
THÈSE NO 1655 (1997)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE AU DÉPARTEMENT D'INFORMATIQUE

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

lic.phil.nat. Informatikerin, Université de Berne

originaire d'Adelboden (BE), Elgg (ZH) et Ellikon (ZH)

acceptée sur proposition du jury:

Prof. A. Strohmeier, directeur de thèse
Dr Ph. Dugerdil, corapporteur
Prof. Y. Pigneur, corapporteur

Prof. S. Spaccapietra, corapporteur

Lausanne, EPFL
1997

MODELLING GLOBAL BEHAVIOUR WITH SCENARIOS
IN OBJECT-ORIENTED ANALYSIS

Dorothea BERINGER

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147898955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Modelling Global Behaviour
with Scenarios

in Object-Oriented Analysis

THESE No 1655 (1997)

présentée au Département d'Informatique
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

pour l'obtention du grade de docteur ès sciences

par

Dorothea Beringer
Informatikerin lic. phil. nat.

originaire de Adelboden (BE), Elgg et Ellikon (ZH)

acceptée sur proposition du jury:

Prof. A. Strohmeier, rapporteur
Dr. Ph. Dugerdil, corapporteur
Prof. Y. Pigneur, corapporteur

Prof. S. Spaccapietra, corapporteur

Lausanne, EPFL
Mai, 1997

to Jürg

i

 Abstract
The first object-oriented analysis methods focused on the specification of the classes of
a system and on the static relationships between them. Dynamic relationships between
classes and the functional view of the system as a whole were neglected, and no models
were offered for capturing system requirements. This changed with the publication of
use case driven approaches such as OOSE (1992) and Fusion (1994). Modelling global
behaviour by scenarios in both requirements analysis and design has since been adopted
by many object-oriented methods. Scenarios are also called use cases, system operations
or business processes, and they are modelled using different notations.

Some of the analysis methods that use scenarios have common characteristics, namely
i) the similarity of the relationship between the entities of a data model and the scenarios
of a flat scenario model with a matrix, and ii) the assumption that the externally visible
behaviour of the system can be subdivided into more or less independent scenario types.
In the following, we will refer to these characteristics by the term matrix approach.
While in many projects the matrix approach has been used successfully, several difficul-
ties arise when more complex systems are modelled: relationships and similarities
between different scenario types cannot be expressed, the dependencies between sce-
nario types are not modelled, only one abstraction level can be represented, and the
apparently seamless transition from the analysis to the design model may result in a low
quality object model with a strong bias towards data modelling.

These difficulties lead us to propose an enhanced scenario modelling technique (called
SEAM) which overcomes some of the weaknesses of the matrix approach. This model-
ling technique includes composition, aggregation, specialisation and extension hierar-
chies of services, and is based on the paradigm of interacting objects (which can be
atomic objects, subsystems or systems) offering services. Scenario types, showing the
possible interaction sequences for a specific service, can be modelled on several abstrac-
tion levels, and can describe the services of any kind of object (and thus also the global
behaviour of a whole system) from both an internal and external point of view. We
describe the concepts and the notation of SEAM, and we show how it can be integrated
into the Fusion method.

The difficulties that may arise in projects using methods based on the matrix approach
are not only due to the limitations of scenario modelling techniques. A major factor is
the often contradictory definition of the analysis model goals, which leads to clashes of
intent. Therefore we discuss the nature of such intent clashes and analyse how the dif-
ferent software development methods deal with them.

Finally we give an overview of the various notations and basic concepts used by different
scenario modelling techniques, and we provide summaries of current, mostly object-
oriented, approaches to modelling global behaviour.

ii

 Résumé
Les premières méthodes d’analyse par objets se concentraient sur la spécification des
classes du système et sur les relations statiques entre celles-ci. Les relations dynamiques
et la vue fonctionnelle du système entier étaient négligées, et aucun modèle n’exprimait
les exigences envers le système considéré dans son ensemble. La situation a changé avec
l’apparition de méthodes comme OOSE (1992) et Fusion (1994), et beaucoup de métho-
des par objets ont adopté aussi bien pour l’analyse que pour la conception une modéli-
sation du comportement global fondée sur les scénarios.

Dans les méthodes d’analyse qui utilisent des scénarios, ceux-ci sont également appelés
cas d’utilisation, opérations du système ou fonction du système, et ils sont représentés
au moyen de diverses notations. On trouve cependant des caractéristiques communes à
plusieurs de ces méthodes, en particulier: i) l’existence d’un lien matriciel entre les en-
tités du modèle des données et les scénarios du modèle des scénarios, et ii) l’hypothèse
que le comportement du système peut être divisé en des scénarios relativement indépen-
dants. Par la suite, nous désignons ces caractéristiques par le terme d’approche par ma-
trice. Quoique l’approche par matrice ait été utilisée avec succès dans beaucoup de
projets, plusieurs difficultés surviennent lors de la modélisation de systèmes plus com-
plexes: on ne peut pas exprimer les relations et similarités entre différents scénarios, on
ne peut pas modéliser les dépendances entre scénarios, on ne peut représenter qu’un seul
niveau d’abstraction, et la transformation directe du modèle d’analyse en modèle de con-
ception peut conduire à un modèle des objets de piètre qualité et trop influencé par une
vision statique des données.

Nous proposons une technique de modélisation à base de scénarios (appelée SEAM) qui
surmonte quelques-unes des faiblesses de l’approche par matrice. Cette technique inclut
la modélisation des hiérarchies de composition, d’agrégation, de spécialisation et d’ex-
tension des services, et elle est basée sur un paradigme d’objets qui interagisssent et of-
frent leur services. Ces objets peuvent être des objets atomiques, des sous-système ou
des systèmes. Les scénarios montrent - aussi bien d’un point de vue intérieur qu’exté-
rieur - les séquences d’interactions possibles pour chaque service d’un objet quelconque.
On peut ainsi décrire le comportement global du système entier de la même manière que
le comportement d’un sous-système, tout en ayant plusieurs niveau d’abstraction pour
les scénarios. Nous décrivons les concepts et la notation de SEAM et nous montrons son
intégration dans la méthode Fusion.

Les difficultés rencontrées dans des projets qui utilisent des méthodes basées sur l’ap-
proche par matrice ne sont pas toutes causées par les restrictions des techniques de mo-
délisation. On trouve également fréquemment une définition contradictoire des buts des
modèles d’analyse, ce qui conduit à des conflits entre différentes intentions. Nous discu-
tons des contradictions qui résultent de ces différents buts et nous montrons comment
différentes méthodes traitent ces contradictions.

Finalement, nous présentons un aperçu des notations et concepts utilisés dans différentes
techniques de modélisation par scénarios, et nous résumons plusieurs approches actuel-
les de modélisation du comportement global.

iii

 Zusammenfassung
Die ersten objektorientierten Analysemethoden unterstützten in erster Linie die Spezifi-
kation der Klassen eines Softwaresystems und der statischen Beziehungen der Klassen
untereinander. Die dynamischen Beziehungen zwischen Klassen und vor allem das glo-
bale Verhalten des gesamten Systems wurden kaum modelliert. Dies änderte sich, als
Methoden wie OOSE (1992) und Fusion (1994) publiziert wurden. Seither benutzen
viele objektorientierte Methoden Scenarios, um das globale Verhalten eines Systems zu
modellieren. Scenarios werden auch Use-cases, Systemoperationen oder Geschäftsvor-
fälle genannt, und es gelangen unterschiedliche Notationen zur Anwendung.

Einige der Analysemethoden, welche Scenarios verwenden, haben gemeinsame Merk-
male, nämlich i) die Entitäten des Datenmodells und die Scenariotypen des Verhaltens-
modells bilden eine Matrix; dies ist möglich, weil beides flache Modelle sind, ii) und es
wird davon ausgegangen, dass das externe globale Verhalten eines Systems in voneinan-
der mehr oder weniger unabhängige Scenariotypen aufgegliedert werden kann. Im fol-
genden bezeichnen wir diese Merkmale als die Eigenschaften des sogenannten Matrix-
Approach. Methoden basierend auf dem Matrix-Approach werden zwar in vielen Pro-
jekten erfolgreich angewandt, aber bei der Modellierung komplexerer Systeme können
Schwierigkeiten auftreten: Aehnlichkeiten, Abhängigkeiten und weitere Beziehungen
zwischen verschiedenen Scenariotypen können nicht dargestellt werden, nur eine ein-
zige Abstraktionsebene kann modelliert werden, und der anscheinend so problemlose
und direkte Uebergang vom Analyse- zum Designmodell führt oftmals zu einem Objekt-
modell von schlechter Qualität und zu einseitiger Ausrichtung auf die Daten des
Systems.

Diese Schwierigkeiten haben uns dazu veranlasst, eine Modellierungstechnik zu entwik-
keln (wir nennen sie SEAM), die einige der Probleme des Matrix-Approach löst. Diese
Modellierungstechnik basiert auf dem Paradigma interagierender Objekte. Dabei kann
ein Objekt ein atomares Objekt, ein Subsystem oder ein gesamtes System sein, und jedes
Objekt bietet sogenannte Dienste an. SEAM enthält Konzepte und Notationen zur Kom-
position, Aggregation, Spezialisierung und Erweiterung von Objektdiensten beliebiger
Objekte. Die Objektdienste und ihre Interaktionen werden mit Hilfe von Scenariotypen
modelliert. Dies geschieht auf verschiedenen Abstraktionsebenen und sowohl von einem
externen als auch von einem internen Blickwinkel auf das Objekt, welches den Dienst
anbietet.

Nicht alle Schwierigkeiten, welche durch die Verwendung des Matrix-Approach entste-
hen können, lassen sich auf Limitationen in der Modellierung von Scenarios zurückfüh-
ren. Ein weiterer sehr wichtiger Faktor sind widersprüchliche Ziele eines
Analysemodells. Da sich gewisse Schwierigkeiten in der Zieldefinition nicht vermeiden
lassen, gehen wir auch darauf ein, wie verschiedene Methoden damit umgehen.

Schliesslich geben wir auch eine Uebersicht über grundlegende Konzepte und Notatio-
nen diverser, meist objektorientierter Methoden sowie Zusammenfassungen der meisten
von uns untersuchten Modellierungstechniken.

iv

 Acknowledgements

I am very happy to take the opportunity to thank all the colleagues and friends who have
contributed to this thesis. In particular I would like to thank:

• Prof. Alfred Strohmeier for offering me the opportunity to work in the
Laboratory of Software Engineering at the Swiss Federal Institute of
Technology in Lausanne, and for the supervision of my thesis.

• Prof. Yves Pigneur, Prof. Stefano Spaccapietra and Dr. Philippe Dugerdil for
accepting to be the referees of my thesis and for many helpful comments.

• Dr. Philippe Dugerdil for several interesting discussions on use cases and
scenarios, and for his detailed feedback on my ideas.

• All the colleagues in the Laboratory of Software Engineering for the
collaboration in the Software Engineering course and for helping me to
improve my French. In particular I thank Gabriel Eckert for proofreading all
my French texts.

• My dear friends, Cornelia and Peter Berthold, Cornelia and Martin Imboden,
Eva and Lorenz Malmstroem, and Cornelia and Stefan Schranz who did not
only encourage me to go back into research and to start a PhD thesis, but who
also supported me and waited faithfully when weekends and evenings were
eaten up by my work.

• A warm “Thank you!” goes to my parents, who worked hard to make it
possible for me to get a higher education and to whom I am deeply indebted
in many respects.

• I would also like to thank the Swiss National Foundation which has supported
the research for this thesis under the grant number 2000-043648.95.

Last but not least, I am deeply indebted to my dear husband Jürg for his continuous love,
encouragement and support.

v

 Table of Contents
Abstract .. i

Résumé .. ii

Zusammenfassung... iii

Acknowledgements.. iv

Table of Contents.. v

List of Figures .. ix

Chapter 1 Introduction .. 1

Chapter 2 The modelling of global behaviour in current object-
oriented analysis methods.. 9

2.1 Modelling global behaviour: the usage of use cases, scenarios and interactions
diagrams .. 9
2.1.1 Introduction ... 9
2.1.2 The global behaviour of an object-oriented system.. 10

2.1.2.1 Global versus local behaviour .. 10
2.1.2.2 Internal versus external view of the global behaviour.. 11
2.1.2.3 Conceptual versus technical interactions ... 11
2.1.2.4 Requests versus notifications ... 13
2.1.2.5 Design versus analysis ... 16

2.1.3 Modelling global behaviour by modelling scenarios .. 17
2.1.3.1 Scenarios of one object versus scenarios between several objects 17
2.1.3.2 Scenario instances versus scenario types ... 18
2.1.3.3 Scope of a scenario type, classification schemes ... 20

2.1.4 Notational limits in modelling interacting objects.. 24
2.1.4.1 Modelling the dynamics versus modelling the statics.. 25
2.1.4.2 Dynamic models: transitions between states versus interactions between objects 26
2.1.4.3 Interactions between objects: time-line diagrams versus object diagrams 29
2.1.4.4 Some further aspects of interaction diagrams .. 31

2.1.5 Summary .. 33

2.2 The Matrix Approach... 35
2.2.1 Characteristics of the matrix approach... 35

2.2.1.1 Notation.. 35
2.2.1.2 Process.. 39

2.2.2 Difficulties with the matrix approach .. 41
2.2.2.1 Flat list of scenario types.. 41
2.2.2.2 The matrix approach supports the modelling of only one abstraction level 44
2.2.2.3 System boundaries ... 46
2.2.2.4 Difficulties in the transition to a good oo-design ... 47
2.2.2.5 Is the matrix approach really object-oriented?... 50

vi

2.2.3 Reasons for these difficulties... 51

2.3 The relationship cardinality domination .. 52

Chapter 3 Goals of Analysis .. 57

3.1 What is an analysis model?.. 57
3.1.1 Motivation, notation, intent and content of models.. 58
3.1.2 The term “analysis” from the perspective of the problem solving cycle reference

model59
3.1.2.1 The problem solving cycle ... 59
3.1.2.2 Applying the problem solving cycle to software engineering................................ 61
3.1.2.3 Where does the term “analysis” fit into the problem solving cycle? 63
3.1.2.4 Consequences... 65

3.1.3 Criteria for defining the goals of analysis models... 66
3.1.3.1 Model of the current system versus model of the future system............................ 66
3.1.3.2 Application-oriented versus reuse-oriented ... 67
3.1.3.3 “Real world” model or abstracting a software system ... 67
3.1.3.4 Technology independent models.. 68
3.1.3.5 External versus internal model... 72
3.1.3.6 Complete and unambiguous models versus essential models................................ 73
3.1.3.7 Targeted audience... 74
3.1.3.8 Consequences... 75

3.2 Intent clashes... 77
3.2.1 Difficulties with the ideal analysis model... 77

3.2.1.1 The ideal analysis model .. 77
3.2.1.2 First misconception: stable model.. 78
3.2.1.3 Second misconception: objective real world model... 78
3.2.1.4 Third misconception: initial final high-level view ... 79

3.2.2 The two intent clashes ... 80
3.2.3 Approaches to handle these intent clashes .. 82

3.2.3.1 The idealistic approach .. 83
3.2.3.2 The one-model approach.. 83
3.2.3.3 The two-model approach.. 85
3.2.3.4 Consequences... 86

Chapter 4 SEAM: an Enhanced Scenario Modelling Technique............... 87

4.1 The starting point ... 87
4.1.1 Models of the system.. 88

4.1.1.1 Only one model .. 88
4.1.1.2 Evolution of the final object model .. 90
4.1.1.3 Viewpoints.. 91

4.1.2 The object-oriented system... 92
4.1.2.1 Excursus: Groups of objects in various methods ... 92
4.1.2.2 The system of interacting objects in SEAM .. 95
4.1.2.3 Implications of this approach ... 99

vii

4.2 Services and scenarios .. 102
4.2.1 Services ... 102
4.2.2 Various kinds of interactions .. 105
4.2.3 Scenarios... 108
4.2.4 Notation: schemas for objects and services ... 110
4.2.5 Notation: interaction diagrams .. 112

4.2.5.1 Specifying interactions... 113
4.2.5.2 Basic notations for interaction diagrams ... 114
4.2.5.3 Modelling scenario types of services ... 118
4.2.5.4 Grouping and hiding objects and interactions.. 121
4.2.5.5 Further notations for interaction diagrams... 124
4.2.5.6 Why interaction diagrams? .. 128

4.2.6 Detailing scenario types... 129

4.3 Hierarchies of services.. 133
4.3.1 Composition hierarchies ... 134
4.3.2 Aggregation hierarchies .. 136

4.3.2.1 Complete aggregation of services .. 136
4.3.2.2 Partial aggregation of services ... 138
4.3.2.3 Notation: interaction diagrams for aggregate services... 139

4.3.3 Inheritance hierarchies ... 142
4.3.3.1 Specialisation and generalisation of services ... 142
4.3.3.2 Notation: interaction diagrams for specialised services....................................... 144
4.3.3.3 Extending services ... 145
4.3.3.4 Notation: interaction diagrams for extended services .. 148

4.3.4 Service diagrams.. 148
4.3.4.1 Aggregation and composition graphs... 148
4.3.4.2 Inheritance graphs .. 150
4.3.4.3 Context diagrams.. 151

4.3.5 Excursus: comparison to other methods ... 152

4.4 Life-cycles of objects... 155
4.4.1 Order of services and essential states .. 155
4.4.2 Notations for the object life-cycles ... 158

4.5 Transitions between scenario models.. 163
4.5.1 Transformations of interactions ... 163
4.5.2 Transformations of scenario types ... 166
4.5.3 Transformations of service hierarchies.. 167
4.5.4 Why transitions between scenario models?... 170

4.6 Developing scenario models ... 172
4.6.1 The development process .. 172
4.6.2 Completeness of scenario models ... 175
4.6.3 Consistency of scenario models .. 178

4.7 Summary ... 182
4.7.1 Summary of the basic concepts ... 182
4.7.2 Reasons for the concepts as defined in SEAM .. 188

viii

Chapter 5 Case Studies .. 193

5.1 Mail Order Firm... 193

5.2 ECO-System .. 203

Chapter 6 Summary and Outlook... 213

Appendix A Overview of some methods .. 217
A.1 Introduction.. 217
A.2 OOSE .. 218
A.3 Fusion.. 222
A.4 Modern Structured Analysis... 228
A.5 OBA... 230
A.6 FORAM .. 232
A.7 BON... 235
A.8 Booch and OMT... 239
A.9 Further notations for modelling global behaviour.. 241

A.9.1 Path Expression Groups.. 241
A.9.2 Scenario trees.. 243
A.9.3 Composition of scenarios based on statecharts .. 245
A.9.4 CRC cards... 245
A.9.5 Requirements scripts in OSMOSIS .. 246
A.9.6 Storyboarding ... 247
A.9.7 Business processes (“Geschäftsvorfälle”) .. 248
A.9.8 Extending OOSE by use case levels... 249
A.9.9 Use case maps... 251
A.9.10M.E.R.o.DE .. 251
A.9.11Behavioural models of Kowal .. 252
A.9.12Further approaches ... 253

Appendix B Examples of diagrams from various methods 255

Appendix C Enhancing Fusion... 279

References ... 285

Curriculum Vitae ... 291

ix

 List of Figures
Figure 1: Overview of the thesis ... 4
Figure 2: External versus internal views... 11
Figure 3: Conceptual and technical interactions for different abstraction levels.............................. 13
Figure 4: Modelling on several abstraction levels .. 14
Figure 5: Using notifications for the external and requests for the internal view............................. 16
Figure 6: Modelling scenario instances and types, part 1 ... 21
Figure 7: Modelling scenario instances and types, part 2 ... 22
Figure 8: Determining the end of a scenario... 23
Figure 9: Transitions between states versus interactions between objects 27
Figure 10: Dynamic model of a system: life-cycles of objects or scenarios of system functions 28
Figure 11: Overview of the concepts for modelling global behaviour ... 34
Figure 12: Modelling global behaviour from an external viewpoint. ... 36
Figure 13: The matrix between the object model and the scenario model. .. 38
Figure 14: Modelling complex patterns .. 41
Figure 15: Abstraction levels .. 45
Figure 16: Composed systems .. 47
Figure 17: Objective, content and intent of a model... 58
Figure 18: The problem solving cycle .. 60
Figure 19: Goals of analysis models ... 66
Figure 20: The ideal analysis model ... 77
Figure 21: Seamless expansion of the analysis model .. 79
Figure 22: Initial analysis model versus final high-level view ... 80
Figure 23: The first intent clash .. 82
Figure 24: Various views of the object model. ... 89
Figure 25: Service calls in a white-box subsystem ... 97
Figure 26: Service calls in a black-box subsystem ... 97
Figure 27: Properties of services... 102
Figure 28: Interaction diagram for modelling scenario types ... 115
Figure 29: Notations for interaction diagrams .. 117
Figure 30: External view of a system service ... 118
Figure 31: Internal view of a system service .. 119
Figure 32: External view of an atomic service ... 119
Figure 33: Service triggered by time-out .. 120
Figure 34: Service triggered by two different interaction types ... 120
Figure 35: Service triggered by an interaction from the server object to an agent 121
Figure 36: Object groups in interaction diagrams... 122
Figure 37: Indirect interactions ... 123
Figure 38: One-agent view for a system service... 124
Figure 39: One-agent view for an atomic service ... 125
Figure 40: Control bars ... 125
Figure 41: Explicit return interactions .. 126
Figure 42: Object creation and lifetime .. 127
Figure 43: Two-dimensional object diagram .. 128
Figure 44: Detailing scenario types: an example, part 1... 131
Figure 45: Detailing scenario types: an example, part 2... 132
Figure 46: Detailing scenario types: an example, part 3... 132
Figure 47: Internal view of a service with service brackets.. 134
Figure 48: Internal views of a black-box subsystem... 135

x

Figure 49: Deriving internal and external view for an aggregate service ... 140
Figure 50: Making_phone_call as complete aggregate service .. 141
Figure 51: Detailing versus specialising scenario types ... 145
Figure 52: Extending services... 146
Figure 53: Modelling making a phone call by an extension hierarchy... 147
Figure 54: Aggregation graphs for services .. 149
Figure 55: Inheritance graphs for services .. 150
Figure 56: A context diagram ... 151
Figure 57: Essential states... 157
Figure 58: Life-cycles in pseudo-code notation.. 159
Figure 59: A state transition diagram.. 161
Figure 60: Decomposition of state transition diagrams .. 162
Figure 61: Transitions between scenario models .. 164
Figure 62: Selection criteria in interaction specifications... 165
Figure 63: The service deliver_drums with an alternative design .. 166
Figure 64: Transforming a complete aggregate service.. 168
Figure 65: Transforming a generalized service... 169
Figure 66: Transforming an extension into a specialisation ... 170
Figure 67: Overview of the relationships among services .. 183
Figure 68: Metamodel for SEAM ... 184
Figure 69: Summary of some terms as used in SEAM ... 186
Figure 70: Overview of the documentation of a scenario model .. 187
Figure 71: Schema of the system Mail_Order_Firm .. 193
Figure 72: Context diagram of the system Mail_Order_Firm .. 194
Figure 73: Schemas of the services make_orders_for_suppliers and order...................................... 194
Figure 74: Specialisation hierarchy of the service Mail_Order_Firm :: order (external view) 195
Figure 75: Service Mail_Order_Firm :: make_orders_for_suppliers (external view) 196
Figure 76: Second schema for the system Mail_Order_Firm ... 196
Figure 77: Internal view of the specialisation hierarchy for the service order, part 1 197
Figure 78: Internal view of the specialisation hierarchy for the service order, part 2 197
Figure 79: Internal view of the specialisation hierarchy for the service order, part 3 198
Figure 80: Internal view of the service order without specialisation.. 199
Figure 81: External view of the service order_advance_payment of the subsystem Order_System 200
Figure 82: Schema of the subsystem Order_System .. 200
Figure 83: Object model of the subsystem Order_System ... 201
Figure 84: Schema for the object Order.. 201
Figure 85: Schema for the elementary service taking_down_order ... 202
Figure 86: Internal view of the service taking_down_order ... 202
Figure 87: Schema of the service set_client.. 202
Figure 88: Context diagram of the system ECO-System.. 203
Figure 89: Schema of the system ECO-System .. 204
Figure 90: Schema of the service rearrange_drums.. 204
Figure 91: Schema of the service deliver_drums.. 204
Figure 92: Schema of the service get_status ... 205
Figure 93: External view of the service deliver_drums .. 205
Figure 94: External view of the service get_status ... 205
Figure 95: The service deliver_drums as a partial aggregation .. 206
Figure 96: Schema for an extended service .. 207
Figure 97: Scenario type for the extended service deliver_drums_exception 207
Figure 98: Aggregation and inheritance graphs of the service deliver_drums 207
Figure 99: The service deliver_drums as a complete aggregation.. 208

xi

Figure 100: Aggregation graph of the service deliver_drums .. 208
Figure 101: Life-cycle of ECO-System .. 209
Figure 102: Service check_in_drum: user interface design .. 210
Figure 103: Service get_status: user interface design... 210
Figure 104: Internal view of the service overview_drums ... 211
Figure 105: Schema for the service overview_drums_for_building... 212
Figure 106: Schema for the service get_types .. 212
Figure 107: Object model with communication associations (arrows with no labels) in OOSE

[Jacobson92, page 189] ... 255
Figure 108: Description of a use case in OOSE [Jacobson92, page 349]... 256
Figure 109: Modelling the relationship between abstract and concrete use cases in OOSE

[Jacobson92, page 343] ... 256
Figure 110: Interaction diagram in OOSE (example with two interface objects)

[Jacobson92, page 381] ... 257
Figure 111: Interaction diagram in OOSE (output signals) [Jacobson92, page 218] 258
Figure 112: Event trace diagram in Fusion (analysis model) [Coleman94, page 47]......................... 258
Figure 113: Life-cycle expressions in Fusion (analysis model) [Coleman94, page 33]..................... 259
Figure 114: Scenario diagram of extended Fusion showing a use case instance with a sub use case

[Coleman95] .. 259
Figure 115: System interaction graph in extended Fusion [Coleman95].. 259
Figure 116: Schema of a system operation in Fusion (analysis model)[Coleman94, page 31] 260
Figure 117: Object interaction graph in Fusion (design model) [Coleman94, page 75] 260
Figure 118: Decomposition of object interaction graphs in Fusion [Coleman94, page 79] 261
Figure 119: Context model, message table and task cards in FORAM [Graham94b]........................ 261
Figure 120: Event trace in FORAM [Graham94b] ... 262
Figure 121: Use case map for a design pattern [Buhr96] ... 262
Figure 122: Event list in Modern Structured Analysis [Beringer92c] .. 263
Figure 123: Context diagram in Modern Structured Analysis [Beringer92c] 263
Figure 124: Scripts in OBA [Rubin92] ... 264
Figure 125: Textual description of a scenario [Kilberth93, page 99] ... 264
Figure 126: Event charts and scenario charts in BON [Walden95, pages 253-255] 265
Figure 127: Object Scenario in BON [Walden95, page 259] ... 265
Figure 128: Object Scenario in BON (with grouping of objects into several subtasks)

[Walden95, page 114] ... 266
Figure 129: State chart as used in Booch [Booch94, page 207] ... 266
Figure 130: Interaction diagrams in Booch [Booch94, page 218] .. 267
Figure 131: Object diagram for one mechanism [Booch94, page 402] .. 267
Figure 132: Add-relationships between use cases in OMT [Rumbaugh94b] 267
Figure 133: Description of a use case in OMT [Rumbaugh94b] .. 268
Figure 134: Event flow diagram in OMT [Rumbaugh95] .. 268
Figure 135: Two different kinds of event trace diagrams in OMT [Rumbaugh95]............................ 269
Figure 136: Concurrent object interaction diagram in OMT [Rumbaugh95b] 269
Figure 137: Object interaction diagram showing the design of the operation ‘redisplay’

[Rumbaugh95b]... 270
Figure 138: Operation specification in OMT [Rumbaugh95b] .. 270
Figure 139: Object-event table and structure diagrams in M.E.R.O.DE [Dedene94] 270
Figure 140: Scenario tree and grammar of the user-view of the ‘caller’ [Hsia94] 271
Figure 141: Scenario tree and conceptual state machine of the user-view of the ‘callee’ [Hsia94] ... 271
Figure 142: Collaboration graph in Responsibility Driven Design [Wirfs90, page153] 272
Figure 143: Class card in [Wilkinson95, page115]... 272
Figure 144: Scenario description in [Wilkinson95, page146] .. 272

xii

Figure 145: Class diagram with main collaboration in [Wilkinson95, page143] 273
Figure 146: Action diagram with brackets, used for the specification of a scenario

[Kowal92, page292] .. 273
Figure 147: Composition of scenarios in [Glinz95].. 274
Figure 148: State chart for one scenario in [Glinz95]... 275
Figure 149: Event-response list and sample storyboard in OORD [Umphress91] 275
Figure 150: Graphical representation of a “Geschaeftsvorfall” in [Mueller93] 276
Figure 151: Bergen interaction diagram, captures also the inheritance hierarchy of the objects

[Baklund95]... 277
Figure 152: Description of a group of interacting objects using path expressions (PEG)

[Adam94]... 277

1

Chapter 1
Introduction
Motivation

From 1991 until 1994 I worked as a software engineering consultant in a medium sized
software company, where we advised customers in the areas of software development
methods, quality assurance and project management. In the beginning, our consulting
was based on modern structured analysis (MSA) as published in [Yourdan89] and
[Brantschen91], but step by step we started switching to object-oriented analysis meth-
ods. This was the time when object-oriented development methods were becoming pop-
ular, and there was much debate as to what an object-oriented analysis method really is
about. On one hand, there were the purists who avoided any bias towards structured
methods and started the development process by specifying classes with their attributes
and operations. On the other hand, there were the pragmatics who wanted models which
could be used for requirements specification, contracts, as a link between the object
model and the functional requirements, and as a design-independent starting point for
determining the objects (see also [Berard93, page 36] and [Beringer93]). They used
structured methods (e.g. certain models of MSA as in [Briod93] or descriptions of busi-
ness transactions as in [Mueller93]) at the beginning of a project in order to define the
external view of the global behaviour and to determine the requirements of the system.
These approaches were often quite similar to use cases, but only with the publication of
Jacobson’s book on OOSE [Jacobson92], were use cases and similar modelling tech-
niques accepted to be genuine object-oriented approaches.

As consultants, we came across several weaknesses and deficiencies in structured anal-
ysis methods. Therefore we adapted and enlarged the original analysis model of MSA
by introducing some new modelling elements (see [Beringer92b] and [Beringer92c]).
For some of the deficiencies we just found work-arounds, which were usually very prag-
matic, because there was no time for more thorough research. As everybody else we
hoped that newer methods would solve these problems anyway. However, when we
learned about OOSE, we were quite surprised to find that its use case model was very
similar to what we had done so far, and that many of the difficulties we were having with
MSA were not resolved at all. At this point, I started to think about doing some research
myself in this area. I started with the following two questions: What should an object-

2

oriented analysis model, which also allows modelling of external system behaviour, re-
semble? Can the difficulties I had previously encountered with the scenario model of
MSA (i.e. with the event response lists and with the high-level data flow diagrams of the
business processes) and of OOSE (i.e. with its use case model) be overcome?

History of the thesis

Since I started in 1993 researching the modelling of global behaviour in object-oriented
analysis, much has changed in the realm of object-oriented analysis methods. Many
methods have adopted, in one form or other, the use cases and interaction diagrams of
Jacobson, and 2nd generation methods have been published (e.g. Fusion [Coleman94],
[Booch94], 2nd generation OMT [Rumbaugh94]). However, usually these methods do
not go much further than what Jacobson proposed initially, and the difficulties with the
scenario models remain more or less the same. Only very recently has this begun to
change. At the workshop on use cases at the OOPSLA’95 conference as well as in other
recent publications, different authors have described deficiencies of the current ap-
proaches to modelling global behaviour and have proposed enhancements to scenario
modelling. Overall, these publications back up many of my own observations.

Although at the beginning it looked quite easy to propose an approach which would
overcome at least some of the weaknesses of current approaches to modelling global be-
haviour, the path to such an enhanced scenario modelling technique has not proved
straightforward, a fact reflected in the present thesis. One of my starting points was to
consider the seamlessness claimed for many methods. The results of this research activ-
ity are not included in this thesis (they have been published 1994 in [Beringer94]), al-
though they have influenced the enhanced scenario modelling technique (SEAM)
proposed here. Another question at the beginning was what object-oriented analysis re-
ally is about. While trying to find some basis that I could use for my further research, I
gained some insights into the difficulties that arise when using a term without stating its
meaning explicitly. I realized that some difficulties we had encountered in modelling
global behaviour were not due to weaknesses in the notation but to contradictions in our
expectations concerning the analysis model. The resulting research results have been
published with some delay in a technical report [Beringer96b] and have become chapter
3 of this thesis.

The investigation of the concepts used in modelling global behaviour was another inter-
im milestone. Though many articles and columns have been published about modelling
global behaviour, hardly anyone has tried to clarify the differences and similarities of the
various concepts, terms and notations used by the different methods. Therefore I looked
at a number of methods and tried to identify the main concepts they offer for modelling
global behaviour and for using scenarios. The resulting overview has been published in
[Beringer95b] and an updated version of it in [Beringer96], which corresponds to chap-
ter 2.1 and appendix A of this thesis. The results of this investigation have heavily influ-
enced SEAM.

3

The investigation of various methods also helped to answer another important question:
what kind of relationships exist between scenarios? The results were twofold; a first set
of relationships that relate scenarios within one scenario model - these have been inte-
grated into the semantics and notation of SEAM - and a second set that relate scenarios
belonging to different scenario models and thus play an important role in the process of
developing scenario models with SEAM.

The enhanced scenario modelling technique SEAM is not just an enhancement of one
specific modelling technique. Rather, SEAM is based on the fundamental insights and
concepts gained through the research activities mentioned above. In addition, it has of
course also been influenced by some of the methods I investigated and by my personal
experiences in modelling global behaviour. This thesis contains a proposal of SEAM as
it has evolved from the investigations and case studies carried out during my research.
Of course, its large scale validation is yet outstanding.

Overview of the thesis

In chapter 2.1, we start the thesis with an analysis of current approaches to modelling
global behaviour. The focus of our discussion is on the usage of use cases, scenarios and
interaction diagrams. Chapter 2.2 describes some common characteristics and weak-
nesses of analysis methods which are based on a matrix between a flat scenario model
and a data model; we refer to these characteristics as the matrix approach. We have iden-
tified several potential sources for the difficulties with the matrix approach. One of them,
the domination of the structure of the object model by the relationships and cardinalities
between data elements is explained in chapter 2.3. Another source of difficulties is the
existence of contradictory goals and expectations concerning the analysis process.
Therefore, in chapter 3, we discuss possible interpretations of the term analysis, we
present different goals of analysis models, we describe the intent clashes which may
arise due to contradictory goals and misconceptions concerning the development proc-
ess, and finally we categorize object-oriented development methods according to how
they cope with these intent clashes.

In chapter 4 we propose an enhanced scenario modelling technique (SEAM). SEAM is
only a modelling technique and not a full fledged method since it does not cover all the
aspects a complete method should cover. Our discussion is focused on the concepts and
models that represent the global behaviour of a system. First of all this concerns scenar-
ios and services. But models showing scenarios and services cannot be regarded as dis-
connected from the object model, and therefore we present concepts and notations for
the object model as well. Basic assumptions made concerning the object model and the
development process are described in chapter 4.1. Chapter 4.2 defines the concepts of
SEAM and proposes various hierarchies of services. A summary of the concepts is found
in chapter 4.7. The notation of SEAM is explained in chapter 4.3. Chapter 4.4 deals with
the evolution of scenario models and describes various possible transitions between sce-
nario models. Some reflections concerning the documentation of scenario models, pos-
sible CASE-tool support, consistency and completeness of scenario models and the

4

process of developing scenario models are found in chapter 4.5 and 4.6. In chapter 5, the
description of SEAM is complemented by two partial case studies. Throughout chapter
4, SEAM is described independently of its possible integration into current object-ori-
ented methods. Such an integration is sketched out in appendix C for the Fusion method.

The thesis is rounded off with two appendices. Appendix A gives a short summary of
different modelling techniques with respect to their approach to modelling global behav-
iour. The following methods and publications are considered: OOSE, Fusion, MSA,
OBA, FORAM, BON, Booch, OMT, PEGs, CRC-cards, Behavioural Models [Kow-
al92], M.E.R.o.DE, OSMOSIS, Storyboarding, Use Case Maps, Scenario Composition
[Glinz95], Scenario Trees [Hsia94] and enhancements to use case modelling by abstrac-
tion levels as proposed by [Regnell96] as well as [Armour95]. Finally, Appendix B con-
tains examples of diagrams from these methods.

A graphical overview of the different parts of the thesis and their dependencies is given
in figure 1.

Positioning of the thesis

Domain of the thesis

The thesis is about modelling techniques for modelling the global behaviour of software
systems with scenarios. As such, the thesis belongs into the domain of software devel-
opment methods, part of the domain of software engineering.

contradicting goals in
analysis modelling

problem statement:

limited expressiveness

“matrix approach”

reasons for the obstacles
in the matrix approach:

ER-modelling for
the object model

intent clashes in
analysis modelling

of current scenario
modelling techniques

enhanced scenario modelling

- offering hierarchies of services

- based on interaction diagrams

integration into
Fusion

overview of
current methods

- focusing on expressiveness

Figure 1: Overview of the thesis

technique (SEAM):

- supporting the process of modellingchapter 2.2

chapter 2.2

chapter 3.2

chapter 2.3

chapter 4 and 5

chapter 2.1, app. A

chapter 3 appendix C

5

In the first place, a description of modelling techniques is concerned with the concepts,
notations and usage of models. But, without also taking the modelling process into ac-
count, we cannot show why we have chosen certain concepts and notations or how a cer-
tain model might be used. However, we will not discuss all those other issues of project
management or requirements engineering which do not have a direct influence on the
modelling techniques.

The subject of validating and verifying scenario models is briefly discussed in chapter
4.6, but the thesis does not elaborate on software validation and verification and does not
investigate validation and verification techniques for scenario models.

Scope of the thesis concerning the software development life-cycle

Modelling the global behaviour of a system can be done from two perspectives, both
considered in this thesis. On one hand, we can model the externally visible behaviour of
a system. In this case the system is regarded as a black box and the model shows the ex-
ternally visible state changes of this black box as well as its interactions with any agents.
An external view of the global behaviour is part of an analysis model and is developed
when eliciting the requirements of a system, when determining the system boundaries,
or when specifying the interfaces of the system. Models showing the external view of
global behaviour may also appear in the design documentation.

On the other hand, we can model the internal view of an object-oriented system and
show which internal interactions among objects are necessary to supply a specific exter-
nally visible behaviour. Models showing the internal view of global behaviour are cer-
tainly part of the design activities, but, depending on the complexity of the system and
on the life-cycle model adopted, they can also be part of the analysis activities. Models
showing the internal view are closely related to models showing the external view of glo-
bal behaviour. When discussing the latter without considering their links to the models
for the internal view, one would neglect a very important point, and therefore the thesis
touches also on issues belonging clearly to the design phase. However, our main focus is
on analysis. Implementation issues are not treated at all.

Business process modelling

Many of the models discussed in this thesis could also be used for systems of interacting
objects which belong more properly in the domains of workflow management or busi-
ness reengineering rather than software systems. In order to limit the scope of the thesis,
we have not scrutinised such domains, although there is clearly a close relationship to
business process modelling.

Level of formality

Modelling global behaviour by using scenarios can be done in a very informal way
where neither the concepts to be specified nor the form of specification is precisely de-
fined. In opposition are the highly formalised approaches, where even the language used

6

for the description of the global behaviour is a formal language. Methods such as OOSE
and Fusion, as well as the modelling approach we propose in this thesis, are semiformal
approaches. They define precisely what should be modelled and how, and they propose
a syntax for the specification of the scenarios. But this syntax contains also informal tex-
tual descriptions, and quite often no complete model is required or even possible. The
goal of such a semiformal notation is to provide a maximum of expressiveness in an eas-
ily understandable way, and to allow the developers and users to represent the global be-
haviour as they perceive it. Furthermore, by supporting explicitly a certain amount of
fuzziness, semiformal and informal notations allow concentrating on essential aspects
and prevent getting lost in details not yet important. A disadvantage of semiformal (and
informal) methods is, however, that a far-reaching automatic verification of consistency,
completeness and absence of deadlocks is usually not possible. For this purpose, more
formal approaches would be required1.

The motivation for using scenarios in modelling global behaviour

The use of scenarios during the software development process is neither new nor is it
limited to object-oriented software development. Scenarios have been used for a long
time - albeit often in a very informal way - in the various phases of the development proc-
ess. Examples are numerous. If users describe how they work now and how they would
like to work with a future software system, if developers discuss and determine the re-
quirements based on the behaviour a system offers, if test scripts are used for system
tests, if a developer tries to figure out the event trace caused by a specific triggering event
inside a system - then scenarios are used. The use of scenarios is not limited to a specific
kind of software or to specific phases of a project. Even apart from describing software
systems, scenarios are used in workflow management, business reengineering and in
quality assurance, e.g. for defining the necessary procedures for demanding holidays, or
for specifying how orders are made.

In the literature we find the following reasons for using scenarios in the external view of
the global behaviour of a software system (see e.g. [Holbrook90], [Firesmith95], [Jacob-
son92], [Wilkinson95] etc.):

• Scenarios allow us to divide the external view of the global behaviour of a
system into meaningful pieces.

• Scenarios specified by text, tables or event trace diagrams are very easy to
understand and to verify by users. They support communication with the user,

1. We adopt in this thesis the view expressed in [Bowen95]: Formal specifications are used if the emphasis is put
on the verification of the software specification and if the additional effort due to the formal specification can
pay off. Traditional modelling languages are used if the goal is to get easily understandable models and to com-
municate with the user. Both kinds of modelling techniques are necessary for successful software development.
See also [Kotonya96], where formal and informal modelling techniques are considered as part of a large tool-
kit. He suggests that when requirements are modelled, the technique that is most appropriate is used for each
viewpoint.

7

they can be used for role-plays and walk-throughs, and they help to produce a
complete and correct requirements model.

• Scenarios can be used both to define the requirements and to test the final
system. The test scripts for system tests can be derived directly from the
scenarios of the requirements specification.

• In an incremental development, the increments can be defined along the
scenarios.

• Scenarios can be used as the starting point for the detection and specification
of the objects in an object-oriented system.

Using scenarios for the internal view of a system is not new. In the telecommunication
industry scenarios have long been used to show the complex interaction patterns be-
tween various hardware or software components. When building an object-oriented sys-
tem, scenarios are a natural way to show how the different objects work together to
provide the required system services. A documentation of object-oriented system inter-
nals that includes scenarios allows investigators to find out quickly and easily what
should happen within the system under certain circumstances in response to a given ex-
ternal event. Even if not all special cases are modelled in this way, the scenarios are an
invaluable help for all those who are not very familiar with the architecture of the system.
Scenarios can also be used in the design process to help determine the objects and their
operations. Such a design approach is proposed e.g. by [Wilkinson95] in connection
with responsibility driven design and CRC-cards. Kruchten even uses scenarios as the
link among the four other views of the system architecture which he represents by a 4+1
view model [Kruchten95].

Finally, various methods propose using scenarios as the driving force for the develop-
ment process.

Other research activities on Scenarios

During the last few years, research has been started in a number of different places in
order to investigate the use of scenarios in software engineering. We are currently aware
of the following efforts directly concerned with the use of scenarios in software engi-
neering:

• Zorman from the University of Southern California developed the tool
REBUS that supports storyboarding techniques for requirements analysis
[Zorman95] (see also chapter A.9.6).

• Alvarez et al. from the Universidad Nacional de La Plata, Argentina,
investigating hypermedia CASE-tools that allow the documentation of use
cases in various versions [Alvarez95].

• Berteaud95 et al. from the University of Nantes developed the experimental
CASE-tool OSMOSIS, which is essentially a browser for a semantic network

8

and supports the definition of requirements scripts [Berteaud95] (see also
chapter A.9.5).

• Glinz from the University of Zuerich works on a scenario modelling
technique for the external view of system behaviour; the notation is based on
statecharts [Glinz95] (see also chapter A.9.3).

• Buhr from the Carleton University of Ottawa developed use case maps as a
link between the use cases of requirements analysis and the interaction
diagrams of the detailed design. Use case maps are used in the system design
to show which objects are involved in a use case or a design pattern [Buhr95]
(see also chapter A.9.9).

• Notations for use cases as well as interaction diagrams will be part of the
unified modelling language (UML). UML is developed at Rational and a
preliminary version has been published in [Booch95]. The main developers of
UML are Booch, Rumbaugh and Jacobson, although others such as HP
(Fusion method) have joined the effort to develop a commonly accepted
modelling language for object-oriented development.

In addition, many other research projects not listed above incorporate formal or informal
scenario models in one way or another.

Limits of the thesis

In this thesis we investigate a number of difficulties related to the modelling of global
behaviour in current object-oriented analysis methods, and we suggest how some of
these difficulties could be overcome. Did we find the silver bullet for modelling global
behaviour and for developing scenario models? I doubt that there are any silver bullets
in software engineering. But even if there were such silver bullets, it would be an over-
estimation of the ability of a thesis to expect to find the particular solution that everybody
else in the large community of software engineers has been missing so far. Thus I do no
claim to offer a silver bullet. However, I expect and hope that in this thesis there are some
concepts and ideas that will be incorporated in other approaches and that can stimulate
other people to see certain things from a new point of view. A summary of what I con-
sider as my main contributions to the field of object-oriented software development can
be found in chapter 6.

9

Chapter 2
The modelling of global
behaviour in current object-
oriented analysis methods

2.1 Modelling global behaviour: the
usage of use cases, scenarios and
interactions diagrams

2.1.1 Introduction
Investigating current notations for modelling global behaviour can be very confusing. At
first sight, some of the notations differ in their graphical symbols and the additional in-
formation they represent. But if there were only these differences, then all these dia-
grams should be easily transformable into each other. This is not the case because there
are also divergences in the basic concepts that are used. The result is similar notations
for totally different concepts, and different notations for the same concepts. Worse, the
same terms are used for different concepts in different methods. This is possible because
there does not yet exist any reconciled set of definitions or any classifications of the dif-
ferent terms, concepts, approaches and notations that are generally accepted.

In this chapter we discuss the underlying concepts of various notations. We also describe
what aspects of global behaviour can be reflected by these notations, and how these as-
pects can be combined into one diagram. The starting points of the investigation were
those approaches that use interaction diagrams or event trace diagrams to model se-

10

quences of interactions between a system and its agents, or among its internal objects,
and also those notations providing textual descriptions of such sequences (e.g. use cases
or use scenarios). Because the same content can also be expressed with regular expres-
sions or state charts, we also included such techniques. The emphasis, however, was put
on interaction diagrams and use case descriptions.

We do not provide a comparison or evaluation1 of different methods, nor do we present
a general metamodel2. We focus on the various concepts found in techniques that model
global behaviour, we give an overview of these concepts and their relationships, and we
provide a short description of various methods in the appendix.

2.1.2 The global behaviour of an object-oriented
system

Berard [Berard93] defines an object-oriented system as a system of interacting subsys-
tems or objects. The structure of such a system is defined by how each component is
composed of and connected to other components. The behaviour is defined by the inter-
actions within the system, and between the system and its environment. The behaviour
specifies how an object or system acts and reacts in terms of its state changes and inter-
actions, and defines its outwardly visible activity [Booch94, page86].

2.1.2.1 Global versus local behaviour
In any system of interacting objects we can look at the behaviour of the individual ob-
jects or at the behaviour of the whole system. When describing local behaviour, we fo-
cus on one single object and how it interacts with its environment under certain
conditions (e.g. by specifying the class interface with the contracts for all the services
the object offers and for all the services the object needs from other objects). When de-
scribing global behaviour, the whole system of interacting objects comes into focus, and
we concentrate on the behaviour that is provided by these objects together.

1. A quantitative comparison of object-oriented methods, mainly focusing on notational issues, can be found e.g.
in [Stein93, Stein94]. There 4 macrocomponents (or characteristics) are distinguished, each being divided into
about 40 microcomponents. For each method these microcomponents are rated with a value between 0 and 2
(no support, average support, good support). The interpretations of this data are very delicate, because they can-
not take into account the underlying concepts, orientation and philosophy of a method. The conclusions are
purely quantitative, and in my opinion do not really do justice to those methods that do not do well in respect
to the implicitly chosen evaluation criteria.

2. There does not yet exist a commonly accepted metamodel that could be used for a comparison. OMG has tried
to get all different object-oriented methods described on the basis of a common metamodel [OMG92]. Yet as
far as I know, this effort was not continued.

11

2.1.2.2 Internal versus external view of the global behaviour
Modelling global behaviour of a system can denote either an internal or an external view
of the system (see figure 2). In the external view, the model shows the services that the
system as a whole offers to its environment, without considering how this behaviour
comes about internally. The system itself appears as one single object; we only describe
the interactions between the system and its environment. The environment may be fur-
ther detailed into different agents3. In other words, the external view shows the interface
of a system or subsystem. Yet the interface definition does not only mention all the serv-
ices offered but also all the services needed from other systems in the environment. Ex-
amples of external views of global behaviour are the use cases of OOSE or the interface
model of Fusion.

A special case of modelling the external view is by using user views, as in the scenario
trees of [Hsia94]. There, the behaviour of the system is modelled from the perspective
of one single agent, i.e. only the interactions between the system and this agent are taken
into account, while interactions with other agents are shown solely in the user views of
these other agents (see figures 140 and 141).

An internal view not only contains the interactions with the environment but also the in-
teractions among the different internal objects of the system. The internal model thus
shows how these objects work together to provide a certain global behaviour. Examples
are the object scenarios in BON and the object interaction diagrams in OMT, Fusion and
OOSE.

2.1.2.3 Conceptual versus technical interactions
We define an event as something that happens at a certain point of time (see definition in
[Rumbaugh91]) and that is of a certain importance to a given system or object. Every
event has a name, it may also have parameters that give additional information.

3. An agent may be anything (a human being, a software system, a hardware component) that is outside of the
system and can send or receive events to or from the system. The various agents are normally distinguished by
the roles they have in respect to the system.

External views of the system

External view with several agents External view for one single
Internal view of the systemagent (one user view)

Figure 2: External versus internal views

12

We define an interaction as an event that is a message from one object to another object
(or to itself). In a diagram, an event that is an interaction can be modelled as an arrow
between two objects. The term event is more general than the term interaction, though
in an object-oriented system most or all events are modelled as interactions between ob-
jects. If the term event or the term interaction is used and if all interactions are considered
to be events is method specific.

When modelling interactions between objects (among internal objects or between the
system and the agents), we can do this on different abstraction levels. Therefore we in-
troduce here the distinction between technical and conceptual interactions and events.

• Technical: A technical interaction or event corresponds to a certain software
construct in the final software system. This may be a procedure call, an entry
in a dialogue window, a menu item, or a hook in an UIMS. When modelling
technical events, we focus on the software design. Examples are the method
calls in the interaction diagrams of Fusion, OOSE and OMT, and the system
input events (system operations) of Fusion.

• Conceptual: When modelling conceptual interactions or events, we focus on
the concepts of the problem domain, the implementation is of no concern. A
conceptual event need not correspond to any software construct, it may be
more abstract. Examples are transactions in the use cases of OOSE, events in
the event lists of Modern Structured Analysis, M.E.R.O.DE and OORD, or
again the input events of Fusion.

• Purely conceptual: Purely conceptual events are conceptual events that do not
correspond to technical events. Yet in analysis or high-level design models,
whether an event is a purely conceptual event or a technical event can often
only be determined in retrospect, i.e. when the design is completed.

Of course within the technical events as well as within the conceptual events we may
again distinguish several abstraction levels. For example, a technical interaction provid-
ed by a UIMS can again be mapped into the single keyboard entries necessary to gener-
ate that interaction. When building an information system, the lowest necessary
abstraction level to be considered will be the events provided by the UIMS. Yet when
building an UIMS, we will also model more low-level interactions. The same is true for
conceptual events. Moreover, whenever the actual interactions found in the software sys-
tem correspond to concepts of the problem domain (e.g. system operations in Fusion), a
given abstraction level is conceptual as well as technical. When modelling global behav-
iour, any possible abstraction level can be chosen. Figure 3 shows the same scenario
twice, once on a purely conceptual level and once on a technical level. Figure 4 shows
the beginning of the scenario making_phone_call even on three abstraction levels. The
first abstraction level is good for giving an overview to the functionality of the system.
The second may be suited for determining requirements with the user. For specifying the
detailed requirements that serve as a basis for developping the internal design models,
the most detailed abstraction level is needed.

13

An oft-heard criticism of certain object-oriented analysis methods is the weak connec-
tion between the static and dynamic models. The static model shows the object types and
their operations, and the dynamic model consists of a set of state transition diagrams.
Frequently the state transition diagrams are found to show conceptual events that are on
a higher abstraction level than the events calling the object operations shown in the static
model. Unfortunately the explicit mapping between these two levels of events is often
missing.

2.1.2.4 Requests versus notifications
Besides the decision for a specific abstraction level there are two further points to decide
upon concerning the interactions: Do we consider the objects as being active, each hav-
ing its own thread of control, or as passive? Do we consider the interactions as being one-
way messages (notifications), or requests?

If we decide for passive objects and thus for only one thread of control in the whole sys-
tem, the flow of control coincides with the flow of interaction. We have intraprocess in-
teractions. Sequential programs only have intraprocess communication, and also
languages such as Smalltalk and C++ or methods such as Booch [Booch91], first gener-

attack (from_country, to_country, quantity)

attack_from (from_country)

attack_to (to_country)

attack_quantity (quantity)

not_possible

attackable_countries({countries})

available_armies(number)

user system

systemuser

etc...

etc...

User issues attack-command

System makes the battle
and displays the results

User issues attack-command

System makes the battle
 and displays the results

IF it is possible to make an attack and

System displays all possible targets

User enters country he wants attack

System displays the maximum of

User chooses number of armies
available armies

to start form this country THEN

Figure 3: Conceptual and technical interactions for different abstraction levels

External view of the scenario “attack” of the game RISK,
modelled on two different abstraction levels:

14

ation OMT [Rumbaugh91] and Fusion [Coleman94] only support intraprocess interac-
tions. In contrast to the intraprocess communication, interprocess communication takes
place between two active objects, each of them having its own thread of control. Inter-
process communication is the basic concept for all concurrent systems, for the models
of workflow management systems and for languages such as CSP and Occam. Interproc-
ess communication is also that type of communication we encounter in daily life be-
tween people, between organisations and between machines.

An interaction between two objects can be a simple notification (or one-way message),
or it can be a request. In the notification case, one object notifies another by sending it a
message with some information. No return interaction takes place after the notification.
In the request case, a client object requests a service from a server object and waits for
its reply. Requests imply a client server- (or uses-) relationship between two objects. Ob-
ject-oriented languages for sequential systems only support requests.

off-hook
dial-tone

dial (number)

caller switchboard 1
Caller takes phone of the hook
and receives dial-tone.
Caller dials number.
........

making_phone_call

start_phone_call
caller switchboard 1

Caller takes phone of the hook
and dials number.
.......

making_phone_call

 (number)
etc.

etc.

off-hook
dial-tone

dial (digit)

caller switchboard 1
Caller takes phone of the hook
and receives dial-tone.
Caller dials first digit
and dial-tone is stopped.
REPEAT UNTIL whole number

caller dials a digit.
........

making_phone_call

etc.

end-dial-tone
dial (digit)

Figure 4: Modelling on several abstraction levels

15

When modelling object-oriented systems, we thus get four possible forms of interaction,
though only two of them play a major role when discussing the modelling of global be-
haviour:

Sometimes the same notations are used for models showing notifications as well as for
models showing requests. An example of this is the event trace diagram of OMT in figure
135: the left diagram shows notifications, the right one shows requests using two arrows
for each call. In contrast to this, the concurrent object interaction diagram of OMT (fig-
ure 136) uses slightly different symbols for interprocess notifications and for intraproc-
ess requests (procedure calls). Also, in the interaction graphs of Fusion, arrows can
denote notifications (in the system interaction graphs) or procedure calls (in the object
interaction graphs). Though the interpretation of the diagram is quite different, in both
cases the same symbols are used, which may be quite confusing.

Often an analysis model showing the external view of a system models the system on a
more abstract level, thus it uses notifications for the interactions between the active sys-
tem and the active agents which represent purely conceptual interactions. For example
the input and output events of the Fusion interface model are notifications. They may
have parameters but have of course no return values. Figure 112 shows an event trace,
figure 115 a system interaction graph with notifications. When moving to the design, the
perspective then often changes, because in fact it is the system that prompts the user for
some command or information. The interaction with the user is a procedure call from
some controller or problem domain object to an interface object which acts as mediator.
Figure 5 shows the transition from notifications to requests when changing from the ex-
ternal view to the internal view.

In a sequential system, the interactions among internal objects are always modelled as
requests. For an example see the object interaction graphs of Fusion (figure 117). Yet
when describing the interactions among internal objects as well as the interactions with
the environment of the system in one interaction diagram, we often would like to show
the effective procedure calls for the internal interactions, and at the same time to abstract
away the interface mechanism, thus modelling the user inputs as notifications4. Exam-
ples for this are found in the interaction diagrams of OOSE (figure 111) where even dif-
ferent kinds of arrows are used for the notifications and the requests (procedure calls),
and in the object scenarios of BON (figure 127).

4. For the user interactions in sequential programs, the transition from notifications to procedure calls often is de-
ferred to the implementation phase. There an active object is introduced that handles the interactions between
the problem domain objects and the user interface components (e.g. by having an event loop). This object may
also control the system life-cycle (e.g. as suggested by Fusion).

interprocess intraprocess

notification signal, notification “goto”

request remote procedure call procedure call

16

2.1.2.5 Design versus analysis
Modelling the global behaviour of a system may be part of the analysis as well as of the
design. What view of the global behaviour is recommended in which phase differs from
method to method. Some methods model technical interactions only during design, oth-
ers already during analysis. Some determine the internal view only in the design; for oth-
ers it is part of the analysis. In some methods certain notations such as state charts or
interaction diagrams are used during analysis, in other methods they belong to the de-

attack_from (from_country)

attack_to (to_country)

attack_quantity (quantity)

not_possible

attackable_countries({countries})

available_armies(number)

systemuser

etc...

interface: command_controller: col_countries: country_1:

next_command():Command,Country_name

not_possible()

target({attackable_countries}):Country_name

nr_armies(max_quantity):Quantity

correct_country(Country_name):Country

CountryCollectionControllerInterface

Figure 5: Using notifications for the external and requests for the internal view

External view of the scenario “attack” of the game RISK:

Internal view of the scenario “attack” of the game RISK:

attack()

etc...

17

sign. Furthermore, there are also many methods that do not have a clear distinction be-
tween analysis and design at all.

In this overview we primarily want to discuss modelling techniques for the analysis. Yet
due to the often quite arbitrary distinction between analysis and design, we also consider
certain design notations.

2.1.3 Modelling global behaviour by modelling
scenarios

We distinguish between the generic term scenario as we use it in this chapter, and the
method-specific term scenario as it is defined by various methods. We define the generic
term scenario in the following way: “A scenario is a sequence or a set of possible se-
quences of events or interactions.” The events of a scenario provide together some serv-
ice or system function. The sequence is triggered by an initial event, which is also called
the stimulus of the scenario.

Many methods provide one or several modelling concepts that fulfil above definition for
scenarios. Though we consider them all as scenarios, they have different names, may
have different syntax and semantics, and are used for different purposes. Examples are:
use case (OOSE), scenario and system operation (Fusion), script and use scenario
(OBA), scenario, user case and top-level system operation (2nd-generation OMT), use
case, scenario and function point (Booch), scenario (Kowal), essential activity (MSA),
business transaction (MSA-GfAI). For more details see appendix A.

2.1.3.1 Scenarios of one object versus scenarios between
several objects

In above definition of scenarios we have not distinguished between the scenario models
that show the interactions among several objects and those that show the interactions of
one object with its environment. Yet there are some essential differences between these
two kind of models.

In the first case, the scenario between several objects, we have several objects, subsys-
tems or systems which can all interact with each other. These interactions can be either
notifications in the case of a concurrent system or of several interacting systems, or re-
quests in the case of a sequential system.

In the second case, the scenario of one object, we show the interactions between this ob-
ject, subsystem or system with its environment, the agents. Direct interactions between
the agents are not considered. These kinds of models are mainly used for two purposes:
to model the local behaviour of one single object which is part of a larger system (e.g.
state charts showing object life-cycles), or to model the global behaviour of a system or
subsystem from an external point of view (e.g. interface model of Fusion). As we are fo-

18

cusing on only one object, we can divide the interactions into input (from an agent or a
client to the object) and output events (from the object to an agent or a client). One input
event causes only one output event if it is a request (see the operation schemas of internal
methods in Fusion), or may cause several output events if it is a notification (see the
schemas of system operations in Fusion).

A scenario that contains for one specific system function all the interactions between the
system and its environment shows an external view of this system. It can be refined into
a scenario that shows also the interactions between the components of the system (inter-
nal view of the system, external views of the components). For each component, the ex-
ternal view showing input and output events can again be refined into an internal view
showing also the interactions among the components of this component. Many methods
do not have a recursive refinement of this kind, but stick to the two levels of system and
objects. They only differentiate between an external model of the system as a whole and
the internal model on the level of objects and their interactions. There are two reasons
for this:

• Somewhere during the refinement process we switch from purely conceptual
events to technical events and from notifications to requests. Many methods
do this when moving from the external view of the system, where we model
on the level of the system as a whole, to the internal view of the system,
where we model on the level of objects. Often also the modelling technique is
changed (see e.g. OOSE and Fusion). Thus they only know two levels of
refinement.

• Many of the investigated methods do not really support the elaboration and
modelling of concurrent systems or of systems containing subsystems5 that
are systems themselves.

2.1.3.2 Scenario instances versus scenario types

Event instances and event types

An event that has no parameters or only instantiated parameters (i.e. each parameter has
taken a value that is a member of the set of values defined by its type) is an event in-
stance. An event that has at least one parameter that is not instantiated (i.e. which is a
parameter type specifying a set of possible parameter values) is an event type.

Scenario instances and scenario types

A scenario instance is a sequence of event instances. A diagram modelling a scenario
instance contains neither any event types nor any optional or alternative events. A sce-

5. BON uses object groups in its object scenarios; these serve only for simplifying the diagrams and have no fur-
ther meaning within the system.

19

nario type specifies a set of possible scenario instances. A diagram modelling a scenario
type contains either event types or optional or alternative events. For a scenario type we
do not require that all events are event types. Thus a diagram modelling a sequence of
event instances and event types also shows a scenario type.

The first interaction diagram in figure 7 shows the scenario instance Peter_calls_-
James_busy. This scenario instance shows only one sequence of interaction instances -
all the interaction parameters are instantiated. The other interaction diagrams in figure 7
show scenario types. In these scenario types the parameter number is not instantiated and
in the last interaction diagram certain interactions are even optional.

Modelling scenario instances

Diagrams of scenario instances show snapshots of system behaviour. They are suited for
communication with people not used to abstract thinking, for finding the boundaries of
the system, or for comprehending a complex internal mechanism. An example of such a
diagram is found in figure 135. There, nothing is parameterized. Even all the parameters
that do not influence the course of actions are replaced by concrete values or object in-
stances. Of course, diagrams showing only scenario instances are not suited to the acqui-
sition of a complete behavioural model. Therefore, much more often scenario types are
modelled. Data or object types are used as parameters in the event types, and several pos-
sible courses through the scenario are described.

Algorithmic versus declarative specification of scenario types

When making a complete model of a scenario type, we have to specify all possible orders
of events. We can do this in an algorithmic way, annotating the diagram with sequence
information that shows iteration, alternation and concurrency (see e.g. scripts for inter-
action diagrams of OOSE and Booch in figures 111 and 130, dotted lines for iterations
in the event trace diagrams of Fusion in figure 112, sequence labels for interaction graphs
of Fusion in figure 117 and operators in the life-cycle expressions of Fusion in figure 113
or in the path expressions of PEG in figure 152). Not all notations allow the modelling
of any kind of algorithm, e.g. the event traces of Fusion only know iterations. Others
have symbols for alternative, optional and iterated events. Some even offer a syntax for
concurrent or interleaving sequences of events.

In contrast to the algorithmic description, we can specify the reactions to the initial event
in a declarative way. In this case, only the state changes and all the interactions that took
place are specified, but not their order. An example are the system operations in Fusion
(see figure 116).

20

2.1.3.3 Scope of a scenario type, classification schemes

Scope of a scenario type

The scope of a scenario type has two dimensions: the length of the scenario instances
and the number of possible scenario instances specified by this type. When specifying
scenario types, there are several possibilities we can choose from for both dimensions.
For example all three scenario types in figure 7 start with the event off-hook and end with
the event(s) on-hook. Instead of modelling the whole length of a phone call in one sce-
nario type, we can also split it up as it is done in figure 6. There, we have shorter scenario
types; for a complete phone call a sequence of up to four scenario instances is executed,
instead of just one scenario instance as is the case according to the specification of figure
7. Thus, between figure 7 and 6 we have a difference in the first dimension of the scopes
of the scenario types.

But even if we have decided on the length of the scenario instances we want to specify
by scenario types, we still have several possibilities concerning the second dimension of
the scope. For example in figure 7, the same problem - making a phone call - is once
modelled as three scenario types (in the middle: scenario types making_phone_call_-
busy, making_phone_call_no_answer and making_phone_call_connect) and once as
one scenario type (bottom: making_phone_call). The two possibilities differ concerning
the second dimension of the scope, i.e. in the number of possible scenario instances. The
scenario type making_phone_call contains more possible scenario instances than the
scenario types making_phone_call_busy or making_phone_call_connect, because it
covers all possible variants that can occur when making a phone call, whereas e.g. mak-
ing_phone_call_busy only covers phone calls where the callee is busy.

For both dimensions of the scope of scenario types there exists a set of possible criteria.
Normally, when developing a scenario model, we choose a tuple of criteria to determine
the scope of the scenario types, i.e. we choose one criterion for determining the end of
the scenario instances and one criterion to classify these instances into scenario types.
Such a tuple of criteria we call a classification scheme. When using a development meth-
od that does not offer any hierarchies of scenarios, such a method either enforces itself
a specific classification scheme (e.g. Fusion), or it requires that the user chooses one.
This classification scheme either determines or just influences (in case it needs not be
followed strictly) how the scenario model is structured into scenario types.

In the following we describe criteria for both dimensions of the scope of scenario types.
These criteria have been formulated based on the classification schemes found in the dif-
ferent methods we investigated.

Possible criteria for the end of a scenario

We have to determine when one scenario ends and the next one starts. There are several
possible criteria we can use to determine the length of the scenario instances, and thus
the length of the scenario types which contain these instances:

21

a) One scenario instance consists of one input event and zero, one or several
output events. Intermediate interactions between the agents and the system
are not allowed (see system operations of Fusion or essential activities in
[McMenamin84]).

b) A scenario instance ends as soon as a new essential system state is reached.
Such an essential system state may appear in the system life-cycle model
(see scripts in OBA).

c) Intermediate interactions are allowed as long as further input events cannot
themselves trigger scenarios of their own (see business transactions in
MSA-GfAI).

d) The whole sequence of input and output events that is perceived as
belonging together, as being part of one and the same overall task, is one
scenario.

e) The whole life-cycle of an object or a system, i.e. the whole sequence of
events from initialisation until shut-down, is considered as one large
scenario.

Caller takes phone of the hook
and receives dial-tone.
Caller dials number.
IF Callee is busy
THEN

Caller receives busy-tone.
ELSE

telephone of callee rings and
Caller receives ringing-tone.

Caller ends call.
IF call was connected
THEN

disconnect call.
ELSIF call was ringing
....

starting_phone_call

answering_phone_call

caller_ends_phone_call

Caller answers call.
Line is connected.

off-hook
dial-tone

dial (number)
request (number)

busy
busy-tone

caller switchboard 1 switchboard 2 callee

ringing
ringing-tone

ring

caller switchboard 1 switchboard 2 callee
off-hook

connect
connected

caller switchboard 1 switchboard 2 callee

busy-tone
disconnect

on-hook

callee_ends_phone_call
etc.

Figure 6: Modelling scenario instances and types, part 1

Interaction diagrams showing scenario types
modelled according to criteria 3 and b.

etc...

connect

22

request (0313021234)

off-hook
dial-tone

dial (number)
request (number)

busy
busy-tone

on-hook

caller switchboard 1 switchboard 2 callee

off-hook
dial-tone

dial (0313021234)

busy
busy-tone

on-hook

Peter SB Zuerich SB Bern James

off-hook
dial-tone

dial (number)
request (number)

ringing
ringing-tone

caller switchboard 1 switchboard 2 callee

off-hook
dial-tone

dial (number) request (number)

busybusy-tone
on-hook

caller switchboard 1 switchboard 2 callee

ring

off-hook
connect

connected

ringing
ringing-tone

ring

off-hook
connect

connected

Caller takes phone of the hook
and receives dial-tone.

Caller dials number.

IF Callee is busy THEN
Caller receives busy-tone.
Caller puts phone on the hook.

ELSE
telephone of Callee rings and
Caller receives ringing-tone.

IF Caller answers call THEN
line is connected.

ELSE......
.......

Figure 7: Modelling scenario instances and types, part 2

Interaction diagram
showing

one scenario instance.

Interaction diagrams
showing scenario types
modelled according to

criteria 1 and d.

Interaction diagram
showing one scenario

type modelled according
to criteria 3 and d.

etc...

Peter_calls_James_busy

making_phone_call_busy

making_phone_call_connect

making_phone_call

making_phone_call_no_answer
etc...

connect

connect

23

The scenario type making_phone_call of figure 7 is modelled using criterion d. In con-
trast, the scenario types of figure 6 are modelled based on criterion b.

The only really precise criterion for the end of a scenario is the first one. It also satisfies
the notion of having perfect technology within the system and thus no duration for the
execution of scenarios. Yet its disadvantage is that it necessitates that the input event has
in its parameters all necessary information that the system needs for this scenario, be-
cause several interactions between the system and the agent for obtaining further infor-
mation would result in several scenarios. Also, the system boundary with further agents
influences the classification, as is shown in figure 8.

Possible criteria for classifying given scenario instances into scenario types

Once we have decided on the length of the scenario instances and types, we have also to
decide on how many variants are contained in one scenario type, i.e. how we divide up
the set of all possible instances into the sets of instances specified by scenario types. In
the following we present various possible criteria that might be used.

One scenario type may include the following number of scenario instances:
1) All scenario instances with exactly the same sequence of event types; only the

values of the system state and of the event parameters may differ.
2) Some scenario instances with the same initial event type (stimulus) and a

subset of all the possible sequences of further event types,
2a) the scenario type is determined by the content of the input events.
2b) the scenario type is determined by the system state at the time of the

initial input event.

Credits is an agent outside
the system. Therefore,
when using the criterion a),
two scenarios are neces-
sary to model the same se-
quence of events as in the
first diagram.

order

confirmation
delivery_order

credit_card_check

credit_limit

Customer Booking Delivery Credits

delivery

The object Credits is part
of the system, the scenario
ends with the output event
delivery.

Figure 8: Determining the end of a scenario

order
credit_card_check

Customer Booking Delivery Credits

Customer Booking Delivery Credits

confirmation
delivery_order

credit_limit

delivery

24

3) All scenario instances with the same initial event type (stimulus); the rest of
the scenario may differ arbitrarily.

4) All scenario instances that have certain common parts or handle similar tasks.

In most of these criteria, the specification of the initial event types (i.e. the classification
of event instances into event types) determines how the scenario instances are grouped
into scenario types. Thus these criteria presuppose well defined event types. For exam-
ple, if we have the event type order (payment_info, client, items) as an initial event type,
criteria 3 determines that the model will have a scenario type order that handles all the
different variants of ordering. If we assume the initial event types order_cash (agency,
client, items), order_advance_payment (client, items), order_COD (client, items) and
order_credit_card (card_info, client, items), then we will get four different scenario
types, each one handling one way of payment. Some of the difficulties that arise due to
dependencies between defining event types and scenario types are discussed in chapter
2.2.2.1.

The first criterion is only used in partial scenario models. Due to the vast number of pos-
sible different reactions to an initial event it is not feasible to model the whole system in
this way (see the use of scenario diagrams in Fusion and [Kilberth93], figures 112 and
125). The fourth possibility is the other extreme: a very rough classification covers all
possible scenarios, yet the types cannot be modelled in depth to consider alternative
courses, intermediate interactions, event parameters and other details (see BON, where
only for some scenario types a high-level diagram is made; a more detailed modelling of
scenarios is considered as being too complex [Walden95, page 170]). The third possibil-
ity is chosen by methods such as Fusion and MSA, where a scenario contains restricted
or no intermediate interactions. So one scenario type contains all the scenario instances
which start with the same input event type, but different output event types are possible.
When a scenario may contain longer sequences of interactions, the third possibility may
lead to very few, yet very complex scenario types (OOSE mentions as an example a tel-
ephone system, where most scenarios or use cases start with the event “handle lifted”).
Therefore, methods such as OOSE prefer the second possibility for the classification of
scenarios. They leave it to the judgement of the developers to decide which scenario in-
stances are considered as variants of one and the same scenario type, and which ones are
handled as separate scenario types.

2.1.4 Notational limits in modelling interacting
objects

When modelling interactions, we would like to show many different aspects all at once.
We name only a few of them:

• the names of the system, agents or objects involved in the interactions

• the dimension of time, i.e. the order of events

25

• all possible sequences in which the events can occur together with the
corresponding conditions

• the events with their parameters and possible return values

• the different states of the objects or of the system and the state changes

Yet any diagram is limited to two dimensions. Of course, we can decompose diagrams.
We can also use annotations, maybe even supported by a hypertext tool. But the restric-
tion remains. We always have to choose a few main aspects we want to focus on; the oth-
ers need to be neglected or dealt with by annotations. In the war for the ‘best’ method or
the ‘best’ tool, it is often forgotten that depending on the type of system we are model-
ling, on the momentary intent behind the model, and on personal objectives, certain tech-
niques are better suited than other ones. Moreover, some views can even be
automatically transformed into other ones.

In the following paragraphs we are going to discuss possible aspects one might like to
describe in models showing object interactions, and we will show which modelling tech-
niques focus on which aspects.

2.1.4.1 Modelling the dynamics versus modelling the statics
According to standard IEEE 610.3, a dynamic model shows the change that occurs in a
system in which there is change, such as the occurrence of events over time or the move-
ment of objects through space, whereas the static model shows those aspects that do not
change over time. Also when modelling the global behaviour of a system, we have to
distinguish between those models that show the static aspects of interactions and those
models that show the dynamics of the behaviour.

As a static interaction diagram we define an interaction diagram that shows all possible
interactions between its objects; it contains no information concerning the sequence of
these interactions or their preconditions. Examples of static diagrams showing interac-
tions are: collaboration graphs (see figure 142 and 145), event flow diagrams of OMT
listing all possible events between certain objects (see figure 134), and the communica-
tion associations in the object model of OOSE (see figure 6, the arrows denote that over
these associations events can be sent, the events themselves are not listed).

A dynamic interaction diagram shows one or several possible sequences of interactions
between several objects (see figures 117 and 110). State transition diagrams also belong
to the dynamic models; they show all possible sequences of interactions with one spe-
cific object.

In the static model object types are often used whereas the dynamic model shows object
instances. Yet these object instances are often rather used as prototypes of their object
types. The concrete values of these object instances are not important. Considering the
prototypical nature6 of the objects in the object diagrams, the distinction between object
instances and object types gets blurred. The formulation or the symbol for “object x” is

26

interpreted as “an object of type x” when interactions are concerned, and as “object type
x” when the inheritance hierarchy is specified.

2.1.4.2 Dynamic models: transitions between states versus
interactions between objects

An event in an object-oriented system may have the following two aspects:

• it may be an interaction between two objects, modelled by interaction
diagrams or equivalents,

• at the same time it may be a transition between two states of the object that
receives the event, modelled by state transition diagrams or equivalents.

We can compare this to looking at a coin from different angles of vision (see figure 9).
At each angle there are certain parts we see better and others we see less well. If we look
only at one side (e.g. at a two-dimensional object interaction diagram), this side is very
clear to us, yet the other side (the different states of these objects) is totally hidden. If we
hold the coin very near to our eyes with the edge towards us, we can get a glimpse of
both sides, yet neither is very clear, and only the edge (events) is really visible (this is
somehow the case in the life-cycle expressions of Fusion).

The two counterparts

State transition diagrams show the whole life-cycle of one single object, i.e. all the
events the object can receive in all its states. If the diagram is also annotated with the
events the object sends and the recipients of these events, all the state transition diagrams
together with a list of external events define the whole dynamic behaviour of a system.
Interaction diagrams that show the interactions caused by a specific external event can
be derived from a complete set of annotated state transition diagrams.

When we make for each external event an interaction diagram that shows all necessary
interactions between objects, and annotate this diagram with the preconditions that must
be fulfilled by the objects involved, we also get a complete model of the dynamic behav-
iour of the system from which we can derive the state transition diagrams of the individ-
ual objects. Figure 10 shows the two possible views: life-cycles and scenarios.

For system development both views are necessary. If we design the classes, we need state
transition diagrams. If we focus on the system functions and the overall design of the in-
teractions, we prefer interaction diagrams. In some methods, both views are explicitly
modelled; yet often one view does not contain all the information necessary to derive
from it the other view. Other methods combine the different techniques, e.g. Fusion uses
life-cycle expressions (for the life-cycle of the system as a whole) and preconditions (re-

6. See also object-oriented languages such as SELF [Ungar91], which do not differentiate between object types
and object instances; see also diagrams as in figure 131, which show interactions between instances as well as
further associations between the corresponding types.

27

ferring to the life-cycles of individual objects) to specify the possible sequences of sys-
tem operations.

Another reason why changing from one view to the other one is often not possible is that
sometimes only the most important events are included in the state transition diagram of
an object (e.g. leaving out all events that can occur in any state) or in an interaction dia-
gram (e.g. leaving out all events that an object sends to itself). Also, often the object
states in the preconditions of an interaction diagram are not described in the same man-
ner as in the state transition diagrams.

Figure 9 gives an overview of the different possibilities to combine objects and states,
and it mentions also examples of modelling techniques.

The system life-cycle

For the special case where the modelling effort focuses on the interactions between a
system and its environment, both an interaction diagram that is enlarged to include all
interactions (in the form of an event trace diagram with script or in the form of regular
expressions) and a state transition diagram of the system as a whole can contain the iden-
tical information and can show the same view, namely the whole system life-cycle. For

ob
jec

tsstates

e
v
e
n
t
s

Interactions between
several objects (state

changes implicit):

Interaction diagrams of
OOSE (v: objects, h:

time)

Interaction diagrams of
BON (two-dimensional

objects)

Interactions between two
objects (state changes

implicit):

Event trace diagrams of
OMT (v: objects, h: time)

Use cases of OOSE.

Interactions with one
object (state changes

implicit):

Life-cycle expres-
sions of Fusion

Interactions with one
object (state changes

explicit):

Scenario tree of Hsia
(v: alternative cours-

es, h: time)

State changes of
one object (interac-

tions implicit):

State chart of Harel
(two-dimensional

states)

L o o k i n g a t a s e q u e n c e o f e v e n t s :

Operation schema of Fusion

Event response list of MSA

Looking at only one event:

Figure 9: Transitions between states versus interactions between objects

messages
interactions
transitions

interactions between objects transitions between states

28

this reason, several methods define automatable transformations between corresponding
notations, e.g.:

• life-cycle expressions --> state transition diagram (Fusion)

• scenario trees --> regular grammar --> state machine ([Hsia94])

Hsia uses transformations to verify the consistency of the dynamic model of analysis,
whereas in Fusion the transformation is one of several steps for implementing the system
life-cycle, which is specified by regular expressions.

Assertions and rules

Instead of using state transition diagrams or interaction diagrams, the dynamic behav-
iour of a system of interacting objects can also be specified by using rules and assertions.
This is done in FORAM, where for each object type not only the operations are defined,
but also any business rules that affect this object. In the domain of information systems,
business rules are often already formulated and can easily be allotted to the rulesets of
the object specifications; also they are better understandable to the users verifying the
models than a set of state transition diagrams. During design, assertions on the object
operations are then derived from the rulesets and any interaction diagrams. Of course,
other methods than FORAM also use assertions in the object specification during design,
often replacing earlier dynamic diagrams by assertions.

object
A

object
B

object
C

object
D

object
E

object
F

Life-cycles of single objects. They show
all possible sequences of events this object
can accept (e.g. state transition diagrams).

Scenarios, each showing one
or several system functions.
They model the reaction of
the system to an initial event
(e.g. interaction diagrams).

Figure 10: Dynamic model of a system: life-cycles of objects or
scenarios of system functions

29

We may mention here also the approach of Odell: the relationships in the class diagram
may be annotated by different types of business rules, some of them also expressing dy-
namic aspects [Odell93].

2.1.4.3 Interactions between objects: time-line diagrams
versus object diagrams

Time-line notations

Time-line diagrams

Time-line diagrams are two-dimensional graphs where the vertical axis is time and on
the horizontal axis the different objects are listed (see e.g. figures 111, 112, 130 and 135).
Sequence information is found in two places: a basic sequential ordering of the interac-
tions is given by the order of the arrows in respect to the time axis. Iterations and alter-
nations are shown by additional symbols and/or pseudo-code that is written to the left of
the diagram, also called script (not to be confused with the scripts of OBA). Historically
this notation comes from the telecommunication industry (message sequence charts as
specified by the ITU-T Z.120 standard).

Time-line diagrams have the advantage that they emphasize the time related aspects and
concentrate only on dynamic aspects. The possible sequences of events can be seen at a
glance. Furthermore, reading a text from top to bottom, even with iterations and alterna-
tives, is very familiar not only to engineers but also to users coming from other domains.
The disadvantage of time-line diagrams is that for very complex scenarios, involving ei-
ther many objects or many different courses, the diagram rapidly becomes confusing.
Also, most methods do not provide any decomposition for time-line diagrams.7

Tables

OBA uses scripts (not to be confused with the annotations to time-line diagrams often
also called scripts) to model scenarios. These are tables, the rows showing the interaction
and objects involved, the vertical axis showing the sequence of time (see figure 124).
OBA-scripts normally only show one possible sequence, so no further information for
additional courses is necessary.

Text only

When the diagram only shows the interactions between a system and its environment,
then the graphical part can be replaced by a textual description. This text may be in struc-

7. In OOSE, which uses time-line interaction diagrams in the design model, interaction diagrams are decomposed
whenever parts of use cases have been factored out into abstract or extend use cases. Yet no decomposition of
interaction diagrams of the design model is supported that is not linked to the use case descriptions of the anal-
ysis model.

30

tured English, or even in plain text as e.g. in the use cases of OOSE (figure 108). Yet still
the vertical axis shows the flow of time.

Two-dimensional object models

Object diagrams

Object diagrams represent the objects as two-dimensional symbols and not as mere lines.
Therefore they use both dimensions to show the objects and interactions involved in a
scenario. The dynamic aspects are only described by numbering the arrows and by ad-
ditional text. Information about the different possible sequences of interactions is found
in the textual description. Fusion duplicates some of the sequence information by having
a more complicated numbering scheme, yet these numbers can only represent simple dy-
namic behaviour (see figure 117). Fusion also enforces one textual description for each
method, which results in further redundancy between the graphical and the textual part
of the diagram, whereas most other notations suggest having only one textual description
for the whole interaction diagram (e.g. BON, figure 127).

The advantage of object diagrams is that they look very similar to class diagrams, so peo-
ple do not have to get accustomed to two very different notations. Also, the grouping of
objects (e.g. figure 128) or the decomposition into several diagrams (e.g. figure 118) is
quite easy. Yet the dynamic information is not very obvious. It is mostly in the textual
part. Of course, there are no limits to decomposing the dynamic aspects to lower levels
of detail.

Modelling further associations between objects

Object diagrams can be used for showing both the dynamic and the static aspects of be-
haviour. These aspects can also be mixed. For example we can make an object diagram
that shows all interactions involved in one specific scenario, but also all further associa-
tions between the objects involved. So notations for showing visibility can also be inte-
grated into the interaction diagrams (see e.g. object diagrams of Booch, figure 131).

Transformation into time-line diagrams

Time-line diagrams emphasise the call-sequence and thus the dynamic aspects of the
system. This is in contrast to the object diagrams which emphasize the call-structure and
thus the static aspects of the system. These two types of diagrams can be converted au-
tomatically into each other, if they are limited to show the objects, interactions and pos-
sible sequences, and if no further aspects are mixed in. There is much arguing as to
which kind of interaction diagram is the better one. A closer look suggests that these ar-
guments stem from a different weighting of the disadvantages, and reflect differing back-
grounds and tastes.

31

2.1.4.4 Some further aspects of interaction diagrams

Implicit versus explicit return events, flow of control

Whenever we model requests, we have to choose between:

• modelling the return event from the request explicitly as an arrow for itself
(e.g. some event traces of OMT, figure 135),

• including the return event in the call event (e.g. the interaction diagrams of
OMT and Fusion, where the label of the message includes always both, the
name of the operation to be called with its parameters as well as any return
values),

• neglecting the return event at all (e.g. object scenarios of BON).

When the return event is modelled explicitly, the control flow and the scope or duration
of the operations can be deduced from the order of the events, as long as it is clear that
requests and interprocess interactions can be assumed. When the return events are mod-
elled implicitly, then the flow of control and the scope of the operations need to be shown
explicitly. OOSE shows the scope of operations by rectangles (figure 111), OMT uses
the same symbol to show not the scope of the operation but the flow of control (figure
135), and Fusion uses a special numbering scheme for the sequence labels to indicate
with them the flow of control and the order of the return events (figure 117). When we
model concurrent systems using notifications, then the flow of control and the scope of
the operations cannot any more be deduced from the sequence of the events.

Great confusion may arise, when it is not clear if a diagram is overspecified because it
shows both return events and control regions in case only requests are allowed, or if it
just uses both requests and notifications. The interpretation of interaction diagrams may
also become difficult if it is not clear whether a sequential or a concurrent system is being
modelled.

Inheritance hierarchies of objects

If time-line interaction diagrams are used for the detailed design, it is possible to add an-
notations concerning the object inheritance hierarchy. For this, the lines of the objects
are replaced by rectangles. If an object inherits operations, its superclass is shown by a
rectangle inside its own rectangle, and the messages are annotated with the symbols “i”
for implementation and “d” for declaration. Depending on where the arrow points at (in-
ner or outer rectangle) and where the annotations are placed, we know where the opera-
tions are declared and where they are implemented [Baklund95]. In figure 151, for
example, the operation createShape() is declared in the supertype CreationTool (repre-
sented by the inner rectangle) and is implemented in the subtype RectangleCreationTool
(represented by the outer rectangle).

32

Real-time constraints

When interaction diagrams are used for higher level models or when time is not a delim-
iting factor, real-time aspects are not reflected in the interaction diagrams. All possible
sequences of interactions are modelled, but the effective time used up by an interaction
or an operation is not considered. However, it is possible to annotate the interaction di-
agram with the worst-case assumptions concerning the execution time of operations and
their operation calls.

Modelling all possible courses versus focusing on the main course

Modelling with interaction diagrams all possible courses of all scenario types is often
not feasible. Therefore, in order to avoid too many or too complex diagrams, certain
methods recommend concentrating on the most important or most complex scenario
types, or showing only the main course of execution and maybe some important excep-
tions (e.g. object scenarios in BON, scripts in OBA, interaction diagrams in OOSE). By
way of contrast, a complete model of the global behaviour containing all scenario types
and all possible courses of execution is made in Fusion.

Abstracting away low-level details

To make a diagram more readable we may neglect low-level interactions and objects
considered inessential. This may be done in two ways:

• by leaving out certain interactions, i.e. we do not show all the interactions
with further objects or agents a specific object or system would need in order
to respond to a certain event,

• by using conceptual events, i.e. we abstract out effective interaction
mechanisms by omitting mediator objects such as interface and collection
objects; the effective technical events are replaced by a more abstract
conceptual event that is not explicitly represented in the implementation and
may connect objects that do not interact directly in the implementation.

It is not always clear if a specific modelling technique or diagram shows all the interac-
tions, or if some interactions are neglected for the sake of simplicity. Also, it is not al-
ways clear if the interactions shown are on a technical or on a purely conceptual level.

Furthermore, some or all of the event parameters may be omitted. This is done in most
notations using regular expressions (e.g. life-cycle expression in Fusion, path expres-
sions in PEG), but also in some interaction diagrams (e.g. object scenarios of BON,
event traces of OMT). Of course, this necessitates that a complete specification of the
events is found somewhere else.

33

Structuring of diagrams

To avoid too heavily overloaded diagrams we have four possibilities:

• we choose a classification scheme that avoids too complex scenarios,

• we deliberately aim at incomplete interaction diagrams,

• we have some notational aids for structuring and decomposing a diagram,

• we have several models which represent the interactions on various
abstraction levels.

OOSE, for example, allows in its analysis model to factor out common and exceptional
parts of use cases into abstract or extend use cases. In the design, the abstract and extend
use cases are then modelled by separate interaction diagrams. Fusion allows multiple op-
erations schemas for one system operation, each schema describing the system response
for another set of preconditions. The interaction diagrams may be decomposed into an
arbitrary number of diagrams, one for the system operation itself, the others for the more
complex methods. Another approach is chosen in BON: object instances may be
grouped into object groups; these are used to simplify the object scenarios. The last of
the possibilities above mentioned is not supported by any of the investigated methods.

2.1.5 Summary
An overview of the different concepts and their most essential relationships as presented
in this chapter is given in figure 11. For the sake of simplicity, not all the details men-
tioned in the text are represented in the graphic.

34

or

co
m

pl
et

e
dy

na
m

ic
 m

od
el

ar
e

us
ed

 f
or

st
at

ic
 a

sp
ec

ts
dy

na
m

ic
 a

sp
ec

ts

cl
as

s
de

sc
ri

pt
io

ns
cl

as
s/

ob
je

ct
di

ag
ra

m
s

re
gu

la
r

ex
pr

es
si

on
s

sc
en

ar
io

 ty
pe

s

tw
o-

di
m

en
.

in
te

ra
ct

io
n

di
ag

ra
m

s

ti
m

e-
lin

e
in

te
ra

ct
io

n
di

ag
ra

m
s

ex
am

pl
es

 o
f

sy
st

em
 fu

nc
ti

on
s

sc
en

ar
io

 in
st

an
ce

s
st

at
e

ch
ar

tslif
e-

cy
cl

e
m

od
el

s
sc

en
ar

io
 m

od
el

s

an
d

ar
e

m
od

el
le

d
by

 e
.g

.
ar

e
m

od
el

le
d

by

ca
n

be
 e

.g
.

ca
n

be
 e

.g
.

ar
e

th
e

co
un

te
rp

ar
t o

f

m
ay

 b
e

eq
ua

l f
or

 e
xt

er
na

l v
ie

w

ca
n

be
 tr

an
sf

or
m

ed
 in

to

ca
n

be
 tr

an
sf

or
m

ed
 in

to

 a
re

 g
ro

up
ed

 in
to

ar
e

us
ed

 f
or

sy
st

em
s

of
in

te
ra

ct
in

g
ob

je
ct

s

ex
te

rn
al

 v
ie

w
in

te
rn

al
 v

ie
w

co
nc

ep
tu

al
 e

ve
nt

s
te

ch
ni

ca
l e

ve
nt

s

no
ti

fi
ca

ti
on

s
re

qu
es

ts

ha
ve

ar
e

ba
se

d
on

or

ar
e

m
od

el
le

d
by

or
ar

e
m

od
el

le
d

on
 th

e
ab

st
ra

ct
io

n
le

ve
l o

f

or
of

te
n

us
es

of
te

n
us

es

ar
e

of
te

n

ar
e

of
te

n

in
te

rn
al

 o
bj

ec
ts

sy
st

em
 w

it
h

ag
en

ts

us
e

sh
ow

or
sh

ow

or

fo
r

sh
ow

s

sh
ow

s

m
od

el

sh
ow

Figure 11: Overview of the concepts for modelling global behaviour

35

2.2 The Matrix Approach
In this chapter we will have a closer look at the phenomenon which caused the research
work on this thesis. We call it the “matrix approach”, and we use this term to characterise
certain aspects that appear to varying degrees in several object-oriented analysis meth-
ods. We examine three methods which serve here as examples for methods using to a
large degree the matrix approach: OOSE [Jacobson92], Fusion [Coleman94] and Mod-
ern Structured Analysis (MSA). The latter is not an object-oriented method, but in its
analysis model, there is a striking similarity between MSA and many object-oriented
analysis methods. Further, many of the drawbacks and difficulties have not changed by
shifting to object-oriented analysis. Before methods such as OOSE became popular, cer-
tain companies even combined MSA in an adapted form with object-oriented design (see
[Briod93] and [Mueller93]); the resulting models were quite similar to those of “pure”
object-oriented methods such as OOSE, Fusion or second generation OMT. MSA exists
in several variants. Its main elements were introduced by [McMenamin84], and promot-
ed further by [Yourdon89]. We mainly reference here the variant used by the GfAI
[Brantschen91]. There are also other methods having many aspects of the matrix ap-
proach e.g. M.E.R.o.DE. [Dedene94], but we do not focus on these in this chapter.

We need to emphasize that the matrix approach is only a generalisation of some common
features. Of course, not all the characteristics of the matrix approach as we describe them
below apply to all of the above methods to the same degree. Moreover, certain methods
already offer notations and development processes that overcome some of the obstacles.

2.2.1 Characteristics of the matrix approach

2.2.1.1 Notation
The matrix approach assumes that there is a single, monolithic system that interacts with
agents (also called actors in OOSE or terminators in MSA). The analysis model focuses
on the interactions between the system and the agents, thus modelling the external be-
haviour of the system (see figure 12). In spite of the external viewpoint concerning be-
haviour, the system is not modelled as a black box. In the description of system
behaviour, assumptions about its internal structure are made.

In the matrix approach, the analysis model consists of two models: the object model and
the scenario model.

The object model in the matrix approach

The object model reflects the data view of the system. It models the data by using entity,
attribute and relationship types, and cardinality annotations. Operations are not included
in the model and derived attributes may or may not be allowed. An enhanced entity re-

36

lationship notation is used. In MSA, this object model is called data model, in Fusion
system object model, in OOSE object model.

The object model contains:

• all information that needs to be stored by the system beyond the duration of
one scenario,

• all data that flows over the system boundaries as content or parameters of an
input or output event.

These two sets of data need not be identical, although for most systems, especially in-
formation systems, they coincide almost completely. Yet sometimes we need to store in-
formation concerning the system state that is necessary for the specification of the
conditions concerning the reactions of a system but never appears on the outside of the
system. Or we may have event parameters that are not relevant beyond a single scenario
execution (in some methods this information is not modelled in the object model, but we
do not consider these exceptions in the characterisation of the matrix approach).

The scenario model in the matrix approach

As we only focus on the external view of the system, the scenario is a sequence of mes-
sages or events, flowing into and out of the system. A scenario type describes a class of
such scenarios. The scenario model is basically a list of the descriptions of the different
scenario types. Instead of the term scenario type, OOSE uses the term use case, Fusion
the term system operation, and MSA-GfAI the term business transaction (business proc-
ess, business function)1.

The matrix approach has a flat list of scenario types. When considering the classification
criteria presented in chapter 2.1.3.2, these scenario types are determined by the classifi-
cation scheme two or three, i.e. there is a close mapping between the types of the trig-
gering events and the scenario types. In most methods using the matrix approach, this
mapping is one to one (MSA, Fusion). Criteria for the end of the scenario may allow in-

1. In german, the terms “Geschäftsvorfall” or “Geschäftsvorgang” are used, which come from the problem domain
of banks and administrations.

The actual names of the models developed
with the matrix approach:

OOSE: requirements analysis model

Fusion: analysis model

MSA: environmental model

For simplification, we often just us the
term analysis model.

Figure 12: Modelling global behaviour from an external viewpoint.

37

termediate interactions or not, but within one method all scenario types must meet the
same criteria.

The description of a scenario type contains the following elements:

• the name of the scenario type, which is often also the name of the input event
that triggers the scenario (stimulus of the scenario),

• the reaction of the system: output events and/or state changes of the system,

• the conditions which determine the reactions of the system,

• intermediate interactions with agents (input and output events), necessary
to provide the desired reaction (only if the criteria determining the end of a
scenario allow intermediate interactions).

The stimulus may be either an input event from an agent or a temporal event. In this
chapter, to avoid treating the temporal events as a special case, we consider the clock as
also being an external agent. Also, for each event both the agent that sends or receives
this event and the parameters of the event are specified. The parameters of the input and
output events give the information that is transferred between the system and agents. For
parameter specification, entity and attribute names from the object model are used.

The description of the reaction may be algorithmic (e.g. OOSE) or declarative (e.g. Fu-
sion). The specification of the state changes consists at least of a list of the entities that
are read or changed, and the description may contain further details. Both state changes
and conditions refer again to the entities and attributes of the object model.

The matrix

The matrix approach gets its name from the matrix that can be derived from the object
and the scenario model. The first axis of the matrix represents the flat list of scenario
types which model an external view of the system. The second axis shows the flat list of
entity types (see figure 13). The matrix does not provide any additional information that
is not yet contained in the scenario model. So most methods do not suggest making an
explicit matrix. An exception is M.E.R.o.DE with its object event table [Dedene94].
Jacobson uses the matrix to show the dualism between use cases and objects [Jacob-
son95]. The CASE-tool ADW even supports automatic derivation of this matrix [Ber-
inger92b].

That matrix is possible is due to the following characteristics of the matrix approach:

• Well defined system boundaries
The system is expected to have well defined system boundaries. Along these
boundaries, the object model (showing the data view of the system) and the
scenario model (showing the functional view) are defined.

• Flat models
The data of the system is subdivided into entities, the functionality into
scenarios. Both models are flat, i.e. there are no hierarchies and there is no

38

further grouping or refinement into further entity types or scenario types.
These flat models have only three levels of granularity: the system as a whole,
the entity types and scenario types, and finally the attributes of the entity
types and the events or transactions of the scenario types.

• Independent models
Apart from using the elements of the object model for the specification in the
scenario model, the two models are mutually independent. There may even be
different teams for developing the object model and for determining the
scenario types. Changes in the structure of the scenario model do not affect
the object model, and changes in the object model only affect event
parameters and state change descriptions, but not the classification of the
scenarios into scenario types.

Example Fusion

The scenario model is called the interface model, and is divided into the life-cycle model
and the operation model (for more details see chapter A.3). The operation model speci-
fies system operations. The schema of the system operation gives a textual description
of the operation. Further, it specifies the data items that are supplied by the input event,
the data items that are read, changed or created by the operation, the names of the output
events, the names of the agents they are sent to, the preconditions under which the input
event can be accepted, and the results of the operation formulated as postconditions. In-
termediate input events are not allowed.

Example OOSE

In OOSE, the scenario model is the use case model (for more details see chapter A.2).
The use case model divides up the complete functionality of the system into use cases.
In contrast to Fusion, the use cases describe scenarios that contain a whole course of in-
put and output events. A textual description of the normal course and of the alternative

s
c

e
n

a
r

i
o

s

o b j e c t s

xx

x x

x

x

x

x

x

x

x

x

The symbol ‘x’ shows which scenarios
access which objects. If the matrix were
a CRUD-matrix, we would use the letters
C,R,U and D in the place of ‘x’. These
letters would stand for creating, reading,
updating and deleting entity instances.

Oe Of OgOdOcObOa
S1
S2
S3
S4
S5
S6
S7

Figure 13: The matrix between the object model and the scenario model.

39

courses is given for each use case. The description may be divided up into transactions,
and words referring to the object model may be highlighted.

Example MSA

In MSA-GfAI, a scenario type corresponds to a business transaction description, also
known as essential activities. The external view of the scenarios is given by the following
diagrams:

• Event response list: Each row describes one business transaction. There are
columns for the stimuli which are either input data flows or temporal events,
for the reaction of the system, for the output data flows, for the conditions, for
the reactions and for the agents receiving and sending data flows.

• Context diagram: A dataflow diagram shows the system, all agents, all input
and output dataflows, as well as all intermediate interactions. Additionally,
for each dataflow the parameters are specified, using entities, relationships
and attributes of the entity relationship diagram.

Intermediate interactions are only allowed for very restricted cases [Beringer92b], where
the notion that a business transaction has no significant duration (assuming perfect tech-
nology) is not violated too much, and where the business transaction is not considered
as being finished or being in a stable intermediate state. In all other cases, the business
transaction ends with the request for further information. The answer from the agent then
triggers a new business transaction. For more details see chapter A.4.

2.2.1.2 Process

The analysis process

The analysis phase is used to analyse and model the requirements and the problem do-
main. Technological aspects are abstracted out, i.e. the analysis model is technology in-
dependent, and of course also implementation independent. The focus lies on a real
world model that is free of any design decisions. Furthermore, the model is expected to
include all functional requirements of he system, and to be more or less stable for the
rest of the development project and even beyond the life-time of any specific implemen-
tation.

Before the analysis process can start, the system boundaries must be clear. As the sce-
nario model describes the behaviour of the system at the system boundaries, changing
these boundaries after the start of the modelling process necessitates the restart of the
modelling process. After the boundaries are known, the development of the scenario and
of the object model can be done quite independently. The classification of system func-
tionality into scenario types can be done in parallel or prior to the object model. Yet for
the specification of the state changes and the event parameters, the object model is need-
ed as input. Consistency between the two models is reached when all the data elements

40

mentioned in the scenario descriptions are modelled in the object model, and all the en-
tity types of the object model are used somewhere in the scenario model.

The analysis process finishes as soon as the model is complete and has been validated by
the users for completeness and accuracy.

Use of the analysis model for other tasks

The completed analysis model is used for various tasks throughout the rest of the devel-
opment process:

• Contracting functional requirements: The model can be used to validate the
functional requirements of the system with the user. In the case of users
trained in the easily understandable notation, the users can directly participate
in reviews and sign off the models. The model can also become part of the
contract for the design and implementation phases of a system.

• Testing: Scenario descriptions can also serve as scripts for the system and
acceptance tests.

• Design model: When moving to the design phase, the analysis model
determines the functional requirements of the design model. In addition, the
design model may be directly derived from the analysis model.

The transition to the design

The matrix approach advocates a direct and quite seamless transition to the design mod-
el. All the objects of the analysis object model become objects in the design model (often
called entity objects or problem domain objects) and have the necessary operations add-
ed. Additional objects are added for implementing the interface mechanisms, control of
the scenario execution (often called controller objects), and coordination among the var-
ious objects.

The operations of the entity and some of the controller objects are found by dividing up
the scenario descriptions into various steps and allocating these steps as operations to the
entity objects or to the controller objects. For the distribution of the steps among objects,
various approaches can be chosen (see also [Mueller93]). One extreme is to introduce
one controller object for each scenario type; these controller objects take over as much
functionality as possible, the entity objects serving only as data containers. The other ex-
treme is to use hardly any controller objects; the various steps of the scenario are distrib-
uted completely onto the entity objects. In this case, both the knowledge about how the
scenario works and the control over the correct execution of the various steps are com-
pletely dispersed.

41

2.2.2 Difficulties with the matrix approach
The difficulties we are going to mention here do not apply to the same degree to all meth-
ods that can be classified as adopting a matrix approach. Moreover these obstacles can-
not be made responsible for all difficulties in a specific project - many other factors
determine the success or failure of a project to a much greater degree, and many projects
have been carried out more or less successfully though they fought with some of the
drawbacks of the matrix approach.

2.2.2.1 Flat list of scenario types
The matrix approach assumes that the external view of the behaviour of a system can be
subdivided into a set of more or less independent scenario types which are clearly dis-
tinct and do not need further structuring. For many systems this assumption holds. Yet
there exist also systems that exhibit a more complex structure in their behaviour. The fol-
lowing figure illustrates the slight yet important difference between a system with a flat
event structure and a system which has more complex interconnections between the dif-
ferent possible scenarios and events.

If we consider the possible relationships between the scenarios, we discover that some
scenarios show a certain closeness to each other, which may express itself in various fac-
ets:

• Some scenarios may be extensions or special cases of other scenarios.

• Some scenarios may have common parts.

• A scenario that can be directly invoked by the user may also be part of
another scenario.

• Some scenarios may be part of a larger task and are often executed together.

• It may happen that a certain scenario can only be executed if certain
preconditions are fulfilled. Such preconditions are the previous execution of

Modelling the external behaviour of a
system is like sketching an outline of the
patterned surface of a cube. When hav-
ing in the model a flat structure of sce-
nario types, we either have a cube with a
very easy pattern, or we have simplified
the pattern to such an easy one (left
cube). With a model that would allow a
more complex structure, we could take
irregularities of the pattern into account
in our analysis model (right cube).

“matrix approach” more complex patterned surface

Figure 14: Modelling complex patterns

42

certain other scenarios, or specific output events or state changes of the
previous scenario.

By classifying scenarios into scenario types, some scenario instances that are very close
to each other are grouped into the same scenario type. Yet for the rest of these relation-
ships between scenarios the assumption of having a system that can be modelled by a
flat list of independent scenario types leads to some severe limitations. These are pre-
sented in the following paragraphs.

Specialised scenarios

In Fusion and MSA, all scenarios that start with the same input event are classified into
one scenario type. In OOSE, they may be classified into more than one type in order to
avoid the situation where a single type handles too many variants. But whenever scenar-
ios start with different input events, they are classified into different types. Yet these
types may only be variants of each other. From a logical viewpoint, they are all special
cases of a more general scenario type that would be triggered by a more general event
type. In a flat list of scenario types, this cannot be expressed.

The influence of the names of the input events on the classification of scenarios

In the matrix approach, the structure of the scenario model is determined by the types of
the triggering events. There is at least one scenario type for each stimulus type. Yet the
specification of the stimuli is quite arbitrary. As a simple example, consider the scenario
model of an address system. In a first model, we might find the external event access_ad-
dress (mode, name), where mode has the values read, update or delete. In a second mod-
el, we might find the events read_address (name), update_address (name) and
delete_address (name). In the first case we get one scenario type with several variants,
in the second we get three different scenario types. We may judge the first model to be
too unspecific for our purposes, and prefer the second model. Yet in the second model,
we cannot represent any more the fact that these three scenario types are very closely re-
lated.

If the first criterion for the end of a scenario type is chosen (see chapter 2.1.3.3), then the
specification of the triggering event determines also the end of the scenario. If the pa-
rameters of the stimulus already contain all necessary information for a certain task, this
task is modelled as one single scenario. If during the scenario execution further informa-
tion is needed, then this information must be requested from the agents by further inter-
actions. Each input event of these interactions starts an new scenario type. A sequence
of several scenarios results. The fact that these scenarios are closely related to each other
or have to follow each other immediately cannot be shown. Example: ordering an item
can be modelled using one single stimulus order (name, set of [item_nr, quantity]) or us-
ing the stimuli order_for (name), request_item (item_nr, quantity), submit_order. In the
second case we have three scenario types, normally executed in the given order with sev-
eral repetitions of the second scenario type.

43

No handling of redundancy across different scenario types

When we assumed a flat list of scenario types, ideally there were no redundancies be-
tween the different scenario types. This would imply that the classification would be
completely disjoint, and that all scenario instances that have identical parts would be also
triggered by the same input event and thus grouped into one single scenario type. Yet re-
ality is often different, and the discovery and elimination of redundancy is of great im-
portance in producing an understandable, maintainable and useable scenario model.2

A special case of redundancy is given by those scenarios that can be both directly trig-
gered by an external agent, and also appear at the end of another scenario. In both cases
the scenario is triggered by the same event, once externally and once internally. In the
matrix approach such a scenario type is modelled twice, once as a scenario type, and a
second time as part of another scenario type.3

No support for dependencies between scenarios

When dividing up the scenario model into many short scenario types, we neglect the fact
that some of them appear in a certain order and together make up a longer scenario type.4

Such a longer scenario type cannot be represented in the matrix approach.5 To solve the
problem by grouping such scenarios together into one chapter in the project documenta-
tion is a pragmatical solution that is hardly satisfactory.

Furthermore, certain scenarios can only be triggered if certain other scenarios have been
executed beforehand. Consider the scenario model of a teller machine. We might have
the scenario types insert_card, change_code, get_balance, withdraw_money_with_receipt, with-
draw_money_without_receipt, abort_session. All but the first scenario type depend on the first
scenario type. They can only be triggered after the first one has been executed success-
fully. In this example, the necessary order of scenarios is in respect to the system as a
whole. We can distinguish different levels that are predicated by these dependencies:

• Dependencies in respect to the system life-cycle: the whole system goes
through different states in which only certain scenarios are allowed, i.e. all
scenario instances of a certain type are rejected or allowed.

2. OOSE diminishes redundancy with the uses relationship and the abstract use cases. In MSA and Fusion, the
problem of redundancy is not that great, because these methods use the first criterion for the end of a scenario.
But there the price for a low redundancy is a scenario model with many short scenario types. If these are not
structured any further, the problem of redundancy is just solved by enlarging another problem.

3. To avoid this kind of redundancy, in MSA-GfAI [Beringer92b] the notion of internal events has been intro-
duced. This allows us modelling scenario types triggered by two different “agents”, though one of the agents is
not really an agent but another scenario sending an internal event. Internal events appear also in [Kowal92],
where they are used to trigger those scenarios that are the consequences of certain anomalous system states.

4. This is not the case in OOSE, where the use cases normally represent quite long scenarios. With the extend and
uses relationships structuring techniques are offered to factor out certain parts of a use case. But also OOSE
offers no possibility to show further dependencies between its use cases.

5. For this reason Fusion has introduced the life-cycle expressions. These allow us grouping the system operations
into longer scenarios, and also define the possible order of system operations.

44

• Dependencies in respect to single object instances: the triggering or not of a
certain scenario instance depends on the specific object instance this scenario
instance is referring to (parameters of input events or internal objects). Some
scenario instances may be rejected, other scenario instances of the same type
but referring to other object instances may be accepted.

• Dependencies in respect to a subsystem: instead of the system as a whole or
of one single object instance, the preconditions for a scenario may also
concern a whole subsystem.

Take a banking system. Before any other scenarios can be triggered, the system must be
initialised. Only then is the system ready for other scenarios. These dependencies con-
cern the system as a whole. But when we look at one specific instance of the object ac-
count, we uncover a further dependency. The bank account must be opened before any
transactions can be made on it. This dependency concerns only one specific object in-
stance.6

Dependencies between the scenarios are an important aspect for most systems. If they
are not specified, an important part of the behavioural model of a system is missing.
Therefore many methods have added pre- and postconditions to their scenario descrip-
tions, or introduced some kind of dependency graphs or system life cycle specification
(see also [Armour95] described in chapter A.9.8, Fusion in chapter A.3, and OBA in
chapter A.5). If the method using the matrix approach does not provide any additional
notations, all of above dependencies cannot be shown.

2.2.2.2 The matrix approach supports the modelling of only
one abstraction level

In the matrix approach, the scenario types are modelled on one single level of abstrac-
tion. This level may vary from method to method, and there is also a certain freedom for
the projects to select the level best suited for them. A very low level may be chosen,
where all events appearing in the scenarios and especially also the input events are tech-
nical events. Or a higher level may be chosen, where the events abstract out whole inter-
facing mechanisms. Even details concerning variants of the scenarios or parameters of
the events may be omitted, and one scenario type may encompass several scenario types
of a lower level model.7 But even when the method leaves it open to the user to choose
the abstraction level that suits his needs in the best way, the scenario model can only be
represented on one single level.8

6. In Fusion, dependencies that concern the system as a whole can be represented in the system life cycle. De-
pendencies that concern only specific object instances, need to be modelled in the preconditions of the system
operations. Other methods such as OMT have introduced state charts for object types to model such dependen-
cies. If the dependency concerns a whole system or subsystem, then this approach requires that the object that
handles the life-cycle of this subsystem is already known at analysis time.

7. In [Kolbe95] - an experience report on using use cases for requirements modelling - different abstraction levels
are chosen in different projects, depending on the complexity and other factors.

45

The need for multiple views on different levels

Not every person involved in a project needs the same view of the system. A manager
needs a model that shows only the most essential elements on a very high abstraction lev-
el. For validating the functional requirements (not the user interface) with the user, a con-
ceptual level is necessary that abstracts out all design specific details. For the transition
to the design, a model on the level of individual user interactions is preferable. Also in
the final system documentation of a complex system it becomes necessary to show the
scenario model on two or more abstraction levels, in order to help newcomers to become
acquainted with the system.

The chosen abstraction level determines:

• to what degree the parameters of the events are specified,

• how the triggering events are defined and thus how fine grained the scenarios’
classification into types is, and how detailed are the descriptions,

• if intermediate interactions between the system and the user are modelled at
all, and if they correspond to the interactions in the user interface of the final
system or not,

• if the scenario model focuses only on normal system behaviour or if
exceptions and error handling are also taken into account.

Integrating different abstraction levels

Of course, also in the matrix approach it is in principle possible to represent more than
one abstraction level by having more than one scenario model. In [Jacobson95] making
several independent use case models is suggested.9 But if the relationships between the

8. [Armour95] states: “When modelling large business systems, we have found that a single, flat level of use cases
is insufficient to effectively capture and partition the large amount of functionality present.”

And [Regnell96] states: “Furthermore, no modularisation concepts are given to manage large use case
models.”... “Another general problem with use case modelling is granularity. How detailed should we be when
describing use cases? How large should the scope of each use case be? “

9. The integration of different abstraction levels of use cases into one single model is considered as being too close
to functional decomposition. So only a very weak traceability between the use cases of the different models is
provided.

Three views of one and the same system but on different levels of abstraction.

Figure 15: Abstraction levels

46

scenario types in the different models are not specified precisely, traceability and main-
tenance become nearly impossible. What in a higher level model may be considered as
a variant of an existing scenario type is modelled as a separate scenario type in a lower
level model. Or what on a lower level are several independent scenario types, is repre-
sented as one single scenario type in a higher level model. Even worse, the mapping be-
tween the scenario types may be n:n instead of 1:n. Having several models or views of
the scenario model on various abstraction levels is not realistic without a clear integra-
tion of these levels.

The process of defining scenario models

Once the method or the project team has defined on which abstraction level the scenario
model is to be developed, the difficulty arises in hitting this abstraction level right away.
In the matrix approach it is assumed that this is trivial and that the scenarios on the de-
sired level can be picked directly in the real world. In reality, when there are two persons
making a scenario model, then probably two different models emerge on slightly differ-
ent abstraction levels. The matrix approach offers no help in merging these models. Fur-
thermore, if it is decided to make a lower level model, the development team discovers
that it is just not possible to find directly the correct triggering events and scenario types.
Then the team has no other choice than to develop first a higher level model, and after
that to derive from this model a more detailed one. The matrix approach does not provide
any concepts or predefined transitions that support this process.

2.2.2.3 System boundaries
The matrix approach addresses only the modelling of monolithic systems. It models be-
haviour by showing the interactions that cross the boundaries of the system. It is assumed
that these boundaries are known before the development of the scenario model starts,
and that they will not change any more as long as the scenario model will be under con-
struction or will be used as a basis for the design and testing activities. Though the as-
sumptions of a monolithic system with known and fixed system boundaries holds for
many development projects, there are also exceptions.

It is not always known in advance which parts of a system will be automated at all, or
which parts will be in a first increment. So in a first analysis model the system boundaries
may encompass more than the final system. Moving from this model to a model of a
smaller system means redoing the scenario model more or less completely.

The matrix approach is also unsuitable whenever two views of the system are required:
one view showing the behaviour of the system on its automation boundaries, another
view showing the behaviour of the whole organisational system. These two views result
in two independent models that cannot be linked to each other.

In the matrix approach, it is assumed that between the objects and the system as a whole
there are no intermediate components such as subsystems. But as soon as we deal with
systems that should be subdivided into one or several layers of subsystems, it becomes

47

necessary to model also the external view of these subsystems and how these subsystems
interact with each other. This model should not be disconnected from the scenario model
of the external view of the system as a whole, and we might want to reflect the subsys-
tems also in the data model.

2.2.2.4 Difficulties in the transition to a good oo-design
The matrix approach assumes that a seamless transition to the design is possible. The ob-
jects identified in the analysis and modelled in an ERD are taken over as problem domain
or entity objects to the design and are completed there by operations. The operations are
derived from the descriptions of the scenarios. This is achieved by subdividing scenarios
into steps until the steps can be assigned as operations to the objects. Where necessary,
new objects are introduced in the model (see chapter 2.2.1.2). When we look at textbook
examples, this approach seems to work quite well. Yet when this approach is applied to
real projects, where the implementation and the design models do not exist before the
analysis model is made and where the models are not reworked again and again for dem-
onstration purposes, certain difficulties arise. These difficulties do not prevent a team
from getting a design model very quickly, but the quality of the design model may be
bad.

Data driven design

In [Sharble93] two projects using two different design methods were compared on the
quality of their models. The result was that the model developed by a responsibility driv-
en method was much better concerning low coupling between the objects and high co-
hesion within the objects than the model developed by the data driven method10. In the
responsibility driven method the objects were found by determining the responsibilities
necessary in the system and not by deriving the objects from a data model or from an
ER-like object model showing only the data view. A similar observation is documented
in [Eckert95] concerning design object models developed in student projects by the Fu-
sion method. Many had a bias towards data models and failed the quality criteria given
by the method itself [Coleman94, chapter 4-6]. Deficiencies of object models that are de-
rived from purely static data models are also discussed in [Wasserman92].

Viewing a system as a composition of several interacting subsystems.

Figure 16: Composed systems

48

In the data driven design, many important design decisions concerning the assignment
of attributes to objects are taken during analysis without considering the future behav-
iour and responsibility of this object and are thus quite arbitrary. First the data is encap-
sulated, then operations are added. Data and functions are not encapsulated in the same
step. The capsules may be optimal concerning the data, but they are not necessarily op-
timal capsules of behaviour. By adding further objects such as interface and controller
objects this bias towards the original data model is not eliminated. Only a complete re-
design could overcome the paradigm shift between a data model with operations added
and an object-oriented model (see also chapter 2.3).

Function driven design

When deriving a design directly from the scenario model of analysis, the following dan-
gers exist (see also [Firesmith95]):

• Finding the object operations by dividing up the scenarios into its events,
transactions or steps leads to a purely functional decomposition. These steps
have been used during analysis in order to describe the external view of the
system. They have not been designed to result in good objects.

• Working along the scenarios when designing the internal objects leads to the
duplication of functions. To purge these duplications from the system later is
quite difficult.

• A 1:1 mapping of scenarios to controller objects or a radical distribution of all
control onto entity objects are quite easy, but both may lead to bad design.

The danger of a functional decomposition is also mentioned in [Walden95, pages 140-
141]: deriving the system architecture directly from the scenarios often does not lead to
a stable and robust system of interacting objects, because the separation of concerns is
along system functions and not along object responsibilities. Therefore, if the local be-
haviour is not reconsidered based on other quality criteria and guidelines such as those
given by RDD [Wirfs90] (determining first the responsibilities of the objects) or by [Be-
rard93] (sufficient sets of primitive operations for reusable objects, composite operations
for application-oriented objects), the object operations may well share many of the dis-
advantages we know from the functional decomposition in structured design.

10. We can group object-oriented modelling techniques into responsibility driven, data driven and use case-driven
approaches. Responsibility driven approaches (the most popular representative is responsibility driven design
(RDD) of Wirfs-Brock [Wirfs90]) start by determining the responsibilities of the objects. Though responsibility
driven approaches are the best way for getting a high-quality design object model, they do not offer any tech-
niques for specifying the external behaviour or the requirements of a system. Data driven approaches (e.g. the
method of Shlaer/Mellor [Shlaer88], [Shlaer92]) start with a data model and derive from this data model the
objects. Data modelling is part of analysis and can also be used for defining the data view of the system require-
ments. Use case driven approaches (e.g. OOSE and Fusion) also start with analysis and furthermore allow the
modelling of the external behaviour. Some of them even explicitly support requirements determination. Many
use case driven methods are to a large degree data driven methods as well, and most of them have the charac-
teristics of the matrix approach presented in this chapter.

49

Architecture of the system

In modern applications the design of the system architecture becomes more and more
important (see e.g. [Kruchten95], [Sadr96]). It is the backbone by which everything else
has to orientate itself. Architectural elements such as predefined frameworks and design
patterns are used. These help to get better understandable and maintainable models. But
in the matrix approach the analysis model, i.e. the object model and the scenario model
showing the external view of the system, is developed without having frameworks, de-
sign patterns and architecture structures in mind. These design aspects have to be intro-
duced in the design. Yet the matrix approach and the methods having the characteristics
of the matrix approach do not give any hints as how a design model can be derived from
the analysis model and at the same time be based on specific architectural elements.

Changes in the scenario model

The matrix approach assumes that the scenario model developed during analysis reflects
the scenarios of the final system and it is expected that the analysis model remains stable.
But as [Walden95] mentions: “Once a clear understanding of the problem is reached and
the right concepts established, a radically different set of use cases may instead fall out
as a result of this understanding, perhaps fairly late in the process.” Enforcing compli-
ance between the final system and the scenario model as developed in the analysis at the
begin of the project may lead to suboptimal user interfaces. [Kilberth93] discusses the
example of processes that have been manual up to now and should be supported by com-
puters in the future. The scenario model of the analysis reflects the user’s view of the
processes as he is used to carry them out with the old technology. A direct implementa-
tion of these work routines may lead to a modal system which allows only one standard
way of carrying out the work. The positive effects that have been hoped for do not ma-
terialize, because in the resulting system the user is forced to follow technically schema-
tized work routines. The system controls the user instead of being a tool in the hand of
the specialist. Because the scenario model fixes the developers on one way to see the sys-
tem, it prevents them from finding optimum computer support, which in the example of
[Kilberth93] was a reactive system where the user is left as much freedom as possible in
choosing and changing the sequence of small steps.

Traceability to the analysis model

There are two weak points concerning the traceability between the analysis and the de-
sign model. The first point concerns the user interface. The scenario model shows the
system from an external viewpoint. The design model focuses on the internal interac-
tions. We can show which internal interaction diagrams belong to which scenario type.
For better traceability, intermediate models were needed that would show the effective
user interactions of the user interface, and would link these interactions to the operations
of the internal objects.11

Secondly, when in order to get a high quality design model the scenario model is
changed and therefore the objects model is redesigned and the object operations do not

50

correspond to the steps of the scenario description, then the traceability between the de-
sign and the analysis model gets lost and the maintenance of the analysis model becomes
awfully difficult.

The scenario model of analysis is a list of functions offered by the system. The design
shows a network of collaborating objects. To bridge this gap and to provide a good trace-
ability is not easy. [Firesmith95] even compares this gap to the semantic gap between
data flow diagrams and structure charts.

2.2.2.5 Is the matrix approach really object-oriented?
We have taken MSA-GfAI as an example of a method that uses the matrix approach for
the analysis. But though MSA-GfAI and similar methods have been used as front ends
for object-oriented designs, they have never themselves claimed to be object-oriented.
This is a first indication that lets us doubt the object-orientedness of the matrix approach.

Other indications are:

• Though encapsulation is one of the key concepts of object orientation, there is
no encapsulation of data and functions into objects.

• Data and functions are not modelled on the same level of granularity. The
data is modelled on the level of individual objects, the functions on the level
of the whole system.

• The scenarios, system operations or use cases are orthogonal to objects. They
are purely functional abstractions and could just as well be used as input for
structured design.

• Instead of a system of interacting objects, the analysis model specifies a
matrix over data entities and global functions.

• There is no concept of modularisation. Other concepts such as specialisation
and aggregation are used for the object model but not for the scenario model.

So the question arises, which criteria should be met by an object-oriented analysis meth-
od. Object-oriented methods such as [Booch91] and [Wirfs90] are generally accepted as
being really object-oriented. Yet they do not model the external view of the system at all.
They assume that the requirements are known and incrementally develop the objects of
the system as encapsulations of functions and data. As they do not support requirements
determination and neither offer an easy starting point for the modelling process nor the
basis for contracting projects, methods offering use cases, scenarios and system opera-
tions have been eagerly accepted in industry. But the fact that most object-oriented meth-
ods have integrated these concepts in one way or the other does not mean that they are

11. Even in Fusion, where the system operations represent technical events, it is not modelled how these events
come from the user to the controller object. Also how the messages to interface objects correspond to the output
events of the analysis is documented nowhere.

51

really all object-oriented, nor does it answer the question of what criteria an object-ori-
ented analysis method would have to fulfil or what criteria are at all satisfiable12.

2.2.3 Reasons for these difficulties
We have characterised the matrix approach and described some of its difficulties. In the
following chapters we will take a closer look at some of these difficulties and the circum-
stances that cause them. We will also discuss and propose approaches and modelling
techniques that might help to overcome some of the weaknesses of the matrix approach.
The three main sources of the difficulties are:

• Object model: The object model is a very fine grained data model that does
not allow any higher level abstractions. It does not necessarily satisfy object-
oriented quality criteria. The global behaviour is modelled as a matrix
between scenarios and these data entities.

• Scenario model: The scenarios are modelled on exactly one abstraction level
as a flat list of scenario types, determined by the triggering events.
Dependencies and other relationships between the scenario types cannot be
shown.

• Goals of the analysis model: The goals of the analysis model are often
defined contradictory, or they are not clear at all.

Modelling techniques that overcome to some degree the flat list of scenarios have al-
ready been proposed in various methods. Fusion has the regular expressions that allow
us to specify to some degree the possible orders of the system operations. OOSE utilises
the uses and the extends relationship to avoid redundancy and to model exceptional cases
of scenarios. In chapter 4 we will introduce a scenario modelling technique that is not
based on a flat list of scenarios at all.

Not all the difficulties that arise with the matrix approach are due to having a flat scenario
and object model and having a matrix between them. Some of them are caused by the
expectations connected to the analysis model. It often happens that the goals and expec-
tations, explicitly defined or only implicitly assumed, are contradictory to each other or
have proven to be too idealistic. In chapter 3 we will take a look at some of these goals
and at the intent clashes that can arise. We will also show different approaches chosen
by various methods to cope with these intent clashes. Our scenario modelling technique
presented in chapter 4 will then be based on one of these approaches.

12. Determining what object-orientedness means for analysis does not become easier when we consider statements
such as the one of [Chang93] who questions the claim of object-oriented approaches to be the most natural ap-
proach and states: “I tend to adopt a functional view when approaching a problem, and the top-down, hierar-
chical way of devising a functional solution is natural to me”.

52

2.3 The relationship cardinality
domination

The matrix approach uses an extended entity relationship notation for the object model.
In spite of many advantages, the use of this notation for an object model has two severe
disadvantages that we mentioned in the previous chapter: the object model is very fine
grained and flat, and the design model derived from this object model does not fulfil the
quality criteria for good object oriented designs and cannot compete with design models
developed by other (e.g. responsibility driven) approaches. Now the question arises as to
whether the notation itself leads to these two weaknesses of the object model.

Rules for representing data in an ERD

If we model the data of a system with an entity relationship model, then there are some
simple rules which dominate the structure of the model. These rules determine for in-
stance if two attributes belong to the same entity type or not, and if a data element is an
entity type per se or just an attribute of another entity type.

• Attribute types that have a 1:1 relationship are potentially part of the same
entity type. If a group of attributes has a x:m or m:x relationship to another
group of attributes, these two groups become separate entity types.

• If an attribute is multivalued (a set of values of the same type), it is factored
out into an entity type that has a 1:m relationship to the original entity type.

• If an attribute is non-atomic (a list of values of different types), then this
attribute becomes a group of attributes, and this group is factored out into an
entity type of its own.13

• Whenever a relationship type concerns only one attribute (or attribute group)
of an entity type, then this attribute is also factored out into an entity type of
its own.

We can loosen these rules when we also allow complex entity types. These may have at-
tributes that are lists of attributes or sets of attributes, and any functional dependencies
among the attributes may be allowed. But still there exist certain limitations. For exam-
ple as soon as we need to model a relationship that does not concern the whole entity but
only a group of attributes, we have no other choice than to factor out this group into an
entity type. Moreover, whenever two entity types have a relationship that is not a 1:1 re-
lationship, these two entity types cannot be merged into one entity type. The determina-
tion of the entity types is dominated by the relationships and their cardinalities.

13. We could add here also the rules for the second and third normal form of ERDs. When using ERDs for object
modelling also these are often intuitively followed, though due to the lack of the specification of keys, normal-
isation is not required and cannot be checked.

53

Another limitation for ERDs is that they cannot be modularized. A flat and fine grained
model is automatically the result when determining the entities by above rules. Fusion
advocates representing the object model on several diagrams, but this is only for repre-
sentational purposes and does not introduce any higher level abstractions with informa-
tion hiding. OMT introduces subsystems, but also there, relationships are allowed to
cross system boundaries. Other methods have subsystems with information hiding (an
overview of various concepts for subsystems is in chapter 4.1.2.1), but these models are
not directly derived from an ERD. They are explicitly designed and reworked in order to
have subsystems.

ERDs and object models

In object-oriented analysis, extended ER notations are often used to model either only
the data view of the object model, or to model the whole structure (data elements and
operations) of the object model. These extended ER notations extend one of the common
classical ER notation by modelling elements for specialisation (inheritance that satisfies
the substitution rules) and for aggregation. Both, specialisation and aggregation, can be
considered as relationships with a predefined semantic. In a classical ERD, they would
have been modelled as an “is-a” relationship, as a “contains” or as a “has-a” relationship.
Apart from these differences, the data view of the objects is determined and decided
upon in the same way as in an ERD. The result is an object model in which the capsules
are not encapsulations of operations and data. They are data capsules with operations
added. The model has been determined by the cardinalities of the attributes, by the ex-
istence of relationships between certain data elements, and by the cardinalities of these
relationships. The following list shows the main characteristics of an object model that
incorporates the principles of object-oriented development, in contrast to a data model
or an object model biased towards data modelling:

• Encapsulation: In an object model several functions are packaged together
into a capsule together with the data they are dealing with. The
encapsulations are chosen in such a way that they offer optimal interfaces.
For a given problem there are several possible ways to distribute the tasks and
responsibilities onto the various objects.

• Information hiding: Objects are encapsulations with information hiding.
Other objects cannot access directly the internals of an object, they are
restricted to the services given by the interface. The kind of requests an object
offers to its environment need not to map its internal data elements 1:1. The
requests can also require some computing on the side of the requested object.
Furthermore, objects can also be systems of objects. The access to the
internal objects and their services is done by the interface of the subsystem.

• Relationships: The relationships in an ERD reflect some logical relations
between two entity types. The relationships in an object model are references
that are needed for requesting services from other objects. If between two
objects a reference is necessary depends on the design of the services of these

54

objects and on the design patterns used. So not every logical relationship
between two objects has to be modelled as a reference. Yet if it is done, then
probably no alternative design patterns and object interface designs have been
tried out.

• Quality criteria: The quality criteria for optimal objects and object interfaces
are low coupling, high cohesion, good maintenance and robustness against
changes. These quality criteria have no meaning in the context of an ERD.

Of course it is possible to use an extended ERD notation to represent a given object mod-
el that fulfils the criteria of good object-oriented design. Such a diagram shows the at-
tributes internal to the objects, the interface of the objects (all the services the object
offers) and the references between objects. These references are abstracted into bidirec-
tional relationships with cardinalities. ERDs may also be used to represent just the data
view of an object model. Then the relationships may either represent effective references
between the objects, or logical relationships. Even ERD notations that support subsys-
tems may be used, if the object model that is represented has been designed to have sub-
systems.

But can’t we also start object modelling by using an ERD? And then gradually optimize
the model in order to get an object model that meets above criteria? There is one great
obstacle in this approach: the objects get too easily determined by the rules for an ERD.
The result is an object model whose structure has been determined by the relationships
between data elements and the cardinalities of these relationships, and not by objects as
capsules of functions and data and the responsibilities of these objects. Once we have a
flat model dominated by data modelling based on relationships and cardinalities, it is
very hard to optimize such a model and to integrate into it design patterns that require a
totally different model structure. The consequence of the optimization is often a total re-
working of the model, resulting in total different sets of objects, operations and referenc-
es.

Using ERDs in object-oriented development

As a consequence it follows that using an ERD to determine the objects of the system
does not lead to the desired object model. If we look at methods such as Booch
[Booch91], BON [Walden95], RDD [Wirfs90] or OBA [Rubin92], we realise that these
methods do not use an ERD-like notation for determining the objects and thus avoid a
domination of the object model by data modelling concepts. Nevertheless there are spe-
cial purposes for which a data or object model modelled by an ERD is of great value also
in the object-oriented development.

Avoiding any bias towards data modelling is not always the best decision for an object
model. Though for many applications we may want to avoid such a bias, there are also
systems where this bias is welcome. E.g. when we develop applications for database sys-
tems, then the optimal object model of the applications may be the one that is as close
as possible to the data model of the data base.

55

When eliciting the requirements of a system, ERDs are just one means to capture the
data view. It tells us the knowledge the system must have. This ERD is not the object
model of the final system, it just represents the data view of the requirements, often from
a user’s or domain specialist’s perspective.

A similar situation arises when using a scenario model to show the external view of a
system. If we want to get the scenario model before we have designed the internal struc-
ture of the system, then we just need something as a data model for describing the data
referenced in the scenario model. An ERD is one possible choice for this.

56

57

Chapter 3
Goals of Analysis
When developing an analysis model, the notation itself does not suffice for determining
the content of the analysis model and the end of the analysis process. For this, the goals
and intents of the analysis model are used, either implicitly or explicitly. In this chapter
we take a look at possible ways to define the term analysis and the goals of the analysis
model. We start by considering the reference model of the problem solving cycle. We
examine the definitions that refer to analysis as the “what” as opposed to the “how”, or
as the problem definition phase of a problem solving cycle. We then continue with a dis-
cussion of various criteria (including technology independence, real word model, unam-
biguous or essential model) which are often used to specify the goals of an analysis
model. Difficulties arising with these criteria are that they cannot be combined arbitrarily
and that some of them are very vague; we propose therefore also some more concrete
formulations. In the last part of the chapter we take a closer look at some misconceptions
and intent clashes that are due to a too idealistic model of the software development
process. Objective real world models, analysis models that are stable after the analysis
phase and analysis models which are equal to the high-level view of the final software
system are often attempted, but are normally not realistic. This leads to intent clashes
with the desire for a seamless and easy controllable development process. We explain
these intent clashes and we also describe the three different approaches taken by soft-
ware development methods to cope with such clashes.

3.1 What is an analysis model?
The term analysis is heavily overloaded. Nevertheless, in many methods the goals of the
analysis model are defined very vaguely, though the notational restrictions alone do not
determine the content of the analysis model. This leaves much room for personal inter-
pretations. Therefore we examine in this chapter various possibilities for defining the
term analysis and the goals of the analysis model.

58

3.1.1 Motivation, notation, intent and content of
models

When developing a model, we hopefully pursue a certain objective which gives us the
motivation to undertake that task. Such a motivation may be to give a brief overview for
managers, to evaluate the feasibility of a software system, to set up a contract for a spe-
cific software system for outsourcing, to provide the necessary requirements specifica-
tions to be used by sophisticated developers, to fulfil somehow the notational
requirements of certain QA-guidelines, or to try out a new notation.

Depending on the motivation behind the modelling process, we then choose a notation
and define the intent or goal of our model (we will use the terms “intent” and “goal” in-
terchangeably). Only such information appears in the content of the model as is describ-
able by the notation and corresponds to the intent of the model (see figure 17).

A given notation can be combined with many different modelling intents. For instance,
an ERD can be used to show the logical model of all the tables found in a relational da-
tabase. It can also be used to model all the data in a certain problem domain. Or it can
be used to give a static view of all the objects in an object-oriented system, considering
only attributes. Even if the notation is exactly the same, the content of the model, even
if it is about the same system, may vary significantly.

Considering intents and goals of models is important for several reasons:

• Most modelling notations can be used in several contexts. Yet many methods
do not state explicitly for which modelling intents their notations can or
should be used.

• When comparing different methods, e.g. concerning their techniques for
modelling global behaviour, the differences in model goals are at least as
important as the differences in the notations used. For specific method
selection, the achievable goals should even be of higher priority than
notational issues.

• Terms such as analysis are heavily overloaded. Without making it more
precise what the intent of a specific analysis model is, misunderstandings,
endless discussions and wasted modelling efforts are inevitable. Stating only
that an analysis model should be developed is not enough.

• Managers, end-users, system engineers and software engineers have different
motives for making an analysis model.

notation
intent, goal

motivation, objectivecontent determine are used for

Figure 17: Objective, content and intent of a model

59

• To judge the quality of an analysis model, we do not only want to determine if
the notation is used correctly but also that the correct content is represented.
But appropriate quality criteria depend on the goals of a specific model.

• The definition of the goals of the different models is also important when
defining project management guidelines and project control. In a multi-
method environment the intents of the individual models are actually the only
bases on which a general model architecture can be defined (for more details
see [Beringer95]).

• Discussions concerning the seamlessness of object-oriented methods cannot
only be based on notational issues. They must take into account the
limitations caused by the differing goals of models on different abstraction
levels (for more details see [Beringer94]).

In the following we will discuss possible goals for analysis models. But first, we take a
closer look at the term “analysis”, and we use for this the reference model of the problem
solving cycle.

3.1.2 The term “analysis” from the perspective of
the problem solving cycle reference model

Many methods use the term analysis for the first activities that are undertaken in order
to solve a given problem. We therefore describe here the reference model of the problem
solving cycle and examine how analysis could be defined, based on this model.

3.1.2.1 The problem solving cycle
A software development project tries to solve a certain problem by providing a compu-
terized solution. Yet problem solving is not restricted to software engineering, it happens
every day. The problem solving cycle is a reference model that describes the process of
solving a problem in a very general way. It has also been used in the software develop-
ment guidelines of NCR Switzerland and in the QA-guidelines of the GfAI Switzerland.

60

The four phases of the cycle

The four phases of the problem solving cycle are described in figure 18.

Omitting the definition of the problem

The different activities during the four phases of the cycle vary widely depending on the
domain we are looking at. In politics, the elaboration of the solution may demand pro-
posing, discussing and voting on new laws, in engineering this may involve building and
trying out prototypes. Yet common to all the different domains is the fact that either the
problem is defined explicitly before or in parallel to the elaboration of the solution, or
this is done implicitly during the elaboration or even use of the solution. Omitting the
definition of the problem is not possible. It can only be deferred. The objectives can be
hidden behind the solution but this normally causes unnecessary controversies and addi-
tional costs.

Recursive problem solving cycles

At any point in the cycle, the detection of new problems may give rise to the initiation
of a new problem solving cycle within the existing cycle. In fact, any individual activity
in the original cycle can be seen as another smaller cycle. This results in a recursive
structure of an arbitrary multiplicity of problem solving cycles.

Iterations and backtracking within the cycle

During the problem definition phase it may turn out that the wrong problem has been
identified. Or during the solution elaboration phase the problem definition may appear
to be ambiguous or to be insoluble due to overconstricted objectives. Or, when putting a
solution into operation, some defects may be detected which necessitate some further
elaboration of the solution. In all these cases, we have to go back and iteratively redo the

• Problem Detection: It is recognized that there is a
problem and certain measures are taken. What the
problem is really about is often not yet clear.

• Problem Definition: The problem gets analysed and
defined. Priorities are set and the compulsory and the
nice-to-have objectives are defined. It is determined
what problem needs to be solved.

• Solution Elaboration: One or several solutions are
evolved, analysed, decided upon and put into practice. If
several solutions are considered, these must be checked
against the objectives, measured and selected. It is
determined how the problem is to be solved.

• Using the Solution: The solution is in operation. It has
to prove that it can yield the promised benefits. If new
requirements or defects appear, a new cycle is started.

Solution
Elaboration Definition

Problem
Detection

Using the
Solution

Problem

Figure 18: The problem solving cycle

61

work of previous phases. Of course, it is often a matter of definition whether we consider
such backtracking as going back within the same problem solving cycle or as initiating
a further problem solving cycle.

3.1.2.2 Applying the problem solving cycle to software
engineering

Any work done in the realm of software development can also be seen from the view-
point of the problem solving cycle. We may apply the reference model of the problem
solving cycle to planning a new system, to maintenance work, to implementing a reusa-
ble class library, or to developing a new software application. Often the life-cycle of a
whole software system is looked at as one single problem solving cycle. The develop-
ment project starts due to a problem detection and ends when the solution is effectively
used. The tasks of such a project can be subdivided into those which serve to define the
problem and those which serve to elaborate the solution. They are carried out basically
in a sequential order, yet always include some amount of backtracking and iteration.

The recursive nature of the development process

Yet applying the problem solving cycle to the whole life-cycle of a project or software
system is only one of many possibilities. In fact each activity within the project and each
subsystem or component corresponds again to a problem solving cycle. Due to its recur-
sive nature, the problem solving cycle can be applied at any level of granularity. Restrict-
ing its application to the life-cycle of the project as a whole is an arbitrary decision. This
becomes especially evident when considering more complex software developments
where several project teams work on several applications which together make up some
large system, composed of organisational, hardware and software elements. From the
overall system view, many details that for the individual teams belong to the realm of
problem definition are considered as implementation details. Thus exactly the same ac-
tivities and models may in one project be considered as belonging to the problem defi-
nition of a problem A, and in another project as belonging to the elaboration of the
solution to a problem B, without ever making it explicit that problem A could be consid-
ered as a recursive problem solving cycle within the solution elaboration of problem B.
An example of such an approach is found in [Berard93]. Berard proposes a recursive/
parallel life-cycle for software development with recursive cycles of problem definition
and problem solution. Exactly the same methods, techniques and phases are used on sev-
eral levels of decomposition, taking into account the recursive nature of the problem
solving cycle.

“What” versus “How”

The problem definition sets out what the problem is about. The elaboration of the solu-
tion shows how the problem is solved. When applying this distinction to a software de-
velopment project, we can say that in a first phase (or phases) the what of the system

62

under consideration needs to be defined, and in a second phase the how. But the “what -
how” rule does not really help us to distinguish between these two phases or their cor-
responding models, because often it is not clear if a certain statement describes the
“what” or the “how” of the system. This is because of the following reasons:

• The problem solving reference model only tells us that theoretically such a
differentiation between statements belonging to the problem definition or to
the solution of a specific problem can be made. It cannot give us any
guidelines as how to differentiate. Such guidelines are not possible, because
only by deciding for a particular case that a statement defines the what and
not the how do we know what the problem is, not before.

• Davis summarises the “what versus how” dilemma succinctly as “one
person’s what is another person’s how” [Davis93]. For some people the exact
look of the user interface is the how, for others it belongs to the what. The
truth, which is often relative and subjective, depends on both the concrete
circumstances and on the perspective and expectations of the people involved.
Where we set the boundary between defining the problem and finding a
solution depends on what we perceive as being the problem. This again
depends on our role in the project (manager, user, network specialist,
programmer) and our personal opinion.

• Due to the recursive nature of the problem solving cycle, the how of an
encapsulated recursive cycle refines the what of its outer cycle. Also the what
of an inner cycle refines the how of the outer cycle. Thus a certain statement
is at the same time the what of one problem and the how of another problem.

This dilemma also becomes obvious when considering the criteria mandated by a meth-
od to determine the end point of the problem modelling process. These criteria are often
very vague and subjective, and they do not really help to define an objective paradigm
within which to exercise judgement on the completion of the problem definition.

Limits of the reference model

Though the problem solving cycle is a very valuable reference model for software devel-
opment and is mentioned in some form or other in many development methods, its sig-
nificance for practical engineering projects has severe limits. Firstly, applying the
reference model only to the level of a whole project contradicts its recursive nature. Sec-
ondly, the reference model only makes the statement that there exist such problem solv-
ing cycles and that these can be decomposed into four phases.

The reference model helps to analyse the software development process and its different
activities from a retrospective view, providing one possible perspective of software de-
velopment (see also [Floyd89]). It enhances our understanding of what is going on in the
development project but it does not determine what in a concrete situation should be con-
sidered as problem detection, problem definition or problem solution. Thus it cannot

63

serve as a guideline for determining in a project if something belongs to the model of the
problem detection, problem definition or to the model of another phase.

3.1.2.3 Where does the term “analysis” fit into the problem
solving cycle?

Considering the problem solving cycle, there are different elements that we could call
“analysis”. And in fact, there are several interpretations of what activities and results are
called analysis.

Analysis defined as modelling the “what”

Often it is said that the analysis model defines the problem and describes the “what”, in
contrast to the design model which describes the solution, the “how”. Examples:

• OMT: “Analysis is understanding a problem; design is devising a strategy to
solve the problem...” [Rumbaugh94d].

• [Booch94, page 252]: “The purpose of the analysis is to provide a model of
the system’s behaviour. We must emphasize that analysis focuses upon
behaviour, not form. ...analysis must yield a statement of what the system
does, not how it does it.”

• [Walden95, page 122] mentions that the current consensus on the meaning of
object-oriented analysis seems to be “creating an object-oriented model from
the external requirements (a model of the problem)”.

• [Shlaer88, page 93]: “The first thing to do is to build the information model to
define the conceptual units you will be working with. In doing this it is
important to stay focused on the real world - the problem - and not the
solution to that problem, which will be supplied with the automated computer
system.”

• In [Graham93] analysis is characterized as “identifying large scale structure,
just enough to describe the what of the system, rather than the detail of the
how.”

• [Rawsthorne95]: “...analytic models - a set of models describing what the
system will do; design models - a set of models describing how the system
will be implemented...”.

• In [Wilkinson95] analysis and design are differentiated in the following way:
“Analysis, or problem modelling, in which the problem is described and
represented... Design, or solution modelling, in which a solution to the
problem is discovered and represented...”. In the design model “additional
classes and mechanisms, which support how the system works, are built upon
the existing classes, which describe what the system does”.

64

• Davis describes analysis as “understanding the problem and the user’s needs,
identifying all possible constraints on a solution; organizing the plethora of
assembled information”. This in contrast to the requirements specification:
“describing the expected behaviour of the product to be built to solve the now
understood problem”. As synonyms for analysis he uses requirements
analysis and problem analysis. [Davis90, Eckert93].

Considering what we have said in the previous section, it becomes evident that these def-
initions help us to categorize an analysis model in a retrospective view of a project, i.e.
when the problem is already defined and we know what belongs to its definition and
what to its solution. Yet they cannot provide any precise and objective criteria which
could help during the modelling process of analysis to specify the goals of the analysis
process and to determine the content of the model1. For this, other criteria are necessary.

Analysis in its common meaning

If we consider the everyday meaning of analysis as understood in most other disciplines
(e.g. as defined by [Webster]: “an examination of a complex, its elements, and their re-
lations”), then analysis activities can be found in any of the different phases of the prob-
lem solving cycle. Analytical examinations are necessary to define the problem, but they
are also necessary to create a solution or evaluate a solution. Every modelling activity
involves the separation of a complex into its elements and relations. This usage of the
term “analysis” is referred to by [Walden95, page 122] as being the traditional sense of
analysis, prior to its reinterpretation which is specific to current software development
methods. Examples for this interpretation of the term analysis are:

• Wirfs-Brock uses the term analysis in this sense when dividing the design
process into an exploratory phase and an analysis phase2 [Wirfs90].

• The term analysis is also used for domain analysis in the sense3 of taking a
closer look at a specific problem domain, business process or enterprise. The
resulting domain analysis model has no connection to the future software
system, though domain analysis may of course precede a system development
effort. Examples are the domain analysis in [D’Souza93] and [Beringer94],

1. The usefulness of the “what - how” distinction for defining requirements engineering or analysis is quite often
questioned, e.g. also in [Siddiqi94], where Siddiqi examines the “universal truth” that requirements describe
the “what” of a system and not its “how”.

2. The analysis phase denotes the refinement of the objects into subsystems and subtyping hierarchies and the
specification of the method signatures. It has nothing to do with requirements definition or problem analysis.

3. Other usages of the term “domain analysis” are:
• Finding the problem domain objects for the analysis model of a software system. E.g. in OOSE the require-

ments model consists of a problem domain object model and a use case model [Jacobson92].
• Defining concepts that are valid beyond one specific software application in order to develop reusable soft-

ware components for one specific application domain. [Neighbors80, Berard93] state: “System analysis
states what is done for a specific problem in a domain while domain analysis states what can be done in a
range of problems in a domain...”

65

the enterprise modelling in [Jacobson92] or the strategic modelling in
[OMG92].

• [Jacobson92] differentiates between the process of requirements analysis
which has as input a requirements specification and produces a requirements
model, and the process of robustness analysis which investigates this model
concerning its robustness and produces the analysis model (and not a
robustness model as could be expected). So in OOSE the term analysis has
two distinct meanings and uses.

Any modelling activity includes analysis in this general sense. Therefore this original
and common definition of analysis does not provide any basis for defining the content
and intent of an analysis model in the software development process.

Analysis as being equal to specifying requirements

Another possibility is to use analysis as synonym for requirements specification. In the
problem solving cycle we specify requirements during the problem definition as well as
during the evaluation and selection of a solution. So this definition would cover the sec-
ond phase and part of the third phase of the problem solving cycle.

In the realm of software development, not all specification issues are decided upon by
the same people. For certain decisions the customer takes responsibility, for other deci-
sions the developers have their full freedom, as long as no requirements constraints of
the customer are violated. We could therefore say that analysis only contains all those
requirements specifications which are under the responsibility of the customer (this can
then be seen from retrospective as the problem definition phase). Such a definition of the
term analysis is only possible if in the team where the term is used it is clear, which de-
tails of the requirements must be defined by the user and which are decided autonomous-
ly by the developers. So the content of the analysis model becomes dependant on the
organisational context, on the specific project management approach and on contractual
conditions. And whenever a participative approach to software development is chosen
(as e.g. described by [Reisin90]), this definition of analysis does not work at all.

3.1.2.4 Consequences
All these possible definition of the term “analysis” fail to provide the necessary criteria
to determine the content of the analysis model. Also, the reference model of the problem
solving cycle only defines that such a model exists, and gives reasons for it. But due to
the retrospective viewpoint of the analysis process, it is of limited help as a guideline for
the analysis model.

66

3.1.3 Criteria for defining the goals of analysis
models

In the literature, various criteria for the goals of the analysis model are mentioned that
should support the developer in determining the content of the analysis model and the
end of the analysis process. Figure 19 gives an overview of those criteria which go be-
yond the simple “what-how” discussed in the previous chapter. Some of the criteria we
present in the following sections are very vague, so we propose more precise definitions
where possible. Moreover, some criteria require or imply the exclusion of other criteria.
We mention some of these contradictions.

3.1.3.1 Model of the current system versus model of the future
system

Introduced by DeMarco in 1979 [DeMarco79], the differentiation between the model of
the current system and the model of the future system has not lost any importance,
though only in rare cases are both models made. Yet it is important to state explicitly
which model is the goal, especially when starting by collecting information on the cur-
rent system in order to model a future system. Even if the objective is only the replace-

goals

 notation

technology dependency:

targeted audience:

unambiguity or understandability?

completeness or essential information?

concerning automation boundaries?
concerning interaction mechanisms?
concerning low-level details?
concerning system architecture?

for users or computers?
for a contract or for developers of the same team?

current system or future system?

application-oriented or reuse-oriented?

real world model or
model of a software system?

Analysis model

etc.

Figure 19: Goals of analysis models

etc.

67

ment of an old system or the mere automation of manual processes, a new system has
potential to substantially change current organizations and decision making processes (a
list of such changes can be found e.g. in [Huber90]). These differences to the status quo
need to be taken into account in an analysis model which has the goal of describing the
requirements or the high-level view of a new system.

3.1.3.2 Application-oriented versus reuse-oriented
Methods such as Fusion [Coleman94], OMT [Rumbaugh91] or OOSE [Jacobson92] fo-
cus on the development of one single application. Their analysis models are thus appli-
cation specific. Their goal is to produce a minimal, accurate, and easily understandable
description for one application. If the goal of analysing a problem domain is not a spe-
cific application but a library of reusable components or an application framework, then
the analysis model should show reusable objects and reusable interaction mechanisms.
As is shown in [Berard93]4, application-oriented models differ in their structure from re-
use-oriented models.

3.1.3.3 “Real world” model or abstracting a software system
An analysis model that reflects the real world and models the problem as the user per-
ceives it (also called real world model5) is not identical to a model that abstracts a soft-
ware system (also called target- or solution-oriented model). Differences include what
information is modelled, how data and operations are grouped into objects, how these
objects interact with each other, and also how external objects interrelate with the objects
within the system. A model that tries to be both, a real world and a target-oriented model,
is with the exception of trivial systems either the one or the other. As it is mentioned in
[McGinnes92], though many developers pretend to model the reality or to reflect the us-
ers’ view, often reality is bent to fit into an object model which fulfils quality criteria
coming from the software design. Therefore [Høydalsvik93, McGinnes92] emphasize
the necessity of a clear distinction. They advocate a model that reflects reality as the user
perceives it and is not influenced by any knowledge about what would be good software
abstractions. Other methods start right away with a model of the problem domain that
uses the abstractions of the software system. Such a model focuses on the targeted soft-
ware system, and in this approach finding good software abstractions is more important

4. Reuse-oriented models use inheritance heavily, factor out associations and complex operations into classes of
their own, parameterize classes, and provide classes with a complete set of primitive methods. For this, a more
complex model must be accepted. In contrast, an application-oriented model describes the characteristics and
requirements of exactly one application, and is as small and simple as possible. The focus is on the application
specific relationships between perhaps reused objects. The classes only need a sufficient set of methods but may
include also complex operations.

5. In [Høydalsvik93] this model is called problem-oriented model. The model describes a certain organisation,
business, process or machine without considering how this problem will be reflected in the structure and ele-
ments of the software system.

68

than reflecting reality as the user would perceive it before he gets acquainted with the
future software system.

3.1.3.4 Technology independent models

Technology independence

Many methods mention that the analysis model should be independent of the design and
the implementation of the system, i.e. that technological details should be abstracted
away. Formulations such as “describing the what instead of the how” or “modelling
problem-oriented instead of target-oriented” also imply a technology independent mod-
el. Examples:

• DeMarco suggest developing logical models of the current and future systems
which do not contain any physical information [DeMarco79, page 233].

• OMT gives the following guidelines for a technology independent analysis
model: “A good analysis captures the essential features of the problem
without introducing implementation artifacts that prematurely restrict design
decisions.” [Rumbaugh91, page 187]. “The successful analysis model states
what must be done, without restricting how it is done, and avoids
implementation decisions. The result of analysis should be understanding the
problem as a preparation for design” [Rumbaugh91, page 148].

• Fusion: “Analysis is about describing what a system does rather than how it
does it. Separating the behaviour of a system from the way it is implemented
requires viewing the system from the user’s perspective rather than that of the
machine.” [Coleman94, appendix A].

• The analysis model in MSA assumes perfect technology (no errors, no space
or time constraints, no costs). Also no differentiation is made between human
and automated processes [Yourdan89].

• OOSE: “In analysis an application-oriented specification is developed to
specify what the system offers its users. This specification, which we call the
analysis model, specifies the functional behaviour of the system under
practically ideal circumstances and without regard to a particular
implementation environment... It is important, however, to judge whether the
analysis model can actually be realized...”[Jacobson92, page 15].

• Sommerville and Kotonya summarise the content of the requirements
specification as: “A software requirements specification is a document
containing a complete description of what the software will do, independent
of implementation details” [Kotonya96].

Many methods do not specify further what exactly they mean by technology independ-
ence and from which technologies they want to abstract in the analysis model. For this

69

reason, [Bailer93] differentiates in the context of information systems between several
types of technology from which we can abstract in an analysis model:

• Information or implementation technology: The system is modelled
independently of its future implementation as software or manual system.
The system itself with its processors, data stores and communication paths is
considered as perfect.

• Organisation technology: The system is modelled independently of the
organisational structures found in the present organisation; the organisational
environment is considered as being of perfect technology.

• Production technology: The system is modelled independently of what it
produces. This abstraction does not make any sense in the realm of software
engineering, because any software system supports a specific production
technology and cannot be modelled without this.

Abstracting away implementation as well as organisation technology brings the great ad-
vantage that the whole organisation in which a software system should be embedded can
be rethought and redesigned, and hopefully also optimized, thus combining system de-
velopment with business re-engineering. It seems ideal to make an analysis model that
abstracts away any technological detail concerning implementation technology and or-
ganisation. Yet we must consider the following points:

• Even if the processes of business re-engineering and of requirements
determination are intertwined they have two distinct goals. Only by making a
technology independent model of the current (or future) software system, the
business is not automatically re-engineered in an optimal way.

• The metaphor of perfect implementation technology may be useful for batch-
type information systems. Yet when developing networking software or new
user interfaces, the system under consideration can not exist if we assume
perfect technology with no automation boundaries. In most projects, the goal
is not a model that abstracts away all implementation technology, but
abstracts away only certain aspects.

In practice there is therefore a great amount of uncertainty how to develop and use tech-
nology free models in an efficient way. As [Bailer93] mentions, in industry technology
free models are often not created and even many examples found in books are not really
technology free. But when we want to describe a model that abstract away only certain
technical aspects, we need a further distinction. We propose the following criteria: ab-
stracting the automation boundaries, the interface and interaction mechanism, the sys-
tem architecture, and low level implementation details.

Abstracting away low level implementation details

When in 1979 DeMarco introduced the differentiation between the physical and the log-
ical model [DeMarco79], it was not yet common to abstract away physical details such

70

as file structures, algorithms and help variables. Nowadays, abstracting away low level
implementation details in an analysis model, and to some degree even in the design mod-
el, is taken for granted by object-oriented development methods. The encapsulation of
data and operations into objects, the principle of information hiding and the possibility
to define class interfaces by contracts help to create analysis and design models that are
not programming language specific and that even do not contain yet all objects necessary
for the implementation.

Abstracting away the system architecture

Many methods advocate an analysis model that does not consider the internal system ar-
chitecture. The internal system architecture is either defined in a separate model after the
analysis model (as e.g. in SSP [Jufer92] or OMT [Rumbaugh91]) or it is not dealt with
by the method at all (e.g. Fusion [Coleman94]). As long as a method is used for mono-
lithic and simple systems, abstracting away the internal system architecture may appear
to be very obvious, a special high-level model that takes into account the system archi-
tecture but no other implementation details may be superfluous. For more complex soft-
ware systems which may include distribution, off-the-shelf software components
(networking software, user interface systems, database systems), or which also integrate
hardware components, we certainly also need an analysis model concerning the system
architecture, thus having two analysis models with different goals. But not every project
starts with an analysis model that abstracts away the system architecture for the follow-
ing reasons:

• Introducing distribution or off-the-shelf components can change the structure
of an object-oriented analysis model totally, causing major remodelling when
introducing the system architecture.

• For certain systems all the complexity lies in the system architecture, an
analysis model that abstracts this away would be trivial.

• In certain projects the system architecture is already given at the beginning
and is not subject to change.

So depending on the concrete circumstances we need to define explicitly for each anal-
ysis model whether the system architecture is abstracted away or not and which elements
of the technical system architecture are taken into account and which ones not.

Abstracting away automation boundaries

The reason for abstracting away automation boundaries in analysis modelling is that to
fix the boundaries of the future software system right at the beginning of a project may
not only be difficult, it can also be very dangerous if they are meant to remain fixed as
the analysis process goes on. In order that the new system really suits the needs of the
users, the system boundaries and the organisational aspects of the environment need to
be carefully examined and eventually redesigned. An abstraction from all implementa-
tion technology is needed. Therefore many methods advocate a universe of discourse

71

larger than the automated system. In MSA [Yourdon89] the automation boundaries are
even abstracted away for the whole analysis model (also called essential model), they are
introduced during the transition to the design. [Shlaer88] distinguishes between the anal-
ysis model, which does not specify which processes will be automated, and the external
specification model which focuses on the interactions on the automation boundary.
[Cook94] has two analysis models, the essential model which abstracts away any auto-
mation boundaries and the specification model which takes them into account. In OOSE
and Fusion a problem domain object model is created which is free of automation
boundaries, yet the use case and interface models are made after the automation bound-
aries have been introduced into the analysis or system object model.

Other methods, especially those which do not model global system behaviour explicitly,
leave it open as to the degree to which the automation boundaries are abstracted away in
the analysis model, often assuming that introducing the system boundaries into the ob-
ject-oriented object model will not change the structure of the object model. This may
be true for certain projects but is not the case in general, as is shown in [Eckert95] for an
example using the Fusion method and in [Høydalsvik93] for a model of the OOPSLA
conference registration problem.

Abstracting away the low-level interaction mechanisms on the system boundary

When we consider those models showing the interactions between the software system
and its environment (scenario models that show the external view of the global behaviour
of the system), two questions arise: What does it mean if we state technology independ-
ence as a goal for our model? Which details of the interface can be abstracted away?

As we model interactions at the system boundary (external events, system services, use
cases or scenarios), technology independence certainly does not mean abstracting away
the system boundaries. The system boundaries of the software system must be known,
but we can decide on which level we want to model the interactions. We can choose a
technical level, or we can choose a conceptual level (see also chapter 2.1.2.3 where we
use the distinction between technical and conceptual events to characterise different sce-
nario modelling techniques). We propose that a technology free scenario model should
be on a conceptual level of interactions and events, i.e. these are chosen to reflect the cur-
rent perception of the problem domain and not to correspond to the actual user interac-
tions in the final software system.6 Furthermore, the structure of the scenario model of a
technology free analysis must not have any influence on the scenario model of the de-
sign7.

6. Every scenario model, irrespective of the abstraction level chosen, has a bias towards one specific interface de-
sign. Therefore a really technology free scenario model cannot exist, we can only define explicitly that the struc-
ture of the scenario model of the analysis is not a prejudice for the design model.

7. In chapter 4.5 we will discuss possible changes that only affect the structure of the scenario model.

72

3.1.3.5 External versus internal model
When looking at a system, a subsystem, a software component, a process or an object,
we differentiate between the internal view which describes the system by its compo-
nents, and the external view which describes the system as a black box. Both, the exter-
nal and internal view, contain dynamic as well as static aspects.

We could also say that the external view describes the “what” and defines the require-
ments, whereas the internal view describes the “how” and gives the design of a system,
assuming that the external view defines the problem and the internal view a solution.
These terms are often used as implying each other, thus defining the terms “what” and
“how” by external and internal view. But if the external view really describes the “what”
and the internal view the “how” is of course very subjective (see also chapter 3.1.2.2).

Having two different models

Even when describing only the external view of a component, we need a specific syntax
and semantic for this. Basically there are two possible approaches:

• The same notation is used to describe the external behaviour as is used for the
internal view. Without additional information you cannot tell if such a model
represents an external or an internal view.

• Different notations (and maybe even different paradigms) are used for the
external and the internal model. The two models cannot be confused, but two
different notations need to be mastered and the transition between the two
models may be further impeded.

The advantage of the second approach is the clear separation between the external and
the internal view. Due to the different modelling techniques, the models need to be re-
done when changing the view point. In a top-down approach, where first the external
view is modelled and afterwards the internal structure is determined, this may be an ad-
vantage. Yet in a bottom-up approach, where we already know the internal components
and thus can use these as semantic elements for the external description, it hinders us
from having only one model that represents both view points. Here lies the strength of
the first approach which works well, as long as the goal of the model is still clear and the
external view is not mistaken for the internal view.

Whenever we distinguish between the external and the internal view, we must accept
having two models that look very similar and are about the same system, but differ in
their contents and model elements (e.g. an external data model and an internal object
model).

Correlations between the internal and the external views

Ideally, the external view does not make any unnecessary restrictions concerning the in-
ternal view, and information hiding is ensured. Far too often, this is not the case: the
same model elements (e.g. object types and attributes) are used in the internal and the

73

external view (see also the discussion on the difficulties of the transitions to a good de-
sign when using the matrix approach in chapter 2.2.2.4).

3.1.3.6 Complete and unambiguous models versus essential
models

Oft-mentioned goals of analysis models are that they stick to the essential information,
do not go too low down into details, are unambiguous and complete. But these criteria
cannot be fulfilled all at once. Also, the criteria completeness and unambiguity only re-
ally make sense if the analysis model is specified in a formal language.

Completeness and unambiguity of object models and scenario models

We might like to consider an object model to be complete, if we have found all the nec-
essary objects and specified all the external views of all the object services. But in order
to find all the objects and services we need to determine how the object services work
and if they need further services from other objects. Otherwise we cannot verify whether
all the necessary objects and services have been modelled8. Furthermore, for an unam-
biguous model, service names are not enough. The services need to be specified in such
precise language. that no misunderstandings are possible. This could be a formal speci-
fication language, programming language or an unambiguous domain specific language.
A formal language is also necessary if we want to verify the completeness formally and
not only informally by human reviewers.

The same is true for the scenario model. Also an unambiguous scenario model would
have to use such a language. And in order to be complete, it would have to cover all pos-
sible sequences of events, also all exceptional and error scenarios, and not only the most
typical ones.

Limits to complete and unambiguous analysis models

There are several points that restrict the development of complete and unambiguous
analysis models:

• Redundancy in the design process: Total unambiguity necessitates detailing
the analysis model (which is not yet the design model) until an unambiguous
language level is reached. One criticism of SA/SD has been that the work is
done twice: first the system is specified down to the level of pseudo code in
the process model of SA, modelling the problem domain irrespective of the
design of the software system. Afterwards the same level is specified once
again in the design, this time for software components. An effort that is

8. Most analysis model provide a list of the services offered by an object, but they do not mention which other
services are needed to provide theses services. No verification concerning the completeness of the object model
is possible.

74

normally not justified for every part of the analysis model. Also the effort for
a complete analysis model, especially for a complete scenario model, is not
always justified by the expected return of investment.

• Targeted audience: The language preferred by the targeted audience is not
necessarily an unambiguous language. For example the scenario models of
common object-oriented analysis methods such as OOSE, Fusion, OBA and
OMT focus on easy understandability, but are not themselves unambiguous.

• Evolving requirements: In not every project are all the requirements known
from the beginning, and not all requirements can already be fixed in all
details. An unambiguous and complete analysis model can then only evolve
with the design and implementation of the system (see e.g. also experience
report in [Kolbe95].

Reducing to the most essential informations

Many object-oriented methods do not try to provide a complete analysis model but ad-
vocate focusing on the essential aspects. For example Booch [Booch94, page 253] dis-
tinguishes between primary scenarios (which illustrate key behaviours) and secondary
scenarios (behaviour under exceptional conditions); only the first are all included in the
analysis model. BON [Walden95, page 170] provides only on a very high abstraction
level a mere list of all external events and scenarios. A full covering of all possible sce-
narios on a more detailed level is considered as unrealistic, so only a selection of the list-
ed scenarios are also modelled by object diagrams.

But if we specify as a goal of the analysis model the modelling of only essential infor-
mation, we have a very vague criterion. On the one hand, what “essential” means, de-
pends on the other goals chosen. On the other, its interpretation remains always
subjective, and must be decided upon in the concrete situations by the developers and
reviewers, maybe backed up by risk assessment techniques.

3.1.3.7 Targeted audience

To be understood by users (and developers) versus to be understood by machines

If we require that the analysis model is to be understood by those involved in or affected
by the system or problem that is modelled, we have to choose an appropriate language
and to model the system in such a way that it reflects the thinking and perception of the
users. Ideally such a modelling technique is close to other techniques used in the daily
work of the users. Examples for this are the concept maps, event-response-lists and sto-
ryboards of [Umphress91], the informal scenarios of [Kilberth93], or the scripts of OBA
[Rubin92] (e.g. [Heeg94] likes to work with these scripts, as they are so similar to the
tables secretaries work with every day).

On the other hand, there is the desire for an automated verification or even execution of
an analysis model. This necessitates a language that can be interpreted by machines, e.g.

75

formal specification languages such as Z, B, VDM, CO-OPN or LOTOS. But the result-
ing analysis models can only be understood by users who are themselves software engi-
neers. Otherwise the developers first need another analysis model that they can discuss
with the users, and based on this they can develop the formal model. Of course, formal
specification languages also necessitate that the software developers have the necessary
educational background, training and experience for using formal specification languag-
es; up to now this is only true for a minority of project teams.

“Natural” modelling techniques

The targeted audience determines also which modelling techniques are considered as be-
ing natural. Certain people consider a purely functional approach as natural [Ward94],
others see the world as consisting of passive objects and of processes that manipulate
these objects [McGinnes92], for others everything should be modelled as a system of in-
teracting and active objects. Which techniques are perceived as natural is a question of
experience, profession, culture, language and personal perspective. As a consequence,
not every modelling approach does match well the thinking of the people involved in a
specific analysis process, even if it is conceived as being very natural by its originators.

To be used for contracting versus to be used by the same team in an iterative approach

Will the results of the analysis model be used in-house by the same team that has speci-
fied the analysis model? Or will the analysis model be used for a contract? And will the
analysis model be used for estimating the project size by certain estimation techniques
(as e.g. the one proposed by [Moser92])? Also these goals must be known before the
modelling process starts in order to avoid nasty surprises.

3.1.3.8 Consequences

Contradictions

An analysis model cannot fulfil all possible expectations at once. We have already for-
mulated various pairs of opposite goals. But also between these pairs there are depend-
encies. For example an unambiguous model going down to a precise and thus formal
language level is not targeted at the user. Application- and reuse-oriented models are al-
ways models of the software system. And a system architecture is out of place in a model
of the real world. It does not make sense to have goals that contradict each other, neither
prescribed by a method description, nor foreseen in the project plan, nor existing implic-
itly in the heads of the software developers involved in the project.

Many difficulties that arise with methods based on the matrix approach (and with other
methods as well) are just due to the fact that the goals of the analysis model are only im-
plicit or that contradicting goals are carried over from a method description. As the goals
are not defined and discussed explicitly, the effort is undertaken to develop a model that
should satisfy contradictory goals. And as this is not possible, frustration is the conse-

76

quence. But all those difficulties that are due to unclear, contradicting or even inappro-
priate goals cannot be resolved by an enhanced notation or an improved analysis process.

Using goals for the project plan

In any project, somebody has to define how many different models are to be developed
and what their goals are. If this is not done explicitly before the models are constructed,
it will be done implicitly. Then the goals are imposed by the person with the greatest in-
fluence, or they are determined with much additional effort when arguing about model-
ling issues which are in fact uncertainties concerning the goal of the model. Far better
that the goals are defined by a method, by QA-guidelines and by the project plan (more
about general model architecture frames and project plans can be found in [Beringer95]).

Responsibility of the development team

Some of the criteria we have mentioned here can be defined quite precisely before the
development of the analysis model starts. Other criteria (e.g. what the essential informa-
tion is or how detailed the model must be to avoid too much ambiguity but be still not
too complex and still understandable by the targeted audience) can only be stated more
precisely during the development process. There it is important that the developers and
reviewers are aware of the vagueness of these goals. There is no easy guideline that could
replace human judgement and human awareness.

77

3.2 Intent clashes
Besides the goals mentioned in the previous chapter, we may have further expectations
concerning the analysis model and especially concerning the analysis and the design
process. Many of the previous goals and of the expectations mentioned here are achiev-
able when the effective developing process (analysis and design processes) is not con-
sidered. When it is taken into account, further difficulties arise. We describe these
difficulties here as three misconceptions and two intent clashes, and we also show how
the various methods cope with these intent clashes.

3.2.1 Difficulties with the ideal analysis model

3.2.1.1 The ideal analysis model
When we are asked for the ideal analysis model, the ideal relations between the analysis
and the design model and the ideal properties of the development process, we might
mention the goals and expectations presented in figure 20:

If we specify the goals and expectations in this way, then we have to deal first of all with
the problems we mentioned already in the previous chapter; some of these goals are con-
tradictory (e.g. real world model and detailed requirements specification of the software
system), and they are not precise enough to be useable guidelines in a concrete project
(e.g. technology dependency). But there is also a further difficulty. Some of these expec-

Analysis model

• implementation specific
• one solution out of many possible solutions
• high quality
• using design patterns
• reusable

• objective
• mirrors real world
• stable during design
• technology free
• detailed requirements specification
• complete and unambiguous, precise

Se
am

le
ss

 p
ro

ce
ss

:
re

fin
in

g
m

od
el

s
an

d
no

t r
ed

oi
ng

 m
od

el
s

C
on

tr
ol

la
bl

e
pr

oc
es

s:
in

 p
ri

nc
ip

le
 li

ne
ar

,
w

ith
 w

el
l d

efi
ne

d
an

d
m

ea
su

ra
bl

e
m

ile
st

on
es

Design model

Figure 20: The ideal analysis model

78

tations are often just not achievable. Though it would be very nice to fulfil them, they
contradict the experiences of software development. In many projects it is not possible
to make a stable analysis model, an analysis model that is an objective picture of the real
world, or an initial requirements analysis model that can be seamlessly expanded into a
design model.

3.2.1.2 First misconception: stable model
There exist some software development projects, where the functional requirements are
well known from the beginning, and remain stable during the design. But often, this is
not the case. On the contrary, there are projects where only a vague idea exists of what
the system should do. Evolutionary prototyping or scenario modelling is done in parallel
to the design and implementation of the system, in order to find out what the real needs
are, and what the requirements should be like. Many people advocate the parallel ad-
vancement of design and requirements model, (e.g. [Holbrook90] mentions that the cri-
teria and requirements for a complex design problem evolve at the same time as solutions
are being formulated, and [Siddiqi94] quotes: “specification and implementation are in-
timately intertwined”)9.

In other projects, the functional requirements are known, or people think they know
them, but they refer to the old technology. With a new technology new possibilities arise
e.g. for the user interfaces. And these new possibilities not only affect the details of im-
plementation, but also influence the metaphors and work procedures used in the analysis
model. Already in chapter 2.2.2.4 we have shown that this may result in changes in the
scenario model.

A further difficulty for a stable analysis model is the immense complexity inherent in
large projects. It is not possible to model first all the requirements, and then to proceed
to the next phase. Instead, an iterative approach is chosen. First the most basic require-
ments are picked out, and a first system is made. Incrementally, other requirements are
added. Though this approach prevents the project becoming bogged down in the analysis
phase (paralysis by analysis), the analysis model is never complete, and substantial (and
sometimes also increasingly expensive) changes can become necessary as new require-
ments are added. An example of such an approach to software development is given by
Kruchten in [Kruchten95] and [Kruchten96].

3.2.1.3 Second misconception: objective real world model
It is often said that an object-oriented analysis model models the real world. And it is
assumed that in analysis there exists a model that is objective and is free of any design

9. In [Wilkinson95] also an iterative approach is recommended. But there, stable does not mean that the model is
not changed any longer. An analysis model is considered as being stable as soon as the model begins to be able
to provide information about the problem domain rather than require it, i.e. people are getting information from
the model and are no longer only putting information into the model.

79

decisions. This assumption is not backed up by everybody. [Floyd89] states that every
model is a construction, and that this construction is always subjective, depending on the
background of the person who developed or designed it (see also [Siddiqi94]). There is
no objective way to look at the world around us, the model is always shaped by the per-
sonal perspective. Even if in a project a so-called objective real world model is made, it
is just the subjective construction of that person in the team with the greatest influence.

Our perception of the real world also changes during a project. Metaphors are found and
implemented during the development project, and after some time we may even use
these metaphors outside this project when describing similar problems. And when we
would make the real world model a second time, suddenly we would find us using the
metaphors that came from the development of a previous software solution, even in the
real world model.10

3.2.1.4 Third misconception: initial final high-level view
In a seamless approach the analysis model can be expanded step by step into the design
and implementation model (see figure 21). The initial analysis model as it exists after the
first phase or milestone of the project is just a subset of the final system model.The same
assumption is made for an initial data model which may be part of the analysis model.

Both assumptions hold for text book examples and for trivial systems. But they do not
hold when the developers do not know in advance what the structure of the final system
will be. If this final system is of a good quality, then it cannot be a mere expansion of the
initial analysis model, as we have shown in chapter 2.3 and in [Beringer94].

In reality the model is reworked several times until those design patterns, object abstrac-
tions and interaction mechanisms are found that suit the problem, satisfy the quality de-

10. These metaphors are often very domain specific, and unfortunately rarely get published. An exception is the
“tool-material-aspect” metaphor documented in [Gryczan92].

Analysis Objects

Design Objects

Implementation Objects

Object Model of the
Implementation

of the problem domain,
e.g. account, customer

of the technical requirements,
e.g. controller, window

low level objects,
e.g. collection, linked list

Figure 21: Seamless expansion of the analysis model

80

mands, and will be implemented in the final system. The iterative approach is not a mere
expansion and detailing of the model, but includes also changes to it.

Also, the final system model can be shown on various abstraction levels. The higher level
views abstract away certain details of the lower level views, but they still reflect the es-
sential structures and concepts of the final model. But this final high-level view is not the
same model as the initial analysis model, even if they use similar notations. If we use an
approach where we first model the requirements in an analysis model and then develop
the implementation, we have two high-level views of the system which are slightly or
drastically different from each other (see figure 22). The differences may only lie in the
model elements that are used for the description (e.g. the allocation of attributes to object
types). Or the difference may even concern the overall structure of the scenario model
and the object model.

3.2.2 The two intent clashes
The two intent clashes we mention in this chapter do not appear in every project. There
are projects where the assumed goals do not lead to any contradictions due to the nature
of the given project constraints. Yet in other projects, intent clashes arise and should not
be ignored.

First intent clash: controllable process <--> no stable requirements, no real world model

In industry we need controllable processes with milestones. We must be able to define
what we expect from these milestones, and we must measure the results. We need to ver-
ify that the required work has been done correctly, specifically that the appropriate work

initial
analysis
model

final
high-level

view

time

Detailing and implementing design model.
Changing and adapting of high level view.

implementation

design objects

Figure 22: Initial analysis model versus final high-level view

81

has been done and that no later rework is needed. If we cannot guarantee and measure
these criteria at a milestone, then project management becomes extremely difficult, and
outsourcing and contracting software is a nightmare.

The consequences for the analysis model are straightforward: we want an analysis model
that can be completed in a first phase of the project and remains stable afterwards. Fur-
ther we require that it is a real world model, so the desired content is specified clearly
and we can easily decide at the milestone that the model is complete and correct. With
such an analysis model and analysis phase, we would have at least at the beginning of
the project well defined and controllable milestones. We could also use the analysis mod-
el to estimate the size of the remaining work, and to work out contracts for the develop-
ment of solutions.

As we have shown above, such an ideal analysis model does not always exist. We may
fake an idealistic linear process in the system documentation (as proposed by [Par-
nas86]), but that does not work for the process itself. We thus have a clash between the
constraints of project management, and the possible goals of analysis models and the
needs for a highly iterative, and creative approach (see figure 23). The larger the project,
the more difficult it becomes to reconcile these two intents. If we look at the proposals
for project management e.g. by [Sadr96] or [Kruchten95] and at other guidelines for it-
erative object-oriented project management, we can see that they try to find compromis-
es that do not satisfy the “purists” of either side. Their goal is a realistic and cost-efficient
process that has some iterations, leaves some freedom for changes and creativeness
throughout the development, and is still to some degree controllable.

Second intent clash: seamless process <--> initial final high level view

Even before object-oriented modelling techniques became popular, one tried to find well
defined links between the analysis and the design model. There were at least two reasons
why a well defined or even better a seamless transition between these models was re-
quired:

• A clear connection between the various models is needed in order to enable
maintenance.

• Rules (and even automation) for deriving the design model from the analysis
model and the implementation from the design model are requested, in order
to facilitate and control the development process. Often the dream has even
been to have automatic code generation from a problem model.

When object-oriented technologies have been introduced, great hopes have arisen that
having one paradigm for the whole development process would finally deliver a seam-
less process. But as we have mentioned before, this works only when modelling the sys-
tem from a retrospective perspective. So for most projects, the initial analysis model is
not identical to the final high-level view. This is very evident in a linear process, when
the initial model remains unchanged. But it is also true for an iterative process, only that
in an iterative process often the analysis model evolves step by step to reflect the con-

82

cepts found in the final system. So the intent clash between the desire for a seamless
process and the impossibility of having an initial analysis model that reflects the final
high-level view remains.

3.2.3 Approaches to handle these intent clashes
Methods handle these intent clashes differently. We have categorized the methods into
three groups concerning their treatment of the intent clashes: methods that have an ide-
alistic approach, methods that just focus on the evolution of the final system model, and
methods that bother with developing, reworking and maintaining two different models
over the whole development process. This classification mainly concerns if and how the
analysis and the design model are distinguished and what are the relations between these
two models. But the relations between the analysis and design model also influence the
kind of process model that might be chosen. Not every method can be categorized into
one of the following groups. Some methods, such as OMT, leave it open to the user how
he relates his design and analysis models to each other, and they may be combined with
different kind of processes.

It is possible to have
one objective prob-
lem definition, which
has several solutions.

First, complete and
precise requirements
are described, after-
wards the solutions
designed.

The issues of require-
ments become evi-
dent as the solutions
are explored.

Any model, even if
describing reality,
is constructed and
designed.

P
R

O

C
E

S
S

C O N T E N T

controllable,

measurable
milestones

gradually evolving
requirements and
final system model,
creative working

Figure 23: The first intent clash

83

3.2.3.1 The idealistic approach
The idealistic approach does not really provide a solution to the intent clashes mentioned
above. It just hopes that the clashes are not serious and can be neglected. A more or less
linear approach is chosen, and the goal of the analysis phase is a stable and real world
analysis model that defines the functional requirements for the system. At the end of the
analysis phase, this model is reviewed and accepted. In the design it is directly enhanced
or transformed into the final software model and is thus a high-level view of the design
model.

Of course, it is admitted that there may be some overlap of the analysis process with the
design process and that changes to the analysis model during the rest of the development
process cannot be avoided. Yet to reach the ideal process as closely as possible is at-
tempted, and also to produce at least documentation that fakes it. Most data-driven or use
case driven object-oriented methods fall into this category, though much depends on how
they are interpreted and applied in practical projects. Also, the matrix approach as we
have described it in chapter 2.2 is an idealistic approach, and some of the difficulties of
the matrix approach mentioned there are due to the two intent clashes.

An example: Fusion

In the first phase of the project, the functional requirements are described by an analysis
model that consists of the object model and the interface model. The analysis model de-
scribes the intended behaviour of the system as it is externally visible, without any im-
plications for the design and implementation of this behaviour. In the ideal process, the
analysis model can then directly be refined and enhanced into the models of the design.
Design objects are added and the functions are distributed onto the different objects. The
objects and system operations in the analysis model do not only define the external vis-
ible behaviour of the system but ideally also correspond to the high-level view (subset
of objects, attributes and methods) of the final object-oriented system model. The design
model should of course also satisfy the quality criteria for a good object-oriented design.

3.2.3.2 The one-model approach
In the one-model approach, the goal is always the design model. No analysis model is
made, work is started right away at this final model with an iterative and evolutionary
approach. In the first versions of this model, a part (or all) of the user’s view of the system
is modelled on a high abstraction level. In the following versions, the model is gradually
reworked and refined, until the final object structure, with the final metaphors, design
patterns and object specifications has evolved. No model is kept of the initial users’ view;
it is assumed that his perspective also adapts to the high-level view of the final software
system.

The one-model approach provides quite a seamless process (not by expanding the anal-
ysis model but by reworking it) and has only become possible by having the object-ori-

84

ented paradigm throughout the whole development process. It overcomes the second
intent clash by not maintaining any initial analysis model. But it is weak in process con-
trol. It is very hard to define easy controllable and measurable milestones which are
meaningful. This becomes also evident when looking at the methods using this ap-
proach: they can only provide quite vague guidelines on how the project could proceed,
but cannot provide any predefined milestones with well measurable criteria. Some meth-
ods even omit all mention of the difficulties of project control, which does not cause any
problem as long as they are used in an environment where no project control is required,
as is the case for many small or in-house projects.

Another drawback of this approach is that there is often no documentation of the user’s
view or of the high-level view. Even if it is assumed that the user’s view adapts to the
vocabulary and structure of the final software system, having only a detailed design
model is not enough for the maintenance of the system.

An example: Booch

“Analyse a little, design a little, test a little” is the motto of the Booch development proc-
ess. In addition to this microprocess, a macroprocess is suggested that helps to bring
some structure into the development process [Booch94]. Each phase of the macroproc-
ess consists of several iterations of the microprocess. Besides the static class diagram
other views and diagrams are also supported. Yet their purpose is only to help evolving
the object model of the final system.

An example: FORAM

“Object-oriented analysis is analysis, but also contains an element of synthesis. Ab-
stracting user requirements and identifying key domain objects are followed by the as-
sembly of those objects into structures of a form that will support physical design at
some later state. The synthetic aspect intrudes precisely because we are analysing a sys-
tem, in other words imposing a structure on the domain.” (page 2 of training note 2 [Gra-
ham93]).

An example: BON

From the outset BON uses a notation which represents systems of interacting objects.
During the development process the initial model is reworked to improve its structure,
and further details are added. BON describes the development process using activities
and tasks. Activities are orthogonal to tasks, though some occur mainly in the analysis
tasks, others mainly in the design tasks. Analysis consists of tasks for gathering infor-
mation and describing the gathered structure, and is mainly concerned with the problem
domain per se (to which degree technical and implementation dependant details are con-
sidered from the very beginning depends on the constraints of the project). Yet since
analysis is already concerned to find good object-oriented abstractions, the domain is de-
scribed as solution-oriented. All tasks of the development process are targeted at evolv-

85

ing and specifying the interfaces of the classes. Other models than the class
specifications, e.g. the object scenarios, are either discarded as soon as they are no longer
needed to determine the class interfaces, or they are updated to reflect the final system
and kept for documentation purposes. The amount of changes that can affect other views
is minimized in that these views do not show much details, e.g. the object scenarios do
not indicate operation and parameter names.

An example: Floyd

In [Floyd89] a constructivist perspective is the basis for the development process. There-
fore the requirements are not analysed, but constructed. The goal is the implementation
of the final system, user satisfaction has the highest priority. The participative design al-
lows that users learn from developers, and developers from users, and that together the
new system and the new ways how work should be carried out in the future are worked
out (see also [Reisin90] and [Schauer93]). This will also result in new metaphors, work
patterns and design patterns. But there is no predefined process for reaching this goal.
The process evolves as the system evolves.

3.2.3.3 The two-model approach
Another approach is chosen by those methods which explicitly develop two models, an
analysis model for the initial definition of the requirements and a design model for doc-
umenting the final software system. The first reflects the user’s perspective as it is at the
beginning of the project, and it describes the functional requirements as completely as
possible, and in a precise and detailed manner. The notation is chosen in such a way that
it mirrors best the thinking of the users (e.g. in [Ward94] this is a purely functional de-
scription of the system behaviour), and a seamless transition to the design is of low im-
portance. Either the analysis model is finished and reviewed after the first phase of the
project, is considered subsequently as more or less stable, and the user does not partici-
pate in the design. Or the analysis model is developed in parallel with the design model,
but there is a clear distinction between the analysis activities and the design activities,
even different teams may be involved. The analysis model is only changed when new or
changing requirements arise, it is not adapted to the structure or model elements of the
design model. In the two-model approach it is assumed that the design patterns, data
structures and scenario structures used in the design do not affect the analysis model.

Most methods using a two model approach also use different modelling techniques and
sometimes even differing modelling paradigms for analysis and design. Very naturally
this prohibits carry over of any modelling decisions from analysis into design. Here, the
analysis model only serves as an information source. In the design a totally new model
has to be made, and the model elements of analysis cannot be directly reused, even if the
two models go down to the same level of detail and precision. The clear separation of
requirements capture and system design is considered as an advantage in the two-model
approach. [Ward94] even considers the lack of seamlessness in moving from analysis to
design, and the notation change, as an advantage, since it forces the developer to search

86

for a good design model, and prevents him from carrying over analysis constructs into
the design. The disadvantage is a high effort for developing and maintaining two differ-
ent models in different techniques for things that are quite similar - if no mapping be-
tween the two models is provided the maintenance of the system becomes a nightmare.
Avoiding changes in the analysis model may also hinder the evolution of a new under-
standing of business processes, the creation of new concepts and their transfer to the us-
ers.

Examples for this approach are MSA-GfAI, MSA as defined by [Yourdan89], and the
approaches proposed in [Høydalsvik93], [Holbrook90] and [Ward94].

3.2.3.4 Consequences

The best approach...

Which approach is best depends on the risks faced by a specific project. If the greatest
risk is to miss the optimal object-oriented structure in the final system and to fixate on
old work procedures, then probably the one model approach is the best one. If the great-
est risk is that the project gets out of control, then maybe one of the other approaches is
better. None of these approaches is the silver bullet. The intent clashes cannot be over-
come, only weakened, and most projects have to juggle with them to some degree.

In this thesis...

For the rest of this thesis the subject of how to specify the goals and expected content of
analysis models i not pursued any further. For the enhanced scenario modelling tech-
nique SEAM proposed in chapter 4, we assume a one-model approach, hence we em-
phasize the importance of changing and reworking a scenario model. We assume that the
targeted audience of the models are users and any kind of developers, hence we have
chosen a semiformal notation instead of a formal specification language. Concerning the
other possible goals of analysis models we do not make any assumptions. SEAM may
be used for modelling scenarios in various kinds of analysis models, serving different
purposes and having different criteria for their content. Which of these goals are finally
selected for the analysis model(s) of a given project is not specified by SEAM but must
be determined by the project team and is linked to the project specific constraints and
risks.

87

Chapter 4
SEAM: an Enhanced
Scenario Modelling Technique

In this part of the thesis, we present the enhanced scenario modelling technique SEAM1,
which overcomes some of the weaknesses of the matrix approach. SEAM includes com-
position, aggregation, specialisation and extension hierarchies of services, and it is based
on the paradigm of interacting objects offering services. In 4.1 we present the starting
point of our approach. Chapter 4.2 describes the concepts of services, scenario types, in-
teractions and hierarchies of services and scenario types. Chapter 4.3 presents the nota-
tion, which is mainly based on interaction diagrams. Chapter 4.4 introduces
transformations of services and of scenario types. How scenario models are developed
and documented is discussed in chapter 4.5. and 4.6. Finally, chapter 4.7 contains meta-
models and summaries of the most important concepts of SEAM.

4.1 The starting point
There exist a number of differing interpretations of object-oriented (analysis) modelling
and development. Therefore we present in this chapter the concepts that serve us as start-
ing point for the definition of the enhanced scenario modelling technique SEAM. This
chapter has been mainly influenced by the modelling approaches proposed by Nerson
and Walden in BON [Walden95], by Berard [Berard93], by Goldberg and Rubin in OBA
[Rubin92], and by Wirfs-Brock and Wilkerson in RDD [Wirfs90].

1. SEAM is an acronym for “Some Enhancements to Analysis Modelling” as well as for “an enhanced ScEnArio
Modelling technique”. Furthermore, SEAM hints at the important concept and often misused catchword “seam-
lessness”.

88

4.1.1 Models of the system

4.1.1.1 Only one model
As we have mentioned in chapter 3.2.3, there are three fundamentally different ap-
proaches concerning the models developed during the development process. For our pro-
posal of an enhanced scenario modelling technique we chose the one-model approach.
We assume that the ultimate target of the development process is to arrive at the final sys-
tem, and that we have basically one model throughout the whole development process,
which of course may undergo major changes. This model is target oriented2. There are
higher and lower level views; higher level views show the system from a more abstract
viewpoint, summarizing or omitting details. Throughout the whole model, the same par-
adigm is used, in our case the paradigm of interacting objects. All views use the same
model elements, and as far as possible also the same modelling elements3.

This one system model can be subdivided into several views, which we often also refer
to as models. A view shows only certain aspects of the system model. Different views
may use different diagramming techniques, but they show the same system and use the
same model elements where they overlap. Views may be mutually redundant, but when
this occurs it is deliberate. Especially in system maintenance where one tries to under-
stand a system structure which is more or less unknown, having multiple views is very
helpful (see also [Meyers92]).

If we use the classification of [Kruchten95], we can partition the whole system model
into the logical, process, development and physical views. In this thesis we are only con-
cerned with the logical view, which is the object model when using an object-oriented
approach. The object model in a one-model approach addresses both the functional re-
quirements4 and the logical design of the system. Non-functional requirements are main-
ly solved by the process, development and physical views.

The object model can again be partitioned into several views. A classical division is be-
tween the functional, dynamic and data views. This division is still used in some object-
oriented methods (e.g. OMT [Rumbaugh91]). In an object-oriented model, these views
do not represent different parts of the system in isolation - an object encapsulates func-
tional, dynamic and data aspects - yet we can still meaningfully distinguish these views.
The functional view shows all the services an object or a system offers, the dynamic view

2. When developing an application, this target is the final application. When using the modelling techniques pre-
sented here to improve an organisation, then of course the target is the future organisation.

3. Modelling elements are the syntactic and semantic elements provided by a method. Model elements are pieces
of models that are modelled by using the modelling elements of a method.

4. [Hofmann93] defines the functional requirements as the functions or services that a system or system compo-
nent must perform, whereas the non-functional requirements are constraints concerning performance, reliabil-
ity etc. on the functional requirements. Other possible terms are: behavioural and non-behavioural
requirements, business and technical requirements [Beringer94], functional requirements and system attributes
[Gilb88].

89

shows the possible orders of these services, and the data view shows the information
stored by the object and exchanged between the object and its agents.

Having a one model approach, the same model elements must be used in all three views.
The views are closely interconnected (in contrast to e.g. the views of the original version
of OMT [Rumbaugh91], where only in a second phase the correlation between events,
functions and object operations is established). The functional and data view are static
views: they show what kind of objects, functions and interactions are basically available,
but they do not show in which order they can be instantiated. In contrast, dynamic views
and diagrams show how the system executes (see also the distinction between static and
dynamic interaction diagrams in chapter 2.1.4.1).

When examining the global behaviour of the system by using scenario types and inter-
action diagrams, we often use the term scenario model. The scenario model focuses on
those aspects of the object model which show the global behaviour of the system. This
includes the behaviour the system offers to its environment as well as the internal mech-
anisms necessary to provide this behaviour (see also chapter 2.1.2). As we are using an
object-oriented approach, the scenario model defines dynamic, functional and data as-
pects of the system, yet its diagrams emphasize and highlight the dynamic and functional
aspects. There is no strict line between the scenario model and the rest of the object mod-
el - the specification of an object is imperative for developing those parts of the scenario
model using this object, even if it is not in the main focus of the scenario model (see fig-
ure 24).

We express and document the whole model or a certain view of it by using diagrams and
textual specifications. For the sake of simplicity, we sometimes also use the term dia-
gram for the textual specification.

dynamic view functional view data view

higher level
views

lower level
views

O b j e c t M o d e l

S c e n a r i o M o d e l

Figure 24: Various views of the object model.

90

4.1.1.2 Evolution of the final object model

Creating and approaching the object model

We assume that it is not possible to make the higher level object model (analysis model)
by just picking up real world objects (see chapter 3.2.1). First, there is no objective real
world model. Any perception or model is a subjective creation, as must be any analysis
model. Second, we want to make a high-level model of the system to be built, and even
if we wish to mirror the real world as closely as possible, there are some differences. The
consequence of this is that the higher level models are also created and negotiated by the
people making them, and as their perception of the system changes, the model also
changes.

As we have chosen a one-model approach, we desire that the external view of any com-
ponent is expressed by using its internal structure, and not some other model elements.
But in the beginning it is not possible to create the final high level view, and it follows
that it is also impossible to use the same model elements in the internal and external view
of a component, unless we would simply expand and derive the internal view from the
external view. But as we have shown, this would lead to suboptimal models. As a con-
sequence, though the goal is always to make a view of the final model, we can only
achieve this goal by encircling and approaching this model step by step. In fact, the mod-
el always has a preliminary character. It is the final one until more details have been de-
fined, causing iterative changes in the whole model. Steadily approaching the final
model by several iterations is a fundamental paradigm of our approach, but it is not per-
mission for chaos. Nor does it mean that there are no more any project planning, QA-
activities or milestones (see also [Beringer95]).

Requirements, analysis and design models

The highest level view of the object model is thus drafted during requirements engineer-
ing, reworked during the analysis, and once again redesigned during the design. Initially,
the high-level view reflects the requirements as the users see them before having gone
through the learning process of building a software system to solve their problem. At the
end, the high-level view is the highest abstraction level of the software solution as it is
installed at the users’ site.

So the terms requirements model and analysis may designate on one hand the results ac-
cepted at certain milestones quite at the beginning of the project. On the other hand they
designate those parts of the final system model which describe the high-level view of the
system and show which requirements the system fulfils.

Seamlessness

Our approach can be called seamless in the sense that the result of the modelling process
is one single and coherent object model. All the modelling is based on the paradigm of
interacting objects, and only one modelling technique is used for the whole process from

91

requirements elicitation down to design. Yet our approach is not seamless in the sense
that the object model of analysis is only extended into the object model of design. De-
tailing the model means reworking and changing it. At each milestone we have a differ-
ent model, fulfilling the goals defined for this milestone and reflecting the final system
as it is perceived by the developers and users at this moment.

Furthermore, we do not include and address technology independent domain modelling
or business modelling (such as a company wide data model). The integration of such
models causes additional difficulties, because an object model reflecting business proc-
esses without any automation in mind may differ significantly in its content from an ob-
ject model that shows a possible computerisation of this business5, especially concerning
the data and static aspects of the object model.

Permanent and transient models

In the development process we distinguish between permanent and transient models (see
also [Beringer95]). A permanent model is a model or part of a model that after its initial
creation (e.g. as result of a certain phase) and acceptance at a certain milestone will be
maintained, and is thus subject to change. Some of these changes are due to errors and
changing requirements. Others are due to the ongoing evolution of the system model and
the changes arising in moving from the initial problem perception and initial design ide-
as through to the final system.

Other results of the milestones are the transient models. They are not updated, and they
are either discarded after some time, or archived for administrative purposes. Transient
models are also created to support meetings, presentations, walk-throughs or brain-
storming sessions.

4.1.1.3 Viewpoints
For capturing the requirements and expectations of the different kinds of users (includ-
ing those installing and operating the system), we can choose the approach of modelling
different viewpoints. Each user-group makes its own model of the system, and we thus
arrive at having several different models of the same system when eliciting the require-
ments. These models may complement each other (as in the caller- and callee-view-
points in a telephone system, see e.g. [Hsia94]), or they can overlap (as in the viewpoints
of different officials having differing needs for an information system). Having multiple
viewpoints leads to the following complications:

• We need a framework that allows us to manage these different models and not

5. Real world objects may appear in the model of the software system twice, once as surrogates and once as agents
(e.g. the customer of a bank is an agent of the banking system, but the banking system stores also some infor-
mation about it in a surrogate object), and the responsibility and behaviour of objects may change drastically
(no real-world circle draws itself, circles are passive objects, yet in a software system they normally know how
to draw themselves), see also [Hoydalsvik93].

92

to lose the simultaneous overview of them all and on their connections (such
a framework is e.g. described in [Kotonya96]).

• We may want to verify the consistency between these models.

• We need to integrate the various viewpoints into one single model. This is not
trivial, as the different models may use different model elements. Therefore
we need ways to transform these model elements into each other.

We will take up the last point again when we discuss the possible transformations of in-
teractions and services in chapter 4.5.

4.1.2 The object-oriented system

4.1.2.1 Excursus: Groups of objects in various methods
Many methods offer modelling elements to modularize the object model. In this chapter
we give a short overview of various concepts and terms. We use here the term “group”
as a generic term for any kind of grouping. In the different methods the following terms
are used: system and aggregation (most methods), physical and catalogue aggregation,
subsystem, module and composite object (OMT, [Blaha93, Rumbaugh94c]), class cate-
gories, module and subsystem (Booch [Booch94]), subsystem (Wirfs-Brock [Wirfs90]),
cluster, subsystem and group (BON [Walden95]), subsystem and block (OOSE [Jacob-
son92]), composite object (Kilov [Kilov94]), kits and system of interacting objects (Be-
rard [Berard93]), layers (Graham [Graham94]), domains (Shlaer/Mellor [Shlaer92]),
etc.

Grouping of object instances versus grouping of object types

A first important distinction is between grouping of object instances and grouping of ob-
ject types (classes, specifications). For example the groups of BON, the subsystems of
OOSE and the composite objects of OMT assemble instances. Thus the same object type
may appear in different groups. In contrast to this are the clusters of BON, the subsystems6

of OMT and the class categories, modules and subsystems of Booch group object types. In
the majority of these kinds of groups, one object type may appear only in one group. The
main purpose of this grouping is to get manageable class diagrams and to distribute the
object type specifications onto several files and work-units. Grouping of object types is
orthogonal to the grouping of object instances.

6. Under certain circumstances, a subsystem in OMT may be both, a grouping of object specifications and a
grouping of object instances, see [Rumbaugh94c].

93

Grouping object instances

When grouping object instances, there exist various possibilities for defining the seman-
tics of these groups. Different methods use different semantics, yet not every method
precisely defines the semantics of their terms for groups. Often certain aspects are left
open, or they are mentioned briefly and the definitions are scattered throughout a book
or several articles. Also the same terms are used in different methods with differing syn-
tax and semantic. The following list shows the main aspects in which the various defini-
tions differ:

• The group as a whole is considered as a first-class object and has a name. This is the
case for most of the groups called subsystem, for the composite objects of OMT and
for the groups of BON. It is normally not the case for the groups called aggregations,
though in OMT physical aggregations can be considered as being composite objects.
The group as a whole may also itself offer services and may be referenced by other
objects or groups (e.g. subsystems in Wirfs-Brock, layers of Graham).

• The group has a dominant object (dispatching object, interface object, controller
object, owner object). The concrete responsibilities of the dominant object differ
from method to method, depending on other semantic aspects of the group (e.g. if it
is a white-box or black-box). Dominant objects are found in aggregations (one
object knows all the other objects). In the subsystems of OMT, dominant objects are
optional. The Groups of BON and the subsystems of Wirfs-Brock do not recognise
the concept of dominant objects.
The role of the dominant object may be played by the group itself (aggregations,
layers of Graham), or by one of its component objects (subsystems of OMT).

• One object instance belongs to several groups which are not necessarily in a
hierarchy. This is the case for some kinds of aggregation (e.g. catalogue aggregation
of OMT) and for the groups of BON. Life-time dependencies are of course not
possible.

• The group is a white-box, allowing objects outside the group to directly create
component objects, to reference component objects or to call the services offered by
the component objects (e.g. all kind of aggregations, groups of BON, kits of Berard).
Or the group is a black-box, an encapsulation that offers one single interface and
hides the internal structure. References can leave the group, but outside objects can
only reference and send messages to the group itself (e.g. systems of interacting
objects of Berard, layers of Graham).
There exist also many kinds of mixed solutions. In the subsystems of OMT objects
can only be created by the group, but afterwards objects outside the group can ask
for the references to directly address these objects. In [Jacobson95b], a subsystem
offers several contracts. Each contract is associated with a specific internal class, and
these classes are visible to the outside. The rest of the internal implementation is
hidden and can be arbitrarily changed7.
If the group is a black-box, then the life-time of the component objects depends on
the life-time of the whole group or of its dominant object respectively. If the group is

94

a white box, life-time dependency is not compulsory for all kinds of groups. For
example the catalogue aggregations of OMT and the groups of BON do not have
life-time dependencies.

• The groups are only a conceptual modelling element, and are not reflected by any
construct in the program. Subsystems of Wirfs-Brock are only a conceptual help to
structure the model. In contrast, subsystems of BON, layers of Graham and systems
of interacting objects of Berard are reflected also in the code.
If groups are only a conceptual modelling element, then somewhere it must be
somehow specified which component objects deliver which of the services that are
offered by the group as a whole. Wirfs-Brock records this using collaboration
graphs, OMT with low-level and high-level class diagrams and with the rule that
services or relationships of the subsystem are automatically handled by the dominant
object if not otherwise specified. If the group is also reflected in the code, then there
is either a dispatching object (which may be the group object itself, e.g. layers of
Graham) that dispatches the service calls to the appropriate component objects, or
there is a controller object that receives and handles all service calls. As most
programming languages do not offer any constructs that would correspond to the
semantics of the groups as used in the modelling techniques, a direct mapping is
normally not possible.

• Groups correspond to processes; each group has an active object and its own thread
of control. An example is the use of subsystems in BON.

• Some methods allow only one layer of groups, so the system as a whole may be
subdivided into groups, and these then contain the objects (e.g. subsystems of BON).
Other methods allow or even recommend hierarchies of groups (e.g. Berard and
Wirfs-Brock). They also support a recursive or top-down development of
components.

Which kind of groups are found in a method depends also on the concept of relation-
ships. Interestingly enough, the two methods mentioned above which foster recursive
development and hierarchies of groups (Berard, Wirfs-Brock), emphasize the modelling
of the object behaviour and not the modelling of static relationships. They provide col-
laboration diagrams and specify one-way references to other objects, but they do not in-
tegrate extended entity relationship modelling.

7. The subsystems are called to be black-boxes, in our terminology they were only grey-boxes, because the classes
providing the contracts are externally visible. Having visible classes contradicts in my opinion also the goals
Jacobson has defined for having subsystems, such as implementation independence and plugability. Jacobson
uses the same approach (subsystems with several contracts given by the providing classes) as chosen by Wirfs-
Brock [Wirfs90], only there the goal of the subsystems is to improve the design by simplifying the communi-
cation flows and streamlining the collaborations between classes.

95

4.1.2.2 The system of interacting objects in SEAM
In SEAM, we consider an object-oriented system to be a system of interacting objects,
where each object can again be a system of interacting objects.

Behaviour and state

Each object has an external visible behaviour, i.e. it offers services.

Definition 1: A service is a functionality offered by an object. The results of a service
are state changes in the object offering the service (these state changes
will affect the results of other services) and/or information exchanges
with other objects. The services that an object offers make up its behav-
iour.

In order to fulfil a service, an object may also use services from other objects and thus
may have to interact with these objects. For this it has to know the references of these
objects. This information it can either get dynamically, or it can store it in static refer-
ences. In order to react properly to service calls and to produce the desired results, an
object not only needs informations from other objects, but has also to store information
itself. This is done by its internal component objects or by state variables. Together with
the static references to the collaborating objects, these make up the knowledge an object
has, i. e. they define the state of an object.

Definition 2: The state of an object is given by the values of its internal components
(internal objects or state variables) and by the static references to col-
laborating objects.

The state of an object is determined by all the services instantiated since the creation of
the object. The state thus reflects the history of an object and determines its future be-
haviour.

Interactions

In order to communicate with each other, objects interact by interactions.

Definition 3: An interaction is a message from one object to another object (or to it-
self). An interaction has a name and it may have parameters.

Definition 4: An interaction of which all parameters are instantiated (i.e. each param-
eter has taken a value that is a member of the set of values defined by its
type) is an interaction instance.

Definition 5: An interaction that has at least one parameter that is not instantiated (i.e.
which is a parameter type specifying a set of possible parameter values)
is an interaction type.

An interaction type defines a domain of possible interaction instances by specifying their
name as well as the types or values of their parameters. An interaction name without any

96

parameters denotes either an interaction instance or an interaction type that defines a do-
main of only one value. Examples of interaction types are deposit (amount: NumberType,
currency: CurrencyType), account_entry (kind: Kind_of_entry, amount: NumberType, currency: Cur-
rencyType) or account_entry (“Deposit”, amount: NumberType, currency: CurrencyType) . An exam-
ple for an instance of the first interaction type is deposit (354, CHF).

Hierarchies of objects

We already mentioned that each object can again be a system of interacting objects. This
gives us a hierarchy of object instances (not of object specifications!), each one being a
composition of lower level objects. These objects are then called its component objects
or its internal objects. The highest level object is the system as a whole. The lowest
level objects are the atomic objects. In between we have the subsystems.

Definition 6: A system or subsystem is an object that is a composition of objects (ob-
ject instances). An object that is not decomposed into further objects is
an atomic object.

On each level, the dividing up of the object instances into subsystems is disjoint, i.e. one
object instance can only belong to one subsystem (and of course to the subsystems this
subsystem is part of). The life-time of a component object depends on the life-time of its
system.

Every object offers services, independently of being a system, a subsystem or an atomic
object. In the case of systems or subsystems, the services are system services, i.e. they
can be decomposed into a composition of services offered by component objects of the
system. Among the services offered by an atomic object we call those services that are
not further decomposed atomic services; we will define this term in the context of ag-
gregation hierarchies of services in chapter 4.3.2.1. Whenever we use the term object,
this can denote a system, a subsystem or an atomic object. The term service also encom-
passes both system services and services of atomic objects.

In principle we can have several levels of subsystems. Yet many projects will have either
only one level of subsystems, or several levels of subsystems only in one part of the sys-
tem. Smaller projects even go without any subsystems; there we just have the highest
level object which is the system as a whole, and the atomic objects.

Subsystems: white-box and black-box

We differentiate between black-box and white-box subsystems. Both are encapsulations
of object instances, both have life-time dependency, but they differ in regard to the trans-
parency of the system boundary.

The internal structure of a white-box subsystem is known to its collaborating objects.
These may directly reference the component objects or call their services (see figure 25).
A dominant object is not compulsory. The services of the subsystem are the union of all
the services of the component objects that are relevant to external collaborators (in prin-

97

ciple another collaborating subsystem may call any service offered by one of the com-
ponent objects). White-box subsystems serve only as a conceptual modelling element.
They are not reflected in the code. White-box subsystems are semantically very close to
the composite objects defined by OMT or the subsystems of Wirfs-Brock and are espe-
cially useful in a top-down development of the object model. The system as a whole and
the problem domain subsystems are normally white-box subsystems.

In contrast to white-box subsystems, black-box subsystems have information hiding.
To the outside, only the services of the subsystem as a whole are visible. Collaborating
subsystems can only call services of the subsystem, and they only reference the subsys-
tem (see figure 26). The internal structure of the subsystem is not known to them. The
subsystem is either itself the dominant object of the subsystem (i.e. the dominant object
has the same name as its subsystem) and dispatches all incoming messages to the appro-
priate component objects, or the subsystem has one specific controller object that re-
ceives and handles all incoming messages. Thus the subsystem and the restrictions
imposed by it are also existent in the final code. Black-box subsystems are semantically
very close to the layers of Graham, and, like Graham, we allow only outgoing references
and message calls to pass the system boundaries. Whenever we have wrappers around
an existing system, or we want to have one single interface to a subsystem like a DBMS,
we use black-box subsystems. Also when modelling distributed or client-server applica-
tions it may be convenient to use black-box subsystems for the individual applications.

S1

S2

S3

S4

S1

S5

S2S3

S4

Figure 25: Service calls in a white-box subsystem

S1

S2

S3

S4

Sa

Sd

SeSb

Sc

Figure 26: Service calls in a black-box subsystem

98

Groups

Sometimes we would like to group some object instances together only in the context of
a certain diagram; such a grouping should have no further semantic meaning. As in BON
we use groups for this.

Definition 7: A group clusters together several object instances in the context of a di-
agram; one object instance may belong to several groups, and each dia-
gram may group objects differently.

Like for a white-box subsystem, the services of the group are the services of its objects
relevant to the outside. Yet in a group there is no life-time dependency; an object instance
may belong to several groups at the same time. Groups have no effect on the object-mod-
el. They are only used as a replacement for some objects we do not yet know, or to make
diagrams more legible.

Internal and external views of objects

The external view8 of an object describes an object as it is seen from the outside. It tells
us how this object works together with other objects on the same abstraction level and
what its externally relevant behaviour is. In the external view we describe:

• Services the object offers including the possible orders of these services (life-
cycle of the object), preconditions and results of the services, information
exchanged by the services (parameters of the interactions), the state of the
object as perceived at the outside of the object (external data view) and as
used for the description of preconditions and parameters.

• Services the object uses, and references to the objects offering these services.

The internal view is a mere expansion of the external view. It shows what the internal
structure of the object is, and how this internal structure is used to provide the services
as defined by the external view. In the case of an atomic object, the internal view consists
merely of state variables and private services. The external view is not independent of
the internal view; the component objects defined in the internal view are also used in the
specification of the data view of the external view.

The highest level view of a system as a whole need not contain only the external view of
the system; it may also contain a high-level view of the internal view. Thus the terms
high-level view and external view are not synonyms.

8. We do not use here the terms “interface” and “body” because they are too much linked to the process of pro-
gramming where first the interfaces are specified and then the bodies are implemented. External and internal
views do not imply any chronological order (the external view of a subsystem is often determined after its in-
ternal view is defined), and neither the interfaces nor the bodies are of more importance or less subject to change
during the modelling process.

99

4.1.2.3 Implications of this approach

Specification of the services used

We said that the external view of an object includes also the services the object uses from
collaborating objects. This has two advantages:

• It is a first step towards gaining composable components (defining all and not
only some of the “plugs” of a component [Nierstrasz95]).

• We can use this definition of external view on all abstraction levels, for the
system as a whole that communicates with its agents as well as for atomic
objects that answer requests by sending requests to other objects.

By assuming that for an object not only the services offered but also the services used
are defined, we go further than the class headers in programming languages or the con-
tracts used to specify objects in [Meyer93], as these do not include the services used
from other objects.

Parameters of interactions

When describing the parameters of the interactions of services we use data elements. In
a complete object model these data elements are given by the internal view of the system
(i.e. its decomposition into component objects plus fundamental data types), and also
any constraints are defined there. But it may happen that we want to describe the param-
eters already before we know the decomposition of the system. We do this with a provi-
sional data model which is transient and will be replaced as soon as the internal
composition of the system is known. This provisional external data model may be:

• an entity relationship model (or extended entity relationship model),

• a data dictionary with business rules which give the most important
constraints between the data elements,

• a concept map.

Which modelling technique is chosen for the provisional data model depends on the kind
of system and on the other project constraints such as the experience of the people in-
volved, the notation of the models already at hand etc. For an information system an en-
tity relationship model is probably the most appropriate notation, whereas for a process
control system a mere concept map or a simple data dictionary may be enough. The pro-
visional data model is part of the external view of the target-oriented system model, and
should not be confused with a problem-domain-oriented data model.

As soon as the internal decomposition of a system or subsystem is known, the provision-
al data model describing the data elements becomes obsolete and the definitions of serv-
ices must be changed so that the parameters are based on the effective internal
component objects. Of course, the internal decomposition must fulfil the constraints giv-

100

en by any provisional external data model, and in many cases looks quite similar to the
provisional data model.

Entity relationship diagrams

Entity relationship diagrams (ERDs) or their derivatives (such as extended entity
relationship diagrams, class diagrams focusing on data and relationships) still have their
place in the development process we use here, even if they are not part of the object
model.

• Problem-domain modelling: ERDs are well suited to model the static
relationships between all kinds of entity types. This can be done independent
of any object-oriented software application (e.g. company-wide data models,
glossaries). Also, some development processes demand that a problem-
oriented model, focusing mainly on static aspects and on data, has to be
developed at the beginning of the project. Such a problem-oriented model
helps a lot in the learning process all project team members have to go
through, and it serves as an information source for any target-oriented model.

• Provisional external view of systems and subsystems: see previous section.

• Modelling the data view of a system or subsystem: Every system,
subsystem or atomic object possesses a certain amount of knowledge. In the
object model as defined so far and in the specification of objects as described
in chapter 4.2.4, this knowledge is modelled by specifying the internal
decomposition of an object and its references to other objects. Yet
additionally, we might like to have a more abstract view of the data of a
system. For this, we would probably use an ERD. This model is not part of
the object model, it is additional and shows the knowledge found in a system,
but its structure may be quite different from the one of the object model. As
we focus in this thesis on the scenario model, we will not mention this
additional data model again.

• Models for relational database management systems: In the case where
the object-oriented application uses a relational database, it makes sense to
have an additional model of the logical view of this database in the form of an
entity relationship diagram. Such a model is of course a permanent model and
coexists with the object model of the application. It may be that only the
overall information content of these two models concerning the persistent
data is equal. Or it may also be that each object corresponds to an entity in the
ERD, and even that the object model is designed in order to match closely the
logical model of the database, a model that may already exist before the
targeted system is developed.

In the case of applications that consist primarily of a DBMS, other semantics for the
object model than those discussed in this thesis may be preferable. This concerns the
concept of references (e.g. two-way references as in the object model of the Object

101

DBMS Standard [ODMG93]), or the characteristics of object types (we could for
instance distinguish between non-persistent controller and view classes and persistent
entity and relationship classes). Yet for this thesis we have not investigated the
integration of relational, object-oriented or legacy database systems.

Object aggregation

Most object-oriented methods define aggregation relationships between objects. The
concrete semantic of this relationship varies widely (compare for instance object aggre-
gation in OMT, Fusion and BON). In this thesis we do not use the term aggregation in
connection with objects; we have only introduced the concepts “composition of objects”
and “static references to collaborating objects”. The physical aggregation of OMT is
quite close to the composition of objects, yet the composition adds the notion of encap-
sulation and hierarchy. Most other aggregations do not have any compulsory semantic
that does not already exist for normal relationships, only their names (like “belongs_to”,
“has_a” or “corresponds_to”) and the notation distinguish them from other associations.
We model these aggregations with static references. Of course, it would be possible to
distinguish between several kinds of static references, some of them being aggregations
(e.g. [Walden95] classifies static references into associations, shared associations and
aggregations). For the sake of simplicity, and because our main focus is on the scenario
model and not on the static object model, we do not make such a distinction and use only
the concept of static references.

102

4.2 Services and scenarios
In chapter 4.1.2.2, when discussing the starting point for the modelling technique
SEAM, we gave the definitions for the terms service and interaction, but we did not yet
explain in detail how services and interactions are linked together and what scenarios are
used for in the description of the services of a system of interacting objects.

4.2.1 Services
Properties of services

When considering the services offered by an object, we can differentiate between the fol-
lowing properties:

• Information flow: The information that is exchanged between the server
object and its agents

• Interactions involved: The input and output interactions that take place
between the server object and its collaborating objects, the possible
sequences of these interactions (scenarios of the service)

• State changes: Changes of the state of the server object

• Precondition: Preconditions concerning the state of the server object which
need to be fulfilled in order that this service can be requested (because
services cannot be executed in an arbitrary order), services as sequences of
services

Figure 27 gives an overview of these aspects.

Figure 27: Properties of services

information flow

state changes

interactions

preconditions

given by the interaction parameters

given by the pseudo-code of
the interaction diagrams of the
aggregate services and by the
definition of the object life-cycle

in the interaction diagrams

described in the pseudo code
of the interaction diagrams

described by the interactions
in the interaction diagrams

service

103

In order to distinguish the various objects involved in a service, we call the object that
offers the service the server object. The objects it interacts with are its agents or its col-
laborating objects1. These terms denote only a momentary role of an object. The same
object takes on different roles in different contexts. Of course, server object and agents
may be atomic objects, subsystems or systems.

Information flow

Each service offered by an object has a certain information flow.

Definition 8: The information flow of a service contains all the information that is ex-
changed between the server object and its collaborating objects.

When considering the information flow of a service, we are not interested in which order
the information is exchanged, and how the information may be packaged into individual
interactions. The information flow indicates only the sum of all information exchanged.
The total information flow of a service or of a group of services plays an important role
when considering transformations of services (see chapters 4.5.2 and 4.5.3).

Triggering events, interactions and motives

Each service is triggered by an event.

Definition 9: An event is something that happens at a certain point of time and that is
of a certain importance to a given system or object.

The triggering event may be an interaction from another object, an interaction of the
server object with itself, a time-out, or a trigger from another service of the server object.
Time-outs or triggers of the server object (internal triggers or internal events) can also
be modelled as interactions: in the external view of the service they are messages from
the server object to itself, in the internal view they are messages from some component
object to another component object or to itself. Whether events that are time-outs or in-
ternal triggers are modelled as interactions or are only described textually, depends on
the abstraction level chosen. On a technical level, they are always modelled as interac-
tions.

In an object-oriented system, services are carried out by interactions between the server
object and its agents (sometimes a server object also interacts with itself), and by inter-
actions within the server object in the case of a decomposable system. The interactions
are the mean by which a service may be triggered and by which information is ex-

1. We treat “agents” and “collaborating objects” as synonyms, though we often adapt to the current usage of the
terms by using agents when talking about the collaborating objects of a system, and using collaborating objects
when talking about the agents of an atomic object. The term “collaborators” is known from the CRC-cards (see
[Wirfs90] and [Wilkinson95]), a technique that focuses on the internal design of a system. The term “agents”
is known from context diagrams and other modelling techniques showing the external view of the whole sys-
tem. Because we use for both abstraction levels the same concepts and modelling techniques and because we
treat the agents of a system as objects just like the system itself is an object, we do not make a distinction be-
tween the terms agent and collaborating object.

104

changed between the objects involved in the service. There may be interactions from an
agent triggering the service, and there may be interactions back to the triggering agent.
A service may also affect other agents than the triggering one, either by sending them
some results, or by asking them for some information that is needed to carry out the serv-
ice. Furthermore there may be interactions internal to the object that offers the service.
All these interactions do not occur in an arbitrary order; there is a partial order that de-
termines which interactions have to follow each other sequentially, and which interac-
tions can take place in parallel

Events and interactions are not to be confused with motives.

Definition 10: A motive gives the reason why an event or an interaction takes place.

An interaction or another event is the consequence of some motive, they are issued due
to a motive. The interaction name expresses what is expected from the receiving object,
its parameters provide the necessary information. For one and the same event or interac-
tion there may exist several possible motives. The following table gives some examples
contrasting the difference between motives and interactions:

The interactions involved in a service, together with other actions such as state changes
of the server object, make up the scenarios of the service. As we will see later on, the
scenarios can be modelled on various abstraction levels. In those cases, where no infor-
mation flow takes place between the server object and any agents, and if the triggering
event comes from the server object, we may even abstract away all the interactions in the
external view of the server object.

The states of the server object

There are three connections between the services and the states of an object:

• services carry out state changes in the server object

• the state of a server object influences the results of its services

• the state of a server object determines the possible order of its services

A service may change the state of an object in that it changes the information stored in
the object. These are references to its collaborating objects, values of its component ob-
jects or values of its state variables.

motives interaction

at midnight new log-files
need to be created

restart log-file (XY)

system manager wants to
restart log-file XY

restart log-file (XY)

user needs money withdraw money from
bank account (amount)

105

The state information stored in an object does not only influence the result of an issued
service. It also determines if a certain service can be triggered at all or not. As an exam-
ple lets look at an object of type BankAccount with the services Open, Deposit, Withdraw, Bal-
ance, Block, Unblock. The services Deposit and Withdraw change the balance of the account
and thus influence the result of the service Balance, and in the case where there is not
enough money in the account, also the result of the service Withdraw. Yet before any of
these services may be used, the service Open has to be initiated. If the account has the
state open, the service Open can no longer be used. The service Block changes the state
of the account to be blocked, so afterwards only the services Unblock and Balance can be
called.

4.2.2 Various kinds of interactions
In chapters 2.1.2.3 and 2.1.2.4 we have differentiated between various kinds of interac-
tions: interactions which must be interpreted as notifications and interactions which
must be interpreted as requests, interactions on a technical level and those on a mere con-
ceptual level. We introduce these distinctions also in our enhanced scenario modelling
technique SEAM, though most other methods and modelling techniques do not make
these distinctions. Either they do not need to because they only target at one specific ab-
straction level (e.g. only at the detailed design of sequential systems where all interac-
tions are technical events and are requests), or they use different modelling techniques
for the various abstraction levels. Other methods do not introduce different kinds of in-
teractions because they leave the interpretation of the interactions to the user of the meth-
od.

Notifications and requests

Definition 11: A notification is a one-way interaction from one object to another object.

The sending object may continue execution after sending the message without waiting
for a response. The receiving object may react to the interaction with zero, one or many
other interactions. These may be addressed to any objects in any order, the object that
sent the first interaction need not be among them. Instead of notifications we may also
use the terms one-way event or signal (e.g. in OOSE). Notifications are used as technical
interactions in concurrent systems or as conceptual interactions when modelling the
high-level view of the interactions between a system and its users. In the detailed design,
such high-level notifications are often replaced by more complex interactions mecha-
nisms consisting of requests.

Definition 12: A request is a two-way interaction where the sending object waits for a
return-interaction from the receiving object.

A request consists of two interactions. The sending object (in connection with requests
also called the client object) sends a message to the server object. After sending the mes-
sage, the client object waits until it gets the answer from the server object. The answer

106

is called the return interaction. Before the server object reacts with sending the return
interaction to the client object, it may send other requests or notifications to other ob-
jects. A request can be considered as consisting of two notifications for which some ad-
ditional constraints apply. In sequential systems, requests are usually implemented as
procedure calls or method calls, in concurrent systems as remote procedure calls. Other
methods use the term message instead of the term request (e.g. Fusion and OOSE).

Conceptual and technical interactions

Definition 13: Technical events reflect constructs of the program code, conceptual
events reflect concepts of the problem domain. A conceptual event that is
not identical to a technical event is a purely conceptual event. If techni-
cal or conceptual events are modelled depends on the focus and the goals
of the model.

Technical interactions

When modelling the events and interactions of services, we can do this on various ab-
straction levels. One possibility is to choose a technical level. There we reflect the effec-
tive program code, and we focus on the effective communication among the objects.
When we model on a technical abstraction level, the interactions correspond to software
constructs in the final program, e.g. to method calls, to signals or to hooks of an UIMS.
We call these interactions technical interactions or technical events. We assume that
on a technical level all communication takes place via interactions, i.e. also events such
as time-outs and internal triggers are modelled by interactions. Therefore a technical
event is always an interaction. Technical interactions may be notifications or requests.
An atomic service is always triggered by a technical interaction.

Conceptual interactions

When modelling events of services we may also choose a higher abstraction level, a con-
ceptual level. There, the focus lies on the correspondence with concepts of the problem
domain and not with software constructs. Conceptual events or conceptual interac-
tions reflect events, messages or information flows from the problem domain2. They do
not need to correspond to the effective interactions in the program code. Not all concep-
tual events are modelled as interactions.

During requirements determination we normally model all the events and interactions
that trigger the services and that are needed for exchanging information with agents as
conceptual events and interactions. We do not care yet if a conceptual interaction corre-
sponds to an effective interaction between software objects in the actual system interface

2. Conceptual events can be compared to the semiotic acts that Graham uses in requirements analysis[Graham95].
A semiotic act is a message in the direction of the actual information flow.

107

or not. Conceptual events such as time-outs or internal triggers can also only be men-
tioned in a textual description.

Conceptual interactions can be both notifications and requests. But the use of conceptual
requests needs to be well thought through. Normally when modelling an interaction pair
between two software objects as a request, we know already that this request will be also
a technical request, so we can directly model it as a technical request. When modelling
conceptual interactions between users and a system, these interactions are normally no-
tifications, because the system does not only answer to the user that sent the first inter-
action but to all agents on an equal level. The situation is different when modelling a one-
agent view of the system. Then the interactions between this one agent and the system
may of course be modelled by conceptual requests.

Purely conceptual interactions

In the course of the software development process, a conceptual event can either be di-
rectly transformed into a technical interaction, or it is replaced by a whole interaction
mechanism that consists of several technical interactions. We call a conceptual event that
does not correspond 1:1 to a technical event a purely conceptual event. Purely concep-
tual events or interactions abstract away complex interaction mechanisms. The direction
of a purely conceptual interaction needs not be the same as the direction of the first tech-
nical interaction in the interaction mechanism that is abstracted away by this conceptual
interaction.

The distinction between conceptual and purely conceptual events is only of interest from
a retrospective point of view, and is therefore hardly ever used. Normally we only dis-
tinguish between conceptual and technical events, thus emphasising the focus of a mod-
el. If the focus of the interaction is on reflecting an effective program construct, then we
use a technical interaction. If the focus is on modelling higher level events as this is nor-
mally done in requirements analysis or higher level designs where we do not care about
how these events are represented in the program, we use conceptual events.

Examples of technical and conceptual interactions

A typical example of the use of conceptual and technical interactions is the modelling of
the interactions between a system and a human user. In the interaction diagrams showing
the external view of a system, purely conceptual events are used. One conceptual inter-
action contains all the information flow that can logically be transferred at once from the
user to the system (see for example figure 3). When moving from requirements analysis
to design, we want to model the actual interface mechanism. Several interactions take
place to enter the information of the purely conceptual interaction. Furthermore, it is not
the user that sends an interaction to a software object, but a software object that requests
inputs from certain interface objects.

Modelling the interactions between a human user and a software system by technical in-
teractions is quite delicate. It can only be done if the user really submits messages in the

108

form of message name and parameters to the software system, e.g. via a command line
interface3. Normally we model the interactions as conceptual interactions which are then
detailed by technical interactions between the various interface and problem domain ob-
jects. Conceptual interactions can also be used when modelling the interactions among
atomic software objects, but very often these interactions are modelled straight away on
a technical level.

4.2.3 Scenarios
Scenarios as sequences of actions or interactions

Definition 14: A scenario instance is a sequence of interaction instances and/or state
changes of objects. Interactions and state changes are also called ac-
tions.

Most often4 the focus of scenarios is on the interactions, so we can also say that a sce-
nario is a sequence of interaction instances. A diagram modelling a scenario instance
contains neither any interaction types nor any optional or alternative interactions or state
changes.

The objects involved in a scenario may be systems, subsystems, or atomic objects. There
may be arbitrarily many interactions within one scenario instance. In the case of a par-
allel system, some of the interactions may be executed in parallel. Yet for the sake of
simplicity we always use the word “sequence” to denote one specific order of interac-
tions. Furthermore, the description of a scenario may also contain the state changes of
the objects and the calculations for the values of interaction parameters.

A scenario is triggered by a triggering event. This triggering event may be an interac-
tion or another event such as a time-out or an internal event.

Scenario types

One of the basic concepts of object-oriented modelling is the difference between types
and instances. The interaction and scenario instances which can be executed in a simu-
lation or walk-through of a higher level model or at run-time of the final software pro-
gram are specified by interaction and scenario types.

Definition 15: A scenario type specifies a set of possible scenario instances.

All potential scenario instances of a system are classified into scenario types. Whereas a
scenario instance only shows one concrete path through the scenario and has concrete
values for all the interaction parameters, a scenario type shows all possible paths through

3. Even in this case the difficulty remains that when modelling the internal view of the system, this interaction is
issued by a command line interface that is part of the software system and not part of the agent user.

4. Very rarely are scenarios modelled that have no interactions. Examples are scenarios modelled on a higher level
and triggered by time-outs or other internal event that only cause internal state changes. See also figure 33.

109

the scenario, all possible interactions and all possible state changes. Yet we do not re-
quire that all interactions specified in a scenario type are interaction types, some of them
may also be interaction instances. Examples of a scenario instance and a scenario type
can be found in figure 7 on page 22.

A scenario type specifies:

• the interaction types and interaction instances of the scenario,

• the various possible sequences of the interactions,

• the conditions that determine the order of the interactions,

• calculations of output parameters (parameters of output interactions),

• state changes of the objects involved in the scenario,

• the possible triggering events that may initiate the scenario.

The possible orders of interactions which can be defined are: sequence of interactions,
optional interactions, repetition of interactions, concurrent or interleaving interactions,
alternative interactions.

The connection between scenario types and services

Among the properties of a service mentioned in chapter 4.2.1 are the interactions be-
tween the server object and its agents, the interactions among the component objects of
the server object, the state changes in the server object, and the triggering events. We de-
scribe these aspects with the help of scenario types. For one service we may define sev-
eral scenario types. These scenario types describe the service on different abstraction
levels; they must be in a detailing hierarchy, i.e. they are mutually compatible (see chap-
ter 4.2.5.3). Furthermore, each scenario type of a service can be described from an inter-
nal and external point of view. The external view only shows the interactions between
the agents and the server object, as well as state changes of the server object. The inter-
nal view also shows all the interactions among the component objects of the server ob-
ject. The scenario types that model the actions of a service must fulfil the following
conditions:

• The scope of the scenario type (definition see chapter 2.1.3.3) is determined
by the responsibility of the service that is described by the scenario type.

• The information flow of the scenario type (i.e. the sum of all information that
is exchanged by the interactions) is determined by the information flow of the
service.

As services can be arbitrarily defined, there are no rules as how a scenario type has to
look, with the exception of the scenario types for atomic services. There are no rules con-
cerning triggering interactions (one or several triggering interaction types are possible,
also other triggering events are possible that are not interactions), no rules concerning
the direction of a triggering interaction, no rules concerning which variants belong to

110

which service, and no rules concerning the end of a service and thus of its scenario types.
Instead of having classification criterias (such as e.g. those described in chapter 2.1.3.3)
which determine the scope of a scenario type belonging to a service, we provide the pos-
sibility of building aggregation and generalisation hierarchies of services (see chapter
4.3), and of detailing scenario types.

In principle, different scenario types which are mutually incompatible are feasible for
one and the same service, because normally there are several possible ways to produce
the necessary results and to have the same information flow. The different possibilities
concern how the necessary exchange of information between the objects is distributed
onto various interactions as well as how these interactions follow each other. Yet within
one model and on one specific abstraction level, only one scenario type is allowed for a
specific service. All other possible scenario types are considered as belonging to other
scenario models. During the development process several scenario types on the same ab-
straction level may be defined for the same service, e.g. by different persons or in order
to ameliorate the model. In the integration and consolidation process, these scenario
types need to be transformed into other scenario types with the preservation of the re-
sponsibility and information flow of the service they describe (see also chapter 4.5).

Using scenarios for things other than specifying services

We call any sequence of interactions between any kind of objects a scenario. Scenarios
are not only used for specifying services, but can also be used to describe and to visualise
any kind of important mechanisms, design patterns, frameworks or other architectural
aspects of a system of interacting objects.

4.2.4 Notation: schemas for objects and services
We document a scenario model by schemas and by diagrams. The schemas5 contain all
the textual information. The graphical information is modelled by diagrams. In the case
studies in chapter 5 we have divided up the textual specification of an object and its serv-
ices into schemas for the object and for each of its services. Of course, in a hyper-text
CASE-tool such a division is not necessary: the specification of an object and its services
can be structured in a hierarchy of texts and diagrams (e.g. as outlined below), with links
not only along the hierarchy of documents but also across the various elements of the
specification. Examples for schemas of objects and services can be found in chapter 5.
The syntax and semantic of interaction diagrams will be introduced in the following
chapter. For a notation for diagrams showing graphically the various relationships
among object types see for instance BON [Walden95]. In the following we give an out-
line of the information that needs to be recorded for the specification of the objects and
their services.

5. We use the term “schema” in analogy to the operation schemas of Fusion.

111

Objects and services

As a consequence to what we said about the basic object model in chapter 4.1, we as-
sume that the specification of an object type (system, subsystem or atomic object) con-
tains the following information:

• Name of the object type, characteristics of the object type (atomic object or
subsystem, subtype of), textual description of the object type

• Services offered:

• high-level services offered (will be introduced in chapter 4.3.2.1)

• elementary services offered (will be introduced in chapter 4.3.2.1)

• life-cycle of the object (will be discussed in chapter 4.4.2)

• Services used, references (only if the agents of this object also appear in some
model as server objects):

• list of the services offered by an agent and used by this object

• references to collaborating objects which need to be reminded

• Essential states (will be discussed in chapter 4.4.1)

• Internal composition or provisional external data model (see chapter 4.1)

Of course, not every element listed above is compulsory. The grade of detail varies with
the kind of object (system or atomic object), with the level of abstraction and the goal of
the model.

Internal composition

The internal composition shows the internal structure of an object, i.e. all the objects it
consists of. In the case of a system or subsystem we specify:

• Component objects: List of all the component objects, indicating also the
cardinality of the component objects.

• Internal scenarios of all the services: Interaction diagrams which show the
internal view of the elementary services the system offers.

In the case of an atomic object, the internal composition consists only of the internal
state variables6 (also called attributes) and private services (services not offered to other
objects). The internal view is therefore reduced to a list of all the state variables and all
the private services. Interaction diagrams showing the internal view of atomic services
could be drawn, yet they are not of much interest.

6. If these attributes are again considered as being objects or not, does not have any influence on the specification
of services. For a discussion of this subject see [Eckert95b].

112

References

The references reflect the relationships or associations to other objects on the same ab-
straction level, i.e. to the collaborating objects. Component objects are not listed here as
they are not external agents of the server object but internal to the server object, they ap-
pear in the internal composition of the server object. We model the associations among
collaborating objects as unidirectional references and not as bidirectional relationships
in order to simplify the composition of objects into subsystems. How these references
are implemented is of no concern here. The specification of a reference indicates:

• name of the reference

• name of the referenced object type

• cardinalities, qualifiers, rules and conditions of the reference (optional)

Offered services

The specification of the services offered by the server object includes7:

• Name: Name of the service. In the case of an atomic service, the name of the
service is equal to the name of the triggering interaction.

• Summary: A one-sentence summary of the responsibility of the service.

• Inheritance (in the case of extended or specialised services): Name of the
service this service is an extension or specialisation of; conditions under
which this service is chosen.

• Description: Textual description of what is expected from this service
(outputs, state changes, conditions for the reactions). This description may be
imperative or declarative. Depending on the goal of the modelling effort and
depending on the abstraction level, the description of the service may be very
informal and vague, a precise semiformal specification as in the operation
schemas of Fusion may be used, or even a more formal approach may be
chosen.

• External scenario: Interaction diagrams showing the external view of the
scenario types of the service. In the case of an atomic service, we only give its
signature.

4.2.5 Notation: interaction diagrams
In this chapter we propose a notation for modelling services and scenario types. The con-
cepts and notation of SEAM have been influenced by various kinds of software develop-

7. Especially when specifying system services in order to model the external view of a whole software system and
to model the requirements of this system, additional information elements may be added. These may be non-
functional requirements such as performance, or QA-information such as author, version and date.

113

ment projects, including a process control system in the telecommunication, several
information systems and, most recently, student projects implementing games as distrib-
uted software systems. The examples8 shown in this chapter are taken from the two case
studies of chapter 5.

4.2.5.1 Specifying interactions
Notifications are specified in the following way:

receiving_object :: interaction_name (parameter_name1 : parameter_type1,
parameter_name2 : parameter_type2, ...)

The specification of a request contains also the parameters of the return interaction:

receiving_object :: interaction_name (input_parameters) : (output_parameters)

The name of the receiving object may be omitted if it is clear from the context which is
the receiving object. This is for instance the case when labelling interactions in an inter-
action diagram.

Interaction parameters

For the interaction parameters it is not compulsory to give both, the name of the object
instance and the name of the object type. In higher level interaction diagrams, most often
only the name of the object instance is specified. Either the type of the instance can be
deducted if it is assumed that the name of the instance is equal apart from capitalization
to the name of the type. Or the type is not yet known and is left open for later specifica-
tion. Another possibility is to give only the object type; this must then be interpreted as
“an object of this type”. So instead of invoice (delivery_note : Delivery_Note) we can also use
the following short-cuts9:

invoice (delivery_note)
invoice (Delivery_Note)

Sometimes, an interaction parameter is a list or set of several instances of the same type.
This may be indicated by either curled brackets or text. Examples:

order ({item})
order (list of items)

8. There are two severe limitations for providing good examples of the notation in this thesis:
• The notation described here is primarily targeted at being used with diagramming tools and CASE-tools. For

nowadays computer systems running such tools, 17”, 19” and larger monitors are state of the art. When dia-
grams are printed out at all, this normally happens in a A4 landscape format. Yet in this thesis the diagrams
had to fit on A5 portrait format. Nobody would draw a gantt chart for project management on a little piece of
paper. In the same manner, also notations for scenarios need not to be targeted at small pieces of paper.

• SEAM has been developed having larger projects in mind. But diagrams from such projects could not be used
as examples, they are too complex and too large to be included in a thesis.

9. We thus use a similar syntax as Fusion where also either only the type, only the instance name (TypedName)
or both can be specified.

114

or for a set of tuples:

info_building ({drum_id, drum_type})

If not all parameters are listed, dots are used. Dots indicate that either a parameter is in-
tentionally hidden (to simplify the appearance of a diagram when for the actual purpose
of the diagram this interaction parameter is of no concern), or that some parameters are
not yet specified. Example:

info_building ({drum_id, ...})

The name of the interaction does not represent the motive of the interaction, but the result
desired from the object (e.g. get_balance, print_document, do_weekly_cores), or the informa-
tion transferred to the object (e.g. alarm, deadline_expired). For conceptual interactions
there are no further restrictions for the interaction name. Yet if the interaction is a tech-
nical event, then the interaction name is equal to the name of the atomic service triggered
by this event, and the specification of the interaction is equal to the signature of the atom-
ic service. The signature of an atomic service indicates the name of the server object,
the name of the service, the names of the parameters of the triggering interaction, and
the names of the parameters of the return interaction if it is a request.

When the object model of the system is already known (i.e. the internal decomposition
of the system into subsystems, atomic objects and attributes), then the types of the inter-
action parameters are given by this object model. They correspond to the types of at-
tributes, atomic objects or even subsystems, or to any other fundamental data types
defined and used in the system. If the decomposition of the system has not yet been de-
termined, then the possible types of the interaction parameters are given by the provi-
sional external data model (see also chapter 4.1.2.3).

4.2.5.2 Basic notations for interaction diagrams
The main aspects that we want to show in a diagram specifying scenario types of services
are the following (see also figure 28):

• objects involved,

• interactions involved (interaction names and interaction parameters),

• possible sequences of the interactions (control flow with conditions),

• begin and end of services.

We have chosen interaction diagrams with time-line notation (for a comparison between
interaction diagrams as two-dimensional object diagrams or as time-line diagrams see
chapter 2.1.4.3). The vertical bars are the objects (atomic objects or subsystems). The
interactions are shown by horizontal arrows. They are annotated by the name of the in-
teraction and optionally by the parameters of the interaction. To the left-hand side we
have a pseudo-code annotation which specifies the possible orders of the interactions and

115

of other actions, and optionally the conditions under which a specific order is chosen.
Furthermore, we show also the begin and end of services.

Pseudo-code

In the pseudo-code annotation we use brackets10 to show the flow of control and plain
text to describe actions and conditions. The following kinds of control flow can be ex-
pressed by the brackets defined in figure 29:

• sequence of actions

• alternative actions and optional actions

• repetition of actions

• concurrent or interleaving actions

• start and end of services

The default control flow is as sequence of actions, therefore the bracket for sequence
need not be used. In the case of repeating or alternating actions, we can specify also the
conditions for the repetition or the alternation. The specification of these conditions is
optional. As a rule of thumb, we specify the conditions whenever the object that deter-
mines the flow of control is an internal software object (see for instance the repetitions
in figure 104). Yet when the object is an agent of the whole system, for instance a person
or another computer system, then we omit the conditions, because we cannot or do not

10. Using brackets to visualize the control flow in pseudo-code notations is not a new technique, see for instance
[Martin85].

Figure 28: Interaction diagram for modelling scenario types

service_s

element_service_t

C
agent

B
agent

Server_object_A

Server_object_A :: service_s
External view

trigger (....)

int_3 (....)

int_4 (....)

int_1 (....)
int_2 (....)

int_7 (....)

int_5 (....)

int_6 (....)

condition for the first alternative

Description of what happens if the first
 alternative is chosen.

Description of what happens if the second
 alternative is chosen.

Description of the interactions and external
 visible state changes of Server_object_A.

Short textual comments to the interactions
 trigger, int_1 and int_2. Descriptions of
 additional important happenings.

116

want to model the reasons why these agents take certain decisions (see for instance the
alternation in figure 104).

The text in the pseudo-code gives additional information to the actions and interactions
of the scenario. How detailed these actions are described depends on what for the model
is made, and by whom it will be read.

The width of the pseudo-code annotation may vary from diagram to diagram. When
modelling the external view of a service, we have lesser objects and may want more
space for the pseudo-code. When modelling the internal view, the pseudo-code may be
reduced to the control flow and only a few comments, needing less space. There are no
fix rules in which situations which grade of detail is the best. An important criterion is
that the targeted audience (which for these kinds of diagrams are normally humans with
a certain amount of intelligence, knowledge about the problem domain and common
sense) can understand it without overloading the diagram with non-essential informa-
tion.

Objects

The vertical bars, which represent objects, are labelled at the top. The label contains the
name of the object, and, in the case the object plays the role of the agent in that scenario
type, also the annotation “agent”. Additional annotations such as “subsystem”, “group”
or listing the objects that make up a group, are optional. The name of the object may be
either the name of the object type (e.g. Drum), the name of the object instance and name
of the object type (e.g. drum1 : Drum), or only the name of the object instance if the type
is not yet known or can be derived from the instance name. When only the object type is
specified, this must be interpreted as “an object of type ...”. We allow this short-cut be-
cause all the object instances represented in an object diagram are of a prototypical na-
ture, being examples of instances which will be instantiated at simulation- or run-time
of the system. Names of object instances do not have any other significance than distin-
guishing the objects from each other in the interaction diagram. It is advantageous if the
same approach for labelling the object lines is used in all the interaction diagrams of a
project.

If several object instances of the same object type appear in an interaction diagram, and
if they receive the same messages at the same time (either concurrently or sequentially),
then the bars representing these objects can be collapsed into one single bar representing
a collection of objects. The collection is labelled by the type and/or name of the object
instances, being put into curved brackets. {Drum}, {drum}, {drum:Drum} all signify that sev-
eral objects of type Drum receive the same messages in the context of this interaction di-
agram.

Interactions

Interactions are modelled with arrows. We distinguish between the following kinds of
arrows (see figure 29):

117

• double-headed arrow: request

• single-headed arrow: notification

• solid arrow: technical interaction

• dashed arrow: conceptual11 interaction

The arrows are labelled either with the whole specification of the interaction or only with
the name of the interaction. When only the name is used (e.g. for reasons of space), then
the whole specification of the interaction may be added below the interaction diagram

Figure 29: Notations for interaction diagrams

name of interaction type

name of interaction type

name of interaction type

Technical interaction, notification:

Technical interaction, request:

Conceptual interaction, notification:

Begin and end
of a service:

IF condition THEN A ELSE B :
 (alternation)

 condition

 conditionWHILE condition DO A :
 (repetition)

Sequential
execution:

Concurrent or interleaving
execution:

A

C
B

A

C
B

A

B

A

...

A

C

Hidden part of a scenario:

A or B : A

B

A repeated: A

name of service

Conceptual interaction, notification: name of interaction type

A repeated
concurrently: A

118

(see for instance figures 99 and 86). If the goal of the diagram is to give a high-level view
or to be used in a presentation, then the specification of the interactions can be omitted.

4.2.5.3 Modelling scenario types of services

External view and internal view

When using interaction diagrams to model scenario types of services, we have to distin-
guish between the internal and the external view of a scenario type. Figure 30 shows the
external view of the service ECO-System::enter_manifest, figure 31 its internal view. Fig-
ures 74, 77, 78 and 79 show the external and the internal views of the services
Mail_Order_Firm::order_credit_card, Mail_Order_Firm::order_advance_payment and Mail_Order_-
Firm::order_cash. These examples are all services offered by a system. But we may also
model the external view of a service offered by an atomic objects, as this is done in figure
32 for the atomic service overview_drums_for_buildings offered by the atomic object Buildin-
g_administrator. The interaction diagram showing the internal view of a scenario type is
just an expansion of the interaction diagram showing only its external view, i.e. all the
interactions between the agents and the server object remain the same.

Services triggered by time-outs

Most often, services are triggered by an interaction from another object. But there exist
also cases where a service is triggered by a time-out or by an interaction of the server
object with itself (either caused by some conditions or by another service). In the case
of time-outs we have two variants to represent it in the interaction diagram:

• The time-out is modelled by an interaction of the server object to itself
(example see figure 34) or from a clock-agent to the . This variant is chosen
when modelling on a lower level and using technical events.

11. When we model on a conceptual abstraction level, we model the interactions as conceptual interactions, irre-
spective of them being purely conceptual or technical interactions. When we focus on the effective communi-
cation mechanisms (method calls) among software objects, we model the interactions as technical interactions.
Therefore we only have two symbols, one for conceptual and one for technical interactions. This has also the
advantage that any interaction can be modelled as a conceptual interaction if it is not essential for the goal of
this interaction diagram or not known yet if the interaction is a technical one or not.

Figure 30: External view of a system service

Clerk
agent

ECO-System :: enter_manifest
External view ECO-System

 enter_manifest (nooftype1,)
(nooftype2, nooftype3)

User enters information on manifest.

enter_manifest

ECO-System stores this information.

119

• The time-out is not modelled by an interaction but only mentioned in the
pseudo-code. This is especially helpful when modelling the external view of
higher level system services. An example of this can be found in figure 75. In
the case of a service where no results need to be send to any agents, this can
result in an interaction diagram with no interactions at all (see figure 33).

Services with several possible triggering events

For non-atomic services we explicitly allowed having several events playing the role of
the triggering event. These may be modelled as interactions, or may only be mentioned
in the pseudo-code. Allowing several triggering events is very helpful for modelling
high-level services which can be triggered by an external agent, by a time-out and by an-
other service. Figure 34 models the service Order_System::make_orders_for_suppliers with
two triggering events, both represented as interactions (compare also with the interaction
diagram for the service Mail_Order_Firm::make_orders_for_suppliers in figure 75).

Figure 31: Internal view of a system service

Clerk
agent

ECO-System :: enter_manifest
Internal view UI

Delivery_
controller Delivery

enter_manifest

enter_manifest

store_manifest

User enters information on manifest.

Delivery_controller creates new
 object of type Delivery.

Delivery gets info from manifest.

UI :: enter_manifest (nooftype1, nooftype2, nooftype3)
Delivery_controller :: enter_manifest (nooftype1, nooftype2, nooftype3)
Delivery :: store_manifest (nooftype1, nooftype2, nooftype3)

enter_manifest

UI forwards information.

{Building}
agent

Building_administrator :: overview_drums_for_buildings
External view

get_drum_identifiers

 for each selected building

Add info to the allocation list.

New object alloc_list is created.

Buildings_
administrator

alloc_list :
Allocation_list

agent
 agent

overview_drums_
for_buildings

add

get_building_name

Buildings_administrator :: overview_drums_for_buildings ({name}) : (allocation_list)
Building :: get_building_name () : (name)
Building :: get_drum_identifiers () : ({drum_identifier, type})
Allocation_List :: add (Building_Name, {drum_identifier, type}) : ()

overview_drums_for_buildings

An overview is asked for.

Get name of building.
Get list of its drums.

Return the allocation list.

Figure 32: External view of an atomic service

120

Services triggered by the server object

Not all services are triggered by an external agent. There are services triggered by a time-
out within the server system. There are even services that are triggered by an interaction
from a system to an external agent. A typical example of this are games. There the driv-
ing force for progressing lies with the system, not with the user. It is the system which
determines what comes next, it is the system which asks the user for its decisions and
reactions. Figure 35 gives an example. Of course, any scenario model containing servic-
es triggered by the system can be remodelled into a scenario model containing only serv-
ices triggered by the user. But the start and end of these services neither reflect how the
users perceive the system nor correspond to the effective design and implementation12.

12. For three successive years our students have modelled and implemented games. We used the Fusion method,
so only services triggered by external agents were allowed. Though we always found a way to force the scenario
model into this form, we were not always happy with it.

Figure 33: Service triggered by time-out

Banking_system :: transfer_bookings_of_cash_dispensers
External view

banking_system
transfer_bookings_of_cash_dispensers

Transfer from the cash dispensers to
 the central system all transactions
 made during the day.
Balance the transactions onto the
 accounts of the clients.

 at 2 o’clock

Figure 34: Service triggered by two different interaction types

Order_System :: make_orders_for_suppliers
External view {supplier}

agent
order_system

 for each supplier concernd

make_orders_for_suppliers

 The order is signed and sent out.

The new orders for the suppliers
 are put together

 midnight

 Manager wants orders for suppliers.

supplier_order (...)

 for each item
 Check stock.

stock
agent

manager
agent

take_stock ()

timeout_stock ()

stock_of_item
(item) : quantity

121

4.2.5.4 Grouping and hiding objects and interactions

Group of objects

In 4.1.2.2 we did not only introduce white-box and black-box subsystems but also
groups of objects. In contrast to subsystems, groups have no significance beyond the in-
teraction diagram they are used in. They are not reflected in the final software structure
and need not appear in other interaction diagrams. Their only purpose is to group objects
in one or several diagrams, either because the objects that are part of the group are not
yet known, or because the interaction diagram is quite complex and we want to decom-
pose it. An object instance may be part of several object groups. These object groups
may be overlapping.

In the interaction diagrams, groups are treated like other objects. The group is labelled
with the name of the group. The label is further annotated by a list of all the objects that
are part of the group, or by the qualifier “group”. Collapsing objects into a group allows
us to simplify diagrams for presentation (compare figure 104 with the first diagram in
figure 36) or to decompose a complex internal view into several diagrams (example see
figure 36).

A special case of collapsing objects into one group is the collapsing of all agents into one
agent. This is often done in the internal view where the main focus is on the internal
mechanisms and not on the different agents. When all the agents are humans, then the
group of agents may be named “user” (see first diagram in figure 36), otherwise the name
is just omitted (see second and third diagram in figure 36).

Hiding objects and interactions

The need to hide objects or interactions may arise in the following situations:

• Viewing: When viewing an interaction diagram one might desire to focus
only on those aspects that are of interest at the moment. This may be the case
when viewing models on-line, when including diagrams into a

Game :: one_round
External view game

player x
agentone_round

The system decides who is next
 and throughs the dice to start
 the next round of the game.

The player decides where to move
 its piece.

your_turn (piece: Piece)

result_of_dice (nr: Number)

move_to (destination: Area)

your_turn (piece: Piece)

{all players}
agent

...

Figure 35: Service triggered by an interaction from the server object to an agent

122

alloc_list :
Allocation_li

agent
Buildings_

administrator

get_building_name

{Building} {Drum}

get_type

add

get_drum_identifiers

get_identifier

overview_drums_
for_buildings

agent
overview_drum_for_buildings

 for selected buildings

 for all drums
 Get type and ID.

Add overview of this
 building to alloc_list.

Buildinggroup :: overview_drums_for_buildings
Internal view

 Retrieve information.

Figure 36: Object groups in interaction diagrams

overview_
buildings

Buildings_
administrator

get_building_name

{Building} {Drum}

get_type

agent
overview_buildings

 for all buildings

 for all drums of a
 building

Buildinggroup :: overview_buildings
Internal view

 Retrieve information.

 Retrieve information.

get_types

get_overview

Display list of all
 available buildings.

overview_buildings

User
group, agent

display_list_buildings

all_buildings

 for selected buildings

overview_drums_
for_buildings

User selects to see all or
only specific buildings.

The overview is displayed.

ECO-System :: overview_drums
Internal view

add

overview_drums

Its drums are determined
and added to the list.

Object alloc_list is created.

selected_buildings

The making of the
 overview is initiated.

UI
group

alloc_list:
Allocation_List

User asks for overview.

C

Buildinggroup :: overview_buildings () : ({name, nooftype1, nooftype2, nooftype3})
Buildinggroup :: overview_drums_for_buildings ({name}) : (allocation_list)

overview_drums

Buildinggroup
Building_administrator,

{Building, {Drum}}

123

documentation, or when printing out diagrams for presentations and
discussions.

• Developing: When drawing a diagram it may happen that some details are
not yet known, but nevertheless we would like to draw the rest of the diagram.
So we need a replacement which shows that some objects or interactions are
still missing.

We can hide an object by omitting it from the diagram. The interactions sent or received
by this object are not omitted but replaced by either indirect interactions of by one-sided
interactions (example see figure 37, where the objects Buildings_administrator and
{Drum} have been omitted). One-sided interactions just show that an object receives or
sends an interaction from or to a hidden object. An indirect interaction is a replacement
for a sequence of interactions13. The two objects connected by an indirect interaction do
not interact directly with each other but via another now hidden object. If we have for
instance an interaction from an object A to an object B, followed by an interaction from
object B to an object C and if we want to hide object B, we can do this by replacing the
two interactions by an indirect interaction from object A to object C. This interaction has
the name and the parameters of the interaction from object B to object C. In contrast to
conceptual interactions, indirect interactions are not used to abstract away interaction
mechanisms or to show higher level views. They are only used to enable the (temporarily
and often automatic) hiding of an object and appear mainly in low-level interaction dia-
grams.

13. For example when developing distributed systems, we may like to hide the objects of the communication mech-
anism. The interactions between objects of different systems may then be drawn as indirect interactions, by dot-
ted arrows.

 for all drums
 Get its type. get_type () : type

User wants overview.

get_building_name () : (name)

Display list of all
 available buildings.

overview_drums
UI

User
group, agent

list_of_buildings (...)

 for all buildings

{Building}

ECO-System :: overview_drums
Internal view

...

get_overview ()

 Ask for its name.
get_types () : (nooftype1,)

(nooftype2, nooftype3)
 Ask what it has stored.

Figure 37: Indirect interactions

124

We can also hide interactions and their accompanying pseudo-code. This is done by
omitting the interaction arrows and replacing the pseudo-code by “...”. Examples are
found in figures 37, 99 and 97.

4.2.5.5 Further notations for interaction diagrams
In this section we introduce further modelling elements sometimes helpful for modelling
scenario types. These are techniques for visualizing the flow of control, the lifetime of
objects or the return events of requests, and for representing time-line diagrams as two-
dimensional object diagrams. These modelling elements may be of help in certain cir-
cumstances, but they are not essential when using the scenario modelling technique
SEAM and most of them are not used in the case studies in chapter 5.

One-agent views

In SEAM we have adopted an all-agent approach. Therefore the interaction diagrams of
the external view show all the agents of the server object. Yet we have the possibility of
using interaction diagrams also for describing one-agent views which show only the in-
teractions between one agent and the server object. One-agent views are normally only
made for higher level services of the whole system. Either they are derived from an all-
agent view and are used as another way of presenting the scenario model in walk-
throughs and in discussions with future users and domain experts. Or requirements elic-
itation is started with diagrams which only show one-agent views. For each potential
agent of the system a one-agent view of all the services concerned is made - thus mod-
elling the different viewpoints of the system (for instance in a telephone system the view-
point of the caller and the viewpoint of the callee). In a second step these one-agent
views are then integrated into all-agent views ([Hsia94] presents such an approach for
determining requirements by using scenario trees and regular grammars, see chapter
A.9.2). An example of a one-agent view can be found in figure 38 (compare with figure
93).

One-agent views could also be drawn for atomic requests (example see figure 39). In
contrast to the all-agent view, the one-agent view does not show any requests initiated

Figure 38: One-agent view for a system service

ECO-SystemClerk
agent

enter_drums

drum_info

deliver_drums

Input information on manifest.

Check in each drum.

Return the ID-numbers
 for each drum.

deliver_drums

ECO-System :: deliver_drums
One-agent view for agent Clerk

Clerk wants to deliver drums.
enter_manifest

125

by the server object. Diagrams showing one-agent views of atomic objects do not give
any additional information compared to the schema or the signature of the atomic serv-
ice, so they are hardly ever drawn.

Control flow

In sequential systems it may be of interest to visualize how the control is passed from
object to object. In time-line interaction diagrams the flow of control can be highlighted
by using thicker bars for the object during the invocation of a service offered by this ob-
ject. Figure 40 shows an example of SEAM, figure 111 shows an example of OOSE.

Explicit return interactions for requests

In the basic notation for interaction diagrams the return interactions of requests are not
explicitly drawn. In a sequential system it is implicitly clear when the return interactions
take place. Yet if we want we can explicitly visualize the returns from the requests by
using grey arrows for the returns as shown in figure 41. Because we always specify the

Figure 39: One-agent view for an atomic service

get_types () : (nooftype1,)
(nooftype2, nooftype3)

Building
get_types

Calculate the total of drums
 for each drum-type.

Building :: get_types
One-agent view agent

Figure 40: Control bars

get_building_
name (): (name)

overview_drums

Display list of all
 available buildings.

UI
group

 overview_
buildings():(...)

Buildings_
administrator

 get_types(): (...)

User
agent

list_of _
buildings (...)

 for all buildings

{Building} {Drum}

 get_type():(type)

get_overview ()

ECO-System :: overview_drums
Internal view

User triggers services overview.

Get name of building.

all_buildings ()

 for all drums
Get type.

User selects to see all
or specific buildings

...

Calculate number of drums.

 selected_buildings
({name})

126

return parameters of a request with the arrow for the request, the grey arrows for return
interactions do not have any labels.

Creation of objects

So far we did not show in the graphical part of the interaction diagrams when and by
whom an object is created (see e.g. figure 31). The creation is only mentioned in the text
of the pseudo-code annotation. But who creates an object can be easily shown graphical-
ly by a special arrow (see e.g. figure 104 or 42). In contrast to all other arrows, this arrow
is not an interaction to the new object - the object to be created does not exist yet. The
creation is either handled by the sending object itself or it is a message to the class of the
object that needs to be created. If for the initialisation of the object additional informa-
tion is necessary, this information transfer is modelled by a normal interaction.

[Mössenböck96] uses also special arrows to show who initiates the creation of an object.
[Coleman94] uses in the interaction graphs create messages, yet there a create message
may also have parameters and it initialises the new object. The message is sent to the ob-
ject that is to be created - a mix that often causes confusion.

Life-time of objects

The life-time of an object can be denoted by having a bar instead of a line for the object
during the life-time of the object. In order that no conflict arises with the bars for the con-
trol flow, an outlined bar can be used for the lifetime of the object, and a solid bar for the
control flow14. An example of an interaction diagram which shows also the lifetime of
the objects is found in figure 42.

14. [Mössenböck96] uses also bars to show the object life-time.

Figure 41: Explicit return interactions

overview_drums

Display list of all
 available buildings.

UI
group

overview_drums
() : (...)

Buildings_
administrator

get_types ():(...)

User
agent

list_of_buildings
(...)

 for all buildings

{Building} {Drum}

 get_type():(type)

get_overview()

ECO-System :: overview_drums
Internal view

User triggers services overview.

Calculate number of drums.

 for all drums
Get type.

...

Get name of building.
 get_building_

name ():(name)

127

Alternative diagramming techniques

We have chosen to diagram scenarios by time-line interaction diagrams which are anno-
tated to the left with pseudo-code. Here we show two alternative notations. All three no-
tations are equivalent concerning the content they show. Depending on the tools
available and on other project specific restrictions, one or the other of these notations
may be favoured.

• Instead of using a time-line notation we may use a two-dimensional object
notation as shown in figure 43 (the dashed object symbol represents a
collection of objects and is equivalent to {Building}. The graphical part shows
the objects and their interactions, but no services. The pseudo-code including
the service brackets is moved to the foot of the diagram. The link between the
pseudo-code and the interactions in the graphical part is made by numbers.
Yet the numbers do not denote any order, the order is only expressed in the
pseudo-code.15

Instead of using brackets to show the flow of control and the start and end of
services, we can also use structured English, enhanced by statements for the
start and end of services (e.g. START SERVICE xy, END SERVICE xy).

• Also when using a time-line notation we may move the pseudo-code
annotations to the foot of the diagram. All interaction arrows are numbered,
these numbers are referenced in the pseudo-code. The brackets showing start
and end of services appear twice, once in the pseudo-code and once in the
graphical part.

Instead of using the time-line notation for all interaction diagrams, it were also feasible
to use time-line interaction diagrams on the higher abstraction levels, and two-dimen-
sional object diagrams for the internal view of scenario types of subsystems, i.e. on the

15. This is in contrast to the sequence numbers of Fusion (see e.g. figure 117), where the numbers are used to some
degree to show sequences, alternations and repetitions, but cannot express all possible orders which may appear
in a scenario.

Figure 42: Object creation and lifetime

agent

ECO-System :: enter_manifest
Internal view
enter_manifest

UI
group

Delivery_
controller Delivery

enter_manifest

enter_manifest

store_manifest

C

User enters information on manifest.

Delivery_controller creates new
 object of type Delivery.

Delivery gets info from manifest.

UI :: enter_manifest (nooftype1, nooftype2, nooftype3)
Delivery_controller :: enter_manifest (nooftype1, nooftype2, nooftype3)
Delivery :: store_manifest (nooftype1, nooftype2, nooftype3)

UI forwards information.

128

level of atomic objects. Another possibility would be to provide an automatic transition
between the two representations in a CASE-tool.

4.2.5.6 Why interaction diagrams?
We have chosen to model the global behaviour by interaction diagrams and to represent
interaction diagrams by time-line diagrams for the following reasons:

• Interaction diagrams in a time-line notation can be used on any abstraction
level, but they are especially powerful on higher abstraction levels.

• They can easily show internal as well as external views of scenario types.

• They are easily understood by everybody. This is of great help not only in
requirements elicitation and system design where the communication with
any kind of potential users is of great importance (user centred design), but
also in all those development teams where not everybody has the flair to
master more complex notations.

• They really visualize the global behaviour of a system.

Figure 43: Two-dimensional object diagram

Building_administrator :: overview_drums_for_buildings
External view

Building_
administrator

Building

alloc_list :
Allocation_list

5
get_building_name () : (name)

4
get_drum_identifiers () :
({drum_identifier, type})

1
overview_drums_for_buildings
({name}) : (allocation_list)

C

2
add (name, {drum_identifier, type}) : ()

3

agent

 for each selected building

 Add information about the building to the
list alloc_list.

 Get name of the building.
 Get name and list of drums.

overview_drums_for_buildings

Building_administator creates new object alloc_list.

Any agent asks for an overview on the drums
 in certain buildings.

1

3

5
4

2

Return alloc_list to calling agent. 1

129

• We use them to specify the scenario types of the services, but they can also be
used to visualise any other mechanisms in a system.

• In order to cope with the potential explosion of the size of diagrams, we have
already introduced the decomposition of diagrams along object groups and
zooming techniques like hiding objects or interactions, and we will further
introduce the concepts of hierarchies of services.

One of the main arguments against interaction diagrams in a time-line notation and in
favour of other notations for interaction diagrams or of not diagramming interactions at
all is the complexity and size of diagrams (see e.g. the arguments in [Walden95, page
110]). This is true when using only a simple kind of interaction diagram. But by decom-
posing the object-oriented system into subsystems, by supporting subsystems and object
groups in the interaction diagrams, and by having hierarchies of services, this is no long-
er a problem. The most predominant reasons for promoting or declining time-line inter-
action diagrams are probably personal preferences. These are often due to the personal
background and positive or negative experiences which are also highly influenced by
factors not connected with the advantages or disadvantages of a certain notation. One
important factor is how well a certain notation is supported by a diagramming or CASE-
tool, any notation can be made unusable by a bad support for developing, viewing and
printing diagrams.

4.2.6 Detailing scenario types
Whenever a scenario type has one or several purely conceptual interactions, these inter-
actions can be detailed into a more detailed interaction mechanism. This detailing proc-
ess can be continued until we obtain a scenario type having only technical interactions.
Also, additional interactions can be introduced without replacing a conceptual interac-
tion when some parts of the scenario have only been described in the pseudo-code or
have been abstracted away altogether. Detailing16 allows us to describe a service on sev-
eral abstraction levels, from a level with very abstract interactions down to a level with
technical interactions (compare e.g. figure 94 with figure 103 and figure 81 with figure
86). This is especially helpful when modelling the interactions between a user and the
system. On a higher abstraction level all information is entered at once. But on a lower
level, one element after the other is entered, e.g. to make error checking after each input
possible17. We thus allow that a service is described and specified by more than one sce-

16. [Alvarez95] also supports the evolution of use cases (as reasons he mentions the better understanding of the
problem domain and the changing viewpoint and modelling needs of the various stages of analysis and design).
He offers the notion of having many versions of one use case. All these versions are documented by a hyper-
media tool. In contrast to our approach, a tree of versions is supported, and the reasons for abandoned branches
are documented. Also [Armour95] provides several levels of use cases, see A.9.8.

17. This is one of the major difficulties we encountered by using Fusion in students project: the system operations
defined in the analysis were not technical but conceptual interactions. Trying to use these input events as mes-
sages to controller objects lead to very nasty designs. A user friendly error checking of user inputs became dif-
ficult or impossible.

130

nario type. But we require that they are compatible with each other. Detailing is like
zooming in and out on a service. Yet in contrast to automatable techniques such as hiding
interactions (see chapter 4.2.5.4), detailing and abstracting scenario types cannot be au-
tomated. The conceptual interactions and pseudo-code annotation of the more abstract
views must be created explicitly by a developer.

Definition 16: A scenario type is compatible to another scenario type if it can be de-
rived from this scenario type by detailing or abstracting.

Definition 17: Detailing a scenario type means that one conceptual interaction or a se-
quence of conceptual interactions are replaced by a more detailed inter-
action mechanism (consisting of technical or conceptual interactions) or
that additional interactions are introduced.

Definition 18: Abstracting a scenario type means that certain interactions are left away
or that a sequence of lower level interactions (technical or conceptual in-
teractions) are replaced by some more abstract conceptual interactions.

Properties of detailing and abstracting scenario types

It is quite evident that two scenario types having only technical interactions are only
compatible if they have the same interactions and the same order of interactions. For sce-
nario types having conceptual interactions it is more difficult to determine if they are
compatible or not. This depends on their content, because when detailing a scenario type
a whole sequence of conceptual interactions can be replaced by another sequence of in-
teractions. Thus no syntactical rule can be given.18

Often the processes of detailing scenario types and the process of defining element serv-
ices go hand in hand (see chapter 4.3.2 on aggregation hierarchies). The interactions of
the service are detailed into more complex interaction mechanisms, and these are
grouped together into element services (see e.g. figures 93 and 95).

When abstracting as far as is possible all the interactions of a service, we arrive at con-
ceptual interactions which are very close to data flows (but are not data flows). Nearly
all the information concerning the concrete order and how the information is exchanged
has been abstracted away. What remains is the information flow of the service (see e.g.
figure 94). In the case of services triggered by a time-out or by the server object itself
and which do not have any information flow to collaborating objects, the resulting sce-
nario type has no longer any interactions (see e.g. figure 33).

18. In a previous version of our enhanced scenario modelling technique we allowed only the replacement of one
conceptual interaction when detailing scenario types. This would have the advantage that:
• The compatibility of scenario types was well defined (two scenario types are compatible if they can be de-

rived from each other by replacing one conceptual interaction by a sequence of interactions).
• In a CASE-tool each conceptual interaction could be expanded into a more detailed scenario.

Though theoretically very nice, the application in several case studies showed that such a compatible hierarchy
of scenario types could only be achieved in a reverse engineering approach, but not in forward engineering.
There, often two or more conceptual interactions need to be replaced by a totally different interaction mecha-
nism to get to the next lower abstraction level (see e.g. figures 93 and 95).

131

Documenting several scenario types for one service

In the documentation of the scenario model, the result of having one or several compat-
ible scenario types for a service is a set of interaction diagrams, one for each abstraction
level. Examples are the two interaction diagrams in figures 94 and 103 showing the ex-
ternal view of the service ECO-System::get_status, the two scenario types for the service
starting_phone_call in figure 50 where the conceptual interaction start_phone_call is detailed
into several technical interactions, or the diagrams in figures 44, 45 and 46.

When displaying interaction diagrams on a CASE-tool, it may be helpful to indicate by
bars to the left-hand side of the bracket code, which parts of the current diagram can be
detailed into a more detailed view, and for which parts there exists a more abstract view
(preferably by using different colours for the bars). These bars may encompass one or
several interactions for detailing and several interactions for abstracting, they may even
cover a whole service. Such bars act like hyper-text links to further interaction diagrams
of the same service. At the left side of figure 45, the left bar denotes that for the whole
scenario type there exists a more abstract version in this scenario model - this more ab-
stract scenario type is shown in figure 44. The right bar denotes that within this scenario
model there exists a more detailed scenario type (figure 46) that models this part into
more detail.

deliver_drums

delivery_info

ECO-SystemClerk
agent

drum_info

Clerk initiates delivery and enters all
 necessary information.

Clerk gets an ID for each drum,
 the allocation of the drums to the
 buildings is initiated.

delivery_allocation

Drum_Storage
agent

ECO-System :: delivery_info ({drumtype}, ...)
Clerk :: drum_info (list of drumidentifiers, ...)
Drum_Storage :: delivery_allocation ({drumidentifier, building})

ECO-System :: deliver_drums
External view

Figure 44: Detailing scenario types: an example, part 1

132

deliver_drums
deliver_drums is_load_bay_empty

ECO-SystemClerk
agent

enter_manifest

enter_drums

drum_info

The status of the load bay is
checked (it must be empty).

The information on the manifest is
entered into the system.

All the drums are checked in.

The clerk gets the IDs of the
 drums, the allocation of the
 drums to the buildings is initiated.
drum_storgae

delivery_allocation

Drum_Storage
agent

load_bay_status

ECO-System :: deliver_drums
External view

if load bay is empty

Inform client to make the
 delivery at another time.

load_bay_occupied

Figure 45: Detailing scenario types: an example, part 2

if load bay is empty

ECO-System :: deliver_drums
External view

is_load_bay_empty

ECO-System
Clerk
agent

enter_manifest

check_in_drum
drum_identifier

Initiate service and check if
 load bay is empty.

Input information on
 manifest.

Check in each drum
 and get ID.

delivery_allocation

load_bay_status

deliver_drums

Inform drum_storage,
Report not allocatable
 drums to client.

end_check_in

not_accepted_drums

deliver_drums

Drum_Storage
agent

Finish service when all
 drums have checked in.

Inform client to make the
 delivery at another time.

load_bay_occupied

Figure 46: Detailing scenario types: an example, part 3

133

4.3 Hierarchies of services

Possible hierarchies

Inheritance, aggregation and composition1 hierarchies are well known from objects. We
adopt these terms for the various hierarchies of services, yet with slight differences in
the semantic. Within the services of the same object we can build inheritance and aggre-
gation hierarchies. Inheritance hierarchies show specialisation as well as extension rela-
tionships between services. We use the term inheritance hierarchy because specialisation
and extension of services are the counterparts to the two possible uses of inheritance for
object types: specialising an abstract object type into several concrete object types by
implementing the abstract methods, extending an existing object type definition by fur-
ther methods in order to treat additional cases. Aggregation hierarchies are used to group
together services that follow each other. Aggregation does not imply any information
hiding or encapsulation, it just allows us to consider and handle as one unit several serv-
ices that are associated with one another concerning their order in the life-cycle of their
server object (compare also with the definition of the term aggregate in [Webster]: “a
mass or body of units or parts somewhat loosely associated with one another”).

Aggregation and inheritance hierarchies are especially helpful when defining the servic-
es of the system as a whole, where we often start off with very high-level services. These
are specialised and broken up into lower level services, until elementary system services
are reached. Having these hierarchies prevents us from ending up with a huge unstruc-
tured list of system services, and frees us from the need to find immediately the correct
abstraction level.

Another hierarchy, the composition hierarchy, results from the decomposition of subsys-
tems into objects. The services of component objects are composed into the services of-
fered by the subsystem. Composition hierarchies imply information hiding and
encapsulation, and always affect objects as well as services. The composite service is a
compound formed by a union of the component services (see also the definition for the
term compound in [Webster]: “something formed by a union of elements or parts”).
Composition is needed when transitioning from the external specification of the desired
system to its internal design. But it is also used whenever subsystems are modelled.

1. Originally, we called the aggregation of services aggregation in time (because several short services are assem-
bled into a longer service) or vertical aggregation (hinting at the vertical axes of time in the interaction dia-
grams), and the composition of services aggregation in space (because several services of different objects or
subsystems are assembled into one service) or horizontal aggregation (hinting at the horizontal axes showing
the various objects of the interaction diagrams). As this terminology did not satisfy, we finally settled with ag-
gregation and composition.

134

4.3.1 Composition hierarchies
Definition and properties of the composition of services

We have based our modelling technique SEAM on the paradigm of systems of interact-
ing objects that can again be systems of interacting objects. The result is a hierarchy of
objects, with the system as a whole being decomposed over several levels into subsys-
tems and finally into atomic objects. Just as in this hierarchy component objects are com-
posed into systems, so also the component services of these component objects are
composed into the services of the system.

Definition 19: The composition of services composes services of component objects
into a service of the system these component objects are part of.

Any internal view of a service shows the composition of the service of its component
services. Figure 47 contains an interaction diagram showing the internal view of the sys-
tem service ECO-System::enter_manifest, which is composed of the component services
UI::manifest, Delivery_controller::enter_manifest and Delivery::store_manifest. In contrast to fig-
ure 31, where the start and end of component services is not explicitly shown, figure 47
uses service brackets to make it explicit.

If the diagram shows technical interactions, then service brackets do not add any addi-
tional information as there is a one-to-one correspondence between technical interac-
tions and atomic services.

The composition of objects and services also leads to a hierarchy of interaction diagrams
showing alternatively external and internal views of services. For example figure 74 and
75 show the external view of services of the system Mail_Order_Firm, figures 77, 78 and
79 the internal view of the system Mail_Order_Firm, figure 81 the external view of a serv-
ices of the subsystem Order_system which is a component object of the system
Mail_Order_Firm, figure 86 shows the internal view of one of the services of the system
Order_system, and finally schema 87 the specification of a service of the atomic object
Order which is a component object of Order_system. Of course, the external view of the

Figure 47: Internal view of a service with service brackets

ECO-System :: enter_manifest
Internal view

UI
agent

Delivery_
controller

Delivery

enter_manifest

enter_manifest

store_manifest

User enters information on manifest.

Delivery_controller creates new
 object of type Delivery.

Delivery stores info from manifest.

Information is forwarded.

Delivery::store_manifest

enter_manifest
UI :: manifest

Delivery_controller::enter_manifest

135

services of component objects (e.g. figure 81) must be compatible with the internal view
of the system services the component services appear in (e.g. figure 78).

Internal views of white-box and black-box subsystems

In the case of white-box subsystems, the agents know the composition of the system
services. Any agent can directly communicate with any internal object. But of course,
every internal service which can be called directly by an agent of the system must be
specified also as a system service.

In contrast to this, in black-box subsystems the system services hide their component
services from any agents of the system. Therefore, the incoming messages always go to
the dispatching object. This object has often the same name as the black-box subsystem.
Figure 48 shows the internal view of the subsystem Clients which offers the services ad-
d_client, get_client_info, and change_client. In the resulting interaction diagrams for the in-
ternal views of these services, the interactions from agents always go the object
client_controller. This object dispatches the messages to the objects client_col and client.

Of course, in this example, a white-box subsystem with direct access from the agents to
the objects client_col and client would probably have been the better modelling approach.

Figure 48: Internal views of a black-box subsystem

An agent asks for information on
 a client and provides its id.
Ask client_col for the appropriate
 client object.

Clients :: get_client_info
Internal view client_

controller
agent client_col {client} client

get_client_info
(id): (client_info)

get_client_info
(name):(client_info)

get_id (): (id)get_client (id):
(client)

get_client (name)
: (client_info)

get_name
():(name)

get_client_info

Ask the client for its data and
 return it to the agent.

get_all_info (): (client_info)

An agent asks for information on
 a client and provides its name.
Ask client_col for the appropriate
 client object.

Clients :: add_client
Internal view client_

controlleragent client_col client

add_client
(client_info)

init (client_info)

add (client)

add_client

A new client is added.
Create and initialise a
 new client object.
The new obejct is added to client_col.

C

136

Decomposition of interaction diagrams: subsystems versus groups

We thus get several possibilities to decompose an interaction diagram: we can decom-
pose it along groups (see chapter 4.2.5.4), or we can decompose it along subsystems. In
the interaction diagrams, both decompositions look quite similar, yet there are some es-
sential differences:

• Group: A decomposition based on groups is used just for the decomposition
of one single internal view; a group is not necessarily used in other interaction
diagrams in which the same objects appear as well.

• Black box subsystem: A decomposition based on black box subsystems is
relevant and must be used also in all other interaction diagrams. It also
appears in any specification and diagrams showing the structure of the
system. All the incoming interactions are handled by one specific controller
or dispatcher object that often has the same name as the subsystem itself.

• White box subsystem: A decomposition based on white box subsystems is
also relevant throughout the whole system. It also appears in any specification
and diagrams showing the structure of the system. Yet the incoming
interactions can go to different component objects.

4.3.2 Aggregation hierarchies
In the composition hierarchy we compose services of component objects into services
of the system the objects are components of. In contrast to that, in aggregation hierar-
chies we aggregate services of an object (which may be an atomic object, subsystem or
whole system) into services of the same object.

4.3.2.1 Complete aggregation of services
When considering the services offered by an object, we may realise that some of these
services are often executed in a certain order, that in fact together they form a higher level
service. These services can be aggregated by complete aggregation into a complete ag-
gregate service.

Definition 20: A service that is broken up into several services offered by the same serv-
er object is a complete aggregate service of these services - latter are
called the element services of the complete aggregate service.

We say that a complete aggregate service is a high-level service, because it represents a
higher level view of the services of this object. Complete aggregate services can again
be aggregated into higher level services. The lowest level element services in an aggre-
gation hierarchy, i.e. those services that are no more complete aggregate services of low-
er level services, are called elementary services. Of course, an elementary service

137

offered by a system may still be decomposed into the component services of the compo-
nent objects of this system.

Definition 21: An elementary service is no more divided up or specialised into further
services of this same object, i.e. it is neither a complete aggregate nor a
generalized service.

Definition 22: A non-elementary service is a high-level service. It is always abstract2,
i.e. at execution or simulation time not the high-level service itself but its
element or specialised services are triggered.

Definition 23: An elementary service offered by a system or a subsystem is an elemen-
tary system service.

Definition 24: An elementary service offered by an atomic object is an atomic service;
it must be triggered by a technical interaction.

Properties of atomic services

Atomic services are the smallest buildings blocks for modelling global behaviour in an
object model. They cannot any more be decomposed into further services, they are nei-
ther complete aggregate nor composite services.

For an atomic service we further require that its triggering event is always a technical
interaction, either a technical notification of a technical request. In the case of a request,
the atomic service ends as soon as the return event is sent to the client object. The next
interaction is already the triggering event for the following service. Between the request
from the client object and the return event to the client object, the server object may send
out requests or notifications to other objects and receive their answers. If the triggering
event is a notification, the atomic service ends as soon as a further notification is received

Properties of complete aggregate services

Like an aggregate object type, which is more than just a collection of some objects (car-
dinalities, constraints, etc.), an aggregate service is also more than just an assembling of
element services. The aggregation of services specifies not only which are the element
services, but also the possible orders of the element services and the conditions that de-
termine the order of element services. The possible orders that can be specified are the
same as for interactions, namely: sequence of services, repetition of a service, optional
services, alternative services and concurrent / interleaving services.

The complete aggregation of services is used to build abstraction hierarchies of services
(see example in figure 99). Several lower level services are assembled into a higher level
service. A complete aggregation thus has the following properties:

2. Our usage of the term abstract service is in analogy to the term abstract object type, and does not correspond to
the abstract use cases of OOSE (see also appendix A.2).

138

• The aggregate service is completely divided up into element services, i.e. all
interactions and state changes are part of an element service.

• The aggregate service is an abstract high-level service.

• The element services are of the same server object as the aggregate service.

• The element services are elementary or high-level services.

• The element services may also be used in other services.

• Within one scenario model for each complete aggregate service there exists
only one possible way to break up this aggregate service into element
services; alternative decompositions result in another scenario model (see
chapter 4.5).

Concerning the terminology there are some points which could cause confusion:

• We have chosen the term aggregation of services to convey that several
services are collected or put together into a more abstract service of the same
object. We have redefined this term in the context of services. We have not
taken over the semantics that exist for aggregations of objects.

• We use the word decomposing whenever we look for the parts of a service,
independent of whether this decomposition takes place in the external view of
an object or in the internal view of an object. If it is the external view of the
object, we decompose an aggregate service of this object into element
services offered by the same object. If it is the internal view of the object, we
decompose a service of this object into its component services that are offered
by its component objects.

• The terms element service and elementary services are to be distinguished.

4.3.2.2 Partial aggregation of services
Like the complete aggregation of services, the partial aggregation is also a relationship
between the services of the same object. Yet the aggregate service is not completely bro-
ken up into element services. The aggregate service only uses other services at some
points and does other parts itself.

Definition 25: A service that for part of its scenario reuses other services of the same
object is a partial aggregate service.

A complete aggregate service is an abstraction of several lower level services. All the
interactions take place in the lower level services. At execution time, the first element
service is triggered and not the complete aggregate service itself. The order of the serv-
ices and the conditions for these orders are known to and observed by the agents calling
the element services3. In contrast, a partial aggregation is only used to enable reuse of
parts of services used in several services. These element services can also be called di-
rectly by an agent. Complete aggregate services are always high-level services. Partial

139

aggregated services are always elementary services. An example of a partial aggregate
service is found in figure 95.

We can subdivide the elementary services into two categories: partial aggregate services
and simple services.

Definition 26: A simple service is an elementary service which uses no other services of
the server object.

Of course, we can develop a scenario model of the external view of a system using only
partial aggregation, and using neither complete aggregation, specialisation nor exten-
sion. The result were an unstructured list of elementary system services yet without any
redundancy, comparable to the use case model of OOSE.

4.3.2.3 Notation: interaction diagrams for aggregate services

External view of a partial aggregate service

The external view of a partial aggregate service is similar to the external view of an ele-
mentary service, only service brackets are added to show the start and end of each of the
element services. Figure 95 contains an example of a partial aggregate service.

The pseudo code and the interactions of the element services may be hidden or may be
shown. When they are shown, they must of course be compatible with the interactions
and pseudo-code annotations shown in the interaction diagrams describing the element
services!

If the control flow of the aggregate service contains alternations of element services, and
if no conditions are specified, then the alternative parts must start with different element
services. This condition is necessary in order that the model remains deterministic, and
is also valid for complete aggregate services. This condition also implies that if during
the process of modelling two different alternative services without conditions become
each an aggregate service which both start with the same element service, then the model
must be reworked. The common element service must be put in front of the alternation.

External view of a complete aggregate service

In the scenario type of a complete aggregate service all the actions take place within the
element services. We have therefore two possibilities for modelling the scenario type of
a complete aggregate service. We can either do it analogue to the partial aggregate serv-
ice in figure 95. Or we can hide the actions of the element services, and only show which
element services appear in which order. The result is an interaction diagram that consists
only of the pseudo-code annotation. This has the advantage that there is no redundancy

3. In the case of system services that are triggered by users, often mechanisms are implemented that force the user
to observe the possible order of the services. Such mechanisms are e.g. grey menu-items that can not be select-
ed, or panels that must first be exited before the next service of the aggregation can be triggered.

140

to the external view of the element services, and thus also no danger of inconsistency. In
a CASE-tool, the interaction diagram of the aggregate service can always be automati-
cally expanded by the interaction diagrams of its element services. Examples for com-
plete aggregate services can be found in figures 99 and 50. Figure 50 models the service
making_phone_call as a complete aggregate service and it also shows the internal view of
the two scenario types of the first element service starting_phone_call (compare also with
figure 6 where making a phone call were modelled by several independent services and
the dependencies between them could not be shown). Further interaction diagrams such
as the external views of the element services, the expanded external view of the aggre-
gate service or the internal view of the aggregate service can easily be automatically de-
rived from the diagrams in figure 50 plus the internal views of the other three element
services. Figure 49 contains the first part of the derived interaction diagrams for the ex-
panded external and for the internal view of the aggregate service making_phone_call.

answering_phone_call

making_phone_call

 if not busy and if callee wants
 to answer the call

Phone_system :: making_phone_call
External view

starting_phone_call

start_phone_call
(number)

 busy_tone_on ()

 ringing_tone_on ()

Caller takes phone off hook
 and dials number.
 if callee is busy
Caller receives busy tone.

Telephone of callee starts
 ringing and caller receives
 ringing tone.

ring ()

caller
agent

callee
agentphone_system

answering_phone_call

making_phone_call

 if not busy and if callee wants
 to answer the call

Phone_system :: making_phone_call
Internal view

starting_phone_call

start_phone_call
(number)

 busy_tone_on ()

 ringing_tone_on ()

request (number)

 busy ()

Caller takes phone off hook
 and dials number.
 if callee is busy
Caller receives busy tone.

Telephone of callee starts
 ringing and caller receives
 ringing tone.

ring ()
 ringing ()

caller
agent

callee
agent

s1: Switchboard
subsystem

s2: Switchboard
subsystem

Figure 49: Deriving internal and external view for an aggregate service

141

making_phone_call

starting_phone_call

...

answering_phone_call

 if not busy and if callee wants
 to answer the call

...

 if there was a connection
callee_ends_phone_call

caller_ends_phone_call

...

...

Phone_system :: making_phone_call
External view

Switchboard requests
 connection.

starting_phone_call

start_phone_call
(number)

 busy_tone_on ()

 ringing_tone_on ()

request (number)

 busy ()

Caller takes phone off hook
 and dials number.
 if callee is busy
Caller receives busy tone.

Telephone of callee starts
 ringing and caller receives
 ringing tone.

ring ()
 ringing ()

Phone_system :: starting_phone_call
Internal view caller

agent
callee
agent

s1: Switchboard
subsystem

s2: Switchboard
subsystem

starting_phone_call

 dial_tone_on ()

request (number)

Caller takes phone off hook
 and receives dial tone.

Phone_system :: starting_phone_call
Internal view

caller
agent

callee
agent

s1: Switchboard
subsystem

s2: Switchboard
subsystem

...

off_hook ()

dial (digit)
 dial_tone_off ()

dial (digit)

Caller dials first digit and
 dial tone is stopped.

 until whole number
Caller dials digit.

Figure 50: Making_phone_call as complete aggregate service

142

Internal view

The internal view of an aggregate service is a combination of the external view of the
aggregate service and the internal views of the element services. Normally no diagrams
are made for the internal view of aggregate services themselves, as they would only add
redundancy to the specification of global behaviour. When viewing and discussing glo-
bal behaviour, diagrams showing the internal view might be sometimes of interest. Ide-
ally, they can be automatically generated by a CASE-tool. Example see figure 49.

4.3.3 Inheritance hierarchies
We differentiate between two kinds of inheritance hierarchies, the specialisation of serv-
ices and the extension of services. Both hierarchies are relationships among the services
of the same object.

4.3.3.1 Specialisation and generalisation of services
In analogy to the specialisation of objects where we may describe the common charac-
teristics of object types in an abstract generalized supertype and where the virtual meth-
ods of the abstract supertype are implemented by the subtypes, we can also define a
specialisation relationship among the services offered by the same object.

Example

Let us consider an order system where a client has four possible services for ordering
items:

• order_advance_payment: If the ordered items are available, the client gets an
invoice. The items are sent out as soon as the client has paid.

• order_cash: If the ordered items are available, the client gets a notice that he
can fetch them at an agency of the company and pay cash.

• order_credit_card: If the ordered items are available and the credit card can be
credited, the items are sent to the client.

• order_COD: If the ordered items are available, they are sent to the client with
collect on delivery.

All four services have many things in common. In fact they are specializations of a more
general service order. The specialisation is complete and disjoint, i.e. each possible sce-
nario instance of order belongs to exactly one of its specialized services - a constraint we
impose on the specialisation hierarchy of services.

143

Definition

Definition 27: A service is a specialisation of a generalized service offered by the same
object, if it handles some special cases (determined by the types or the
parameters of the input interactions, or by the type or the state of the
server object) of the generalized service.

Properties of specialisation hierarchies

Above definition allows specialisation hierarchies of services only within services be-
longing to the same object. We do not consider hierarchies involving services of different
objects because we have not detected any need for this in modelling global behaviour.
Yet within the services of one object, we allow specialisation as well as aggregation hi-
erarchies, because we consider generalisation to be orthogonal to aggregation.

Furthermore, specialised and generalized services have the following properties:

• We may build specialisation hierarchies over several abstraction levels.

• The specialisation of services is always complete and disjoint, i.e. every
scenario instance of a generalized service is specified by a scenario type of
exactly one specialised service of this generalized service.

• The scenario type of the specialized service is like a detailed scenario type of
the scenario type of the generalized service, yet it covers only some of all the
possible scenario instances of the generalized scenario type.

• A generalized service is an abstract service. The specialised services may be
abstract high-level services or elementary services.

Polymorphism

Whenever we use in the specification of a system the name of a generalised service, it is
decided at run- or simulation-time which one of its specializations has to be chosen. This
is determined:

• by the input interaction type that triggers the service,

• by another input interaction type,

• by the values of certain parameters of input interaction types,

• by the state of the object offering the service,

• or by the type of the object in case the server object has subtypes.

In the first and last case, which service is to be executed can be determined when the
service is triggered. In the other cases, the system model becomes non-deterministic, be-
cause only during the execution of the service can the appropriate specialisation be cho-
sen. In these cases, this modelling construct cannot be used for low-level design models.
The specialised services must be replaced by one single service, either a simple or an

144

aggregate service (see chapter 4.5.3). Yet when eliciting requirements and developing
the initial analysis model, specialisation hierarchies with any kind of preconditions are
of great value.

4.3.3.2 Notation: interaction diagrams for specialised services
When having a specialisation hierarchy, the generalized service is not always described
by an interaction diagram. More often only a schema is made for it. If an interaction di-
agram is made for both, the generalised service as well as all the specialised services,
then the specialised scenario types must be deductible from the generalised scenario type
similar to detailing. An example of this is given in figure 74.

Most often, by specialising a scenario type we replace some conceptual interactions by
a more detailed sequence of interactions. This may affect the internal or the external
view. Yet specialising a scenario type may also affect the state changes of the server ob-
ject or the parameter values of the output interactions. In any case, several specialised
scenario types are derived from the scenario type of the generalised service. These are
described in more detail than the generalized scenario type and each one of them covers
some of the possible paths through the generalized scenario type.

The conditions under which a certain specialised scenario type is invoked is found either
in the pseudo-code of the interaction diagram (for instance conditions concerning pa-
rameter values), in the interactions (a specific interaction type), or as additional text be-
low the diagram. Furthermore, the conditions are also mentioned in the schema of the
service. Just as for any other service, a specialised service may be modelled with inter-
action diagrams for its external view as well as for its internal view (see for instance fig-
ures 74, 77, 78, 79 and 81).

Detailing a scenario type versus specialising a scenario type

Specialising a scenario type is similar to detailing a scenario type. In both cases, a sce-
nario type containing conceptual events is refined in more detail. The result is either one
(only detailing) or several (specialising) scenario types. Yet a specialised scenario type
is not compatible to its generalized scenario type, because it does not cover all possible
cases of the generalized scenario type, i.e. it specifies a smaller set of scenario instances.
When only one detailed scenario type results, we consider it as being a scenario type of
the same service, just showing more details. When several scenario types result, we dif-
ferentiate between the high-level service that only contains the high-level scenario type,
and the specialised services with the specialised scenario types. Figure 51 visualizes the
difference for the case where in specialising and detailing a certain conceptual interac-
tion is replaced.

145

4.3.3.3 Extending services
In some situations we would like to specify a new service based on an existing service
specification. Extending services4 gives us the possibility of reusing the definition of a
service and of its scenario types by adding further actions at certain points or replacing
part of the scenario. The extension of services can be compared to inheritance from con-
crete classes: all methods and their implementations are inherited and new methods are
added. By analogy, the extension of services allows the specification of some simple or
normal scenario instances in one service, and more complicated variants in its extended
services. Furthermore, in an incremental development process, when adding additional
functionality we can define additional extended services instead of re-specifying the ex-
isting services.

Definition 28: A service is an extension of another service offered by the same object if
it handles some additional cases (determined by the state of the object or
by the values of some input parameters) not included in the original serv-
ice. The scenario type of the extended service adds some actions (state
changes, interactions) to the original scenario type or replaces parts of
the original scenario type.

Properties of extension hierarchies

In contrast to specialised scenario types, an extended scenario type is not included in the
original scenario type. On the contrary, all possible scenario instances of the original sce-
nario type may also be covered by the extended scenario type. Specialising a scenario
type narrows the conditions under which the scenario type can be applied. Extending the
scenario type widens the conditions under which the scenario types can be applied.

4. The extension of services is not to be confused with the extend construct of OOSE. The extend relationship of
OOSE inserts a use case A into another use case B under certain conditions. After the completion of use case
A, use case B continues. In SEAM either the original or the extended service are executed, the extended service
is not inserted into the original service. In contrast to OOSE, the extended service may not only contains addi-
tional actions but also replace certain actions of the original service.

Scenario types of
services B, C, ... N,
each having different
interactions replacing
the interaction X.

Scenario type of service
A with purely conceptual
interaction X.

Scenario type of service
A with purely conceptual
interaction X.

A

A

detailing

A

B

specializing

C N....

Scenario type of service
A with several interac-
tions replacing the purely
conceptual interaction X.

Figure 51: Detailing versus specialising scenario types

146

Examples:

A typical example for using extended services is a dispenser:

• Dispense_bottle_normal is a service of the object dispenser that dispenses a bottle
of the desired brand to the filing cabinet. The service is triggered by the
interaction choice_of_bottle (brand) and can only be executed if everything is
okay.

• The extended service dispense_bottle_no_bottle models the exceptional case
where the dispenser has no more bottles of the desired brand. This extended
service is also triggered by the interaction choice_of_bottle (brand).

• Dispense_bottle_not_enough_money is another extended service for the excep-
tional case where the client has not inserted enough money.

In figure 53 making a phone call is modelled by an extension hierarchy. The first service
only specifies the successful phone call (only the first part of the interaction diagram is
shown in figure 53). All other cases such as no answer or busy are treated by extended
services (figure 53 shows the interaction diagram for the extended service making_-
phone_call_busy). Using an extension hierarchy to model making a phone call may be
helpful when starting the process of requirements determination. Yet most probably this
extension hierarchy would be transformed into an aggregation hierarchy as soon as the
desired behaviour has been determined (see also chapter 4.5.3).

Another example (inclusive service schema and interaction diagram) for an extended
service can be found in figures 96 and 97.

Polymorphism

An extended service is triggered by the same event as its original service. The criterion
that determines whether the normal or the extended service is executed is either the value
of some input parameter, or the value of the system state at some point of the service ex-
ecution. As in certain cases of specialised services, this can not be determined when the
service is triggered. Therefore, using extension hierarchies is helpful when eliciting re-

Scenario type of service A,
does not cover any special A

Aexp
Scenario type of service Aexp,
handles some special

extending

cases not considered by A.

Figure 52: Extending services

cases.

147

quirements for a system, when comparing and integrating differing high-level scenario
models, or when defining different increments of scenario models, to be implemented at
different milestones. But for the final model, the hierarchy of extended services is re-
placed by one single service, most often an aggregate service.5

Orthogonality

Specialisation, extension and aggregation hierarchies are mutually orthogonal. In prin-
ciple, a service can be an aggregate service, an extended service and a generalized serv-

making_phone_call_busy

request (number)

Phone_system :: making_phone_call_busy is extension of making_phone_call_connect
Internal view caller

agent
callee
agent

s1: Switchboard
subsystem

s2: Switchboard
subsystem

 busy_tone_on ()
 busy ()

on_hook ()Caller puts phone on hook.

Switchboard requests
 connection.

...

Callee is busy, therefore caller
 receives busy tone.

Conditions: This services handles only the case where the requested callee is busy.

making_phone_call_connect

Switchboard requests
 connection.

 dial_tone_on ()

request (number)

Caller takes phone off hook
 and receives dial tone.

Phone_system :: making_phone_call_connect
Internal view caller

agent
callee
agent

s1: Switchboard
subsystem

s2: Switchboard
subsystem

off_hook ()

dial (digit)
 dial_tone_off ()

dial (digit)

Caller dials first digit and
 dial tone is stopped.

 until whole number
Caller dials digit.

 ringing_tone_on ()

Telephone of callee starts
 ringing and caller receives
 ringing tone.

ring ()
 ringing ()

off_hook ()

connect () connect ()
 ringing_tone_off ()

 connect ()

Callee takes phone off hook.
Connection is established
 between callee and caller.

 Conditions: This services handles only the case where a connection is established.

etc.

Figure 53: Modelling making a phone call by an extension hierarchy

Phone_system :: making_phone_call_no_answer is extension of making_phone_call_connect
Internal viewetc.

148

ice, though this is probably not be best modelling practice. The orthogonality of these
three hierarchies can be compared to the orthogonality of the different hierarchies of ob-
ject types.

4.3.3.4 Notation: interaction diagrams for extended services
In an interaction diagram for an extended service we normally hide all those parts of the
scenario type that are identical to the original scenario type. Yet it must be unambigu-
ously clear where the original scenario type is changed. Figures 96 and 97 contain the
schema and an interaction diagram for the extended service ECO-System::deliver_drums_-
exception. As with specialised services, the conditions that determine if the extended or
the original service are chosen can be seen in the interactions or the pseudo-code of the
interaction diagram, and are furthermore mentioned in the schema of the service.

4.3.4 Service diagrams
Service diagrams represent services as first-class objects. They focus on the relation-
ships between services. We distinguish between composition graphs, aggregation
graphs, inheritance graphs and context diagrams. The symbols for composition, aggre-
gation and inheritance are derived from the Fusion method. Because we model relation-
ships between services and not relationships between objects, the semantic is not
identical. As a symbol for the services we have chosen rounded rectangles in order to
distinguish services from the objects offering them.

Even if we consider services as first-class objects, they are still connected to their server
objects. A service never becomes a server object, even if it is the only service offered by
its server object, for instance in the case of a controller object. In contrast to other meth-
ods such as [Jacobson92] or [Graham94b] where the use cases or the higher level tasks
are not linked to any objects, in our approach every service is offered by an object, either
by an atomic object, by a subsystem or by a system.

4.3.4.1 Aggregation and composition graphs
Aggregation and composition graphs show the aggregation and composition of services.
Figure 54 shows all the different symbols for aggregation and composition graphs.

5. If instead of the one-model approach a two-model approach were chosen then we could have a final analysis
model that uses the extension and specialisation of services. The design model would only use the deterministic
cases of the specialization and no extension at all. The mapping could be done in that the design would have
one large service reflecting the specialization or extension hierarchies of the analysis, having the same name as
the generalized or original service of the hierarchies in the analysis model.

149

Cardinalities

The cardinalities to the lefthand side of the element services have the same meaning as
in the Fusion method:

• * denotes that the component or element service is executed zero or more
times in each instance of the composite or aggregate service,

• + denotes 1 or more times,

• 1 denotes exactly one time.

In most cases, the cardinalities are omitted, either because they are not yet known when
the diagram is drawn, or because they are of minor interest (why showing how many
times a component or element service is executed when their order cannot be ex-
pressed?).

Aggregation graphs versus interaction diagrams

When using aggregation graphs for objects, it is possible to display all essential infor-
mation in the diagram. When using aggregation and composition graphs for services,
one important aspect cannot be shown: the order of the services, i.e. the flow of control.

Figure 54: Aggregation graphs for services

Aggregate_Service

Composition
of services:

Complete
aggregation of
services:

Service1+ Service2* Service31

server object: Object_A

Composite_Object :: Composite_Service

ComponentA ::
ServiceX

* ComponentB ::
ServiceY

* ComponentC ::
ServiceZ

+

Aggregate_Service
Partial
aggregation of
services:

Service1+ Service2*

server object: Object_A

...

The symbol denotes that a part of the aggregate service is not
factored out into an element service.

...

150

In contrast to objects, where the order of attributes or component objects is irrelevant
(there does not exist an equivalence to the control flow), constraints concerning the order
of the services is an important aspect of composite and aggregate services. Therefore in-
teraction diagrams are better suited for reflecting the aggregation and composition of
services than service diagrams. Service diagrams are merely used to give a high level
overview of the relationships between the services. They are redundant to the interaction
diagrams and can be derived from them.

Suppressing the difference between aggregation and composition

If in the composition and aggregation graphs the names of the server objects are omitted,
the aggregation and the composition of services can no longer be distinguished in the
service diagrams. This may be of great value when making the first drafts of services.
When it is not yet clear if the parts we are identifying are element services offered by the
same object as their aggregate service or if these parts are component services offered
by component objects, then we can draw a service diagram that does not yet make this
distinction.

4.3.4.2 Inheritance graphs
Inheritance graphs are used to model specialisation and extension hierarchies of servic-
es. For modelling a specialisation relationship we use a solid triangle, for modelling an
extension relationship we use an outlined triangle (see figure 55).

In Fusion, a solid subtyping triangle denotes that the supertype is an abstract type and
that its partitioning into subtypes is complete and disjoint [Coleman94, Appendix C].

Figure 55: Inheritance graphs for services

Extension of services: Normal_Service

Exceptionel_
Service1

server object: Object_A

Specialisation of services: Abstract_Service

Specialised_
ServiceA

Specialised_
ServiceB

server object: Object_A

151

This constraints are also valid for the specialisation of services. In contrast to this, an ex-
tension of services is neither disjoint nor complete, which is denoted by the outlined sub-
typing triangle.

4.3.4.3 Context diagrams
A context diagram shows for one object all the services it offers and whom these services
interact with. In case the services are defined on several abstraction levels, just one of the
abstraction levels is chosen, normally the highest one. Some of the aggregation, special-
isation and extension relationships of the services may also be shown, in case this does
not overload the diagram. In a context diagram we do not only show services triggered
by external agents. We also show services triggered internally (e.g. by time-outs), wheth-
er or not they interact with any agents at all (example see figure 56).

Context diagrams on the level of the whole system have already been used in structured
analysis (see e.g. [Yourdan89]) and have been promoted in the object-oriented commu-
nity by [Jacobson92] and [Graham94b], context diagrams have also been adopted by
[Booch95]. Context diagrams are especially valuable at the beginning of the project to
find out the scope of a system (especially in finding user groups and in allocating serv-
ices to agents) and in the documentation of the system to give an introduction for people
unfamiliar with the domain. Context diagrams could be used on any level, even for atom-
ic objects and their collaborators, yet there their usefulness must be doubted, even more
so as context diagrams are redundant to a complete scenario model consisting of inter-
action diagrams.

Figure 56: A context diagram

Service2

Service1

Service3

Service4

S 1a

Agent A

Agent B

Agent C

System

Service5

152

4.3.5 Excursus: comparison to other methods
Terms and hierarchies of services in other methods

The following table tries to map some terms used in other methods to the terms of
SEAM. In most cases the mapping is only approximate.

The following table gives an overview of modelling elements for hierarchies as provided
by other methods. The table must be read with some caution, because the syntax and se-
mantic of the modelling elements do not correspond precisely. More details about the
methods can be found in the appendix.

a. Fusion extended for requirements engineering, as described in [Coleman95].

b. Only one level of abstraction.

c. The extend construct of Fusion for RE has the same syntax and semantic as the one of OOSE, but in
contrast to OOSE it is only used for requirements elicitation and not throughout analysis and design;
its goal is more like the goal of our extension construct.

SEAM high level
system service

SEAM elementary
system service

SEAM atomic
service

OOSE use case operation

Fusion REa use case system operation method

FORAM task task, atomic task task, atomic task

[Glinz95] scenario -

[Regnell96] use case, episode episode -

SEAM compl.
aggregation

SEAM
specialisation

SEAM
extension

SEAM partial
aggregation others

OMT add

OOSE alternative
courses

uses/ abstract
use cases

extends

Fusion REa use cases - sys-
tem operationsb

extendsc uses

FORAM component
tasks

super-tasks side-scripts side-scripts

[Glinz95] scenario com-
position

[Armour95] high level use
casesb

detailed use cases abstract use
cases

[Regnell96] flow charts
with episodes

reuse of epi-
sodes

153

Decomposition along subsystems or groups versus decomposition along call hierarchies

In SEAM we decompose the behaviour of an object-oriented system along subsystems.
This approach is based on the following concepts:

• Object-oriented: We use the object-oriented and not the functional
paradigm. Services are not independent procedures but are part of the objects
offering them. Therefore the decomposition of services is not disconnected
from the decomposition of objects. On the contrary, primarily the objects are
decomposed, and together with them their services are also decomposed into
the services of their component objects.

• All-agent view: Our approach is based on an all-agent view of the object
offering the service. The specification of the external view of a service shows
not only the interactions between the triggering object and the server object,
but includes also all interactions with other collaborating objects. We only
can adopt an all-agent view because we look at the services in connection
with the objects offering them. If we looked only at the service itself, we
could not discriminate between the server object and any other collaborating
objects, and would thus have to adopt a one-agent view in the external
specification of services. OOSE [Jacobson92] uses an all-agent approach in
its interaction diagrams of use cases, too.

For the description of scenario types of services this has the following consequences:

• The external view of a service contains the server object with all its
collaborating objects, yet it does not show any interactions among the
collaborating objects. The whole course of interactions between the server
object and its agents is shown, starting with the interaction that triggers the
whole service.

• The internal view of a service contains all the component objects of the server
object and all its collaborating objects (often collapsed into a group of
objects). The whole course of interactions is shown, starting with the
interaction that triggers the whole service.

• The external views of services of component objects need not be modelled
separately, they are implicitly defined by the internal views of the system
services of which they are components.

Even when the elementary system services have been chosen to be as short as possible,
this approach can lead to very large diagrams for the internal view of services, especially
when the system as a whole is composed directly from atomic objects and there are no
intermediate subsystem layers. To further decompose these diagrams and the elementary
system services they show, we offer the following possibilities: we can introduce sub-
systems, so establishing a hierarchy of composite services. Or we can introduce groups
of objects and decompose a diagram along the groups. The subsystems are treated as sin-
gle objects in the diagram for the internal view of the system service. Further diagrams

154

then show the internal view of all the services offered by the subsystem. If we only want
to decompose one interaction diagram we use groups instead of subsystems.

An approach we have not chosen here is the decomposition along call hierarchies. This
can be used when having only one level of objects, and all interactions are requests in a
sequential system. We then could define external and internal view differently, based on
a one-agent paradigm and on structured programming (functional decomposition). The
specification of the “external” view would then include only the interactions with the
calling object (see e.g. the contracts of [Meyer93], the operation schemas of object meth-
ods in [Coleman94], the classical way to specify the header of procedures or subrou-
tines). The “internal” view would consist of all the requests to other collaborating
objects, and of all the requests caused by these requests. The chain would continue until
certain objects could answer the requests without needing the help of other objects. The
chain of requests is a call hierarchy. The decomposition of services could be done along
this call hierarchy: the chain of requests can be divided at any point. At each request we
consider the rest of the chain as being the internal view of a service; the external speci-
fication of the service is only from a one-agent view. In this approach a functional view
is adopted: the external and internal views of services are no longer connected to the ob-
jects offering the services. The advantage (or disadvantage) is that the decomposition of
diagrams is possible without grouping objects into groups or subsystems.

Fusion uses call hierarchies to decompose the internal view of its system operations. The
same approach has been adopted by OMT. However to avoid too strong a bias towards
functional decomposition, the textual annotations of its interaction diagrams are divided
up into one description for each method instead of one description for each diagram.
Though in SEAM we use the decomposition along subsystems and groups, we can nev-
ertheless also describe the call hierarchy of some requests, just as we can describe any
kind of sequence of interactions by a scenario. Yet these diagrams no longer describe the
internal or the external view of a service. Services are always modelled from an all-agent
view and interaction diagrams are always decomposed along subsystems or groups. We
consider this to be closer to the object-oriented paradigm than one-agent views and de-
compositions along call-hierarchies.

155

4.4 Life-cycles of objects
Though the main focus of this thesis lies on the concepts for modelling services and sce-
nario types, we also mention the modelling of object life-cycles for two reasons. First,
one aspect of services is their possible order and the preconditions that must be fulfilled
in order that a service can be triggered. Second, we already model part of the object life-
cycle in the specification of higher level services. When we further abstract the services
of an object by complete aggregation, we finally get one single service encompassing the
whole functionality the object offers; as a side effect this service specifies also the life-
cycle of the object.

4.4.1 Order of services and essential states

Order of services

The object life-cycle specifies all possible sequences in which the services of the object
can be executed. Part or all of the life-cycles of the system, its subsystems and its atomic
objects are already given by the specification of the services: if the elementary services
of the system as a whole are aggregated into higher level services and if these higher lev-
el services are aggregated again, then these aggregate services define the life-cycle of the
system as a whole. Part of the life-cycles of subsystems and atomic objects are also de-
fined by the aggregate services of the whole system, in combination with the specifica-
tion of the internal view of the elementary system services (i.e. the representation of the
elementary system services as compositions of services of subsystems and atomic ob-
jects). But the aggregation of system services and the composition of services of internal
objects (subsystems and atomic objects) do not necessarily contain all the conditions for
the life-cycles of internal objects; they only determine the dependencies between serv-
ices in respect to the system as a whole (see classification of dependencies between serv-
ices introduced in chapter 2.2.2.1, page 43). For all dependencies between services in
respect to the life-cycle of internal objects, we need to have additional specifications.
This can be done by using aggregation of services also for internal objects, and contin-
uing this aggregation for each internal object until the complete life-cycle of this object
is specified. Or we can use other modelling techniques to specify the life-cycles of the
internal objects, or even for specifying the life-cycle of the system.

Another aspect of life-cycles is the question of who is responsible for preserving the life-
cycle of an object. The responsibility for avoiding any violation of the life-cycle may lie
with the object offering the service. This is normally the case when the agents triggering
the services are human. A user-friendly user interface prevents the user from violating
the constraints of the life-cycle. The responsibility for avoiding any violation of the life-
cycle of the server object may also lie with the agents triggering these services, as is quite
often the case if the triggering agents are software objects.

156

Essential states

In chapter 4.1.2.2 we have said that the state of an object is given by the values of its
internal components (component objects or state variables) as well as its references to
collaborating objects. Each possible combination of these values is a different state; we
call these micro states. The actual micro state is determined by the history of service
invocations, and influences the acceptance and outcome of future service invocations.
Yet when considering only the preconditions concerning the acceptance of services,
there exist many different micro states that are possible for accepting a certain service.
We therefore group micro states together into sets of states, and call these sets macro
states.

Definition 29: Each possible value of an object is a different micro state of this object.

Definition 30: A macro state of an object is a set of possible micro states of this object;
these micro states have in a certain context the same effect on the servic-
es of this object.

Definition 31: An essential state is a macro state that is used in a specification of the
life-cycle of this object.

Which macro states are considered as essential depends on how we define the life-cycle
of an object. Essential states may overlap, i.e. they may contain identical micro states.
An essential state may also be a subset of another essential state. Not all micro states of
an object need to be part of an essential state, this depends on what for and how essential
states are used.

We might wish to visualize the essential states of an object in an interaction diagram in
which the object appears (for instance when modelling telephone switchboards). The in-
teraction diagram in figure 57 shows the essential states registered, awaiting_payment and
completed of the object order_advance_payment.

The essential states of an object may be listed in its schema. But normally we mention
the essential states in the object schema only if they are used in the interaction diagrams
or the state transition diagrams of this object. Otherwise we can omit them. For each es-
sential state we specify its name and give a short description. This description is either
textual or it is a predicate over the possible values of component objects and references.

Excursus: the definition of states in other methods

Most methods do not differentiate between micro states and macro states. On one hand,
any operation that changes any values of attributes, variables or relationships, changes
the state of the object. On the other hand, states are also used in the state transition dia-
grams that show the life-cycle of the object, and these states do not always change when
the state (i.e. the value of the object) changes. Many methods simply use the term “state”,
and it is up to the reader to infer the correct meaning from the context.

157

Some definitions of the term “state”:

• In Fusion, the term “state” is not used for individual objects but only for the
system as a whole. Yet for the system it is used in two contexts. First there is
the system state, which “consists of all the objects that have been created
since the system started, and of all the relationships that appear on the object
model” [Coleman94, Appendix C]. This would correspond to our micro state.
Second, states are also used in the state machine which implements the
system life-cycle [Coleman94, Appendix D]; these states would correspond
to our essential states.

• OMT uses the term state in the sense of our macro states: “A state is an
abstraction of the attribute values and links of an object. Sets of values are
grouped into a state according to properties that affect the gross behaviour of
the object [Rumbaugh91].” An object that always responds to an event
qualitatively in the same way is said to be stateless [Rumbaugh93]. States are
used in the state event diagrams of the dynamic model. State generalisation
and nested state diagrams allow the modelling of the states of an object on
different abstraction levels.

• Booch: “The state of an object encompasses all of the properties of the object
plus the current values of each of these properties”. The properties are the
totality of the object’s attributes and relationships with other objects. The
state space of an object encompasses an unquantified yet finite number of
possible states [Booch94]. This definition corresponds to our micro states.

order_collection
group of agents and

interface objects

Order_System :: order_advance_payment is specialisation of order
Internal view

Stock announces that items are
 available.
Invoices is printed and send to
 client.

Bookkeeping announces that
 client has made payment.
Delivery_note is printed and
 sent to the agent stock.

order_advance
_payment

is subtype of order

...

payment (...)

printer

print (...)
items_available ()

print (...)

registered

awaiting_payment

completed

 get_order(order_nr):(order)

invoice (....)

 get_order(order_nr):(order)

delivery (....)

taking_down_order

order_advance_payment

sending_out_invoice

delivery_advance_payment

Figure 57: Essential states

158

States can also be named and are also used in the state transition diagrams;
these states would correspond to our macro states.

• OOSE [Jacobson92] distinguishes between the internal states, which
correspond more or less to our micro states, and the computational states,
which can be compared with our macro states. An object behaviour is
described in terms of computational states, though underlying them there are
the internal states. State-controlled objects select operations not only from the
stimulus received, but also from the current state, whereas stimulus-
controlled objects perform the same operation independent of the state when
a certain stimulus is received; they have only one computational state.

• In the OMG reference model, the state of an object is defined by the set of
values and relationships associated with that object [OMG92], thus the term
state corresponds to our term micro state.

• ODMG: The state of an object is given by its properties (i.e. attributes and
relationships) [ODMG93].

4.4.2 Notations for the object life-cycles
We show here some possible ways to model object life-cycles although a thorough dis-
cussion of this subject is beyond the scope of this thesis. We propose to define the object
life-cycle either by regular expressions, by state transition diagrams, by preconditions,
or by pseudo-code. We leave the choice between regular expressions, pseudo code, pre-
conditions or state transition diagrams open, because depending on the requirements and
characteristics of the project, one or the other approach is better suited, and because all
four variants can be used in connection with our approach to modelling services and sce-
narios. In some cases it is more natural to focus on the sequences of services (for instance
in the case of the life-cycle of a coffee machine we think at once at the services insert_-
money, choose_product, take_cup), se we might choose pseudo-code or regular expres-
sions. In other cases it is more natural to think in states (for instance a bank account:
open, blocked, closed_down), state transition diagrams may thus be more appropriate.

The object life-cycle can be thought of as being the continuation of the process of ab-
stracting element services into higher level services by complete aggregation. So the ob-
ject life-cycle can be refined along the whole aggregation hierarchy until elementary
services are reached. The specification of the life-cycle of an object must be consistent
with the specification of the aggregate services of this object, with the specifications of
the internal view of any system services this object appears in, and with any aggregations
defined of these system services.

Modelling the object life-cycle is not only important for the system as a whole. Also for
every subsystem or atomic object that does not allow that its services are called in an ar-
bitrary order, life-cycle models may be necessary.

159

Pseudo-code for the object life-cycle

In the same way as we have specified the order of interactions and services in the pseudo-
code annotations of interaction diagrams, we specify the order of the services for the
whole life-cycle of an object. The only difference to the pseudo-code annotations of in-
teraction diagrams is that we simplify the notation by leaving off the service brackets of
the lowest level services. When specifying the life-cycle with pseudo-code or regular ex-
pressions, we normally do not go down to the level of elementary services, but only to
the level of the high-level services which are further specified by a service schema and
by interaction diagrams. Just as for aggregate services we also require for the system
life-cycle modelled by pseudo-code that the model is deterministic. Therefore in the case
of alternations, either a condition must be specified, or the alternative parts may not start
with the same element service. Also interleaving parts may not start with the same ele-
ment service.

The left example in figure 58 shows a simplified life-cycle model of the game Risk, the
right example shows the life-cycle of the first case study of chapter 5.

Regular expressions

Regular expressions show the possible orders of services offered by an object6. A regular
expression consists of operators and of service names. The services may be elementary

Figure 58: Life-cycles in pseudo-code notation

 preparation

until somebody has won

 battle

for each player in predefined order
 (exit as soon as a player has won)

if player wants

 displacement

if player wants
 and if game is not over yet

 reinforcement
for each player

if game is not over yet

one_round

Life-cycle for Risk

 order

 make_order_for_suppliers

 delivery_of_supplies

Life-cycle for Mail_Order_Firm

160

or high-level services. Each regular expression specifies a high-level service. The avail-
able operators are:

• sequence of services: A . B

• interleaving or concurrent services: A || B

• optional service: [A]

• alternation: A | B

• repetition (zero or more): A*

• repetition (one or more): A+

• interleaving or concurrent repetition:A ||*, A ||+

Operator precedence is given by:

 [], *, +, ||*, ||+, ., |, ||

The operator precedence can be overridden by bracketing the expressions. An example
is the following life-cycle for the game Risk:

Risk: preparation . one_round
one_round = ((battle . displacement)* . reinforcement ||*)*

Regular expressions show all possible orders of services, but they do not specify under
which conditions which sequence has to be chosen. This in contrast to the pseudo-code
notation and the interaction diagrams, where with the help of the bracket code and the
comments the conditions can be specified explicitly7. Furthermore, because regular ex-
pressions cannot take into account the state of the server object, they allow more se-
quences of services than are really possible. It is not possible to show under which
conditions an object must refuse a certain service. For any optional, alternative or repeat-
ed service there are basically too cases to distinguish:

• The decision if a service is invoked or not lies with the object offering the
service, i.e. if the service is optional or not depends on the state of the server
object (and thus on its history). This case cannot be modelled adequately by
regular expressions based on services8 (compare also above example with
figure 58).

6. In contrast to Fusion, we use regular expressions to show the order of services offered by an object (which may
be an atomic object, a subsystem or a system), and not to show the order of input and output events of a system.

7. Because conditions cannot be specified, regular expressions can also be non-deterministic. This in contrast to
the pseudo-code notation, where either conditions are required, or alternative or interleaving parts may not start
with the same service. In order to keep the regular expressions a short-hand notation of the pseudo-code nota-
tion, we allow non-determinism.

8. In Fusion these conditions can be modelled by output events, supposing that the output events are chosen in
such a way that they reflect essential state changes of the server object, for instance by choosing the output
events okay() and notokay() instead of status(status). Yet this may lead to output events which are really param-
eter values of a more abstract interaction. Furthermore, in [Coleman94] it is recommended to refrain from using
regular expressions in this way.

161

• The decision if a service is invoked or not lies only with the object calling the
service. From the point of view of the server object, the service may or may
not be called. This case can be modelled adequately by regular expressions.

The advantage of regular expressions over interaction diagrams and over the pseudo-
code notation is of course that they are very condense and that they can be used without
a diagramming tool.

State transition diagrams

Instead of regular expressions or pseudo-code, we can also use state transition diagrams
to show the life-cycle of an object. The states in a state transition diagram are the essen-
tial states listed in the schema of the object. The states may further reappear in interac-
tion diagrams. The transitions9 are the services an object offers; these may be high-level
or elementary services. The symbol for a high-level service is a dashed arrow, for an el-
ementary service a solid arrow. The arrows are labelled by the name of one or several
services. If the label contains several services, then all these services must be executed
in order that the transition can terminate and the next state can be reached. The label may
further contain conditions. These conditions specify under which circumstances a serv-
ice can be triggered, thus corresponding to the conditions we have in the pseudo-code
notation for the life-cycle. In the case where more than one state can be reached by the
same service, we also specify the conditions (i.e. postconditions of the service) which
determine which state is chosen. Figure 59 gives an example of a state transition dia-
gram.

State transition diagrams can be nested10. This allows us having a higher level diagram
showing the life-cycle of the object using high-level services, and having recursively

9. In this we differ from the classical state transition diagrams where the transitions are events, and we differ also
from the notation from Glinz [Glinz95], where the states can encompass whole scenarios.

10. In contrast to the state charts of Harel [Harel87] and of OMT [Rumbaugh91], we focus on the services and the
decomposition of services and not on the decomposition of states. Thus the nested diagrams do not zoom in on
the states but on the transitions. The result is an aggregation hierarchy of services and not of states, and a simple
list of states and not of services or events.

Figure 59: A state transition diagram

state 1 state 2

state 3

service b
service a
conditions

service a
conditions

server_object :: life cycle

state 4

service b

service c

service d

service c

162

state transition diagrams for the high-level services that show their element services.
Each diagram corresponds to a complete aggregate service. The example in figure 60
shows the state transition diagrams of the two complete aggregate services service c and
service b of figure 59. A state transition diagram showing the whole life-cycle of an object
can either use directly the elementary services, it can show only higher level services, or
it can be decomposed showing both, higher level and elementary services.

In principle, life-cycle descriptions in pseudo-code notation and life-cycle descriptions
as state transition diagrams could be transformed into each other. This would also allow
the verification of consistency between decomposed state transition diagrams and the ag-
gregate services defined by interaction diagrams.

Preconditions

In certain systems, the high-level system services can all be applied at almost any time.
There is not any typical order among them, lots of combinations are possible. Yet still
there are certain constraints for the applicapability of the system services. Examples of
such systems are text processors and diagramming tools. Modelling the life-cycle of
such a system with pseudo-code or regular expression is a nightmare, the success is not
guaranteed and the resulting model does not necessarily match the perception of the user.
Much easier, and normally totally sufficient, is the use of preconditions for such systems.
The schemas of the highest level services are enlarged by pre- and postconditions. These
use the values of internal component objects or of essential system states.

Preconditions may also be used in combination with other notations for the system life-
cycle. A possible combination is to use pseudo-code or regular expressions to show the
life-cycle of the system as a whole and to use preconditions in the system services to
specify indirectly the life-cycles of the internal objects, instead of having separate life-
cycle models for the internal objects (see also chapter 2.2.2.1, page 43, where we distin-
guished between dependencies which refer to the system as a whole and dependencies
which concern only certain object instances).

Figure 60: Decomposition of state transition diagrams

state 1
state 2

state 5
state 3
state 4

service c2service c1

server_object :: service c

state 2 state 7 state 3
service c2service c1

server_object :: service b

state 1 state 6 state 4
service c2service c3

or or

163

4.5 Transitions between scenario
models

In chapter 4.2 we have introduced hierarchies of services and of scenario types. These
hierarchies reflect relationships between services or scenario types within one scenario
model. There are other relationships between services or scenario types which do not re-
late services or scenario types that can belong to the same scenario model. These rela-
tionships reflect transformations of services or scenario types. Because these
relationships transform one scenario model into another one, they are not relevant as
long as we just want to document one scenario model. Also they are not reflected in any
modelling element. But they become very important as soon as we address the process
of developing scenario models. During the development process, we do not only enhance
a model, but we also rework it again and again. Whenever we change the definition of
an interaction, the structure of a service hierarchy or an object in the underlying object
model, we transition to a new scenario model. In this chapter we take a closer look at
some of the possible transformations affecting the scenario model.

Definition 32: A and B are interactions, scenarios, services or a set of interactions,
scenarios or services. A can be transformed into B if in a given scenar-
io model containing A A could be replaced by B without changing the
content of the scenario model, i.e. only the structure of the model
changes, but not the information expressed by it. The symbol <-t-> de-
notes “can be transformed into”.

Observation 1: (A <-t-> B) ==> (B <-t-> A) , i.e. “<-t->” is symmetric.

Figure 61 shows two scenario models, SM1 and SM2. These scenario models differ in that
they have a different structure. But they specify the same global behaviour. By trans-
forming parts of the models, we can transition from scenario model SM1 to scenario
model SM2. This transition can affect whole service hierarchies (e.g. HS1 might be trans-
formed into HS2), it can affect only specific scenario types (e.g. ST1 might be trans-
formed into ST2), or it can even be limited to certain interactions (e.g. I1 might be
transformed into I2).

4.5.1 Transformations of interactions
Two interactions may transport the same information flow and may have the same mean-
ing, but they can still differ in their names and in their parameters. The trivial case is
when only the name of the interaction needs to be changed in order to transform one in-
teraction type or interaction instance into another one. Other possibilities are that the pa-
rameter types have to be changed or that the selection criterion has to be moved into the
interaction name.

164

Observation 2: If interactions A and B have the same information flow and convey the
same meaning, then A <-t-> B.

Changing the interaction name

Observation 3: (A is an interaction with the name int_name1, B is an interaction with
the name int_name2, A and B are identical apart from their names, and
int_name1 and int_name2 convey the same meaning) ==> (A <-t-> B)

A <-t-> B cannot be checked formally, it can only be decided by the developers in the
context where these interactions are used.

Example: The interaction enter_manifest (nooftype1, nooftype2, nooftype3) in figure 93 could
be transformed into the interaction register_delivery (nooftype1, nooftype2, nooftype3).

Changing the number and types of parameters

When two scenario models have different underlying object models or provisional data
models, then the parameters of the interactions may be different though the interactions
have the same name and transport the same information flow. Changing the parameters
of an interaction type thus goes hand in hand with changing the underlying object or data
model.

Observation 4: (A and B are interaction types with the same name and the same infor-
mation flow but have different parameters) ==> (A <-t-> B)

scenario model SM1

t
t

t

scenario model SM2

hierarchy of
services HS1

hierarchy of
services HS2

scenario type ST1

interaction I1 scenario type ST2

interaction I2

Figure 61: Transitions between scenario models

models global behaviour of
system S

models global behaviour of
system S

165

Example: The interaction type enter_manifest (nooftype1, nooftype2, nooftype3) in figure 93
could be transformed into the interaction type enter_manifest (no_drum_types), where no_d-
rum_types is a data type containing information concerning the numbers of all three pos-
sible types of drums.

Changing the place of a selection criterion

All the parameters of an interaction have an influence on the future actions of the receiv-
ing object. Yet in some cases, we have a parameter that actually divides up the future ac-
tions of the receiving object into a small number of categories, and these categories are
significantly different from each other. We call such parameters selection criteria. An
interaction having as parameter a selection criterion can be transformed into several in-
teractions, one for each category. In these interactions the selection criterion is then part
of the interaction name (see example in figure 62).

Definition 33: A selection criterion is either a parameter type having a small set of
possible values, or it is a value of such a set and is part of the interac-
tion name.

Observation 5: (A is an interaction type) ∧ (B is set of interaction types B1, B2, ... Bn)
∧ (A has a selection criterion as parameter)
∧ (B1, B2, ... Bn each have a selection criterion in their name)
∧ (A, B1, B2, ... Bn are identical apart from the selection criterion)
∧ ({y | y is a selection criterion of an interaction type of set B} = {x | x

is a possible value of the selection criterion of interaction type A})
==> (A <-t-> B)

Moving the selection criterion of an interaction from its name to its parameters is ana-
logue to transforming a specialisation hierarchy of services into one single service cov-
ering all different cases of the specialised services.

An interaction can be transformed into another interaction without affecting the service
in which the interactions appear (with exception of atomic services). This is possible, be-
cause we differentiate between services and interactions. Services are neither deter-
mined by their triggering or other interactions, nor must the service name be equal to the
name of the triggering interaction. Changes in a scenario model as the one in figure 62

Selection criterion is a parameter
of the interaction

order (payment_info, client, items)

Selection criterion payment_info
has the values cash, advance_pay-
ment, credit_card, COD .

Selection criterion is in the name
of the interaction

order_cash (client, items)
order_credit_card (client, items)
order_COD (client, items)
order_advance_payment(client,

items)

Figure 62: Selection criteria in interaction specifications

t

166

only affect the specification of an interaction. They do not require further changes in the
specification of the services in which these interactions appear (see also “first alternative
model” on page 198).

4.5.2 Transformations of scenario types

Changing the algorithm of a scenario type

We already mentioned in chapter 4.2.1 and 4.2.3 that in general there are several possi-
bilities to distribute the information flow of a service onto interactions. Also for the order
of the interactions as well as the order of state changes there are most often several pos-
sibilities to choose from. On a given abstraction level, we have to decide for one variant.
All other variants result in different scenario models. But these variants of scenario types
can be transformed into each other by changing their algorithms.

Observation 6: A and B are scenario types that have the same information flow and
cause the same state changes in the server object ==> A <-t-> B.

The possible changes that can be applied to A in order to be transformed into B are:

• replacing its set of interactions by another set of interactions

• changing the order of interactions

• changing the order of state changes

Example: In figure 63 we have replaced the two interactions enter_manifest and end_-
check_in of figure 95 by the interaction complete. This interaction has as parameters the
information about the manifest which is now transferred after the individual drums have
been checked in.

Figure 63: The service deliver_drums with an alternative design

if load bay is empty

ECO-system :: deliver_drums
External view

delivery_allocation (...)Inform drum_storage,
Report not allocatable
 drums to client.

complete
(no_drum_types)

 not_accepted_drums(...)

deliver_drums

check_in_drum

Enter information of the
 manifest.

...

...

...

ECO-System
Clerk
agent

Drum_Storage
agent

167

4.5.3 Transformations of service hierarchies
Changing the structure of composition hierarchies

Whenever the component objects of a system change, then also the composition of the
system services changes. Two services of two different scenario models specifying the
same system may have exactly the same external view. But we may decompose the sys-
tem differently. The result are not only totally different component objects having differ-
ent responsibilities and offering different services, but also different algorithms and
decomposition in component services in the internal view of the system services. In the
process of designing the internal structure of a system, the composition hierarchies of
the objects as well as the services they offer are normally changed several times until a
satisfying design is found.

Observation 7: A is a system service of system AS, B is a system service of system BS.
A and B have the same external view but differ in their internal views
==> A <-t-> B by changing the structure and responsibility of the com-
ponent objects of AS or of BS and by using other component services
for A or for B.

Transforming a simple service into an aggregate service

If a simple service contains several technical interactions or several state changes or can
be further detailed into several technical interactions, it can be divided into several sim-
ple services that are part of a partial or complete aggregate service. The transformation
into a partial aggregate service is mainly used when part of the service appear also in oth-
er services. So these common parts are factored out into element services. The transfor-
mation into complete aggregate services is mainly used for structuring the model and
splitting up complex services. If a complex service is modelled as a simple service or as
a complete aggregate service is a matter of the actual abstraction level and the actual goal
of the model. As development proceeds, the need may arise to transform complex simple
services into complete aggregations of several simple services.

Observation 8: Service A is a simple service, service B is an aggregate service. Apart
from the service brackets of the element services, the scenario types of
B are either identical to or can be derived by detailing from the scenar-
io types of A ==> A <-t-> B.

An example of this transformation is found in figures 93, 95 and 99, where the service
ECO-System::deliver_drums is first a simple system service, then a partial aggregate system
service, and finally after the second revision of the scenario model a complete aggregate
system service.

Changing complete aggregation hierarchies

When building complete aggregation hierarchies out of elementary services, there are
several possible ways to abstract these services, resulting in different intermediate hier-

168

archy levels. Also when dividing up a high-level service into its element services, there
are often various possible ways to define these element services, resulting in different
models having different sets of high-level and elementary services. An example for this
is given in figure 64. The service making_phone_call is broken up into element services
into two different ways. Both models model the same behaviour, both have their advan-
tages and disadvantages. Which one is preferred in a specific telephone software system
depends on the project and may evolve only after some time.

Observation 9: (Services A and B are complete aggregate services,
∃ AS ∃ BS ((AS and BS are simple services)
∧ (A <-t-> AS) ∧ (B <-t-> BS)
∧ (AS is identical to BS)))
 ==> A <-t-> B.

In analogy, also when making partial aggregate services there are often several possibil-
ities as to which parts are factored out into which element services.

making_phone_call

starting_phone_call
...

answering_phone_call

 if not busy and if callee wants
 to answer the call

...

 if there was a connection
callee_ends_phone_call

caller_ends_phone_call

...

...

Phone_system :: making_phone_call
External view

making_phone_call

starting_phone_call

answering_phone_call

...

 if not busy

...

callee_ends_connection

caller_ends_ringing

...

...

Phone_system :: making_phone_call
External view

caller_ends_busy

...

caller_ends_busy

...

caller_ends_connection

...

callee_ends_busy

...

ending_connection

Figure 64: Transforming a complete aggregate service

169

Generalising services

When we have several services that are different from each other only in certain parts but
on a higher abstraction level fulfil the same duty, it may be possible to model these serv-
ices in three ways: as several independent services, as a generalisation hierarchy, or as
one service encompassing all the different cases (see figure 65).

Observation 10: Any specialisation hierarchy can be transformed into a single service
of which the scenario types
• are modelled on the same abstraction levels as the ones of the special-

ised services and
• specify the union of all the scenario instances specified by the scenar-

io types of the specialised services.

Observation 11: Any specialisation hierarchy consisting of the generalised service A
and the specialised services A1, A2, ... An can be transformed into a set
of services B1, B2, ... Bn
• where for each i Bi specifies the same behaviour as Ai
• where B1, B2, ... Bn are not the specialised services of another service
• where B1, B2, ... Bn are partial or complete aggregate services
• where the common parts of the services B1, B2, ... Bn are factored out

into element services.

Example: The service Mail_Order_Firm::order is modelled in figures 74, 77, 78 and 79 as a
specialisation hierarchy and in figure 80 as a simple service (only internal view is
shown).

Service specialisation and service aggregation are closely related. In a generalisation hi-
erarchy, the parts that are identical in each service are described into detail in the gener-
alized service. But instead of modelling these parts in a generalized service, we can use
aggregation and factor them out into element services. Yet in contrast to a specialisation
hierarchy, in the case of using aggregation we cannot express any conceptual specialisa-
tion relationship between services. Furthermore, all those parts that on a higher abstrac-

one “large” service one generalized and

several independent services

several specialized
services

(e.g. partial aggregate services with common parts

(e.g. a simple service)

Figure 65: Transforming a generalized service

factored out into element services)

t

t
t

170

tion level are modelled identical but differ on a lower abstraction level have to be
repeated in all the services.

Transforming an extension hierarchy into a specialisation hierarchy

Whenever we have a service that is extended by other services, we can transform this
extension hierarchy into a specialisation hierarchy. A generalised service is created, the
original service and its extended services become specialisations of this new generalised
service (see figure 66).

Observation 12: Any extension hierarchy with the services A2, ... An being extended serv-
ices of a service A can be transformed into a specialisation hierarchy
with the services B1, B2, ... Bn being specialisations of a generalised
service B
• where for (i=2 to n) Bi specifies the same behaviour as Ai

• where B1 specifies the same behaviour as A.

Example: In chapter 4.3.3.3 we have modelled the services dispense_bottle_no_bottle and
dispense_bottle_not_enough_money as extended services of the service dispense_bottle_nor-
mal. In another scenario model we could model this with a generalised service dispense_-
bottle and its specialised services dispense_bottle_normal, dispense_bottle_no_bottle and
dispense_bottle_not_enough_money.

4.5.4 Why transitions between scenario models?
When looking at examples in text books, the impression may arise that the presented
models have been developed all at once. Yet in reality, a model gets partially or totally
redesigned several times. These redesigns are transitions from one model to another
model. We mention here explicitly the need for having transitions between models be-
cause controlled changes are not only reality but also part of a good development prac-
tise, not the preservation of the first ideas. There are various reasons that lead to a
redesign of and to changes in the scenario model:

• Enhancements: Additional functionality is added with or without changing
the existing parts of the model.

B2

extending

B

B1

specializing

B3
A

A2 A3
Figure 66: Transforming an extension into a specialisation

t

171

• Debugging: Errors are removed by changing existing parts of the model.

• Moving from an initial scenario model to the final scenario model: If the
initial model reflects the initial perception of the problem domain, then the
model undergoes changes as the perception of the problem domain changes
and as better modelling patterns evolve.

• Replacing a provisional data model by an object model: The external view
of the system may be first described using a provisional data model. When the
internal structure of the system gets determined, this provisional data model
may be no longer necessary. As a consequence, all the interaction parameters
and state changes specified in the external views of services need to be
updated.

• Improving the quality of the scenario and the object model: The model is
partially or totally redesigned in order to improve its quality (robustness,
maintainability, low complexity, low coupling, good cohesion within classes
and subsystems). For an example let’s consider the selection criterion: at the
beginning, it is not clear at all if the selection criterion is better part of the
interaction name or better modelled as a parameter. It is even not known if
there is a fix set of categories or not, if the services were better modelled as
one service with one triggering event, as one service with several triggering
events, as a specialisation hierarchy with conditions on the parameters, or as
independent services. So at the beginning, arbitrarily one possibility is
chosen. Later on, the initial solution may show itself as an unsuitable
modelling approach and needs to be redesigned.

• Integrating design patterns and frameworks: Depending on the goals of
the analysis model, design patterns and frameworks are often not used right
away. It may either be too complex to develop an initial model and to
integrate design patterns at the same time, or the possible range of
applications may only evolve over time. Integrating design patterns and
frameworks later on requires a partial redesign of the scenario model.

• Integrating user viewpoints: In order to integrate independently developed
user viewpoints, the common parts of the models must be changed until they
are identical.

We have mentioned some possible transformations of scenario models, these transfor-
mations are among those most often used when developing a scenario model. Being
aware of these transformations helps tremendously when comparing different scenario
models or when trying to improve a given scenario model. By giving a name to these
transformations and by describing them explicitly, we help the developers in using the
transformations and in communicating better on this subject.

172

4.6 Developing scenario models

4.6.1 The development process
Phases, increments and activities

The classical waterfall development process just consists of several phases which are
carried out sequentially. The different abstraction levels of modelling, the contractual
milestones, and the modelling activities are not really distinguished. In contrast to this,
we distinguish in SEAM between the organisational aspects of a project (phases, mile-
stones, contracts), the different abstraction levels and views of the model, the different
versions of the model (preliminary and final system model) and the increments of the
system. Various process models can be established, each one combining these aspects
differently, and each one suited for specific project and domain constraints. Because a
development process is project specific and must be adapted to the actual circumstances,
constraints, risks and goals (see also [Beringer95]), we do not specify here a detailed
process model. Concerning general process models, SEAM can be combined with any
process model which does not contradict the assumptions we made in chapter 4.1.1. Two
of the various possible process models are the one of Kruchten and the one of BON.

Kruchten subdivides the whole development process into the phases inception, elabora-
tion, construction, transition, and evolution [Kruchten96]. The last phase contains a new
development cycle and recursively contains again all the different phases. Each phase
ends with a milestone for the management. Within each phase there are several incre-
ments. We can define for each increment its proper goal which affects also the content
of its results. This goal in mind, those parts of the scenario model are developed that are
concerned, with the appropriate grade of detail, precision and reworking. Analysis and
design activities such as finding classes, selecting object scenarios, prototyping, incor-
porating reusable classes can appear in any increment, but in various degrees. Also the
development of one specific abstraction level of the model is not restricted to one incre-
ment.

SEAM could also be used with the process model of BON (for more details see appendix
A.7 and chapter 3.2.3.2). Like SEAM, BON also uses a one-model approach. It divides
up the development process into tasks, having activities occurring in all the tasks. The
deliverables of these tasks could be easily adapted to encompass the concepts and nota-
tions of SEAM.

The steps in developing a scenario model: an example

For an example, let us assume a small project where the scope of the desired system is
well known, yet no similar system has yet been made (i.e. there is no preceding knowl-
edge about the user interface, the system services and useful design patterns). In the fol-

173

lowing we give an example how the milestones might be defined. We only mention those
aspects of the milestones which concern the scenario model.

• First milestone: The result is an initial scenario model of the external view of
the system services. The parameters are based on a provisional ERD. Not all
parameters need to be modelled. The system life-cycle is not yet modelled, no
consistent level is required for the system services. They may be described
and structured as is most convenient.

• Second milestone: The result is the internal view of the two most typical
system services, down to atomic objects and atomic services (in order to
better find the actual user interactions in the external view). Furthermore, the
user interface gets specified. The external view of all system services is
redesigned on two or three abstraction levels: a lower level mirroring the
actual user interactions, and one or two higher levels giving a good overview
of the system (all higher level services are complete abstractions of the lower
level services). Specialisation and extension hierarchies are allowed. The life-
cycle of the system as a whole is specified.

• Third milestone: The most important patterns used in the design are
determined. Based on these, the internal view of all the services is developed.
Whenever appropriate, subsystems are used.

• Fourth milestone: The quality of the model is carefully reviewed, especially
the patterns and metaphors chosen are investigated. Where appropriate, a
redesign is made. The external view of the services (parameter types of
interactions) is adjusted to the internal object model.

Factors determining the steps and their order

There are various factors that determine which are the transient and permanent views and
models in a specific project, how these models are linked with prototypes or implemen-
tation increments, how they are attributed to steps in the process, and in which order
these steps are carried out. Examples of such factors are: kind of problem domain (proc-
ess automation, scientific calculations, data management systems, low-level technical
systems such as data conversion), size and complexity of the project, need for integration
into larger systems or for cooperation with legacy systems, possibilities for reusing
frameworks or components, precision and trustworthiness of given requirements and
system architecture documents, starting point of the project (discussing system scope or
detailing given system requirements and system designs), experience with similar
projects, knowledge of the problem domain, further risks involved in this particular
project.

Avoiding functional decomposition

A very straightforward approach to developing the internal view of a system were the
following: an ERD is made which captures all the parameters of the external view, the

174

services are divided up into small functional units, these functional units are allocated to
entity classes, if necessary further classes for control and display are added. Such an ap-
proach would take over characteristics of the matrix approach as discussed in chapter
2.2.2.4. It would combine the disadvantage of functional decomposition and of a bias to-
wards data. With good reason, such approaches are criticised for example by [Sharble93]
(bias towards data models) and [Firesmith95] (functional decomposition).

When using the concepts and notations of SEAM, a functional decomposition is not
avoided automatically. Also with SEAM it would be no problem to produce low-quality
object models. Yet there are several concepts helping to avoid it:

• Objects and services are not decomposed independently: In the internal view
of a service no component services can be specified that are not offered by an
object (interaction diagrams allow no other modelling). This can be used to
determine the services or component objects according to the responsibility
of these objects, using the criteria of high quality object-oriented design.

• Several abstraction levels for system services: It is possible to define first the
global behaviour of the system or of a subsystem on a higher level and to
define the elementary system services in parallel with the internal component
services. This allows us adjusting the external view to the internal view given
by an object-oriented decomposition, instead of following in the internal
decomposition the external functional decomposition.

• Provisional data models: We explicitly adapt the interaction parameters used
in the external view of a system to its internal component objects. As long as
this object model does not exist yet, a provisional data model is used. But it is
not assumed that this data model is already the design of the internal object
model.

• Iterations and change: Even when we want to avoid it, we may get a
functional decomposition. Therefore, the first model cannot be the final
model. We first have to find the ideal patterns and responsibilities. We need
one or more redesigns for the improvement of the quality and for the
integration of object-oriented design patterns and reusable components. Our
perception of the subsystem under consideration has to change gradually.

Functional decomposition or bias towards a data model must not always be bad! De-
pending on the circumstances, having a bias for example towards an existing relational
database system may allow the easier and better maintainable system than having a large
discrepancy between the objects in the application and the entities in the database.

175

4.6.2 Completeness of scenario models
Criteria for complete scenario models

The definition of the completeness of a specific version of a scenario model depends on
the goals defined for this version (see chapter 3.1.3). A scenario model of an initial anal-
ysis model has other goals, and thus other completeness criteria, than a scenario model
of a detailed design. Also not the same completeness criteria are appropriate for a model
serving as the basis for outsourcing a development project, as for a preliminary model of
an in-house project with an evolutionary approach. Therefore we cannot provide any
general criteria for the completeness of a scenario model. The definition of these criteria
make up part of the task of project and risk management, and the criteria are specific to
each project and application domain.

In the following we give three examples of possible definitions for the completeness of
a scenario model:

• For a requirements analysis model: The model has to show the external view
of the system with all elementary services and their aggregates on an
abstraction level that does not yet consider any details concerning the user
interface and the actual user-system interactions, based on a provisional
external data view. Special cases of lesser importance and error treatment
needs not be taken into account. The goal is to define the scope of the system
and the main tasks it has to carry out. The targeted audience are the users and
the management. The model will be used for a go - nogo decision.

• For a user interface model: The model has to show the internal view of the
user interface subsystem down to the level of single menu events or text
entries. The model has two goals: to specify the external design of the user
interface and to validate it with the users, and to make the detailed internal
design of the user interface subsystem ready for implementation. Targeted
audience: users and system designers.

• For a design model: The services must be decomposed down to atomic
services and technical interactions. All interactions and references must be
fully specified. Targeted audience: programmers implementing the model.

Determining elementary services in an analysis model

When modelling the external view of a system in an analysis model, criteria are needed
to decide when the level of elementary services is reached, what kind of services are con-
sidered1, and thus when the analysis model is complete. The easiest and most precise cri-
teria is to decomposing services as long as it is somehow possible; this leads to a

1. The “complete” analysis model does it also model operational aspects such as services needed by system man-
agers for maintaining and operating the system? See also the discussing of the notion “technology independent”
in chapter 3.1.3.4 and the comments on this point in [Kotonya96].

176

decomposition down to single user inputs such as selecting menus or buttons and enter-
ing strings, and to a list of all services triggered by time-outs. Yet it is hardly ever the
goal of the analysis model to specify already the details of the user interface. Therefore,
more often the completeness criteria target at some higher abstraction level. The speci-
fication of such completeness criteria is often best done with project specific examples.
But it is also feasible to have completeness criteria which restrict decomposition into
very detailed services to the more complex and important services, and allow us leaving
the other ones on a higher abstraction level.

Several scenario types for one service

For each service, several scenario types on different abstraction levels are possible. Most
of these are of no value once a more detailed one has been drawn; they are transient di-
agrams which can be discarded. In the final model, only some of the more abstract views
are kept in order to have an introduction into complex services.

Verifying the completeness of scenario models

In SEAM, automatic verification of the completeness is only possible concerning miss-
ing specifications of element and component services as well as of interaction parame-
ters. Missing services not used by any other services can only be detected by human
reviewers. For reviews it is crucial to have a precise definition of the goal of the model
and of the abstraction level to be achieved. Only when the right review team and the right
focus for the investigations is chosen, is it likely to have a trustworthy review result.

However, event the limited automatic verification mentioned above is not always possi-
ble. Depending on the goal of the model, we may only want to model the most essential
services of a system for an analysis model, or only develop the internal view of some
typical and some very complex services for the design model, or we may define only
some of the interaction parameters. In these cases, no automated checks at all are possi-
ble. Also no precise rules can be given what should be part of the model and what can
be left off. Nevertheless, partial scenario models may be the better choice when looking
at the risks, benefits and costs of a project.

Excursus: completeness of scenario models in other methods

When we consider how the various methods attack the subject of completeness, we can
roughly classify them into three categories.

Methods designed for verifying completeness and consistency

First, there are those methods which have as goal a model of the (external) global behav-
iour which should allow the running of formal checks on consistency and completeness
and the automate simulation and prototyping. Examples are [Hsia94] and [Glinz95],
which in contrast to our approach are methods targeted at verifying the completeness and
consistency of requirements, even at the cost of other drawbacks and of a very narrow

177

scope of usage. The notation is formal and is chosen in such a way that extensive con-
sistency checks are possible.

“Complete” models for documenting all the requirements and all the internals of global
behaviour

There are other methods which target at having a complete scenario model and having
easily understandable models. Yet they do not target at automatic verification, simulation
and prototyping. Examples are methods such as Fusion, OOSE, and to some extent also
MSA. In analysis, their goal is to have a scenario model which contains all the require-
ments. Therefore they use scenario types and not scenario instances. But inevitably, their
criteria for completeness are only superficially precise (e.g. “essential” scenarios,
“meaningful” abstractions). In order to avoid too large models, the targeted abstraction
level cannot be chosen too low. But event then, experiences have shown that a complete
scenario model of the external view is only feasible when the use cases, system opera-
tions or business processes do not go into the hundreds, because these methods do not
offer any hierarchies of scenarios.

Fusion and OOSE model the complete internal view of the global behaviour of a system.
If in larger industrial projects using these methods really all the interaction diagrams for
the internal view are made, is beyond my knowledge and has probably not yet been in-
vestigated on a larger scale. When looking at the examples given in [Coleman94], it is
conspicuous that the interaction diagrams ignore and omit the effective interface mech-
anisms (interface objects, detailed user system interactions). Also further system opera-
tions not modelled in analysis but nevertheless necessary for the functioning of the
system, are also not modelled in the design.

Methods with partial scenario models

The third category consists of all those methods which do not strive for a complete sce-
nario model at all, for instance OBA, BON, Booch and many other methods used now-
adays in industry. Some of them model scenario instances, some scenario types. Most
often they model the external and internal view of the system. BON for example lists in
the scenario chart all of the scenario types, chosen on an high enough abstraction level
to avoid two many details. Some of the scenarios are then documented by object dia-
grams, but not necessarily all. Details are again ignored (see example in figure 127).
Common to these methods is that scenarios are only a mean to discuss about the scope
of the system and to find the objects of the system. They are not the requirements spec-
ification and are not necessarily part of the final documentation.

178

4.6.3 Consistency of scenario models
Expressiveness versus rigidness

The notation and concepts we have chosen aim at:

• Showing scenarios and services on various abstraction levels.

• Modelling scenarios as they are perceived (aggregate, generalized and
extended services).

• Documenting the scenario model also for outsiders and newcomers in a way
which allows them comprehending the “big lines”.

• Supporting the process of discussing the scenario model with participants of
different backgrounds (not only specialists in analysis modelling).

Thus the modelling technique aims at expressiveness and it allows much freedom in how
things get modelled. For example there are no strict rules how a purely conceptual inter-
action is detailed into further interactions, everything is possible (for instance a whole
sequence of interactions can be detailed into another sequence, a direct mapping of lower
level interactions to exactly one higher level interaction is no longer possible). There are
no strict rules if the triggering event of a non-atomic service is an interaction from an-
other agent or if it is another event not modelled as an interaction. There are several no-
tations for the object life cycle. Last but not least, the pseudo-code is mainly text and not
a formal language. Both, conditions as well as actions (description of interactions and of
state changes) may be formulated in the language best understood by the team. The re-
sult is a modelling technique which consists of a set of simple and consistent concepts
and a notation which is easy understood and useful for a vast variety of problems, but
which is semiformal. It allows some consistency checks, but it is not formal and rigid
enough for extensive consistency checks covering all the semantics of the model.

Pohl and Jarke propose in [Jarke94] to see the requirements engineering process as a
cube with the three dimensions representation (informal - formal), agreement (personal
view - common view) and specification (opaque - complete). Because we have chosen
in our approach a simple yet coherent set of concepts and an easily understandable and
presentable notation, our approach allows us starting the RE-process in the corner {in-
formal, personal views, opaque}. During the integration of various viewpoints, the de-
velopment of more detailed and precise scenario types and the determination of the
internal views of services, we gradually circle towards the corner {formal, common
view, complete}. Yet in the dimension formal - informal the progress is limited, as we
do not provide a transition to formal specifications.

Consistency checks

The following very basic consistency checks are straight forward and can be easily au-
tomated:

179

• Completeness: In case a complete and not a partial model is the goal, it can be
checked that all component services and component objects are specified by a
schema, all parameters are part of the object model or preliminary data
model, every system service has an interaction diagram showing its internal
view, etc.

• Ambiguity: No object or service may be specified by more than one schema.

In the case of a complete model, the following consistency requirements could also be
automatically checked, but they require more complex algorithms. Furthermore, when-
ever the conditions for repetitions and alternations in the pseudo-code need to be taken
into account, these conditions cannot be compared automatically for equivalence, be-
cause no formal syntax is used and the text describing the conditions need not be the
same in the various interaction diagrams, even if they express the same condition.

• Internal view and external view of the same service: The internal view must
be a direct expansion of the external view, i.e. all interactions between the
agents and the server object must be the same in the scenario type showing
the internal view of the service as in the lowest level scenario type showing
the external view of the service. Also the possible orders of these interactions
must be the same in both views.

• Life-cycle of an object and aggregate services: Any aggregate service must
not contradict the life-cycle specification of its object. If the life-cycle is
specified by pseudo-code or regular expressions, then the checks are quite
trivial. If the life-cycle is specified by state transition diagrams, then ideally
first a specification in pseudo-code is derived. The algorithms for this are not
discussed here as this would go beyond the scope of this thesis.

• Composition of services in the interaction diagrams: The external view of a
component service must be compatible with all the internal views of all
system services in which this component service appears. Compatibility
includes that also the interactions reappear in one of the scenario types
showing the external view of the component service, and also that the order of
the interactions is preserved.

• Composition of services and life-cycles of component objects: The internal
view of any system service must preserve the life-cycles of its component
objects.

• Services of specialised objects: Whenever an object type is a specialisation of
another object type, then its life-cycle may not restrict any order of services
allowed by the life-cycle of the supertype (substitutability).

• Reachability of services: Each elementary service of the system as a whole
must either directly appear in its life-cycle model, or it must be an element
service of an aggregate service used in the life-cycle model of this system.
Also each elementary service of a component object must either be directly

180

used in at least one of the elementary services of the system this component
object is part of (i.e. it must appear in at least one internal view), or it must be
a element service of an aggregate service fulfilling this condition.

There are other consistency conditions which cannot be automatically checked, because
they require semantic interpretation of the model:

• Compatibility between scenario types of the same service: One service may
be modelled by several scenario types on different abstraction level. These
must be mutually compatible (for more details see chapter 4.2.5.3).

• Integrating viewpoints: When an approach is chosen where first independent
models are made for the various user viewpoints and later on these models are
integrated into one model, then these individual models have to be
transformed in order to get one single model with no inconsistency and no
redundancy. Some inconsistency between the different models can be found
automatically. Yet the very essence of the models, i.e. how these different
views perceive the system behaviour, can only be unified manually.
Especially important is here to detect all those services which reflect the same
behaviour but have different names and use different scenario types to model
them.

Whenever the system under consideration is a concurrent system, then it should be free
of deadlocks. Although the interaction diagrams contain all the information necessary to
check for deadlocks, this cannot be done directly. First other models would be needed to
be derived from the interaction diagrams. This we do not discuss within the scope of this
thesis.

Excursus: consistency of scenarios in other methods

In most methods covering the whole life-cycle from analysis to implementation, the
checking of consistency plays a minor role. In all those methods which do not require a
complete scenario model, either for the external view of the system or for the internal
view, consistency checking is of course very limited (these are all the methods falling
into category three concerning the completeness of the scenario model). Consistency
checking is also very limited in all those methods, where different models are made for
the dynamic, functional and data view, and where there are no well defined links between
these models (for instance first generation of OMT).

Other methods require a complete scenario model, but the scenarios are described textu-
ally to a large extent (e.g. Fusion). In the Fusion method, some consistency checks are
prescribed, but they are quite straight forward. For the analysis model, consistency cri-
teria are for instance that the outputs mentioned in the operation schemas must be the
same as those mentioned in the life-cycle expressions and that all system operations in
the life-cycle expressions must be described by an operation schema. The content of the
textual descriptions cannot be checked automatically. Whether they meet the require-
ments of the system and whether they are consistent can only be determined by reviews

181

and walk-throughs. More thorough consistency checking is only possible with formal
notations. For example [Hsia94] and [Glinz95] propose various algorithms to check cer-
tain aspects of consistency in their modelling techniques (see A.9.2 and A.9.3 in appen-
dix A).

182

4.7 Summary

4.7.1 Summary of the basic concepts
We have introduced an enhanced scenario modelling technique which allows:

1) modelling the external view of the global behaviour of a system or subsystem
on several abstraction levels using the same concepts and notations,

2) modelling internal and external views of the global behaviour of a system
using the same concepts and notations,

3) treating a system as a system of interacting subsystems that can be further
decomposed into subsystems.

This allows us to choose an iterative process for capturing and designing the system be-
haviour. No longer does the best abstraction level for modelling external behaviour need
to be found right away. In the case of systems having a global behaviour which is inher-
ently structured, system services can be modelled as hierarchies and are no longer forced
into a flat list (point 1). Point 3 allows us to start with a model that captures far more than
the targeted software system, and then gradually zoom in on the behaviour of the soft-
ware system alone. Finally the above points also allow us to avoid an unbridgeable gap
between a very abstract external model of global system behaviour, and the actual inter-
actions between user interface objects and problem domain objects. Different view-
points and abstraction levels in the analysis and the design model can be diagrammed
without ending up with separate models or with no possibility of modelling the details
of user interactions.

In order to arrive at a modelling technique allowing the points mentioned above, we an-
alysed the various kinds of relationships between services and scenario types. These re-
lationships are reflected in our approach:

• by hierarchies of services, namely aggregation, composition, specialisation
and extension hierarchies (relationships between services within the same
model),

• by transformations of services and scenario types (relationships between
services or between scenario types belonging to different scenario models),

• by the possibility of detailing scenario types and thus of having several
scenario types for the same service (relationships between scenario types of
the same scenario model and of the same service).

Figure 67 gives an overview of all the possible relationships between services. Relation-
ships between services within one model appear in the scenario model and are therefore
also treated by the notation. The relationships between services of different models do
not appear in the final documentation of the scenario model, but are important for the
modelling process.

183

Figure 67: Overview of the relationships among services

a. Abstraction: Complete aggregate and generalized services are abstractions of several other serv-
ices. Generalized and complete aggregate services are always high-level services. Their specialised
or element services may be high-level or elementary services.

b. Reuse: Extended and partial aggregate services reuse certain other services. Partial aggregate serv-
ices are always elementary services. Extended services as well as the services that are extended
may be both, elementary or high-level.

p o s s i b l e r e l a t i o n s h i p s b e t w e e n s e r v i c e s
within one model ...

external view of one object internal view
of an object

abstraction
a

Complete
Aggregation
A complete aggre-
gate service is an
aggregation of several
element (but not nec-
essarily elementary)
services.

Specialisation
One generalized
service is specialised
into several special-
ised services.

Composition
A (normally elemen-
tary) system service
is decomposed into
the services of the
component objects of
the object offering the
system service
(internal view of the
system service)reuse b

Partial Aggregation
A partial aggregate
service reuses one or
more other services.

Extension
An extended service
extends another
service.

p o s s i b l e r e l a t i o n s h i p s b e t w e e n s e r v i c e s
... belonging to two different models

having same responsibility, same information flow and same server object

The two services may be modelled equally, or their specifications my differ by
varying degrees, e.g. they may have:
- different names for the service, its interactions or their parameters
- different position for a selection criterion
- different algorithms (other interactions or other orders of interactions)
- different internal composition (other component objects, other interactions
among component objects, other component services)

- one may be a simple or partial aggregate service, the other one a complete ag-
gregate service

- both are complete aggregate services, but their element services are not the
same

184

Our modelling approach has been based on the paradigm of systems of interacting ob-
jects. We use this paradigm on all the abstraction levels and for the internal view of sys-
tems as well as for the external view. As a consequence we introduced the distinction
between the services and their scenario types, between technical and conceptual inter-
actions, between requests and notifications, between high-level and elementary services
and between system services and services of atomic objects. Figure 69 gives an overview

service

elementary
service

high-level
service system service

service of
atomic object

atomic service
elementary

system service
high-level service
of atomic object

high-level
system service

conceptual
interaction

technical
interaction

event

time-outinteraction internal event

serviceobject
offers

scenario type

 has

1 1..n

1..n

1

0..n 1..n

details

1

1

is composition of

1..n

1

2

1..n

is subsystem of

1

2..n

reuses

1..n
11

abstracts

2..n

triggers

shows

is between

0..n

1..n

state change

action

of

1

0..n

shows
1..n

0..n

notification request

NOTE: - A service that is a complete aggregation or a generalisation is a high-level service.
 - Aggregation, specialisation and extension hierarchies are mutually orthogonal. A

service may be a specialised and/or extended service, independent of being a simple,
partial aggregate or complete aggregate service.

Notation: Arrows show relations between terms, triangles show specialisations (solid:disjoint).

Figure 68: Metamodel for SEAM

185

of these and of some other terms of SEAM. The metamodel in the figure 68 tries to ex-
press the most important relationships among the various terms.

Service A service is a functionality offered by an object. The object may be a
system, a subsystem or an atomic object. The properties of a service
are given by its interactions and the possible orders of these interac-
tions, the state changes it issues in the server object, the preconditions
for the service, and the total information flow between the server
object and its agents. See also page 95 and page 102.

State Each object has a state which is given by the values of its internal
components and its references to collaborating objects. We distinguish
between the micro states, the macro states and the essential states of an
object, definitions see page 156.

Scenario type A scenario type specifies a set of possible sequences of interactions
and/or state changes. In the case where a scenario type specifies a serv-
ice offered by an object, the interactions are interactions between the
server object and its agents and/or among the component objects of the
server object, the state changes are state changes of the server object
and of component objects of the server object, and the scenario type
can be described by an interaction diagram for the internal and one for
the external view of the service. But scenario types may also be used
to describe arbitrary sequences of interactions, not only those of serv-
ices. Interactions and state changes are also called actions. See also
page 108.

Sever object -
agents

The object offering a service is the server object. The objects the
server object interacts with are its collaborating objects or its agents,
they are also called client objects in the case of requests. See also
page 102 and page 105.

Event Services and scenario types are triggered by events. An event can be
an interaction, a time-out, or any other kind of happening at a certain
point of time and relevant to an object. See also page 103.

Interaction An interaction is a message from one object to itself or to another
object. It has a name and zero or more parameters. See also page 95.

Notification A notification is an interaction after which the sending object resumes
execution without waiting for any response. An interaction back to the
sending object may or may not occur. See also page 105.

Request A request is an interaction after which the sending object waits for a
return interaction. A request and its answer are normally modelled by
only one arrow. See also page 105

186

Figure 69: Summary of some terms as used in SEAM

Technical event
- conceptual event

When modelling technical events, we reflect the constructs of the pro-
gram code. Technical events are always interactions. When modelling
higher abstraction levels where we focus only on the concepts of the
problem domain, we model conceptual events. Conceptual events can
be arbitrarily high-level, and they can be interactions as well as other
events. A conceptual event is either also a technical event, or it is a
purely conceptual event. See also page 106.

Motive The motive gives the reason or the motivation for initiating an interac-
tion or another event. See also page 103.

Detailing
scenario types

A scenario type may be detailed into another scenario type describing
the same service by replacing some of its conceptual events by more
detailed conceptual events or by technical events. These scenario types
are said to be mutually compatible. See also page 129.

Composition of
services

Services offered by systems or subsystems are system services. A sys-
tem service is composed of services offered by component objects of
this system. The composition of a service is shown in its internal view.
See also page 134.

Elementary service
- high-level service

Elementary services are those services of an object which are neither
a generalisation nor a complete aggregation, i.e. from the external
viewpoint they are no further specialised or completely decomposed
into further services. Elementary services of atomic objects are atomic
services. Non-elementary services are high-level services. See also
page 137.

Complete aggre-
gate service
- partial aggregate
service
- simple service

A complete aggregate service is an aggregation of lower level serv-
ices of the same object. A partial aggregate service is a service that at
some point reuses another service of the same object. A simple serv-
ice is a service that is neither a complete nor a partial aggregate serv-
ice. The services which appear in a partial aggregate or complete
aggregate service are called its element services (not to be confused
with elementary services, a service can be an element service of
another service without being an elementary service). See also page
136 ff.

Specialization of
services

A service may be specialised into several specialised services. Their
specifications contain more detailed scenario types, but each special-
ised service only covers part of the cases treated by the generalised
service. See also page 142.

Extension of
services

A service may have one or more extended services. The specification
of an extended service reuses the specification of the original service,
but changes one or more parts in the specification of its scenario types
by replacing some or adding more actions. See also page 145.

187

The scenario and object model are primarily documented by interaction diagrams and
textual schemas. An example of how such a documentation set could look is shown in
figure 70.

Each object (also the atomic objects A, B, C, D and E) is described by a schema
which lists its services, references and internal components, and describes its life-
cycle (either textually or by a separate diagram). Also each service is documented by
a schema. Furthermore, the services of the object Example_System are each docu-
mented by one or more interaction diagrams for their external view (one for each
scenario type). Also, all services in this examples with the exception of the atomic
services have an interaction diagram showing their internal view.
In this example, the interaction diagrams are separate documents but logically they
are still part of the schemas of the services, and these again are part of the schemas of
the objects they belong to.

Interaction diagram: Schema of an object: Schema of a service:

Figure 70: Overview of the documentation of a scenario model

Example_System

Subsystem_S

A

C

Ser-S1
Ser-S2
Ser-S3

Ser-S4

Ser-D1

Ser-D2

Ser-E1

D

E

Service-2

Service-3

internal views

external views

to every service

B Service-1

Service-4

188

4.7.2 Reasons for the concepts as defined in SEAM

Why having services as well as events/interactions?

On the level of atomic objects and atomic services, where there is a 1:1 correspondence
between triggering input interaction and service, we could just as well have eliminated
the difference between events, interactions and services. Also when considering the ex-
ternal view of the system, we could ignore the differences between the interactions and
the services by requiring that each triggering event on every abstraction level is an inter-
action to the server object, and by forcing a one-to-one correspondence between trigger-
ing event and service. This would also simplify the concepts. Each service would then
consist of one triggering event that was an interaction, and zero or more output interac-
tions. Such one-to-one correspondences can be found in the system operations of Fusion,
the events in OORD [Umphress91] and the events and essential activities of MSA.

There are some good reasons why we have not chosen this approach:

• Not every service is triggered on every abstraction level by an interaction. On
the abstraction level of the system as a whole there are services which are
triggered by time-outs or other internal conditions2. We want to model these
services without modelling any internal objects as artificial external agents
(e.g. a clock), and without enforcing the use of interactions of the system with
itself (e.g. a message timeout()).

• It is possible to build hierarchies of services by abstracting services. One
service is detailed into several services. For interactions this is not possible.
First, there are many cases where only a sequence of conceptual interactions
can be detailed into (i.e. replaced by) a sequence of lower level interactions.
Second, when detailing and abstracting interactions, this can change their
direction. For instance, an input message from the agent to the system can
become a request from the system to the agent, but we still model the service
of the system and not the service of the agent.

• Especially when modelling the user interface, we have the advantage that
interactions can be on a much finer level than services. Forcing a
decomposition into services would not simplify the modelling (in fact, most
methods do not offer the possibility of detailing their use case model until
they actually model the user interface interactions). Moreover we could no
more allow that non-atomic services may be triggered by more than one event
type.

2. In MSA a difference is made between flow events and time events. But events are not equivalent to interactions
and there is no clear mapping between these events and the interactions of an object-oriented system. Time
events are used to capture services not triggered by any external agent. In OOSE only use cases are modelled
that are caused by an input event from an external agent, a drawback that is also critiqued by [Firesmith95].

189

• We have adopted an all agent view, where we always consider all the agents
of an object. We can abstract the interactions between one agent and the
server object into a single input and a single output interaction. But we cannot
include the interactions to other agents in this abstraction. The aggregation of
services would thus stop as soon as a service would require inputs from
several agents - a further abstraction of services would not be possible. We
would end up at this level again with a flat list of services, determined by the
criterion a) of chapter 2.1.3.3.

Interestingly enough, neither OORD, nor MSA, nor Fusion offer hierarchies of services.
Also there is no transition defined from the conceptual events, used in for instance
OORD, to the technical events as used in Fusion. In contrast, Graham [Graham93 and
Graham94b] knows hierarchies of tasks (which correspond more or less to our services),
but he does not model the actual interactions during the execution of a task. Tasks are
just decomposed until the level of atomic services is reached: only there is the link made
between tasks, the object offering the task and the message triggering the task.

Why having services as well as scenario types?

Why not say that a service is a scenario type? First, a service is a feature of an object,
whereas a scenario type describes a sequence of interactions or actions. Second, the in-
teractions involved in a service are just one property of the service, besides other prop-
erties we defined in chapter 4.2.1. Third, we allow detailing the scenario type without
defining new services. One service can have several scenario types, which are mutually
compatible and evolve from each other by detailing the information flow of the service.
Fourth, in two different models we may have the same service, but with different and in-
compatible scenario types using different algorithms. Fifth, we allow services to be trig-
gered by an interaction from an agent to the system (or server object), by a time-out or
by an interaction form the system to an agent. We can allow this because we differentiate
between the service offered by the server object and the interactions that take place be-
tween the server object and its agents.

Why making a distinction between conceptual and technical interactions and events?

As we have seen in chapter 2.1.2.3, most methods do not make this distinction. Some of
them just leave it to the user to decide what kind of interactions they model with the no-
tations they provide. Yet in most methods it is implicitly clear if the interactions and oth-
er events (or however they are called) signify technical events or conceptual events.
Either these methods address only either requirements analysis or design, or they use dif-
ferent modelling techniques in analysis and design. In SEAM however, we want to use
the same vocabulary and notations for the external high-level views of the system as a
whole as well as for design details in any part of the system (problem domain subsystem
as well as user interface subsystem). Thus, we need to make the distinction between con-
ceptual and technical events explicit. Furthermore, making this distinction explicit also
in the notation has the following advantages:

190

• We can show explicitly the transition from highly conceptual interactions
between a user and a system down to single user inputs. This allows us to
bridge the gap between an analysis model considering only higher level
interactions and a design model using technical interactions.

• We can model the user interface on the level that is appropriate for this
specific user interface. Within one diagram we can use technical interactions
for the communication between the problem domain objects, and a mix of
technical and conceptual interactions for the communication with the user
interface objects and the user.3

• If necessary, we can choose to show the external view (interactions of the user
with the system) and the internal view (interactions between subsystems) of a
system on various abstraction levels.

Why having hierarchies of services?

We can summarize the reasons for having hierarchies in the following five points:

• We need hierarchies in the final model to represent systems subdivided into
subsystems (a software system into several software components or an
arbitrary system into software systems and manual systems) and to allow the
change of system boundaries.

• We need hierarchies to represent system services that are inherently
structured.

• We need hierarchies in the final model in order to be able to present various
views of the system that are on several abstraction levels.

• We need hierarchies during the development process, because we understand
the development process as an exploring and learning process. Many transient
models are made, many intermediate abstraction levels are developed and
later are neglected, many different hierarchies are tried out and changed into
better ones. We want to support this process explicitly by our modelling
technique.

• We need hierarchies because they match our perception of the services of a
system and thus help to communicate our ideas concerning requirements and
design among developers and users.

3. In the interaction diagrams of the design, Fusion does not model the user interface objects at all. OOSE shows
the user interface objects, the interactions must be modelled on the technical level. BON uses a special arrow
to show the interactions between the user and the problem domain objects, neglecting the effective interaction
mechanisms and user interface objects.

191

Why having aggregation as well as composition hierarchies?

We have differentiated between the aggregation of services and the composition of serv-
ices. In contrast to the aggregation hierarchy that aggregates services of one object into
higher level services of the same object, the composition hierarchy composes services of
different component objects and is linked to the composition of objects into systems.
Other methods do not make this differentiation. For example the tasks of Graham [Gra-
ham94b] are decomposed independently of the objects, only on the level of atomic
services is the link between a service and the object offering it made.

There are two reasons why we have chosen the approach of defining a service as being
always offered by an object and never specify a service independent of any object:

• We adopted a pure and simple object- and component-oriented approach:
objects offering and using services. Therefore we do not introduce different
kinds of objects (e.g. event objects, service objects), and we do not define and
refine objects and functions independently.

• We wanted to enable a high level decomposition of the system, dividing up
large systems into subsystems. And we wanted to use for this only one single
modelling approach, which works for dividing up a system into manual and
software systems, for dividing up a software system into software
components, for reusing existing components and for encapsulating sensible
parts of a system.

As a consequence we had to differentiate between assembling services within the same
object (aggregation) and assembling services and objects to a subsystem (composition).

Why having aggregation as well as inheritance hierarchies?

Other methods such as UML [Booch95] and Glinz [Glinz95] have aggregation hierar-
chies but not inheritance hierarchies. We have decided to provide both inheritance hier-
archies and aggregation hierarchies, and also to distinguish between abstracting
(complete aggregation and generalisation) and reuse (extending and partial aggregation).
As we have seen in chapter 4.5, models using one technique can be transformed into
models using another technique. It would not have been necessary to provide all different
kinds of hierarchies, even more so as we also offer the possibility of detailing scenario
types within one service. The reasons why we provide all of it are expressiveness and
communication. We want to provide developers and users with those techniques that en-
able them to make a model that matches best how they perceive a problem or see a solu-
tion. This also allows us to support the presentation and communication of requirements
and design ideas among all the project team members4.

4. We therefore do not require that the services and scenario types have to be transformed into any special form
before they can be modelled. This in contrast to e.g. [Glinz95], where any overlapping scenarios within a be-
havioural model first must be transformed into a set of disjoint scenarios.

192

As no language supports inheritance between services within the same object, using spe-
cialisation or extension of services is usually inadequate for lower level models. Excep-
tions are those cases where the specialisation of system services goes hand in hand with
the specialisation of some component objects. For high level views, especially when
eliciting requirements, the specialisation of services is a mighty technique whenever we
first of all perceive services as generalized and specialised services. Extended services
are especially helpful if further requirements are added to an existing model. It would
limit the expressiveness if we forced users and developers to model the services without
a specialisation hierarchy. Even worse, sometimes a decomposition into elementary
services is not really feasible before all the different variants of the service have been
explored, and this is best done in defining specializations. And it would lead to unnec-
essary reworking of the model if we did not offer extended services. Therefore we sug-
gest using specialisation and extension hierarchies when finding and discussing the
requirements. At a later stage of the project, they may be transformed into aggregation
hierarchies and the final model may use only aggregation and composition hierarchies
on all abstraction levels.

Why not just some predefined levels?

SEAM allows to model scenarios on various abstraction levels without changing the
concepts and the notation and without having some predefined abstraction levels. This
in contrast to other methods such as [Armour95] or [Regnell96] (for more details see
chapter A.9.8), where some predefined abstraction levels are given, and where in the
case of [Regnell96] even the concepts and notations change. These approaches do have
the advantage that the user is no more forced to decide how many and which abstraction
levels he needs and what the goals of his models really are. He must also no more decide
how much he wants to model on which abstraction level and how complete and precise
the descriptions should be. But having predefined abstraction levels has the disadvantage
that the predefined levels are well suited for one specific application domain and devel-
opment environment, but are counterproductive in another project. Therefore SEAM
contains general enough concepts that can be adapted. Furthermore, having several no-
tations is contrary to another goal of SEAM which is to have only one set of concepts
and one notation which can be used on all abstraction levels.

193

Chapter 5
Case Studies
The following two case studies, a mail order firm (chapter 5.1) and a storage control sys-
tem (chapter 5.2), show the use of the extended scenario modelling technique SEAM.
We will try to mimic a possible development process showing the changes the model un-
dergoes during the modelling process. Not every modelling element defined in chapter
4 will be used, and we only present a subset of the scenario models; other views of the
object model are almost completely omitted.

5.1 Mail Order Firm
This case study shows the modelling of a software system for the handling of the orders
in a mail order firm. We assume that there exists already a software system responsible
for bookkeeping. We further assume that neither models showing the business processes
of this mail order firm nor precise ideas concerning effective requirements and interfaces
of the new software system exist. An iterative development process is chosen; we mimic
this development process by subdividing the diagrams presented here into a first, second
and third round.

First round: the external view of the whole company

Figures 71 and 72 show the context diagram and the object schema of the system
Mail_Order_Firm.

Figure 71: Schema of the system Mail_Order_Firm

Name of
object type

Mail_Order_Firm
Encompasses the whole company (also non-software components).

Services •order
•make_order_for_suppliers
•delivery_of_supplies

194

Figure 72: Context diagram of the system Mail_Order_Firm

All the services offered by the system Mail_Order_Firm are specified by schemas (fig-
ure 73). For each service one scenario type is modelled by an interaction diagram show-
ing its external view (figures 74 and 75). The service order is modelled as a specialisation
hierarchy. Because in this project the interaction diagrams for the external view are very
trivial, these diagrams would probably be discarded later when the internal views have
been modelled. Nevertheless they are very valuable for eliciting the requirements with
the user. The provisional data model containing the specification of all the interaction pa-
rameters is not shown here.

Figure 73: Schemas of the services make_orders_for_suppliers and order

Name of
service

Mail_Order_Firm :: make_orders_for_suppliers
• is elementary service
Makes the orders for the deliveries of the suppliers.

Description Each night, the system checks automatically the stock of the items.
Whenever an item is no more available in the desired quantity, it is put
on the order for the appropriate supplier.
The orders are printed out, get signed by the responsible manager, and
are sent out.

Name of
service

Mail_Order_Firm :: order
•has specialisations
Handles the ordering and delivering of items ordered by clients.

Description A client orders some items at the mail order firm. He states if he wants
to pay by cash (i.e. collect the items at an agency of the firm), by cred-
it_card, by collect on delivery (COD) or by advance payment. Depend-
ing on the kind of payment, the service is executed slightly differently.

order

order_advance
_payment

order_cash order_credit
_card

order_COD

make_orders
_for_suppliers

delivery_of
_supplies

Client

Supplier

Mail_Order_Firm

195

Figure 74: Specialisation hierarchy of the service Mail_Order_Firm :: order
 (external view)

order_cash

If necessary, client receives some
information and/or pays the order.
Client receives delivery.

order

client
agent

mail_order_firm

Client orders items

information

payment

order (payment_info, client, items)

Mail_Order_Firm :: order
External view

client
agent

mail_order_firm

Client orders items, cash

As soon as items are ready,
 client gets invitation

Client collects delivery at
agency and pays cash payment

delivery

Mail_Order_Firm :: order_cash is specialisation of order
External view

As soon as items are deliverable...

order_advance_payment

client
agent

mail_order_firm

Client orders items
As soon as items are ready,
 client gets invoice

Client makes payment
delivery

Mail_Order_Firm :: order_advance_payment is specialisation of order
External view

Client gets delivery

order_credit_card

client
agent

mail_order_firm

Client orders items

As soon as items are ready,
 client gets delivery delivery

Mail_Order_Firm :: order_credit_card is specialisation of order
External view

order (payment_info, client, items)

order (payment_info, client, items)

invitation

order (payment_info, client, items)

payment

invoice

delivery

etc.

196

Figure 75: Service Mail_Order_Firm :: make_orders_for_suppliers (external view)

Second round: the internal view of the object Mail_Order_Firm

In the second round, we define the subsystems of the system mail_order_firm, specify
its life-cycle, and refine its object schema (figure 76). Not all the subsystems are software
systems. For each service of the system mail_order_firm we model the internal view by
an interaction diagram; figures 77, 78 and 79 show the internal view of three of the four
specialisations of the service order. These interaction diagrams also go into more detail
concerning the interface between the system mail_order_firm and the agent client.

Figure 76: Second schema for the system Mail_Order_Firm

Name of
object type

Mail_Order_Firm
• is a white-box system
Encompasses the whole company.

Services •order
•make_order_for_suppliers
•delivery_of_supplies

Component
objects

•order_system, is a software system
•bookkeeping, is a software system
•stock, is a manual process
•several agencies, are manual processes

Life-cycle (order ||*) || (make_order_for_suppliers*) || (delivery_of_supplies*)

{supplier}
agent

mail_order_firm

 for each supplier concerned

 The order is signed and sent out. supplier_order (...)

make_orders_for_suppliers

Mail_Order_Firm :: make_orders_for_suppliers
External view

The new orders for the suppliers
 are put together

 midnight or upon special order

197

Figure 77: Internal view of the specialisation hierarchy for the service order, part 1

Figure 78: Internal view of the specialisation hierarchy for the service order, part 2

order_system :: order (payment_info, client, items)
order_system :: items_available (order_nr, status)
order_system :: credit_response (order_nr, total, status)
order_system :: payment (invoice_nr, status)
order_system :: return (delivery_note, reason)
stock :: availability (order_nr, list of item)
stock :: deliver (delivery_note, deliver_info)
stock :: return (delivery_note, reason)
agency :: delivery (delivery_note)
bookkeeping :: payment (client, invoice_nr, total)
bookkeeping :: check_credit (card_type, card_nr, order_nr, total)

client :: no_credit ()
client :: invoice (invoice)
client :: invitation(delivery_note, agency)
client :: delivery (delivery_note)

NOTE: Physical items do not appear as parameters,
only the information about them is modelled. The
deliveries from the stock to the client or to the agency
and the return to the stock of course include the
physical items.

Enter order into order system.

client
agent

order_system bookkeeping stock

availability

check_credit

credit_response

items_available

deliver

delivery

order_credit_card

Mail_Order_Firm :: order_credit_card is specialisation of order
Internal view

Ask and wait for availability of items.

Check if client is credit-worthy.

 if credit-worthy
Initiate delivery.

Inform client no_credit

Conditions on input parameters:
Parameter payment_info of event order is set to "credit_card" and contains the
type, the number and the exp. date of the credit card.

order

order

order_system bookkeeping stock

availability

payment

items_available

deliver
delivery

invoice

payment

Mail_Order_Firm :: order_advance_payment is specialisation of order
Internal view

order_advance_payment

Enter order into order system.

Ask and wait for
 availability of items.

Client gets invoice.

Client makes payment.

Delivery is initiated.

Conditions on input parameters:
Parameter payment_info of event order is set to "advance_payment".

client
agent

198

Figure 79: Internal view of the specialisation hierarchy for the service order, part 3

First alternative model

In the modelling workshops, alternative models are also proposed. In the first alternative
model for the service mail_order_firm :: order, the interaction order (payment_info, client,
items) of the generalised service is replaced in the specialised services by the interactions
order_cash (agency, client, items), order_advance_payment (client, items), order_COD (client, items)
and order_credit_card (card_info, client, items).

Second alternative model

Another proposal is to transform the specialisation hierarchy into a single service that
includes all different ways of payment. Figure 80 shows the corresponding interaction
diagram.

order_system bookkeeping stock

availability

payment

items_available

deliver

delivery

invitation

payment

delivery

payment

agency

Mail_Order_Firm :: order_cash is specialisation of order
Internal view

order_cash

Enter order into order system.
Ask and wait for
 availability of items.

Client gets invoice.
Delivery to agency is initiated.

Client collects delivery
 and pays cash.

Payment is forwarded.

 no collection in time
Delivery is returned.

return
return

Conditions on input parameters:
Parameter payment_info of event order is set to "cash" and contains the name
of the agency where the client wants to collect the delivery.

client
agent

order

199

Figure 80: Internal view of the service order without specialisation

Third round: the external view of the subsystem Order_System

Before continuing modelling it must be decided which one of the alternatives for the
service order is chosen. For this case study we choose the specialisation hierarchy. In the
third round we focus on the external view of the services of the subsystem Order_Sys-
tem. A high-level specification of the external view of these services is already contained
in the internal view of the services of Mail_Order_Firm. But in contrast to the interaction
diagrams of the internal view of the services of Mail_Order_Firm, the interaction dia-
grams of the external view of the services of Order_System do not show any interactions
between the objects client, stock and bookkeeping, because they are only agents. Also,
we decompose the services of Mail_Order_Firm down to elementary services. Figure 81
shows the interaction diagram of the internal view of Mail_Order_Firm :: order_advan-
ce_payment, figure 82 contains the specification of the subsystem Order_System.

client pays by COD

order

order_system bookkeeping stock

availability

payment

items_available

deliver

delivery

invitation

payment

delivery

payment

agency
Mail_Order_Firm :: order
Internal view

Enter order into order system.
Ask and wait for
 availability of items.

Client gets invoice.
Delivery to agency is initiated.

Client collects delivery
 and pays cash.

Payment is forwarded.

 no collection in time
Delivery is returned.

return
return

client
agent

 client wants to pay cash

client wants to pay in advance

payment
deliver

delivery

invoice
payment

Client gets invoice.

Client makes payment.

Delivery is initiated.

client pays by credit card

...

...

order

200

Figure 81: External view of the service order_advance_payment of the subsystem
Order_System

Figure 82: Schema of the subsystem Order_System

Fourth round: the internal view of the subsystem Order_System

Figure 82 shows part of the object model of the subsystem Order_System. Every com-
ponent object (atomic objects as well as subsystems) of Order_System is also described
by an object schema. Figure 84 contains the schema for the object Order. Order is an
abstract object type and offers the atomic services init_order, set_client, payment etc. (we

Name of
object type

Order_System
• is a white-box subsystem
Order_System is the software application that handles all the orders.

Services
offered

High-level services:
•order
•order_advance_payment, is specialisation of order
• ...
Elementary services:
• taking_down_order
•sending_out_invoice
•delivery_advance_payment
•

Life-cycle order ||*

Component
objects

....

bookkeeping
agent

client
agent

Order_System :: order_advance_payment is specialisation of order
External view

order_systemstock
agent

order

availability
Entering information from client,
issuing check for availability.

items_available
As soon as items are available,
invoice is printed and sent to client. invoice

As soon as bookkeeping reports
 payment,
delivery is initiated.

payment

delivery

order_advance_payment

taking_down_order

sending_out_invoice

delivery_advance_payment

201

assume that Order and its subtypes are atomic objects). The subtypes redefine these serv-
ices and add further services, for instance the subtype Order_Advance_Payment adds the
service print_invoice.

Figure 83: Object model of the subsystem Order_System

.

Figure 84: Schema for the object Order

Name of
object type

Order
• is an atomic object
• is abstract, has subtypes
Handles all the information for one specific order, from the request
from the client until delivery has taken place.

Services
offered

Atomic services:
• init_order
•set_client
•payment
•

Life-cycle see subtypes

Services
used

•

References • for_client : Client_Info, * -- 1

Attributes •

Order_System

UI1 Order_Collection1 Order*

Client_Collection1 Client_Info*

etc.

1 knows 1 1 has *

1 has *

belongs to
1

*1
knows
1

Order_Advance
_Payment

Order_Cash Order_Credit
_Card

Order_COF

202

Finally, all the elementary services of the system Order_System are described by a schema
and by at least one internal interaction diagram. Services of component objects may be
further specified by schemas. We conclude here the case study with figures 85, 86 and
87 showing the schemas and part of the internal view of the elementary service Order_-
System :: taking_down_order and of the atomic service Order :: set_client (because
set_client is an atomic service we can list the parameters with the name of the service in
the schema and do not make an interaction diagram for the service).

Figure 85: Schema for the elementary service taking_down_order

Figure 86: Internal view of the service taking_down_order

Figure 87: Schema of the service set_client

Name of
service

Order_System :: taking_down_order
•elementary system service
The order of the client is entered into Order_System.

Description One order is entered for one client. If the client does not exist yet in the
system, he is created.

Name of
service

Order :: set_client (c : Client) : ()
•atomic service
Sets the reference for_client to the client that makes this order.

Description The reference for_client is set to c.
No preconditions.

set_client

UI

Order_System :: taking_down_order
Internal view

order_advance
_payment
is subtypetaking_down_order

client_info

...

Create and initialize
 new order-instance.

init_order

search

C

add_order

client_
collection

client
agent

search_client

...

Enter info on the client and
search him in the system

UI :: search_client (name, number, adresse)
client_collection :: search (name, number, adresse) : ({client_info})
client_info :: match (name, number, adresse) : Bool
client :: client_list ({client_info})
order :: init_order
order :: set_client (client_info)
order_collection :: add_order
etc.

create_client

client_list

if client does not yet exist

order_
collection

match

203

5.2 ECO-System
The following example shows part of the scenario model of a system for the administra-
tion of a drum storage. Drums with environmentally damaging chemicals are to be stored in
various storage buildings. The drums are delivered to a loading bay where a clerk enters
a delivery manifest into the computer system. The transport system Drum_Storage takes
the drums from the loading bay and puts them into the various buildings. The software
system, we call it ECO-system, determines which drums are to be stored in which build-
ings and assigns a drum identifier to each drum. As the drums contain dangerous chem-
icals, special rules apply as to how the drums may be distributed onto the various storage
buildings, for instance depending on the type of chemical contained in a drum. The ex-
ample of the ECO-system is taken from [Coleman94], with slight changes in the prob-
lem statement and in the design.

First-cut requirements model

Figures 88 and 89 show the context diagram and the object schema of the whole system
ECO-System. Figures 90, 91 and 92 contain some of the service schemas for the system
services of ECO-System. Very abstract external views of the scenario types for the serv-
ices ECO-System :: deliver_drums and ECO-System :: get_status are shown in figures
93 and 94.

Figure 88: Context diagram of the system ECO-System

deliver_drums

get_status

collect_drumsClerk

Depot
Manager

ECO-System

Drum_Storage

rearrange_drums

204

Figure 89: Schema of the system ECO-System

Figure 90: Schema of the service rearrange_drums

Figure 91: Schema of the service deliver_drums

Name of
object type

ECO-System
• is a white-box subsystem
The ECO-System controls the storage of environmentally damaging
chemicals.

Services
offered

High-level services:
•deliver_drums
•collect_drums
•get_status
• rearrange_drums

Life-cycle (deliver_drums | collect_drums | rearrange_drums)* || get_status*

Name of
service

ECO-System :: rearrange_drums
Rearrange drums in order to get a better distribution.

Description The system checks the current status and tries to find a better distribu-
tion. The present free capacity, the free capacity after rearranging, and
the number of drums to be moved are displayed to the user. The user
decides if this is worth while. If the user wants to, the rearrangement
takes place.
A better distribution is one that allows that for each drum type a maxi-
mum of new drums can be stored. The best triple of maxima is deter-
mined based one statistics of past deliveries.

Name of
service

ECO-System :: deliver_drums
Check in a new delivery of drums.

Description Checking in a delivery of drums includes the following steps:
• If the load-bay is empty, the user can enter the contents of the

manifest accompanying the delivery.
•The user checks in each drum by entering its type and issues an iden-

tifier for the drum.
•When all drums are checked in, then the system computes in which

store buildings the drums are to be stored and sends the allocation to
the system Drum storage.

It may happen that not all drums can be stored. In this case, the system
tells the user (by giving him the identifiers) which drums cannot be
stored and must be returned from whence they came.

205

Figure 92: Schema of the service get_status

Figure 93: External view of the service deliver_drums

Figure 94: External view of the service get_status

Name of
service

ECO-System :: get_status
Get information on the status of the system.

Description The following information can be asked for:
• if the system is vulnerable or not (i.e. two neighbouring buildings

contain the maximum permitted number of drums)
•an overview of the drums that are stored in specific buildings

deliver_drums

deliver_drums is_load_bay_empty

ECO-SystemClerk
agent

enter_manifest

enter_drums

drum_info

The status of the load bay is
checked (it must be empty).

The information on the manifest is
entered into the system.

All the drums are checked in.

The clerk gets the IDs of the
 drums, the allocation of the
 drums to the buildings is initiated.
drum_storgae

delivery_allocation

Drum_Storage
agent

ECO-System :: deliver_drums ()
Drum_Storage :: is_load_bay_emtpy ()
ECO-System :: load_bay_status (status)
ECO-System :: enter_manifest (nooftype1, nooftype2, nooftype3)
ECO-System :: enter_drums ({drumtype})
Clerk :: drum_info (list of drumidentifiers, list of not accepted drums)
Drum_Storage :: delivery_allocation ({drumidentifier, building})

load_bay_status

ECO-System :: deliver_drums
External view

Ask the system for its status.
get_status

ECO-System

status

get_status (type_of_status, {parameter})
status (info_on_status)

get_status

ECO-System :: get_status
External view Depot Manager, Clerk

agents

206

Requirements analysis

The first-cut requirements model is further analysed, reworked and detailed. A provi-
sional data dictionary is made with a description of all the parameters used in the inter-
actions (not shown here). The services are elaborated by additional scenario types that
are more detailed, some of the services also become partial or complete aggregate serv-
ices instead of simple services. Such a more detailed scenario type for the service ECO-
system :: deliver_drums is shown in figure 95.

Figure 95: The service deliver_drums as a partial aggregation

In a further review, some users discover that the service ECO-system :: deliver_drums is not
complete; a special case which the users consider as essential is missing. Therefore they
propose an extended service which they call deliver_drums_exception. Figures 96 and 97
show its service schema and its interaction diagram. Furthermore, the line “has extended
service deliver_drums_exception” is added to the schema of the service deliver_drums. In
order to gain a better overview of the services defined so far, the users also make aggre-
gation and inheritance graphs for the service deliver_drums; these service graphs are
shown in figure 98.

ECO-System :: deliver_drums ()
Drum_Storage :: is_load_bay_emtpy ()
ECO-System :: load_bay_status (status)
ECO-System :: enter_manifest (nooftype1, nooftype2, nooftype3)
ECO-System :: check_in_drums (drumtype)
Clerk :: drum_identifier (drumidentifier)
ECO-System :: end_check_in ()
Drum_Storage :: delivery_allocation ({drumidentifier, building})
Clerk :: not_accepted_drums (list of not accepted drums)
Clerk :: load_bay_occupied ()

if load bay is empty

ECO-system :: deliver_drums
External view

is_load_bay_empty

ECO-System
Clerk
agent

enter_manifest

check_in_drum
drum_identifier

Initiate service and check if
 load bay is empty.

Input information on
 manifest.

Check in each drum
 and get ID.

delivery_allocation

load_bay_status

deliver_drums

Inform drum_storage,
Report not allocatable
 drums to client.

end_check_in

not_accepted_drums

deliver_drums

Drum_Storage
agent

enter_manifest

check_in_drum

Finish service when all
 drums have checked in.

Inform client to make the
 delivery at another time.

load_bay_occupied

207

Figure 96: Schema for an extended service

Figure 97: Scenario type for the extended service deliver_drums_exception

Figure 98: Aggregation and inheritance graphs of the service deliver_drums

Name of
service

ECO-System :: deliver_drums_exception
• is extended service of deliver_drums
Checking in of a new delivery of drums, with handling of errors in the
manifest.

Description Conditions for deliver_drums_exception:
The total number of checked in drums does not correspond to the total
on the manifest.
Consequences:
After the user has checked in all drums as usual, he is informed about
the discrepancy. He may choose to either abort or continue delivering.
In any case, the divergence is stored by the system for later inquiries.

ECO-System
Clerk
agent

delivery_allocation

Drum_Storage
agent

end_check_in

not_accepted_drums

discrepancy

 number of drums checked in does
 not correspond to manifest

abort whole delivery

continue delivery

abort

continue

ECO-System :: deliver_drums_exception is extension of ECO-System :: deliver_drum
External view

...

deliver_drums_exception

Inform drum_storage.
Report not allocatable drums.

Inform client on the discrepancy.

Inform that all drums are checked in.

deliver_drums

Server-object: ECO-Ssytem

end_check_in1 check_in_drum+
...

deliver_drums

deliver_drums_
exception

Server-object: ECO-Ssytem

208

When reviewing the models made so far, the system designer reworks the service deliver_-
drums into a complete aggregation. He also integrates the extended service deliver_-
drums_exception into the service deliver_drums. Figure 99 contains the interaction
diagrams of the aggregate service and of some of its element services. Figure 100 shows
the new service graph.

Figure 99: The service deliver_drums as a complete aggregation

Figure 100: Aggregation graph of the service deliver_drums

...

deliver_drums

check_in_drum

end_check_in

init_deliver_drums

ECO-System :: deliver_drums
External view

...

...

...

enter_manifest
if load bay is empty

ECO-SystemClerk
agent

check_in_drum (drumtype)

drum_identifier (drum_identifier)
Enter information for one drum
 and get an ID for this drum.

ECO-Sytem :: check_in_drum
External view
check_in_drum

if number of checked in drums
 does not correspond to the
 information on the manifest

delivery_allocation
({drumidentifier, building})

Drum_Storage
agent

end_check_in ()

ECO-SystemClerk
agent

ECO-Sytem :: end_check_in
External view

Clerk initiates end of delivery.

Inform drum_storage.
Report not allocatable drums.

Inform client on the discrepancy.
Client decides if he wants to
 abort or continue the delivery.

if delivery is continued

not_accepted_drums
({drum_identifiers})

discrepancy
(discrepancy_info)

abort ()
continue ()

end_check_in

deliver_drums

Server-object: ECO-Ssytem

enter_manifest1 end_check_in1 check_in_drum+ init_deliver
_drums

1

209

The life-cycle of the object ECO-System was already specified in its schema (figure 89)
by regular expressions. Another possibility would have been to specify the life-cycle by
pseudo-code as in the left diagram in figure 101. Once the service deliver_drums is mod-
elled as a complete aggregate service, the left diagram can of course be automatically
extended into the right diagram.

Figure 101: Life-cycle of ECO-System

Life-cycle for ECO-System

get_status

 deliver_drums
 collect_drums
 rearrange_drums

handle_drums
init_deliver_drums

 enter_manifest
 check_in_drum
 end_check_in

Life-cycle for ECO-System

get_status

handle_drums

collect_drums
rearrange_drums

deliver_drums

if load bay is empty

210

System design

Besides other things it is decided that the system will be realised with a graphical user
interface. After determining the user interface, the external view of the system is further
detailed. In the case of the service get_status and check_in_drum further events are in-
troduced which correspond to the actual interactions between the user and the system
(figures 103 and 102). As soon as it will become clear that these interactions can be im-
plemented like this, they could be transformed into technical interactions and the dia-
grams in figures 103 and 102 could be replaced by diagrams showing only technical
interactions.

Figure 102: Service check_in_drum: user interface design

Figure 103: Service get_status: user interface design

enter_drumtype (drumtype)

ECO-SystemClerk
agent

check_in_further_drum ()

drum_identifier (drum_identifier)

Start check-in of the next drum.

ECO-Sytem :: check_in_drum
External view

 which_type (list of possible)
(drumtypes)

Clerk selects type of this drum
 from a list of possible types.

Clerk gets ID for this drum.

check_in_drum

user wants to get overview

Clerk, Depot Manager
agent

ECO-System

overview_drums

overview_drums ({name of building, nooftype1, nooftype2, nooftype3, {drumidentifier}})
list_of_buildings ({name, nooftype1, nooftype2, nooftype3})

vulnerability_report
(vulnerability_status)

 User selects menu item "overview"
 in menu "status".

get_overview ()

 user wants report on vulnerability

A list of buildings with the number
 of drums is displayed.

The menu item "vulnerable" is selected

User selects specific buildings.
User selects all.

Overview of all selected buildings
 is displayed

 selected_buildings({name})

list_of_buildings

all_buildings ()

get_status

overview_drums

is_vulnerable

The vulnerability status is displayed.

get_vulnerability ()

ECO-System :: get_status
External view

211

High-level internal design

In the high-level internal design of ECO-system, all objects responsible for handling
user inputs and outputs (i.e. all the pairs of controller and view objects) are assembled
into a group UI. This group and its services will be further detailed in the detailed design,
which is not shown in this case study. In the interaction diagram of figure 104 we show
the high-level design of the internal view of the elementary system service ECO-System
:: overview_drums. Finally, in figures 105 and 106 we give the schemas of two of the
atomic component services of the system service overview_drums.

Figure 104: Internal view of the service overview_drums

Display list of all
 available buildings.

overview_
buildings

get_types

list_of_buildings

all_buildings

get_drum
_identifiers

 for all buildings

 for each selected
 building

get_identifier
 for all drums

Building :: get_building_name () : (name)
Building :: get_types () : (nooftype1, nooftype2, nooftype3)
Building :: get_drum_identifiers () : ({drum_identifier, type})
Buildings_administrator :: overview_buildings () : ({name, nooftype1, nooftype2, nooftype3})
Buildings_administrator :: overview_drums_for_buildings ({name}) : (allocation_list)
Drum :: gettype (): (type)
Drum :: get_identifier () : (drum_identifier)
Allocation_List :: add (name of building, {drum_identifier, type})

overview_drums
_for_buildings

User selects to see all
or specific buildings.

get_type

Display overview.

get_overview

ECO-System :: overview_drums
Internal view

add

get_building
_name

get_type

overview_drums

Add info bout this building
 to the allocation list.

New object alloc_list is
 created.

User triggers the service
 overview_drums.

 Calculate number of
 drums of each type.
 overview

The overview is asked for.

Get name of building.

 Get drum_id and type.

overview_drums

selected_buildings

C

get_building
_name

Buildings_
administrator

User
group, agent

{Building} {Drum}UI
group

alloc_list:
Allocation_List

The completed allocaction
 list is returned to the UI.

212

Figure 105: Schema for the service overview_drums_for_building

Figure 106: Schema for the service get_types

Name of
service

Buildings_administrator :: overview_drums_for_building ({Building})
 : Allocation_List
- is an atomic service
Returns a list of drums of the designated buildings.

Description Input: - name of one or more buildings
Output: - allocation list, which contains the identifiers and drum types

 of all the designated buildings, sorted according to building and
 drum type

For the designated buildings all the drums are searched and asked for
their identifiers and types. A list of them is returned.
In case that one of the provided names of buildings is not a valid name
of an existing store building, an empty list of drums is returned for this
building.

Name of
service

Building :: get_types (): (nooftype1, nooftype2, nooftype3)
- is an atomic service
Returns the number of stored drums.

Description Output: - nooftype1: number of drums of type 1 stored in this building
- nooftype2: ditto
- nooftype3: ditto

All drums contained in the building are asked for the drum type they
have. The numbers of these types are added up and returned.

213

Chapter 6
Summary and Outlook

In this thesis we started our discussion of modelling global behaviour by asking if and
how the weaknesses of the matrix approach can be overcome (chapter 1). Following an
overview of the concepts used in modelling global behaviour, we described the charac-
teristics summarized under the term matrix approach (chapter 2). We identified three
main sources for difficulties that may arise with the matrix approach: i) the limited ex-
pressiveness of the scenario model because of its restriction to one abstraction level and
its lack of modelling elements for the relationships among scenario types; ii) the direct
derivation of the object model from an initial data model; iii) the pursuit of contradicting
goals for the analysis model and the modelling process. As a consequence we proposed
an enhanced scenario modelling technique which we call SEAM (chapter 4). This mod-
elling technique overcomes some of the weaknesses of the matrix approach. In the fol-
lowing we summarize the strengths of SEAM with respect to the criticisms of the matrix
approach as discussed in chapter 2.2.2:

The first criticism of methods based on the matrix approach was the flat list of scenario
types. SEAM allows us handling redundancy across different scenario types by having
partial and complete aggregate services as well as enhanced services. It allows the mod-
elling of specialisation hierarchies as such, and it shows dependencies among services
by specifying complete aggregate services and by modelling also the life-cycle of the
system, the subsystems or the atomic objects.

The second criticism was that the matrix approach supports the modelling of only one
abstraction level. SEAM has no such limitation. Scenarios and services can be modelled
on an arbitrary number of abstraction levels which are well interconnected, and the sce-
nario model can be gradually refined.

The third criticism was that the matrix approach supports only the modelling of mono-
lithic systems. In SEAM we have overcome this limitation by introducing the notion of
subsystems.

The fourth criticism referred to difficulties arising in the transition from the analysis to
the design model. Even when using SEAM, one could end up with a design object model

214

that is data driven and/or function driven. But SEAM helps to avoid this situation by
clearly distinguishing between the provisional data model and the object model, by em-
phasizing the difference between the initial analysis model and the final high-level view,
and by encouraging a one-model approach where the final model is achieved in an iter-
ative process. This allows changes to the object structure until a high-quality design
model is reached. While the perception of the system changes during this process, the
initial scenario model is adapted in step. Thus the discrepancy that would otherwise ap-
pear between the scenario models of analysis and design, and the difficulties in tracea-
bility between the two, are avoided. Because in SEAM system services may be modelled
on various abstraction levels and from both an internal and external viewpoint using the
same notations and concepts, the gap between the specification of the external high-level
view of the system services and the specification of the internal object operations can be
avoided. This is achieved by specifying also scenario types on the level of the actual user
interactions.

The last criticism in chapter 2.2.2 was that the matrix approach models a matrix between
functions and data elements, and not a network of interacting objects that are encapsu-
lations of functions and data. In contrast, SEAM uses the paradigm of interacting objects
which are encapsulations of functions and data for the scenario model as well. Each serv-
ice is offered by an object which may be a white-box or a black-box encapsulation. There
is a clear distinction between the external view of an object and its internal view, and this
distinction is preserved throughout all the concepts and notations. Of course, in SEAM
we can also establish a matrix between the services and the object types that are changed
by them or are used as parameters. But in contrast to the matrix approach, neither the
services nor the objects are necessarily modelled in a flat list (hierarchies of services,
systems of objects) and the services are always linked to the objects that offer them.

Certain weaknesses of the matrix approach cannot be overcome just by offering an en-
hanced modelling technique. Contradicting analysis modelling goals need to be avoided
by an adequate project planning process. Decisions concerning the optimum abstraction
levels for a given model and the level of completeness to be achieved are still up to the
people involved in the modelling process. And some conflicts, for example the desire for
an easy controllable process versus the non-existence of stable models, or between the
advantages of informal modelling techniques and the advantages of formal languages,
cannot be resolved, since they are inherent to software development. They can only be
made known to developers instead of just being ignored. For their successful handling
as well as for many other stumbling blocks mentioned in this thesis, no universally valid
remedies can be given. This necessitates deploying software developers who are aware
of the potential difficulties and know enough about software engineering in order to be
able to react properly when problems and risks arise.

Contributions

I consider the following items as my main contributions to the field of object-oriented
software development:

215

• an overview of the basic concepts of modelling global behaviour with:

 - the analysis and description of classification schemes for scenario types,
including a set of possible criteria for grouping scenario instances into
scenario types and a set of possible criteria for determining the end of a
scenario

 - the differentiation between modelling technical and conceptual events

 - a summary of various methods which are chosen and described from the
point of view of modelling global behaviour

• the analysis and description of the characteristics and drawbacks of the matrix
approach

• the description of two kinds of intent clashes in the goals of analysis modelling, and
the classification of software development methods into three categories concerning
their approach to these intent clashes

• an enhanced scenario modelling technique that includes concepts and notations for:

 - systems, subsystems, object groups and atomic objects offering services

 - the distinction between the services and their scenario types

 - technical and conceptual interactions, requests and notifications, internal
and external views of services

 - the detailing of scenario types (reflecting relationships between scenario
types of the same service)

 - composition, aggregation, specialisation and extension hierarchies of
services (reflecting relationships between services within the same
scenario model)

 - transforming services or scenario types (reflecting relationships between
services or scenario types of different scenario models)

Outlook

Based on this thesis, research could continue in the following areas:

• Industrial pilot project: So far, the proposed enhanced scenario modelling tech-
nique has only been used for small case studies. The next step would be to evaluate
this approach in industrial projects, i.e. in projects with a higher degree of complex-
ity, with real users, where the result of the modelling effort is not known from the
beginning, and where changes in the perception of the system can appear. For such a
pilot project, SEAM as well as a prototype CASE-tool would need to be integrated
into the methods and tools that would be already in use in that particular project.

• Hyperlink CASE-tool: Classical CASE-tools consist mainly of various diagrams
editors and of a data dictionary containing the definitions of all model elements. The
tools are targeted at paper output, i.e. the resulting models and diagrams are not

216

viewed primarily on-line but are printed out. In contrast to this, newer research
efforts on CASE-tools make heavy use of hyperlinks (see e.g. [Alvarez95]). The
resulting tools are browsers that support on-line viewing of the models, allow com-
plex hierarchies of diagrams and specifications, support zooming and folding tech-
niques as well as other automatic changes to the appearance of models (e.g. grouping
objects, hiding objects or interactions, expanding interaction diagrams of aggregate
services), and make a clear distinction between entering, viewing and printing infor-
mation. Therefore it would be very interesting and productive to collaborate on cur-
rent research on hyperlink CASE-tools when seeking to implement a CASE-tool for
SEAM.

• Scenario model simulation: Further research in the areas of simulating scenario
models would be very interesting. So far, we only propose walk-throughs. However,
the interaction diagrams could be simulated automatically, even those of higher level
scenario types. This simulation could be interactive, with a human providing all the
decisions and data elements that are left open, or it could be carried on with scripts.
Some open questions are: What are the goals of such simulations? Which part or
parts of a scenario model (only external view of the whole system or also internal
views) should be simulated? What should such a simulation tool look like?

• Verification and validation methods for scenario models: We discussed complete-
ness and consistency for SEAM, but we did not provide any sophisticated verifica-
tion and validation techniques and processes for SEAM. The investigation of such
techniques and processes, in the context of SEAM as well as for scenario models in
general, would be another important research issue.

• Integrating DBMSs: So far we have not discussed complications which might arise
in projects dominated by a database system. Such a database system could be a new
object-oriented database, a new relational database, or a legacy system. In all three
cases, it might become necessary to adapt our modelling concepts to the concepts
used in the database system. For the cases where the coexistence of two different
models is chosen, i.e. one for the database and one for the application, the conse-
quences for the modelling of global behaviour by using scenarios need to be investi-
gated further.

• Viewpoints: When discussing the possible transitions between scenario models and
the need for a high expressiveness of the modelling technique, we mentioned the
modelling and the integration of different viewpoints in requirements determination.
Further research should clarify in more detail how this should be done, in particular
concerning the process and tool-support (see e.g. [Finkelstein96]).

217

Appendix A
Overview of some methods

A.1 Introduction
The following overview summarizes various methods that provide modelling techniques
for describing global behaviour. To make such an overview is not a trivial task, as the
essential differences often lie in the details. Especially the definitions of terms such as
trigger, motive, event, message, stimulus, action, service and operation are different
from method to method. Also, the mapping between these terms, i.e. how they relate to
each other, is not the same at all. One consequence of this are similar looking diagrams
not modelling the same facts and similar notations not having the same expressiveness
and precision. Another consequence is that the overview suffers from the following
weaknesses:

• No simple classification or direct comparison as is it is often done in
overviews of static models has been possible. Concerning the static aspects of
object modelling their is much more common agreement than concerning
global behaviour and dynamic aspects. Here, we not only have differences in
the symbols (as different symbols for modelling inheritance), in the terms
(such as using class instead of object type), and in the semantic elements
offered (such as offering link-classes or not). Much worse, the basic concepts
of the different methods are often so distinct that they cannot be compared
directly and that the terms cannot be mapped onto each other.

• No general metamodel and no metamodels of the individual methods are
provided. Most publications of methods do not offer a metamodel of the basic
modelling concepts. Not that meta-modelling would not have been known for
quite awhile1, but most methods2 are only described quite vaguely by text,
some definitions and examples. Due to the missing metamodels, there are

1. Many companies have made metamodels of their modelling techniques and of published well known methods
in order to get a common agreement on their interpretation of the method, as e.g. [Briod93].

2. An exception will be the unified modelling language (UML) of Booch et. al. Its notation will be based on a
metamodel (see [Booch95]).

218

often inconsistencies and inexactitudes in the concepts and terms; these then
necessitate personal interpretations and therefore any metamodels created by
someone else than by the authors of the method only reflect these personal
interpretations. Having no metamodels of the individual methods, we also did
not make a generic metamodel for the overview. An attempt for such a
generic metamodel can be found in [OMG92], though not many methods
have been described based on this metamodel3.

• No complete description of the goals of the different models has been
included in the overview. Though the goals of the different models were of
great importance, not all the methods mention them explicitly, or they
describe them only very vaguely or even contradictory. Most often, the
methods mainly offer a set of notations useable for various purposes.

In the first chapters we summarize some of the well-known methods that have found ac-
ceptance also in industry. To round up the overview, we add some further interesting no-
tations not mentioned in chapter 2.1. Not all of the following methods claim to be object-
oriented, yet they all offer modelling techniques that are of great interest in the context
of object-oriented analysis. This is an overview, not a reference manual. Therefore cer-
tain details are omitted or simplified.

A.2 OOSE
The following summary is based on [Jacobson92] and [Jacobson95], though these sourc-
es are in their description of use cases and interaction diagrams quite vague and in many
aspects incomplete.

Terms

Actors: Actors are objects in the environment of the system which interact with the sys-
tem. They define the roles users can play.

Stimuli: The communication between objects is modelled by stimuli. A stimulus (equiv-
alent to what in many methods is called an event) is sent by one object to another object
in order to stimulate some behaviour in this object. It is either a signal (interprocess) or
a message (intraprocess).

Use case instances: A use case instance is a sequence of related transactions performed
by an actor and the system in a dialogue. A use case thus concentrates on the interactions
observed at the user interface. It is an external model of the system as a whole. Though
internal objects may be mentioned, the use case does not model or elicit the internal in-
teraction structure.

3. An exception is FORAM as described in [Graham93].

219

Transactions: A transaction starts with a stimulus from an actor and finishes when its
use case instance waits for the next stimulus from the actor. Transactions in OOSE could
be compared to the system operations in Fusion.

Use case classes: A use case class consists of similar use case instances and contains a
specification of the possible transactions of the use case. The whole set of all use case
classes specifies the complete functionality of the system and gives a dynamic and black
box view of the system.

Mappings and classifications

Grouping of use case instances into use case classes: Several use case classes may start
with the same stimulus. As a consequence, it may happen that the class of a use case in-
stance can only be determined after its complete execution. Which execution paths are
grouped together into one use case class is up to the developer.

End of a use case: There are no general rules when a use case ends. If a sequence of
transactions is modelled as one or as several use cases, is decided by the developer. Com-
plexity is one possible criterion.

Common parts of use cases: Common parts of use cases can be extracted into abstract
use cases.

Aggregation of use cases: In order to avoid any bias towards functional decomposition,
OOSE does not offer any aggregation of use cases (in contrast to OMT that knows an
add-relationship between use case instances).

Use cases and subsystems: Objects can be grouped into a hierarchy of subsystems, yet
in the references mentioned above no precise description is given how the use case mod-
el is used together with subsystems.

More abstract use case models: OOSE suggests making for each abstraction level a com-
plete use case model and to have traceability between these levels. A table is used that
shows which use case from one level corresponds to which use cases of the other level.
However, the different use case models can not be integrated into one model.

Transactions versus system state transitions: A use case can also be looked at as an in-
complete state transition graph where each stimuli performs a state change of the system.
The transactions of the use case correspond to the transitions of the state transition graph.
These state transition graphs are implemented by controller objects.

Use cases and the user interface: It is assumed that the sequence of the external stimuli
and the classification of the use cases does not change between requirements analysis
and design. The initial use case model is already supplemented by a UI-prototype. The
interaction diagrams and all other models of OOSE are based on the use cases of the re-
quirements model.

220

Notations

The use case model

The use case model consist of a narrative description of each use case class and of a di-
agram that shows the relationships between the use cases. Possible relationships be-
tween use cases are:

• Extends: for modelling rare variants, subcourses or optional parts of a course.
The extend-use case inserts itself into the original use case at instantiation
time when certain conditions are fulfilled.4

• Uses (see example in figure 109): for extracting parts that are similar into
abstract use cases. These cannot be triggered directly from the user, they are
only executed as part of a concrete use case. The concrete use cases insert
abstract use cases at instantiation time.

The narrative description contains the basic course of transactions, and in several addi-
tional paragraphs the alternative courses of transactions (see example in figure 108).
Alternative courses show variants and contain error handling. The basic course contains
more than only one possible sequence of transactions; some of the transactions may well
be conditional or repetitive. What is expressed in the basic course and what is considered
as alternative course is up to the developer. For each transaction, the user actions (stim-
uli) as well as the reactions of the system on these stimuli are recorded. Often the trans-
actions are numbered. In the description of the transactions the same terms may be used
as in the object model. Object names may be emphasised; but this is not a necessity. In
the case of abstract or extending use cases, the details concerning where and how this
use case may be inserted into another use case may also described in a narrative way.

Interaction diagrams

Each use case is refined with interaction diagrams. These show the object and object
services involved in that use case as well as the detailed user interactions with the inter-
face objects. The objects need not correspond to the final implementation classes, most
often they are larger blocks. Each stimulus in the diagram corresponds to exactly one op-
eration of a block, even if internal to the block the operation may be dispatched onto dif-
ferent object operations in the case where the object is state controlled and not stimuli
controlled.

There is one diagram for the basic course and one for each of the important alternative
courses. Not all possible courses are modelled. Thus one single diagram only has a small
amount of optional or repetitive parts. The interaction diagram is a time-line diagram
with the following elements (examples see figures 110 and 111):

4. Some critics doubt the usefulness of this modelling construct and of the distinction between extends and uses,
see [Firesmith95], [Rumbaugh94b] and [Booch95].

221

• Blocks or objects: These can be entity, interface or controller objects, yet no
low-level objects. Objects of the same type can be drawn with several lines or
collapsed into one line.

• System border: All external actors are collapsed into one special line. The
communication with the actors is only by signals. Most interaction diagrams
start with a stimulus from an external actor. There may be an arbitrary
number of signals crossing the system boundary on one interaction diagram.

• Stimuli: Messages (requests) and signals (notifications) are distinguished by
different symbols. Each stimulus is labelled with its name.

• Parameters: The parameters of the stimuli are normally listed together with
the name of the stimuli.

• Operations: Rectangles on the lines denote the operation that is triggered by
the stimuli and show the duration of the operation. Return messages may (e.g.
to emphasize a return parameter) but need not be explicitly shown.

• Textual description: A short description (structured english or pseudo-code)
of the algorithm is provided to the left of the diagram. This description also
contains pseudo-code constructs for repetition and condition.

• Probes: Probes are special symbols in the interaction diagram that denote
where another use case can be inserted (for the extend-relationship between
use cases).

State transition diagrams

State transition diagrams are recommended to help implementing the controller objects.
Any notation may be used.

The use of the models in the development process

To define the requirements and to discuss them with the customer, a use case model is
made together with a domain object model and a first interface prototype. For finding the
use cases, also storyboarding techniques may be used. These do not concentrate on gen-
eral use case classes but on individual instances. The use cases are also used to define
the responsibilities of the individual objects in the analysis object model. This is derived
from the problem domain object model and extended by interface and controller objects.
During design, the objects or blocks are then further specified by the definition of the
operation signatures which are determined by the interaction diagrams. The goal of the
interaction diagrams is to define the protocol of the blocks and the parameters for each
stimulus. The interaction diagrams are also an important tool to stabilize and rework the
architecture of the system before any detailed internal design of the blocks and their
classes is done. The use case model is also reworked during design because the interac-
tion diagrams lead to a homogenization of the original description of the use cases. It is
thus not assumed that the use case model is stable at the end of requirements analysis.

222

Use cases reflect the user’s view, whereas the objects reflect the developer’s view and are
derived from the use cases. Though the identification and definition of the objects is said
to be straight forward, it is also mentioned that during robustness analysis and interaction
diagram design the objects have to be harmonized and homogenized so that they support
all and not only some use cases in a reusable way (reusable objects are the entity and in-
terface objects, use case specific objects are the controller objects). The use cases drive
the development activities, from delimiting the system to testing the application. Use
cases are used for finding the initial requirements as well as for defining the user inter-
face, they neatly fit into the user-centred design. Yet for all this, the underlying assump-
tion is that those use cases defined at the beginning of the project will be the same as
those of the final high-level view, and that already the initial use case model contains a
high-level specification of the user interface.

A.3 Fusion
The following summary is based on [Coleman94].

Terms

Events: “An event is an instantaneous and atomic unit of communication between the
system and its environment. An input event is sent by an agent to the system; an output
event is sent by the system to an agent.”

Scenario: “Sequence of events flowing between agents and the system for some pur-
pose”.

Agents: Agents are active entities in the environment with which the system communi-
cates. Agents model human users, or other hardware or software systems. The system
itself is nothing else than the agent that is being analysed.

System operations: “An input event and the effect it can have are called a system oper-
ation”. In other words, these are the services offered by the system as a whole. They are
atomic. Because only sequential systems are taken into account, at any point in time only
one system operation can be active. A system operation is always triggered by an input
event from an agent. It can neither be triggered by another system operation, nor by any
active object internal to the system (e.g. a timer).

Methods: These are the services offered by individual objects.

States: The term state is used in two different contexts: for all possible system states
(values of all variables) and for the states used in the state transition diagram that con-
trols the correct sequences of the events (see also chapter 4.4.1).

223

Mappings and classifications

There is a 1:1-mapping between input events and system operations, and between the
system operations and the methods of the controller objects. The parameters of the input
events are attributes and objects of the object model or data elements only defined in the
data dictionary. Each system operation is described by one operation schema (in order
to simplify the postconditions these can be broken up into several schemas with differing
preconditions). Each system operation becomes a method of an object (which serves as
controller object) in the design and has one interaction graph which can be decomposed.

Output events are mentioned in the operation schemas of the corresponding input events,
but they need not correspond directly to any methods or return values in the interaction
graphs.

One system operation includes all those sequences of events that start with the same in-
put event type. A system operation contains only one input event, the triggering event,
and ends as soon as all internal state changes and corresponding output events have oc-
curred. Longer sequences of events are described in the system life-cycle. The regular
expression used for its specification can be decomposed into several expressions.

Notations

The interface model of analysis consists of the life-cycle model specified by regular ex-
pressions and the operation model specified by operation schemas. Furthermore event
trace diagrams are used to sketch certain scenarios in order to help finding the system
operations. The event trace diagrams are not suited to model the whole system life-cycle
and do not belong to the final system documentation. In the design, global behaviour is
modelled by the interaction graphs. In the implementation, a state machine is used to im-
plement the system life-cycle as specified in analysis.

Event trace diagrams for scenarios

These diagrams show one possible sequence of input and output events between the sys-
tem and its agents. Iterations can be represented (see figure 112), but not interleaving or
alternative courses.

Regular expressions for the system life-cycle

The life-cycle model is a regular expression (example see figure 113), consisting of:

• input event names, output event names, local names of regular expressions
(the expressions can be decomposed into arbitrary many regular expressions,
making the specification more readable),

• operators for concatenation x.y, alternation x|y, repetition x* or x+, optional
[x], interleaving x||y and grouping (x).

224

The most important rules are that output event must not be interleaved with input events
and that interleaved regular expressions must not start with the same event.

Operation schemas for the operation model

One operation schema describes one system operation and contains the following infor-
mation:

• operation name and textual description

• list of all those objects, attributes and relationships of the object model that
are read or changed

• list of all those objects that are created

• list of all those objects, attributes and data elements that are supplied as
parameters of the system operation

• list of all output events including the names of the receiving agents

• preconditions and postconditions

All the objects, attributes and relationships mentioned in the operation schema must be
defined in the object model of analysis.

Common parts of system operations cannot be factored out, they are repeated in each
system operation. System operations that can be triggered by an agent as well as by an-
other system operation (e.g. producing a status report), are modelled twice.

Interaction graphs for the design model

One interaction graph represents all possible sequences of method calls necessary for the
execution of one system operation. The graph contains the following information (exam-
ples see figures 118 and 117):

• objects and collections of objects (a message to a collection means that the
method is invoked for each object of the collection, a collection object is
modelled as an ordinary object),

• messages: method calls with parameters and return value,

• sequence numbers: show the flow of control and give a vague idea on possible
sequences (the precise information on the order of method calls is found in
the description of the methods),

• method descriptions: for each method the algorithm is described including all
method calls to other objects.

The interface objects are modelled for the output events yet not for the input event. The
detailed user interactions as well as the mechanisms to check the life-cycle are not part
of the design model.

225

State transition diagrams for the implementation

The state machine that controls the sequence of the events and decides whether an input
event is accepted or rejected is already specified by the life-cycle expressions. These ex-
pressions are transformed into a state transition diagram which is implemented by spe-
cific controller or interface objects.

The use of the models in the development process, weaknesses

The analysis model turns an initial requirements document into an unambiguous and
precise set of models and defines the intended behaviour of the system. Requirements
determination itself is not part of the Fusion process. The analysis model is expected to
abstract away implementation details and to focus on the problem and not on the soft-
ware solution. All external behaviour is modelled exhaustively. This enables consistency
and completeness checks, yet makes latter changes that exceed minor details impossible
and presupposes that the first choice of system operations is the best and final one.

The interaction graphs are used in the design to help allocating the methods to the classes
and to document the implementation of each system operation. Basically it is assumed
that the “external” view of the analysis model can directly be enhanced by the internal
view of the design and that only minor changes in the external view are necessary. This
gives a very straight forward development process with a high degree of seamlessness.
Yet the method ignores some inherent limits to seamlessness (see also [Beringer94] for
a deeper discussion of the limits of seamlessness).

In the following we list some weaknesses of the Fusion method. Most of them are due
to the fact that the analysis model predetermines many important design decisions con-
cerning the internal software structure. Yet these decisions cannot be taken properly
when modelling the external behaviour on a conceptual level.

Internal state information in the operation schemas

In order to define the pre- and postconditions, internal state information needs to be mod-
elled in the object model that is never used as input or output information and is hidden
from the user of the system. This state information appears also in the read and change
clauses of the operation schema and must be assigned to classes. This leads to compli-
cations in the transition to the design for two reasons:

• The final object model should satisfy the quality criterias for good
encapsulation of operation and data (as they are even mentioned by
[Coleman94] itself), yet the assignment of the internal state information to
classes is made before the responsibilities and methods of these classes are
determined. Where which state information is stored influences significantly
the possible structure of the interaction graphs and limits their optimization.
Of course, it is possible to rework the whole object structure during the
design and to redo the analysis model, yet this is not very feasible.

226

• The postconditions of the operation schemas describe the reactions in a
declarative way. When moving to a procedural specification, not necessarily
the same attributes are optimal in the algorithms of the methods as have been
used in the declarative descriptions.

Moreover, there is an imbalance between the treating of the system states used in the life-
cycle model and of the system states used in the pre- and postconditions. Whereas the
first ones are not defined and considered in the object model until implementation, the
internal information necessary to define the system state used in the operation schemas
must already be modelled in the object model of analysis.

No further user interactions during one system operation

Fusion assumes that the input events defined in analysis (conceptual events) correspond
exactly to procedure calls (technical events) invoked by a user interface which is not fur-
ther modelled in analysis. When the design models already exist or some people have
already experiences with many similar systems, it is of course possible to make an ap-
propriate analysis model with input events that correspond to object methods in the de-
sign. Yet in normal forward engineering, this normally is not the case; as a consequence,
decisions that influence significantly the possible software solutions and the system ar-
chitecture are taken when considering only an external high-level view of the system.

Most often we want to design user interfaces where the user can enter all the parameters
of a system operations interactively. Yet for this the following problems arise:

• At any time only one system operation can be active. For multi-user systems
(such as information systems) this would mean that one user blocks the whole
system until he has entered all parameters.

• If a wrong value of a parameter should not lead to the rejection of the whole
input event, then already the interface objects need to check them. For this
they either have to interact with the corresponding problem domain objects,
or they need a copy of their content, before they send a message to the
controller object that itself interacts again with the corresponding problem
domain objects. Both solutions do not give an optimal system architecture,
and worse, do not appear in the models of the design.

Life-cycle model

The recommended transformations of the system life-cycle into a state machine targets
only at sequential systems. Distributed and concurrent systems cannot be implemented
by the suggested approach. System operations may never execute in parallel and only
one single life-cycle for the whole system is provided.

Those cases where the acceptance of an event is determined by both, the event types and
their parameters (such as the name of the agent that sent it or the object instances on
which the events will have an effect), are very difficult to model appropriately by the sys-

227

tem life-cycle and the preconditions. A certain amount of redundancy is unavoidable.
This redundancy is carried on into the implementation, because:

• different objects are responsible for checking the preconditions and the values
of the input parameters and for controlling the state machine,

• the states mentioned explicitly in the preconditions and the states derived
from the life-cycle expressions are treated in different phases of the
development process and are never homogenized.

No symmetry between input and output events

Output events most often correspond to individual objects or attributes without any pa-
rameters. In the operation schema there is no corresponding keyword to ‘supplied’. This
inconsistency between input and output events continues in the interaction graphs where
output events do not become the return values of the system operations. They are only
parameters of some new methods of some interface objects. This lacking symmetry is
due to the fact that the system life-cycle of analysis views the input and output events as
notifications, whereas in the design the input events become requests.

Extended Fusion for requirements modelling

In [Coleman95] use cases as introduced by OOSE are integrated into Fusion. The use
cases are modelled by

• a context diagram showing also the relationships (extend, uses) among the
use cases,

• a textual description for each use case class defining its name, stating its goal
and listing all the transactions involved in the use case,

• scenario diagrams showing use case instances.

The uses relationships allows us factoring out common parts of use cases into full fledge
sub use cases. In the scenario diagram, sub use cases appear as shaded boxes (see figure
114). The extend relationships allows us weakening assumptions made for a use case by
treating special cases. The inserted transactions are no full fledge use case. [Coleman95]
recommends the usage of the extend relationship for defining system increments for the
EVO-Fusion development process [Cotton95]; first only the basic use cases are imple-
mented, later on the system is enhanced to treat also the various extends.

The use case description does not specify the exact ordering of the transactions. This is
done during analysis, when use cases are subdivided into system operations, and the sys-
tem life cycle gets defined.

228

A.4 Modern Structured Analysis
The following summary is based on [Yourdan89] and [Brantschen91].

Terms

Terminators: objects in the environment of the system that interact with the system.

Input and output dataflows: interactions between the system and its terminators.

Business transactions, business functions, essential activities (in the domain of banks
also called banking operations): abstractions of processes triggered by a specific event.

Events: trigger the business functions. Different types of events are distinguished:

• flow event: the business function is triggered by a dataflow coming from a
terminator.

• time event: the business function is triggered by some time constraints (e.g.
“once a week”).

Mappings and classifications

There is a 1:1-mapping between event types and business transaction. A business trans-
action ends when the reaction of the system is completed. Yet there are two different cri-
teria that can be applied to determine when the reaction of the system is completed:

• The business transaction ends as soon as the next input from a terminator is
awaited. Thus every input dataflow is a new event. The concept of having
perfect technology and business transactions with zero duration can be
applied to such an analysis model.

• Especially in the realm of information systems, the first classification results
in a huge amount of different business transactions and in cutting apart
business procedures into independent business transactions which belong
together from the viewpoint of the user and sometimes even cannot be
executed independently. Therefore all reactions of the system can be said to
belong to one business transaction until a more conceptual business
procedure is ended or the system is in a “stable” state. If intermediate
interactions with terminators are necessary, these is done by input and output
dataflows that are not considered as events. Though this second classification
results in simpler models, there are many unresolved details around it (such
as vagueness, inconsistencies, concept of perfect technology).

Modern structured analysis does not provide any further structuring or grouping of
events or business transactions. Some adaptations of the method have introduced a third
type of events, the internal events. These help to extract common parts into a separate
business transaction. This business transaction is not triggered by a terminator but by
some other business transaction.

229

Notations

Environmental model

The event list is a table with the following rows:

• name of the terminators causing the business transaction

• name (and parameters) of the input dataflow

• type of the event (flow, time, internal)

• conditions for the different reactions

• reactions (name and parameters of the output dataflows)

• name of the terminators receiving the output dataflows

The table contains one entry for each business procedure (example see figure 122).

The context diagram (see figure 123) is a dataflow diagram that shows the system, the
terminators and all input and output dataflows. A textual description of the dataflows
specifies all the data entities, attributes and relationships transmitted by this dataflow. All
the data that flows into or out of the system is modelled in an entity relationship dia-
gram.

Behavioural model

For each business transaction a dataflow diagram is made. These are further decom-
posed according to the rules of dataflow modelling. The lowest level processes are de-
scribed by minispecs. These describe textually or with pseudo-code the algorithm for
processing the input into the output data. Furthermore the dataflow diagrams can be en-
hanced by control flows and by control processes specified by state transition diagrams.

The correlations between the data entities and the business transactions are shown in a
CRUD-matrix, which can be automatically derived from the minispecs and the entity
relationship diagram.

The use of the models in the development process

Modern Structured Analysis is used at the beginning of a project to get a technology in-
dependent, essential model of the problem. The main goal is defining the problem, and
thus having an aid in discussing and documenting it. This is mainly achieved by the en-
vironmental model. A complete behavioural model as described by the method is often
omitted in practice, because it does not add any new insights into the problem and the
structure given by low-level dataflow diagrams often cannot be used for designing the
software system. The gap between the analysis model and the design model is quite
large, and the two goals, having a technology independent model and having a smooth
transition to the design, often proof to be irreconcilable.

230

A.5 OBA
OBA stands for Object Behaviour Analysis. The method focuses mainly at determining
the scope and the functional requirements of the system and at finding suitable objects
for an object-oriented analysis model. OBA can be used in combination with other meth-
ods such as OMT and Booch, which then provide the syntax for the analysis model and
also a process for the design. OBA is described in [Rubin92].

Terms, mappings and classifications

An event occurs whenever an object invokes a service in another object. Yet during anal-
ysis, only those events are taken into account that cause one or more objects to experi-
ence a state change. Also, only those state changes are considered that consequently
affect the behaviour of the system5. Events thus reflect essential occurrences in the sys-
tem or in its environment.

A scenario (also called use scenario) is a sequence of service requests and activities in
order to accomplish some overall task. The developer is quite free which sequence of
service requests he considers to be one scenario. For event-driven systems, a good start-
ing point is to consider each external event type as one scenario. The only restriction is
that there may be no noteworthy or essential state changes within one scenario, i.e. after
each such state change a new scenario starts. Essential states are all those states that are
modelled in the dynamic model. Thus each scenario equals to one transition or event in
the state transition diagrams of the dynamic model.

Each scenario is documented by one script and contains a reference to a core activity
area; these areas can be used to group scenarios. The possible sequences of scenarios are
first defined by pre- and postconditions (added to all the scripts) and then also shown in
the dynamic models of the objects (state transition diagrams).

The participants and initiators in the scenarios are called parties. These are either out-
side of the system or correspond to one or several objects within the system. A party may
correspond to a group of objects. Due to the differentiation between parties and objects,
it is possible to keep these groups of objects even after the definition of a finer and more
complex object model.

The behaviour of the parties that can be contracted for use by other parties are the serv-
ices. There are four main categories of services: accepting notification, accepting infor-
mation, providing information, providing a service. For providing a service a party
performs several actions; these may invoke services of other parties.

5. A state represents a condition of an object during which certain physical laws, rules, and policies apply. Only
those states that influence the behaviour of the system differently (i.e. not the same scripts are applicable in
these states) are considered to be different in analysis.

231

Notations

Scripts

A script is a table with four columns:

• the party that is the initiator,

• the initiator’s action that necessitates a service from another party,

• the participant that provides the service,

• the service (its name or a brief declarative description).

The reaction of the participant on a service invocation is expressed on the next line of
the script if it is considered as important enough to be listed at all. There exist two ver-
sions of scripts: scenario instances with concrete values for parties and objects as in fig-
ure 124, and scenario types annotated by control flow annotations. These are either
textual annotations to the left of the scripts or are expressed by additional diagrams. They
may show concurrency, repetition, selection and options.

Preconditions express what must be true in order that the script is applicable. Postcon-
ditions denote those state changes that have an influence of the applicability of future
scripts. Pre- and postconditions are expressed in terms of state descriptions of objects,
for instance “overdrawn (account)”.

References to goals, objectives, core activities and other scripts are listed as traces.

Glossaries

Glossaries are used for the description of parties (they specify also the objects that a par-
ty consists of), of alias names, of attributes (used for the definition of states and the de-
scription of services), of services, of states, of reorganizations and so on. They evolve
during the scripting process and during object modelling. They enable to find gradually
the optimal object structure without redoing all other scripts. Together with the scenario
scripts and the object definitions, glossaries are an integral part of the analysis documen-
tation of OBA.

Dynamic model

The dynamic model contains for each object a glossary of the essential states of this ob-
ject and, if applicable, an object life-cycle. The glossary lists for all states their names,
their definitions (boolean function over attributes and values), their textual description
and their traces to the scripts. The definitions are derived from the pre- and postcondi-
tions and are expressed in terms of logical expressions over tuples of object and state de-
scription. An object may well have several states in parallel. The Object life-cycles are
modelled by petri nets or Harel state charts.

232

The use of the models in the development process

The goal of analysis is to construct a model of the problem domain, i.e. a static and a
dynamic model of the domain objects with traceability back to goals and objectives of
the system. First the analysis context is set by identifying business goals, objectives and
the core activity areas of the system. Typical scenario instances are chosen and scripted.
Glossaries of parties, services and attributes evolve. Only in a second step are the objects
determined and specified by using object modelling cards and recording the results in
the glossaries. Building inheritance hierarchies and identifying relationships involves
also the reorganisation of the object definitions which also include a list of all contracted
services. The last step is modelling the system dynamics: state glossaries are derived
from the pre- and postconditions of the scripts, state charts or petri nets are made for all
important objects, state glossaries are updated. If necessary, the scenario scripts are re-
structured so that each scenario corresponds to one event in the dynamic model. Missing
states and missing scripts are added. Also, the scripts may now be enhanced by control
flow information.

The scripts have thus a twofold purpose during the development process: they support
the learning process at the beginning of the project and help to find the problem domain
objects, and they document a high-level view of the behaviour of the final system.

A.6 FORAM
FORAM stands for Financial Object-Oriented Rapid Analysis Method. The strength of
FORAM lies in its process for determining the systems goals and in its approach to do-
main and system analysis. It uses task scripts developed in a workshop to capture re-
quirements, and it integrates very well the users and managers during the whole analysis
process. For the object model, the SOMA notation is used. FORAM as summarized here
is described in [Graham93] and [Graham94b], SOMA in [Graham94], business process
modelling using basically the same modelling techniques is described in [Graham95].

Terms and notations

FORAM distinguishes the following three models:

• Task object model (TOM): context model, message table, and task cards (see
figure 119). The objects are tasks and not business objects! At the beginning,
the task object model is an external view of the system. But after the
decomposition process, it also shows an internal view, yet not based on
objects but on internal tasks. These are then used to find the objects and their
methods. It is assumed that the task model reflects both, the business and the
software system alike.

• Business object model (BOM): object model, class cards (including rules
and collaborators), event traces and state diagrams.

233

• Implementation object model: detailed object model of the code. It is
programming language dependant and includes also low-level objects.

Whereas the task object model is mainly for capturing requirements and analysis, the
business object model incorporates also the first steps of logical design.

Context model

The context model shows the system object, the external objects and the message flows
between them; it may also show part of the task model. External objects are either actors
(users adopting a particular role to interact with the system for some purpose), external
systems, or something else that interacts with the system. The system itself can be con-
sidered as an actor being under closer consideration.

Message table

The message table lists the external messages of the system. The table has one message
row for each interaction on the context diagram. Each row lists the message name, the
name of the trigger event (may be a temporal or an external event), the source of the mes-
sage (an external object), the target, the information sent or received (parameters of the
message), the expected result (what the initiator expects to get or to happen), and the
goal of the message.

Messages are dataflows exchanged between the system and the external objects (more
precisely messages are semiotic acts). The message is from the initiator to its recipient,
even if the actual dataflow is the other way round. The mapping between events, mes-
sages and tasks is very vague; messages appear only in the message table and not in the
task specifications6. The goal gives the characteristics of a message. It specifies the de-
sirable states to be achieved and shows why the message has been sent. Goals complete
the description of the system’s scope and are the starting point to discover the tasks.

Task scripts

The task scripts (described by task cards) specify the individual task types. They in-
clude the following items: name of the task, supertasks, component tasks, task body, as-
sociated tasks, exceptions, side-scripts, rulesets. Task scripts are decomposed into
component scripts. The order of the component scripts is described by the rules of the
ruleset. Sub-scripts show the specialisation of tasks. Exception handling and special
cases are treated by side-scripts.

Tasks are first class objects in the task domain. Tasks are carried out in order to achieve
the goals of the messages. They are considered as objects due to their prototypical char-
acter and because they can participate in specialisation, composition and usage struc-

6. [Graham96] clarifies the relation between tasks and message: messages: the description of messages also con-
tains the name of the task that is necessary to fulfil the goal of the message.

234

tures. For the external view of the system, there is at least one task script for each
message in the message table. Tasks are decomposed until atomic tasks are reached.
Which tasks are considered as atomic tasks is determined by the developers and may
change during the process7. The process of task decomposition is called task analysis.
Task decomposition is considered as being object-oriented, in contrast to functional de-
composition combined with ERD-modelling. It is well suited for RAD-workshops, and
it mirrors well business processes, based on communicating actors. The decomposition
activity is purely in the task domain, which is orthogonal to operations and objects.

A task is an equivalence class of use cases, a use case is an equivalence class of scenar-
ios. Task scripts, use cases and scenarios stand for three different abstraction levels.

Class cards and object diagrams

Class cards specify the interface of the objects and contain attributes (responsibilities for
knowing), operations with assertions (responsibilities for doing), relationships (only
one-way pointers out of the object!), server objects, and a ruleset. The object model
models interface, domain and application objects. Any notation is possible, though the
SOMA-notation for the object diagram is preferred, because it also shows rules and al-
lows us modelling composite objects, so called layers.

For each object type, rules are defined which may be inherited like other features of an
object. Rules need not be as precise as the assertions of the operations; these are derived
during the design from the rules. Rules have the advantage that they model in a very un-
derstandable and readable way the business rules and dynamic behaviour of an informa-
tion system and that they reflect human reasoning. Furthermore, they are not bound to a
particular logic and to the restrictions of this logic, and they can be fuzzy whenever the
state of knowledge acquisition does not yet allow more details. Yet they are not suited to
express the dynamics when formal correctness is already an issue in analysis. Rules can
show global control, business rules (relating several attributes), dependencies between
attributes and operations (triggers) and integrity rules, i.e. they can contain any kind of
second order information.

Event traces and state charts

The dynamic aspects are completely specified by the rules, assertions and constraints on
the class cards. Event trace diagrams (example see figure 120) and state charts are only
used as a help to identify and specify the objects and their operations. Event traces are
also used in walk-throughs in order to verify the completeness of the models and the con-
sistency between the TOM and the BOM. Furthermore, they are used as the basis for the
system test scripts. Event trace diagrams may be annotated with comments concerning
temporal constraints, decision processing etc.

7. In [Graham96] an atomic task is defined as a task that cannot be further decomposed without introducing terms
foreign to the domain. Furthermore, an atomic task is described by one sentence.

235

The use of the models in the development process

In contrast to many other methods, FORAM includes also object-oriented requirements
determination. This is mainly done in workshops at the beginning of the project where
the task object model and the preliminary business object model are developed. The fol-
lowing steps are carried out in the workshops:

• Defining primary business objectives: determining and prioritizing the primary
business objectives, defining measures for each objective. The objectives are needed
to determine the system boundaries and later on to decide on the time-boxes for the
RAD-development cycles.

• Context modelling: defining the system boundaries and developing the context
model and message table. The goals and expected results become clear.

• Task analysis: decomposing and describing the tasks that lie behind the goals.

• Building the object model: retrieving candidate objects and methods from the task-
scripts using text analysis. The task-scripts may be further refined, until no further
objects fall out. Furthermore, the tasks-scripts may be decomposed until the level of
the effective user interface is reached. The objects are recorded in class cards and in
an object diagram. To verify the object model and to find the collaborators for each
class, event traces are modelled and role-plays are carried through.

All the models developed during the workshop are further revised and refined when de-
veloping the implementation object models and the prototypes in the time-box cycles.

A.7 BON
The method BON is documented in [Walden95].

Terms

Events: An event or system event is “a stimulus that can change the course of action of
a system and make it react”, “something to which a system will respond with a certain
behaviour”. An external event “is triggered by something in the external world over
which the system has no control”. An internal event “is triggered by the system itself
as part of its reaction to one ore more external events”.

Scenarios: A scenario is “a script of a possible system execution showing the objects
involved, which other objects they call, and the temporal order of these calls”.

States: The system state is the sum of all information stored in a system, it reflects the
history of events. An object state is that part of the system state that has an effect on the
future behaviour of one particular object. It may but needs not correspond to some at-
tributes of the object, the data making up the object state needs not be stored in the object
itself.

236

Messages: A message is an invocation of an operation on an object (feature call, mes-
sage passing).

Mappings and classifications

Events

The system events of the final system are very low-level (e.g. command selection, sensor
inputs, commits of transactions). As scenarios and event charts are only used to give a
high-level overview of the system and to detect problem domain classes, only those
events that represent a more abstract stimuli are considered in the models of analysis. Yet
there exists no precise concept of event abstraction.

Scenarios

A scenario is stimulated by either an external or an internal event, normally such an event
is listed in one of the event charts. There may be further inputs from the user during a
scenario not mentioned in any event chart. The name of a scenario may or may not be
similar to the name of the event by which it is stimulated. There is also no direct corre-
spondence between the events in the event chart and the message relations in the dia-
grams. Theoretically there would exist a client relation in the static model for any two
classes that have a message relation between any of their instances in the dynamic mod-
el. Yet for the sake of simplifying the static model, not all client relations are shown, the
less important ones only appear in the class interface specifications.

Because the dynamic model only contains diagrams for a few examples of scenario in-
stances, their are no rules concerning the classification of scenario instances into scenar-
io types. Also, no guidelines are given when a scenario should end and the next one
begin. A decomposition of scenario diagrams is possible by using object groups.

Object groups

Objects can be compressed into groups. An object group is defined as “a set of objects
treated as a unit in some message passing context”. It may group objects

• that receive all the same or a similar message (mirroring an inheritance
structure in the system and incorporating polymorphism in the dynamic
model),

• which are called in a sequence to do a more abstract step (see figure 128),

• of which all than one serve only as data containers.

An object may belong to different group hierarchies. The rules for the compression of
message relations (omitting message relations, applying one message relation to a whole
group) are analogous to the rules for client relations in the static model. Though BON
emphasizes the possibilities of zooming and compressing, these concepts are only ap-
plied for classes, objects and relations, but not for scenarios and events, because the dy-

237

namic diagrams are only considered as auxiliary models which are neither exhaustive
nor complete and only help to develop the class specifications.

Notations

Charts

The event chart is a list of important system events. For each event, its name (which may
well be a sentence) and a list of possibly involved object types are recorded. Only a sub-
set of all system events is considered, namely:

• input events: external or internal events which trigger essential types of
system behaviour,

• output events: internal events that are triggered by special system states and
are not directly related to an external event; other internal events of interest.

In the scenario chart all those scenarios are listed that illustrate important aspects of the
overall system behaviour. For each scenario its name and a short textual description
(only a few sentences) are listed.

For an example of the above charts see figure 126. There exist also charts for classes,
clusters, systems and object creation. For more complex systems, separate event and sce-
nario charts may be made for different subsystems or tasks.

Dynamic diagrams

Only a representative set of scenarios is further detailed in dynamic diagrams, these are
called object scenarios (see figures 127 and 128). One object scenario describes the call
structure of only a single execution path. Alternative courses are not included and are
deliberately neglected in the dynamic model.

A dynamic diagram is the graphical representation of one object scenario. It contains:

• Objects, sets of objects and object groups.

• Message relations: no message names, no parameters or return values.
Message relations signify a potential call from a client object to an operation
of some server object.

• Sequence numbers: represent time (only one possible sequence of potential
message relations) and are at the same time the references to the entries in the
scenario box.

• Scenario box: contains the name of the scenario plus a list of the most
important steps of the scenario execution. One entry summarizes several
message relations, no details are included.

238

The dynamic diagrams of BON are on a very high abstraction level. For the reason of
simplicity, neither the diagram nor the scenario box show any conditional control or
event type information (parameters, return messages).

External events as the stimuli of the scenario and other user inputs are denoted by special
arrows and do not signify a call to an operation. Output events (or the invocation of in-
terface operations) are not included in the diagram. Also, return messages are normally
not shown. If and when a return value or the control is passed back is too low a detail for
these diagrams. Interface objects are not included in the diagrams, therefore the user in-
teractions are not modelled into details. User inputs are notifications, all other message
relations are requests.

An arrow to a set of objects means sending a message to one object of this set (in contrast
to the semantic in Fusion). The intermediate steps of getting the object handle from the
set object and the set object itself are not shown on the dynamic diagram. They are rep-
resented on the static diagram as (compressed) client relations and in the class interface
specification as references to sets.

The use of the models in the development process

BON divides up the whole development process into 9 tasks. The three tasks for gather-
ing the analysis information are: delineate system borderline, list candidate classes, se-
lect classes and group into clusters. The three tasks for describing the gathered structure
are: define classes, sketch system behaviours, define public features. The three tasks for
designing a computational model are: refine system, generalize, complete and review
system. For each task the input sources, the deliverables and the acceptance criteria are
defined. The order of the tasks may change, depending on the concrete circumstances of
the project. Also, not in every project all the tasks are needed. Furthermore, various ac-
tivities are distinguished: finding classes, classifying, clustering, defining class features,
selecting and describing object scenarios, working out contracting conditions, assessing
reuse, indexing and documenting, evolving the system architecture. These activities ap-
pear in all the tasks though with differing weight.

For finding scenarios, BON recommends to look for user tasks (not to be confused with
the tasks of the development process). A user task may then be broken down into user
actions which become the scenarios. Yet this hierarchical structuring is not reflected in
the dynamic models. The scenarios are used for the following purposes:

• delineating system borderline,

• finding classes and basic concepts, determining object operations, refining the
system structure,

• documenting the final system.

Reversibility and seamlessness are leading principles in BON. Furthermore, construct-
ing metaphors and contracting are emphasised in order to get a high quality software sys-
tem that suits the needs of the user. The class interface specifications are the basic model,

239

all other charts and diagrams are only additional aids to develop and to understand the
contracts of the individual classes. The high-level abstractions of analysis are chosen in
such a way that they can be used all the way down to the design and the code, thus sim-
plifying the propagation of changes throughout the different models. In order that the dy-
namic model always represents the actual system, it is subject to continuous
improvements until the final user metaphors and the best abstractions are found. There-
fore, at no point in the development all the dynamic characteristics of the system will be
modelled, the effort is concentrated on those aspects that are felt to be the most important
ones and are needed in order to evolve the contracts of the classes. The documentation
always reflects the actual system and not historical aspects of the different iterations in
the development process (faking the ideal process). Thus most charts and scenarios pro-
duced during development are discarded at the end; the final documentation contains
only those few scenarios that are considered as essential for helping other people to un-
derstand the implementation.

A.8 Booch and OMT
Booch and OMT both have a vague distinction between analysis and design, their nota-
tions can be used throughout the development process. The main focus of the methods
lies on the static object model. Modelling the global behaviour is only done as far as it
is necessary to find the static model. Both methods offer a large kit of notations with
many optional details. It is up to the developer which notations he uses to what extent
and for which purposes, and how he integrates the resulting models. The following over-
view does not go into the various details of the methods concerning modelling the dy-
namics and the global behaviour, we only mention the most important notations. The
references are [Booch94], [Rumbaugh91] and [Rumbaugh94]. For experience reports on
the use cases as defined by OMT see also [Loenvig95] and [Hansen95].

Notations

State transition diagrams of Booch

The diagrams are derived from Harel state charts and from the dynamic model of OMT.
Each diagram describes the behaviour of one object type by specifying its essential state
changes (see figure 129).

Object diagrams of Booch

Object diagrams contain information concerning associations, visibility and messages
between objects. They represent a snapshot in time of an otherwise transitory stream of
events. They show all messages and objects needed in a certain context, for instance for
a complicated interaction mechanism or for a system function. In analysis they are used
to indicate the semantics of primary and secondary function points, in the logical design
to enlighten certain key mechanisms. It is up to the developer what he models with the

240

object diagrams and how many different static and dynamic elements he mixes into one
diagram. An example is found in figure 131.

Interaction diagrams of Booch

The interacting diagrams do not contain additional information to the object diagrams,
yet they represent the execution of a scenario as a time-line diagram. These may be used
to express one single scenario instance or a whole scenario type. Further details such as
scripts to express different execution courses or symbols for showing the focus of control
are optional (see figure 130).

Use cases in OMT

“A use case describes the possible sequences of interaction among the system and one
or more actors in response to some initial stimulus by one of the actors. It is not a single
scenario (a specific history of specific events exchanged among system and actors) but
rather a description of a set of potential scenarios, each starting with some initial event
from an actor to the system and following the ensuing transaction to its logical conclu-
sion” [Rumbaugh94b]. Use cases describe the system as a black box and focus on the
externally visible behaviour. In one use case all those transactions are grouped together
that are similar in nature. Within one use case arbitrary many interactions with several
actors may occur.

The use cases are described in natural language (see figure 133). The description con-
tains a main case and various alternatives or subcases. Common parts of use cases may
be extracted by the add-relationship (see figure 132). The relationships are annotated
with their cardinality (one, optional, many). The add-relationship replaces the uses- and
the extends-relationships of OOSE.

The functional model of OMT

Any operation can be looked at from a black-box (external) viewpoint, or from an inter-
nal viewpoint. The external viewpoint is modelled in a declarative way by operation
specifications which are similar to the operation schemas of Fusion (see figure 138). The
internal view is documented by object-oriented data flow diagrams and object interac-
tion diagrams (see figures 137 and 136).

In the system analysis model, only the top-level system operations are considered; these
are invoked by interactions with outside actors.

The dynamic model of OMT

The complete dynamic model is specified by state charts of all those objects that undergo
different essential states, and by tables for modeless objects. In the design the events cor-
respond to procedure calls. In the analysis they can be more abstract.

241

Other diagrams such as the event trace diagrams (see figure 135) for showing a particular
sequence of interactions among objects in a single execution (scenario), or the event flow
diagrams (see figure 134) only support the better understanding of the dynamic model.

The use of the models in the development process

After the identification of the core requirements of the future software system and of the
system boundaries, the desired system behaviour is modelled by use cases or business
functions (also called function points). Booch differentiates the behaviour into a primary
behaviour (also called key or fundamental behaviour) and a secondary behaviour (behav-
iour under exceptional conditions). Whereas during analysis all primary behaviour is
modelled by scenarios, only some of the secondary behaviour is looked at in order to in-
sure that no essential patterns of behaviour are missed. These use cases or business func-
tions are then used together with other sources such as domain models to define the
responsibilities8 of the individual objects, i.e. all the services an object provides.

Use case descriptions and scenario diagrams are not expected to make up a complete
model, they are only aids to determine the object structure. The complete behavioural
model is given by the class specifications and the state diagrams of the individual ob-
jects.

Though the processes described by Booch and OMT are not identical, they both target
at developing models that show the static and the dynamic aspects of the individual ob-
jects. Booch uses for this the class diagrams, the state transition diagrams, the object di-
agrams, the interaction diagrams, the module diagrams and the process diagrams. OMT
subdivides the model into an object model, functional model and dynamic model. All
these models evolve during analysis and design, getting more and more detailed and pre-
cise.

A.9 Further notations for modelling global
behaviour

A.9.1 Path Expression Groups
Path Expressions Groups (PEGs), introduced in [Adam94] and [Adam92], are used for
the description of essential interaction patterns within a system and between a system
and its environment.

The interactions of a group of cooperating objects are described by path expressions. A
group contains several object instances that cooperate to accomplish a task. Groups are
orthogonal to classes. A path defines a set of permissible sequences of such a group, i.e.

8. The responsibility of an object includes two key items: the knowledge an object maintains and the actions an
object can perform [Wirfs90, page 61] and [Booch94, page90].

242

it captures the essential interaction patterns within the group and specifies its global be-
haviour.

Notation

Paths are described by regular expressions over object operations and other paths (see
figure 152). The possible orders are defined by the symbols “;” for sequence, “|” for al-
ternation, “*” and “+” for repetition and “[]” for optional paths. Interleaving or parallel
object operations or paths cannot be modelled. The typical initiator of a path (most often
external to the group for which the path is specified) is modelled by the symbol “>>” in
front of the path expression. Arguments passed to the operations are not specified in the
paths for the reason of simplicity.

Groups are considered as first class objects. Their declarations contain the following el-
ements:

• name and textual description,

• inheritsFrom: a group inherits the path expressions from its super-group,

• primary participants: the objects which are components of this group,

• secondary participants: other objects that interact with this group as clients or
as servers,

• invariants: important dependencies between the objects,

• behaviour: high level behaviour defined by a path expression composed of
detailed behaviours; thus any client of the group can quickly grasp the typical
behaviour,

• paths: typical/essential interaction patterns, detailed behaviour,

• exception paths: atypical interaction patterns.

Each group may contain other groups, and thus its behaviour is a composition of the be-
haviour of its components. Also, each path expression can be composed by other path
expressions which may also be path expressions over component groups. Thus compo-
sition of groups and composition of path expressions goes hand in hand. When taking all
those detailed behaviours that are typically initiated by the user, the external visible func-
tionality of the system can easily be derived.

Using the PEG notation

PEG is a notation for capturing and describing object interaction patterns. It is not a sys-
tem development method but may be used as enhancement to traditional notations9. Ad-
ams considers path expressions as being far more usable for documenting object

9. BON recommends to use PEGs for complex dynamic systems where a full dynamic model is necessary and
thus object scenario diagrams are not sufficient [Walden95].

243

interaction than state charts, which focus only on one object type, or event traces, which
capture only one single sequence of messages, though latter can be easily deducted from
path expressions.

A.9.2 Scenario trees
Scenario trees are used for modelling user views in a formal way. They are described in
[Hsia94].

Scenarios and scenario schemas: A scenario is a “possible way to use the system to
accomplish some function the user desires”, a “sequence of event types that accomplish-
es a functional requirement”. Scenario schemas are the descriptions of scenario types,
scenario instances are instantiations of scenario schemas. A scenario schema corre-
sponds to exactly one path in a scenario tree, each alternative course of event types re-
sults in a different scenario schema. Events that are optional or iterated are not possible
within one scenario schema, several scenarios are necessary to model them. One of the
possible scenario schemas of the scenario in tree in figure 140 is the following list of in-
put and output events:

Off_H, Not9, digit, digit, digit, Busy, On_H

Each scenario starts in the initial state of the system and ends, when this initial state is
reached again. The states are modelled in such a manner that one scenario corresponds
to one functional requirement.

User views and scenario trees: A user view is “a set of specific scenarios as seen by a
certain user group or by users that employ the system in a like manner”. A scenario tree
“describes and represents all the scenarios for a particular user view”. Examples for sce-
nario trees are found in figure 140 and 141. A scenario tree consists of states (nodes) and
events (transitions). Only those input and output events are mentioned, that cause a state
transition. The attributes of the events are not specified in the scenario trees. The root of
the tree is the initial state, each leaf is again the initial state. The graph has the form of a
tree because the same states can be mentioned several times.

Event and event types: Events are “specific stimuli that change the system state, trigger
another event, or do both. An event... can be both an input and response, internal and ex-
ternal to the system.” An event can have attributes (parameters). An event type “defines
all possible events with similar attributes”.

Assumptions for the use of scenario trees:

There are several assumptions that limit the use of scenario trees and of this kind of sce-
nario analysis:

• The system must be sequential, no concurrent stimuli (input events) and
responses (output events) are allowed. Only a single response can be taken
into consideration for each stimulus.

244

• Each scenario is described individually for each agent, i.e. one scenario does
not show the interactions with several agents but only between one single
agent and the system. Thus the scenarios are strictly modelled for one single
user’s viewpoint. In this aspect, the scenario trees of Hsia differ from most
other methods (usually a scenario contains input and output events from and
to different agents).

• The starting and ending state of the system must be the same for each
scenario. Scenarios for system initialisation cannot be modelled. Further the
behaviour of the system under consideration ideally consists of a flat structure
of independent scenarios, each scenario having a well defined sequence of
events without any alternative courses.

• Concurrent or interacting user views cannot yet be checked against each other
for deadlocks.

The goal of using scenario trees in the requirements specification process is to generate,
analyse and validate dynamic requirements in a systematic and formal way. It is only
applicable to requirements that can be easily expressed as a sequence of fine-grained
events normally on a technical level (such as input of individual digits), where inconsist-
encies and modelling errors are a great risk for the project (the damage caused by errors
justifies high prevention costs), where the sequences of events are very complex (as it is
typically the case in transmission systems such as PBX or network protocols) and where
the requirements are known at the time of requirements determination and will only
change in minor details.

Process for developing scenarios:

The process for the identification, formalization, verification and validation of scenarios
contains the following steps:

• Scenario elicitation: Building for each user group a scenario tree. All scenarios for
one single agent are grouped into one user view and a scenario tree is created.

• Scenario formalization: Converting each scenario tree into a regular grammar and a
conceptual state machine, one per user view (see figures 140 and 141). A conceptual
state machine is a deterministic finite state machine that has exactly one initial and
one terminating state which are identical.

• Scenario verification: Automated checking the grammar for internal incompleteness,
redundancies and inconsistencies. If errors are detected, the previous steps are
repeated.

• Scenario generation, prototype generation and scenario validation: All possible
scenario schemas are extracted, a prototype is built automatically from the
conceptual state machine, and the user validates the scenarios with the aid of the
schemas and of the prototype.

245

The user view is first written down in the form of a scenario tree and not directly in the
form of a state chart because scenario trees match better the way how a user sees its in-
teractions with the system, and because the sequence of the events is directly visible. The
scenario trees are not necessarily consistent; but possible inconsistencies are detected
with the regular grammars and the conceptual state machines. The user is involved sig-
nificantly in the scenario elicitation and scenario validation, and also to some part in the
formalisation and verification.

A.9.3 Composition of scenarios based on statecharts
In [Glinz95] a behavioural model showing the external view of a system is made. A for-
mal notation is used in order to enable various consistency checks and to allow simula-
tion or automatic prototyping of the behavioural model.

A scenario is defined as a sequence of interactions between a user and a system. All the
scenarios in a scenario model must be disjoint. In case some scenarios are overlapping,
they must first be transformed into several disjoint scenarios or into one single scenario.
Each scenario is modelled by a state chart, this state chart is closed, i.e. it has exactly one
entry and one exit state (see figure 148). The transitions are triggered by external or in-
ternal events and have actions. These can again be interpreted as internal events and can
trigger other transitions. Events are broadcast to all state transitions. A transition takes
an arbitrarily small time interval, thus the model is quasi-synchronous. This avoids cer-
tain nondeterministic behaviour that could otherwise occur.

Disjoint scenarios can be composed and integrated into a complete model of the system
behaviour (example see figure 147). The following four compositions are possible: se-
quence, alternative, iteration and concurrency.

Various consistency checks are possible, even if some scenarios are not yet specified by
a decomposition or a closed state chart (these scenarios are replaced by dummy scenar-
ios). Deadlocks can be detected, the reachability of states can be checked, the required
mutual exclusions of scenarios can be verified, inconsistencies in the names of events
and actions can be detected (by executing the model) and the model can be checked for
completeness (missing specifications of certain parts, missing behaviour when executing
the model).

A.9.4 CRC cards
CRC cards, introduced by Cunningham [Beck89] in order to help students to learn the
essentials of object-oriented programming, have become widely used in many methods
(e.g. also by Wirfs-Brock, who has made them widely known by her book on responsi-
bility driven design [Wirfs90]). Here we base our summary on the description of CRC-
card by [Wilkinson95]. In this book not only the cards themselves are introduced, but
also an informal development process that uses the cards for analysis and design is de-
scribed.

246

Basically, a CRC card is an index card. There exists one card for each class. On its front
side the card has the name of the class as well as a table of responsibilities (left) and col-
laborators (right). In each row, one responsibility offered by this class is listed, together
with the names of the collaborating classes this class has to contact in order to fulfil this
responsibility. Classes, responsibilities and collaborators are considered as the most es-
sential concepts of an object-oriented model. During analysis, only the aggregate re-
sponsibilities are listed; these are the responsibilities as they are needed by a user. Also,
only the name of the collaborating classes are listed. A short textual description of the
class is added to the back of the card. In the design, subresponsibilities (corresponding
to the various steps the object has to take to provide the desired results) are added. The
collaborators are annotated with the name of the responsibility that is needed (see figure
143). Further details such as class attributes are added to the back of the card.

The model is developed in CRC card sessions. There a small group of people (developers
and users) develop the model. The sessions are often driven by scenarios. These are used
in walk-throughs to detect new classes and to verify the model. A scenario is defined as
a detailed example of a function of the system. A function is considered as a single, vis-
ible, testable behaviour. In analysis, these functions are analogous to system require-
ments, seen from a high level user point of view. For each function, a set of scenario
exists that explores what would happen given different parameters.”

The static view of the resulting model is documented by a class model that shows the
collaborations and subtyping relationships between the classes (see figure 145), and
class descriptions that correspond to the information on the class cards. The dynamic
view is given by scenario descriptions. These are tables that show for each step of the
scenario the client, the server, and the responsibility demanded of the server10 (see figure
144). A scenario can also call another scenario. In this case, instead of the responsibility
name, the scenario name is entered in the table. There is no rule as to what makes up one
scenario, any activity of the application that requires collaboration can be considered as
being a scenario. Yet in order to avoid redundancy, short scenarios are preferred. When-
ever a scenario may be initiated by several client objects, the name of the client object is
left open.

A.9.5 Requirements scripts in OSMOSIS
OSMOSIS is an experimental CASE-tool that supports also the modelling of scenarios
in the form of requirements scripts [Berteaud95]. It is assumed that requirements are
gathered in the form of manuals, work descriptions, workshop notes or interviews. These
are called sections and are together the document of informal requirements. When build-
ing the requirements model, in a first step requirements scripts (RS) are derived from
the sections. In a second step, the scripts are then reworked in order to avoid redundan-
cies and incompatibilities. Also, the actors for the major scripts (not all scripts have an
external actor) are identified, the relations between these scripts are defined, the values

10. These tables are very similar to the scripts of OBA, though begin and end of scenarios are defined differently.

247

of the attributes (characteristics or aspects of the RS) are defined, the objects (data enti-
ties) used by the scripts are identified, and where necessary the scripts are decomposed
into further scripts.

The OSMOSIS CASE-tool provides browsers to view the resulting semantic network.
This network has the nodes document, section, requirements script, actor and object as
well as links among these concepts and between the concepts and textual attributes
(which are of type String). The following list shows all the possible links, a * denotes a
set of links:

The link “what” describes the objective of an RS (normally just one sentence). The de-
tailed description of the behaviour is given by the decomposition of the RS into further
RS’ and not by the link “what”. The focus of the modelling process is always “on what
the system realizes for its users rather than how it does it.”

A.9.6 Storyboarding

Storyboarding proposed by [Umphress91]

OORD (Object-oriented requirements determination) [Umphress91] uses storyboard-
ing, together with concepts maps and event-response lists, to determine the require-
ments. The notations are deliberately vague, soft and fuzzy, their strength lies in their
intuitiveness, understandability and simpleness. OORD knows the following notations:

• Concept maps: semantic layered network of information. All concepts (not
necessarily data elements or objects) and links (not only static relationships) that
make sense to the user are noted; there are no further modelling rules.

• Event-response list: a list of events, responses, constraints and maybe some
conditions for the events (see figure 149). One event with its responses makes up one
scenario. The event-response list shows all those interactions of the system with its
environment that are visible to the user. For technical systems the events may be very
low-level, yet the developer is free to use the list for any appropriate abstraction
level.

• Storyboard: like a prototype on paper (see figure 149). The pictures show how the
user interface or system state could look like and change its appearance during the
scenarios. The event-response list describes the behaviour from one frame or picture
of the storyboard to the next one. Whereas the event-response list should be
determined as complete as possible, storyboards are only drawn for some selected
scenario instances.

writer [RS, String]
date [RS, String]
status [RS, String]

identifiedBy [RS, String]
fromDocument [RS, Document]
fromSection [RS, Section]

performance [RS, String]
security [RS, String]

what[RS, String]
preConditon[RS, String]
postCondition[RS, String]
who*[RS, Actor]
toScripts*[Object, Script]

partOf [RS, RS]
next* [RS, RS]
previous* [RS, RS]
inheritFrom [RS, RS]
composedOf* [RS, RS]

etc.

248

Object-oriented requirements determination is a front-end process to traditional object-
oriented development methods. The only goal of OORD is to find and establish candi-
date needs and to provide a conceptual model of the problem in a manner that is closer
to the object-oriented paradigm than a functional description. The notations make the
communication between developers and clients easy and provide also the basis for the
decisions concerning the automation boundary of the target system.

The reconciliation of the candidate needs and their checking for completeness and con-
sistency is left to the process of requirements analysis, which will then result in the re-
quirements specification document. In the requirements analysis the concepts of the
concept maps become potential classes. The storyboard gives hints for the allocation of
operations to the classes. The events and responses help to validate the completeness of
the behaviour.

A very similar approach is proposed in [Duffy95]. The object-oriented requirements
analysis model is also documented by concept maps and event-response list. The model
is used as a front end to OMT.

Storyboarding proposed by [Zorman95]

[Zorman95] describes the tool REBUS that allows us capturing and documenting sce-
narios in a storyboard-like representation. Each scenario consists of various pictures
(called frames), and for each scenario various concepts and relations can be specified.
These so called within scenario relations are objects, measures, spatial elements, tempo-
ral elements and behavioural elements. The scenarios are considered as being a natural
mean of representing and capturing domain knowledge during requirements envisaging.
The definition for scenarios is taken from [Benner93]: “Scenarios are partial descriptions
of system and environment behaviour arising in restricted situations." Partial description
means that they need not completely specify all the states that comprise a behaviour, nor
need they completely specify all the attributes of any given state, only what is relevant
for the chosen representation. The concepts behaviour and situation are clearly distin-
guished, but both, situation and behaviour are a partial ordering of states or transitions.
The focus can be either on the sequence of states, or on the sequence of transitions.

A.9.7 Business processes (“Geschäftsvorfälle”)
In certain problem domains, especially banks and insurance companies, the global be-
haviour is modelled by business processes (business transactions, banking operations,
“Geschäftsvorfälle”). These models are well suited to define how the enterprise works
and what services it offers, but the question arises, how these models are combined with
object-oriented software development. In [Mueller93] it is discussed how these business
processes can be mapped onto an object-oriented analysis model.

249

Characteristics of business processes in [Mueller93]

A “Geschäftsvorfall”, we translate it here by business process, is an autonomous process
or activity within the enterprise. It may be triggered internally or externally. A business
process consists of certain building blocks, also called actions or business processes
(“Geschäftsprozesse” in contrast to “Geschäftsvorfälle”). These may be manual or auto-
mated. The business processes are modelled on a conceptual level that does not consider
any software system related aspects. The building blocks are logically and temporally
related, but they cannot be triggered on their own. The duration of a business process is
not limited in time, it may also be interrupted to call other business processes, or to get
further information. In a software development project, the model of the business proc-
esses is made together with a semantic data model as part of the first step of analysis.
They show the functionality of the system from the user’s viewpoint. But models of busi-
ness processes may also be used outside of software development. An example for a
graphical description of a business process is shown in figure 150.

Mapping business processes onto classes of an object-oriented system

There are two possibilities of mapping business processes onto classes. It is assumed that
all the persistent information is modelled by entity classes. The first possibility is to al-
locate each business process as an operation to a specific entity class. The second possi-
bility is to model each business process as a class itself (so called process classes). The
first mapping handles well all those business processes that are very short, cannot be in-
terrupted and have no persistent data that concerns the business process itself. But if for
a certain business process there may exist at the same time several instances that concern
the same entity instance, the business process must be modelled as a process class. If it
were allocated as an operation to the entity class, then the operations would have to be
re-entrant. Furthermore, whenever several business processes have the same operations
and attributes, the business processes could be modelled by an inheritance hierarchy in
order to allow reuse. Because inheritance is only possible between classes and not be-
tween the operations of a class, also in this case the business processes are modelled as
business classes.

A.9.8 Extending OOSE by use case levels

The approach of [Armour95]:

In [Armour95], use cases are modelled on several abstraction levels. The highest level
consists of the high level use cases that are grouped into functional areas. These func-
tional areas organize the system behaviour by functionality. A high level use case is de-
scribed by its business event, which is initiated by an actor and reflects a responsibility
of the system. Each high level use case is detailed by an expanded use case. Expanded
use cases contain a complete use case descriptions as known from OOSE, with the ex-
ception that normally only the basic course is shown. Also pre- and postconditions are
added. Each expanded use case is once again detailed into one or several detailed use

250

cases. There may also be several levels of detailed use cases. On the level of detailed use
cases also alternative and exceptional courses are specified, redundant parts of the use
cases are factored out into abstract use cases, and conditional logic is used in the descrip-
tion. Furthermore, use case dependency diagrams show the dependencies between the
use cases. They are used for verifying the pre- and postconditions, for deriving work flow
models, or for giving a better understandability for newcomers to the use case documen-
tation.

Use case modelling is advocated in [Armour95] for software system development as
well as for business modelling and business reengineering. The process of use case mod-
elling is subdivided into various steps, starting with the context diagram and the high lev-
el use cases, ending with the refinement of the detailed use cases. When modelling the
software system, then the high level use cases are meant to be understandable to the us-
ers, whereas the most detailed use cases may contain the minute details of a user inter-
action by a GUI interface.

The approach of [Regnell96]:

In [Regnell96], a hierarchical use case model is suggested providing three levels of use
cases, each level having its own notations. The highest level is the environment level.
Use cases are identified and associated with services, actors and goals. “A service is a
package of functional entities (features) offered to the users in order to satisfy one or
more goals that the users have. ... A use case models a usage situation where one or more
services of the target system are used by one or more users with the aim to accomplish
one or more goals. A use case may either model a successful or an unsuccessful accom-
plishment of goals." Furthermore, use cases can be organized into packages according
to the services. The use cases are described by context diagrams, which show use cases,
actors, and packages.

At the structure level, use cases are divided up into episodes, using sequencing, alter-
natives, repetitions, exceptions and interrupts. The diagram is like a flow chart, showing
for each use case its pre- and postconditions as well as its episodes. Repetition, exception
and interrupts are shown by annotations to the episode symbol. Each episode can again
be decomposed into further episodes, for this a Jackson-like structure chart is used.

Events and scenarios only come in at the event level. For each use case an interaction
diagram in time-line notation is made. It shows the events between the system and its
actors. Repetition etc. are shown by rectangles drawn around the whole part of the dia-
gram that is repeated. There exists also a rich set of symbols for activating and deacti-
vating timers. And event is defined as being either a stimuli (a message from a user to
the target system), a response (a message from the target system to a user), or an action
(an event inside the system). A scenario is defined as being “a realisation of a use case
described as a sequence of a limited number of events with linear time order." Two dif-
ferent grades of scenario instantiation are distinguished: scenarios with formal parame-
ters and scenarios with specific parameter values.

251

The proposed notation is an extension to the telecommunication norm ITU-T MSC for
message sequence charts.

A.9.9 Use case maps
In order to bridge the gap between the use cases of the requirements level and the inter-
action and visibility graphs of the detailed design, Buhr proposes use case maps
[Buhr95]. Use case maps model large-grained behaviour patterns. They can be used for
detailing use cases as well as for abstracting design patterns. Use case maps target at a
system view and are a tool for reasoning and documenting the high-level design. They
show chains of causally-related responsibilities. Details such as the interfaces of compo-
nents or effective interactions among components cannot be shown.

The graphical part of a use case map (example see figure 121) contains one or several
paths through a use case. These paths are cause effect chains through the system. Along
the path responsibilities are shown. These are coarse-grained units of activity. The re-
sponsibilities may be bound to components. Components are only characterized by the
responsibilities, no interfaces are defined. In an unbound use case map, responsibilities
are not yet allocated to any components, and components are not yet shown.

The textual part of a use case map contains among other things the names of the respon-
sibilities, the names of the input parameters of the stimulus of the use case, and pre- and
postconditions for interpath coupling.

A.9.10 M.E.R.o.DE
The goal of M.E.R.o.DE (Model-driven Entity Relationship object-oriented DEvelop-
ment) [Dedene94] is to provide a formal object-oriented notation for requirements spec-
ification in order that the specification models can be verified concerning their
consistency and that the implementation can be validated in respect to its specification.

Models

The business model, which models the exact functioning of the business by business en-
tities, business constraints and business rules, contains the following schemas:

• for the static aspects: entity relationship models, dependency graphs and
abstract data types specifications,

• for the dynamic aspects (see figure 139): one object event table for the whole
system and a structure diagram for each object.

The object event table shows for each relevant event type (common events which may
act on several objects), which object types it may create (C), modify (M) or destroy (D).
The structure diagrams, which are JSD-diagrams, describe the sequence restrictions
each object type imposes onto the event types which trigger methods of this object.

252

Structure diagrams specify the life-cycles of object instances. Based on the dynamic
models, the object types are then specified as abstract data types by their state vector
(containing all attributes) and their event-vector (one method for each event in which the
object participates).

Further models of M.E.R.o.DE are the scope model, the design model and the technol-
ogy model.

Consistency checking

Because the schemas of the business model can be represented by formal languages and
because the schemas are strongly interconnected, consistency checking is possible. The
models are checked for deadlock by deriving the global behaviour from the individual
schemas: the structured diagrams are transformed into regular expressions over common
event types, including operators for sequence, iteration and selection. In order to guar-
antee consistency, object types that have common event types need to allow the same se-
quence of event types in their life-cycle.

A.9.11 Behavioural models of Kowal
The behavioural models of Kowal are described in [Kowal92].

Terms

A motive is the cause or reason why a source sends one or several stimuli to the system.
Stimuli are input dataflows. An external event is the action of presenting a stimulus to
the system, the system reacts with a response, i.e. output data flows and/or internal ac-
tivities. A scenario consists of a set of input and output dataflows, control flows and be-
haviours. A behaviour consists of one or more units of activity. Behaviours are for
instance inputs, outputs, verifications, activation of another behaviour, calculations, de-
ductions etc. Behaviours use stored data and input data flows and they achieve some in-
spectable results, either by internal state changes or by output dataflows. Beside the
external events there exist are also temporal events and anomalous events (an occur-
rence of an anomaly that is recognized by the system and that requires action to preserve
or restore the system to a normal condition). To show the possible orders of events, the
following relationships between events can be specified:

• Administrative relationship: All those events that serve the administrative
purposes of the same data stores (creation, maintaining, securing...) are
mutually dependent.

• Aggregate relationship: The result from one event provides the data for
another event. The two events accomplish a single objective.

• Directive relationship: An event issues a control flow and/or data flow that
initiates an otherwise independent event.

253

Notations

The system behaviour is modelled on three different abstraction levels:

• Operational view: A context diagram shows the dataflows between the system and
the agents and defines the problem boundaries. Event diagrams show for each event
the information flows, the event process and the data stores. Each event process may
have several input dataflows. Also the relationships between events are modelled. All
the data of the dataflows is modelled in an entity relationship diagram.

• Architectural view: Scenario diagrams are data flow diagrams that show the
processors, controlflows, dataflows and data stores involved in a scenario; there may
be one or several scenario diagrams for one event. They are annotated with
additional descriptions of constraints. Scenario specifications describe the interface
and the technical requirements for each processor of a scenario. The interface
definitions are done by action diagrams that show the sequence of behaviour
patterns, i.e. list all inputs and outputs for each processor.

• Behaviour view: Behaviour diagrams are dataflow diagrams that show for each
behaviour pattern the processes involved. They are supplemented by the behaviour
specifications which use action diagrams with pseudo-code to give a low-level
specification of the behaviour patterns. Moreover for reactive systems state
transition diagrams are used to specify finite state processors.

In the action diagrams graphical brackets and pseudo-code are used to model the struc-
ture of the logic which is used to transform input data into output data. The brackets can
express sequence, selection, repetition and concurrency (see figure 146).

Behavioural models of Kowal and structured analysis

The method of Kowal is a further development of structured analysis overcoming many
of its weaknesses. Kowal introduces dependency between events, traceability through-
out all the abstraction levels, flexibility for the divergencies between the views of the
problem and the structure of the final software solution, and allows a complete and con-
sistent specification of the software system. The handling of the many different diagrams
and concepts is possible, because the relations between them are well defined.

A.9.12 Further approaches
The methods mentioned above are by no means all methods having modelling tech-
niques for showing the global behaviour. A more informal use of scenarios is also found
in [Reisin90] or [Holbrook90]. Syntropy [Cook94] also models the system as a stimulus
response system and shows the responses of the individual objects onto the external
events which are interpreted as being broadcasted across the system. [Martin95] explic-
itly models the specialisation hierarchies of event types and their connection with the ob-
ject operations by event diagrams. Scenario models showing the external and internal

254

view of global behaviour are also proposed in [Cartiant95]. A more formal approach to
modelling the behaviour of composite systems is proposed in [Dubois93].

255

Appendix B
Examples of diagrams from
various methods
This appendix contains examples of diagrams from various methods. These diagrams are
primarily referenced in chapter 2.1 and in appendix A. We only have included them here
in order to facilitate the reading of these chapters. The references of the publications
from which the diagrams have been scanned in are given in the figure captions. Addi-
tional explanations to the diagrams are also found in these references. A list of all the
diagrams in this appendix is found in the list of figures at the beginning of this thesis.

Figure 107: Object model with communication associations (arrows with no labels) in
OOSE [Jacobson92, page 189]

256

Figure 108: Description of a use case in OOSE [Jacobson92, page 349]

Figure 109: Modelling the relationship between abstract and concrete use cases in OOSE
[Jacobson92, page 343]

Use case “customer withdrawal”:

257

Figure 110: Interaction diagram in OOSE (example with two interface objects)
[Jacobson92, page 381]

258

Figure 111: Interaction diagram in OOSE (output signals) [Jacobson92, page 218]

Figure 112: Event trace diagram in Fusion (analysis model) [Coleman94, page 47]

259

Figure 113: Life-cycle expressions in Fusion (analysis model) [Coleman94, page 33]

Figure 114: Scenario diagram of extended Fusion showing a use case instance with a sub
use case [Coleman95]

Figure 115: System interaction graph in extended Fusion [Coleman95]

260

Figure 116: Schema of a system operation in Fusion (analysis model)[Coleman94, page
31]

Figure 117: Object interaction graph in Fusion (design model) [Coleman94, page 75]

261

Figure 118: Decomposition of object interaction graphs in Fusion [Coleman94, page 79]

Figure 119: Context model, message table and task cards in FORAM [Graham94b]

262

Figure 120: Event trace in FORAM [Graham94b]

Figure 121: Use case map for a design pattern [Buhr96]

263

Figure 122: Event list in Modern Structured Analysis [Beringer92c]

Figure 123: Context diagram in Modern Structured Analysis [Beringer92c]

264

Figure 124: Scripts in OBA [Rubin92]

Figure 125: Textual description of a scenario [Kilberth93, page 99]

Example for a user script:

Script notation:

265

Figure 126: Event charts and scenario charts in BON [Walden95, pages 253-255]

Figure 127: Object Scenario in BON [Walden95, page 259]

Scenario chart

Incoming events

Outgoing events

266

Figure 128: Object Scenario in BON (with grouping of objects into several subtasks)
[Walden95, page 114]

Figure 129: State chart as used in Booch [Booch94, page 207]

267

Figure 130: Interaction diagrams in Booch [Booch94, page 218]

Figure 131: Object diagram for one mechanism [Booch94, page 402]

Figure 132: Add-relationships between use cases in OMT [Rumbaugh94b]

Interaction diagram with script
and focus of control

Simple interaction diagram

268

Figure 133: Description of a use case in OMT [Rumbaugh94b]

Figure 134: Event flow diagram in OMT [Rumbaugh95]

269

Figure 135: Two different kinds of event trace diagrams in OMT [Rumbaugh95]

Figure 136: Concurrent object interaction diagram in OMT [Rumbaugh95b]

Event trace for ‘phone call’ with arrows that
denote signals and with concrete values instead
of parameter types.

Event trace with arrows that denote
procedure calls.

270

Figure 137: Object interaction diagram showing the design of the operation ‘redisplay’
[Rumbaugh95b]

Figure 138: Operation specification in OMT [Rumbaugh95b]

Figure 139: Object-event table and structure diagrams in M.E.R.O.DE [Dedene94]

271

Figure 140: Scenario tree and grammar of the user-view of the ‘caller’ [Hsia94]

Figure 141: Scenario tree and conceptual state machine of the user-view of the ‘callee’
[Hsia94]

272

Figure 142: Collaboration graph in Responsibility Driven Design [Wirfs90, page153]

Figure 143: Class card in [Wilkinson95, page115]

Figure 144: Scenario description in [Wilkinson95, page146]

273

Figure 145: Class diagram with main collaboration in [Wilkinson95, page143]

Figure 146: Action diagram with brackets, used for the specification of a scenario
[Kowal92, page292]

274

Figure 147: Composition of scenarios in [Glinz95]

275

Figure 148: State chart for one scenario in [Glinz95]

Figure 149: Event-response list and sample storyboard in OORD [Umphress91]

276

Figure 150: Graphical representation of a “Geschaeftsvorfall” in [Mueller93]

To the left we have the trigger of the business process and documents needed
by the business process. To the right we have external partners that get mes-
sages from the business process. In the middle, the sequence of the building
blocks is displayed. The diagram is read from top to bottom and left to right.

277

Figure 151: Bergen interaction diagram, captures also the inheritance hierarchy of the
objects [Baklund95]

Figure 152: Description of a group of interacting objects using path expressions (PEG)
[Adam94]

- ‘Rectangle Creation Tool’ is a subtype of ‘Creation Tool’
- the horizontal arrows point to the objects which are

referenced in the operation call
- ‘d’ shows in which type the operation is declared
- ‘i’ shows in which type the operation is implemented
- the vertical arrows indicate the durations of the operations

Part of the description of the
framework Dispatcher/Pane:

278

279

Appendix C
Enhancing Fusion
In this appendix we describe one possible way to integrate some features of our en-
hanced scenario modelling technique (SEAM) into the Fusion method.

The analysis model

Hierarchies of services

Fusion, as described by [Coleman94], assumes that the requirements are already deter-
mined and specified in some requirements specification document. During analysis,
these requirements are modelled in the analysis model and the external view of the glo-
bal behaviour of the system is specified by system operations. These system operations
are very fine grained. They describe the reactions of the system and map them onto ex-
actly one input event. Event trace diagrams (called scenarios) which show sequences of
input and output events are used to help determine the system operations, but they are
not really part of the analysis model and do not give a more abstract view of the global
behaviour.

By introducing higher level system services, hierarchies of services and conceptual in-
teractions, we can enhance Fusion so that it also supports requirements determination
and offers the capability to model higher abstraction levels of the external view of global
behaviour. The lowest level services - elementary system services in SEAM - correspond
to the system operations of Fusion, and the interactions of SEAM correspond to events
in Fusion. One of the method-specific characteristics of Fusion is its technique of mod-
elling system operations. Therefore we do not use the syntax and semantics of the ele-
mentary system services of SEAM as described in chapter 4, but we keep almost
completely to the syntax and semantic of the system operations of Fusion. We propose
the following semantic for the system operations in enhanced Fusion:

• Whereas in SEAM elementary system services may have several interactions
with the agents, in enhanced Fusion only one input event is allowed. This
input event is a notification. In most cases it is a purely conceptual
interaction. It models the total input data flow necessary for this system
operation from the triggering agent to the system.1

280

• There is a one-to-one correspondence between system operations and
triggering events, but in contrast to Fusion they do not necessarily have the
same name.

• A system operation is always triggered by an event coming from an external
agent. For time-outs, an artificial external agent must be introduced. System
operations that are triggered internally, either by another system operation or
by consistency triggers, are not allowed.

• System operations may be modelled as specialisations or extensions of other
system operations.

• Common parts of system operations cannot be modelled by separate services.
A system operation is always a simple service and cannot be modelled as a
partial aggregate service. The only way to factor out common parts in the
description of system operations is to use functions and predicates which are
defined in the data dictionary (see [Coleman94, chapter C-4.2]).

Describing higher level system services

The higher level system services are described by the notation given in chapter 4. All the
interactions are notifications. Only the external view of the services is modelled. For the
description of high-level services we may use interaction diagrams as well as context di-
agrams and service diagrams. The scenarios of Fusion are not used.

Whether higher level system services are defined at all, and to which degree they are re-
flected in the analysis model, depends on the goal of the analysis model. It is also feasible
to have two analysis models. The first is developed when the basic functional require-
ments are determined and before the exact user interface and user interactions are
known, and only contains higher level system services. The second is developed after the
effective user interface has been decided upon. It contains all the elementary system
services, and maybe some higher level system services as well.

Describing elementary system services

Elementary system services are described by the operation schemas of Fusion which are
slightly modified and enhanced:

• A section “Receives” is added. This section contains the name and the
parameters of the input event (only one), and the name of the agent that sends
this event. The parameters are no longer listed in the section “Reads”, and the
keyword “supplied” is no longer necessary. The name of the input event is not
necessarily identical to the name of the system operation.

1. We allow that the input event may also be a technical interaction. Though this is the default in the Fusion meth-
od as described by [Coleman94], it should be used with care. Such a technical interaction must appear as a
method call in the design. Examples of the rare situations where this is the case are command line inputs or
signals from hardware devices.

281

• In the case of elementary system services that are specialisations or extended
services, a section “Specialisation of” or “Extension of” is added. This
section contains the name of the generalized or original service, and a textual
description of the conditions under which this extended or specialised service
is triggered. In the case of a specialised service, the operation schema
contains the whole specification of the specialised service. For an extended
service, the operation schema describes what differs from the original service
(e.g. instead of the message a, the messages b and c are sent).

In contrast to the high-level services which are described by the interaction diagrams in
an algorithmic way, the description of the elementary system services is declarative. No
interaction diagrams are made for elementary system services. The interactions are only
mentioned in the sections “Receives”, “Sends” and “Results”.

The object model of analysis

We assimilate the analysis object model as it is specified by the Fusion method but we
consider it as being only a provisional external data model. It describes the system state
as used in the operation schemas, but does not describe the internal structure of the sys-
tem. The internal structure is determined in the design. The operation schemas of anal-
ysis refer to the data items of the object model. Event parameters may also be typed
values that are only defined in the data dictionary.

The system life-cycle

In Fusion the system life-cycle is specified by regular expressions showing the possible
orders of input and output events. As there does not exist any concept of higher level
services, the names of these regular expressions have no further meaning. [Coleman94]
recommends enforcing that each input event is followed by an expression containing all
possible output events to this input event, and not containing any further input events.2

This is the case in the life-cycle expressions in figure 113, where PrivEnquiry is defined as:

 PrivEnquiry = authorize.(#confirm | #deny).(inquire.#amount)*.finish

In enhanced Fusion we simply replace the strings of input and output events belonging
to the same system operation by the name of the system operation. Furthermore, the reg-
ular expressions specify the complete aggregate services of the system. For above exam-
ple, we get the following specification of the complete aggregate service PrivEnquiry:

2. Another possibility is to mix output events with input events. For above example this would give the following
regular expression:
PrivEnquiry = authorize . ((#confirm. (inquire. #amount)*. finish) | #deny)
This has the advantage that we can show directly in the life-cycle model that the input event inquire can only
be accepted after the output event confirm and must be rejected after the output event deny. The disadvantage
of this variant is that the regular expressions get very complex (that is why this variant is not recommended in
Fusion [Coleman94, chapter 2-5.2]), and that regular expressions cannot be mapped to system operations or
complete aggregate services.

282

PrivEnquiry = authorize . inquire* . finish

Of course, complete aggregate services may be further described by service schemas
and/or interaction diagrams.

The design model

In Fusion messages are always method calls. In enhanced Fusion this is no longer the
case. We enlarge the meaning of the term message to include all different kinds of inter-
actions (technical interactions, conceptual interactions, notifications, requests).

Visibility graphs and class descriptions

For enhanced Fusion we change nothing in the visibility graphs, inheritance graphs and
class descriptions of Fusion. The class descriptions correspond to the object schemas of
SEAM, but we specify neither the services that an object uses nor the life-cycle and es-
sential states of the object. The services that an object uses can only be seen in the inter-
action graphs. They are recapitulated nowhere else. As in Fusion, the life-cycles of the
atomic objects are not specified at all, and only the life-cycle of the system as a whole is
modelled (in the analysis model). The methods of Fusion correspond to the atomic serv-
ices of SEAM.

System operations

In Fusion, each analysis input event involved in a system operation corresponds in the
design to a method of the controller object responsible for controlling this system oper-
ation. Operation schema data items which are marked as supplied become the parame-
ters of this method. In enhanced Fusion we do not enforce this 1:1 correspondence; on
the contrary, analysis input events may even be purely conceptual events, and the corre-
sponding interaction graphs may have several technical input events from the user. If we
do not show the interface objects responsible for the user inputs, then we get several in-
teraction graphs, one (or more) for each technical input event. If we show all user inter-
face objects, then one interaction graph is the result (if it is not further decomposed).
This one graph shows all user interactions for the whole system operation.

If a system operation is described by several operation schemas, if a generalized system
operation has several specialised system operations, or if a system operation has extend-
ed system operations, then all these operations are described by the same interaction
graph in the design. This interaction graph has to treat all the special cases which may
be described by more than one operation schema.

Though we have allowed only one scenario type for the external view of the system op-
erations, we allow several scenario types on several abstraction levels for the internal
view of the system operations. This is helpful whenever complex design patterns are
used, where we would like to distinguish between the conceptual flow of events and the
effective interaction mechanisms.

283

Changes and enhancements in the syntax of the interaction graphs

Fusion uses two-dimensional object diagrams for the interaction graphs. As we have
shown in chapter 4.2.5.5, instead of time-line interaction diagrams two-dimensional ob-
ject diagrams can also be used for modelling scenario types. We suggest using these di-
agrams for enhanced Fusion, but we propose some changes and some enhancements
compared to the syntax given by Fusion.

• Messages: In the interaction graphs we allow notifications as well as requests,
and conceptual as well as technical interactions.

• Create-messages: Fusion shows both, the creation and the initialisation of
objects with a message create. This leads easily to confusion, especially when
an object is not initialised by the same object as created it. We therefore
suggest using the notation proposed in chapter 4.2.5.5. For the creation a
special arrow is used which denotes only the creation of the object and is not
a method call to the created object.

• User interface: We suggest modelling the interface objects for both, the
handling of the input events and the handling of the output events. The user
interface objects can either be modelled in detail, or summarized by an object
group.

• Decomposing graphs: The decomposition is not down the hierarchy of
method calls but along groups. If a graph should be decomposed, then several
objects are put together in a group. The internal views of services offered by
this group are modelled by separate interaction graphs. The external view of
these services is not modelled or specified separately.
Groups of objects are also used whenever certain details are not yet known, or
when details are deliberately abstracted away (e.g. one group for the whole
user interface, one group for each pair of view and controller, or one group for
the network communication). Groups are modelled by a dotted rectangle.

• Description of methods: Instead of one description for each method, we make
one description per interaction graph. This description is labelled with the
name of the system or of the group that offers the service that is described by
this specific interaction graph, and by the name of the service.

• Hiding objects: We also allow object hiding and the replacement of several
messages by an indirect message as shown in chapter 4.2.5.4. Yet message
hiding is not possible in two-dimensional object diagrams, because the
pseudo-code annotation is disconnected from the diagram.

Differences between enhanced Fusion and SEAM

In order to keep the most typical features of Fusion, we have not integrated all concepts
of our enhanced scenario modelling technique into Fusion. There remain therefore some
substantial differences between enhanced Fusion and SEAM:

284

• In enhanced Fusion, analysis and design are defined by the viewpoint they
adopt towards the system. Analysis models the global behaviour of the
software system from an external point of view and uses a provisional data
model for the data view. Design determines the objects that make up the
software system and shows the internal view of the global behaviour. The
external behaviour of a system that is larger than the future software system
cannot be modelled, just as it cannot be modelled in Fusion.

• No subsystems3 are modelled. Analysis is only concerned with the external
behaviour of the whole system. In the design, only atomic objects are used.
We introduced the notion of object groups to abstract away complex
behaviour and to decompose object interaction graphs. But these groups only
facilitate the modelling; they have no significance in the final software
system.

• The life-cycle is only considered for the system as a whole, not for
subsystems or for atomic objects.

• The lowest levels of system services (i.e. the system operations) are modelled
differently to the higher level system services. Also various constraints apply
to the system operations that we do not have for the elementary system
services in SEAM.4 Enhanced Fusion is more precise than SEAM concerning
what is modelled as an elementary service and how it is modelled.

• A system service cannot be modelled as a partial aggregate service.

• We use different kinds of interaction diagrams: For the external view of the
high-level system services, time-line diagrams are used. For the internal view
of the elementary system services, two-dimensional object diagrams are used.

• We left the class descriptions of Fusion as they are. In contrast to SEAM they
do not show which services a class uses from other classes.

Of course, an integration of SEAM into Fusion could go further or less far than is pro-
posed in this appendix. To what degree the Fusion method as described in [Coleman94]
is followed and to what degree our SEAM approach is used must be decided according
to the specific circumstances of a given project. Factors which must be taken into ac-
count are project domain and complexity, tools used, the knowledge and experience of
the people involved, and other project specific constraints.

3. Introducing subsystems into Fusion would necessitate to rework concepts and notations for aggregation in the
object model of analysis and for exclusive references in the visibility graphs of the design.

4. We could also use the semantic and syntax of the elementary service as described in chapter 4. The system op-
erations would then be described like all other system services, i.e. in an algorithmic way, by one or more sce-
nario types, having zero, one or more input interactions, and being triggered by an external agent or internally.

285

 References

[Adams92] G. Adams; Describing Groups of Interacting Objects Using Path Expres-
sions; Master Thesis, School of Computer Science, Carleton University,
Ottawa, Ontario, 1992

[Adams94] G. Adams, J.P. Corriveau; Capturing Object Interactions; Proceedings of
TOOLS Europe ’94, Versailles, 1994

[Alvarez95] X. Alvarez et. al; Use-Cases, Interaction Diagrams, Hypermedia & Visuali-
zation; Workshop on “Requirements Engineering: Use Cases and More”,
OOPSLA 95, 1995

[Armour95] F. Armour et. al; Use Case Modeling Concepts for Large Business System
Development; Workshop on “Requirements Engineering: Use Cases and
More”, OOPSLA 95, 1995

[Atkinson95] C. Atkinson; A Comparison of Object-Oriented Methods; Seminar given at
the EPFL in Lausanne, May 1995

[Bailer93] B. Bailer; Geschäftsmodelle, Verständnis und Folgen der Technologieneu-
tralität; Institutsbericht Nr. 93.43, Institut für Informatik der Universität
Zürich, 1993

[Baklund95] E. Baklund et. al; Extending Interaction Diagrams; ROAD July-August 1995

[Beck89] K. Beck and W. Cunningham; A Laboratory for Teaching Object-Oriented
Thinking; Proceedings of OOPSLA 89, 1989

[Benner93] K. M. Benner et. al; Utilizing Scenarios in the Software Development
Process; Information Systems Development Process, edited by N.Prakash et.
al, IFIP Transactions A-30, 1993

[Berard93] E. V. Berard; Essays on Object-Oriented Software Engineering, Volume1;
Prentice Hall, 1993

[Beringer92] D. Beringer; Qualitätssicherung; Seminar of the GfAI Gruppe für ange-
wandte Informatik AG, 1992

[Beringer92b] D. Beringer et al.; SEUEDA, Phasenkapitel Konzept; Internal document of
the GfAI Gruppe für angewandte Informatik AG, 1992

[Beringer92c] D. Beringer; Uebungen zur essentiellen Systemanalyse; Seminar of the GfAI
Gruppe für angewandte Informatik AG, 1992

[Beringer93] D. Beringer; Der Weg zum Objektmodell; Output, Sonderausgabe über
Objektorientierte Systeme, November 1993

[Beringer94] D. Beringer; Limits of Seamlessness in Object-Oriented Software Develop-
ment; Proceedings of TOOLS Europe ’94, Versailles, 1994

[Beringer95] D. Beringer; The Model Architecture Frame: Quality Management in a Multi
Method Environment; Proceedings of SQM’95, Seville, 1995

[Beringer95b] D. Beringer; Modelling Global Behaviour in Object-Oriented Analysis:
Overview of the Usage of Scenarios, Use Cases and Interaction Diagrams;
Project of the postgraduated course on software engineering of 1995, EPFL,
Lausanne, Switzerland, 1995

286

[Beringer96] D. Beringer; Modelling Global Behaviour in Object-Oriented Analysis:
Scenarios, Use Cases and Interaction Diagrams; Technical Report No. 96/
215, Software Engineering Laboratory, EPFL, Lausanne, Switzerland, 1996

[Beringer96b] D. Beringer; The Goals of the Analysis Model; Technical Report No. 96/216,
Software Engineering Laboratory, EPFL, Lausanne, Switzerland, 1996.

[Berteaud95] R. Berteaud, J. Bezivin; Requirements Modeling in the OSMOSIS Work-
bench; Workshop on “Requirements Engineering: Use Cases and More”,
OOPSLA 95, 1995

[Blaha93] M. Blaha; Aggregation of parts of parts of parts; JOOP September 1993

[Booch91] G. Booch; Object Oriented Design with Applications; Benjamin/Cummings,
1991

[Booch94] G. Booch; Object Oriented Analysis and Design; Benjamin/Cummings, 1994

[Booch95] G. Booch, J. Rumbaugh; Unified Method for Object-Oriented Development;
Documentation Set Version 0.8, Rational Software Corporation, 1995

[Bowen95] J. P. Bowen, M. G. Hinchey; Ten Commandments of Formal Methods; IEEE
Computer, April 1995

[Brantschen91] S. Brantschen; Essentielle Systemanalyse, Moderne Strukturierte Analyse;
Seminar of the GfAI Gruppe für angewandte Informatik AG, 1991

[Briod93] P. A. Briod, S. Moser, G. Wanner; BI-CASE/OBJECT V1.1 - A Modern
Systems Development Methodology; Bedag Informatik, Berne, Switzerland,
1993

[Buhr95] R. J. A. Buhr; Use Case Maps: A New Model to Bridge the Gap Between
Requirements and Design; Workshop on “Requirements Engineering: Use
Cases and More”, OOPSLA 95, 1995; see also Use Case Maps for Object
Oriented Systems; Prentice Hall, 1995

[Buhr96] R. J. A.Buhr; High-Level Design with Use Case Maps; Tutorial OOPSLA 96,
1996

[Cartiant95] I. Cartiant; MARCO: Object Architecture Method; Report on Object Analysis
and Design, May-June 1995

[Chang93] C. K. Chang; Is existing software engineering obsolete?; IEEE Software,
September 1993

[Coad91] P. Coad and E. Yourdon; Object-Oriented Analysis; Prentice-Hall, 1991

[Coleman94] D. Coleman et al.; Object-Oriented Development: the Fusion Method; Pren-
tice-Hall, 1994

[Coleman95] D. Coleman; Fusion with Use Cases - Extending Fusion for Requirements
Modelling; Presentation at the Fusion Users Meeting of OOPSLA 95, 1995

[Cook94] S. Cook, J. Daniels; Designing Object Systems, Object-Oriented Modelling
with Syntropy; Prentice Hall, 1994

[Cotton95] T. Cotton; Evolutionary Fusion: A Customer-oriented Incremental Life Cycle
for Fusion; Fusion in the Real World, edited by R. Malan, R. Letsinger and
D. Coleman, Prentice-Hall, 1995

[Davis90] A. Davis; Software Requirements - Analysis and Specification; Prentice Hall,
1990

[Davis93] A. Davis; Software Requirements - Objects, Functions and States; Prentice
Hall, 1993

287

[Dedene94] G. Dedene, M. Snoeck; M.E.R.o.DE: A Model-driven Entity-Relationship
object-oriented DEvelopment method; ACM SIGSOFT, vol 19 no 3, 1994

[DeMarco79] T. DeMarco; Structured Analysis and System Specification; Yourdon Press,
1979

[D’Souza93] D. D'Souza; Comparing OO Analysis and Design Methods; Proceedings of
the OOP 93 in Muenchen

[Dubois93] E. Dubois et al.; O-O Requirements Analysis: an Agent Perspective; Proceed-
ings of the ECOOP 93 in Kaiserslautern, 1993

[Duffy95] D. J. Duffy; Object-Oriented Requirements Analysis; ROAD, July-August
1995

[Eckert93] G. Eckert, P. Golder; Improving Object-Oriented Analysis; Technical Report
No. 93/32, Software Engineering Laboratory, EPFL, Switzerland, 1993

[Eckert95] G. Eckert; Improving the Analysis Stage of the Fusion Method; Fusion in the
Real World, edited by R. Malan, R. Letsinger and D. Coleman, Prentice-
Hall, 1995

[Eckert95b] G. Eckert and M. Kempe; Modeling with Objects and Values: Issues and
Perspectives; ROAD vol 1 no 5, 1995

[Firesmith95] D. G. Firesmith; Use Cases: The Pros and Cons; ROAD July-August 1995

[Finkelstein96] A. Finkelstein, I. Sommerville; Viewpoints in Requirements Engineering;
Special issue of the Software Engineering Journal, vol 11 no 1, January 1996

[Floyd89] C. Floyd; Softwareentwicklung als Realitaetskonstruktion; Proceedings of
the Fachtagung Software-Entwicklung, of the GI, Marburg, 1989

[Gilb88] T. Gilb; Principles of Software Engineering Management; Addison Wesley,
1988

[Glinz95] M. Glinz; An Integrated Formal Model of Scenarios Based on Statecharts;
Proceedings of the 5th European Software Engineering Conference ESEC
‘95, Sitges, Spain, 1995

[Graham93] I. Graham; Financial Object-Oriented Rapid Analysis Method (FORAM),
Training Notes 1 to 4; Seminar given at the SBV in Basel, 1993

[Graham94] I. Graham; Object-Oriented Methods, 2nd Edition; Addison-Wesley, 1994

[Graham94b] I. Graham; Beyond the Use Case: Combining task analysis and scripts in
object-oriented requirements capture and business process re-engineering;
Proceedings of TOOLS Europe’ 94, Versailles, 1994

[Graham95] I. Graham; Business Process Modelling; Object Expert, November-
December 1995 and January-February 1996

[Graham96] I. Graham; Task scripts, use cases and scenarios in object oriented analysis;
Object Oriented Systems, vol 3 no 3, September 1996

[Gryczan92] G. Gryczan, H.Züllighoven; Objektorientierte Systementwicklung, Leitbild
und Entwicklungsdokumente; Informatik-Spektrum Nr. 15, 1992

[Hansen95] F. Hansen; Experiences with OMT Analysis: “From the Real World to an
Application”; Workshop on “Requirements Engineering: Use Cases and
More”, OOPSLA 95, 1995

[Harel87] D. Harel; Statecharts: a visual formalism for complex systems; Science of
Computer Programming 8, 231-274, 1987

288

[Heeg94] G. Heeg; Object Behavior Analysis - Von der Suche nach Objekten; Talk
given at a meeting of Choose and INTEC-OO in Bern, Switzerland, 1994

[Hofmann93] H. F. Hofmann; Requirements Engineering, A Survey of Methods and Tools;
Institutsbericht Nr. 93.05, Institut für Informatik der Universität Zürich, 1993

[Holbrook90] H. Holbrook; A Scenario-Based Methodology for Conducting Requirements
Elicitation; ACM SIGSOFT, vol 15 no 1, 1990

[Høydalsvik93] G. H. Høydalsvik, G. Sindre; On the Purpose of Object-Oriented Analysis;
Proceedings of OOPSLA 93, 1993

[Huber90] G. P. Huber; A Theory of the Effects of Advanced Information Technologies
on Organizational Design, Intelligence, and Decision Making; Academy of
Management Review, vol 15 no 1, 1990

[Hsia94] P. Hsia et al.; Formal Approach to Scenario Analysis; IEEE Software, March
1994

[Jacobson92] I. Jacobson; Object-Oriented Software Engineering; Addison Wesley, 1992

[Jacobson95] I. Jacobson; A growing consensus on use cases; JOOP March-April 1995

[Jacobson95b] I. Jacobson et. al; Using contracts and use cases to build plugable architec-
tures; JOOP May 1995

[Jarke94] M. Jarke, K. Pohl; Requirements engineering in 2001: (virtually) managing
a changing reality; Software Engineering Journal, November 1994

[Jufer92] R. Jufer; Strukturierte Spezifikation; Seminar of the GfAI Gruppe für ange-
wandte Informatik AG, 1992

[Kilberth93] K. Kilberth, G. Gryczan, H. Zuelligkoven; Objektorientierte Anwendungsen-
twicklung: Konzepte, Strategien, Erfahrungen; Verlag Vieweg, 1993

[Kilov94] H. Kilov and J. Ross; Information Modeling, an object-oriented approach;
Prentice Hall, 1994

[Kolbe95] K. Kolbe; How do you know you are building the “right” software? Experi-
ences with Use Cases; Workshop on “Requirements Engineering: Use Cases
and More”, OOPSLA 95, 1995

[Kotonya96] G. Kotonya, I. Sommerville; Requirements engineering with viewpoints;
Software Engineering Journal, January 1996

[Kowal92] J. A. Kowal; Behavior Models, Specifying User's Expectations; Prentice
Hall, 1992

[Kruchten95] P. B. Kruchten; The 4+1 View Model of Architecture; IEEE Software,
November 1995

[Kruchten96] P. B. Kruchten, C. J. Thompson; Iterative Software Development for Large
Ada Programs; Proceedings of Ada-Europe’96, Montreux, June 1996

[Loenvig95] B. Loenvig; Experiences with Requirement Capturing, Specification and OO
Requirements Analysis; Workshop on “Requirements Engineering: Use
Cases and More”, OOPSLA 95, 1995

[Martin85] J. Martin and C. McClure; Diagramming Techniques for Analysts and
Programmers; Prentice Hall, 1985

[Martin95] J. Martin and J. Odell; Object-Oriented methods: a Foundation; Prentice
Hall, 1995

[McGinnes92] S. McGinnes; How Objective is Object-Oriented Analysis?; Proceedings of
CAiSE’92, 1992

289

[McMenamin84] M. McMenamin, J.F. Palmer; Essential Systems Analysis; Yourdan Press,
1984

[Meyers92] S. Meyers and S. P. Reiss; An Empirical Study of Multiple_View Software
Development; Proceedings of SIGSOFT’92, 1992

[Meyer93] B. Meyer and J. M. Nerson; Design by Contract; Proceedings of the Summer
School of EDBT in Leysin, 1993

[Moser92] S. Moser; Metrics and Estimation, Aufwandschätzungen in Informatik-
Projekten; Seminar of the GfAI Gruppe für angewandte Informatik AG and
of IBM Switzerland, 1992

[Mössenböck96] H. Mössenböck and K. Koskimies; Visualisierung objektorientierter Soft-
ware durch Ereignisdiagramme; SI-INFORMATIK, no3 ,1996; see also K.
Koskimies and H. Mössenböck; Scene: Using Scenario Diagrams and Active
Text for Illustrating Object-Oriented Programs; Proceedings of ICSE-18,
Berlin, 1996

[Mueller93] G. Mueller-Luschnat et al.; Objektorientierte Analyse und Geschäftsvorfall-
modellierung; Proceedings of the EMISA-Fachtagung über objektorientierte
Methoden für Informationssysteme, Universität Klagenfurt, 1993

[Nierstrasz95] O. Nierstrasz and L. Dami; Object-Oriented Software Technology; in Object-
Oriented Software Composition, edited by O. Nierstrasz and D. Tsichritzis,
Prentice Hall, 1995

[Odell93] J. Odell; Using business rules with diagrams; JOOP July-August 1993

[ODMG93] The Object DBMS Standard; Th. Atwood, Object Magazine, September-
October 1993, see also The ODMG Object Model; M. Loomis, JOOP June
1993

[OMG92] Object Analysis and Design, Volume 1: Reference model, Draft 7.0; OMG,
1992

[Parnas86] D. L. Parnas and P. C. Clements; A Rational Design Process: How and Why
to Fake It; IEEE Trans. on Soft. Eng., vol 12 no 2, February 1986

[Rawsthorne95] D. A. Rawsthorne; Transaction Based Analysis; Workshop on “Require-
ments Engineering: Use Cases and More”, OOPSLA 95, 1995

[Regnell96] B. Regnell et. al; A Hierarchical Use Case Model with Graphical Represen-
tation; Proceedings of ECBS'96, March 1996

[Reisin90] F. Reisin; Kooperative Gestaltung in partizipativen Softwareprojekten; PhD
Thesis, Technische Universität Berlin, 1990

[Rubin92] K. S. Rubin, A. Goldberg; Object Behavior Analysis; Communications of the
ACM, September 1992

[Rumbaugh91] J. Rumbaugh et al.; Object Oriented Modelling and Design; Prentice-Hall,
1991

[Rumbaugh93] J. Rumbaugh; Controlling code - How to implement dynamic models; JOOP
May 1993

[Rumbaugh94] J. Rumbaugh; Modeling & Design; JOOP, issues of June 1994, September
1994, November-December 1994, February 1995, March-April 1995 and
May 1995

[Rumbaugh94b] J. Rumbaugh; Getting started, Using use cases to capture requirements;
JOOP September 1994

290

[Rumbaugh94c] J. Rumbaugh; Building boxes: Composite objects; JOOP November-
December 1994

[Rumbaugh94d] J. Rumbaugh; The life of an object model; JOOP March-April 1994

[Rumbaugh95] J. Rumbaugh; OMT: The dynamic model; JOOP February 1995

[Rumbaugh95b] J. Rumbaugh; OMT: The functional model; JOOP March-April 1995

[Sadr96] B. Sadr, P. J. Dousette; An OO Project Management Strategy; IEEE
Computer, vol29 no9, 1996

[Schauer93] H. Schauer, B. Kuhnt; Partizipative Software-Entwicklung; Institutsbericht
Nr. 93.35, Institut für Informatik der Universität Zürich, 1993

[Sharble93] R. Sharble and S. Cohen; The Object-Oriented Brewery: A Comparison of
Two Object-Oriented Development Methods; ACM SIGSOFT, April 1993

[Shlaer88] S. Shlaer, S. J. Mellor; Object-Oriented Systems Analysis, Modeling the
World in Data; Yourdon Press, 1988

[Shlaer92] S. Shlaer, S. J. Mellor; Object Lifecycles, Modeling the World in States;
Yourdon Press, 1992

[Siddiqi94] J. Siddiqi; Challenging Universal Truths of Requirements Engineering; IEEE
Software, March 1994

[Stein93] W. Stein; Objektorientierte Analysemethoden - ein Vergleich, Informatik-
Spektrum (1993) 16:317-332, Springer-Verlag, 1993

[Stein94] W. Stein; Objektorientierte Analysemethoden: Vergleich, Bewertung,
Auswahl, B.I. Wissenschaftsverlag, Mannheim, 1994

[Umphress91] D. A. Umphress, S. G. March; Object-oriented requirements determination;
in JOOP Focus on A&D, edited by R. S. Wiener, SIGS Publications, 1991

[Ungar91] D. Ungar, R. B. Smith; SELF: The Power of Simplicity; Lisp and Symbolic
Computation, vol4 no3, 1991

[Waldén95] K. Waldén, J.M. Nerson; Seamless Object-Oriented Software Architecture;
Prentice Hall, 1995

[Ward94] R. Ward, J. Stevens; Object Orientation Is Not Always Best!; Proceedings of
Ada in Europe, Copenhagen, 1994

[Wassermann92] A. Wassermann; Behaviour and scenarios in object-oriented development;
JOOP February 1992

[Webster] Webster's Ninth New Collegiate Dictionary and Webster's Collegiate
Thesaurus; NeXT Digital Version, 1988/1992

[Wilkinson95] N. M. Wilkinson; Using CRC Cards: an informal approach to object-
oriented development; Prentice Hall, 1990

[Wirfs90] R. Wirfs-Brock, B. Wilkerson.; Designing Object-Oriented Software; Pren-
tice Hall, 1990

[Yourdon89] E. Yourdon; Modern Structured Analysis; Prentice Hall, 1989

[Zorman95] L. A. Zorman; Requirements Envisaging by Utilizing Scenarios (REBUS);
PhD Thesis, USC/ISI USA, 1995

291

 Curriculum Vitae

Name: Isolde Dorothea Beringer - Bärtschi
Date of birth: May 15, 1964
Nationality: Swiss

1970 -1978 Primary and secondary school, Untergymnasium

1978 -1982 Gymnasium Bern-Neufeld

1983 -1989 Student of computer science, mathematics and micro-electronics
at the Universities of Bern and Neuchatel

1987 Trainee at SAS Institute, Cary NC, USA

1988 -1989 Diploma student at the ABB Research Centre in Dättwil

1989 Diploma in computer science (lic. phil. nat.) from the faculty of
Science at the University of Bern

1990 -1991 Software engineer at Ascom Gfeller AG in Bern

1991 -1994 Methodologist at GfAI, Gruppe für Angewandte Informatik AG
in Herrenschwanden

1994 -1997 Research assistant and PhD student at the Software Engineering
Laboratory of the Swiss Federal Institute of Technology in
Lausanne (EPFL)

