and Meddis, 1994). This latter cell responds with a high
firing rate only when the inputs from the CN are synchronised. In the case of
sustained chopper cells, this condition is met only when they are all driven by
an AM acoustic stimulus at their preferred AM frequency. This idea is
supported (but not proven) by anatomical studies showing that some sustained
chopper cells in the CN have excitatory projections to the IC (Webster, et al.,

1992).
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Figure 7.1 Neural circuit for Amplitude Modulation sensitivity in the Inferior Colliculus
proposed by Hewitt and Meddis (1994). BMF = best modulation frequency.
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This theory of amplitude modulation sensitivity could be tested through
extensive use of animal recordings but a good model of this process would
allow us to explore the complex implications of the theory more conveniently
and humanely. Hewitt and Meddis (1992,1994) have created computer models,
which simulate the sensitivity of single choppers in the cochlear nucleus and of
single coincidence-detecting neurons in the inferior colliculus. Although these
models could in theory be extended to model multiple neurons functioning in
parallel, the very long simulation times needed would make this very hard to
use. Exploration of the model will be a lot easier once a hardware model has
been constructed.

7.2 Amplitude modulation sensitivity model

7.2.1 Description of the model

Figure 7.1 shows the model as originally developed by Hewitt and Meddis
(1994). In this model the incoming sound is filtered by the cochlea. The output
at each point along the cochlea is transduced into neural signals by inner hair
cells. The inner hair cells are contacted by spiral ganglion cells, which generate
the auditory nerve spikes. The spike generation is a stochastic process, with a
spike probability proportional to the inner hair cell output.

Each chopper is contacted by 60 auditory nerve fibres, all with the same best
frequency. In the computer simulation of the model the choppers are stimulated
by different auditory nesve fibres, but all fibres originate at the same inner hair
cell. The choppers are divided into groups according to their chopping interval.
A group of about 30 choppers with the same chopping interval then contacts the
coincidence-detector neurons.

Choppers with the same chopping interval will synchronise for a signal with
an amplitude modulation component whose frequency is close to the inverse of
the chopping interval. This synchronicity will cause the coincidence-detectors,
stimulated by these choppers, to fire.

7.2.2 Chopper synchronisation

To understand why the choppers will synchronise for a certain amplitude
modulation frequency, one has to look at the signal envelope (Figure 7.2),
which contains temporal information on a time scale that can influence the
spiking neurons. Because of the low-pass filtering of the IHC circuit, the 5 kHz
carrier itself will not contain any temporal information that influences the
spiking neuron in an important way.

Consider the case when the modulation frequency is similar to the chopping
frequency (Figure 7.2). If a chopper spikes during the rising flank of the
envelope, it will come out of its refractory period just before the next rising
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flank of the envelope. However, if the driven chopping frequency is a bit too
low, the chopper will come out of its refractory period a bit later. This means
that the chopper starts integrating its input higher on the rising flank of the
envelope and therefore receives a higher average stimulation. This in turn
increases its chopping frequency. The rising flank of the stimulus envelope thus
provides a form of negative feedback on the chopping frequency, which makes
spiking on a certain point on the rising flank of the envelope a stable situation.
With the same reasoning one can show that spiking on the falling flank is
unstable. A group of similar choppers thus stabilise at about the same point on
the rising flank; their spikes will thus coincide when the moduiation frequency
allows them to.
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Figure 7.2 Spike generation for a chopper cell.

We can characterise this situation more precisely with some calculation.
Consider a high-frequency input signal amplitude modulated at a frequency fi;q
and modulation depth md, with maximum amplitude I, will create, after half
wave rectification and low pass filtering by the IHC circuit, a stimulus current
which can be approximated by the signal’s envelope:

md md '
L = Imax [1 - —i—) - Tnax (7] Cos(27fpat) 61

This stimulus charges the membrane capacitance Cy,.n from zero volts to the
threshold voltage Vi, of the neuron prior to spiking. If a neuron spikes at
phase ¢ = 2 7 fi,,,q t;, we can calculate what the duration of the integration time
T, must have been, since:

Vinem

md md
Inax | 1 - | - Inax| 5~ | Co(2Mfmodt) = Croemn g (62)

so that:

Qs/ 27‘7fmod

md md
Tmax | 1 -7 - Inax 'é_ Cos(2nf moat) At = Crpem Vres (63)
(920t n00) - Ti



Chapter 7: Envelope periodicity extraction 117

which yields:

md)  md(Sin(®)- Sin(d; - 2tfesTr))
Imax [( '7 | Bt 4nfmod mo ] 'CmcmVLhres=O (64)

For a neuron to be phase locked at phase o, it must always spike at ¢,, which
means that T; + Tg + Ts = 1/f,,04, where Ty is the refractory period of the neuron
and Ts the spike width. I have plotted equation (61) and the numerical solution
to (64) in Figure 7.3a and b, for md=0.5, Inu=15 nA, V1=2 V, Cpen=15 pF, and

fmod=100 Hz.
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Figure 7.3 a) Stimulus current, and b) Ty (bold) and ATg. See text for details.

When we know the spike width Ts, we can use equation (64) to calculate T;
for a given phase and thus what Tr should be to obtain stable phase locking at a
given phase ¢;. As reasoned before, phase-locking of the neuron is only stable
when dTy/d¢; is negative, so the Tp we calculate is only valid in this phase
region. A different refractory period Tr will yield a different spiking phase ¢,
and we can calculate what the maximum allowable difference in Ty is between
two otherwise identical neurons when we want their spikes to overlap. This ATy
curve is shown in Figure 7.3b for a spike width of 0.5 ms. We can see from this
curve that in the above situation ATy is largest for a phase of about 0.57, and it
will be at this phase that the largest group of neurons will be phase locked.

30 2
— a > b
g0 1 £
~ ~q1
e o
.210 + .'E
0 ! — 0 /\
0 2 0 0.

05 1 15 .5 1 1.5
phase (n rad) phase (n rad)

Figure 7.4 a) Stimulus current, and b) T; (bold) and ATg. See text for details.

Doubling the input amplitude reduces the integration time by about a factor
of two. The exact amount is however a function of ¢, f,.q and md, and can vary
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widely with these parameters. Synchronisation will move to choppers with a
larger Tr when the intensity increases. In Figure 7.4b we can see that in the
above situation ATy has almost exactly the same form as in Figure 7.3, but
allows only half the spread in Tgr at its maximum. This indicates that with
increasing amplitude, fewer choppers will synchronise when we assume that
their refractory periods are distributed evenly. This result is supported by
biological evidence, showing that synchronisation of chopper neurons in the
cochlear nucleus decreases with increasing stimulus level (Frisina, et al., 1990).
There is further evidence that coincidence-detecting neurons in the inferior
colliculus detect fewer coincidences at their best modulation frequency when
the stimulus intensity increases (Rees and Palmer, 1989).

Figure 7.5 shows how the maximum value of ATy varies with intensity for
two different values of md and fpoq.
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Figure 7.5 Maximum allowable spread in Ty for two different modulation depths and

modulation frequencies. a) fmod = 100 Hz or b) frmeq = 150 Hz.

The lower curve in Figure 7.5a is the theoretical result for the situations in
Figure 7.3 and Figure 7.4. We can see that for I > 10 nA, ATrma reduces by
about a factor of two for each doubling of I,,,. However, when we increase the
modulation depth (see the bold curve in Figure 7.5a), or the modulation
frequency (see Figure 7.5b), ATrmax varies less (in relative value) with I
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Figure 7.6 a) Stimulus current, and b) T; (bold) and ATr. See text for details.

When we use a larger modulation depth, the stimulus varies the integration
time more; synchronisation will get stronger, allowing a much larger spread in
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Tr and concentrating the spikes at a much smaller range of phases, as shown in
the bold curves in Figure 7.5. We can also see this in Figure 7.6, where the
modulation depth is 1.0.

The analysis above assumes that we have one spike per modulation period,
and is only meant to clarify the synchronisation mechanism. For a complete
description of the system, we would also have to analyse cases like two spikes
per modulation period, or one spike per two modulation periods. Both cases can
yield stable phase locking too, but are in general not as strong.

7.3 Implementation with the building blocks

I have used the building blocks described in chapters 3 and 5 to implement
this envelope periodicity extraction model, as shown in Figure 7.7. The system
of Figure 7.1 creates a two-dimensional tonotopic-periodotopic map, with one
axis being position along the cochlea (i.e., the tonotopic axis which represents
frequency on a logarithmic scale) and the second axis being modulation
frequency. Taking a single output of the silicon cochlea, transforming it with
the IHC circuit, and using this as input for the neuron chip allows us to model a
single point in this map.

e High CF Silicon Cochlea Low CF
[(TTTTTTTTTIT T Iy T T T T T rTnd
Ny
HC
"y
neuron chip (32 choppers)

y Summed output spikes
of the 32 neurons

threshold

Yu_

Figure 7.7 Implementation of the amplitude modulation sensitivity model with the
building blocks.

The neuron chip can be set to simulate 32 similar sustained chopper cells by
using a relatively high threshold voltage and low membrane leakage current,
yielding a long integration time. The refractory period Ty can be controlled
using the current Ixgown (Figure 5.1). Tr will vary slightly among the neurons on
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a chip, however, due to component mismatch. This mismatch will thus fix the
ATy in the group of choppers around a given Tr.

Since I have to rely on the statistical properties of the mismatch between the
different neurons to create the spread in Tg, I shall need enough choppers in
each group of similar choppers. For example, with only two choppers in a group
there would be a high risk that their refractory period would be too different due
to the device mismatch, and no synchronisation would be possible. The 32
neurons on a neuron chip represent a statistically large enough sample.

Synchronisation of the choppers can be detected by a coincidence-detecting
neuron on a second chip, when the chopper output is used as input signal for
this second chip. We can create coincidence-detecting cells on a second neuron
chip by setting a relatively high leakage current, so that a number of spikes have
to arrive within a certain time in order to evoke an action potential. The
temporal window can be controlled by this leakage current.

A simpler solution to detect synchronicity of the chopper cells is, however, to
look at the output line of the chip which contains the sum of all the chopper
spikes at any given moment in time (see section 5.4.2). Each chopper injects a
reference current on this wire when it spikes, so the currents of overlapping
spikes will add. Synchronicity is detected by comparing the summed current
with a threshold. For instance, using 16 times the reference current, at least half
of the 32 neurons on the chip will have to have their spikes overlap to create a
sum current larger than the comparator current. This solution does not allow for
integration of non-overlapping spikes arriving in succession and the temporal
window in which the spikes have to arrive in order to add up is controlled by
the spike width. However it is a good enough solution to test the working
principle of the model. I have used this solution in the measurements of the
following section.

7.4 Test Results

7.4.1 Chopper response

The first step in the elaboration of the model is to test whether the group of
spiking neurons on a chip acts like a group of similar choppers. We have
already seen in the previous chapter that the neuron chip can recreate the Post
Stimulus Time Histogram (PSTH) of the chopper. In Figure 7.8 two more
examples of chopper PSTHs of the circuit are shown. They are the result of the
summed response of the 32 neurons on chip to 20 repeated stimulations with a 5
kHz pure tone burst at two different intensities. These figures show that the
response of the choppers yields a PSTH typical of chopping neurons, and that
the chopping rate, keeping all other parameters constant, increases with
increasing sound intensity. The chopping rate for an input signal of given
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intensity can be controlled by setting the refractory period of the spiking
neurons, and can thus be used to create the groups of choppers that differ in
their average refractory period, shown in Figure 7.1. The chopping rate of the
choppers in Figure 7.8 is about 300 Hz for a 29 dB input signal.
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Figure 7.8 PSTH of the chopper chip for 2 different sound intensities

7.4.2 Coincidence-detection

Most neurophysiological data concerning low-frequency amplitude
modulation of high-frequency carriers exists for carriers at about 5 kHz and a
low modulation depth. I have therefore used a 5 kHz sinusoid in the following
tests with a 50% modulation depth and stepped its modulation frequencies from
10 Hz to 550 Hz in steps of 10 Hz. Another free parameter of the model is the
threshold current of the coincidence-detector. If this parameter is set so that at
least 60% of the choppers must spike within the about 1 ms spike width to be
considered a coincidence, we obtain the output of Figure 7.9. We can see that
this yields the expected band-pass Modulation Transfer Function (MTF), and
that the best modulation frequency for the 29 dB input signal corresponds to the

intrinsic chopping rate of the group of neurons.
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Figure 7.9 AM sensitivity of the coincidence-detector.

Figure 7.9 also shows that the best modulation frequency (BMF) increases
with increasing sound intensity, just as the chopping rate in Figure 7.8.
However, the maximum number of spikes per second actually decreases, which
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is caused by the fact that AT is reduced when the input intensity is increased.
In Figure 7.9b we can also see some evidence for the synchronisation with two
spikes per period, as the choppers with a BMF of about 380 Hz also synchronise
for a 170 Hz input. Note that second frequency is not necessarily half of the
BMF. This is due to the fact that although Tr and Ts are the same for both
spikes in the two spikes per period situation, T; is not necessarily the same,
since we integrate different sections of the waveform envelope.

7.4.3 Influence of the coincidence threshold

When the coincidence threshold is lowered to 50%, we can see in Figure
7.10a that the maximum number of spikes goes up, because the threshold is
more easily reached. Furthermore, a second pass-band shows up at twice the
best modulation frequency. At this higher frequency the choppers fire only
every second amplitude modulation period; part of the group of choppers will
synchronise during the odd periods, whereas the others will synchronise during
the even periods. The division of the group of choppers will typically be close
to, but hardly ever exactly 50-50, so that the 50% coincidence threshold is
exceeded either during the odd or during the even modulation period. A 60%
threshold will only rarely be exceeded, explaining the weak second peak seen
around 500 Hz in Figure 7.9.
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Figure 7.10 AM sensitivity of the coincidence-detector at lower threshold.

7.4.4 Low intensity input

Figure 7.10b shows the MTF for low-intensity signals with a 50%
coincidence threshold. At low intensities the effect of the stimulation threshold
shows up. Whenever the instantaneous value of the envelope is lower than the
stimulation threshold, the spiking neuron will not be stimulated because its
input current will be lower than the cell’s leakage current. For low-intensity
stimuli whose modulation frequency is lower than the group’s average chopping
frequency, the choppers will all come out of their refractory periods at a point in
the modulation period during which the effective stimulation is zero (see Figure
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7.11). They will therefore have to wait for the envelope amplitude to increase
above the stimulation threshold before receiving stimulation anew. This waiting
period nullifies the effect of the variation of the refractory period of the
choppers, and thus synchronises the choppers for low modulation frequencies.
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Figure 7.11 Spike generation for a chopper cell with stimulation threshold.

A second effect of this waiting period is that in this case the firing rate of the
choppers matches the modulation frequency, since the choppers can only spike
once per modulation period. This is equivalent to the observations that choppers
in the cochlear nucleus have low-pass modulation transfer functions at low
sound intensities, and band-pass modulation transfer functions at higher sound
intensities (Frisina, 1990).

When the modulation frequency becomes higher than the maximum
chopping frequency at low sound intensities, the choppers will fire only every
second period, but will still be synchronised to the input waveform. All
choppers do not necessarily synchronise to the same one out of every two cycles
of the input waveform, but it is also unlikely that exactly 50% synchronises to
one cycle and 50% to the other. Therefore the number of synchronised choppers
will surpass the 50% threshold only once every two cycles, as can be seen
between 300 Hz and 500 Hz in Figure 7.10b.

We can include this stimulation threshold nonlinearity introduced by the
leakage current I, in the mathematical analysis of section 7.2.2 by introducing a
term I T in equation (64) to obtain:

{ E}r md(Sin(6y)- Sin(es - 2feeTD)
Loax (| 1 -7 Th - 47f g

From this we can see that increasing I has the same effect as decreasing the
d.c. level of the stimulus current without changing the a.c. part.

] -ILTi - CoemVinees = 0 (65)
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7.5 Second version
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Figure 7.12 Implementation of the amplitude modulation sensitivity model.

I have recently implemented a new version containing the Inner Hair Cell
model, an array of chopper cells, and an array of coincidence-detecting neurons
on a single chip. However, instead of having several groups of similar chopper
cells, as in the original model, this implementation uses an array of chopper
cells along which the intrinsic chopping frequency increases from one end to
the other.

Instead of connecting the output of a number of neighbouring choppers with
dedicated wires to the input of each coincidence-detecting neuron, I have used
the dendrite circuit of Figure 5.15 on this chip. As we have seen in chapter 5,
this circuit offers a way to create a receptive field for the coincidence-detecting
neuron, in which the chopper at the same array position receives the strongest
input and the strength of the input falls off with distance.

7.6 Test results for the second version

7.6.1 Overview

A quick overview of the operation of this chip is shown in Figure 7.13 and
Figure 7.14 which show measurements of the “cochlear nucleus” choppers and
the “inferior colliculus” coincidence-detectors respectively.

Figure 7.13a shows the chopping rate of all choppers when stimulated with a
5 kHz pure tone. The chopping rate increases along the array for a given
stimulus intensity, due to the decreasing refractory period of the choppers in the
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array. Because of component mismatch, the chopping rate is quite a noisy
function of the position in the array. Figure 7.13b shows the spiking rate of the
choppers when stimulated with a 5 kHz signal which is amplitude modulated at
120 Hz at 50% modulation depth. We can see that the choppers around the 120
Hz position in the array (i.e., the choppers with intrinsic chopping frequency
close to 120 Hz) fire once per modulation period, so that their spiking rates
match the modulation frequency. This also means that such a chopper fires at
the same phase at each modulation period, and it is therefore phase-locked to
the modulation signal. The spiking rate for choppers having an intrinsic
chopping rate much different from 120 Hz is however not changed by the
presence of amplitude modulation.

Figure 7.14b shows the response of the IC coincidence-detecting neurons to
the input from the CN choppers in Figure 7.13b. All choppers spiking at 120
spikes per second are synchronised to the input signal, but only a certain
fraction of them spike at approximately the same phase in the modulation
period. Only those choppers which spike within the time window of the
coincidence-detectors will lead to a response from the coincidence-detectors.
Figure 7.14a shows the response for a signal modulated at 130 Hz. The position
of the responding coincidence-detectors moves to the right, i.e., towards the
choppers with higher intrinsic chopping frequency.
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Figure 7.13 Average CN chopper spiking rate. a) no AM, b) 120 Hz AM at 50% depth.
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Figure 7.14 AM sensitivity of the coincidence-detecting neuron. a) 130 Hz AM, b) 120
Hz AM.

We can also see that the maximum spiking rate of the coincidence-detectors
matches the modulation frequency, since the choppers spike once per
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modulation period and thus one coincidence is detected per modulation period
Therefore, the modulation frequency can be coded in both place and rate by
these neurons. We will have to remember though that this circuit detects the
modulation frequency based on one cochlear output only. In a complete system
the modulation frequency would be represented by such a circuit at each
cochlear output, and we will have to find a way to integrate the information
across the tonotopic axis, i.e., over different chips. If modulation frequency 1s
represented by a place code, tonotopic integration becomes quite trivial. It
would be possible to simply sum the outputs of the coincidence-detectors with
the same array position on the different chips. A rate code would necessitate the
more complex operations of finding the rate that represents the modulation
frequency for each chip, and comparing these rates between chips. A place code
would therefore be our preferred way of coding the modulation frequency.
7.6.2 Pure tone response
After this overview of the operation of the second version of the model, we
shall perform a more detailed exploration of this version in the rest of this
chapter.
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Figure 7.15 Spiking rate of the chopper neurons as a function of array position and

input amplitude, when stimulated with a 3.6 kHz pure tone

Figure 7.15 shows the average firing rate of the neurons in the chopper array
of Figure 7.12 as a function of the input amplitude. The input signal was a pure
tone at 3.6 kHz. In this and the following tests, this input signal has not been
filtered by the cochlea, but stimulates the IHC circuit directly. The “input”
signal should thus be seen as the output signal at a single output tap of the
silicon cochlea. For a 3.6 kHz pure tone, the output of the IHC circuit simply
becomes a d.c. current with only a very small remaining a.c. variation.
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The output current of the IHC circuit is not equal to zero when the input
amplitude is zero. This effect is equivalent to having a spontaneous rate on the
auditory nerve. This stimulation current of the choppers has to be larger than
their leakage current in order to elicit spikes. For the measurements of Figure
7.15 and the following tests, the leakage current was adapted so that it equals
the amplitude of the stimulation current when the input voltage of the IHC
circuit is zero. However, the input to each chopper is an imprecise copy of the
stimulation current, and the leakage current of each chopper is also an imprecise
copy of the bias leakage current. The zero input amplitude stimulation current
will therefore be larger than .4 for some choppers, and smaller for others. We
can see this in Figure 7.15, since some choppers produce spikes even with zero
input amplitude, whereas others don't.

Figure 7.15 also shows that the number of output spikes increases with
increasing input amplitude, and that it increases faster for the choppers with a
higher position number. Because of the shorter refractory period of the higher-
numbered choppers, they will spike faster for the same stimulus level than the
choppers with a longer refractory period. Furthermore, the maximum spiking
rate of a chopper is limited by its refractory period, which explains the
saturating nature of the spiking rate versus input amplitude curves of the
choppers. At an input amplitude of 200 mV, we can see in Figure 7.15 that the
spiking rate is still not completely saturated. This indicates that the integration
time Ty is still a substantial part of the spiking period, since the integration time
T, 1is the only part of the spiking period that is influenced by the input
amplitude — the refractory period Ty and the spike width Ts are constant. Since
T; is the only part influenced by the input signal, it is also responsible for
chopper synchronisation by the input waveform. Therefore, we should not
saturate the choppers if we want to be able to synchronise them.

The output current of the IHC circuit is also a saturating function of input
amplitude, but this circuit has been adjusted to saturate at a higher input
amplitude than the choppers, in order to allow the saturation related to the
refractory period to show.

When high-frequency pure tones are used as inputs to the model, each
chopper will chop at its own rate and no synchronisation will take place. The
coincidence-detectors will thus only occasionally detect accidental
coincidences.

7.6.3 Amplitude dependence

The second series of experiments show the response of the system to an
amplitude-modulated 3.6 kHz pure tone as a function of input intensity for two
different modulation depths (100% and 60%) and two different modulation
frequencies (110 Hz and 150 Hz).



128 The Electronic Auditory Pathway

In the following figures, | have used a different representation for the output
spikes of the coincidence-detecting neurons than for the output spikes of the
choppers. In most of the following experiments either the choppers are inactive,
or they spike at a rate close to the modulation frequency. This is clearly shown
by an iso-intensity plot (Figure 7.16a) in which the lighter region represent
active choppers, and the darker region represents the inactive choppers.
However, the output of the choppers will only be partially modified from its
basic form (shown in Figure 7.15) in the following experiments. An iso-
intensity plot would not show this, so that I have opted to use the representation
of Figure 7.15 for the chopper output. I cannot use this representation for the
coincidence-detector output, because the active regions would hide the inactive
regions that lie behind them in some cases.
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Figure 7.16 a) Spiking rate of the coincidence-detecting neurons, and b) of the
choppers, when stimulated with a 3.6 kHz tone, 100% modulation depth, amplitude
modulated at 150 Hz, as a function of maximum amplitude
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Figure 7.16 shows the result for a pure tone 100% amplitude modulated at
150 Hz. The 100% modulation ensures that a large number of choppers will be
synchronised, shown by the large light plateau in Figure 7.16b, With increasing
input intensity, the integration time T, will shorten, and synchronisation will
move to choppers with longer refractory periods Tgr. Coincidences are only
obtained once per modulation period when the choppers are synchronised. The
active regions in the coincidence-detector output therefore correspond to the
plateaux in the chopper output, but not all choppers that are synchronised to the
input signal spike at the same time, and thus they do not always yield
coincidences.
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Figure 7.17 a) Spiking rate of the coincidence-detecting neurons, and b) of the
choppers, when stimulated with a 3.6 kHz tone, 60% modulation depth, amplitude
modulated at 150 Hz, as a function of maximum amplitude.

When we decrease the modulation depth, synchronisation will become less
strong, and less choppers will synchronise. We can see this in Figure 7.17.
Figure 7.17a also shows that even when choppers spike at the same frequency
as the modulation frequency and are thus synchronised to the input signal, it
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does not necessarily follow that neighbouring choppers are synchronised to
each other. As we have seen in Figure 7.15, some choppers receive a higher
input signal than others due to component mismatch. This means that these
choppers will synchronise to different phases of the input signal, and thus will
not create coincidences. A second reason for the fact that some coincidence-
detectors do not always (or not at all in some cases) detect the synchronisation
of neighbouring choppers is that these coincidence-detectors receive a weaker
input signal, again due to component mismatch. These coincidence-detectors
will thus need more choppers to be synchronised in order to spike.
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Figure 7.18 a) Spiking rate of the coincidence-detecting neurons, and b) of the
choppers, when stimulated with a 3.6 kHz tone, 100% modulation depth, amplitude
modulated at 110 Hz, as a function of maximum amplitude.

Figure 7.18 shows the response with 100% amplitude modulation at 110 Hz
Again a large number of choppers are synchronised at this modulation depth,
but at higher amplitudes the choppers with the shorter refractory periods will
spike twice per modulation period. The second spike within the modulation
period will occur on the falling flank of the envelope, and therefore does not
receive the stabilising negative feedback on its integration time that the first
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spike receives

T'he second spike will therefore not be synchronised with the

second spike of the neighbouring chopper. In Figure 7.18a we can see that

indeed the coincidence-detectors will detect only one coincidence per

modulation period, even when the choppers spike twice per modulation period
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Figure 7.19 a) Spiking rate of the coincidence-detecting neurons, and b) of the
choppers, when stimulated with a 3.6 kHz tone, 60% modulation depth, amplitude

modulated at 110 Hz, as a function of maximum amplitude

Finally Figure 7.19 shows that we also get fewer choppers that spike twice

per modulation

period and that have their first spike synchronised, when the

modulation JL'[‘I}I 1s decreased

7.6.4 Modulation depth dependence

In the third series of experiments we will take a more detailed look at how the

response of the system changes with modulation depth. In these experiments the

maximum amplitude stays constant, and only the depth of the modulation

changes.
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Figure 7.20 a) Spiking rate of the coincidence-detecting neurons, and b) of the
choppers, when stimulated with a 3.6 kHz tone, 150 mV maximum amplitude
amplitude modulated at 150 Hz, as a function of modulation depth

Figure 7.20 shows that the number of synchronised choppers decreases with
decreasing modulation depth. However, the synchronised chopper that has the
longest refractory period, i.e., the left-most synchronised chopper, remains the

same independent of modulation depth
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When we repeat the experiment at a lower input intensity, we obtain the
results of Figure 7.21. Compared to the results in Figure 7.20, the group of
synchronised choppers has moved to the right, i.e., to choppers with a shorter
refractory period. This is as expected because the integration time will be longer
at a lower amplitude. A second effect of reducing the input amplitude is that we
obtain synchronised choppers at lower modulation depths than before. This
contorms to the analysis in section 7.2.2 which showed that synchronisation

gets stronger with decreasing amplitude at a given modulation depth
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Figure 7.22 a) Spiking rate of the coincidence-detecting neurons, and b) of the
choppers, when stimulated with a 3.6 kHz tone, 150 mV maximum amplitude,

amplitude modulated at 110 Hz, as a function of modulation depth

Finally Figure 7.22 shows the response at the higher input intensity (150 mV)
10 Hz. A

modulation penod, only the

s
to a modulation at | gain we obtain choppers that issue two spikes per

first of which is synchronised with the spikes of

neighbouring choppers. Furthermore, synchronisation of the chopper with one

spike per modulation period continues at lower modulation depth than

r modulation penod

synchronisation of choppers with two spikes pe

6.5 Stimulation threshold dependence

Up to now, the leakage current has been adjusted so that it is equal to the
output current of the IHC circuit when the input to the IHC circuit is 0 V. Thus
the effective stimulation current (I - Lieak) Of the choppers is zero when the
envelope of the signal becomes zero, i.e., at the lowest point of the envelope
when the modulation depth is 100%. We can also increase this leakage current
so that the effective stimulation current becomes zero at a lower modulation
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Figure 7.23 Spiking rate of the coincide

-detecting neurons when stimulated with a

3.6 kHz tone, 30% modulation depth, amplitude modulated at (a) 110 Hz, and (b) 150

Hz as a function of L.

As predicted by equation (65) the number of synchronised choppers and the
integration time T, will both increase with increasing Iy . Therefore, the first
chopper in the array to be synchronised by the input signal will move to the
right, i.e., it will be a chopper with a shorter refractory period. Furthermore we
can again see a response generated by choppers that spike twice per modulation
period for the 110 Hz modulation in the top right cormer of Figure 7.23a

0.0 Correction for amplitude dependence

We have seen that a different group of coincidence-detectors react to the
same modulation frequency when the amplitude of the input signal changes

l'his poses a problem when we want to integrate information from different




136 The Electronic Auditory Pathway

chips connected to different cochlear outputs. The amplitude of the cochlear
output signal will be different at the different cochlear output taps for any signal
other than white noise. This means that we cannot simply sum the output of the
coincidence-detector with the same array position at each cochiear output to
obtain a collective estimate of the envelope periodicity.

A possible solution to this problem is to keep the average stimulation to the
choppers constant, even when the cochlear output signal changes in amplitude.
This can be very simply implemented by connecting the output of the cochlea to
the input of the IHC circuit with a capacitor while keeping the average voltage
input to the IHC circuit constant with a resistor, as shown in Figure 7.24. (For
the significance of the IHC inputs Vg, and V., please refer to Figure 3.15 in
chapter 3.) This structure implements a high-pass filter with a corner frequency
given by RC/2n. By choosing RC large enough we assure that the filter
effectively functions as a d.c.-normalisation filter, giving all the signals the
same d.c. level.
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Figure 7.24 Implementation of the amplitude dependence correction.

This structure solves a second problem at the same time. Up to now, I have
assumed that the average voltage of the cochlear output was always the same as
the reference voltage of the IHC input. Both the reference voltage for the
cochlear signals as for the IHC input can be controlled externally and can thus
be set to the same value. The exact value of the reference voltage of the
cochlear output signals will however vary due to component mismatch, thereby
creating an offset input to the IHC circuit, which in turn creates a d.c.
stimulation for the choppers. The structure of Figure 7.24 also solves this
problem, since it restores the d.c. level of Vg t0 Vier + Vet
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Figure 7.25 shows the response of the modified system. We can see that in
this case the group of choppers synchronised by the 110 Hz amplitude
modulation is almost independent of input amplitude. Furthermore the addition
of the voltage offset to the IHC input creates an offset stimulation current for
the choppers that reduces the number of choppers synchronised by the input
signal. An unexpected effect of this adjustment is the fact that the choppers that
synchronise with two spikes per modulation period now have both spikes
synchronised, so that the coincidence-detectors in the upper right comer of
Figure 7.25a now spike at 220 Hz.
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Figure 7.26 a) Input signal consisting of the first 32 harmonics of 110 Hz in sine phase
at 60 mV input amplitude, b) measured output of the cochlear filters, and c) of the IHC
circuit.
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7.6.7 Sine phase harmonic complex response

To look at the response of the system at the different cochlear outputs, i.e., to
create a complete tonotopic-periodotopic map, I have used a stimulus consisting
of the first 32 harmonics of 110 Hz in sine phase, as shown in Figure 7.26a.
This stimulus can be described by:

32
A Y. Sin(n2nfyt) (66)
n=1

The output of the cochlear filters are shown in Figure 7.26b, and the output of
the IHC circuit, (connected to the different cochlear outputs using the d.c.
normalisation filter of the Figure 7.24) is shown in Figure 7.26c. The best
frequency of the cochlear filters are indicated next to the traces.

The lower harmonics of the input signal will be resolved by the cochlear filter
in the biological case and this has important psychoacoustical consequences, as
we will see for instance in the next section. Due to the low selectivity of the
silicon cochlear filters, the silicon cochlea only resolves the fundamental
frequency. However, we can artificially augment the selectivity of the cochlear
filters by pre-filtering the input signal to the cochlea with a band-pass filter
adapted to the cochlear output that is being measured. I have done this for the
measurements in this section and the next, using band-pass filters at the best
frequencies of the cochlear outputs. Figure 7.26b thus actually shows the output
of the silicon cochlea at the different output taps in response to different pre-
filtered versions of the signal of Figure 7.26a.

Figure 7.26b shows that the first three harmonics of harmonics of the 110 Hz
fundamental are resolved by the cochlear filters, so that the output of the
cochlear filters with Best Frequencies (BFs) of 100 Hz, 120 Hz, 200 Hz,
230 Hz, and 340 Hz are sine waves at 110 Hz, 220 Hz and 330 Hz respectively.
Furthermore, we can see that the filters with best frequencies in between these
harmonics (80 Hz, 140 Hz, 170 Hz, and 270 Hz BF) hardly respond at all. For
the filters with higher best frequencies, multiple harmonics are clearly present
in the outputs. At first (420 Hz - 600 Hz BF) only two or three harmonics are
present in the filters output, resulting in an output signal that is amplitude
modulated with a modulation depth that increases as the best frequency of the
filters increases. As the number of harmonics present in a filter’s output
increases, the time during which the output of the cochlear filter is zero
increases (700 Hz - 2500 Hz BF). Finally, at the highest best frequency
(3600 Hz BF) the number of harmonics in the filters output is reduced again,
because the highest frequency available in the harmonic complex is lower than
the best frequency of the filter.
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In Figure 7.26¢c we can see that at the lower best frequencies, the output of
the IHC circuit follows the output signal from the cochlea with some
deformation due to the non-linear input function which responds stronger in one
direction than in the other. At the high best frequencies (2500 Hz - 3600 Hz),
however, the low-pass filtering of the IHC circuit is visible. This, together with
the non-linear input function of the IHC creates a bump in the IHC output signal
whenever the input signal’s amplitude (Figure 7.26a) is high.
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Figure 7.27 Spiking rate of the coincidence-detecting neurons when stimulated with the
[HC outputs of Figure 7.26¢

Figure 7.27 shows the response of the coincidence-detecting neurons on the

chip when the choppers are stimulated with the IHC signals of Figure 7.26¢. In
this figure the coincidence-detectors at position 8, 9, and 10 respond to the 110
Hz fundamental at the output of each cochlear filter, except at those cochlear
filters that hardly respond to the input signal. At the output of the filters that
resolve the fundamental frequency (100 Hz and 120 Hz BF), synchronisation is
very strong and almost all choppers synchronise. Furthermore, the coincidence-
detectors with a 220 Hz best modulation frequency, i.e. the coincidence
detectors at positions 61 and higher in the array, also respond at the output of
the cochlear filters with a best frequency close to the second and fourth
harmonics of the input signal (200 Hz, 230 Hz, and 420 Hz BF). The same is
true for the coincidence-detectors with a 165 Hz best modulation frequency
(around position 51), which respond to every second period of the resolved 330
Hz third harmonic at the filter with a 340 Hz best frequency. At the output of
the cochlear filters with a higher best frequency (from 500 Hz BF onwards)
almost only the coincidence-detectors around position 11 respond and they do
so at each bump in the [HC output signal

Integration of the envelope periodicity information across the tonotopic axis,
Le., over the different cochlear outputs, seem quite straightforward in Figure

27. A summation in the vertical direction in this figure yields a clear peak at
the positions 8 to 10, indicating the 110 Hz fundamental.
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Figure 7.28 a) Input signal consisting of the first 32 harmonics of 110 Hz in alternating
phase at 60 mV input amplitude, b) measured output of the cochlear filters, and c) of the

THC circuit.
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7.6.8 Alternating phase harmonic complex response

The next experiment is performed with a harmonic complex for which the
harmonics are in alternating phase (Figure 7.26a), described by:

16
A Y. Sin((2n-1)2mfst) + Cos((2n)2miyt) 67)
n=1

Psychoacoustical experiments have shown (Patterson, 1987) that when the
complex consists of a number of the higher harmonics of the fundamental, the
periodicity of a harmonic complex consisting of harmonics in alternating sine
and cosine phase is judged twice as high by human listeners as the periodicity
of the same complex but with all harmonics in the same phase. However, when
the complex consists only of a number of lower harmonics, both in-phase and
alternating-phase stimuli yield the same periodicity estimation. This is related to
the fact that these lower harmonics are resolved by the cochlear filters, and thus
do not interact with each other.

We can see in Figure 7.28b that for the cochlear filters that resolve individual
components (100 Hz - 340 Hz BF), the periodicity of the signal envelope is not
changed. Even for those filters whose output consists of two harmonics, for
instance at 600 Hz best frequency, the envelope periodicity is not changed.
However, for the filters with a high best frequency, the envelope periodicity is
effectively doubled, just as the periodicity of the input signal of Figure 7.28a.
Finally, in the middle range, at 700 Hz and 830 Hz best frequency, the 110 Hz
periodicity is destroyed, while the 220 Hz periodicity is not yet present.

From Figure 7.28c we can see that the IHC output at the filters with a low
best frequency as the same periodicity as the IHC output in Figure 7.26¢c. We
thus expect that the coincidence-detectors respond in a similar way to both
stimuli at the output of these low best frequency filters. However, at the higher
best frequencies (from 830 Hz onward) the periodicity of the IHC output is
effectively doubled in Figure 7.28c with respect to the IHC output in Figure
7.26¢. At these best frequencies, we thus expect the coincidence-detectors to
detect mainly the 220 Hz periodicity instead of the 110 Hz.
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Figure 7.29 Spiking rate of the coincidence-detecting neurons when stimulated with the

[HC outputs of Figure 7.28b.

Figure 7.29 shows the response of the coincidence-detectors to this input
signal. We can see that compared to the output in Figure 7.27, nothing has
changed indeed at the filters with a low best frequency, up to the filter with a
420 Hz best frequency. In the middle range, no periodicity is detected, because
neither the 110 Hz, nor the 220 Hz periodicity is clearly present. Finally, at the
high best frequencies, the periodicity is clearly dominated by the 220 Hz
component as we can see from the strong response of the coincidence-detectors
at positions 61 and higher at best frequencies of 1000 Hz and higher in Figure
7.29. Note that at these best frequencies the coincidence-detectors around
position 11 also respond, signalling the presence of a 110 Hz periodicity. In
fact, the choppers around position 11 are synchronised to one out of every two
bumps in the IHC output of Figure 7.28¢c. The dominating response, however, is
at 220 Hz best modulation frequency. The model thus predicts that the
periodicity percept is the same for both in-phase and alternating phase stimuli
when only the first four of five harmonics are present, while the periodicity
percept will be doubled when we only present harmonics from the ninth
harmonic on.

7.7 Summary

The neural system presented in this chapter uses the property of
synchronisation of the chopper neurons to a particular amplitude modulation
frequency. More generally, these choppers are synchronised by a small range of
periodicities in the envelope of the signal. We can tune the choppers to be
sensitive to different periodicities by changing their refractory period, and we
can detect this synchronicity using coincidence-detectors. Using multiple
coincidence-detectors with overlapping envelope periodicity sensitivity ranges,
we can then extract the envelope periodicity of the signal
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When an array of coincidence-detectors is connected to each output of the
silicon cochlea, the output of the coincidence-detectors creates a map of signal
frequency versus envelope periodicity. Using the silicon cochlea, the IHC chip,
and the 32 neurons on the neuron chip as similar choppers, I have created the
extraction for a single point in this tonotopic-periodotopic map by detecting
coincidences of the output spikes of the choppers.

The integration of a dedicated chip allows the extraction of a range of
envelope periodicities at a single cochlear output, thus substantially reducing
the number of chips needed to implement a complete tonotopic-periodotopic
map. This second version contains an IHC circuit, an array of 71 choppers with
increasing chopping frequency along the array, and an array of 71 coincidence-
detecting neurons.

The experiments with the sine phase harmonic complex and the alternating
phase harmonic complex show two complete tonotopic-periodotopic maps.
Furthermore, the alternating phase experiment effectively predicts the psycho-
acoustic observation that the periodicity percept doubles for the higher
harmonic numbers, but that the percept is unaffected at the lower harmonic
numbers. We would need to repeat several more of these psycho-acoustic
experiments to evaluate how well this system actually describes human pitch
perception.
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8. Conclusions

This thesis describes the development, implementation and testing of several
analogue VLSI building blocks, which may be used to create models of neural
systems in the auditory pathway. Two such models have been realised and have
been described in chapters 6 and 7.

To my knowledge it is the first time that an approach based on building
blocks on separate chips has been taken and that these building blocks have
been applied to modelling the auditory pathway, creating multi-chip neural
systems. The work in this thesis shows that this approach is feasible and
flexible. The neuron chip’s biasing scheme makes it possible to simulate a
variety of physiologically different neuron behaviours, such as choppers or
coincidence detectors. Furthermore, the building blocks can be combined in
different ways to realise different processing functions; only a few possibilities
have been explored here.

Valuable lessons have been learned from the implementation of these
building blocks:

The silicon cochlea that I have implemented is able to emulate the filtering of
the basilar membrane in the human cochlea, with a similar distribution of best-
frequencies and similar low- and high-frequency cut-off slopes. However, four
fundamental problems have been identified for this cochlear filter cascade:

1. Each filter delays the signal by an amount that depends on the filters cut-off
frequency; the number of filters that we reasonably can use to cover the
auditory frequency range is therefore limited if the last filters are to react to
the onset of an input signal within a few milliseconds.

2. Using a cascade of filters means that if a filter early in the cascade is
defective, all filters following this filter will receive an incorrect input signal.

3. Each filter generates noise; since the output of a filter is the input of the next
filter in the cascade, this noise is accumulated along the cascade.

4. A frequency selectivity similar to that of the biological cochlea can only be
obtained with very high quality factors, which is impossible in the cascade
design; the amplified noise would already saturate the transconductance
amplifiers in the filter at a much lower quality factors.

147
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The first two problems can be solved by going to a parallel filter structure
which will also improve the third problem since the noise is not accumulated in
a purely parallel structure. However, a purely parallel structure, i.e., one with no
interaction between filters, is impractical because each filter would have to be
of very high order to yield the steep high frequency cut-off slopes of auditory
filters. Therefore, some coupling between the filters will be necessary, and we
will need to take care that noise is not accumulated due to this coupling. The
fourth problem might be solved by using filters that suppress the side-bands
instead of using filters with a high gain around the best frequency. In any case,
improving the silicon cochlea remains an active area of present and future
research.

The inner hair cell circuit shows how we can capture the half-wave
rectifying, low-pass and temporal adaptation behaviour of the real inner hair
cell in a simple way. The low-pass filters used in this model are highly non-
linear, which make them unusable when the input varies over an order of
magnitude or more, but at a given sound intensity good agreement can be
obtained.

The so-called “log-domain filters”, which I've only recently discovered,
should allow the development of linear low-pass filters in the current domain
with a few transistors only; they seem a good option to improve the behaviour
of the inner hair cell circuit with different sound intensities. These linear low-
pass filters would also allow direct mapping on silicon of the differential
equations of now traditional models, such as Meddis' hair cell model, or
McGregor's neuron model. Although these models might be more linear than
the biological cells, and thus more linear than a VLSI implementation needs to
be, the implementation of these linear models will make it easier for other
scientists to eventually use these silicon building blocks to implement their
neural models in real time. Investigation of log-domain filters as neural building
blocks is one of my future projects.

The spiking neuron circuit, with its leaky integration, threshold voltage, and
refractory period, has been proven to be flexible enough to generate post
stimulus time histograms similar to those of the major types of neurons in the
ventral cochlear nucleus. Although the circuit might need to be extended to
allow correct emulation of neurons with a more complex ion channel structure,
the range of behaviours that the current circuit can simulate represents an
encouraging start. Furthermore, interaction between the electronic neurons has
been modelled by a range of circuits which include electronic synapses,
dendrites, and axons.



Chapter 8: Conclusions 149

Spike-based communication can also be used for interaction between chips. I
have included such a communication scheme on the neuron chip, in which each
neuron sends a unique address with a fixed number of ones and zeros on a
common bus when it spikes. At the input side of the chip is a similar bus with a
decoding circuit at the input of each neuron which checks for a particular
address. When two addresses collide on the bus, we may either reject this input,
or stimulate all neurons that have addresses which could have created this
collision. With either option, noise in the communication channel will increase
gradually with the number of collisions. I have furthermore provided the
possibility to stimulate all neurons with the same input signal. Finally, an output
signal which is the sum of current spikes from all the neurons on the chip is also
included.

Apart from the ease of sending the signal from one point to the other in
neural tissue or between chips, the advantage of spike based computation seems
to lie in the ease with which synchronicity between two signals or more can be
extracted using coincidence detectors. Two models that extract the periodicity
of a signal, i.e., the repetition rate of the peaks of the amplitude in a signal, have
been implemented with the electronic building blocks and both use
synchronisation and coincidence detection in order to do so.

The first model extracts periodicities of an input sound with a high
selectivity, i.e., each output only responds to a very limited range of
periodicities. The advantage over using linear highly-selective band-pass filters
is that the spike-based implementation can be highly selective without the slow
reaction time associated with high selectivity in linear systems. Furthermore, the
output of the system is independent of the input intensity of the signal, which
the output of the cochlea itself is not. This model is an example of what an
engineer might do when asked to design a system that extracts the periodicity,
independent of intensity, with a high selectivity but a fast response and we can
clearly identify the advantages of this implementation.

The second system is a model of the sensitivity of neurons in the cochlear
nucleus and inferior colliculus to the envelope periodicity of amplitude
modulated sounds or harmonic complexes. This system has a much stronger
biological foundation and is an example of how we may model biology with the
electronic building blocks. The engineering advantages of such a system,
however, are much harder to discern; we shall need a better understanding of
the purpose of the envelope periodicity extraction in the brain to see the
advantages of this implementation over other possible systems.
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Finally, an important engineering question remains: “Can the hardware
modelling of neural systems be extended beyond simulating the results of
scientific studies to produce genuinely useful technologies?” The models of
periodicity extraction are indicative of future progress in this respect but, in
reality, acceptable proof can only be based on working examples. It is therefore
imperative to integrate and test hypothesised models of neural circuits in the
brain, to increase our understanding of the functioning of the brain, and
eventually to show the advantages of the neural approach for useful products in
certain practical cases. Hopefully, the building blocks presented in this thesis
will play an important role in this process.
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