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Abstract— CSMA/CA protocols rely on the random deferment
of packet transmissions. Like most other protocols, CSMA/CA
was designed with the assumption that the nodes would play
by the rules. This can be dangerous, since the nodes themselves
control their random deferment. Indeed, with the higher pro-
grammability of the network adapters, the temptation to tamper
with the software or firmware is likely to grow; by doing so, a
user could obtain a much larger share of the available bandwidth
at the expense of other users.

We use a game-theoretic approach to investigate the problem of
the selfish behavior of nodes in CSMA/CA networks, specifically
geared towards the most widely accepted protocol in this class
of protocols, IEEE 802.11. We characterize two families of Nash
equilibria in a single stage game, one of which always results in a
network collapse. We argue that this result provides an incentive
for cheaters to cooperate with each other. Explicit cooperation
among nodes is clearly impractical. By applying the model of
dynamic games borrowed from game theory, we derive the
conditions for the stable and optimal functioning of a population
of cheaters. We use this insight to develop a simple, localized
and distributed protocol that successfully guides multiple selfish
nodes to a Pareto-optimal Nash equilibrium.

I. INTRODUCTION

Carrier-sense multiple-access with collision avoidance
(CSMA/CA) protocols rely on the random deferment of packet
transmissions for the efficient use of a shared wireless channel
among many nodes in a network; this class of MAC protocols
is one of the most popular for wireless networks. In general,
it is assumed that all nodes respect the rules of the protocol.
However, we claim that this assumption is less and less
appropriate, because the network adapters are becoming more
and more programmable [1]. As a result, today a user can
modify the behavior of his wireless interface very easily. In
this paper, we study the stability and efficiency of wireless
networks that contain one or several selfish users. By “selfish”
we designate the users who are ready to tamper with their
wireless interface in order to increase their own share of the
common transmission resource; we assume these users to be
rational, and not malicious (they are ready to harm other users
only if they can derive a benefit from this misbehavior).
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More specifically, we consider that a cheater makes use
of the easiest (and yet highly rewarding) cheating technique:
he deliberately does not respect the random deferment of the
transmission of his packets. Although this cheating technique
is straightforward, we show that studying its implications is far
from trivial. In order to be able to corroborate our simulations
with analytical results, we make use of game theory: each
node is a player, the throughput it enjoys is its payoff, and
the size of its contention window represents its move. By
making use of this model and of extensive simulations, we
systematically study several problems. First, we consider the
simple case of a network with a single cheater. We then
assume the presence of several cheaters, and characterize two
families of Nash equilibria in a single stage game, one of
which always results in a network collapse. We compute the
Pareto-optimal point of operation of such a system, and study
the equilibria of dynamic games. We introduce the notion
of cooperative players, namely cheaters who try to continue
operating at the Pareto-optimal point of operation. We also
propose a detection and a punishment technique against those
players who exhibit a non-cooperative behavior. Finally, we
explain how the players can collectively search for the optimal
point of operation, even if they are unaware of the number of
nodes present in the network.

To the best of our knowledge, this paper is the first to pro-
vide a systematic analysis of rational cheating in CSMA/CA
networks. To make it as concrete as possible, we refer to the
most prominent version of CSMA/CA, namely IEEE 802.11;
however, the conclusions we derive are valid for any protocol
of the CSMA/CA family.

The rest of the paper is organized as follows. The next
section addresses the related work. Section III describes the
system model considered in the paper. Section IV studies the
case of a static game, whereas Section V studies the case
of a dynamic game. Section VI shows the deviation detection
and penalization mechanisms we use. Section VII analyzes the
distributed coordination protocol. Last, Section VIII concludes
the paper.

II. RELATED WORK

The problem of non-cooperative nodes in wireless (wired)
networks has been widely addressed on the network layer,
whereas little work has been done on the MAC layer. MacKen-
zie and Wicker [2] study the problem of selfish users in Aloha
from a game-theoretic point of view. They analyze the stability

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147896992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of the system (Nash equilibrium), and calculate the transmis-
sion probabilities that optimize each node’s throughput. They
assume that all nodes have the same transmission rates and
costs. Moreover, every node has an a priori knowledge about
the total number of nodes in the system. Altman et al. [3]
reconsider the same Aloha “game” with partial information,
where the transmission probability is adapted according to
collision feedback only. They consider two frameworks: team
work and non-cooperative game. Jin and Kesidis [4] study non-
cooperative equilibria of Aloha networks for heterogeneous
users.

For IEEE 802.11, Kyasanur and Vaidya [5] propose that
the receiver assigns the backoff value to be used by the
sender, so the former can detect any misbehavior of the latter.
If the sender deviates from the assigned value, it will be
assigned high backoff values on the next round to compensate
its deviation. As mentioned by the authors, this mechanism
has several limitations such as the possible collusion between
sender and receiver, and the fundamental change to the pro-
tocol. Konorski [6] proposes a misbehaviour-resilient backoff
algorithm; both [5] and [6] exhibit the same drawback: they
require to change the current protocol.

Game theory has been applied in the study of optimal
routing [7], [8], [9], congestion control [10], power control
[11], [12], as well as incentive engineering in wireless access
networks [13].

III. SYSTEM MODEL

We consider N wireless nodes that are willing to transmit
data to N designated receivers (one per sender). In this study,
we assume all the nodes to be within the same communication
range (i.e., each node can hear any other node). This is to avoid
complications introduced by the hidden terminal problem.
Nodes use a CSMA/CA based protocol to resolve contention
at the MAC layer. In this paper, we will be dealing exclusively
with IEEE 802.11 (in DCF mode) [14]; we note that the
analysis carried out in this paper can also be extended to other
CSMA/CA based protocols. We further assume each node to
have an authentic MAC layer identifier. This can be achieved
by means of MAC layer authentication. Finally, we assume
that the nodes are static and that they always have packets (of
the same size) to send. Possible ways to relax some of the
above assumptions are discussed in Section VII.

We consider a scenario where out of the N senders, a
subset of C nodes deliberately deviate from the IEEE 802.11
protocol. We designate this subset of nodes as cheaters. There
can be a number of ways in which a node can cheat. For
example, in violation of the standard protocol, a cheater i
initializes his window size to a lower value in order to obtain a
higher throughput. We will call this lower value Wi throughout
the paper. Moreover, a cheater does not respect the binary
exponential backoff principle and keeps his contention window
size fixed after a collision, i.e. equal to Wi. This mode of
cheating is the easiest for potential cheaters, since it does not
require changes to be made in the operation of IEEE 802.11

protocol. However, the main conclusions of this paper are
applicable to any other cheating technique.

The relevance of these misbehaving techniques becomes
even higher with the emerging standards that address the Qual-
ity of Service support, such as IEEE 802.11e [15]. The latter
gives the users total control of the MAC parameters, therefore
enabling them to easily cheat. We assume the cheaters in
our model to be rational, i.e., they want to maximize their
own benefit. In this particular context, the cheaters want to
maximize the average throughput they receive ri. This problem
can easily be modeled in a game theory framework. All the
cheater nodes are the players in this game. The strategy of each
(cheater) player i consists in setting the value of his contention
window Wi such that player i’s expected payoff (utility) Ui is
maximized. In this work, we define a player i’s utility to be
equal to the enjoyed throughput ri (i.e., Ui = ri).

IV. STATIC GAME

In this section, we first analyze the problem of misbehaving
from the perspective of a single cheater and then consider more
complex scenarios with multiple cheaters in the system. We
model the cheaters’ interaction using a static game [16]. A
static game is one in which all players make decisions (or
select a strategy) simultaneously, without knowledge of the
strategies that are being chosen by other players.

A. Variation of throughput with Wi

In [17], Bianchi presented a saturation throughput model for
the IEEE 802.11 protocol. Since we assume that a cheater’s
objective is to maximize his throughput (and we assume he
always has a packet to send), he will tend to use the full
channel capacity (i.e., the system will operate at the saturation
point). Therefore, we make use of the same model as [17]. To
estimate the throughput of IEEE 802.11, in a network with
no misbehaving nodes, Bianchi [17] used a two-dimensional
Markov chain of m backoff stages in which each stage
represents the backoff time counter of a node. A transition
takes place upon collision and successful transmission, to a
higher stage and to the first stage respectively. Considering
the stationary distribution of the chain, the channel access
probability τ of a node can be derived as a function of the
number of levels m and the minimum contention window
value Wmin. The throughput enjoyed by a given node, which
is the average information payload transmitted in a slot time
over the average length of a slot time, can be computed using
Bianchi’s model as follows:

ri =
P s

i L

P sT s + P cT c + P iT i
(1)

where P s
i = τi

∏
j �=i(1−τj) is the probability that an arbitrary

station successfully transmits during a random time slot; τi is
the access probability of station i; L is the average size of
a packet; P s =

∑
k P s

k ; T s is the average time needed to
transmit a packet of size L (including the inter-frame spacing
periods [17]); P i =

∏
k(1 − τk) is the probability of the

channel being idle; T i is the duration of the idle period (a



single slot); P c = 1 − P i − ∑
k P s

k is the probability of
collision; T c is the average time spent in the collision.

We extend Bianchi’s model to describe a network with mis-
behaving nodes. We therefore consider two separate Markov
chains. The first, with a single backoff stage, since cheaters
are assumed to fix their contention windows, is used to derive
the cheaters’ access probabilities τ c

i . The second chain, similar
to the one in [17], is used to derive the access probabilities τ l

i

of well-behaved nodes. The conditional collision probabilities
are derived considering both well-behaved and cheating nodes’
access probabilities. As mentioned in Section III, cheater i
fixes his contention windows to some value Wi. Consequently,
cheater i accessing probability calculates as [18]:

τ c
i =

2
Wi + 1

. (2)

After some algebraic manipulations of equation (1), we obtain
the following expression for the throughput of a cheater i [18]:

ri =
τ c
i ci

1

τ c
i ci

2 + ci
3

(3)

where ci
1 = p−iL; ci

2 = p−i(T s − T i) − s−i(T s − T c);
ci
3 = (1− p−i − s−i)T c + s−iT

s + p−iT
i; with the following

substitutions: p−i =
∏

j �=i(1 − τ c
j )
∏

k(1 − τ l
k); s−i =∑

j �=i τ c
j

∏
k,d �=j,i(1 − τ c

k)(1 − τ l
d).

It is important to notice here, that the only parameter that
a cheating node i has control over is its own contention
window, Wi. By varying Wi, node i changes its own access
probability τi, as well as the access probabilities of the well-
behaved nodes. Let us assume that Wi is a continuous variable.
Although the accessing probabilities of well-behaved nodes
(and thus expressions ci

1, c
i
2 and ci

3) depend on τ c
i , we neglect

this dependence for a first degree analysis. This approximation
allows us to elaborate a closed form expression of the first
derivative of equation (3):

∂ri

∂Wi
=

ci
1c

i
3

(τ c
i ci

2 + ci
3)2

−2
(Wi + 1)2

(4)

which, for T s ≥ T c and τ c
j < 1, j �= i, is always negative1.

We conclude that the expected received throughput ri is a
strictly decreasing function of Wi (for τ c

j < 1, j �= i). Thus,
by unilaterally decreasing its own Wi, a node can increase its
received throughput (except if τ c

k = 1, for some player k; we
will treat this case later in the text). Note that this conclusion
would still hold even if we considered the dependence of c1,
c2 and c3 on τ c

i . In fact, by using this approximation, we
actually underestimate the benefits of the cheater (the cheater
gets more throughput in reality, as will be shown shortly).

We will now verify this claim by simulations performed in
ns-2 [19]. The simulation setup2 consists of N = 20 nodes

1According to IEEE 802.11 [14] we have the following: T s =
PHY header + MACheader + L + SIFS + σ + ACK + DIFS + σ,
T c = PHY header + MACheader + L + DIFS + σ, where σ is the
propagation delay. From this we conclude that T s ≥ T c holds.

2In the rest of the paper, we will only mention the changes that are made
from this reference simulation setup.
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Fig. 1. Throughputs for 20 nodes, out of which one is a cheater

randomly spread over a 100 × 100m area, all within receive
range of each other (no hidden nodes). Node X deliberately
fails to adhere to the protocol and tries to misbehave, following
the cheating model presented in Section III. Traffic sources are
CBR, sending 1050-byte frames every 5 ms. This is enough
to saturate the 2 Mbits/s channel (1.6 Mbits/s effective data
rate), even when a single node is transmitting. The parameter
values for the IEEE 802.11 protocol are chosen according to
the IEEE 802.11b standard [14], no RTS/CTS handshake is
used. Fig. 1 plots the throughput obtained by cheater X , as
well as by each well-behaved node for different values of
WX . Simulation results show a good match with the analytical
results. The duration for each simulation run is 50 seconds
and the results are averaged over 5 simulation runs. As can
be observed from Fig. 1, the cheater can increase his expected
payoff (received throughput) at the expense of other nodes by
choosing a small value of WX . Furthermore, the throughput
obtained by the cheater increases monotonically with the
decrease of WX .

B. Nash equilibria of a static game

Based on the cheaters’ payoff function defined above, in this
subsection we study the equilibria of a static game model. The
solution concept we will be using to study the static game is
Nash equilibrium [16]. In this study we do not consider well-
behaved nodes.

We first investigate whether a Nash equilibrium point exists
for the system or not. We will study the existence of a
Nash equilibrium point by making use of the concept of
a player’s best-response function (correspondence) [16]. Let
Si ≡ (1, 2, . . . ,Wmax), with Wmax ∈ N, be the strategy
set of player i, i.e., Wi ∈ Si. Define further W−i ≡
(W1, . . . , Wi−1,Wi+1, . . . , WC) and similarly S−i.

Definition 1: We say that player i’s best-response corre-
spondence bi : S−i → Si, is the correspondence that assigns to
each W−i ∈ S−i the set bW−i

= {Wi ∈ Si : ri(Wi,W−i) ≥
ri(W

′
i ,W−i) for all W

′
i ∈ Si}.

Now, we can characterize a Nash equilibrium as follows.
The strategy profile W = (W1, . . . , WC) constitutes a Nash
equilibrium of our game if and only if Wi ∈ bW−i

for
i = 1, . . . , C [16].



Proposition 1: For any strategy profile W =
(W1, . . . , WC) that constitutes a Nash equilibrium, ∃i
s.t. Wi = 1.

Proof: Assume W = (W1, . . . , WC) is such that Wj >
1, j = 1, . . . , C. Now, take one player, say i, and consider his
best-response correspondence bW−i

. Since ri is a decreasing
function of Wi (equation (4) and assumption Wj > 1 (τ c

j <
1), j = 1, . . . , C), it readily follows that the only value for
Wi that satisfies ri(Wi,W−i) ≥ ri(W

′
i ,W−i) for all W

′
i ∈

Si, is unity (i.e., bW−i
= {1}). Finally, assuming that τ c

k =
1 for some player k, the proposition follows trivially from
equation (2).

Proposition 2: Our static game admits exactly WC
max −

(Wmax − 1)C Nash equilibria, where C is the number of
cheaters and Wmax is the maximum value of the cheaters’
contention window.

Proof: Assume that for player i we have Wi = 1. Then
his access probability τ c

i = 1 and consequently for all players
j �= i, p−j = (1− τ c

i )
∏

k �=j,i(1− τ c
k) = 0. From equation (3)

it follows that rj = 0 (j �= i) for any value of Wj . Thus
for any value of Wj we have Wj ∈ bW−j

. This is clearly
true for any number of players who have their contention
window set to 1. Combining this with Proposition 1, we
obtain the following characterization of Nash equilibria: at
any Nash equilibrium we have one or more cheaters who
set their contention window to unity and the other cheaters
play any value greater than 1. The proposition follows by
observing that out of the total of WC

max different vectors
W = (W1, . . . , WC), exactly (Wmax − 1)C do not contain
any unity element.
Propositions 1 and 2 give us an insight into the characteristics
of Nash equilibria points. It is interesting to notice that the
equilibria can be classified in the two families. To describe
these, we define a set D ≡ {i : Wi = 1, i = 1, . . . , C}.

• 1st family: |D| = 1, that is, there is only one selfish node
i who plays Wi = 1 and receives a non-null throughput
ri > 0, and for all other nodes j we have rj = 0;

• 2nd family: |D| > 1, that is, we have more than one
selfish node who set their contention windows to unity,
in which case ri = 0, for i = 1, . . . , C.

However, since we assume that each cheater strives to attain
the most of the channel capacity, the most likely equilibrium is
the one at which more than one cheater sets Wi = 1, therefore:

Corollary 1: In the presence of more than one cheater, each
player’s payoff most likely equals zero (ri = 0, i = 1, . . . , C).
This result is know as the tragedy of the commons in eco-
nomics.

C. Fairness and Pareto-optimality

According to the analysis of the earlier section, there exist
two families of Nash equilibrium points. In one family, we
have great unfairness (only a single cheater gets some positive
payoff). In the second family, we have highly undesirable equi-
libria resulting in a zero payoff for every cheater. Therefore,
we look for an alternative solution to the CSMA/CA game. A
desirable solution of the CSMA/CA game should exhibit the

following three properties: (i) the solution should be unique,
(ii) the solution should result in a fair distribution of the system
throughput (and each cheater should achieve a strictly positive
payoff3), and (iii) the solution should result in system optimal
allocation of the available capacity.

To derive such a solution we use the Nash bargaining frame-
work from cooperative game theory [20]. The Nash bargaining
framework is used to model a situation in which the players
negotiate on which point of the set of joint feasible payoffs
R they will agree upon. In our case, R ≡ {r = (r1, . . . , rC) :
ri = fi(W ), i = 1, . . . , C; W ∈ S1 × S2 × . . . × SC},
where the functions fi are derived from equations (2) and (3).
An important element of the Nash bargaining framework is a
fixed disagreement vector r0 = (r0

1, . . . , r
0
C), where usually

r0
i ≡ maxi min−i ri. The role of the disagreement point

is to provide an incentive for the agreement point to take
effect; in case negotiations break down, the outcome becomes
r0 = (r0

1, . . . , r
0
C). In the case of our CSMA/CA game, r0

i =
maxi min−i ri = 0 (i.e., each node can simply obstruct the
traffic of any other node) and hence the disagreement vector
is r0 = (0, . . . , 0). Note here that the disagreement vector
corresponds to the Nash equilibrium of the static game, which
gives high credibility to the disagreement vector. Thus the
whole bargaining problem can be described conveniently by
the pair (R, r0). To solve this problem, Nash took an axiomatic
approach and proposed a solution to (R, r0) that results in a
unique vector r∗ = (r∗1 , . . . , r∗C) satisfying a certain set of
properties [20]. In this work, we are interested in the following
properties of the Nash solution: (i) uniqueness, (ii) fairness,
and (iii) system optimality (i.e., Pareto-optimality).

A well-known result states that if the set R is compact and
convex, and there exists at least one r ∈ R such that r > r0,
then the unique solution to the bargaining problem (R, r0) cor-
responds to the unique solution of the following optimization
problem [20]:

max
C∏

i=1

(ri − r0
i ) subject to r ∈ R, r ≥ r0. (5)

The Nash bargaining framework has already been proposed
for fair bandwidth allocation for elastic services in wired
networks by Yaı̈che et. al. [10]. The important difference
between the Nash bargaining framework (the framework used
in [10]) and our CSMA/CA game is that the set of feasible
payoffs R is neither compact nor convex in our CSMA/CA
game. Nevertheless, we will show that the optimization prob-
lem (5) with R being the (non-convex and non-compact) set
of feasible payoffs of our CSMA/CA game has a unique
solution exhibiting Pareto-optimality and fairness properties
(similar to the properties of the Nash bargaining solution of
the problem (5) where R is a convex and compact set [20]).
By taking the logarithm of the objective function of (5) we

3Assuming that the number of cheaters is not “too high”.



obtain the equivalent optimization problem Π1 [20], [10]:

z1 = max
∑C

i=1 log(ri − r0
i )

Π1 : s.t. r = f(W )
r ≥ r0

W ∈ S1 × S2 × . . . × SC .

Define a set Σ ≡ {Σk : Σk =
∑

i∈C fi(W ), W ∈ S1 × S2 ×
. . .× SC , k = 1, 2, . . . ,WC

max}. Note that some Σk ∈ Σ will
have the same value (e.g., for C = 3, vectors W = (2, 3, 5)
and Ŵ = (5, 3, 2) are equivalent with respect to the operator∑

i∈C fi(·)). Next we relax the constraints in the problem Π1

to obtain the following optimization problem Π2:

z2 = max
∑C

i=1 log(ri − r0
i )

Π2 : s.t.
∑C

i=1 ri ∈ Σ
r ≤ B
r ≥ r0 ,

where ri,∀i ∈ C, are now continuous variables and B is a
vector containing C elements, all of which are equal to B
(where B is the maximum data rate achievable by any cheater).
We observe the following relationship between the optimal
values of Π1 and Π2: z2 ≥ z1. This follows from the fact that
Π2 is a relaxed version of Π1. A possible way to solve Π2

is to solve one instance of it for each Σk ∈ Σ and then simply
pick the instance that maximizes the corresponding objective
function. Thus, for an arbitrary instance (an arbitrary Σk ∈ Σ)
the first constraint simplifies to

∑C
i=1 ri = Σk. To solve Π2

we define the corresponding Lagrangian as follows:

L(r, λ, α, β) =
=
∑C

i=1 log(ri − r0
i ) − λ

(∑C
i=1 ri − Σk

)
−

−∑C
i=1 αi(r0

i − ri) −
∑C

i=1 βi(ri − B) .

From the Karush-Kuhn-Tucker first-order necessary condi-
tions [21], we have:

∂L
∂ri

= 1
ri−r0

i
− λ + αi − βi = 0, i = 1, . . . , C ,

and

λ
(∑C

i=1 ri − Σk

)
= 0, λ ≥ 0

αi(r0
i − ri) = 0, αi ≥ 0, i = 1, . . . , C

βi(ri − B) = 0, βi ≥ 0, i = 1, . . . , C .

Now, it is easily seen that αi = βi = 0, i = 1, . . . , C. This
follows from the fact that there exists a feasible vector W
such that that the optimal value of the equivalent to Π2, i.e.,∏C

i=1(ri − r0
i ) is strictly positive. Likewise, ri = B implies

rj = r0
j (= 0), ∀j �= i, which in turn implies

∏C
i=1(ri − r0

i ) =
0. Then, the first-order Kuhn-Tucker conditions reduce to:

1
ri − r0

i

− λ = 0, i = 1, . . . , C . (6)

Plugging (6) into the first condition of the corresponding
instance of Π2, i.e.,

∑C
i=1 ri = Σk, we finally obtain:

ri = r0
i +

Σk −∑C
i=1 r0

i

C
, i = 1, . . . , C . (7)
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Fig. 2. Throughput vs. contention window size of the cheaters (20 nodes,
out of which 10 cheaters)

Therefore, any optimal solution to the problem Π2 is char-
acterized by the following fairness property: Each cheater
should receive r0

i (zero in the case of the CSMA/CA game) and
the remaining capacity Σk −∑C

i=1 r0
i =

∑C
i=1(fi(W ) − r0

i ),
for a given W , is split equally among C cheaters. In our
game, this means that each cheater should receive equal share
of
∑C

i=1 fi(W ∗), where W ∗ designates any optimal solution.
In other words, any optimal solution of Π2 satisfies: W ∗

i =
W ∗

j , i, j = 1, . . . , C.
We next show that problem Π2 admits a unique solution. In

[17], Bianchi showed that given Wi = Wj , i, j = 1, . . . , C,
there exists a unique contention window size maximizing the
system throughput. A similar phenomenon can be observed in
our case: in Fig. 2 we plot the average aggregated throughput
(the system throughput) obtained by 10 cheaters, all of which
use the same contention window size; the simulation setup and
the analytical model used here are described in Section IV-A.
Therefore, we conclude that problem Π2 admits a unique
solution W ∗

i = W ∗
j , i, j = 1, . . . , C. It follows immediately

that this is also the unique solution of problem Π1, that is,
we simply set ri = fi(W ∗) in Π1 to get z1 = z2.

Finally, observe that W ∗ is a unique Pareto-optimal point,
given the condition W ∗

i = W ∗
j , i, j = 1, . . . , C; this follows

readily from Fig. 2. Thus, the point W ∗ obtained as the
unique solution to problem Π1 exhibits all the properties of
a desirable point of operation in the CSMA/CA game. In
our context, this is significant since: (i) W ∗ is not a Nash
equilibrium point (i.e., W ∗

i > 1, i = 1, . . . , C), but it is Pareto
optimal; (ii) Wi = 1 (i = 1 . . . C) is a Nash equilibrium point
but is not Pareto optimal (efficient). This creates a dilemma for
a system with multiple cheaters, where they look for a Nash
equilibrium point of operation which is also Pareto optimal,
fair and efficient.

V. DYNAMIC GAME

Having determined the Pareto-optimal point W ∗, we now
intend to devise a strategy allowing the cheaters to converge
to this point. For this purpose, we make use of the theory of
dynamic and repeated games [22], [16]. Using the dynamic
game model, we devise a simple distributed algorithm that



cheaters can use to converge to a desired Nash equilibrium
point. Again, we assume Wi (i.e., τi) to be a continuous
variable.

A. Game formulation

We extend the game theory model introduced in Section IV-
A to a dynamic game model in which the players are allowed
to make their decisions based on previous actions and system
states. We assume that our dynamic game is played infinitely
long. We also assume all the nodes to be cheaters, i.e., C = N .
Let C denote the set comprising all the cheaters. In the new
game theoretic model the cheater’s (player’s) utility function
Ji takes the following form:

Ji = Ui − Pi, (8)

where Pi denotes a penalty function. Let us assume, for the
moment, that Pi is defined to be:

Pi = ki(τi − τ), ki ≥ 0, τ ∈ (0, 1), (9)

with ki and τ are constants that we impose on player i. Note
that we assume Pi can be negative; we will show in Section V-
C that with an appropriate selection of ki we always have Pi ≥
0 (i.e., τi ≥ τ ). In this section, the definition of Pi, (as well as
ki and τ ), is used as a mathematical tool to derive optimality
conditions for the players; later in Sections V-C and VI-A, we
discuss practical interpretations of values ki and τ . Combining
equations (8), (9) and (3) (definition of Ui) we can define the
following non-cooperative game:

max
0≤τi≤1

Ji =
τic

i
1

τici
2 + ci

3

− ki(τi − τ), ∀i ∈ C . (10)

In order to solve the maximization problem (10), we define the
Lagrangian function L(τi, λi) for each player i as L(τi, λi) =
Ji(τi) + λi(1 − τi) where λi ≥ 0 is a Lagrangian multiplier.
Based on the Lagrangian function L(τi, λi), we can obtain
necessary and sufficient conditions for Ji to be maximized
for each player i ∈ C. It is known from the convex opti-
mization theory (with inequality constraints) that in order for
the Karush-Kuhn-Tucker first order conditions to be sufficient
for Ji to be maximized, Ji has to be a concave function,
whereas constraint τi ≤ 1 has to be convex, quasiconvex or
linear [21]. Indeed, in our case τi ≤ 1 is a linear constraint
in τi. Furthermore, using the approximation T s = T c (see
footnote 1, Section IV-A), Ji is a concave function in τi i.e.,
∂2Ji

∂τ2
i

= − 2ci
1ci

2ci
3

(τici
2+ci

3)
3 ≤ 0. Now, for each player i, the sufficient

conditions for Ji to be maximized are:

τi

(
∂Ji

∂τi
− λi

)
= 0 and ∂Ji

∂τi
− λi ≤ 0, τi ≥ 0

λi(τi − 1) = 0 and λi ≥ 0, τi ≤ 1 .
(11)

Solving system (11), we obtain the following optimality con-
ditions for player i: (i) τi = 0 if ∂Ji

∂τi
≤ 0, (ii) τi ∈ (0, 1)

if ∂Ji

∂τi
= 0, and (iii) τi = 1 if ∂Ji

∂τi
≥ 0. Let γ∗

i denote the
solution to equation ∂Ji

∂τi
= 0, i.e.,

γ∗
i =

1
ci
2

(√
ci
1c

i
3

ki
− ci

3

)
. (12)

Lemma 1: Assume T s = T c. Then for each player i the
strategy prescribing: (i) play τi = 0 if γ∗

i < 0, (ii) play τi = γ∗
i

if 0 ≤ γ∗
i ≤ 1, and (iii) play τi = 1 if γ∗

i > 1 is a unique
Nash equilibrium strategy for the game (10).
It is interesting to note that even if T s > T c, it still can be
shown that by an appropriate selection of penalty constant ki

the optimality conditions of Lemma 1 still hold.

B. Equilibria of a dynamic game

Lemma 1 reveals an interesting point about our game (10):
If we can find conditions for which γ∗

i ∈ (0, 1) for all players
i ∈ C, then no player i will ever play τi = 1 (i.e., the network
will not collapse). We extend this observation by the following
proposition:

Proposition 3: Any profile τ = (τ1, τ2, . . . , τC), with τi ∈
(0, 1), ∀i ∈ C, can be made a Nash equilibrium point of the
game (10).
The proof is provided in [18]. This result is similar to the
Nash Folk theorem [16].

C. Reaching a Nash equilibrium point

Let us assume that we want to convert τi = τ ∈ (0, 1), ∀i ∈
C to a unique Nash equilibrium point. Assume first that T s =
T c. We know from Lemma 1 that at a Nash equilibrium, τi

should satisfy equation (12). As we want to make τ a Nash
equilibrium, we simply set γ∗ = τ . Then we rewrite (12) with
γ∗ = τ and obtain:

ki =
ci
1c

i
3

(τci
2 + ci

3)2
. (13)

Thus, player i’s payoff function becomes:

Ji =
τic

i
1

τici
2 + ci

3

− ci
1c

i
3

(τci
2 + ci

3)2
(τi − τ) . (14)

Note that at the Nash equilibrium point τi = τ , ∀i ∈ C, the
following holds: Ji(τ) = ri(τ). It is interesting to note that
even if Pi takes negative values for τi < τ , in which case Pi

can be seen as a reward function, the best choice for the node
is still τi = τ , where Pi = 0. This suggests the following
redefinition of player i’s payoff function Ji:

Ji = ri − ki ×
{

(τi − τ), τi > τ ;
0, τi ≤ τ .

(15)

Therefore, by an appropriate selection of ki, we have made
τ a unique Nash equilibrium for all players i ∈ C. Next
we derive an algorithm that leads the players to the unique
Nash equilibrium point τi = τ , ∀i ∈ C. The first issue to be
resolved is the following: How do the players agree on the
Nash equilibrium point τi = τ , ∀i ∈ C, to which they all
should converge? A simple way to resolve this is to define:

τ ≡ min
i∈C

τi, (16)

in which case Pi can be seen as the penalty that the player
with the lowest accessing probability (the highest contention
window) inflicts on player i. Let k denote an arbitrary player
such that τk = τ , that is, k ∈ {arg mini∈C τi}. Observe that



∂rk

∂τi
< 0, ∀i �= k (assuming that τi < 1, ∀i �= k). This

property and the fact that k ∈ {arg mini∈C τi} inspire the
following joint optimization problem Π3 for all i �= k:

max rk(τk, τ−k)
Π3 : s.t. τ ≤ τi ≤ 1, ∀i ∈ C\{k}

τk = τ .
(17)

It can easily be proven that by replacing the objective function
rk in Π3 with

∏
i∈C\{k}(1 − τi), we obtain the equivalent

problem, i.e., optimal τi’s (where i �= k) for the one problem
are also optimal for the other problem. This is because: (i)
rk =

(
τk

∏
i∈C\{k}(1− τi)L

)
/
(
τkck

2 + ck
3

)
and

∏
i∈C\{k}(1−

τi) exhibit similar behaviors in τi (i �= k) (i.e., both are strictly
decreasing in τi < 1 (i �= k) and zero if ∃j such that τj = 1),
and (ii) τk is a constant equal to τ . Furthermore, by taking the
logarithm of

∏
i∈C\{k}(1− τi) (as in Section IV-C) we arrive

at the equivalent optimization problem Π4:

max
∑

i∈C\{k} log(1 − τi)
Π4 : s.t. τ ≤ τi ≤ 1, ∀i ∈ C\{k} .

(18)

We next write the Lagrangian for Π4 as follows:

L(τ−k, α, β) =
=
∑

i∈C\{k}
{

log(1 − τi) − αi(τ − τi) − βi(τi − 1)
}

.

From the Karush-Kuhn-Tucker first order necessary conditions
we have βi(τi − 1) = 0, βi ≥ 0, ∀i ∈ C\{k}. This implies
βi = 0, ∀i ∈ C\{k}, since τi < 1, ∀i ∈ C\{k} (i.e.,
there exists strictly positive solutions to Π4). Thus, the above
Lagrangian reduces to L(τ−k, α) =

∑
i∈C\{k} l(τi), where

l(τi) ≡ log(1−τi)−αi(τ −τi). Since l(τi) is strictly concave
and twice continuously differentiable, l(τi) admits a unique
solution obtained from: dl(τi)

dτi
= 0. Thus we have:

τopt
i = 1 − 1

αi
, ∀i ∈ C\{k} . (19)

In order to obtain a distributed algorithm that leads the
players to the Nash equilibrium τ , we finally consider the
dual problem Π5 of Π4 as follows:

Π5 : minα≥0 L(τopt
−j , α) .

Now we can solve the dual problem Π5 by using the following
gradient-based method [23]:

αi(t + 1) = αi(t) − γ
∂L(τopt

−j , α)
∂λi

= αi(t) − γ
(
τopt
i (t) − τ

)
, ∀i ∈ C\{k},(20)

where γ > 0 is a step size, and where the differentiability of
L(τopt

−j , λ) follows from the fact that the objective function of
problem Π4 is strictly concave4 [23].

The gradient method based algorithm (20) works as follows.
Whenever for some player i �= k we have τopt

i (t) > τ or
τopt
i (t) < τ , the corresponding αi(t) is updated to αi(t + 1)

and communicated to player i. Having received αi(t + 1),

4Strict concavity does not hold if ∃i �= k such that τi = 1, however, we
know that τopt

i < 1 for all i �= k.

player i recalculates his optimal access probability as follows:
τopt
i (t + 1) = 1 − 1/αi(t + 1). Here, we assumed that αi(t)

for all i �= k (and for all t ≥ 0) are controlled by some oracle.
Later in this section, we will show how the role of the oracle
can be delegated to the players themselves. We next study the
convergence of algorithm (19)-(20).

Proposition 4: Assume τ ∈ [ε, 1− ε̂], for some 0 < ε, ε̂ < 1
and 1 − ε̂ > ε. Then for 0 < γ < 1, algorithm (19)-(20)
converges to the unique Nash equilibrium τi = τ , ∀i �= k, for
any initial access probability point ε ≤ τi ≤ 1 − ε̂, ∀i �= k
(with αi(0) = 1

1−τi(0)
, for all i �= k).

The proof is included in the Appendix.
We saw that the two roles of the oracle are: (i) to correctly

estimate the αi(t), ∀i �= k, and (ii) to communicate αi(t)
afterwards. The first task requires a detection mechanism that
is capable of detecting deviations from τ . As far as the second
task is concerned, it is easily seen that it takes only an
appropriate penalization mechanism. Indeed, by appropriately
choosing the step size that governs updates of values αi(t) and
τi(t) in (19)-(20), we can focus solely on deviations where
τi > τ (i.e., where a penalty is needed; in Section VII-A we
implement such an adaptive strategy). Note, however, that a
deviating player i should still receive penalty Pi; in order to
make τ a unique maximizer of player i’s payoff function Ji.
We describe and study a possible implementation of the two
mechanisms in Section VI.

As can be seen from the payoff function (14), in order to
evaluate the correct penalty to be inflicted on some node i,
another node j has to calculate (estimate) the values ci

k, k =
1, 2, 3, effectively meaning that the node j has to estimate, at
the same time, the access probabilities of all the other nodes.
In Section VI-A, we show how to alleviate this requirement
by introducing a simpler penalty function that preserves all
the important properties of the penalty function given by (9).

We now address the remaining challenge of how to achieve
the most efficient τ , i.e., the Pareto-optimal point in the sense
of Section IV-C.

D. Moving Nash equilibrium

To make the Pareto-optimal point W ∗ a Nash equilibrium,
we use the fact that W ∗ is the only point satisfying the first-
order necessary conditions (see Fig. 2). Let τ∗ denote the
corresponding optimal access probability vector.

Initially, cheaters set their access probabilities to some value
close to 1 (but strictly smaller than 1), i.e., τ(0) < 1. The
cheaters also have to make sure that τ∗ ≤ τ(0). The cheaters
then start running algorithm (19)-(20) until they stabilize at
some Nash equilibrium point τn

i (0) = mini∈C τi(0), ∀i ∈ C.
One player (cheater), say i, will eventually decrease its current
τi by some small value ε, i.e., τi(1) = τn

i (1) − ε. This will
in turn trigger the penalizing mechanism of player i and pull
the other players to a new Nash equilibrium point, since they
also run algorithm (19)-(20). At this stage, each player j will
compare its current payoff Jj(1) (at the new Nash equilibrium
point) to the payoff Jj(0) achieved at the previous Nash
equilibrium point. If |Jj(1)−Jj(0)| < δ, where δ > 0 is some



appropriately chosen small value, the players terminate their
search, since they have reached close proximity of the Pareto-
optimal point τ∗ (i.e., W ∗). Otherwise, the players repeat the
previous steps. Since every point at which the players stabilize
is a Nash equilibrium point (Proposition 4), we have achieved
our goal of making the Pareto-optimal point W ∗ (or some
point close to W ∗) a Nash equilibrium point.

One important point about the procedure just described is
that it requires the players to deviate from a Nash equilibrium
point to reach the Pareto equilibrium point W ∗. At first sight
this may look confusing: Why should a player deviate from a
Nash equilibrium point? The answer is simple. The game in
our new model is played infinitely long (an infinitely repeated
game). For this reason, the players can afford any finite number
of deviations from a Nash equilibrium point (i.e., for 0 < k <
∞, limT→∞

∑T
t=k Ji(t)/T = limT→∞

∑T
t=0 Ji(t)/T ).

VI. DEVIATION DETECTION AND PENALIZATION

In this section, we propose a distributed and practical
implementation of the two key building blocks for the model of
dynamic games, namely, the penalization mechanism and the
detection mechanism. Before describing the two mechanisms,
we introduce (and analyze) a penalty function simpler than
the one given by (9), and preserve its most important property
(notably, the uniqueness of the maximizer).

A. Practical interpretation of the penalty function Pi

Let τe ∈ (0, 1) denote a desirable equilibrium value (point)
and let pi(τ) > 0 be some positive continuously differentiable
function. Let us consider the following function Φi(τ):

Φi =
{

pi, if τi > τe

0, otherwise .
(21)

Proposition 5 (Sufficient condition): Let the access proba-
bilities of cheaters other than i (τ−i) be fixed and strictly lower
than 1 (τ−i < 1). If ∂pi

∂τi
> ∂ri

∂τi
, then the payoff function

Ji(τi) = ri(τi) − Φi(τi) has a unique maximizer τ∗
i = τe.

Proof: Since τ−i < 1, we have ∂ri/∂τi > 0 for τi ∈
[0, 1]. Therefore, on the interval [0, τe], τi = τe is the unique
maximizer of the utility function Ji(τi) = ri(τi). We conclude
the proof by observing that for the remaining interval (τe, 1]
we have ∂Ji/∂τi = ∂ri/∂τi − ∂pi/∂τi < 0, i.e., Ji(τi) is a
strictly decreasing function in τi ∈ (τe, 1].
Consider node j that calculates the penalty Pi to be inflicted
on node i as follows:

Pi = Φi, with pi = ri − rj and τe = τj . (22)

Assume τ−i < 1. Then ∂pi/∂τi = ∂ri/∂τi − ∂rj/∂τi. Since
∂ri/∂τi > 0 and ∂rj/∂τi < 0, it follows that ∂pi/∂τi >
∂ri/∂τi. We thus see that the penalty function Pi given by (22)
satisfies the sufficient condition of Proposition 5. Therefore,
for fixed τ−i < 1, τi = τj is a unique maximizer of the
player i’s utility function Ji(τi) = ri(τi) − Pi(τi). Thus,
similarly to the the penalty function (9), the new penalty
function (22) allows us to make any point τ = mink∈C τk
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a Nash equilibrium point (i.e., for each player i set τe = τ
and pi = ri − rj , j ∈ {arg mink∈C τk}).

In the context of two cheaters i and j, a very important
property of the new penalty function is that a penalty has to be
such that it results in the same throughputs for both cheater i
and cheater j. Indeed, Ji = ri − Pi = rj = Jj , where Ji and
Jj represent the resulting throughputs. We will see shortly (in
Section VI-C) that this property of “throughput equalization”
requires far less information at the side of the cheater who
inflicts a penalty, when compared to the penalty function (9).

In what follows, we first describe the detection mechanism
helping each cheater j to assess if some other cheater i is
receiving a higher throughput (Section VI-B). If this is the
case, we say that cheater i has deviated from cheater j’s
point of view. Then, in Section VI-C, we describe the pe-
nalizing mechanism that the cheaters use against the deviating
cheater(s) such that their throughputs become equal.

B. Detection mechanism

In our approach, each cheater measures the throughput of
each other node5, including itself. This is indeed feasible due
to the broadcast nature of the wireless medium. If a cheater
observes a difference in throughput with some other node, it
characterizes that node as a deviating cheater. Let ri and rj be
the measured throughput of nodes i and j, respectively. Due to
the inherent short-time unfairness of the IEEE 802.11 MAC
protocol [24], and in order to increase the efficiency of the
detection mechanism, we introduce two parameters: the obser-
vation time-window size Tobs, in seconds, and the tolerance
margin ε, in percentage of throughput. After measuring the
throughput of each node for Tobs seconds, node i concludes
that node j is deviating whenever the throughput of node j
exceeds the throughput of node i i.e., rj/ri > 1 + ε.

We have implemented this detection mechanism in ns-2,
with N = C = 30 nodes. We vary the contention window size
(Wj) of a single node j, and set others’ contention window
sizes to 30 (W−j = 30). Fig. 3 shows the performance of the
detection mechanism for different values of Tobs and ε. The

5We deliberately use the word node, since in reality well-behaved nodes
may be present as well (even though we neglect them in the analysis).



probability of false positives corresponds to the probability
of detection with Wj = 30; at this point, node j uses a
contention window value equal to that of node i, but still gets
a higher throughput, rj/ri = 1.06, due to the IEEE 802.11
unfairness. Therefore, node j gets detected as deviating with
positive detection probability. To reduce the false positives (at
contention window size 30), one can consider large ε values (>
10%). However, this comes at the expense of lower detection
probabilities if cheater j uses contention window sizes slightly
lower than 30. Similarly, large Tobs values (≥ 15s) will
reduce the effect of the inherent IEEE 802.11 unfairness, and
therefore the corresponding false positives. This also comes at
the expense of lower detection probabilities if cheater j uses
contention window sizes slightly lower than 30. Therefore,
choosing appropriate values for Tobs and ε is crucial to our
detection mechanism. For very low contention window sizes
of cheater j (Wj ≤ 20), the throughput ratio rj/ri is much
larger than 1+ε, making detection of the cheater j’s deviation
easy.

C. Penalizing mechanism

The action taken by cheaters in response to non-cooperation
(deviation) by another cheater is termed as a penalizing
mechanism. In Section V, we expressed the cost of this
penalizing scheme (imposed by another cheater) on a cheater
by the penalty function. We note that a penalizing scheme
should be designed so that it does not bring any performance
degradation to penalizing cheaters. This can be achieved by
selectively jamming the deviating cheater’s packets. Indeed in
CSMA/CA networks, we can single out a deviating cheater for
punishment, since only one station (within the same collision
domain) can transmit at a time. In game theory, this property
is know as full dimensionality [16].

We have designed a simple penalizing scheme, in which the
packets of the non-cooperative cheater are selectively jammed
for a short duration of time, Tjam, by the other cheaters
in the system. Suppose cheater i detects the presence of a
non-cooperative (deviating) cheater j. Thereafter, if cheater
i listens to a transmitted packet corresponding to cheater j,
it switches to transmission mode and jams enough bits so
that the packet cannot be properly recovered at the receiver.
Meanwhile, all other cheaters in the system should be able
to read the header of the jammed frame and properly update
their NAV (net allocation vector). This is to avoid waiting for
EIFS [14], which would reduce the system’s efficiency. There-
fore, jamming should be done on frame payloads rather than
frame headers. This is indeed possible since the transceiver’s
turnaround time, which is on the order of 5 µs [14], is much
shorter than the data frame transmission time, which is of the
order of 700 µs (depending on the data rate and the packet
size).

Let the throughput obtained by the two considered cheaters
over the last observation window, Tobs, be ri and rj , respec-
tively, where rj/ri > 1 + ε. As we saw in Section VI-A,
the penalizing mechanism is aimed at making the throughputs
received by cheaters i and j equal. Thus, the throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  10  20  30  40  50  60

T
hr

ou
gh

pu
t o

f c
he

at
er

 X
 (

M
bi

ts
/s

)

Contention window (WX) of cheater X

Pareto optimal point
of operation

With jamming
Without jamming

Fig. 4. Unilateral deviation by a cheater before and after the introduction of
the penalizing mechanism

received by cheaters i and j should be the same over the
total time duration of Tobs + Tjam, i.e., riTobs + riTjam =
rjTobs + 0Tjam. From this, cheater i calculates Tjam as
follows:

Tjam =
(rj

ri
− 1
)
Tobs . (23)

To avoid situations in which Tjam = ∞, in practice, we can
define Tjam = min{T jam,

(
rj/ri−1

)
Tobs}, where T jam > 0

is a sufficiently large value to bring rj close to ri = 0. In this
way, we give a chance to the deviating cheater j to properly
adjust its contention window Wj and thus its throughput rj .

We have implemented the jamming mechanism in ns-2. The
simulation setup is the same as in Section IV-A (N = 20,
C = 10). We randomly pick up a cheater, designated as
cheater X , and fix his contention window size to be 10.
The contention window size for all the other cheaters in the
system is fixed to the Pareto-optimal (W ∗) value of 30. We
use the observation window size, Tobs, of 20 seconds, and
the tolerance margin, ε, of 5% in the detection mechanism.
Fig. 4 plots the average throughput obtained by cheater X ,
when it unilaterally deviates from the Pareto-optimal point of
operation (W ∗ = 30). The results are averaged over a duration
of 1000 seconds. As can be observed from Fig. 4, after
the introduction of the detection and penalizing mechanism,
cheater X achieves maximum throughput by operating at the
Pareto-optimal point of operation, which is consistent with the
result of Proposition 5 applied to the penalty function (22).
Thus, any unilateral deviation from this point, WX < W ∗ or
WX > W ∗, brings less payoff (throughput) for cheater X .
Therefore, no cheater will have any incentive for deviating
unilaterally from the Pareto-optimal point of operation and
hence it is at Nash equilibrium.

VII. DISTRIBUTED COORDINATION PROTOCOL

Based on the two building blocks described in the previous
section, we will now build a comprehensive and distributed
protocol that guides multiple selfish nodes to the Pareto-
optimal Nash equilibrium point W ∗.



TABLE I

THROUGHPUT OBTAINED BY DIFFERENT NODES (BYTES/S)

Strategy

Non-adaptive Adaptive

Cheater X 7650 11577
Other cheaters 7826 11448
Well-behaved nodes 1286 2318

A. Adaptive strategy

Inspired by the algorithm (19)-(20), we have implemented
the following adaptive strategy. When cheater i observes that
he is being jammed (penalized) during some period ∆, he
gradually increases his contention window by steps of size
γ. Note that a cheater can easily decide whether he is being
jammed by observing his own throughput. The choice of ∆
determines the efficiency of the system. For example, choosing
a small value of ∆ might magnify the effect of misdetection
by unnecessarily causing a cheater to increase his contention
window size. This will eventually lead the whole system
towards an inefficient point of operation. The choice of the
step size, γ, offers a tradeoff between convergence time and
efficiency. If we increase the contention window in large steps,
though the system will stabilize in less time, the point of
operation might be far away from the Pareto-optimal point
(W ∗), resulting in an inefficient system and vice-versa.

We have implemented this adaptive strategy in ns-2. The
simulation setup is the same as in the previous section (N =
20, C = 10,W ∗ = 30). We randomly pick up a cheater,
designated as node X , and fix his contention window size
to 10. The contention window size for all the other cheaters
in the system is fixed to W ∗. We fix ∆ to be 5 seconds
and γ to be 5. One can observe (cf. [18]) how node X
adapts its contention window size by following the adaptive
strategy and eventually converging to a window size of 30,
equal to W ∗. Thus the other cheaters in the system are
successful in guiding the misbehaving cheater to reach the
optimal point of operation. Table I summarizes the throughput
averages obtained by different nodes over a time interval of
1000 seconds. As can be observed from Table I, the jamming
and detection mechanism combined with the adaptive strategy,
besides being fair to all the cheaters in the system, is also the
most efficient. Note that even the introduction of the adaptive
strategy does not encourage the abuse of jamming. Cheater
X might try to unnecessarily jam other cheaters, hoping
that an increase in the contention window sizes by all the
cheaters (following the adaptive strategy) will get him more
throughput. However, eventually cheater X will be identified
as a misbehaving cheater, because of the throughput difference,
by the other cheaters in the system. In turn, cheater X will be
forced to increase his own contention window size, due to the
penalizing mechanism. As a result, every cheater i, including
cheater X , will now be operating at an inefficient point of
operation (Wi > W ∗). Thus cheaters have no incentive to
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TABLE II

THROUGHPUT OBTAINED BY DIFFERENT NODES (BYTES/S) WITH

MULTIPLE LEVELS OF MISBEHAVIOR

Strategy

Non-adaptive Adaptive

Cheater X 2843 10356
Cheater Y 2686 10185
Cheater Z 2565 10239
Other cheaters 2544 10172
Well-behaved nodes 270 1981

over-jam other cheaters in the system.
Finally, we evaluate the performance of our protocol in a

scenario consisting of multiple levels of misbehavior in the
system. The simulation setup is the same as in the previous
section (N = 20, C = 10,W ∗ = 30). We randomly pick up
three cheaters, designated as node X , Y and Z. We fix their
contention window sizes to be 5, 10 and 15, respectively. The
contention window size for all the other cheaters in the system
is fixed to W ∗. Fig. 5 plots the evolution of the contention
window sizes of the different cheaters over time. Since each
deviating cheater is punished in proportion to its misbehavior,
each of them eventually converges to W ∗ and the system
continues to operate at this stable point of operation. Thus,
our protocol self-adapts to the different levels of misbehavior
in the system. As can be observed from Table II, the jamming
mechanism combined with the adaptive strategy results in the
optimal and fair performance, even with multiple levels of
misbehavior in the system.

B. Reaching the Pareto-optimal point

An accurate implementation of the detection, penalizing and
adaptive strategy will lead the nodes to reach an equilibrium
point, W . However, the intention is to reach the Pareto point
of operation, W ∗. As we described in Section V-D, this can
be achieved by using a simple gradient climbing algorithm. At
the onset of the system, assume Wi = W in

i for all cheaters.
Every cheater sets up a random timer (in our simulations this
corresponds to a random value between 0 and 20 seconds) to
increase his contention window by a step of size γ. One of
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the cheaters, say X , will eventually increase his contention
window size to W in

X + γ. Based on the detection mechanism,
node X will conclude that all other cheaters in the system are
deviating and will begin penalizing them. If a cheater observes
that he is being penalized, he will disable the timer. Eventually
the system will stabilize, when Wi = W in

i +γ for all cheaters.
The cheaters realize that they have reached a new stable point
of operation, when they all begin enjoying the same throughput
(in our implementation, the cheaters remain at this stable point
for 20 seconds before continuing the search for W ∗). At this
point in time, a cheater i compares his throughput at Wi =
W in

i + γ with the throughput at Wi = W in
i ; if he observes

a decrease in his throughput, he will terminate the search for
W ∗. Otherwise he again sets up the random timer to increase
his contention window size by γ. Note that even if only one
cheater observes an increase in his throughput, eventually the
whole system will move towards a new point of operation.

We have implemented this protocol in ns-2. The simulation
setup consists of 20 nodes and 7 cheaters (N = 20, C = 7).
The cheaters initialize their contention window size to 5
(W in

i = 5). The cheaters continue their search for W ∗ only if
they see an increase of 10% or more in their throughput from
the last stable point of operation. Fig. 6(a) plots a sample
evolution of the contention window for 2 arbitrary chosen
cheaters, X and Y , in the system. Note that all of the cheaters
follow a similar pattern and eventually converge to a window
size of 20. We are unable to show their evolution in the same
plot as it simply generates overlapping lines. Fig. 6(b) plots the
aggregated throughput obtained by all the cheaters at different
contention window sizes. As can be seen from Fig. 6(b), the
throughput is maximized at Wi = 20. In reality, the cheaters
will stop at Wi equal to 20 and the system will continue
to operate at this point of operation. For completeness, we
obtain the “dotted” curve in Fig. 6(b) by deliberately forcing
the cheaters to go beyond Wi = 20.

C. Discussion

As can be seen from Table II (Section VII-A), well-
behaved nodes, which continue to follow the IEEE 802.11
protocol, obtain negligible throughput from the system. Thus,
in the presence of cheaters in the system, we speculate that
eventually all the nodes in the system will start to behave
as cheaters. As they strive for optimal contention window
size, even in such a scenario, our protocol will be at least
as efficient as the normal IEEE 802.11 protocol. Note that our
goal in this paper is prevent network collapse, in an efficient
way, rather than finding the optimal contention window for a
network of N = C nodes [25], [17]. However, our adaptive
cheating algorithm leads to the same optimal point, without
explicit knowledge of the number of contending nodes. As
mentioned earlier, we adopted throughput-based detection to
simplify the presentation. However, the use of more adequate
detection mechanisms, such as backoff-based detection [1]
(i.e., comparing the nodes’ average backoffs) is needed in
general, for example in the following two scenarios.

Hidden terminal problem. A challenge here is that a node
belonging to two different clusters, hidden from each other,
will suffer unfair shares in both clusters. To cope with this
problem, we can take a similar approach as in the present
work. Thus, we first define (axiomatically) a desirable point
of operation that will exhibit a reasonable fairness metric, and
then we find a distributed algorithm that reaches this point. In
general topology networks, it may be plausible to use backoff-
based detection mechanisms [1].

Different traffic constraints. Since CSMA/CA is time-fair
rather than throughput-fair, flows with different constraints
(e.g., different packet lengths) will result in different through-
puts, even without cheating. Hence, throughput-based detec-
tion mechanisms cannot be applied since nodes are not sup-
posed to know each other’s traffic constraints. Again, backoff-
based detection mechanisms are more appropriate.



VIII. CONCLUSIONS

In this paper we have addressed the problem of cheating
in CSMA/CA networks. For this purpose, we have developed
a game-theoretical model and verified our findings by appro-
priate simulations. We have made several contributions. First,
we have provided a formalism for the systematic study of
rational cheating. Second, we have studied the simple cases (i)
of a single cheater and (ii) of several cheaters acting without
restraint. Third, we have identified the Pareto-optimal point
of operation of a network with multiple cheaters. Fourth, we
have shown how it is possible to transform this Pareto-optimal
point into a Nash equilibrium. Fifth, we have shown that
smart cheaters can collectively find this point. We believe these
contributions to be very relevant in wireless networks.

In terms of future work, we intend to study in more
detail general topology networks (involving hidden terminals).
We will also try to define a punishment technique that is
less intrusive than jamming. Finally, we intend to adapt this
approach to problems beyond CSMA/CA networks: a possible
direction is to study how smart cheating could become a
technique to collectively fine-tune the behavior of a protocol.
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APPENDIX

PROOF OF PROPOSITION 4 (SKETCH)

To prove the convergence of the iterative procedure de-
scribed by equations (19) and (20), we will show that function
f(αi(t)) ≡ αi(t)−γ

(
τopt
i (t)−τ

)
is a contraction mapping for

the appropriately chosen step size γ. Thus, we have to show
that the following holds (for brevity, we drop index i from
αi(t) and τopt

i (t), as well as opt from τopt
i (t)):

|f(α(t + 1)) − f(α(t))|
|α(t + 1) − α(t)| < 1, for all t ≥ 0 .

By substituting f(αi(t)) and in turn τ(t) = 1 − 1/α(t), and
after some reordering we obtain that the following condition
has to be met for f(αi(t)) to be a contraction mapping:

|1 − γ/α(t)α(t + 1)| < 1 . (24)

From (24) we have 0 < γ < 2α(t)α(t + 1). Thus, if we can
show that α(t) > 0 for all t ≥ 0, then there exists (an arbitrary
small) γ > 0 such that f(αi(t)) is a contraction mapping.
We observe that at t = 0, α(t) > 1 (i.e., by assumption
1 > τ(0) > ε > 0). We will show that α(t) > 1 for all
t > 0. By definition α(1) = α(0) − γ(τ(0) − τ). Consider
τ(0) > τ (otherwise, α(1) increases with respect to α(0)). Let
0 < γ < 1. Hence, α(1) > α(0)−(τ(0)−τ ) = 1/(1−τ(0))−
(τ(0)−τ) =

{
1−(1−τ(0))(τ(0)−τ)

}
/(1−τ(0)). Now, since

τ(0), τ ∈ (0, 1) (by assumption), we have (1 − τ(0))(τ(0) −
τ) < (τ(0) − τ). Therefore, α(1) > 1 + τ

1−τ(0) > 1. By
applying mathematical induction and similar arguments as
above we can prove that α(t) > 1 for all t ≥ 0.


