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Abstract

Magnetohydrodynamic (MHD) stability limits for the n = 1 internal kink mode in a
tokamak are investigated. As the internal kink mode is a weak instability, accurate equi-
librium solutions are required to determine its stability boundaries. For this purpose,
a numerical equilibrium code called CHEASE using Hermite bicubic elements has been
developed. The code computes equilibria and provides a mapping to flux coordinates
for MHD stability calculations. Several test cases are studied to show the convergence
rate of the equilibrium. Convergence tests are also presented for the eigenvalues of the
stability calculations when the equilibrium mesh is varied.

Using CHEASE and the toroidal resistive MHD stability code MARS, effects of
current profile, plasma cross-section and resistivity on the stability of the internal kink
mode are investigated for tokamak equilibria. The results show that the internal kink
mode is more unstable than previously thought. The numerical ideal stability results
for a circular plasma cross section are compared with the results obtained by an analytic
large aspect ratio expansion. It is found that the internal kink is significantly desta-
bilized by the ellipticity of the plasma cross section combined with low shear. A large
aspect ratio expansion of the Mercier and the resistive interchange criteria retaining
effects of ellipticity and triangularity is given, showing analytically the destabilization
by ellipticity.

For resistive internal kink modes, the stabilizing effect of small aspect ratio is con-
firmed, but as for the ideal case, the stability is very sensitive with respect to shaping of
the plasma cross section. For finite pressure and small resistivity, only a very restricted

set of equilibria is stable to the internal kink mode.




Résumé

Le sujet de ce travail est 'examen des limites de stabilité magnétohydrodynamique
(MHD) des modes kinks internes de nombre d’onde toroidal n = 1 dans un toka-
mak. Les kinks internes sont des modes & faible taux de croissance, et par conséquent,
des solutions d’équilibre trés précises sont nécessaires pour déterminer leurs limites de
stabilité. Pour cela, un code numérique, appellé CHEASE, qui utilise des éléments
finis bicubiques d’Hermite, a été développé. Ce code évalue des équilibres dans les
coordonnées de flux et fournit les quantités nécessaires au calcul de stabilité MHD.
Plusieurs cas test sont utilisés pour vérifier la convergence de 1’équilibre. Des études
de convergence sont aussi présentées sur des taux de croissance, afin d’évaluer 'erreur
due a I’équilibre sur le calcul de stabilité.

Avec CHEASE et le code toroidal de stabilité MHD résistive MARS, les effets sur
la stabilité du kink interne liés & la forme du profil de courant, & la section du plasma,
et a la résistivité sont étudiés pour des équilibres tokamak. Les résultats montrent
que le kink interne est moins stable que ce que ’on pensait auparavant. Les résultats
numériques de stabilité sont comparés avec ceux obtenus par un développement ana-
lytique en grand rapport d’aspect. Il est montré que lorsque le cisaillement des lignes
de champ magnétique est faible, le kink interne est déstabilisé de maniére importante
par Dellipticité de la section du plasma. Un développement en grand rapport d’aspect
est présenté pour les critéres de stabilité Mercier et interchange resistif, incluant les
effets diis & Dellipticité et i la triangularité de la section du plasma, afin d’illustrer
analytiquement la déstabilisation par Pellipticité.

Pour les kink internes résistifs, I’effet stabilisant des petits rapports d’aspect est
confirmé, mais comme pour les cas idéaux, la stabilité est trés sensible aux déformations
de la section du plasma. Lorsque la pression est finie et la résistivité faible, le kink

interne est stable seulement pour une classe trés restreinte d’équilibres.
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Chapter 1

Introduction

The work reported in the present thesis consists of the construction of an axisymmetric
magnetohydrodynamic (MHD) equilibrium code using bicubic Hermite finite elements,
and the study of ideal and resistive MHD stability of internal kink modes in tokamaks.

1.1 The context

An almost universal phenomenon in tokamaks is the so-called sawtooth oscillation, a
periodic and sudden relaxation of the plasma triggered by an internal instability of
toroidal mode number n = 1, which releases the energy accumulated in the plasma
center. These oscillations are detrimental for fusion, because they limit the central
plasma temperature during a discharge. In the next two paragraphs, some important

experimental and theoretical results on sawteeth and internal kink modes are reviewed.

1.1.1 Experimental results

In 1974, von Goeler et al. (1] for the first time observed sawteeth experimentally on
the ST tokamak. The connection between sawteeth and internal kink modes is due to
Kadomtsev [2]. He suggested that the sawteeth are triggered by an internal kink mode
of toroidal mode number n = 1, and that the nonlinear evolution of thése instabilities
leads to complete reconnection of the magnetic field lines.

Although the connection between the sawtooth and an n = 1 instability has been

firmly established, details of the Kadomtsev model have been questioned. An early




example is that of Dubois et al. [3]. They observed sawtooth oscillations in Ohmic
discharges on the TFR tokamak which indicated only a partial reconnection of the
magnetic field lines after the crash. Similar results were found on the JET (Joint
European Torus) tokamak in 1986 by Campbell et al. [4]. Moreover, sawtooth collapse
times comparable to the one of smaller tokamaks were observed in JET (between 50
and 100 us), which again is inconsistent with Kadomtsev’s model, where this time
depends on the resistive diffusion time of the plasma.

A rather precise knowledge of the safety factor profile is essential for understanding
the stability of the central region. The safety factor ¢ characterizes the structure of the
magnetic field, and is equal to the number of turns traversed in the toroidal direction
(the long way round the torus) of a field line that makes one poloidal turn (the short
way round the torus). In TEXTOR (Tokamak Experiment for Technically Oriented
Research) [5] and JET [6], investigations on the ¢ profile indicate that the safety factor
in the center of tokamaks, go, can be well below unity, even after the sawtooth collapse
[7). Therefore, stable plasma configurations with a ¢ = 1 surface exist in tokamaks,

which motivates investigations of internal kink stability limits.

1.1.2 Theoretical results

In the first analytical works about internal kink modes in the early seventies, the toka-
mak plasma was approximated by a cylinder of finite length with periodic boundary
conditions [8] (= the “straight tokamak” approximation, see also Wesson [9] or Freid-
berg, Chapter 9 {10]). But this model neglects effects of the toroidicity, which has a
strong influence on the MHD stability limits of the internal kink mode.

Bussac et al. [11] studied in 1975 the MHD stability of the ideal internal kink by
means of a large aspect ratio expansion, including toroidal corrections to lowest order in
aspect ratio. In contrast with the “straight tokamak” result, they found that the ideal
internal kink mode is stable in toroidal geometry when the pressure confined inside the
g = 1 surface is below a finite threshold value, that depends on the current profile.



In resistive MHD, Glasser, Greene and Johnson [12] derived the dispersion relation
for tearing modes and the resistive interchange stability criterion in a torus. This inter-
change stability criterion is the resistive counterpart of the Mercier stability criterion
[13], and its violation is a sufficient condition for resistive instability. Coppi et al. [14]
derived a dispersion relation for the resistive kink mode for pressure-less equilibria with
circular plasma boundary and infinite aspect ratio, valid for cases near marginal ideal
stability. Bussac et al. [15] demonstrated that for ideally stable cases, this resistive
kink mode is slowed down to a weaker tearing instability at finite aspect ratio.

Undoubtedly, more sophisticated theories than MHD are required for a complete
comprehension of the physics behind the sawtooth oscillations. But already in the
simplest theoretical frame, ideal MHD, the understanding of the stability limits of
the internal kink is poor. In 1976, Berger et al. [16] demonstrated numerically that
the ellipticity is destabilizing significantly the ideal internal kink mode for analytical
Solovev equilibria [17]. Conversely, the analytical large aspect ratio expansion including
shaping of the plasma cross section by Connor and Hastie [18] suggests that the effect
of ellipticity is weak.

As the internal kink is a weak instability, it is sensitive to various effects. In this the-
sis, the effects of current profile shape, plasma geometry, resistivity and wall separation
are investigated. It is shown that ellipticity and resistivity are strongly destabilizing
the internal kink, and that even for equilibria with circular cross sections, the ideal sta-
bility limits are significantly lower than previously assumed. Moreover, the numerical
results presented in the following show that it is very difficult to find entirely (ideally

and resistively) stable equilibria with a geometry typical of tokamaks.

1.2 The subject

1.2.1 Cubic Hermite element equilibrium code

In comparison with external kink modes, the internal kinks have small growth rates

(typically below v = 10~%w,, where ws = v4/Rg is the toroidal Alfvén frequency).




Moreover, the behavior of resistive instabilities is often sensitive to details in the vicinity
of resonant magnetic surfaces (toroidal surfaces on which the magnetic field lines are
closed, or where ¢ is a rational quantity). Therefore, an extremely accurate equilibrium
solution is required for a precise calculation of such instabilities.

Several numerical codes have been developed in the past, which use various nu-
merical techniques such as conforming {19,20] or non-conforming [21,22] linear finite
elements, finite differences [23,24,25,26], spectral decomposition [27], or a variational
moment method [28,29,30,31,32]. The methods of resolution applied in several of these
codes are documented in a recent review about the computation of MHD equilibria
in tokamaks [33]. With these codes, the precision in the equilibrium necessary for an
accurate internal kink stability calculation can be obtained by increasing the number
of intervals or poloidal modes used for the discretization. However, this proves to
be rather expensive in computer time for codes using linear elements. The spectral
methods solve this problem only partially, because as soon as the plasma cross section
becomes very non-circular (for instance a sharp dee), a large number of poloidal modes
are required to obtain a precise solution, and this again is computer time consuming.

Therefore, a new numerical code, called CHEASE [34] (Cubic Hermite Element
Axisymmetric Static Equilibrium) has been developed, solving the MHD equilibrium
problem in axisymmetric geometry, using bicubic Hermite finite elements. With bicubic

Hermite elements, the error of the solution converges locally as
"‘I’ - ‘I’Hermite" < Ch* (1.1)

where C is a constant and % is the discretization mesh “cell size” [35]. The Hermite
bicubic elements ensure that the gradient of the solution is continuous over the whole
equilibrium mesh, and guarantee that the second derivative of the solution converges

within every cell of the mesh.
With CHEASE and the toroidal resistive stability code MARS [36], ideal MHD

growth rates down to 5.107%w, can readily be computed. These codes are therefore
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appropriate for MHD stability studies of internal kink modes in tokamaks.

The first part of this thesis is organized as follows:

o Chapter 2 gives an outline of the bicubic finite element method applied for the
resolution of the axisymmetric equilibrium in toroidal geometry. Convergence
studies for different equilibria of the poloidal magnetic energy and the magnetic
axis are presented, and compared with the results obtained by the linear “hybrid

element” CLIO [21,22].

e Chapter 3 describes the mapping of the equilibrium to flux coordinates and the
computation of the equilibrium quantities required by the stability codes MARS
and ERATO [37] and the Alfvén and ion cyclotron range of frequencies code LION
[38]. The accuracy of the mapping is checked by convergence tests on eigenvalues
obtained with the stability codes ERATO and MARS when the equilibrium mesh
is refined. The errors on MHD growth rates computed with ERATO due to
CHEASE and the finite difference equilibrium code EQLAUS [26] are compared.

1.2.2 Linear MHD stability of internal kink modes

The dynamics of a plasma involve several distinct spatial and temporal scales, and a
variety of models can be applied for its description. In general, global plasma insta-
bilities that occur on the Alfvén time scale are well described by approximating the
plasma as a conducting fluid. This model is called MagnetoHydroDynamics (MHD).

The MHD equations including the effects of finite resistivity are

d
Btg +Vov=0 (Continuity)
_1;;;_’. =J x B —-Vp (Newton)
Flt) +TpV.v =0 (Equation of state)
E+vx B=7nJ (Ohm’ law) (1.2)

VxFE= —% (Faraday)

VxB=J (Ampere’s law)
V.B=0 (Initial conditions)
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where p is the mass density of the fluid, v the velocity and p the pressure, which is
assumed to be isotropic. B is the magnetic field, E the electric field, J the current
density, n the resistivity of the plasma and I the ratio of specific heats. D/Dt denotes
the convective derivative : D/Dt = 8/t + v.V.

Using the MHD model, Bussac et al. [11] calculated analytically the pressure limit
for ideal internal kink stability in circular equilibria by a large aspect ratio expansion.
For parabolic current profile and a small ¢ = 1 radius, they found that the n = 1
internal kink mode is stable when the poloidal beta on the ¢ = 1 surface satisfies
By < (13/144)'/% ~ 0.3. Tl_le poloidal beta, denoted by 8,, characterizes the pressure
confinement inside the ¢ = 1 surface. In the present thesis, numerical stability results
obtained for circular cross sections with CHEASE and MARS at finite aspect ratio
show that the critical 3, is generally significantly lower than 0.3. This discrepancy is
resolved as a result of the choice of the boundary conditions. In the examples presented
by Bussac et al. in [11), fixed boundary conditions were assumed. Here, Bussac’s
analytical large aspect ratio stability criterion will be applied to equilibria with a more
realistic boundary prescription, giving f,-limits that are in good agreement with the
numerical results at finite aspect ratio.

With respect to shaping, analytical studies {18,39] suggest that the effect of ellip-
ticity is weak when the central safety factor ¢o is close to unity, whereas numerical
computations show a clear destabilization by elliptic shaping [16,40]. Our numeri-
cal calculations, without recourse to geometrical orderings, confirm that ellipticity is
strongly destabilizing, in particular, at low shear. The main part of this destabilization
results from ellipticity in combination with finite pressure and finite aspect ratio. As
an analytical example of this destabilization, a large aspect ratio expression for the
Mercier and the resistive interchange criteria is presented, which includes the effects of
ellipticity and triangularity.

The last part of this thesis gives numerical results on resistive stability of the internal

kink. For very low pressure and circular cross section, the study confirms previous
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results obtained by Holmes et al. [41]: Resistive stability is favored by small aspect
ratio, low shear at the ¢ = 1 surface, and low go. However, it is found that even slight
pressure severely restricts the region of complete resistive MHD stability when ¢o < 1.
This result is discussed analytically by considering the resistive and ideal interchange
criteria, which play important roles for the linear stability of the internal kink. At
finite pressure, resistive instability is hard to avoid because the resistive interchange
criterion tends to be violated at ¢ = 1, as a result of non-circularity. A typical result,
when pressure and shape effects are taken into account, is that the internal kink mode
is slowed down by toroidal effects, and turns into a weak resistive tearing/interchange
mode at small resistivity. Elliptic shaping renders pressure gradients considerably more
destabilizing than for circular flux surfaces by violation of the resistive interchange
criterion.

The second part of this thesis is organized as follows:

e In Chapter 4, numerical results on the stability of the ideal internal kink are
presented. Effects of shaping of the plasma cross section and shape of the cur-
rent profile are investigated. For circular cross sections, a comparison with the

analytical large aspect ratio results is given.

e An expansion of the Mercier and the resistive interchange criteria is given in
Chapter 5. These show analytically the strong destabilizing effect of ellipticity of

the plasma cross section.

e Chapter 6 reports results about the resistive stability of the internal kink. Effects
of aspect ratio, shaping of the cross section, shape of the current profile, pressure

and wall separation are investigated numerically.

13






Chapter 2

Axisymmetric toroidal MHD
equilibrium resolution with bicubic
Hermite finite elements

The first part of this thesis describes the construction of a new equilibrium code,
named CHEASE (for Cubic Hermite Element Axisymmetric Static Equilibrium), using
bicubic Hermite finite elements for the discretization [34]. This code is documented in
Chapters 2 and 3. Convergence studies of equilibrium quantities and comparative tests
with existing equilibrium codes are presented. Quite generally, these tests show the
improvement in numerical precision and the savings in computation time for typical

tokamak applications in comparison with codes using linear finite elements.

2.1 Equilibrium problem

The problem of axisymmetric static MHD equilibrium is well known [42]. An axisym-

metric magnetic field can be represented as
B=GV®+Vex V¥ (2.1)

where @ is the ignorable toroidal angle (see Figure 2.1) and ¥ is the poloidal magnetic
flux function. For static MHD equilibria, 3/8¢ = 0 and v = 0, and eq.(1.2) reduces to

JXB:Vp
VxB=J (22)
V.B=0
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In that case, the poloidal current flux function G and the plasma pressure p are functions
of ¥ only. Substituting eq.(2.1) into eq.(2.2) leads to the Grad-Shafranov equation
[43,44,45]
1 1 Je
V.=V9¥ =—-p(¥) - —=GG'(¥) == 2.3
SV = —p(¥) - ;GG(¥) = 2 (23)
where jg denotes the toroidal plasma current density, R the major radius and prime

the derivative with respect to ¥. Eq.(2.3) is an elliptic second order nonlinear partial

X

Y = const —

magn. axis—"

Figure 2.1: The cylindrical coordinates (R; Z; ®) in toroidal geometry.

differential equation. The nature of the equilibria (i.e. tokamak, reversed field pinch,
etc.) is determined by the two free functions p'(¥) and GG'(¥). These issues will be
discussed in Section 2.4.

In the following, the plasma cross section € is assumed to be known. Thus, we
restrict consideration of eq.(2.3) to the fixed boundary case with ¥ = 0 on the plasma
edge 6. Furthermore, only cases with one single magnetic axis are considered : ¥ is

negative everywhere inside the plasma and the total plasma current

I= /Q jo dS (24)
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1s positive.

For the solution of equilibrium eq.(2.3), CHEASE transforms the plasma cross sec-
tion 2 into a rectangular region 0 < ¢ < 1, 0 < 8 < 2r by the use of a modified and
non-orthogonal coordinate system (o,8) related to the cylindrical coordinates (R, Z)

by (see Figure 2.1)
R = 0p,(f)cosb + R,

(2.5)
Z =op,(0)sinf + Z..

2.2 Method of resolution

CHEASE uses a variational method for the resolution of the Grad-Shafranov equation

(2.3) [46]. The variational form of the Grad-Shafranov equation is
i lvevedss [[sieds =o. (2.6)
o R Q

where < is an arbitrary weighting function from the same function space as ¥. Eq.(2.6)
is solved numerically in the standard manner of the finite element method by expanding
¥ in Hermite bicubics on the rectangular grid (o,6) [35,46], as described in detail in
Appendix A. The unknowns of the discretized equilibrium problem are the values of
the function ¥, its first derivatives ¥ /30 and 9¥ /86 and the mixed second derivative
8*¥ /8006, all on the nodes of the mesh. The integrals in eq.(2.6) are carried out
numerically using a Gaussian quadrature formula.

The nonlinear eq.(2.6) is solved iteratively by a Picard method, i.e. the solution
after k + 1 iteration steps ¥4 is computed with help of the solution after k iteration
steps ¥y :

1 .
/9 7V V¥ dS = - /ﬂ sje(¥x) dS (2.7)

The Picard iteration is interrupted when
¥rs1 — Fill < € (2.8)

where € is a predefined number. The norm used in eq.(2.8) is
1/2
_ 2
]| = [ K ds] . (2.9)
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The iterations are normally done first on a coarse grid (N, X Ny = 16 X 16) and later
on a more refined grid. For the coarse grid, the center of the polar coordinates is chosen
as the geometrical midpoint (Rp,0) of the plasma. For the equilibrium calculation,
all distances are scaled so that Ry = 1. For the refined grid, the magnetic axis of
the approximate solution is chosen as the center of the polar coordinates. This is
done to facilitate the subsequent mapping to flux coordinates required for the stability

calculation.

2.3 Boundary conditions

As mentioned in Section 2.1, we consider the fixed boundary case ¥ = 0 on é6S2. This
implies ¥ = 0 and 8¥/30 = 0 for all the boundary points ¢ = 1 and 6 = 6;,j =
1,..., Ny, where Ny is the number of intervals in the 8-direction.

The origin of the polar coordinate system requires some extra care as the coordi-
nate transformation (2.5) becomes singular there and one single geometrical point is
represented by N, mesh points. Conditions have to be imposed to guarantee that ¥ is
a regular function of R and Z at the origin. A first order Taylor expansion of ¥ around
(Ro, Zo), when expressed in terms of (o, 8) leads to

¥ = ¥, + 0p,(8)[¥reos(0) + ¥ zsin(8)] + O(o?) (2.10)

Thus, the regularity condition forces the 4Ny unknowns ¥, 8¥ /30, 8¥ /56 and 8*¥ /3006
for ¢ = 0 and 6 = 0;,; = 1,..., N to be replaced by the three unknowns ¥., ¥y and

V7. The following conditions are imposed by collocation on the Ny grid points for

g=0:
\Il = \Ilc
oY
@ =0
v .
30 = 2:(8)[¥rcos b + ¥z sin 6] (2.11)
3y .
m = p,(G)[—‘I’R Sma + ‘I’Z cos 0]+
%{% cos 8 + Uz sin ]
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The conditions (2.11) guarantee that ¥ and |V V| are constant at the mesh center.

2.4 Specification of the two free functions in the
Grad-Shafranov equation

There are many different ways of defining the two free functions p'(¥) and GG'(¥) in
the Grad-Shafranov equation (2.3). For example, early 3 optimizations were made by
specifying p'(¥) and GG'(¥) independently [47]. However, it soon appeared that it is
difficult to control equilibrium quantities such as the current density profile and the
safety factor

G(Y) dl

P) = —2 —_—
1) = 0 femeomne RV

(2.12)
with this method, especially near the plasma edge. The specification of a suitable
averaged current density profile instead of the GG'('¥) profile solves this problem.

In CHEASE, three different kind of profile specifications have been implemented in

which p'(¥/¥,.in) is specified together with one of:
¢ GG'(¥/¥min)

o The surface averaged current density within a given flux surface

jaJ/Rdx
fnr:mn = _ﬂp' - _C_%GG' (2.13)

}{ J/Rdy Coo Go
Y=const

'Y/ U pin) =

¢ The averaged parallel current density

3 (¥ ¥min) = —p oz = =—F — GG (1+ == (2.14)

<J.B> p’ ( 1 03)
G2 C,

where < ... > denotes the volume average along a flux surface.

The averaged current density profiles I* and j, in eq.(2.13,2.14) are formulated in terms

of the four surface integrals

{co®), cumy, ca(w), ca(9)} = § i @)



. 16 1¢ ,
Jo(¥U /¥ min) = —RE%I;' + (-—-—-:— - )p (2.16)

if I* is specified and

. 1. 1/11 ,
Jo(¥/¥min) = Ry (Ea - Ry) P (2.17)
where
1C;
y=1+ &G, (2.18)

if jp, is prescribed. For the computation of an equilibrium with the I* or the j, profile,
the integrals (2.15) must be evaluated on a chosen set of ¥ values. This requires
a mapping of the equilibrium solution into flux coordinates (¥, x, ®), where x is a
generalized poloidal angle. The method applied for this will be described in Section 3.3.
At present, it is only important to notice that because of this mapping, an additional
iteration over the source term of the Grad-Shafranov equation must be introduced : let
Cii(¥),t = 1,2,3,4 be the integrals in €q.(2.15) at iteration step I over the mapping.
The values of these integrals are held fixed during the Picard iterations in eq.(2.7), until
the solution converges. At this stage, the C;;1(¥)’s at iteration step I+ 1 over the
mapping are reevaluated from the converged equilibrium solution, and a new Picard
iteration can be started, keeping this time the C;;,,(¥)’s fixed. This process is stopped
when

1/2

Z {Ci,l+l(\p) - C’,‘J(‘I’)}2 <€ (2.19)

Yvalues
for ¢ = 1,...,4. For the integration of the variational form (2.6), the values of the inte-

grals (2.15) required on the Gaussian quadrature points are obtained by interpolating

with cubic splines between the C; () values known on a finite set of ¥ values.

2.5 Transformation of the equilibrium

It is well known [37] that a single solution of the Grad-Shafranov equation (2.3) can be

used to generate a whole sequence of equilibria with fixed poloidal beta, but different

19



plasma current and rotational transform. Two transformations which leave eq.(2.3)

unchanged are used to effect this. The first is a scaling
q’ncw = A\]:lold; Gnew = /\Gold; Prew = ’\2pold- (2'20)

The second is a shift of G?

Giew = GZId + ¢, (221)

with ¥ and p unchanged. By these transformations, equilibria can be generated with
prescribed values of either the total current (2.4), or of the safety factor ¢(¥,) on some
arbitrary flux surface ¥,. The existence of two transformations also allows specification
of G on a given flux surface ¥gs.

When the total current is specified, first the scaling (2.20) is applied with A =
Iipecified/ Ita and then G? is shifted using (2.21) with ¢ = G?,_i5.0(¥6) — G¥(¥6),
where G denotes the value after rescaling. When the safety factor is prescribed, first
G? is shifted by ¢ = {q%..iica/92a(¥q) — 1}G*(¥,), where ¢a(¥,) is obtained from
€q.(2.12), and then the solution is rescaled by A = Gpecified/G(¥c), where G denotes
the value after the shift.

After the transformation of the equilibrium, all relevant physical quantities charac-

terizing the equilibrium can be computed. A list of these quantities is shown in Table

2.1.

2.6 Convergence of the equilibrium code

In this Section, examples are presented to show the convergence of the equilibrium
solution with respect to the cell size. For these tests, an equal number of intervals in
the ¢ and 6 directions is used, N, = Ny = N, and the “cell size” is defined as h = 1/N.
Standard error estimates [35,46] predict that ¥ itself converges with an O(h*) error,
while the error in V¥ is O(h%).

Two different quantities are used to record the convergence, namely, the poloidal
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Global quantities

Total plasma volume / 27 Viet = / Jd¥dy
Q
Volume average f = ( /Q fJ d\Ildx) [ Veot
Total toroidal current I = /0 Je(J/R)d¥dyx
Normalized total toroidal current | Iy = aTI
surf
4 V|2
Plasma inductance ¢; = 7 20 Q' R\I;l Jd¥dy
Pressure peaking factor ppf. = %
Total beta B = %
2 1/2
Fusion beta g* = 2({).3_1
2
Total experimental beta Bz = ;I:OP
surf
. 87 _
Total poloidal beta Botot = mpv}ot
3
Flux surface quﬁities
—~v
Volume of ¥ = const / 27 V) = /w . f Jdxd¥'
Generalized radius of ¥ = const | p(¥) = (V(¥)/Viu)/?
¥
Toroidal current within ¥ = const | Io(¥) = jp . f jo(J/R)dxd¥'
. _ - 8= v TR ' /
Poloidal beta on ¥ = const B(¥) = TR, Jeres.nn, ¥V (¥)d¥
. p_dq
Global shear on ¥ = const (¥ = (¥
o = cons W = qma™
Local quantities
. _ (BxVY) (B x V¥)
Local shea.r Slocal ’V\IIP IV\I;|2
Magnetic field line curvature K = E};V\I’ -(B-V)B

Table 2.1: Physical quantities computed by equilibrium code
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magnetic field energy

1 st I V|2
=1 PRV dods. .
Wp = > /ﬂo /e ap}(8)gdod (2.22)

and the position of the magnetic axis R,,. In the special case where the equilibrium

equation (2.3) is linear, i.e. jg is independent of ¥, the poloidal magnetic field energy
is expected to converge as O(h®) [35,46]. For an up-down symmetric equilibrium, the
magnetic axis where V¥ = 0 will occur at (R,Z) = (Rn,0). Evidently, R,, should
have the same convergence properties as 9¥ /R, i.e. the error should be O(k3).

In the convergence tests to follow, the §-mesh has been generated in such a way that
the area of all cells in the 6-direction (for fixed &) is the same. Two different classes of
equilibria will be considered: analytic Solovev equilibria (17] and nonlinear equilibria

where p/, GG’ and I* are functions in ¥ /¥, ;,.

2.6.1 Solovev Equilibrium

A standard test case for any equilibrium code is the family of analytic equilibria found
by Solovev [17] for which eq.(2.3) is a linear equation for ¥. Here, we consider the

special case where

14+ K?
P = e (2.23)
G(¥)=Gy=1

and the poloidal beta on axis is unity. In eq.(2.23), K denotes the elongation, Ry and
a the major and the minor plasma radius, respectively. ¢ is the safety factor on the

magnetic axis. The corresponding analytic formula for ¥ is

v (R—;-f-f T a’Rﬁ) (2.24)

For the convergence study, a Solovev equilibrium with ¢ = 3/4, K =1, a = 1/3 and
Ry = 1 is used. This equilibrium will be called “test case I” in the following.

In Figure 2.2, the poloidal magnetic field energy of the numerical solution converges

towards its analytical value with an O(k®) error. Figure 2.3 shows that the error in the

magnetic axis Ry is O(h®). Thus, the poloidal magnetic field energy and the magnetic

axis converge according to theoretical expectation.
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Figure 2.2: Convergence of the poloidal magnetic energy of the test case I (Solovev).
The regression curve is Wg = 1.778878015.10~% — 3.7001.102AS.
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Figure 2.3: Convergence of the magnetic axis of the test case I (Solovev). The regression
curve is R,, = 1+ 3.5711.10%4%.
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2.6.2 Nonlinear equilibria

The Solovev equilibrium bypasses one difficulty in eq.(2.3): the problem loses its non-
linearity, as the source term jg is independent of ¥. To remove this restriction, we now

consider some “nonlinear” test cases, where js depends on ¥. The plasma surface is

defined by
R = Ry + acos(8 + §sin 8 — (sin20)

(2.25)
Z = Kasin @

where a, K and Ry have the same meaning as in eq.(2.23), § is the triangularity, and ¢
is a parameter which, if it is positive, broadens the “tips” of the plasma cross section.
Two nonlinear test cases are considered, one with polynomial definition of p’ and

GG’, and one where p’ and I* are specified:

e Test case II: a/R; =037, K = 1.7, = 0.3, ( = 0 and

pl(\I’/‘I’min) = —0.14(q’/‘1’min)

GG (¥/Cmin) = —0.2(%/Upmin) + 0.249(T /T i 2. (2.26)

Test case II has been rescaled using the transformation described in Section 2.5

so that the safety factor on axis is ¢g = 1.2.

¢ Test case Ill : a/Ry =0.37, K=1.7,6§ =0.3, ( = 0 and

, y _ Jo22 f0<t<04
P(¥/¥min) = { ~0.611#% +0.489t +0.122 if0.4<t <1 (2.27)
(%) ~1.1t+1 if0<t<0.16 ’
mn 1.226% — 1,47t — 0.723t + 0.972 if0.16 <t <1

where t =1 — ¥ /¥,in. Test case III has been rescaled so that the ¢ = 1 surface
has a radius of p = 0.4 (p is the generalized radius defined in Table 2.1). This
case is a typical example of an equilibrium used for the internal kink stability

study in Chapter 4.

Figure 2.4 shows that the magnetic axis converges according to theoretical prediction
with an O(h®) error for the two nonlinear test cases. The O(h®) convergence of the

magnetic axis for test case III shows that the convergence of the cubic Hermite elements
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Figure 2.4: Convergence of the magnetic axis of the nonlinear test cases. The
regression curve is |Rn,/Ro — 1.058353] = 3.2183.102h% for test case II and
|Rm/Ro ~ 1.0428771| = 3.1111.10~2h3 for test case III.
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Figure 2.5: Convergence of the poloidal magnetic energy of the test case II.

25



is not changed by the mappings to flux coordinates required for the computation of the
integrals (2.15) in the current density (2.16).

In the case where eq.(2.3) is a nonlinear equation in ¥, the poloidal magnetic field
energy (2.22) is no longer expected to converge in O(h®) as for linear equilibria. Indeed,
the error in the poloidal magnetic field energy of test case II converges as O(h®) in

Figure 2.5, which is the convergence rate expected for V.

2.7 Comparison test with the equilibrium code CLIO

The position of the magnetic axis is commonly used for validating equilibrium codes.
In Ref.[22], a Solovev equilibrium with K = 2, Rp = 1, a = 0.4 and ¢ = 1 was
used as convergence test of the finite linear “hybrid element” code CLIO. According
to the curve presented in [22], the error in the magnetic axis |R,, — 1| = 0.130A? with
CLIO. The same equilibrium has been computed with CHEASE. A linear regression
gives |Rm — 1| = 9.9660.1073A3 for the same equilibrium. To compare the efficiency
of the linear and cubic elements, we note in Figure 2.6 that CLIO yields an error
of AR,, ~ 1.5.10~° for the magnetic axis position with a 300 x 300 mesh, whereas
CHEASE needs less than a 16 x 16 mesh to reach the same accuracy. The cpu-time
required for the calculation of these equilibria on CRAY-2 is about 350 seconds for
CLIO and less than 2 seconds for CHEASE.

The same comparison can be made with the JET test case shown in the same
publication. There, the error in the magnetic axis (see Figure 2.6) behaves like R,, /Ry~
1.1014865 = 1.8193.102k3 for CHEASE, and R, /Ro—1.1014865 = 0.1378A2 for CLIO.
Therefore, CLIO gives an error of AR, ~ 1.5.10~% in the magnetic axis position with
a 300 x 300 mesh, while CHEASE reaches a comparable precision on a 22 x 22 mesh.
The resolution time on CRAY-2 for this equilibrium is 6.5 cpu seconds with CHEASE
and about 400 seconds with CLIO.
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Figure 2.6: Comparison of the error in the magnetic axis between CLIO and CHEASE
for a Solovev and a nonlinear JET equilibrium. The full line represents the error with
CLIO for both cases. The open circles (squares) show the error with CHEASE for the
Solovev (JET) equilibrium.
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Chapter 3

Mapping of the equilibrium
solution into flux coordinates

In this Chapter, the mapping of the equilibrium to (¥, x, ®) coordinates is presented.
It will be shown that the mapping in CHEASE preserves the convergence rate of the
bicubic Hermite elements used for the equilibrium discretization. This is illustrated by
convergence tests of eigenvalues computed by MHD stability codes when the equilibrium

mesh is refined and the stability mesh is held fixed.

3.1 Linear stability formulation

CHEASE provides the equilibrium quantities for the stability codes ERATO (ideal
MHD) [37], MARS (resistive MHD) [36] and for LION (Alfvén and ion cyclotron range
of frequencies) [38]. These codes consider the time evolution of small perturbations

of the equilibrium. In the case of resistive MHD, the linearized system derived from

eq.(1.2) is
Qo%:(VXE,)X B°+JOXBI—VP1
op
5B 73? = —'U.Vpo - Fpon (3.1)
—ét—‘-;Vx(vao)—Vxn(VxBJ

V.B, =0

In the special case where the resistivity n = 0, substituting the two last equations of

(3.1) into the equation of motion gives the equation of evolution for the Lagrangian
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displacement £(7,,t) defined by r(t) = r, 4+ £(r,,1):

P pve eV )+
2% T PoVS+S-Vho (3.2)

Jo x [V x (€ x B,)]+{V x[Vx(€x B,)]} x B,.
Equations (3.1) and (3.2) should be supplied with boundary and initial conditions. The
initial conditions are given by specifying p,(v), v(r), é(r), B,(r) at t = 0.
Consider a plasma isolated from a perfectly conducting wall S, by a vacuum region.

In the vacuum, the perturbed magnetic field B,,(r,t) fulfills

VxB, =0
(3.3)
V.B,, =0.
The boundary condition on the conducting wall S, is
n.B,, = 0. (3.4)

Moreover, on the plasma-vacuum interface S,, the pressure balance must be satisfied,

1.e.

p(r )+ 2 (z’"t) -5 g"t) (3.5)

and the tangential component of the electric field in the moving system must be con-

tinuous:
n.aB‘" = (B,.V)(n.v) (3.6)
ot
or in terms of £(7,,1):
n.B,, =(B,.V)(n.£) (3.7

If a perfectly conducting wall S, surrounds the plasma, the boundary conditions are

simply
n.B, =0
nov=20 (3.8)
né=0.

The stability codes ERATO and MARS compute eigenmodes with temporal variation
e’*. MARS solves the system (3.1;3.3-3.8) using a Fourier decomposition in the poloidal

direction, and linear finite elements with a tunable integration scheme in the radial
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direction {48]. ERATO uses a variational technique for the resolution of eq.(3.2-3.8).
The discretization is done with the so-called “hybrid finite elements” in both the radial

and poloidal directions. LION solves the linear field equation
Vx(VxE)=¢€E (3.9)

where € is the cold plasma dielectric tensor for several ion species. This code requires
the same equilibrium quantities as ERATO.

In all the following stability calculations, the mass density ¢ is constant in space.

3.2 Flux coordinates

The flux coordinate system used by ERATO, MARS and LION differs completely from
the one used for the equilibrium calculation. The radial stability coordinate of these
codes is

l\Ilm:'n - ‘Ill

The angular variable x is specified by the choice of the Jacobian J = [(V¥ x Vx)-V&]~!
of the mapping from (¥, x, ®) space to Cartesian coordinates. The contravariant metric

tensor of these coordinates is given by

[ VIR YEVX 0

(¢) = Vo.Vy |Vx|? 0
0 0 |Ve]
[ Ivep VePBe, 0 (311)
2 2 2 R2
— (VE|°Bex By, |V +W 0
1
0 0 —
2
\ B
where
VY. Vy
ﬂwx—_——lV\PIZ : (3.12)
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The covariant metric tensor (g;;) = J%(g7)~! is obtained by inverting eq.(3.11). In
CHEASE, J is restricted to
J = C(T)R*|VT|* (3.13)

where a and p are integers. C(V¥) is obtained by demanding that x increases by 2=
per poloidal turn. The angular stability coordinate x and the non-orthogonality By,

can be expressed in the equilibrium coordinates (o, 8):

* RopX(d") .,
do

Bux(8) = /03 {%F+(2_a) [-a—(%z]n— (3.14)

WL I
do

A derivation of eqs.(3.14) is given in Appendix B. The subscript n in eq.(3.14) stands

de’

for the normal derivative with respect to ¥, jg is defined by eq.(2.3) and C'(¥) is
derived from the periodicity condition By, (0) = Bux(27).

3.3 Computation of flux surface integrals

For the equilibrium and the stability calculation, integrated quantities of the form

x 0¥ 8% BV Y PT .,
F(¥ = const,x) =/o Y 55 36 3000° 307 367 X (3.15)

are required, as for instance the poloidal stability angle x or the non-orthogonality By,
in eq.(3.14), the safety factor ¢ (2.12) or the four integrals (2.15). To compute such
integrals without losing the convergence rate of the cubic Hermite elements, a high
order integration scheme, such as Gaussian quadratures, must be applied.

The error of a k point Gaussian quadrature is proportional to the 2B derivative of
the integrand of eq.(3.15), and therefore discontinuities in these derivatives will destroy
the convergence of the integration scheme. The finite element solution of eq.(2.3) has

always the same continuity properties as the basis functions used for the discretization.
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With bicubic Hermite elements, already the second derivatives 8*°¥ /80 and 8°¥/56*
are discontinuous at the (o,8) mesh cell edges. As a consequence, the only reliable
numerical method for the integration of eq.(3.15) is to split the integration interval
into a set of subintervals delimited by the intersections of the constant ¥ surfaces with
the (o, 6) cell edges. In this way, the discontinuities which may appear in the integrand

of (3.15) are avoided, and a high order integration scheme can be employed.

3.4 Convergence Studies of the Mappings

To illustrate the convergence properties of the mapping itself, we first consider the
Solovev equilibrium described in Section 2.6.1. This case avoids resolving the Grad-
Shafranov equation (2.3), because analytic values for ¥, 8% /80, ¥ /360 and 8*¥ /306
can be substituted on the nodes of the equilibrium mesh. Consequently, the mappings
can be decoupled from the equilibrium solver in this case, and the convergence prop-
erties of the equilibrium quantities as well as the accuracy of the integration scheme
presented in Section 3.3 can be verified independently. The convergence properties
of the mappings are checked by observing the growth rate (normalized to the Alfvén
frequency wy = v4/Ry) of the most unstable linear eigenmode computed by ERATO
or MARS. For this test, the stability meshes are kept fixed and the equilibrium mesh
density is varied. We are not aware of a theoretical prediction for the convergence of
the stability eigenvalues with the equilibrium mesh. For the three test cases, the x
coordinate defined by the constant volume Jacobian (J = C(¥)ora=0and gy =01in
€q.(3.13)) has been used. This gives good results for the stability calculations (better
than with straight field lines, J = C(¥)R?). The s mesh has been packed on all reso-
nant q surfaces. For the Solovev test case (test case I}, the growth rate for toroidal
mode number n = 3 is computed, with a perfectly conducting wall on the plasma edge.
The stability mesh is fixed to N, = 130 radial and N, = 130 intervals with ERATO,
and N, = 130 radial points and N,, = 12 Fourier components in the y-direction with

MARS. The errors in the growth rate obtained with the analytic solution on the equi-
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Figure 3.1: Convergence of the growth rate of the Solovev test case (test case I) with
ERATO.
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Figure 3.2: Convergence of the growth rate of the Solovev test case (test case I) with
MARS.
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Figure 3.3: Convergences of growth rates of the test case II with ERATO (open circles)
and MARS (full circles).

librium gridpoints (full circles in Figures 3.1 and 3.2) and with the numerical solution
(open circles in Figures 3.1 and 3.2) converge to the same value as O(h*) with some
oscillations superimposed for ERATO. Figures 3.1 and 3.2 show that the error of the
growth rate due to the equilibrium discretization on a N, = Ny = 22 grid is of the
order of 1.107° for both ERATO and MARS, which is negligible compared to the error
due to the stability discretization.

The test case II described in Section 2.6.2 shows an n = 1 external kink instability
with a perfectly conducting wall placed at one minor radius from the plasma surface.
Figure 3.3 shows that the growth rates converge as O(h®) with ERATO (open circles)
and with MARS (full circles). Similar convergence properties are obtained for the test
case IIL.

The values of the growth rates after convergence of the equilibrium are slightly
different with ERATO and MARS because the discretization methods used in the two

stability codes lead to different truncation errors. After convergence of the stability
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calculations with fixed equilibrium mesh (N, = Ny = 40), both codes give the same
growth rates: v = 5.395-1072 for the Solovev and v = 1.231.10~2 for the test case II. It
should be noted that 1072 is a typical growth rate for production runs in the context

of beta-limit studies.

3.5 Bicubic spline smoothing of the equilibrium so-
Iution. Effects on the stability results.

For certain instabilities, changing the density of the equilibrium mesh with the stability
mesh kept constant gives large oscillations in the growth rate computed by ERATO. The
origin of this problem is the cubic Hermite discretization used for the equilibrium reso-
lution, which guarantees only continuous first order derivatives over the discretization
mesh. Discontinuities in the second derivative of ¥ may deteriorate the convergence
of the growth rate of ERATO when the equilibrium mesh is refined, since ERATO
requires local equilibrium quantities which depend on these derivatives (see Table C.1).
A simple way to get rid of these oscillations is to interpolate the equilibrium solution
with bicubic splines, which guarantee continuous first and second order derivatives
over the discretization mesh. To effect this, the values of ¥ on the nodes obtained by
the bicubic Hermite solution are interpolated by bicubic splines, and ¥ /80, ¥ /86
and 8°¥ /8090 are reevaluated from the bicubic spline interpolations, as described in
Appendix D. This smoothing does not alter the O(h*) convergence of the bicubic
Hermite elements. However, the slopes of the convergence curves are influenced.

As an example, the bicubic spline smoothing is applied to the following equilibrium:

e Test case IV: The plasma boundary (2.25) is chosen as a/Ry = 0.423, K = 1.68,

§ = 0.3, { = 0 and the current density is specified by
p’(\P/‘I/m;n) = —0.06(@/‘1’"‘,‘")

(3.16)
GG (T /Umin) = —0.45(F/Upmin) + 0.174(F /¥ pnin )2

This equilibrium has been rescaled so that the safety factor on axis is go = 0.85.
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Figure 3.4: Convergence of ERATO growth rates for test case IV with a Hermite (full
circles) and a 2-D spline smoothed (open circles) equilibrium solution.

Figure 3.4 shows that for this equilibrium, the growth rate of ERATO is not con-
verging with the Hermite equilibrium solution, whereas for the smoothed solution, the
convergence rate is O(h3).

Similar tests with MARS have shown that smoothing ¥ with bicubic splines dete-
riorates slightly the O(h®) convergence slope of the growth rate when the equilibrium

mesh is refined.

3.6 Comparison of the error on the growth rate of
ERATO due to CHEASE and to EQLAUS

It is interesting to compare the results of Section 3.4 with those obtained by other
codes. The equilibrium code EQLAUS [26] combined with ERATO is used for such
a comparison with CHEASE. EQLATUS uses a finite difference scheme in Cartesian
coordinates for the discretization. The nonlinear JET case (test case II) shown in

Section 2.6 has been reproduced with this numerical package. The ERATO mesh has
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been fixed (N, = N, = 130), and the same radial stability mesh packing was used as
for CHEASE.
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AYE N
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Figure 3.5: Absolute value of the error in the growth rate due to the equilibrium
discretization with CHEASE (open circles) and EQLAUS (full circles) for test case II.

For the test case II, the absolute value of the error in the growth rate behaves as
Iy — 1.273.1072| = 0.322h with EQLAUS & ERATO and |y — 1.273.107%| = 3.469A%
with CHEASE & ERATO (see Figure 3.5). Thus, the error in the growth rate due
to EQLAUS is of about Ay = 1.107% on a 300 x 300 mesh. This precision is already
reached on a 20 x 20 mesh with CHEASE and ERATO. On CRAY-2, the computation
of a 300 x 300 case with EQLAUS takes about 300 cpu seconds, while a 20 x 20 case
with CHEASE requires only about 20 seconds, including in both cases the computation

of the stability input quantities, ballooning and local stability criteria.
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3.7 Ballooning Stability, Mercier and Resistive In-
terchange Criteria

Ballooning modes are toroidal modes with infinite toroidal mode number n [49,50]. The

potential energy for these modes is given by (see Appendix E)

1 [too
SW,(n — o0) = 5 {cl

a 2
5}% + Qw} Jdx (3.17)

where £ is the radial component of the displacement vector, and x is a generalized
poloidal angle extending from —oo to +oo. For ballooning stability, 6W, must be

positive definite on every flux surface. The quantities appearing in (3.17) are [49]

JG
)
1 2
B = E[G2+|V\I/|]
_ 1 Ve ,
@ = J"'IV‘I’|2(1+ B? 7 518
. - _2[(2P) _gG1 (3P (318
? 7 TBT|\ay/,  BrJ\dx/,
x ( Qv
= + —_— dy’
g Vﬂ\l’x xo aql X
~ B?
= p-{-?

The integral (3.17) is solved on the (¥;x) mesh of ERATO by a hybrid linear finite
element method. The infinite x integration interval of (3.17) is replaced by a finite one
specified as input (normally 20 x 27) outside which § is set to zero. For the arbitrary
angle xo, 25 different values are tested on every constant ¥ surface. The diagonalization
of the matrix corresponding to the first variation of (3.17) is not unique, but according
to Sylvester’s theorem [51}, the number of negative terms in the diagonal matrix is
invariant and equal to the number of unstable ballooning modes on the particular
poloidal flux surface.

The Mercier stability [13] and the resistive interchange criterion [12] are checked on

every constant poloidal flux surface. These criteria can be expressed in terms of the
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integrals
{Jl$ JQ, J37 J4, JS, JG} =

1 1 1 R 1 _ |V
f { b b b ’1’ }JdX'
27 Jomeonst \RVE|2 VU2 VI’ B2 R?

A given flux surface is stable to ideal interchanges if the Mercier criterion —D; > 0,

(3.19)

where
¢J, 1\* p ., |,
- D= (P_q__% _ 5) + g’zu5 — PTG, + Jy) (3.20)

A derivation of the Mercier criterion is given in Appendix E. Resistive interchanges

are stable if —Dgr > 0, with

—Dp=-D;-(H -1/2)? (3.21)
and
_ Gp’ Js(]4 + G2J1)
H=— (J;, = =71 G (3.22)

The prime in eqs.(3.20,3.22) denotes the derivative with respect to ¥.
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Chapter 4

Ideal MHD stability of internal
kinks in circular and shaped
tokamaks

The second part of this thesis concerns beta-limits of internal kink instabilities. In
Chapter 4, numerical results show that in many cases, the internal kink is more unstable
than previously assumed. This holds, in particular, for elliptically shaped cross sections.
A partial analytic explanation is given in Chapter 5, where the Mercier criterion (3.20)
is derived in the large aspect ratio limit, showing the significant destabilization by
ellipticity. Finally, in Chapter 6, effects due to resistivity on the internal kink mode
are reported.

At present, essentially all the analytical work on ideal internal kink modes in a toka-
mak has been carried out in the large aspect ratio limit. In a pioneering work, Bussac
et al. [11] found the pressure limit for internal kink stability in circular equilibria. The
calculations of central stability performed by Laval et al. [52] indicate an significant
destabilizing effect of ellipticity and a stabilizing effect of triangularity. Conversely, a
more recent calculation of Connor and Hastie predicts only a very weak destabilizing
effect of elliptic shaping [18].

To some extent, the uncertainties concerning the internal kink stability can be ex-
plained by the difficulty of computing these modes numerically, because their growth

rate is typically below v/ws = 1072, where wy = v4/Ro is the toroidal Alfvén fre-
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quency. Nevertheless, Berger et al. [16] found a strong destabilizing effect by ellipticity
by numerical calculations in the special case of Solovev equilibria [17]. However, no
systematic study has been undertaken for equilibrium solutions with more realistic pro-
files and shaped plasma cross sections, and therefore, strong numerical arguments for
the confirmation or the invalidation of the analytical results were hitherto nonexistent.

The purpose of this Chapter is to present calculations of ideal MHD stability lim-
its for the internal kink moae for tokamaks with different current profiles and plasma
cross sections. The bicubic Hermite element code CHEASE [34] and the toroidal re-
sistive stability code MARS [36] are powerful tools for such a study, and allow routine
computation of ideal MHD growth rates down to 5.107%w .

In the following, B, denotes the poloidal beta on the ¢ = 1 surface, defined, in the

general case, as in Table 2.1.

4.1 Circular cross section - Large aspect ratio ex-
pansion

Stability limits for the internal kink mode have been calculated by means of the large
aspect ratio expansion [11] taking into account the toroidal coupling of the dominant
m = 1 displacement (m = poloidal mode number) to the m = 0 and m = 2 side-bands.
For a parabolic current profile, Bussac et al. [11] found that the marginal stable value
of B, the poloidal beta on the ¢ = 1 surface, is §, = (13/144)'/? ~ 0.3 when r,o; < aq,
falls to a minimum of about 0.23 for r =1 /a &~ 0.4, and then increases again for larger
g = 1 radii. For profiles that are more peaked than parabolic, the pressure limit
decreases more sharply with r,=,. Very steep current profiles, such as the Shafranov
(step-function) profile are less stable [39].

The stability diagram (B, it versus rq=;/a) of Bussac et al. [11] was computed as-
suming a fixed boundary. With this assumption, the m = 2 side-band is wall stabilized
whenever ¢(r = a) = ¢, < 2. For the parabolic current profile, ¢,/go = 2, and therefore

g. < 2 holds if g9 < 1, i.e., in all cases of interest for the internal kink. Evidently,
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the results in [11] for the parabolic profile refer to the non-standard case of very low ¢
operation, ¢, < 2, with a close-fitting wall. Although tokamaks can be operated this
way, the standard operating regime is ¢, > 2.

For comparison with the finite aspect ratio computations, we show the F,-limit
obtained from large aspect ratio theory and boundary conditions appropriate for ¢, > 2.
The potential energy for the large aspect ratio n = 1 ideal internal kink mode was

calculated by Bussac et al. [11]. It is a quadratic polynomial in f,:
m? 22 4
oW, = _2‘ROI€| Bge Pr(B,) (4.1)

where € = ry=1/Ro, R is the major radius, £ the amplitude of the m = 1 radial

displacement (m = poloidal mode number), and
PT(ﬁP) = _3.313 -5
(38, +5—1/4)+ (B, + S + 3/4)4 [3(8, + $ - 1/4) + (B, + § +3/9)A.] (4.2)

A; - A,
where
2 re=t % dp
= — —d 4.3
Bo Bg(r,,=l)/o 2 dr’ (43)
is the poloidal beta on the ¢ = 1 surface and
A Te=1 T3 1
S= [T o= |5 -1 44
0 r;:l [q2 ] T ( )

The quantity S measures the shear inside the ¢ = 1 in a global sense. 4, and A; are
the logarithmic derivatives rd(In€)/dr of the (m = 2,n = 1) component of the radial
displacement just outside and inside the ¢ = 1 surface, respectively. They are obtained

from the solutions of the cylindrical Euler equation

d d
- <r3F2d—§) —r(m? - 1)F* =0 (4.5)
where
F-kB= % (.’Zq"- _ n) (4.6)

for (m = 2,n = 1) in the two separate regions ¢ > 1 and ¢ < 1 with appropriate

boundary conditions.
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For the Shafranov equilibrium, the logarithmic derivatives 4; and A, can be ob-
tained analytically [39]. However, for more general current densities, the solution of
the Euler equation (4.5) must be carried out numerically. Figure 4.1 shows the S,-limit
obtained from the large aspect ratio theory plotted (a) versus r,=1/a, and (b) versus
o, using boundary conditions appropriate for ¢, > 2, with the ¢ = 2 surface inside the
conducting plasma. (If ¢, < 2, a region of currentless but perfectly conducting plasma
that extends to the ¢ = 2 surface at r/a = (2/q,)'/? is added). Three different current

profiles are considered: two polynomial profiles,

. _f i1 =r¥a?) fr<a
jo(r) = { 0 ifr>a (4.7)

with [ = 1,2 (parabolic and parabolic-squared for which ¢, = (I + 1)go), and the

Figure 4.1: Marginal §, for circular equilibria from large aspect ratio theory. Results
are given for three current profiles: Shafranov (with a step at ry = a/2), parabolic
(I = 1) and parabolic-squared (I = 2), in (a) versus ry—;/a and in (b) versus go.

Shafranov profile, with the step in the current density at r = 0.5a. For the two smooth

profiles (4.7), the B,-limit falls monotonically when the ¢ = 1 radius increases, as shown
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in Figure 4.1(a). This is in clear contrast to the fixed boundary result of Bussac et
al. [11], where the stabilization by the wall at r = a becomes stronger with increasing
g = 1 radius, and the pressure limit even becomes infinite for ry=1/a > 0.79. With the
modified treatment of the wall, “typical” limits in the range of 0.1 to 0.2 are found
rather than the usually-quoted value 0.3 which is valid as r,=; — 0.

Figure 4.1(b) shows that the B,-limit goes to zero for ¢ below some profile-dependent
threshold, ranging from 0.40 for the parabolic-squared profile to 0.58 for the Shafranov
profile. For ¢o close to unity, the pressure limit is highly sensitive to the current pro-
file: the Shafranov profile gives much lower values than the rounded-off current profiles
(4.7).

4.2 Finite aspect ratio calculations - definitions

Here, we show the full-MHD stability limits for the internal kink at finite aspect ratio
calculated using the stability code MARS [36] and the equilibrium code CHEASE [34].
The plasma-vacuum interface in equilibrium is prescribed by eq.(2.25). Results will
be presented for two geometries corresponding to the TEXTOR tokamak: Ry/a = 4,
K =1, 6§ =0, ( = 0 (medium aspect ratio circle), and JET [53]: Ry/a = 2.7, K = 1.7,
§ = 0.3, ¢ = 0 (small aspect ratio dee).

In all cases, the same shape is used for the pressure profile p/py,. The pressure is
prescribed as a function of the poloidal flux ¥, so that dp/d¥ is constant in the central
region and falls smoothly to zero at the edge. Figure 4.2 shows the pressure versus the
normalized minor radius p.

The current profiles are specified by the surface averaged toroidal current density
I* (2.13). I"(¥/¥,4;s) is prescibed except for a multiplicative factor that is adjusted
to specify the ¢ = 1 radius, using the equilibrium transformations described in Section
2.5.

The stability diagrams presented in the following give 8, as a function of the

¢ = 1 radius p,-; at constant growth rates, v/wa4 = 0,1.1073,3.10-3,5.10~3, where

44



O.8p1

Figure 4.2: Pressure versus normalized minor radius p for the numerical equilibria.

wy = vy /Ry is the toroidal Alfvén frequency. These curves have been obtained after
interpolation of the computed values of ¥(8,, pg=1) for equilibria with different 8, but
identical I* profiles.

Convergence studies have been carried out and the results are shown after extrap-
olation to zero mesh size. However, it must be admitted that ideal-MHD growth rates
of the order 1073w, are non-trivial to compute. Our results for v = 10~3w4 should be
reliable, but in certain cases, extrapolation to marginal stability is somewhat uncertain.
This may be acceptable from a physics point of view, since instabilities with very small

growth rates must be expected to be strongly modified by non-MHD effects.

4.3 Circular cross section - Numerical results with
finite aspect ratio

For a circular plasma, results will be shown for four different current profiles: one

rounded profile, two profiles with I* flattened at a certain radius, and a profile where
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Figure 4.3: Profiles of (a) averaged toroidal current density I*, (b) safety factor ¢ and
(¢) shear 3§ versus p for the rounded current profile.
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Figure 4.4: Stability limits in g, for circular equilibrium with aspect ratio 4 and the
rounded current profile shown in Figure 4.3: (a) 8, versus p,=1 and (b) S, versus go.
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I" has shoulders, termed TEXTOR [5]. The aspect ratio of these equilibria is 4.

Figure 4.3 shows I*(p), q(p) and 3(p) for the rounded profile, and the corresponding
stability results are shown in Figure 4.4. Both the current profile and the marginal
stability curve are close to those for the parabolic-squared profile of Section 4.1. Figure
4.4(b) shows the marginal 3, versus go, to be compared with Figure 4.1(b). Evidently,
for an aspect ratio of 4 and circular boundary, the large aspect ratio theory is in good
agreement with the full-MHD result.

Figure 4.5 shows an effect that is a higher order correction to the large aspect ratio

result: the influence of the wall position for circular equilibria with 2 < ¢, < 3. The

1e-2 i
'Y A=27

5e-3

B

Oe+0 )
0.0 0.1 0.2 0'3B 0.4
D

Figure 4.5: Internal kink growth rates versus 3, for a circular equilibrium with fixed
boundary (filled symbols) and free boundary (open symbols). Three different aspect
ratios are shown: A = Ro/a = 10,5 and 2.7 and p,=1 = 0.6.

diagram shows the growth rates of the n = 1 internal kink for different aspect ratios
and a circular boundary, with the boundary either fixed or free (and the conducting
wall at infinity). For circular equilibria with ¢, > 2, the large aspect ratio expansion

to lowest order shows no effect of the wall position. According to Figure 4.5, this is a
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good approximation at large aspect ratio, A = 10. A detailed analysis of the numerical
results shows that the difference in marginal §, between the free and the fixed boundary
cases is proportional to (a/Rg)? at large aspect ratio. At tight aspect ratio, A = 2.7,
the difference between fixed and free boundary results is appreciable: §, =~ 0.1 for free
boundary and S, =~ 0.2 for fixed boundary. The numerical results show a very weak
influence of the wall position for circular equilibria with ¢, > 3.

Therefore, the wall position influences the internal kink stability for aspect ratios
of interest only at low ¢,. In the following, only configurations where the wall is placed
at 20% of the minor radius away from the plasma are considered.

The flattened current profiles (Figure 4.6) have a plateau at a certain radius: dI*/dp =

0 for p = p, =~ 0.42. Inside this radius, the shear is rather uniform, and outside, it

] 1.2 0.4.
It (a) q ;(b) é '
' ' 0.3
24 1.14 '
0.24
1 1]
j 0.1
E—— N R | X B S ——— 0
0 02 04 06 08,1 0 0.25 0.5 0.75

p p

Figure 4.6: Profiles of (a) averaged toroidal current density I*, (b) safety factor ¢ and
(c) shear 3 versus p for the flattened current profile with low central shear

increases sharply. Two current profiles with different central shear are considered:

one with small central shear, qo/q(pp) = 0.95, and one with medium central shear,

qo/q(pp) =~ 0.80.
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Figure 4.7: Stability limits in S, for the flattened current profile with low central shear.
The cross section is circular with aspect ratio 4.
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Figure 4.8: Stability limits in 8, for the flattened current profile with medium central
shear (four times larger than in Figure 4.6). The cross section is circular with aspect
ratio 4.
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Figure 4.9: Profiles of (a) averaged toroidal current density I*, (b) safety factor ¢ and

(c) shear 3 versus p for the TEXTOR current profile.
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Figure 4.10: Stability limits in 8, for the TEXTOR current profile. The cross section

1s circular with aspect ratio 4.
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Figure 4.6 shows I*(p), ¢(p) and 3(p) for the flattened profile with low central shear
at aspect ratio 4 and the stability results are shown in Figure 4.7. The marginal 3,
is similar to that for the rounded profile (Figure 4.4(a)) when the ¢ = 1 surface is far
away from the current plateau at p, ~ 0.42, but when the ¢ = 1 surface is near the
plateau, S, .i; has a local minimum of about 0.08.

Figure 4.8 shows the stability for the flattened current profile with medium central
shear. The equilibrium is similar to that in Figure 4.6 except that the central shear
is four times larger. The limits in B, are higher than for the low-shear equilibrium.
They are quite similar to those for the rounded profile (Figures 4.3 and 4.4), except for
slightly higher values when the ¢ = 1 radius is small, due to the higher shear near the
magnetic axis.

Finally, Figures 4.9 and 4.10 give profiles and stability results for a current profile
of the TEXTOR type with shoulder at p ~ 0.4. The marginal 8, has a rather high
maximum (=& 0.46) when the ¢ = 1 surface is located slightly inside the shoulder, but
By crie Talls abruptly to between 0.1 and 0.2 when the ¢ = 1 radius increases and reaches
the low-shear region. The TEXTOR profile is particularly stable to the internal kink

mode and can even be resistively stable at fairly high 8, [5,41,55].

The large aspect ratio results (Section 4.1) show that the n = 1 mode is unstable
even at zero pressure when ¢o is below a threshold value ranging from 0.58 for the
Shafranov profile to 0.40 for the parabolic-squared profile (see Figure 4.1(b)). This
current driven mode is investigated for two finite aspect ratio equilibria with zero
pressure: (a) the rounded profile and (b) the Shafranov profile, both surrounded by a
region of currentless but conducting plasma. The aspect ratios ( Ro/a for the rounded
profile and Ry /ro, with ro = the minor radius of the step for the Shafranov profile) are 4
in both cases. Figure 4.11 shows the resulting growth rates as functions of ¢o. Instability
occurs below certain thresholds in g9, which are in remarkably good agreement with the
large aspect ratio result in Figure 4.1(b). The instability at low go has been observed

previously by Turnbull and Troyon [56]. It is sensitive to the current profile, and the
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Figure 4.11: Internal kink instability at zero pressure for low gq, circular equilibrium
(A = 4) with the rounded profile (circles) and the Shafranov profile (squares).

Shafranov profile is more unstable than the rounded profile.

The results for circular equilibria can be simply summarized. Except at very low
aspect ratio, the stability of the internal kink is in good agreement with the large aspect
ratio theory when the appropriate boundary conditions are applied. For smooth and
monotonic current profiles, the marginal f, decreases monotonically with increasing
g = 1 radius and typical B,-limits are between 0.1 and 0.2. The position of the wall is

important only for tight aspect ratio and ¢, < 3.

4.4 Shaping Effects - Numerical results for JET ge-
ometry

Certain previous investigations [57,16] have shown a destabilizing effect of ellipticity
on the internal kink mode. This is clearly confirmed by the present study. To illus-
trate this, numerical results are given for the full ideal MHD stability problem in JET

geometry: aspect ratio A = 2.7, elongation K = 1.7, triangularity § = 0.3 and ( =0 in
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eq.(2.25) for the same current profiles as for the circular cross section. The ¢(p) and
3(p) profiles are slightly different from their circular equivalents, but the differences are
insignificant in the central region, say p < 0.6.

The B,-limits for JET geometry are significantly lower than for the circle. The
results for the rounded current profile are shown in Figure 4.12. The maximum stable
B, 1s about 0.09 and the limit decreases as the ¢ = 1 surface approaches the magnetic
axis.

The effects of ellipticity were estimated analytically in Refs. [18,39] by computing
the shaping contribution to 6\, at infinite aspect ratio and zero pressure. This shaping
term was found to have a vanishing effect on the marginal 8, as gop — 1. By contrast,
the full MHD result in Figure 4.12 shows that the S,-limit is strongly reduced for JET
shape and small ¢ = 1 radius. In fact, with JET shape, B, .-i; vanishes, or is very small,
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Figure 4.12: Stability limits in g, for JET geometry and the rounded current profile
(Figure 4.3).

o

Similarly, for the two flattened current profiles, the beta-limits are lower with the
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Figure 4.13: Stability limits in B, for JET geometry and the flatiened current profile
with low central shear (Figure 4.6).
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Figure 4.14: Stability limits in 8, for JET geometry and the flattened current profile
with medium central shear (four times the central shear in Figure 4.6).
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Figure 4.15: Stability limits in 8, for JET geometry and the TEXTOR current profile
(Figure 4.9). The dashed region indicates violation of the Mercier criterion at ¢ = 1.
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Figure 4.16: Stability limits in §, for JET geometry and the TEXTOR current profile
with reduced shoulders.
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JET cross section than for a circle, see Figures 4.13 and 4.14. The decrease is rather
dramatic for the profile with weak central shear, for which the S, limit in JET geom-
etry 1s typically around 0.03, while the medium shear profile gives about 0.08. Thus,
contrary to the predictions of earlier analytical expansions [18,39], the destabilization
is stronger in the case of weak central shear. This destabilization by shaping can be
correlated with interchange instability. The shaded region of Figure 4.13 shows where
the Mercier criterion (3.20) is violated on the ¢ = 1 surface. The minimum in 8, o, is
set by interchange instability for this equilibrium. It is well known [12,58] that, when
the Mercier criterion is violated on a rational surface ¢ = m/n, there exist (infinitely
many) unstable modes with toroidal mode number n. Our numerical calculations show
that violation of the Mercier criterion on the ¢ = 1 surface leads to an n = 1 internal
mode, typically with a large growth rate.

Further evidence of the importance of interchange stability can be found in the
stability diagram for the TEXTOR current profile, Figure 4.15. This Figure shows a
clear dependence on the shear locally at the ¢ = 1 surface. The S,-limit drops from
about 0.17 (the highest value we have found with JET geometry), when the ¢ = 1
surface is in the high-shear region inside the shoulder, to about 0.03 when it enters the
region of minimum shear. The minimum in f, . again coincides with the threshold
for interchange at the ¢ = 1 surface, and increases if the minimum shear is increased.
Figure 4.16 shows the stability diagram for a TEXTOR profile with reduced shoulder
and larger minimum shear [, = 3(p = 0.38) = 0.16]. Note the absence of a local
minimum in the marginal 8, at the radius of minimum shear for this equilibrium.

It is of interest to consider the shape of the unstable eigenfunction when the Mercier
criterion is violated at the ¢ = 1 surfaces. This reveals that, when the Mercier criterion
is violated only in a small region around the ¢ = 1 surface, the mode structure is
quite different from the usual step function. As an example, Figure 4.17(a) shows the
unstable displacement for the JET cross section and the TEXTOR current profile, with

the ¢ = 1 surface at the point of minimum shear, at two different pressures. In the
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lowest-beta case, the Mercier criterion is violated only in a small region around ¢ = 1,
and the unstable mode has a clear interchange character. However, for a relatively
moderate 3,, the mode resembles the standard step-function of the internal kink. In
cases where the Mercier criterion is violated more globally in the ¢ < 1 region, the
unstable mode stays close to the step function also near the marginal point, as shown
in Figure 4.17(b) for the low-shear profile.

The numerical results of this Section show that the ideal MHD pressure limit for
the internal kink is significantly lower in JET geometry than for a circle. For most of
the JET cases examined here, the critical 8, is below 0.1. With elliptic shaping and
weak shear, the Mercier criterion can be violated at low f3,, and this generally gives

rise to global instabilities with large growth rates.
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Figure 4.17: Eigenfunctions (m = 1 components of £&.V p in straight field line coordi-
nates) for different cases with JET cross section when the Mercier criterion is violated
at the ¢ = 1 surface.

(a) The TEXTOR current profile (Figures 4.9 and 4.15) with p.=; = 0.4 and the
Mercier criterion is violated only locally around ¢ = 1. The two cases have 3, = 0.043,
v = 9.9.107* (filled symbols) and B, = 0.096, v = 4.2.10~3 (open symbols) respectively.
(b) The low-shear current profile (Figures 4.6 and 4.13) with p,-; = 0.41. The Mercier
criterion is violated globally for ¢ < 1. The two cases have 8, = 0.025, vy = 2.0.1073
(filled symbols) and B, = 0.042, v = 4.1.10™3 (open symbols) respectively.
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Chapter 5

Large aspect ratio Mercier and
resistive interchange criteria
including shape effects

In this Chapter, a large aspect ratio expansion is applied to derive a form of the
Mercier [13] and the resistive interchange [12] criteria retaining the effects of ellipticity
and triangularity.

Comparison of the numerical results in the preceding Chapter for circular and JET
shaped cross sections shows that ellipticity is destabilizing. The destabilization is par-
ticularly noticeable at low shear, contrary to the large aspect ratio predictions of [18,39].
However, the shape corrections in {18,39] were evaluated at infinite aspect ratio and
zero pressure, while the destabilization of the internal kink in our numerical examples
with low shear is connected with violation of the Mercier criterion on ¢ = 1. This
instability is well known: for vertically elongated flux surfaces, the Mercier criterion on
the magnetic axis (see [10], Chapter 10 or [59,60]) is violated when ¢ = 1 (unless the
triangularity is sufficiently large). It is evident that terms which are normally “small”
in the large aspect ratio expansion can become non-negligible for equilibria with weak
shear.

It would be desirable to express the ellipticity corrections to the potential energy of
the internal kink by extending the large aspect ratio of Bussac et al. [11]. This entails

retaining the toroidicity and ellipticity induced couplings of the m = 1 component to its
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four side-bands, m = —1,0,2, 3, and calculating all O(e%e) terms (where ¢ = p;=1a/Ro
and e is the ellipticity) in §W,/e?. This is a rather formidable calculation, and, to
illustrate the point, we shall content ourselves by giving the corrections to the Mercier
and the resistive interchange criteria due to ellipticity and triangularity at large aspect
ratio.

The standard large aspect expansion is modified by introducing two small param-
eters: toroidicity, € [= r/Ry], and ellipticity, ¢ [= (K — 1)/2]. The asymptotic large
aspect ratio ordering in & assumed here is ¢ = rBy/(RB,) ~ O(1) and 2p/BZ ~ O(&?),
where B, is the poloidal magnetic field. In that limit, the magnetic field (2.1) can be

approximated so that
G = RyBoy(r)

VU = RyBocf(r)Vr (5.1)

i

and therefore, using the Grad-Shafranov equation (2.3) and Ampere’s law in eq.(1.2),
§(r) = 1 + O(e?). The expansion of the Mercier and the resistive interchange criteria
is taken to second order in ¢ and to first order in e, keeping the contributions of
order e®e. This is justified because the normally leading O(e?) pressure contribution
to the Mercier parameter vanishes for ¢ = 1, so that the O(e?¢) shaping terms give the
leading contribution. We stress the importance of ordering ellipticity independently
from aspect ratio. Connor and Hastie {18] set ¢ = O(e) which makes the ellipticity-
induced terms higher order in € (and, in the limit of infinite aspect ratio, the equilibrium
is circular). The modified ordering allows us to calculate the contribution due to
elliptic and triangular shaping without going beyond second order in €. Except for the

difference in ordering, our calculation follows that of Connor and Hastie {18]. The flux
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surfaces are assumed to have the shape

R = Ry — ¢(r—eE(r))cosw — A(r) + &*T(r)cos2w +
e®Y Pu(r)cosnw +
z = e(r + eE(r))sinw + 2T (r)sin2w -

e Qu(r)sinnw +

(5.2)

where r and w are two non-orthogonal coordinates corresponding to minor radius and

poloidal angle, and ¢ and e are the independent expansion parameters. The elliptic

deformation E(r) is related to the elongation by & = 14 2E/r + O((E/r)?) and to the

ellipticity by E = re, A(r) is the Shafranov shift, and T'(r) is the triangular deformation

related to the triangularity by § = 4T(r)/r. Eq.(5.2) contains all shaping terms of order

€3, contrary to the expansion used in {54,55], and here, it will be shown explicitly that

no term of this order contributes to the Mercier parameter (3.20)

'cr, 1\* ¢

and to the resistive interchange parameter (3.21)
— Dp=-Dy - (H - 1/2)?

where

Gp Js(Js + G Jh)
H= q (J2 Js + G2J4

{J17 JZ, J3, J4, Js, Js} =

2 V 2
27 Jucconst \ REVE2’ VO’ [V R’ ' R?

In the following, we use the straight field-line coordinates (7, x,®) defined by

. Ry
7”2 = / dr f’*const R2

/o,m,, ﬁd‘*"

'] !
f;‘:const _R?;d‘u
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X = 2«

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)




rather than (r,w, ®), where

- R(BRGZ BRGZ)‘ (5.8)

=R e
Introducing eq.(5.2) and eq.(5.8) into (5.7) permits to identify 7 with r at order O(®)+

O(e?) by choosing the geometric coefficients P; and @, so that

P,<1+-——)+Q1( 5§)=%+%-%;—3E—%. (5.9)

The Jacobian from (7, x, ®) = (r, x, @) space to Cartesian coordinates reads

~dw gqR?
and the safety factor is given by
G(”) r 3 2
— +0(°)+ O 5.11
1) = FpA e + O+ O (511)
Therefore, the integrals (5.6) read
1
{33, I, Iy T Ty Je} ==
1 R? Rt q
y b ) 1, Rz, B V 2 —'d
e e L M P

(5.12)
in (r,x,®) coordinates. The integrals (5.12) involve the quantities R and (¢™)~! =
|Vr|=2, which must be expressed in (r, x, ®) coordinates. For an expansion of R, given
by eq.(5.2), as a function of r and x with an error of order O(e®) + O(e?), w is needed

with an error of order O(e?) + O(e?). At lowest order in ¢,

j2
() '= = Tog = {1~ 2¢E’cos 2w}e? 4+ O(e®) + O(e?) (5.13)
where
8R\?> [8z\®

Therefore, for an expansion of (¢"")~! as a function of r and x with an error of order

O(e%) + O(e?), w is required with an error of order O(&3) in the ec? term of eq.(5.13),
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and with an error of order O(e?) + O(e€?) in the higher order terms in e. With eq.(5.7),
X can be expressed in terms of r and w:

X = @ ex(r,w) + exe(r,w) + cexee(r,w) + xer(r,w)+

eeXeer(r,w) + 52X€2(r,w) + €2X£2T(r,w) + ... (5.15)
where
1
Xe(r,w) = 3 (— - E') sin 2w
Xe(r,w) = ( ) sinw
4 _ ’
Xee(r’w) = ( TE) ) sinw + EGR:;E sin 3w
Xer(r,w) = % 2L T’) sin 3w
ET' + 2E'TY\ .

Xeer(T,w) = sinw (5.16)

Xalrw) = ( 22 (fmt e a3

n(P + Qn v\ sin(n — 1w
O =
n(Pp, — Qu) ' +\ sin(n + Nw
(——:—— - d) )
Xer(r,w) = (T:y - %) sin 2w + (T - IC—ZZZ) sln};i:

The prime denotes the derivative with respect to r. The two expansions of w as a
function of 7 and x needed for the evaluation of R and (¢"")~! in (r,x, ®) coordinates

are obtained by successive approximations from egs.(5.15,5.16):

e order ee:

w = x- exe{r, X — €Xe(ryx) — exer(r, x)}—
EX:{TaX - CXC(T, X)} — €€Xce {7‘, X} - (5.17)

exer{rx = exelr, 0} = eexeer {r,x} + O(?) + O(e?)
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e order ¢
o = x=exe{rx - exelry ) - exer(r, ) -

EX:T{r, X — exe(r x)} —e?xe2 {r,x} - (5.18)

e2xear {r,x} + O(e®) + O(e).

Now, the integrals (5.12) can be evaluated. To the required order,

Jl=f’c‘§z [1+€'0—362—52(;; i:)ﬂezE—R;
J2=ﬁgéz :1+€'o+3&1+362-52(§;3+4A§7‘A,>+eez-9—7-‘-£%.:;—-——r2£y]
JF% :1+&o+eal+962—e2§(%)1—e523;;?]
J5=£C'§2 [14»&1 (2’;3+%£+%)+eezif%—w]
J6=-g§- [1—60—62+€2(%+2R%)—652E2%%—
2sz (ZET +6ET+ ET’) + (AN2e? (2+ ge_g) +

2eE'e* (P! - Q, + Pi + Q's)]

(5.19)
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where

. P20 rA (SEY  (rETY
G = {Rg R A B
s (e 2 o]
7 (1 32-3) 200 (£ 07)-
P! (1+£_36E) Q (1—3§+§e5') (5.20)
SCR(Py+ Qo)+ SeE (P + &)}
& = eez%l
& = ee’E'————r(A;I;OT’)

The only non-vanishing contributions of the O(e®) shaping corrections in eq.(5.2) are
the w and the 3w harmonics. They appear in J;, J;, J3 and Jg and cancel out when
the Mercier and the resistive interchange criteria are evaluated.

The Mercier parameter —Dy in (5.3,5.4) involves Ji, and therefore, A", E” and T".
These quantities are obtained from the Grad-Shafranov equation, which, in (r,w,®)

coordinates, reads

f f9un f9rw 4 §g'
7[55(7)‘&:( " )]*RﬂBﬁ =0 (5:21)

expanded in ¢ and e, with ' = e~'d/dr. The w independent piece gives the cylindrical

pressure balance equation

“'+—+ ( fy=o0 (5-22)

that allows us to eliminate §’. Equations for the Shafranov shift and the elliptic and

the triangular deformations of the flux surfaces are obtained from the cosw component
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at O(e), the cos 2w component at O(e) and the cos 3w component at O(e) respectively:

2f 1) , 1 2rp’
A" = S A -t
(f r) 2 R T ReBIF
3p)  3A’ 12T 5T 2Tf
C[E(RoBgfz" =ttt ,.2f)+
,( 3rp 3Af 10T 2T 3T'f 1
o (
5.23)
"o _ 2f, l ! 3
E" = —(f +r)E+r2E
(]
T = - _2_j_+1 T+ ST+
f ' r r?

7 3A [ 3rp 4A 3A'f 1
C[E(&Bsfz“’ r2)‘E (RoB%f2+ m T "E)}

Replacing A”, E” and T" into J{ leads to the Mercier and the resistive interchange

criteria, to second order in ¢ and first order in e:
1, 2 ¢ 2, 3¢ (E ) 3¢’ (E )
- = 422 4 _|5_ S ad AA(Z_F)-
D élr-’-rBS(q')2 1=+ 4 r+E + 2 r
2 / J
Rog (2ET + 6E'T . TET' _g_ET)] >0

T r? T 2r
Dr = ZPIiz-{l 2+3q2(E+E')+-3—q-2-A(§- E')
FTEEyY T G 2 \r
2 (9BT 6E'T 7ET 3,
Hog ( + + —EET)]+

r r r 2r

(5.24)

3A 1
rqq’ [-—A + (-—2—- + Z) E'+

&(ET+ET+ET —%E’T’)]}.

r r? r r

In eq.(5.24), A = RoA'/r =~ B,(r) + £(r)/2, where £; is the internal inductance.
Eq.(5.24) generalizes the formula for circular flux surfaces of Shafranov and Yurchenko
[61] and Glasser, Greene and Johnson [12], and is consistent with previous expressions
retaining shaping effects near the magnetic axis [59]. Figure 5.1 shows that (5.24) is in
reasonable agreement with the full Mercier criterion for two equilibria with (a) large

aspect ratio A = 10, K = 1.3 and (b) small aspect ratio 4 = 2.7, K = 1.7. Figure 5.1
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also shows the standard Shafranov-Yurchenko expression, which ignores the effect of
ellipticity and fails to predict interchange instability at ¢ = 1.

An approximation of (5.24) that is often useful for the internal kink mode is obtained
by considering almost flat current profiles with ¢’ small and E/r and T/r? constant.

Together with ¢ = 1, this gives

1  rp 3E 8T Ry
Dixitem T (-2
Dp~ % 22 (1- 272 - 28] (529
R 2Bl r ror )

Eq.(5.25) shows that for sufficiently ellipticity, ideal interchange instability can occur
for modest pressure and not-so-low shear. As an example, we assume that the pressure
profile is parabolic, giving 8, = —(p'/(rB2))(R3¢*/2), and that triangularity is negli-
gible. The Mercier criterion (5.25) then reduces to 8, < 3%/(24ec?). Even though the
expansion to first order in ellipticity is not very accurate for JET geometry, we consider
a JET-like case with e, = 0.16 and e,=; = 0.2 for which (5.25) gives 8, < 83%. This
criterion is violated for rather modest pressures when the shear is less than about 0.1.
For low shear, say § < 0.03, even a minute pressure gradient will violate the Mercier

criterion at ¢ = 1 in an elongated tokamak.
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(a)

08, 1

Figure 5.1: The Mercier criterion for an equilibrium with elliptic cross-section and low
shear around the ¢ = 1 surface. The solid line gives the full criterion (5.3), the curve
with long dashes the large aspect ratio expansion with ellipticity (5.24), and the curve
with short dashes gives the Shafranov-Yurchenko approximation.

(a) aspect ratio A = 10, elongation K = 1.3.

(b) aspect ratio A = 2.7, elongation K = 1.7.
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Chapter 6

Resistive toroidal stability of
internal kink modes in circular and
shaped tokamaks

The dynamics of resistive MHD instabilities is concentrated on thin layers around the
resonant surfaces. It is therefore possible to neglect effects of resistivity everywhere in
the plasma except in thin layers around the resonant surfaces. The complete solution
is then obtained by matching asymptotically the solutions in the resistive layer to the

solutions in the ideal regions on either side of it. A dispersion relation of the form

Ny =225 (1)
A

arises from the matching condition. A; is the coefficient of the large solution, and

B_, B, are the coeflicients of the small solution to the left and the right of the resistive
layer.

In pressure-less plasma with a circular boundary and in the limit of infinite aspect

ratio, the ideal kink mode is marginally stable and the resistive mode is strongly un-

stable (= the resistive kink mode). The dispersion relation was obtained by Coppi et

al. [14]. Toroidicity is stabilizing, and at finite aspect ratio, the resistive kink with

A’ = 0o turns into a tearing mode with A’ finite, if B, < B > marginal for the ideal

2/5
/7,3/'5

mode [15]. The growth rate of the resistive tearing mode is of order 7 , whereas

2/3__
/Trl/3

the resistive kink mode scales as 7 , 1.e intermediate between resistive tearing

1

and ideal mode, whose growth rate is of order 7;'. Here, 7, = pga?/n denotes the
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resistive time connected with the minor radius and 74 = Rp/v,4 is the toroidal Alfvén
time. Numerical studies for plasmas with circular cross sections have shown that even
the resistive tearing mode can be stabilized, A < 0, if the shear at the ¢ = 1 is reduced
[5,41].

A main factor for the stability of the internal kink is the pressure. The global
effects of pressure are described primarily by the poloidal beta at the ¢ = 1 surface,
Bp. The results in Chapter 4 show that for the ideal kink mode, the stability limits
in B, are sensitive to the current profile and the shape of the plasma cross section.
Moreover, arbitrary low values of 8, .54 can result with elliptic cross sections if the
shear is reduced at the ¢ = 1 surface.

The stability of resistive modes is generally strongly affected by central pressure
gradients. First, the global effect of pressure gradients is to modify A (i.e. trans-
form the outer solutions, and therefore the coefficients 4;, By in eq.(6.1)). Secondly,
pressure gradients locally at the ¢ = 1 surface easily lead to violation of the resistive
interchange criterion for equilibria with low shear and a sufficiently elongated cross

section. Eq.(5.25),

Dam [ (1 TR
.DR ~ §2Bg [ - 1 — 23A (6.2)

shows that if the shear is small (and higher-order corrections are negligible), a slight
ellipticity, e = E/r > 23A/3, leads to violation of the resistive interchange criterion.
The importance of the resistive interchange criterion on resistive stability can be seen
from the dispersion relation of Glasser, Greene and Johnson [12], which reads in its

simplified cylindrical form

' 2n T'(3/4) <4 ©D
M@= Zrie (1- 5) (6:2)

(IDg| is assumed small.) In eq.(6.3), Lp = aS~'/? is the resistive layer width of the
interchange ordering, Q = y7451/ is the normalized growth rate, and the resistivity is

indicated by the Lundquist number S = 7. /74.
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According to the dispersion relation (6.3), the stability of the resistive modes at high
S becomes almost entirely determined by the resistive interchange parameter. If the
criterion is violated, —Dg < 0, there is always an unstable mode (for arbitrary A and
S), and for large S, its growth rate scales as S$~1/ 3Df{ 3. On the other hand, if resistive
interchanges are stable, —Dgr > 0, tearing modes remain stable for A less than some
positive threshold A::rit» which scales as S¥/3(—~Dpg)*/®. We emphasize that, at high
S, Alcrit becomes large, and the stability of resistive modes is completely dominated
by the resistive interchange criterion.

In Chapter 6, effects of aspect ratio, shaping of the cross section, current profiles,
pressure and wall separation on the resistive internal kink mode are investigated nu-
merically, using the the equilibrium code CHEASE and the toroidal resistive stability

code MARS. In the following study, the resistivity n is taken constant in space.

6.1 Dependence on aspect ratio, shaping, and wall
separation without pressure

First, effects of aspect ratio, shear at the ¢ = 1 surface and wall separation for different
cross sections are studied for pressure-less equilibria. The plasma-vacuum interface of
the equilibrium is prescribed by eq.(2.25). For the zero-pressure study, three different
cross sections are chosen: circular (elongation K = 1, triangularity § = 0 and { = 0),
elliptic (K = 1.7, 6§ =0 and { = 0), and JET [53] shape (K = 1.7, 6§ = 0.3 and { = 0).
The current profile is specified by the surface averaged toroidal current density I*.
Two flattened current profiles as in Figure 4.6 are studied. Here, the plateau in I* is
located at p = p, = 0.44. In Section 6.1, the ¢ = 1 radius is fixed at p =~ 0.40, i.e., in
the low-shear region inside the “knee” of the current profile at p,. Two different values
of the central shear have been chosen, so that the shear § at ¢ = 1 is about 0.04 and
0.07, and ¢g =~ 0.935 and 0.88, respectively. The shear varies only very slightly with

respect to aspect ratio and the shape inside a certain radius, say p < 0.6.
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6.1.1 Fixed boundary results for zero pressure

Holmes et al. [41] have shown that the resistive internal kink is stabilized by small
aspect ratio and weak shear at the ¢ = 1 surface. This is confirmed in Figure 6.1,

which shows the fixed boundary growth rates of the resistive kink mode versus the

2e-3r

1e-31

o

Oe+0 : : :
U0 02 04 06 g 08

Figure 6.1: Fixed boundary resistive growth rates v at S = 10° versus inverse aspect
ratio €, for zero pressure equilibria with different shapes: circle, ellipse (squares), and
JET shape (triangles). The flattened current profile has been used with different central
shear (closed symbols: low shear, open symbols: high shear).
inverse aspect ratio ¢ = a/Ry at a Lundquist number of S = 10° for the flattened
current profile. The various curves refer to the three cross sections (circle, ellipse and
JET shape) and the two different values of central shear. The resistive internal kink is
stabilized for aspect ratios below a threshold that varies inversely with the shear.
Figure 6.1 shows that shaping is also important for internal kink stability, in partic-
ular, at large aspect ratio. For example, the elliptic case (K = 1.7, § = 0) shows strong
instability as the aspect ratio increases. The destabilization by ellipticity has been

analyzed for ideal modes at large aspect ratio [39,57]. It is connected to contributions

proportional to (K — 1)? in the normalized potential energy éW,/a®. The destabilizing
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elliptic term competes with the O(e?) stabilizing toroidal contribution [11]. At fixed
shape, the elliptic shaping terms dominate over the toroidal term when the aspect ratio
increases, and an elliptical equilibrium with go < 1 is ideally unstable at large aspect
ratio. As seen from Figure 6.1, the resistive internal mode is significantly destabilized
by an ellipticity of K = 1.7, for aspect ratios of interest. However, a triangularity of
4 = 0.3, in combination with the same ellipticity (JET shape), improves stability over
the circle. This is connected to stabilizing terms of order 6% and (K — 1)§ in §W, /a2,
which become significant at large aspect ratio.

At low aspect ratio, the stabilizing toroidal effects tend to dominate over the shaping
effects. Figure 6.1 shows that, for the low shear profile, the three shapes are stabilized
at roughly the same aspect ratio, A = Ry/a = 3. For the higher central shear, the
circular and the JET-shaped equilibria are stable for A less than about 1.5 and 1.8,
respectively. The equilibria with higher central shear and an elliptic cross section are
never completely stable, and the resistive growth rates increases again for € > 0.6.

To summarize, the results of Figure 6.1 for the fixed boundary internal kink at zero
pressure: toroidicity and weak shear at the ¢ = 1 surface are stabilizing and ellipticity is
destabilizing, but a combination of ellipticity and sufficient triangularity is more stable

than a circular equilibrium.

6.1.2 Free boundary results for zero pressure

Next, the effects of free boundary are considered. Figure 6.2(a) shows the growth rate
of the n = 1 mode at S = 10° for a circular zero beta equilibrium (the case of weak
central shear in Figure 6.1). One curve gives the result for a fixed boundary and the
two other apply to free boundary modes with a conducting wall placed at a minor
radius of b = 1.2a.

At large aspect ratio, the two free boundary modes correspond in an unambiguous
way to their cylindrical counterparts: one is the internal “m = 1” and the other the

external “m = 2” mode. For the equilibria considered here, the external mode is
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Figure 6.2: Resistive instabilities of a circular equilibrium with a flattened current
profile, low central shear, and zero pressure.

(a) Growth rates v at S = 10° versus inverse aspect ratio €. The closed circles refer
to the fixed boundary modes, while the open symbols show the results with a free
boundary and a conducting wall at a radius b = 1.2a.

(b)-(d) Fourier components of the radial perturbed velocity v = v.V¥/? and the
magnetic flux b = JB.V¥'/? in straight field line coordinates [J = C(¥)R?] for the
free boundary mode.

(b) The “m = 1” mode for A = 5. (c) The “m = 2” mode for A = 5.

(d) The single unstable mode for A = 2.5.

The m = 1 and m = 2 components of the magnetic flux reinforce one another on the
outboard side for the fast growing branch [(b) and (d)] and on the inside for the slower
branch (c).
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stable with the wall on the plasma, but it becomes unstable for wall radii b > 1.1a.
Figure 6.2(a) shows that, as the aspect ratio decreases, the “m = 1” mode becomes
increasingly stable, whereas the free boundary “m = 2” mode is only weakly affected
by toroidicity. At a certain aspect ratio (A4 = 3 for this case), the two branches cross
over and the identification of internal or “m = 1” and external or “m = 2” breaks
down. For aspect ratios below the crossover, the branch connected to the large aspect
ratio internal mode acquires a dominant m = 2 magnetic component and transforms
into an “external” mode with a growth rate almost independent of A, and the large
aspect ratio external branch is stabilized. (Note that the “m = 2” mode is independent
of aspect ratio only for low pressure. For higher pressure, the toroidal effects on the
“m = 2” mode are stabilizing because of favorable curvature at the ¢ = 2 surface.)
Figure 6.2(b)-(d) show the radial displacement and the perturbed magnetic flux for the
two different modes at aspect ratio A = 5 and the single unstable mode at A = 2.5.
The mixture of the m = 1 and m = 2 displacements localized around the ¢ = 1 and
g = 2 surface is evident, and the relative sign of the m = 1 and the m = 2 components
is different for the two branches. For the more unstable branch, the m =1 and m = 2
magnetic perturbations reinforce one another on the outboard side.

The cases shown in Figure 6.2 indicate that the current profile must be stable to
the m = 2/n = 1 tearing mode in the straight tokamak approximation, in order to
be completely stable at finite aspect ratio and zero pressure. One way to stabilize the
m = 2 tearing mode is to decrease g to values substantially below unity. However, for
such profiles, the shear must be reduced locally at the ¢ = 1 surface in order for the
m = 1 resistive kink to remain stable. Thus, at zero pressure, free boundary stability
can be achieved at finite aspect ratio by a TEXTOR profile as in Figure 4.9 with ¢
well below unity and shoulders in the current profile, which reduce the shear at ¢ = 1.
The free boundary growth rate for this equilibrium is shown as a function of the aspect
ratio in Figure 6.3. The ezternal mode is now stable at all aspect ratios and the internal

mode is stabilized for aspect ratios below approximately 10. Thus, the TEXTOR profile
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with zero pressure is completely resistively stable for aspect ratios typical of tokamaks.
The shear at ¢ = 1 for this equilibrium is § & 0.035, which is similar to the flattened
profile of low central shear in Figure 6.1, but the internal mode is stabilized at much

larger aspect ratio for the TEXTOR profile.

1.5e-3 v Y Y Y . v Yy
Y
!
- 1.0e-3r y
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- 0.0e+0 —4—mmr—r—r——t——r——
v.00 0.05 € 0.10

Figure 6.3: Free-boundary resistive growth rates v at S = 10° versus inverse aspect
ratio €, for a circular equilibrium with TEXTOR current profile and zero pressure. A
conducting wall is assumed at b = 1.2a. Note the absence of an “m = 2” branch and
the complete stability at low aspect ratio.

The examples in Figures 6.2-6.3 show that the stability of the resistive internal kink
at zero pressure is sensitive to the current profile, aspect ratio, and wall position. Cou-
pling to the external “m = 2” mode becomes important at low aspect ratio. Stability
to both the internal and external free boundary modes at zero pressure appears to
require nonmonotonic current profiles of the TEXTOR type. In the following, we shall

mainly consider the purely internal modes by imposing a fixed boundary.
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6.2 Pressure effects

To illustrate the significance of the layer effects for the internal kink mode, we show in
Figure 6.4-6.6 the resistive growth rate versus inverse aspect ratio for three different
cross sections: circle: K = 1, 6§ = 0 and { = 0 (Figure 6.4), weakly oblate: K = 0.9,
6 =0 and ¢ = 0 (Figure 6.5), and JET shape: K = 1.7, § = 0.3 and ( = 0 (Figure 6.6).
In all cases, B, = 0.05 and S = 107, and we have used the flattened current profile with
low central shear and go = 0.935. The pressure profile is the same as the one used for
the ideal cases, Figure 4.2, and the ¢ = 1 surface is in the low-shear region at p =~ 0.40
as in Section 6.1.

Figure 6.4(a) shows the resistive growth rate versus ¢ for equilibria with a circular
boundary, B, = 0.05, and two different wall positions b = a and b = 1.2a. By compari-
son with Figure 6.1, the major effect of finite pressure is that the fized boundary mode
remains unstable also at low aspect ratio. This mode is now dominated by the m = 1
component. The mode is only weakly dependent on the wall position, and is driven
unstable by interchange effects. Figure 6.4(b) shows that the resistive interchange cri-
terion becomes increasingly violated at low aspect ratio. The principal reason for this
appears to be the small natural ellipticity of the internal flux surfaces at finite aspect
ratio. The ellipticity e,=; of the ¢ = 1 surface is shown in Figure 6.4(b). With a circular
boundary, the ellipticity of the internal surfaces is, to leading order, proportional to
€? (eg=1 = 5.98.107%(a/Ry)? for the equilibria in Figure 6.4). For A < 3, the desta-
bilizing ellipticity correction in the resistive interchange criterion dominates over the
stabilizing shear term. Thus, even though the plasma boundary is circular, the O(e?)
modifications of the shape of the internal surfaces change the stability of the internal
kink significantly at relevant aspect ratios. This current profile is particularly sensitive
to “small” effects because of the low shear on ¢ = 1, but similar behavior is observed
for the equilibrium with higher shear in Section 6.1.1. (For the sequence of equilibria

in Figure 6.4, where the current profile is held fixed, the shear depends weakly on the
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Figure 6.4: Stability results for a circular equilibrium with a flattened current profile,
low central shear, and g, = 0.05.
(a) Resistive growth rate v for S = 107 versus inverse aspect ratio e. The fixed
boundary results are shown as closed circles and the open circles refer to the conducting
wall at b = 1.2a.
(b) The resistive interchange parameter —Dp (closed circles) and ellipticity e (open
circles) at the ¢ = 1 surface.
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Figure 6.5: Stability results for a weakly oblate equilibrium with a flattened current
profile, low central shear, and 8, = 0.05.

(a) Free boundary resistive growth rate v for S = 107 versus inverse aspect ratio ¢ with
a conducting wall at b = 1.2a. The open circles show the growth rate and the closed
circles show the real part of the frequency.

(b) The resistive interchange parameter — Dy (closed circles), ellipticity e (open circles)
and shear § (open triangles) at the ¢ = 1 surface.
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Figure 6.6: Stability results for a JET-shaped equilibrium with a flattened current
profile, low central shear, and 3, = 0.05.
(a) Fixed boundary growth rate versus inverse aspect ratio . The open circles show
the resistive mode for v for S = 107 and the closed circles refer to the ideal case.
(b) The resistive and ideal interchange parameter —Dg (open circles), and —D; (closed
circles) versus inverse aspect ratio.
aspect ratio, but this not significant. It should be remarked that the large aspect ratio
expansion that led to eq.(5.24) is not strictly valid when the ellipticity is of order €2,
but eq.(5.24) nevertheless seems to give a good approximation.)

Figure 6.5(a) shows the growth rate for weakly oblate equilibria with K = 0.9 and
B, = 0.05. With decreasing aspect ratio, the growth rate first decreases, then becomes
complex, and finally the mode is completely stabilized, as predicted by the theory of
Glasser et al. [12]. The resistive interchange criterion is satisfied, because the ¢ = 1
surface remains oblate also for small aspect ratios [e,=; & (—4.09 + 6.6a®/R%) x 107%].
For these oblate equilibria, the internal kink mode is completely stable at low aspect
ratio and moderate pressure. Even though both the deviation from circular boundary
(K = 0.9) and the S number (107) are modest, the resistive internal kink mode behaves

quite differently than in the case of a circular boundary. With more pronounced shaping

and larger S, the influence of curvature of course becomes stronger.
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Figure 6.6(a) shows the growth rate for the JET-shaped equilibrium (K = 1.7,6§ =
0.3). These results differ clearly from those of the two previous cases. With JET shape
and B, = 0.05, the growth rate increases with ¢ for ¢ > 0.08. The internal kink is now
ideally unstable for ¢ > 0.21 and its growth rate is high (> 5.107%w,) at low aspect
ratio. The reason for the ideal instability at low f, can be seen in Figure 6.6(b): the
ideal interchange criterion is violated for ¢ > 0.22. Ideal instability sets in almost
exactly when the Mercier criterion is violated and the growth rate soon reaches large
values. For 0.14 < € < 0,22, only the resistive interchange criterion is violated, and
the equilibrium is resistively unstable with much smaller growth rates.

It may be noted, as a curiosity, that at large aspect ratio, ¢ < 0.14, the resistive
interchange criterion indicates stability for these JET-shaped equilibria and the growth
rate at moderate pressure is reduced below the zero beta value. This is connected to
the stabilizing influence of triangularity in combination with ellipticity; see eq.(5.25).
For fixed shape (E, T independent of ¢) the stabilizing terms proportional to £ x T
become dominant at large aspect ratio. Of course, in the limit of ¢ — 0 with S, fixed,
the pressure effects become negligible (~D; — 1/4 and —Dg — 0), and the resistive

kink mode of the straight tokamak reappears.

6.3 Current profile effects
6.3.1 Circular shape

In this Section, we study the influence of the current profile in combination with finite
pressure and shaping, and discuss how a sawtooth crash might be triggered by changes
in the current profile. We first consider circular cross section and two types of current
profiles: the flattened (I) (see Figure 4.6) and the TEXTOR (II) profile (see Figure 4.9).
The current profiles are prescribed except for a multiplicative factor that is adjusted
to specify the ¢ = 1 radius or the ¢ value at a specified radius, g, = ¢(p,), using the
equilibrium transformations described in Section 2.5.

For the flattened profile (I), the shear is low in a central region and has a local
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minimum at p = p, = 0.44, where dI*/dp = 0. Outside this radius, the shear increases
rapidly. The minimum shear 3(p,) is about 0.03 and the central safety factor is given
by go ~ 0.935¢,. For ¢, > 1, the g = 1 surface is in the central region of low shear, but
when ¢, decreases below unity, it moves into the outer region of rapidly increasing shear.
Minimum shear at ¢ = 1 occurs for ¢, = 1. A sequence of self-similar equilibria with
decreasing ¢o may correspond approximately to the time evolution during the ramp
phase of a sawtooth, if the breceding crash leads to complete reconnection and almost
flat central ¢, followed by peaking of the current due to trapped particle effects [62). The
pressure profile is the same as in Section 4.2. The central beta is related to 8, at ¢ = 1 by
Bo = 0.0968, and the volume averaged beta is < f >= 2uo < p > / < B? >~ 0.0398,.

Figures 6.7 and 6.8 show the growth rates of the internal kink mode for the flattened
current profile as functions of ¢, at different pressure and resistivities. The aspect ratio
is 4 and a conducting wall is assumed at a radius of b = 1.2a. Complete resistive,
free-boundary stability is never achieved for the flattened current profile. However, for
B, < 0.05, the resistive growth rate is small when the ¢ = 1 surface is in the region
of small shear, and the mode is predominantly external with a large m = 2 magnetic
perturbation. Such weak instabilities may well be stabilized by effects not included
in linear resistive MHD. By comparing Figure 6.7 for S = 6.10° and Figure 6.8 for
S = 6.108, one can identify regions of resistive and ideal instability. The instabilities for
B, > 0.15 and g, < 1 (when the ¢ = 1 surface is in the outer region of high shear) are
ideal. The normalized growth rates are several times 10~2 and are almost independent
of resistivity. The growth rate peaks when the shear at ¢ = 1 is small, as expected
for ideal modes [11,63]. By contrast, for 4, < 0.05, the instabilities are resistive. The
growth rates follow the tearing scaling with respect to resistivity and have a minimum
when the shear is small at ¢ = 1. Figure 6.8 shows that the resistive growth rates are
very small at high S. These growth rates do not even come close to those observed
experimentally in sawtooth precursors where, typically, v/ws > 1073,

An interesting feature can be seen in the cases with B, > 0.15. The pressure-driven
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Figure 6.7: Free-boundary growth rates for S = 6.10° versus the safety factor g, at the
radius of minimum shear (p = 0.44) for a circular equilibrium with a flattened current
profile, low central shear, and different 8,. The aspect ratio is 4 and the conducting
wall is at a radius b = 1.2a.
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Figure 6.8: Free-boundary growth rates versus ¢,. All parameters are identical to
Figure 6.7, except S = 6.105.
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instabilities are sensitive to the value of g, or to the location of the ¢ = 1 surface with
respect to the knee of the current profile. The finite-beta growth rates have maxima
when the ¢ = 1 surface is at the radius of minimum shear and remain high when the
q = 1 surface reaches the outer, high-shear region. Thus, a “pressure-driven” instability
may be triggered by changes in the current profile réther than by an increase in the
pressure itself.

For comparison with other geometries, we note that the resistive interchange crite-
rion generally indicates stability for circular cross section with A = 4, but —Dp takes
small positive values (due to finite shear rather than favorable curvature). The growth
rates are generally slightly larger for 8, = 0 than for 5, = 0.05 because of the increased
inertia associated with the motion along the field lines in the finite beta case.

The details of the results in Figure 6.7 and 6.8 depend on the current profile. For
instance, if the central shear is reduced, the ideal pressure-driven instabilities are en-
hanced, while the growth rates of the resistive instabilities for low pressure are reduced.

Next, we consider the TEXTOR current profile. The shoulders in I* have been
adjusted so that the shear has a minimum of about 0.034 at p = p, ~ 0.44. The
central g is go =~ 0.634¢,, and the aspect ratio is 4. Figures 6.9 and 6.10 show the
growth rates for different S and central pressures. The behavior is similar to that for
the centrally flat profiles, but the TEXTOR profile supports about twice the pressure
before becoming ideally unstable. At high pressure, 8, > 0.2, the growth rates are very
sensitive to the position of the ¢ = 1 surface. For the TEXTOR profile, there is indeed
an interval ¢,, where the equilibrium is entirely stable. However, this interval is small,
and certainly less than the shift in ¢ during the sawtooth cycle.

As discussed in Section 6.1, low aspect ratio is stabilizing for the internal kink mode.
An example is given in Figure 6.11 which shows the growth rate v as a function of g,
for a sequence of equilibria with aspect ratio A = 2.5 and a TEXTOR current profile.
Figure 6.11 refers to S = 6.10% and differs from Figure 6.10 only with respect to the

aspect ratio. We note that the region of complete stability is larger at the smaller
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Figure 6.9: Free-boundary growth rates for S = 6.10° versus the safety factor ¢, at the
radius of minimum shear (p =~ 0.44) for a circular equilibrium with TEXTOR current
profile and different values of 3,. The aspect ratio is 4 and the conducting wall is at a
radius b = 1.2a.
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Figure 6.10: Free-boundary growth rates versus ¢,. All parameters are identical to
Figure 6.9, except S = 6.10%.
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Figure 6.11: Free-boundary growth rates versus the safety factor ¢, at the radius of
minimum shear (p =~ 0.44) for a circular equilibrium with TEXTOR current profile.
All parameters are identical to Figure 6.10, except that the aspect ratio A = 2.5. (a)
shows the full range of 4 and (b) is a blowup to show the stable region.

aspect ratio, and that there is even a small interval in ¢,, giving complete resistive

stability for g, = 0.20.
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6.3.2 JET shape

As noted in Section 6.1, the ellipticity of the ¢ = 1 surface in a JET-shaped cross
section can cause ideal instability at moderate pressure if the shear at ¢ = 1 is small.
In order not to be dominated by interchange effects, we consider current profiles with
higher shear in this paragraph. To show the dependence on the shear, we choose two
values of the minimum shear for each of the two types of profiles: flattened, denoted
(I-H) and (I-L) for high and low shear, respectively, and TEXTOR, denoted (II-H)
and (II-L). The shear at ¢ = 1 is shown in Figure 6.12 for the four profiles versus
4 = g(p = pp = 0.41). The fixed boundary growth rates at § = 6.10% are shown for
different pressures in Figures 6.13-6.15. Figure 6.13 shows that at zero pressure, the
growth rates are similar for the four different current profiles. The growth rate at zero
pressure are generally lower than for the circular case with A = 4. However, the JET
cross section is more sensitive to pressure, and a clear increase in growth rates resulting
from 3, = 0.05 is evident in Figure 6.14. None of the current profiles is resistively stable
for this pressure in JET geometry. However, the large shear profiles have small growth
rates for B, = 0.05, in particular, the TEXTOR current profile. The pressure-driven
instability for the low-shear TEXTOR profile is highly sensitive to the ¢ value.

For higher pressure, §, = 0.10 (Figure 6.15), the two centrally flat profiles both
give rather large growth rates for all values of g,, whereas the TEXTOR profile gives
normalized growth rates as small as a few times 10~* when ¢, > 1, i.e. when the ¢ =1

surface 1s inside the shoulder.
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Figure 6.12: Shear at the ¢ = 1 surface versus the safety factor ¢, at the radius
of minimum shear (p = 0.41) for JET-shaped equilibria with A = 2.7 and different
current profiles. Circles indicate the flattened, and triangles the TEXTOR current
profile. Open symbols represent low, and closed symbols high central shear.
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Figure 6.13: Fixed boundary growth rates for S = 6.10® versus the safety factor ¢, at
the radius of minimum shear (p & 0.41) for JET-shaped equilibria with different current
profiles and zero pressure. (a) shows the results for the flattened current profiles and

(b) the TEXTOR profile.
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Figure 6.15: Identical to Figure 6.13, except B, = 0.10. (a) shows the results for the
flattened current profiles and (b) the TEXTOR profile.



6.3.3 Oblate cross section

To illustrate the importance of the average curvature, we again consider the slightly
academic example of an oblate cross section (elongation K = 0.9, triangularity § =
0, and aspect ratio A = 4). The current profile is of the TEXTOR type with a
minimum shear of 0.042. The growth rate for 8, = 0.05 and S = 6.107 is shown in
Figure 6.16. When the ¢ = 1 surface is located near the radius of minimum shear,
the growth rate becomes complex, and in a certain interval, 0.995 < ¢, < 1.005, the
mode is stabilized, evidently as a result of favorable curvature at ¢ = 1. The resistive
interchange parameter at ¢ = 1, —Dpg, indicates stability and reaches a maximum of
about 0.07.

For higher pressure, 8, = 0.10, and the oblate cross section, the destabilizing global
effects of pressure dominate over the stabilizing layer effects, and the resistive internal

kink is no longer stable for any ¢o < 1.

6.4 Summary of results on resistive stability

The results on the stability of resistive internal kink modes show that although low
shear is stabilizing at zero pressure, it tends to be destabilizing even for very modest
central pressure gradients because of interchange instability. This effect is strong for
elliptic shaping (including JET shape) which makes the averaged curvature on ¢ =1
unfavorable. For JET shape, we have found no case with 8, > 0.05 that is resistively
stable, and complete resistive stability with free boundary was found only for current
profiles of the TEXTOR type with shoulders (or at low shear and very low pressure).
Stabilization for the TEXTOR profile requires a very careful tuning of parameters, e.g.,

specification of ¢ with a precision of half a percent.
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Figure 6.16: Free-boundary growth rates for S = 6.107 versus the safety factor g, at
the radius of minimum shear (p = 0.44) for a weakly oblate equilibrium with TEXTOR
current profile and B, = 0.05. The aspect ratio is 4, and the conducting wall is at a
radius b = 1.2a. Closed circles show the growth rate and open circles show the real
frequency.
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Chapter 7

Summary

7.1 Cubic Hermite element equilibrium code

The Hermite bicubic elements have proved their efficiency for the resolution of the
Grad-Shafranov equation. The convergence rates of the equilibrium solution agree with
the theoretical predictions, despite the special treatment on the axis of the modified
polar mesh used for the discretization. A comparison with the linear “hybrid element”
equilibrium code CLIO shows that the computation of the position of the magnetic axis
for a nonlinear JET equilibrium is as precise with CHEASE on a 20 x 20 discretization
mesh as with CLIO on a 300 x 300 mesh.

To study the effect of the equilibrium calculation and the mapping to flux coordi-
nates on the accuracy of the stability calculations, we have shown convergence tests
with the stability codes ERATO using two-dimensional linear “hybrid elements”, and
MARS, where Fourier decomposition is used in the poloidal direction. For both codes,
the error due to the equilibrium solver on the stability results converges in O(h?), to
be compared with the O(h) error if second order accurate finite differences are used for
the discretization of the equilibrium. Therefore, CHEASE provides equilibria for these
stability codes which are accurate enough for computing routinely instability growth
rates below 102wy, which is typical for internal kink modes in tokamaks.

CHEASE has been equipped with a number of commonly-used profile specifica-
tions, and is interfaced with the stability codes ERATO and NOVA-W (ideal MHD),
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MARS and PEST-3.4 (resistive MHD) and LION (Alfvén and ion cyclotron range of

frequencies).

7.2 MHD stability of internal kink modes in toka-
maks

For circular cross sections, the ideal full-MHD stability of the internal kink mode at
typical aspect ratios is quite well described by the large aspect ratio theory. The large
aspect ratio calculation of Bussac et al. [11] has been modified with respect to the
boundary conditions so that it applies for tokamak equilibria with ¢, > 2. With this
modification, the large aspect ratio expansion typically predicts f,-limits in the range
of 0.1 to 0.2, in good agreement with our numerical full- MHD results. Most current
profiles give f,-limits that decrease monotonically with increasing ¢ = 1 radius. Both
large aspect ratio theory and numerical computations show instability at low values
of go. The stability of the internal kink is dependent on the current profile, e.g., the
Shafranov profile is less stable than profiles that are rounded in the central region,
while current profiles with shoulders just outside the ¢ = 1 surface are more stable.

With regard to shaping, ellipticity was found to reduce significantly the 8, limit.
For JET geometry, typical values of the marginal 8, are between 0.03 and 0.1. The
reduction of the pressure limit by elongation is accentuated in cases of weak shear in
the ¢ < 1 region, correlated with violatiog of the Mercier criterion. A large aspect
ratio expansion of the Mercier criterion including the lowest order effects of ellipticity
and triangularity is given by eq.(5.24) and confirms the strong destabilizing effect of
elongation on the internal kink mode.

The resistive internal kink is sensitive to a large number of effects, and the following
is an attempt to delineate the most important of these.

For zero pressure, the resistive MHD stability of the internal kink is influenced
primarily by the aspect ratio and the current profile. The low aspect ratio is stabilizing.

Stability is improved by low shear at the ¢ = 1 surface, but also by low ¢o. Equilibria
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with monotonic current profile are stable to fixed boundary modes when the aspect
ratio is below a threshold value that varies inversely with the shear. Free-boundary
stability appears to require non-monotonic current profiles. Current profiles of the
TEXTOR type [5] with shoulders near the ¢ = 1 surface are much more stable than
monotonic profiles, and can remain resistively stable with a free boundary at rather
large aspect ratios.

Central pressure gradienfs are generally strongly destabilizing for the resistive inter-
nal kink mode. Part of the reason for this is global (i.e. A’) effects on the eigenfunction.
However, interchange effects at the ¢ = 1 resonant surface are important, in particular,
when the shear is low, and this makes the stability at finite pressure highly sensitive to
shaping. For many shapes of interest, notably, the JET shape, the curvature at ¢ =1
is unfavorable because of ellipticity, and the resistive interchange criterion is generally
violated for low shear. For JET-shaped cross sections, we do not find any profile that
is resistively stable with ¢o < 1 and £, > 0.05.

A clear conclusion of our stability study of the resistive internal kink mode is that

complete MHD stability is difficult to achieve for go < 1 and finite pressure.

93







Appendix A

Bicubic Hermite finite element
discretization

This Appendix presents the discretization used in CHEASE for the resolution of the
Grad-Shafranov equation (2.3). The Grad-Shafranov equation defined over the plasma
cross section §2 with Dirichlet boundary condition ¥ = 0 is the Euler equation for the

following extremum principle:

minimize I1(5) [ [ %%(vc)zdﬂ [ [[sieds (A.1)

where ¢ is an arbitrary weighting function from the same function space as ¥, i.e.
HL= {c so that [ [ (c? + [Vsf')RdS < oo,c = 0 on m} (A.2)

If ¥ € HE satisfies the extremum principle (A.1), a variation about that function leads

to
/[ %V\I}.V(&Il)ds-i- / /Q (60)jadS = 0 (A.3)

for all allowed §¥ € HE. This equation is equivalent to eq.(2.6), with ¢ = §¥.

In CHEASE, the plasma cross section §2 is subdivided into N, x N, rectangular
mesh cells for the discretization, where o and 6 are defined in eq.(2.5). The ¢ and the
0 mesh can be spaced arbitrarily.

Instead of minimizing eq.(A.1) over the whole set H}, we minimize it only over a

subset S} of HL, containing the piecewise bicubic Hermite functions on the (o, 6) mesh.
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The Ritz approximation of the solution ¥ of the Grad-Shafranov equation (2.3) is then

given by
¥ € St so that I(¥) < I(¢), Vs € SL (A.4)

On the rectangular (o,8) mesh, the Hermite bicubic basis functions are products of the

one dimensional basis functions
(2 = 2i41)*(2ig1 — 32; + 22)
(ziga — 2i)®

(z - 3i+1)2(3 - ;)

(Tig1 — zi)?
(z — 2:)*(3Zi41 — zi — 22) (A.5)

(zix1 — z:)

(z = 2)%(z = zis1)

(zip1 — )3

N-'(-’F) =

Mi(z) =

Nina(z)

Mia(z) =

withz; < ...<z;<..<znforz =0 o0r 8§ and N = N, or Ny respectively. Figure

Figure A.1: One-dimensional cubic Hermite basis functions in the interval [z;; z;44].

A.1 shows the four cubic Hermite basis functions (A.5) in the interval z; < z < z;43.
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Thus, the projection of ¥ on SL reads
k41141 -
T=23 3 UIN(o)N;(6) + TZMi(o)N;(6)
=k j=! . . (A'6)
+ YN{(o)M;(0) + UMi(o)M;(6)
in the mesh cell [o4; 0441] X [61; 6141]. Here, the notation ¥, = 8¥/z has been used.
Substituting eq.(A.6) into the variational form (2.6) and integrating with a Gaussian
quadrature method leads to a positive definite symmetric system of linear equations of

the form

Az =1b (A.7)

which is resolved by decomposing A into
A=LDL! (A.8)

where D is diagonal and L is lower triangular. The number of integration points for
the Gaussian quadrature is a free input parameter in CHEASE. Usually, we use 4
integration points in both the ¢ and the @ directions. The matrix A depends only on
geometric quantities, and therefore, the decomposition (A.8) of A is performed only
once for a given (o;6) mesh, and every Picard iteration in eq.(2.7) requires only a

backsubstitution in eq.(A.7).
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Appendix B

Derivation of expressions involved

in the flux coordinate
transformation

The purpose of this Appendix is to show the relations between the equilibrium coor-

dinates and the generalized poloidal angle x. These relations are used in CHEASE for

the integration of x and the non-orthogonality By,.

B.1 Expression of xy in terms of § on a constant

poloidal flux surface

The line element dl on a constant poloidal flux surface is related to the variation dx of

x by

V¥ x Ve R
dxy = Vx.dl = Vy. (V\I/“Vd)ldl = JIV\I’Idl

where J = [(V¥ x Vx).V®]~. Furthermore, dl is defined by
dlz = go»ad(72 + g99d92 + 2g,odad0

: {ggg)&; (EEZJ]“ o[+ ()]

80 86 = 0o 96
where R and Z are given by eq.(2.5). Therefore,

P = p2(0)do’ + o [ 2(6) + (‘Z;) ] d6?
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Along a constant poloidal flux surface,

ov ov

Multiplying eq.(B.3) by (8¥/80)? and expressing do in terms of df using eq.(B.4) gives
2
ap3(8)(VY|
dl = _—(6_311_—d6' (B.5)
9o
Substituting eq.(B.5) into eq.(B.1) gives

_ Rapl(8)

- v
I

and integrating with respect to @ leads to the expression of x in eq.(3.14).

dx db. (B.6)

B.2 Relation between the non-orthogonality and the
current density

The toroidal current density is defined by
j@ = eg.V X B (B7)

Substituting the magnetic field (2.1) into eq.(B.7) gives
Jo = es.Vx(VE®xVY)

VY| Vn)
= e$.V X | —o—"S—
¢ ( R |Vx.|
VY| )
= V|——1}xV
ce (Rlell XL (B.8)
3 ( |Vy)
= 33 (Rl Vxll)ne"'w x Vg
RO (IV¥PI,
JL v\ R ]

where the subscript n denotes the normal derivative, (¥, x,,®) is an orthogonal flux

coordinate system, and J; = [(V¥ x Vx,).V®]~1. Therefore,

R2( O J, Rjs Oln |VY|
% (ww) =2 (T, (B9)
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Moreover,

and

Therefore, using eq.(B.9),

Bu) _ I (0L
ox ),  TL\8¥T ),

1(91\ | Rjs  ,(0mR\ _ (0la|vy| (B-12)
“J\av ) T |VI v ) v /.

Substituting J by eq.(3.13) and integrating with respect to 6 using eq.(B.6) leads to
the expression of By, in eq.(3.14).
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Appendix C

Equilibrium quantities for the codes

linked to CHEASE

This Appendix documents the equilibrium quantities required by the stability codes
MARS and ERATO, the Alfvén and ion cyclotron range of frequencies code LION,
NOVA-W [64] and PEST 3.4 [65]. These codes use an “integer mesh”, with rather
arbitrarily-defined x; so that 0 = x; < ... < xn41 = 27, and a “half integer mesh”
Xk+1/2 = (Xx + Xk+1)/2 for k£ = 1,...,N,. Similar integer and half meshes are used in

the s-direction.

C.1 ERATO and LION

For ERATO and LION, all quantities of the equilibrium involved in the stability cal-
culation must be computed at the centers of the stability mesh cells, because the
discretization is done with the so-called “hybrid finite elements”. In Table C.1, all
quantities with j > 6 are computed on the (si41/2; Xk+172) mesh, except at the plasma

edge. The primes in Table C.1 denote the derivative with respect to ¥.

C.2 MARS

MARS uses linear finite elements with a tunable integration scheme in the radial di-
rection (48] and Fourier decomposition in the toroidal direction. All equilibrium and

vacuum quantities necessary for MARS are directly Fourier transformed in the map-
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13
14

15

16

17

18

19

20

21

22

23

St

Xk
s;¢1 for ls# N, + 1 and si4y is freefor I = N, + 1

Xk+1
Sipipz =(81+s141)/2 for 1 #N,+ 1 and siyypp =1forl=N, +1

Xie1/2 = (X + Xa41)/2
mass density g

4
qol\I’mivJ

toroidal magnetic flux G
free

q/90

plasma pressure

¥ R?
9|V
non-orthogonality B,, = 25|¥min|Buyx
R?
d1n(R?)
[ Os x
d1n(R?)
[ ox ]

poloidal magnetic field

_2sl\I’m;,,| IV‘I"Z 5%

it Rt
122 /7
[3111(122/.7)]

Al

non-orthogonality ﬂ;;(f S = 23|\I/m;n|ﬁ$£' with straight field lines

[alV\Plz]
X |y

Rjs [am(mu)}

Table C.1: Equilibrium quantities for ERATO and LION
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i | EQL(j)
Gos _ 1Vs|)? 1
117, ‘J’(ﬂ'x R ) SANZIE
2
Ixx _ {Vs|
|ep-a2)
ges Ej
1> |7 =7
R vs|\?
|t ()
5 Jsga’
6 | Js0xx
7 | J.gse
I 8 | Jsgax
o |J,

10 | J,5% = —25|¥min|G’

11| J,j® = ~J, (¢’ + GG'/R?)
12 | J,BX = 25|00 pinl

13 | J,B® = J,G/R?

14|p

dp
15 | — = 2s|¥,.inlp’
A | ¥ minlp

Table C.2: Equilibrium quantities for MARS
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l i | EQLV(j)

1 2 2
|-y (21)
3 g@@ 71_( + S(R,, _ va))2

Table C.3: Vacuum quantities for MARS

ping of CHEASE. For this operation, the integration method described in Section 3.3
is applied to

1

f(min=0)= .Z;fw:amt fe™xdy (C.1)

where f represents any EQL in Table C.2 or any EQLYV in Table C.3. MARS requires
these quantities both on the half and the integer s-mesh. All quantities in Table C.2

are expressed as function of the Jacobian

J, =[(Vs x Vx) - V]! = 25|V, |/ (C.2)
and
Vs -Vx
Bex = TR 25| W min | Bux (C.3)

where J is given by eq.(3.13) and By, by €q.(3.12). The primes in Table C.2 denote
the derivative with respect to ¥. The vacuum mesh (s; x; ®) for MARS is defined so

that
R=va+3(Rv_‘va)

Z2=2,+4 2y — Zy)
where (R,; Z,) are the Cartesian coordinates of the (s;x) nodes on the plasma sur-

(C.4)

face and (R,.; Z..) is the center of the vacuum mesh. Therefore, the Jacobian of the
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transformation from the (s; x; ®) space to Cartesian coordinates in the vacuum is given

by

3z, R,
J, =3sR ((R«, - Ruc)_a7 -(Z, - Zvc)_a—x_')

C.3 NOVA-W and PEST 34
1 |p Si+1/2
dp
2 E S
3 q S
dg
4 E S}
G S
dG
6 ‘(g}' S
71— Si
q
e
av |q| ™
9 | ¥ Si
10 | ¥, Si41/2
11 (R (shx1=)
1212 (813Xk)
13 | Jm (s1, Xk+1/2)
141 J (s;,Xk)

Table C.4: Equilibrium quantities for NOVA-W and PEST3.4
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The equilibrium quantities for NOVA-W and PEST 3.4 are rescaled according to

the following rules
Phew = P:)Id/ A?

Ghew = gld/ A2
dnew = quld/ X?
(G/q)new = MG/9)old

Tnew = U (C.6)
Rnew = AR,|q

Znew = AZg)q

Jnew = AJg)q

where A = Rmajor/RO and Rmajor is the major axis of the torus in meters. Table
C.4 shows all the equilibrium quantities required by NOVA-W and PEST 3.4. The s
and x integer and half-integer meshes are similar to the discretization meshes used by

ERATO.
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Appendix D

Bicubic spline interpolation of the
cubic Hermite equilibrium solution

The purpose of this Appendix is to show how the solution for ¥ given in Hermite
bicubic basis functions can be smoothed by interpolation using bicubic splines. The
smoothing algorithm applied in CHEASE uses a bicubic spline interpolation of ¥ from
the values on the (¢,0) nodes, ignoring the derivatives ¥,, ¥4 and ¥, of the bicubic
Hermite solution. The new values of ¥,, ¥y and ¥, are computed on the nodes such
that the Hermite bicubics have continuous second derivatives. Here, we discuss how
¥,, Vs and ¥,y are computed for the smoothed solution.

The cubic spline interpolation for a tabulated function f; = f(z;),7 = 1,...,N in
the interval [z;, z;,1] is given by [66,67]:

£(z) = Arfi + Aafjn + Asf; + Aufip (D.1)
where
4, = Zn”?
Ti+1 — Z;j
A, = =%
T (D.2)

As

1

gAl(Af — 1)z — z;)°
1

Ay = gAz(Ag - 1)(zj41 — z5)°

The second derivatives f; = f (z;),i = 1, ..., N required for the evaluation of (D.1) are
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computed by imposing that the first derivative

4 _fin-fi 34i-1
dz x4, - 6

" 3A2 - 1 "
£+ 22 (D3)

is continuous at z = z;,7 = 1,..., N. This condition is satisfied for : = 2,...,N — 1 if

i — Tia

- fi’:-l + Tit+1 — Ti-1 f,-" + Ti+1 — -”b'if" _ firn = fi _ fi—fiaa (D.4)

i+ =
3 6 Tig1 — i Ti— Ti

and the values for f, and f) are given as boundary conditions.

For a tabulated function defined on a rectangular grid (z,y), the bicubic spline
interpolation is a product of one-dimensional splines taken in the = and in the y direc-
tions. Therefore, the bicubic Hermite finite element solution ¥ on a rectangular (o, 8)
mesh, with periodic boundary conditions in 8 (i.e. ¥(o,8 + 27) = ¥(o,8)) will have

smooth first and second derivatives if :
1. Equation (D.4) is solved for all 6i,k = 1,..., Ny with :
o z,=0;1=1,..N,.

® f,‘ = \I’(O’;, Ok),i = ].,...Na.

¢ Boundary conditions : f; = %‘i-’(al,ek) and fy = %(JN,, 6:), given by the

bicubic Hermite solution.

2. %\;- is reevaluated on all (o,8) nodes with eq.(D.3).

3. Equation (D.4) is solved for all o4,k =1,..., N, with :
o z;=06,,i=1,..N,.
o f:=¥(0k,6:),i=1,..Np.
o Periodic boundary conditions, f] = %%i(ak,el) = %\g(ak,GN,“) = frp1-
and with :

,t = 1,...N,.

L ] $i=9i
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v .
® fi = E(U;‘, 0,'),2 = 1,...N9.
. 4 - , 0% v ,
¢ Periodic boundary conditions, f] = m(ak, 6,) = m(ak, ONo+1) = fi,41-

For periodic boundary conditions, the system (D.4) becomes cyclic.
v 3v

4 55 and 555

are recomputed on all (o, ) nodes with eq.(D.3).
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Appendix E

Derivation of the ballooning
stability and the Mercier criterion

This Appendix presents a derivation of the ballooning and Mercier criteria. The calcu-
lation closely follows that of Freidberg [10], Chapter 10. The Appendix serves to give

the Mercier criterion in terms of the variables used in CHEASE.

E.1 Ideal ballooning stability criterion

It is convenient to start from a variational form of (3.2-3.8) where pressure and cur-
rent driven terms appear separately in the plasma potential energy. Originally, this
formulation of the energy principle was suggested by Furth et al. [68], and a detailed
derivation can be found in Freidberg [10], Chapter 8. It reads

§W = 6W, + §Ws + 6W, > 0 (E.1)

for all allowable plasma displacements §. W,, Ws and W, are the fluid, the plasma

surface and the vacuum contributions respectively, with

Wo = 5[ {1QuP+ B [vies + 28] +To(T.E7-
2(£1-Vp)(k.£1) ~ Ji(&; X 5)-Qu Jar
. 2 B (E.2)
YT )
W, = % e B, %dr.
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Here, @ = V x (€ x B) is the perturbed magnetic field, b = B/B is the unit vector in
the direction of B and & = (b.V)b is the magnetic field line curvature. The indices L
and || denote the projection of a quantity in the directions parallel and perpendicular
to b, and [[z]] denotes the jump in z from vacuum to plasma.

Ballooning instabilities are pressure driven modes characterized by a highly localized
k; — oo (or with a toroidal mode number n — o0). The assumption k; — oo, or
kyja > 1, where a is the minor radius of the plasma, implies that the scale length of
the ballooning instabilities is much smaller than that of the equilibrium (~ a ~ 1).

The natural technique for problems with disparate length scales is the WKB anal-

ysis. An eikonal representation is used for functions of interest, here &, :

£1(r) = nu(r)e’s™ (E3)

We assume that the eikonal, S(r), represents only the rapid perpendicular mode struc-
ture, and the envelope, 77,(7), determines the slow parallel dependence. Therefore,

if the quantity 5, is assumed to vary slowly on the equilibrium length scale, i.e.

laVaLl/Ind ~ 1,

B(r).VS(r) = 0

k. = VS(r). (E4)
Substituting eq.(E.3) into W, in eq.(E.2) leads to

1 ) 2
Wp = 5 1 {IVX(1]_,_XB)1|2+Bz[ikl.1)l+V.1’]_|_+2IC.17_L] -
plasma
(E.5)

2(ns Vp)(; ) ~ H(} X b).V x (mu x B)y }dr

Examining eq.(E.5) shows that k; appears explicitly only in the second term of the
integrand (= magnetic compression term).

Now, we consider the limit k; — oco. If 1, is expanded so that

ML =N+ 7M. +... (E.6)
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with |91,|/|mL0] ~ 1/kiLa, W, can be systematically minimized at the different orders

in 1/k;a. At order zero, W, reduces to
1 2 2
Wpo = -2'/B (k_]_.nlo) dr (E7)
Whro is minimized for any perturbation which satisfies k.1, = 0, 1.e.
Nio = yb X k_L. (E.8)

where y is a scalar quantity, varying on the slow equilibrium scale. The next non-

vanishing contribution of W, occurs at second order:

1 ) 2
Wp, = 5./ {lV X (10 X B)1|* + B? [zkl'qll + V. + 2n."].Lo] -

(E.9)
2(110-Vp)(n1,-6) — Jy(ni, X 8).V x (10 X B)_L}dr
The quantity V x (1, x B); modified with eq.(E.8):
Vx(nxB), = Vx(yBky),
(E.10)

= (b.VX)bxk,

where X = yB. Thus, substituting (E.8) and (E.10) into the last term of eq.(E.9) gives

Jy(mt, x ).V x(n,x B), =

Ty (6.9 X)[(b x k1) x Bl.(b x k1) = 0 (B11)
and Wg, reduces to
1 . 2
WF2 = 5/ {ki|bVX|2 + 32 [2k.L~77.L1 + V’n.Lo + 2""10] -
(E.12)

é(b x k1.Vp)(b x kl.n)le"’}dr.

1.1, appears only in the non-negative second term of eq.(E.12), and therefore, Wry is
minimized by choosing

ik_L.‘l]_Ll = -V — 2K.71, (E13)
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The only contributions to Wr; which remain to be minimized are therefore
1 2 2 2 2
Wro =3 [ dr{kllb.VXI ~ 25(b x kL Vp)(b x kLw)|X] } (E-14)

The last step in the derivation of the ballooning stability criterion is the deter-
mination of the eikonal function S. This requires the introduction of a coordinate
system, here the axisymmetric flux coordinates (¥, x,®). In axisymmetric geometry,

the displacement £ can be Fourier decomposed with respect to ®:
&%, x,®) = &(¥,x)e™"* (E.15)

where n is the toroidal mode number. Therefore, n, = 1, (¥,x), X = X(¥,x) and
using eq.(2.1),
1 38X

Substituting the eikonal form (E.3) into eq.(E.15) gives
S(¥%,x,®) = 5(¥, x) - nd. (E.17)

The eikonal S must satisfy B(r).VS(r) =0, i.e.

Ga3S 10§

753 + Tox =0. (E.18)

Integrating eq.(E.18) with respect to x, using eq.(E.17), one obtains

xJG
S = (_q>+ LA ') E.19
n X (E.19)

where xo is an arbitrary integration constant.

S given in eq.(E.19) guarantees B(r).V.S(r) = 0, but is not physically acceptable,
because it is aperiodic in x. Connor et al. [69], and Dewar and Glasser [70] gave
an elegant solution to this problem by constructing a solution &€, of eq.(E.2) which is

periodic in x from a series of non-periodic functions, called quasimodes:

Eu(Wx) = e [ X eg(0, X)X’ (E-20)

-0
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Any quasimode £g(¥, x), which is a solution of the variational form (E.2) in the domain
—00 < x < +00, will generate a periodic solution of eq.(E.2) if it satisfies the boundary
conditions £o(¥,x — +oo0) = 0. Therefore, £o(¥, x) does not need to be periodic in
X, and can be expressed in the eikonal form (E.3). The ballooning mode energy is then

transformed into

1 [+ 1 0x\* 2
=~ dy{k? | ——] - — k,.V . 2} .
Wea=3 [ 10k (S5 ) - e x kTR x LRIXT) (B21)

where X is now the amplitude of the quasimode £o(¥, x).
The coefficient of [X|? in eq.(E.21) can be expressed in terms of the equilibrium
quantities. For this purpose, it is convenient to introduce the following set of locally

orthogonal unit vectors:

__vu
[V¥|
1 (G V& x VT
_1(GVexVYy v
t=3 (R|v<1> vy Ve ‘I"e") (E.22)
1 G
b=3 (V<I>x V\P+§e¢)

Every vector w = w,n + w,t defined in the plane perpendicular to b satisfies
(b X k_L)-w = (knwt b ktwn)b.(n X t)

(E.23)
= knwt - kgwn
where k; = k,n + k,t. The magnetic field line curvature
k = bVb
= -b (IVxB BxV(l))
= 7°X\B - B (E.24)
1 1o .,
is perpendicular to b. Thus,
K= Ko + Kot (E.25)
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as
kn=nVS = |[VI||—
n V| [3‘1’]
= v !
Vel aq’[ ] @x
= n|V¥|g
138
k,=tVS = (tVS) +(te¢)Raq)
_1( G a5 |vy|as (E.26)
~ B\J|VY|3dx R®* 3%
_ nB
- vy
e < ¥ O +B vy  [aP] |VY|
nE=RE= Werer \P B~ 3% B?
. —tx = G 8B*] _
T T 2J[VEIB | x|, J[V\IIIB3

Substituting eq.(E.23) and eq.(E.26) into eq.(E.21) leads to the ba.llooning potential

energy
1 p+o ot ? )
6W,,(n—->oo)=§ Q@ EM + c2|€|° } Jdx (E.27)
h
whnere G
YE TR
1 2
B? = 'R'zlG +|VEp]
_o_ 1 (v,
@ = meeptE Y o
o = 20’ [(OP gG1 (3P (E.28)
* T~ "Br|\ov),  B*J\dx/,
v
9 = vt | 53] X
o \ OV
_ B? " X
P = P+?

E.2 Mercier stability criterion

The derivation of the Mercier stability criterion [13], toroidal equivalent of the Suydam

stability criterion for a cylinder [71], follows the work of Connor et al. [69]. The
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minimizing Euler-Lagrange equation of the ballooning potential energy (3.17) is

07 oX
a (Jcla) - JCzX =0 (E.29)

where ¢; and ¢, are defined in eq.(E.28). Newcomb’s stability analysis [72] shows that
a sufficient condition for instability is the oscillatory behavior of the solution of the
energy principle. Therefore, if the solution of eq.(E.29) is oscillatory as x — o0, the
mode is unstable. Conversély, the ballooning stability limit can be investigated if the
solution of eq.(E.29) is non-oscillatory and vanishes sufficiently fast as y — +o0.

As x — oo, the quantity ¢ appearing in the coefficients ¢; and ¢; becomes arbitrarily
large (¢ ~ 27¢'(¥)(x — xo))- Therefore, the asymptotic expansion for X as x — oo can
be written as

X, X
X =g {Xo + 7‘ + -;72 + } (E.30)

where X; = X;(¥, x) are assumed to be periodic functions of x with the same period as
the equilibrium. « is the complex indicial coefficient which determines the oscillatory
nature of the solution.

The coefficient ¢, in eq.(3.18) can be rewritten

__2P[(8P) _gG1(0P\ ] __2¢ (9P\ _g9 (PG (E.31)
“="p|\ov) ~B'T\3%x/,| T B\o¥)_ "~ Tox\B?/, '

Substituting this and the expansion (E.30) into the Euler-Lagrange equation (E.29)

and equating the terms of equal power in g gives

e Order g**2:

a [|VE]? X,
o ( 5 By ) =0 (E.32)

This equation is only satisfied if X, is constant, and without loss of generality,

Xo can be set to 1.

2 (IVUP (89X,  dg 5 (Gp
e——— — —— — = .33
ax{ 7B ( ax %) Tax \B7) = (E.33)
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o Order ¢g*:

d [|V¥]? (8X, g
a{“ﬁs—(a tla-Dg X+

|[Ve[*8g (80X, g Jp 9 (Gp _
@+ V555, |\ By T3 ) Tima o (BT ) X1 =0

(E.34)

At order ¢g®*! and g%, X, has been replaced by 1. The solution at order ¢g**! can be

integrated with respect to x:

V¥ (80X, | dg)\ , GP _ ~
TB \ax %) T B T (E.35)

C is an integration constant obtained from the periodicity condition X;(x = 0) =

Xl(x = 271'), 1e.
~ P I IV |2
where the average is defined by
uB?
$ T
¥=const | V|2
(u) = dl 32' . (E.37)
ﬂ—const IV\I’P d
and
1
¢= 'z?fi-wt 2% [ ] X (E-38)

Integrating the equation at order g* over one period in x and requiring that X, is

periodic function in x gives

IV\IlI2 ag 80X, 9g
‘I’—conat [( +1) ax aax +
E.39)
Jp' 9 [(GY ] (
—_—K, + — dx =0
227N +3x( ) ]

The last term of this equation is integrated by parts. Thus, substituting 8X,;/9x from
eq.(E.35) and averaging eq.(E.39) with eq.(E.37) leads to the indicial equation

a*+a+D,=0 (E.40)
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where

P(G*Jh + Jy) 2nn Gp' 1 9¢
D, = -
27 (q)? fl5s B2 VOE " Tax /| Txt
Gp', ’ (E.41)
( ,)2 (q pJg)

{le J?a *73, J43 JS} =
(E.42)

1 1 1 R* 1
Py f { ’ ’ ' oo 1} J dX
21 J¥=const Rzlvq’|2 IV‘I’P IV‘I’P R?
This equation is equivalent to Freidberg’s result, Chapter 10 [10]. However, certain
terms cancel in this form of D,,. Using eq.(E.26) for «,, ¢ and P, the integrand in

eq.(E.41) is transformed as follows:

2k, + G [ GY 199

|V¥|  B? IV\IIP Jax

1 JG [ 3Byy 1) JG] G?*p _

B? (2[ ] ( [3x] Tl T veE) T (E43)
R_"’p'__*- p'+.G£+__m __G_z_ﬂ _gza_ﬂ;’z

V|2 R2 ¥ | R2 n JR? | 3% n R | 9x

The source term of the Grad-Shafranov equation (2.3) can be recognized in eq.(E.43).
Using the relation between jg and Sy, in the Appendix B, eq.(B.12), it reads

/ GG’ _jd’

IVEPE] (VP ([8Bsy a7
Pt ="R™" a\p[ R ],._ 2 ([ ax]f]{aw]) (B44)

Substituting that into eq.(E.41) leads to

2k, G [ Gp 1 9g R?*p 0Bux 1[aJ
ve T B (,le Jax) VF ey |, T |oE) (B4
and therefore,
2 / ' Gp'Jz , /
D, = 7 ,)2 (G2 +J0) (P~ J5) + o) (¢' — Gp'J,) (E46)

where the J;’s are defined in eq.(E.42). The roots of the indicial equation (E.40) are
1 1 1/2
& = —-2- + 5 (1 bt 4Dm) . (E.47)
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The transition from oscillatory to non-oscillatory behavior occurs at D,,, = 1/4. There-
fore, the Mercier criterion for interchange stability is given by —D; = 1/4 — D,, > 0,
which is equivalent to eq.(3.20).
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Appendix F

Definition of symbols appearing in

the text

Co(P),...,C3(¥)
dl

ds
Dy
—Dr

o5 e

Qe

(¥)

Symbol Definition

a Minor radius of torus

A(Y) Aspect ratio

A Equilibrium problem matrix

A, A; Logarithmic derivatives of radial displacement

A Coefficient of the large solution outside the resistive layer

b ¢ = 2 or conducting wall radius in large aspect ratio expansion
b Equilibrium problem right hand side

B Plasma magnetic field

B, Poloidal magnetic field

By Toroidal magnetic field

B, Vacuum Magnetic field

By Coeflicient of small solutions left and right of the resistive layer
¢ Shift constant for G?(¥) in equilibrium transformation

€1,C2 Coefficients in ballooning potential energy

C(¥) Normalization constant of (¥, x,®) Jacobian J at ¥ = const.

Surface integrals for the definition of I* and j, at ¥ = const.
Line element along constant ¥ surface in poloidal plane
Surface element

Mercier parameter

Resistive interchange parameter

Ellipticity

Elliptic deformation in large aspect ratio expansion

Electric field

k.B operator

~ Normal derivative of eikonal used for WKB in ballooning stability
Toroidal flux function at ¥ = const.
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Symbol [ Definition

(9i5) Covariant flux coordinate tensor

(g%) Contravariant flux coordinate tensor

h Cell size

H H of Glasser, Greene and Johnson [12]

I Total toroidal current

(%) Surface averaged toroidal current density at ¥ = const.
In Normalized toroidal current

I3 () Toroidal current inside ¥ = const.

7p(®) Volume averaged parallel current density at ¥ = const.
j® Toroidal current density

J (¥, x, ®) flux coordinates Jacobian

J (r,w, ®) Jacobian in large aspect ratio expansion

Js (s, x, ®) flux coordinates Jacobian

Jo (s, x, ®) flux coordinates Jacobian in vacuum

J Current density

J1, ..., Jo | Integrals for Mercier and resistive interchange criteria
£; Plasma inductance

Lr Resistive layer width

m Poloidal mode number

M; Cubic Hermite basis function

n Toroidal mode number

n Unity vector normal to constant ¥ surfaces

N Inverse of cell size, so that N =N, = Ny =1/h

N; Cubic Hermite basis function

N, Number of poloidal Fourier components for MARS

N, Number of radial intervals for stability discretization
Ny Number of angular intervals for equilibrium discretization
N, Number of radial intervals for equilibrium discretization
Ny Number of angular intervals for stability discretization
(%) Pressure

ppf. Pressure peaking factor

P p+ B%/2

P, 3 cos nw correction of R in large aspect ratio expansion
q(%) Safety factor at ¥ = const.

do Safety factor on axis

da Safety factor at plasma surface

Q Perturbed magnetic field

Qn 3 sin nw correction of Z in large aspect ratio expansion
r Radial coordinate in large aspect ratio expansion

Te=1 Radial location of ¢ = 1 in large aspect ratio expansion
ro Radial location of step in Shafranov current profile

r Position vector
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Symbol

Definition

FRoS

o
g =

R

EEE
T e

SEEE

NOE

3

[+

PR®R NN

Bo(¥)
Bp,tot
.Bp,crit
Bz
ﬂs,x

ﬁ ¥,x

Radial coordinate in torus

Major radius of torus

Major radius of equilibrium mesh center
Major radius of magnetic axis

Major radius of vacuum mesh center in MARS

Radial stability coordinate
Shear at ¥ = const.
Local shear

Lundquist number

Plasma boundary

Vacuum boundary

Time

Triangular deformation for large aspect ratio expansion
Velocity field

Toroidal Alfvén velocity

Volume of ¥ = const. flux tube /27

Total plasma volume /27

Poloidal magnetic field energy

Potential energy of plasma

Plasma surface term of potential energy
Potential energy of vacuum

Equilibrium problem solution

Vertical coordinate in torus

Vertical position of equilibrium mesh center
Vertical position of magnetic axis

Vertical position of vacuum mesh center for MARS
Exponent of R in (¥, x,®) Jacobian J
Total beta

Fusion beta

Poloidal beta at ¢ =1

Poloidal beta at ¥ = const.

Total poloidal beta

Marginal poloidal beta at ¢ =1
Experimental total beta
Non-orthogonality in (s, x, ®) coordinates
Non-orthogonality in (¥, x, ®) coordinates
Normalized growth rate

Ratio of specific heats

Triangularity
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Symbol Definition

A Shafranov shift

AI(7) Inner dispersion relation in resistive layers of the plasma
€ Numerical accuracy of equilibrium solution

€ Inverse aspect ratio

€ Dielectric tensor

¢ Parameter which narrows or broadens equilibrium boundary tips
7 Resistivity

8 Poloidal angle for equilibrium discretization mesh

K Magnetic field line curvature

K Elongation

A Scale factor for equilibrium transformation

A RoA' [r

7 Exponent of |[V¥| in (¥, x,®) Jacobian J

v JG/R?

3 Displacement field

'3 Radial displacement

() Generalized radius at ¥ = const.

Pp Generalized radius of lowest shear region

Pe=1 Generalized radius at ¢ =1

ps(0) Plasma radius in (o, 6) equilibrium coordinates

0 Mass density

o Radial coordinate for equilibrium discretization

S Weighting function in variational equilibrium formulation
TA Toroidal Alfvén time

TR Resistive time connected with minor radius of torus

¢ Toroidal angle

X Generalized poloidal angle for stability calculations

Xo Integration constant for ballooning potential energy

¥ Poloidal flux function

Y., ¥Ypg, ¥z | Equilibrium solution at equilibrium mesh center

¥onin Poloidal flux on magnetic axis

w Poloidal angular coordinate for large aspect ratio expansion
wa Toroidal Alfvén frequency

Q Plasma cross section
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Appendix G

Symbolic names of some important
variables computed by CHEASE

Symbol Definition Symbolic name | Subroutine

a (2.24,2.25) ASPCT Namelist

A(T) ARATIO GLOQUA

A (A.7,A.8) A MATRIX, SETUPA

b (A.T) B SETUPB

¢ (2.21) ZCSHFT NOREPT

a1, ¢ (3.18) ZF, 2G BALOON

Cc(¥) (3.14) CP SURFACE

Cc'(¥) (3.14) CPDP SURFACE

Co(¥),...,C3(¥) | (2.15) CINT

—Dy(¥) (3.20) SMERCI BALOON

—Dp(¥) (3.21) SMERCR BALOON

g (3.18) ZGBAR BALOON

G(¥) (2.3) TMF ISOFUN, PRFUNC

G'(T) (2.3) TTP ISOFUN, PRFUNC

H (3.22) HMERCR BALOON

I (2.4),Table 2.1 | RITOT GLOQUA

I*(%) (2.13) CIPR ISOFUN, PRFUNC

In Table 2.1 RINOR GLOQUA

I(¥) Table 2.1 ZIPSI GLOQUA

3o(¥) (2.14) CIPR ISOFUN, PRFUNC

e (2.3,2.16,2.17) | PIIPHI CURENT

J (3.13) ZJAC SURFACE, ERDATA,
JNOVAW, BALOON, VACUUM

J, (C.2) ZIAC GIJLIN, FOURIER

J, (C.5) ZJAC1 VACUUM l

123



[ Symbol Definition | Symbolic name | Subroutine
Ji (L), ..., Je(F) | (3.19) ZMC4,...,ZMCé6 | BALOON
¢; Table 2.1 { RINDUC GLOQUA
M; (A.5) FN2, FN4 BASIS
N; (A.5) FN1, FN3 BASIS
N, MSMAX Namelist
N, NPSI Namelist
Ny NT Namelist
N, NS Namelist
N, NCHI Namelist
(%) (2.3) CPR PPRIME
?(¥) (2.3) CPPR PPRIME
ppf. Table 2.1 | CPPF GLOQUA
(') (2.12) QPSI SURFACE
q'(¥) CDQ SURFACE
9o Qo0 MAPPIN
Ry 1
R, (2.5) RO Namelist
R, RMAG MAGAXE
R,. (C4) ROW Namelist
Sk (3.10) CS MESH
Sk41/2 (3.10) CSM MESH
(%) Table 2.1 [ SHEAR GLOQUA
31ocal Table 2.1 | RSHEAR ERDATA
V(%) Table 2.1 | VSURF GLOQUA
27Viot Table 2.1 | VOLUME GLOQUA
Wpg (2.22) WMAGP ENERGY
x (A.7) CPSI SOLVIT
Z, (2.5) RZ0 Namelist
Zm RZMAG MAGAXE
Zye (C.4) RZOW Namelist
a (3.13) NER Namelist
B Table 2.1 { BETA GLOQUA
B Table 2.1 | BETAS GLOQUA
Bo(¥) Table 2.1 | BETAB GLOQUA
Bp tot Table 2.1 | BETAP GLOQUA
B Table 2.1 | BETAX GLOQUA
Bsx (C.3) BCHIN, BCHIO | SURFACE

124




Symbol Definition Symbolic name | Subroutine
r (1.2) GAMMA Namelist

) (2.25) TRIANG Namelist

€ (2.8) EPSCON Namelist

¢ (2.25) CETA Namelist

0 (2.5) CT MESH J
K Table 2.1 ZCURV ERDATA |
K (2.25) ELLIPT Namelist

A (2.20) SCALE NOREPT

I (3.13) NEGP Namelist
(%) Table 2.1 RSURF GLOQUA
ps(6) (2.5) BOUND

o (2.5) CSIG MESH

Xk (3.13) CHI MESH

' (2.3) CPSI SOLVIT

U, U, Uy (2.10) SOLVIT
\I’Solovev (2.24) TEST
Boundary conditions A | (2.11) LIMITA
Boundary conditions b (2.11) LIMITB
Equilibrium quantities Table C.1 EQ ERDATA
for ERATO & LION

Equilibrium quantities Tables C.2, C.3 MAPPIN |
for MARS

Equilibrium quantities Table C.4 OUTNVW
for NOVA-W & PEST3.4

Bi-spline smoothing Section 3.5 SMOOTH

of equilibrium
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