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Abstract— The throughput of wireless networks is known to
scale poorly when the number of users grows. The rate at which
an arbitrary pair of nodes can communicate must decrease to
zero as the number of users tends to infinity, under various
assumptions. One of them is the requirement that the network
is fully connected: the computed rate must hold for any pair
of nodes of the network. We show that this requirement can be
responsible for the lack of throughput scalability. We consider a
two-dimensional network of extending area with only one active
source-destination pair at any given time, and all remaining
nodes acting only as possible relays. Allowing anarbitrary small
fraction of the nodes to be disconnected, we show that the per-
node throughput remains constant as the network size increases.
This result relies on percolation theory arguments and doesnot
hold for one-dimensional networks, where a non-vanishing rate
is impossible even if we allow anarbitrary large fraction of nodes
to be disconnected.

A converse bound is obtained using an ergodic property of shot
noises. We show that communications occurring at a fixed non-
zero rate imply a fraction of the nodes to be disconnected. Our
results are of information theoretic flavor, as they hold without
assumptions on the communication strategies employed by the
network nodes.

I. I NTRODUCTION

A completely wireless network consists ofn nodes that
communicate over a common wireless channel. A natural
question that arises in such systems is how the throughput
scales with the numbern. Typically, there are two ways
of letting n tend to infinity. One can either keep the area
on which the network is deployed constant, and make the
node densityλ tend to infinity (densenetworks); or one can
keep the node densityλ constant, and increase the area to
infinity (extendednetworks). In both of these settings, network
theoretic lower bounds on achievable transmission rates can
be obtained constructively, for given communication strategies
and power attenuation laws; while information theoretic upper
bounds must be obtained allowing arbitrary communication
strategies and assuming only the power decay law in the
propagation medium.

The work presented in this paper was supported (in part) by the National
Competence Center in Research on Mobile Information and Communication
Systems (NCCR-MICS), a center supported by the Swiss National Science
Foundation under grant number 5005-67322.

The first paper [1] to address these problems considered the
dense network case, and a traffic scenario where each node
generates packets for a destination non-vanishingly far away.
Using a network theoretic approach based on multi-hop com-
munication, it showed a lower bound on the per-node rate of
Ω(1/

√
n) bit/sec, if nodes are arbitrarily located; and a lower

bound ofΩ(1/
√

n log n) bit/sec if nodes are randomly located,
see also [2]. Note that these results optimistically rely onpoint
to point connections delivering infinite power as nodes tend
to be closer to each other, which is a physical impossibility.
When the physical constraint of bounded power is enforced,
the results are corrected by introducing an additional1/

√
n

factor, see [3].
For extended networks, the works in [4], [5] present in-

formation theoretic bounds ofΘ(1/
√

n) bit/sec per node, for
arbitrarily located nodes, assuming some natural power atten-
uation law in the wireless medium [6], which can be bounded
without affecting the final result. Finally, using percolation
theory arguments, it has been shown [7] that it is possible to
achieve the sameΩ(1/

√
n) rate with randomly located nodes.

All works mentioned above consider an all-to-all commu-
nication scenario. Instead, when nodes are located at random,
but there is only one active source-destination pair at any given
time, while the remaining nodes act as possible relays, it has
been shown that the transmission rate in dense networks can
grow at most asO(log n), under the assumption that around
each of the two active nodes there is a dead zone of finite
nonzero radius without any node [8]. For extended networks
(and without dead zone assumption) it has been shown that the
rate decreases asO((log n)−dα), whereα > 2 is the exponent
of the power attenuation function andd ∈ {1, 2} denotes the
dimension of the network [9].

The conclusion drawn from all these works is rather pes-
simistic, since the rate offered to each node always tends
asymptotically to zero as the number of nodes grows —except
for relay transmission in dense networks [8]. On the other
hand, the common requirement for all the works mentioned
above, is thatevery pair of nodes can be connected at that
rate.

In this paper we show that the price to pay to operate
the network at a given rate is precisely its full connectivity.
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We prove that if we allow anarbitrary small fraction of the
nodes to be disconnected, then a non-vanishing rate can be
achieved in 2-dimensional extended networks and in the relay
scenario of [9]. On the contrary, it turns out that in the 1-
dimensional case, a non-zero rate is impossible even if we
allow anarbitrary large fraction of nodes to be disconnected.

Finally, we want to spend few words on the intuition
behind these results. The original result of [8] for dense
relay networks can be easily seen as an application of the
capacity formula for multi-antenna channels: the additionof
more nodes in a finite area, each of which is capable of
working as a relay transmitting at constant power, improves
the transmission rate by a logarithmic factor of the total
power. Our result for extended relay networks of constant
density can be seen as a consequence of percolation theory:
by choosing the constant density of the nodesλ larger than a
critical valueλc, a giant connected component forms. Inside
this component every pair of nodes can communicate at a
constant bit rate. Percolation theory tells us even more: it
follows from a result by Penrose and Pisztora [10] that this
component contains a constant fraction of the nodes that can
be made arbitrarily close to one by an appropriate choice of
λ. This good news is counter-balanced by a corresponding
pessimistic result that immediately leads to a corresponding
upper bound: in an extended network, no matter how small
the rate of transmissions, there will always be a non zero
fraction of the nodes that will not be able to communicate to
the rest of the network at that rate, even if we allow arbitrary
cooperation between the nodes. This is proven by recasting
the constraint on a minimal rate from the source to all other
nodes, as a constraint on the value of a shot noise at the source
location, and by showing that the fraction of nodes verifying
this constraint is strictly less than one.

We point out that our bounds tend to zero when the fraction
of the nodes required to sustain the given rate tends to one,
in agreement with [9]; and that they diverge as the density
increases, in agreement with [8]. Moreover, it is interesting
that allowing a fraction of the nodes to be disconnected does
not change the scaling law in [4], [5], as in an all-to-all
communication scenario the1/

√
n bottleneck is due to the

cost of relaying packets for other nodes.
The rest of the paper is organized as follows. We consider

two different connectivity models, the Boolean model and the
information theoretic relay model. Section II summarizes the
assumptions made for both models. We begin with the Boolean
model in Section III, to stress the importance of dimensionality
on the connectivity, and to set up preliminary results that will
be useful for the information theoretic relay model. Section IV
contains the two main results of our paper, a lower bound
(Theorem 2) and upper bound (Theorem 3) on the fraction
of nodes that can communicate at a given rate. The lower
bound is proven using percolation theory and the computation
of the achievable throughput along the shortest path between
the source and destination in Appendix A. The upper bound
is proven by establishing an ergodic property of shot noises
in Appendix B. Finally, Section V concludes the paper.

II. N ETWORK MODELS

We consider one-dimensional and two-dimensional random
networks. In one dimension, we assume that nodes are scat-
tered according to a Poisson point process of unit intensity
over the interval[0, n]. The average number of nodes in the
network is thus equal ton. Similarly, in two dimensions, we
consider a Poisson point process of unit intensity over the
square[0,

√
n]× [0,

√
n], so that the average number of nodes

is also equal ton.
We look at asymptotic connectivity results whenn tends

to infinity, while the node density remains constant (extended
network). In the following, we will use the expressionwith
high probability(w.h.p.) to qualify an event whose probability
tends to one whenn tends to infinity.

Connectivity results strongly depend on how we define the
word “connected”. Throughout this paper, we will look at the
two following connectivity models:

A. Boolean connectivity

In the first –and simplest– model, we assume that two nodes
aredirectly connectedif the distance between them is less than
a given distance (orrange) r. Two nodes areconnectedif there
exists a path of directly connected nodes joining them.

It turns out that this definition of connectivity leads to
a well known model in stochastic geometry called Boolean
model [11]. In fact, if we center a ball (segment or disk,
depending on the dimensionality of the network) of radius
r/2 on each node, we end up with a Boolean model where
the clusters formed by overlapping balls correspond exactly to
the connected components in our network.

B. Information theoretic connectivity

In this model, we adopt a more practical point of view,
and consider two nodesconnectedif one can send data to the
other at rateR > 0 and vice versa (possibly with the help
of all other nodes, as we assume that at each instant there
is only one node transmitting and one node receiving). We
assume that each node has a maximum emitting powerP , and
that the attenuation from Pointx to Pointy is given by some
function l(||y − x||), where|| · || denotes the euclidean norm.
We denote byN0 the power of the background noise added
to each received signal. Furthermore, for technical reasons (as
e.g. in [12]),l must be decreasing and such that

∫

R

xl(x)dx < ∞.

We will make no further assumptions on the communication
protocol and look at information theoretical bounds on the
fraction of nodes that can communicate at rateR with each
other.

III. B OOLEAN CONNECTIVITY

In this section, we review connectivity results in the Boolean
model. These results enlighten the fundamental difference
between 1-d and 2-d connectivity and are then applied to prove
our main theorems in the information theoretic model.



Fig. 1. One dimensional Boolean model. Each node is the center of a segment
of length r. The origin (on the left end) is connected to all nodes beforethe
first gap (plain segments). All nodes on the right are disconnected (dashed
segments).

Fig. 2. Two dimensional Boolean model. Although there are some isolated
nodes, the origin is connected with a large fraction of the nodes.

A. One dimensional network

In one dimension, connectivity is broken whenever there is a
“gap” somewhere on the line. Here, in the Boolean model, con-
nected components end when one finds two consecutive nodes
separated by a distance greater thanr. As the intervals between
nodes are independently and exponentially distributed, when
the network size increases, one finds arbitrarily many gaps
(intervals longer thanr) w.h.p. (see e.g., [13], [14], [15]).

Moreover, if we look at the number of nodes connected to
the origin, we observe that this number is a random variable
with finite expectation. In fact, at each side of the origin, the
number of intervals we have to look at before we find a gap,
is a geometrical random variable. Therefore, the probability
that the number of nodes connected to the origin is finite is
equal to one. Now, if we compute the fraction of nodes that are
connected to the origin, we have to divide this finite number
by the total number of nodesn. As n goes to infinity, the
fraction tends thus to zero a.s. This means that the network is
completely disconnected w.h.p, regardless of the value ofr.

B. Two-dimensional network

Contrary to the one-dimensional case, here we can have
isolated nodes without disconnecting the whole network. The
intuition is that if a gap arises, there can be a path that avoids
it, and keep long range connectivity.

This intuitive observation is confirmed by percolation the-
ory: if we consider a Boolean model that spreads over the
whole plane, there exists a critical radiusr∗, such that if

r > r∗, there exists one unbounded connected component a.s.
We call percolation probabilitythe probability0 < θ(r) < 1
that an arbitrary node belongs to this unbounded component.
We have also thatθ(r) tends to1 whenr tends to infinity. On
the contrary, ifr < r∗, all connected components remain a.s.
bounded, and the percolation probability is therefore equal to
zero. This latter case (also calledsub-critical case) is similar
to the 1-d case. See [11] for an extensive treatment of this
subject.

In our extended network model, we only look at the box
Bn = [0,

√
n] × [0,

√
n] and we make use of the following

result by Penrose and Pisztora [10]:

Theorem 1 (Penrose and Pisztora, 1996):Supposer > r∗,
and0 < ε < 1/2. Let E(n) be the event that

• there is a unique connected clusterC insideBn contain-
ing more thanεθ(r)n points, and

• (1 − ε)θ(r)n ≤ Card(C) ≤ (1 + ε)θ(r)n.

Then there exist constantsc1 > 0 andn0 > 0 such that

P[E(n)] ≥ 1 − exp(−c1

√
n), n ≥ n0.

We deduce from the above theorem the following corollary:
Corollary 1: For any0 < θ̌ < 1, there exists anr < ∞

such that there exists a connected cluster that contains a
fraction of nodes larger thaňθ.

Proof: θ(r) is continuous forr > r∗ and tends to 1
when r tends to infinity, see [11]. Thus, given a fractioňθ,
one can chooser large enough so thatθ(r) = θ̌/(1 − ε) for
someε > 0. Theorem 1 ensures that the number of nodes
insideC is at least(1 − ε)θ(r)n w.h.p. Thus the fraction of
nodes inside this cluster is larger thanθ̌.

This result makes a great difference with the 1-d case, as
now, with a fixedr, we can have nonzero fraction of connected
nodes for an arbitrarily large network.

However, if we requirefull connectivity, i.e., if we impose
θ(r) = 1, then the price to pay is very high: we know that this
is not possible with fixedr, because there will be a.s. a node
that has no neighbor within distancer. Actually, Penrose [16],
and independently Gupta and Kumar [17], showed thatr has
to increase likelog n to achieve full connectivity.

This big difference (constant vs increasingr as a function of
n) follows from the fact that if we want to connect the most
isolated node in the network, as the network size increases,
we find worse and worse cases, for pure statistical reasons. In
practice, it is not much of a problem if a tiny fraction of the
nodes are disconnected, especially as it then allowsr to no
longer increase withn.

This latter result matches the intuition that as the node den-
sity remains constant, the quality of the connectivity should not
change with the size of the network. In fact, the explanation
behind the result in [16], [17] is of statistical nature.

IV. I NFORMATION THEORETIC CONNECTIVITY

In this section, we use results from Boolean connectivity to
obtain new results under the information theoretic definition



of connectivity.

A. One dimensional network

For 1-d networks similar results hold for Boolean and
information theoretic connectivity, namely, for any fixed rate
R > 0, the fraction of connected nodes tends to zero whenn
tends to infinity.

If a node is disconnected from the origin, then all nodes
further away from the origin are also disconnected. Thus, as
the network size increases (and as the node density remains
constant), there are w.h.p arbitrarily large gaps in the network,
and thus we expect it to be eventually disconnected, for any
fixed rateR > 0. This intuition matches the result in [9], which
shows that the rate has to decrease to zero as a function ofn.

Now if we require that only a (positive) fraction of the nodes
has to be connected, we can obtain the same negative result.
Assume that for a given rateR, nodes are connected until
nodex. Then all nodes in[x, n] are disconnected. In fact, the
fraction of connected nodes is thusx/(n−x), which tends to
zero whenn goes to infinity. Therefore, w.h.p, the fraction of
connected nodes is below any positive number.

The idea of requiring only partial connectivity does thus
not help, and the same asymptotic result holds. In fact, in
one dimension,partial connectivityand full connectivityare
asymptotically equivalent. The picture is definitely not the
same in two dimensions, as we will show in the next section.

B. Two dimensional network

We look at the bounds on the rate at which a given fraction
of the nodes can exchange data with each other. In other
words, if we discard a given fraction of the nodes (the worst
positioned), what are the bounds on the rate? We will see
that discarding the worst nodes (up to a given percentage,
that can be arbitrarily small), the asymptotic behavior of the
rate dramatically changes, and stays constant whenn tends to
infinity.

1) Lower bound: We construct an explicit scheme that
achieves a constant rate, for an arbitrary (but smaller than
one) fraction of the nodes. The following Theorem gives the
rigorous formulation of our result.

Theorem 2:For any0 < θ̌ < 1, there exists a rateR > 0
independent ofn, such that there exists a subset of nodes of
sizenθ̌ in which each node can send data to any other node
at rateR w.h.p.

Proof: To prove this theorem, we use Corollary 1. Given
θ̌, this ensures that there existsr such that under the Boolean
model, there exists a connected cluster of size greater thannθ̌
w.h.p.

Then, we use Theorem 4 in Appendix A to show that along
the shortest path in the Boolean model, the throughput

R =
1

8
log

(

1 +
Pl(r)

N0 + P
∑∞

k=1 6k l(kr)

)

is achievable between any two connected nodes. Therefore, a
fraction θ̌ of the nodes can exchange data at rate at leastR,
independently ofn.

The simple TDMA construction of Theorem 4 described
in Appendix A, along with the percolation theory result of
Corollary 1 have been enough to prove our theorem. A
better bound on the throughput can be obtained using more
complex schemes than our simple TDMA strategy. One could
use, for example, the Gaussian multiple relay channel with
coherent multi-stage relaying and interference subtraction of
[4]. However, the asymptotic behavior remains the same even
with our very simple scheme and only the pre-constant is
improved.

It is also important to notice that the proof does not work
for θ̌ = 1, as the fraction of connected nodes in a Boolean
model is never equal to one. This is consistent with the fact
that the rate must decrease to zero if we want to keep all nodes
connected. It is therefore impossible to find a fixed rateR > 0
such that the fraction of connected nodes is equal to one.

2) Upper bound:We now derive an information theoretic
bound on the rate at which a given fraction of the nodes
can send data to any destination. This result does not depend
on the adopted strategy for transmitting information to the
destination.

Theorem 3:For any rateR > 0, the fraction of nodes that
can send data to any destination at that rate is at mostθ̂ w.h.p.,
where

θ̂ = P[I ≥ N0

P

(

e2R − 1
)

],

whereI is theshot-noisedefined by

I =
∑

x∈N

l(||x||)

andN is a Poisson point process of unit density overR
2.

Proof: To prove Theorem 3, we proceed in two steps.
First, we show that the rate at which a node can send data to
any destination is bounded above by a function of a shot-noise
at its location. Then we show that the fraction of nodes such
that this shot-noise at their location is lower than a certain
threshold isθ̂.

In the first step, we use the max-flow min-cut theorem
14.10.1 from [18]. Accordingly, we divide the network in
the following way: on one side the senderx0, and on the
other side all the other nodesxi, i 6= 0. The max-flow min-
cut theorem ensures that the maximum throughput between
these two sides can be upper-bounded by the multiple receiver
Gaussian channel formed by the emitting node and all others
listening to it. The rate of this channel is computed in [19]
and corresponds to the rate at which the emitterx0 can send
data to the rest of the nodesxi:

R =
1

2
log

(

1 +
P

∑∞
i=1 l(||xi − x0||)

N0

)

.

The sum in the above expression is a shot-noise process
evaluated inx0, that we will denote byS later on:

S(x0) :=

∞
∑

i=1

l(||xi − x0||).



From this result, we conclude that a necessary condition for
achieving rateR from nodex0 is

S(x0) ≥
N0

P

(

e2R − 1
)

:= M.

We can then use Theorem 5 in Appendix B to compute
the fraction of nodes that fulfill the above condition. As the
sequence of squares[0,

√
n] × [0,

√
n] is a convex averaging

sequence (see Definition 1 in Appendix B), we conclude from
this theorem that the fraction of nodes that do not fulfill the
condition is equal to

P(I < M) := 1 − θ̂

where
I =

∑

x∈N

l(||x||)

and N is a Poisson point process of intensity 1. As they do
not fulfill the necessary condition, the fraction1− θ̂ of nodes
cannot for sure send data at rateR to any destination, and are
thus isolated. The fraction of connected nodes is thereforeat
most θ̂.

The bound given in Theorem 3 is not explicit, as it involves
the cumulative distribution function of a shot-noise. To obtain
an explicit bound, we can use Chernov’s inequality. We know
from Campbell’s theorem that (see [20] page 28)

E[esI ] = exp

{

λ

∫

R2

(esl(||x||) − 1)dx

}

.

Therefore,

P[I ≥ M ] ≤ min
s∈R

e−sM
E[esI ]

= min
s∈R

exp

{

λ

∫

R2

(esl(||x||) − 1)dx − sM

}

This bound gives a good approximation whenR is large,
but becomes loose whenR is smaller.

C. Discussion

We plot in Figure 3 the upper and lower bounds on the
fraction of the nodes that can connect to each other at a given
rateR.

The lower bound indicates that whenR is close to zero, the
fraction of nodes that can achieve this rate tends to one. This
case correspond to the results in [9].

At the other end, ifR is too large, the lower bound becomes
zero. In practice, our lower bound represents a percolation
curve that marks a transition at a critical rate valuebelow
which a non-zero fraction of the nodes in the network can
sustain a constant rate.

The upper bound computed by Chernov’s inequality is not
informative for small values ofR, but decreases to zero for
large values of R. Contrary to the lower bound, the curve has
a tail for large rates. Although upper and lower bounds are
not tight, we believe that there is also a critical rate,above
which each node can only connect to a finite number of other
nodes. This means that under our definition of connectivity,
the network would not percolate in this case.
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Fig. 3. Upper and lower bounds on the fraction of nodes that can achieve
a given rateR. The lower bound has been improved using the multiple relay
channel result in [4], and the upper bound has been computed using the bound
presented in Section IV-B.2.

V. CONCLUSION

In wireless random networks with a finite spatial density
of nodes, the price to pay for full connectivity is high: it
makes the throughput of any node vanish when the network
size gets large. It is impossible to offer a non-zero rate to every
node of an extended network when the number of nodes tends
to infinity. Even in the most optimistic information-theoretic
setting (arbitrary complexity of the network encoding, all
nodes acting as relay for one pair source-destination arbitrarily
picked in the network), Theorem 3 shows that if we want to
impose a given rateR > 0 to any possible transmission in
the network, a fraction1 − θ̂(R) of nodes will automatically
be disconnected. This result is obtained using tools from shot
noise processes and information theory.

On the other hand, if we allow some non zero, but arbitrary
small fractionθ̌ of nodes to be disconnected, then Theorem 2
shows that it is possible to find a rateR(θ̌) that any other
pair of nodes can enjoy in an arbitrarily large network. The
theorem is proven by continuum percolation techniques, and
therefore holds for 2-d networks, but not for 1-d networks,
because percolation does not occur in dimension 1.

These two results shed some new light on the throughput
scaling laws of random wireless networks. Relaxing the full
connectivity requirement and allowing a small fraction of
the nodes to be disconnected is shown to be both necessary
(Theorem 3) and sufficient (Theorem 2) to have nodes com-
municating at a non zero, positive rate, with other nodes acting
as potential relays, on an arbitrary large network. Contrary to
the full connectivity case, the dimensionality of the network
is now a crucial factor.

We therefore believe that these results reinforce the case for
“partial connectivity” (or “θ-connectivity”), where a fractionθ
of the nodes randomly drawn from the network is connected,
as opposed to the traditional full connectivity.



X
Y

Fig. 4. A shortest path fromX to Y in a Boolean model. Filled balls do
not overlap, and neither do the empty balls.

APPENDIX

A. Path throughput
In a Boolean model with fixed ball radiusr/2 and spatial

density1, we consider the shortest path between two points
x1 and x2 that belong to the same cluster. We show in the
following theorem an achievable throughput along this path,
that does not depend on the number of hops, but only onr.

Theorem 4:In a Boolean model with unit point density and
ball radiusr/2, the following throughput is achievable along
the shortest path between any two nodes of the same cluster:

R =
1

8
log

(

1 +
Pl(r)

N0 + P
∑∞

k=1 6k l(kr)

)

.

Proof: We look first at the properties of shortest paths in
Boolean models. By construction, the distance between any
two consecutive nodes on the path is smaller thanr. We
observe furthermore that if we consider every second ball
along the path, these balls do not overlap. Otherwise, if they
had overlapped, they would have made it possible to take a
shortcut between them, which would have avoided at least one
other ball and thus give a shorter path (see Figure 4), which is
impossible. More generally, the same reason implies that any
ball can overlap only with its predecessor and its successor
along the shortest path.

With this second observation, we can bound the signal
received by a node from all the others. This bound is obtained
if the odd balls and the even balls are optimally packed on
the plane (honey comb grid) and emit with full powerP . Let
us compute the sum of the signals received byx0 from even
balls: in a honey comb grid, there are 6 neighbors at distance
r, 6 at distance

√
3r, etc. We obtain:
∞
∑

i=1

Pl(x2i − x0)

≤ P [6l(r) + 6l(
√

3r) + 6l(2r)

+12l((2 +

√
3

2
)r) + . . . ]

≤ P

∞
∑

k=1

6kl(kr)

:= PK(r)

The sumK(r) converges because
∫

xl(x)dx < ∞.
We consider now a four time slots TDMA scheme. During

each slot, only nodes with the same index modulo 4 can
emit. In this way, we guarantee two things: during each time
slot, only odd balls or only even balls are emitting, and each
receiver has its predecessor emitting, but not its successor. In
this way, interferences only come from even (or odd) nodes
that are at distance more thanr from the receiver. Therefore,
the total interference at each receiver cannot be larger than
PK(r) (one cannot pack more even (or odd) nodes, starting
at distance greater thanr).

We can now compute the signal-to-interference-plus-noise
ratio at the receivers:

SINR ≥ Pl(r)

N0 + PK(r)

whereN0 is the background noise. The following throughput
is thus achievable for each emitter-receiver pair

1

2
log

(

1 +
Pl(r)

N0 + PK(r)

)

As we used four time slots, the actual throughput along the
path is one fourth of the above expression.

B. Shot-noise
We start this section by introducing some notation. For a

setA ⊂ R
d and a pointx ∈ R

d, we define the setA + x as
follows:

y ∈ A + x iff y − x ∈ A.

Then we define the shift operatorSx as follows: for a random
measureN and a Borel setA,

SxN(A) = N(A + x).

We define now formally the shot-noise process built on a
two-dimensional Poisson point process, and prove an ergodic
result in Theorem 5.

Let N be a Poisson point process of intensityλ in R
d. We

define theshot-noiseas

I =

∫

Rd\{0}

f(x)N(dx) =
∑

x∈N

f(x)

for some positive functionf such that
∫

Rd

f(x)dx < ∞.

Note that because of the properties of the Poisson point
process, the Palm distribution ofI is equal to its original
distribution.

Given a constantM > 0, we define byY the random
counting measure that counts the number of points ofN such
that the value of the shot-noise at this point is less thanM :

Y (A) =

∫

A

1E(SxN)N(dx)



whereE is the event

E = {I < M}.

Before stating the main theorem of this Appendix, we need
the following definition:

Definition 1: A sequence{An} of bounded Borel sets in
R

d is a convex averaging sequenceif

1) eachAn is convex
2) An ⊂ An+1 for n = 1, 2, . . .
3) r(An) → ∞, where r(A) = sup{r :

A contains a ball of radiusr}.

Theorem 5:For a convex averaging sequence{An} of
Borel sets inR

d, asn → ∞ we have

Y (An)

`(An)
→ λP(E),

where`(An) denotes the area ofAn.
To prove Theorem 5, we need to introduce two new objects:

we first define a truncated shot-noise as follows:

I(r) :=

∫

B(0,r)\{0}

f(x)N(dx),

whereB(0, r) is the d-dimensional ball of radiusr centered
on 0. It is clear thatI(r) < I and thatlimr→∞ I(r) = I. We
also define for convenience the complement of the truncated
shot-noise:

Ī(r) := I − I(r).

It is important to notice thatI(r) andĪ(r) are two independent
variables, because they are computed over two disjoint areas.
Then in a similar way, we define the random measureY (r) by
modifying the eventE as follows:

E(r) := {I(r) < M}.

Lemma 1:The probabilityp(r) that a pointx of N is such
thatSxI(r) < M ≤ SxI tends to zero whenr tends to infinity.

Proof: As the Palm distribution ofI is equal its original
distribution, we can assume without loss of generality that
x = 0. Denoting byfI(r) is the probability density function
of I(r), we have that

p(r) := P(I(r) < M ∩ I ≥ M)

= P(I(r) < M ∩ Ī(r) ≥ M − I(r))

=

∫ M

0

fI(r)(m)P(Ī(r) ≥ M − m)dm

= fI(r)(m
∗)P(Ī(r) ≥ M − m∗).

The last equality come from the mean value theorem, and is
true for some value0 < m∗ < M .

Moreover, by Campbell’s formula, we have

E[Ī(r)] = λ

∫

Rd\B(0,r)

f(x)dx → 0.

As Ī(r) is a positive variable, we can use Markov’s inequality,
and state that

P(Ī(r) ≥ M − m∗) ≤ E[Ī(r)]

M − m∗
.

This proves thatp(r) tends to zero whenr tends to infinity.

In the following lemma, we look at the event that a Borel
set contains no more than a fixed number of points of the
processesY andY (r) respectively.

Lemma 2:Let V andV (r) be two events defined byV =
{Y (A) ≤ k} andV (r) = {Y (r)(A) ≤ k} for some Borel set
A ⊂ R

d and an integerk ≥ 0. As r → ∞ we have

P(V ) − P(V (r)) −→ 0.

Proof: We observe first thatY (A) ≤ Y (r)(A), because
I(r) ≤ I. Thus we can write

P(V ) = P(Y (A) ≤ k)

= P[(Y (A) ≤ k) ∩ (Y (r)(A) ≤ k)]

+P[(Y (A) ≤ k) ∩ (Y (r)(A) > k)]

= P(Y (r)(A) ≤ k)

+P[(Y (A) ≤ k) ∩ (Y (r)(A) > k)].

Furthermore, we observe that

P( a point belonging toY (r) but not toY ) = p(r)

wherep(r) is defined in Lemma 1. Then if we look at a region
A, we can write the following union bound:

P(∃ a point inA belongs toY (r) but not toY |N(A) = l)

≤ lp(r).

Combining these results, we can write

P(V ) − P(V (r))

= P(Y (A) ≤ k) − P(Y (r)(A) ≤ k)

= P(Y (A) ≤ k ∩ Y (r)(A) > k)

≤ P(Y (A) < Y (r)(A))

=
∞
∑

l=0

P(N(A) = l ∩ (Y (A) < Y (r)(A)))

=

∞
∑

l=0

P(N(A) = l)P(Y (A) < Y (r)(A)|N(A) = l)

=

∞
∑

l=0

(λ`(A))l

l!
e−λ`(A)

·P(a point is inY (r) but not inY |N(A) = l)

≤
∞
∑

l=0

(λ`(A))l

l!
e−λ`(A)lp(r)

= λ`(A)

∞
∑

l=1

(λ`(A))l−1

(l − 1)!
e−λ`(A)p(r)

= λ`(A)p(r)



As p(r) → 0 whenr → ∞, we obtain the result.
In a similar way, we can prove the same result for more

events:
Lemma 3:Let V , V (r), W , W (r) be four events defined by

V = {Y (A) ≤ k}, V (r) = {Y (r)(A) ≤ k}, W = {Y (B) ≤
l} andW (r) = {Y (r)(B) ≤ l} for some Borel setsA, B ⊂ R

d

and integersk, l ≥ 0. As r → ∞ we have

P(SxV ∩ W ) − P(SxV (r) ∩ W (r)) −→ 0,

uniformly in x.
Proof: We observe first that

P(SxV ∩ W )

= P[(Y (A + x) ≤ k) ∩ (Y (B) ≤ l)]

= P{(Y (A + x) ≤ k) ∩ (Y (B) ≤ l)

∩[(Y (r)(A + x) ≤ k) ∩ (Y (r)(B) ≤ l)]}
+P{(Y (A + x) ≤ k) ∩ (Y (B) ≤ l)

∩[(Y (r)(A + x) > k) ∪ (Y (r)(B) > l)]}
= P{(Y (A + x) ≤ k) ∩ (Y (B) ≤ l)

∩[(Y (r)(A + x) ≤ k) ∩ (Y (r)(B) ≤ l)]}
+P{[(Y (A + x) ≤ k) ∩ (Y (B) ≤ l)

∩(Y (r)(A + x) > k)] ∪ [(Y (A + x) ≤ k)

∩(Y (B) ≤ l) ∩ (Y (r)(B) > l)]}
≤ P{(Y (A + x) ≤ k) ∩ (Y (B) ≤ l)

∩[(Y (r)(A + x) ≤ k) ∩ (Y (r)(B) ≤ l)]}
+P{(Y (A + x) < Y (r)(A + x))

∪(Y (B) < Y (r)(B))}
≤ P[(Y (r)(A + x) ≤ k) ∩ (Y (r)(B) ≤ l)]

+P[Y (A + x ∪ B) < Y (r)(A + x ∪ B)]

so that

P(SxV ∩ W ) − P(SxV (r) ∩ W (r))

≤ P[Y (A + x ∪ B) < Y (r)(A + x ∪ B)]

=

∞
∑

m=0

P{[N(A + x ∪ B) = m]

∩[Y (A + x ∪ B) < Y (r)(A + x ∪ B)]}

=
∞
∑

m=0

P(N(A + x ∪ B) = m)

·P[Y (A + x ∪ B) < Y (r)(A + x ∪ B)

|N(A + x ∪ B) = m]

=

∞
∑

m=0

[λ`(A + x ∪ B)]m

m!
e−λ(`(A+x∪B))

·P(∃point in Y
(r) but not inY |N(A + x ∪ B) = l)

≤
∞
∑

m=0

[λ`(A + x ∪ B)]m

m!
e−λ(`(A+x∪B))mp(r)

= λ`(A + x ∪ B)p(r)

≤ λ[`(A) + `(B)]p(r)

This expression tends to zero whenr grows to infinity,
independently ofx.

We can now prove Theorem 5. To do this, we will need the
following theorem from [21]:

Theorem 6 (Corollary 10.2.V in [21]):Let ξ be a station-
ary and metrically transitive random measure onR

d with finite
mean densitym, and{An} a convex averaging sequence of
Borel sets onRd. Then asn → ∞,

ξ(An)/`(An) → m (a.s. and inL1 norm).

Proof of Theorem 5 To use Theorem 6, we have to prove
that the random measureY defined above is stationary and
metrically transitive with finite meanλP(B).

Stationarity follows from the definition ofY and stationarity
of the Poisson point process. To show metrical transitivity, we
show thatY is actuallymixing. According to Lemma 10.3.II
and Proposition 10.3.III in [21], it is enough to check that for
any two eventsV, W of the form {Y (A) ≤ k} with k ∈ N

andA a Borel set inR
d, we have

P(SxV ∩ W ) − P(V )P(W ) → 0 as ||x|| → ∞. (1)

To show that, we choose for eachx the largest value ofr
such thatSxV (r) andW (r) are independent. Such a value of
r exists if ||x|| is large enough. Indeed, when||x|| is large,
SxV andW depend on the realization of the Poisson process
N on disjoint regions ofRd. Furthermore, clearly,r tends to
infinity when ||x|| tends to infinity.

Lemmas 2 and 3 ensure that ifr → ∞,

P(SxV ∩ W ) − P(SxV (r) ∩ W (r)) → 0

and
P(V )P(W ) − P(V (r))P(W (r)) → 0.

As we chose r such that P(SxV (r) ∩ W (r)) =
P(SxV (r))P(W (r)) = P(V (r))P(W (r)), we obtain (1). �
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[18] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[19] E. Telatar, “Capacity of multi-antenna gaussian channels,” Eur. Trans.
Telecommun., vol. 10, no. 6, pp. 585–595, 1999.

[20] J. F. C. Kingman,Poisson Processes. Oxford: Clarendon Press, 1993.
[21] D. J. Daley and D. Vere-Jones,An Introduction to the Theory of Point

Processes. Springer, 1988.


