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Information theoretic bounds on the throughput

scaling of wireless relay networks
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Abstract— The throughput of wireless networks is known to
scale poorly when the number of users grows. The rate at which
an arbitrary pair of nodes can communicate must decrease to
zero as the number of users tends to infinity, under various
assumptions. One of them is the requirement that the network
is fully connected: the computed rate must hold for any pair
of nodes of the network. We show that this requirement can be
responsible for the lack of throughput scalability. We con&er a
two-dimensional network of extending area with only one adtve
source-destination pair at any given time, and all remainimg
nodes acting only as possible relays. Allowing aarbitrary small
fraction of the nodes to be disconnected, we show that the per
node throughput remains constant as the network size increses.
This result relies on percolation theory arguments and doesiot
hold for one-dimensional networks, where a non-vanishing ate
is impossible even if we allow arerbitrary large fraction of nodes
to be disconnected.

A converse bound is obtained using an ergodic property of stio
noises. We show that communications occurring at a fixed non-
zero rate imply a fraction of the nodes to be disconnected. Qu
results are of information theoretic flavor, as they hold without
assumptions on the communication strategies employed by ¢h
network nodes.

I. INTRODUCTION

A completely wireless network consists aef nodes that
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The first paper [1] to address these problems considered the
dense network case, and a traffic scenario where each node
generates packets for a destination non-vanishingly fayaw
Using a network theoretic approach based on multi-hop com-
munication, it showed a lower bound on the per-node rate of
Q(1/+/n) bit/sec, if nodes are arbitrarily located; and a lower
bound ofQ2(1/+/nlogn) bit/sec if nodes are randomly located,
see also [2]. Note that these results optimistically relypomt
to point connections delivering infinite power as nodes tend
to be closer to each other, which is a physical impossibility
When the physical constraint of bounded power is enforced,
the results are corrected by introducing an additiona)/n
factor, see [3].

For extended networks, the works in [4], [5] present in-
formation theoretic bounds dd(1//n) bit/sec per node, for
arbitrarily located nodes, assuming some natural powenatt
uation law in the wireless medium [6], which can be bounded
without affecting the final result. Finally, using percadet
theory arguments, it has been shown [7] that it is possible to
achieve the sam@(1/+/n) rate with randomly located nodes.

All works mentioned above consider an all-to-all commu-
nication scenario. Instead, when nodes are located at nando
but there is only one active source-destination pair at argng

communicate over a common wireless channel. A natutghe, while the remaining nodes act as possible relays,st ha

question that arises in such systems is how the throughpelen shown that the transmission rate in dense networks can
scales with the numben. Typically, there are two ways grow at most ag)(logn), under the assumption that around
of letting n tend to infinity. One can either keep the areaach of the two active nodes there is a dead zone of finite
on which the network is deployed constant, and make thenzero radius without any node [8]. For extended networks
node density\ tend to infinity densenetworks); or one can (and without dead zone assumption) it has been shown that the
keep the node density constant, and increase the area tgate decreases &¥(log n) %), wherea > 2 is the exponent
infinity (extendechetworks). In both of these settings, networkf the power attenuation function amtle {1,2} denotes the
theoretic lower bounds on achievable transmission ratas afimension of the network [9].
be obtained constructively, for given communication sgss  The conclusion drawn from all these works is rather pes-
and power attenuation laws; while information theoretipeIp simistic, since the rate offered to each node always tends
bounds must be obtained allowing arbitrary communicatiegymptotically to zero as the number of nodes grows —except
strategies and assuming only the power decay law in ths relay transmission in dense networks [8]. On the other
propagation medium. hand, the common requirement for all the works mentioned
above, is thatevery pair of nodes can be connected at that
rate.

In this paper we show that the price to pay to operate
the network at a given rate is precisely its full connecyivit
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We prove that if we allow arrbitrary small fraction of the [I. NETWORK MODELS

nodes to be disconnected, then a non-vanishing rate can b@ye consider one-dimensional and two-dimensional random
achieved in 2-dimensional extended networks and in the relganyorks. In one dimension. we assume that nodes are scat-
scenario of [9]. On the contrary, it turns out that in the lgreq according to a Poisson point process of unit intensity
dimensional case, a non-zero rate is impossible even if Weay the interval0, n]. The average number of nodes in the
allow anarbitrary large fraction of nodes to be disconnectedanwork is thus equal ta. Similarly, in two dimensions, we
Finally, we want to spend few words on the intuition,gnsider a Poisson point process of unit intensity over the
behind these results. The original result of [8] for densﬁquare[(), /1] x [0, /7], so that the average number of nodes
relay networks can be easily seen as an application of tQe; 5o equal ton.
capacity formula for multi-antenna channels: the addién  \ye |0k at asymptotic connectivity results whentends
more nodes in a finite area, each of which is capable gf jnfinity, while the node density remains constant (exehd
working as a relay transmitting at constant power, Improvegyork). In the following, we will use the expressiovith
the transmission rate by a logarithmic factor of the toteHigh probability(w.h.p.) to qualify an event whose probability
power. Our result for extended relay networks of constapids to one when tends to infinity.
density can be seen as a consequence of percolation theorggnnectivity results strongly depend on how we define the

by choosing the constant density of the noddarger than a g “connected”. Throughout this paper, we will look at the
critical value ., a giant connected component forms. Insidg, o following connectivity models:

this component every pair of hodes can communicate at a
constant bit rate. Percolation theory tells us even more:At Boolean connectivity

follows from a result by Penrose and Pisztora [10] that this | the first —and simplest— model, we assume that two nodes
component contains a constant fraction of the nodes that ¢ irectly connectedf the distance between them is less than
be mgde arbitrarily c_Iose to one by an appropriate ChOice_é)biven distance (aangs r. Two nodes areonnectedf there

A. This good news is counter-balanced by a correspondiggjsts a path of directly connected nodes joining them.
pessimistic result that immediately leads to a corresp@ndi |t tyrs out that this definition of connectivity leads to
upper bound: in an extended network, no matter how smgllye|| known model in stochastic geometry called Boolean
the rate of transmissions, there will always be a non zepgygel [11]. In fact, if we center a ball (segment or disk,
fraction of the nodes that will not be able to communicate té?epending on the dimensionality of the network) of radius
the rest of the network at that rate, even if we allow arb}traga/2 on each node, we end up with a Boolean model where

cooperation_ between _the nodes. This is proven by recastipg custers formed by overlapping balls correspond exaatl
the constraint on a minimal rate from the source to all othg4e connected components in our network.

nodes, as a constraint on the value of a shot noise at theesourc
location, and by showing that the fraction of nodes verifyinB. Information theoretic connectivity

this constraint is strictly less than one. In this model, we adopt a more practical point of view,
We point out that our bounds tend to zero when the fractigfhd consider two nodesnnectedf one can send data to the

of the nodes required to sustain the given rate tends to OBgher at rateR > 0 and vice versa (possibly with the help

in agreement with [9]; and that they diverge as the densigf all other nodes, as we assume that at each instant there

increases, in agreement with [8]. Moreover, it is interesti js only one node transmitting and one node receiving). We

that allowing a fraction of the nodes to be disconnected dogssume that each node has a maximum emitting péwend

not change the scaling law in [4], [5], as in an all-to-alihat the attenuation from Pointto Pointy is given by some

communication scenario the/\/n bottleneck is due to the function(||y — z||), where|| - || denotes the euclidean norm.

cost of relaying packets for other nodes. We denote byN, the power of the background noise added
The rest of the paper is organized as follows. We considgy each received signal. Furthermore, for technical resagas

two different connectivity models, the Boolean model anel the g. in [12]),/ must be decreasing and such that

information theoretic relay model. Section Il summarizes t

assumptions made for both models. We begin with the Boolean / zl(z)dz < oco.

model in Section lll, to stress the importance of dimendipna R

on the connectivity, and to set up preliminary results thiit w  We will make no further assumptions on the communication

be useful for the information theoretic relay model. Satlid protocol and look at information theoretical bounds on the

contains the two main results of our paper, a lower bourichction of nodes that can communicate at r&awvith each

(Theorem 2) and upper bound (Theorem 3) on the fracti@ther.

of nodes that can communicate at a given rate. The lower

bound is proven using percolation theory and the compurtatio

of the achievable throughput along the shortest path betwee In this section, we review connectivity results in the Bawle

the source and destination in Appendix A. The upper boumdodel. These results enlighten the fundamental difference

is proven by establishing an ergodic property of shot noisbstween 1-d and 2-d connectivity and are then applied togorov

in Appendix B. Finally, Section V concludes the paper. our main theorems in the information theoretic model.

IIl. BOOLEAN CONNECTIVITY
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r > r*, there exists one unbounded connected component a.s.

Fig. 1. One dimensional Boolean model. Each node is the cehtesegment We call perpolatlon probabilitythe pr(?babllltyO < 6‘(7‘) <1
of length. The origin (on the left end) is connected to all nodes befoee that an arbitrary node belongs to this unbounded component.
first gap (plain segments). All nodes on the right are diseoted (dashed \We have also thai(r) tends tol whenr tends to infinity. On
segments). the contrary, ifr < +*, all connected components remain a.s.
bounded, and the percolation probability is therefore etpua
zero. This latter case (also calledb-critical casg is similar
to the 1-d case. See [11] for an extensive treatment of this
subject.

In our extended network model, we only look at the box
B, = [0,4/n] x [0,4/n] and we make use of the following
result by Penrose and Pisztora [10]:

Theorem 1 (Penrose and Pisztora, 199&uppose- > r*,
and0 < € < 1/2. Let E(n) be the event that

« there is a unique connected clustérinside B,, contain-
ing more thared(r)n points, and
e (1—2)0(r)n < Card(C) < (1+¢)f(r)n.
Then there exist constants > 0 andng > 0 such that

P[E(n)] > 1 —exp(—c1v/n), n > ng.

We deduce from the above theorem the following corollary:
Fig. 2. Two dimensional Boolean model. Although there anmesasolated CoroIIary 1: For a_nyO < 0 <1, there exists am < OO.
nodes, the origin is connected with a large fraction of theeso such that there exists a connected cluster that contains a
fraction of nodes larger that
Proof: 60(r) is continuous forr > r* and tends to 1
A. One dimensional network whenr tends to infinity, see [11]. Thus, given a fractién
In one dimension, connectivity is broken whenever there isoé';é:an;r(l)oofﬁelgrrgri eln(;l:gzrse(; tt?ft(q)h: r%rgr}b;raz)ffonrodes
“gap” somewhere on the line. Here, in the Boolean model, conemee > 0. .
deC' is at least(1 — €)0(r)n w.h.p. Thus the fraction of

nected components end when one finds two consecutive nodBe ¢ 18 . . <
nodes inside this cluster is larger thén ]

separated by a distance greater thafss the intervals between . ? .
P y g This result makes a great difference with the 1-d case, as

nodes are independently and exponentially distributedenvh . ) .
N . Lo naw, with a fixedr, we can have nonzero fraction of connected
the network size increases, one finds arbitrarily many ga

S P

(intervals longer tham) w.h.p. (see e.g., [13], [14], [15]). fides for an arb|trar||y_ large networ_k._ . _
Moreover, if we look at the number of nodes connected However, if we requirdull connectivity i.e., if we impose

the origin, we observe that this number is a random variah /) =1, then the price to pay is very high: we know that this

R : . . IS"not possible with fixed, because there will be a.s. a node
with finite expectation. In fact, at each side of the origie t that has no neighbor within distangeActually, Penrose [16],

number of intervals we have to look at before we find a 92D, 4 independently Gunta and Kumar [17], showed thaas
is a geometrical random variable. Therefore, the prolgbili, . pen y bupta e "
to increase likdogn to achieve full connectivity.

that the number of nodes connected to the origin is finite IS, . . . . .
. . This big difference (constant vs increasings a function of
equal to one. Now, if we compute the fraction of nodes that ar :
. o e nJ follows from the fact that if we want to connect the most
connected to the origin, we have to divide this finite numbe . o
by the total number of nodes. As 0es 10 infinitv. the isolated node in the network, as the network size increases,

y i - Asn g Y we find worse and worse cases, for pure statistical reasons. |

fraction tends thus to zero a.s. This means that the netvgork |

completelv disconnected w.h.p. reqardless of the value of practice, it is not much of a problem if a tiny fraction of the
P y N-p. Teg nodes are disconnected, especially as it then allows no

longer increase with.
This latter result matches the intuition that as the node den

~ Contrary to the one-dimensional case, here we can ha\g remains constant, the quality of the connectivity stowt
isolated nodes without disconnecting the whole networle T'Ehange with the size of the network. In fact, the explanation

intuition is that if a gap arises, there can be a path thatdavoi,ahind the result in [16], [17] is of statistical nature.
it, and keep long range connectivity.

This intuitive observation is confirmed by percolation the- IV. INFORMATION THEORETIC CONNECTIVITY
ory: if we consider a Boolean model that spreads over theln this section, we use results from Boolean connectivity to
whole plane, there exists a critical radiu$, such that if obtain new results under the information theoretic definiti

B. Two-dimensional network



of connectivity. ]
The simple TDMA construction of Theorem 4 described
in Appendix A, along with the percolation theory result of
For 1-d networks similar results hold for Boolean anCorollary 1 have been enough to prove our theorem. A
information theoretic connectivity, namely, for any fixeate better bound on the throughput can be obtained using more
R > 0, the fraction of connected nodes tends to zero whencomplex schemes than our simple TDMA strategy. One could
tends to infinity. use, for example, the Gaussian multiple relay channel with
If a node is disconnected from the origin, then all nodesoherent multi-stage relaying and interference subtvactif
further away from the origin are also disconnected. Thus, pY. However, the asymptotic behavior remains the same even
the network size increases (and as the node density remaiith our very simple scheme and only the pre-constant is
constant), there are w.h.p arbitrarily large gaps in thevagt, improved.
and thus we expect it to be eventually disconnected, for anylt is also important to notice that the proof does not work
fixed rateR > 0. This intuition matches the result in [9], whichfor § = 1, as the fraction of connected nodes in a Boolean
shows that the rate has to decrease to zero as a functien ofmodel is never equal to one. This is consistent with the fact
Now if we require that only a (positive) fraction of the nodeghat the rate must decrease to zero if we want to keep all nodes
has to be connected, we can obtain the same negative residhnected. It is therefore impossible to find a fixed d@te 0
Assume that for a given rat®, nodes are connected untilsuch that the fraction of connected nodes is equal to one.
nodez. Then all nodes irjz, n| are disconnected. In fact, the 2) Upper bound:We now derive an information theoretic
fraction of connected nodes is thug(n — x), which tends to bound on the rate at which a given fraction of the nodes
zero whenn goes to infinity. Therefore, w.h.p, the fraction ofcan send data to any destination. This result does not depend
connected nodes is below any positive number. on the adopted strategy for transmitting information to the
The idea of requiring only partial connectivity does thudestination.
not help, and the same asymptotic result holds. In fact, inTheorem 3:For any rateR > 0, the fraction of nodes that
one dimensionpartial connectivityand full connectivityare can send data to any destination at that rate is at thash.p.,
asymptotically equivalent. The picture is definitely noe thwhere
same in two dimensions, as we will show in the next section. 6 =PI > No (2 —1)]

- )

A. One dimensional network

B. Two dimensional network where! is the shot-noisedefined by

We look at the bounds on the rate at which a given fraction
of the nodes can exchange data with each other. In other I= Z L(l]|])
words, if we discard a given fraction of the nodes (the worst TEN
positioned), what are the bounds on the rate? We will sg@d NV is a Poisson point process of unit density of&r
that discarding the worst nodes (up to a given percentage, Proof: To prove Theorem 3, we proceed in two steps.
that can be arbitrarily small), the asymptotic behaviorfw t First, we show that the rate at which a node can send data to
rate dramatically changes, and stays constant wheamds to  any destination is bounded above by a function of a shotenois
infinity. at its location. Then we show that the fraction of nodes such
1) Lower bound: We construct an explicit scheme thathat this shot-noise at their location is lower than a cartai
achieves a constant rate, for an arbitrary (but smaller thgiteshold isf.
one) fraction of the nodes. The following Theorem gives the |n the first step, we use the max-flow min-cut theorem
rigorous formulation of our result. 14.10.1 from [18]. Accordingly, we divide the network in
Theorem 2:For any0 < 6 < 1, there exists a rat& > 0 the following way: on one side the sendes, and on the
mdependent of, such that there exists a subset of nodes gfher side all the other nodes,i # 0. The max-flow min-
sizenf in which each node can send data to any other noggt theorem ensures that the maximum throughput between
at rate R w.h.p. these two sides can be upper-bounded by the multiple raceive
Proof: To prove this theorem, we use Corollary 1. GiveGaussian channel formed by the emitting node and all others
6, this ensures that there existsuch that under the Booleaniistening to it. The rate of this channel is computed in [19]

model, there exists a connected cluster of size greaterthanand corresponds to the rate at which the emitigcan send

w.h.p. data to the rest of the nodes:
Then, we use Theorem 4 in Appendix A to show that along 1 p (|| — ol])
the shortest path in the Boolean model, the throughput R= 3 log (1 + Liny le 0 ) .
0
1 Pl(r)
R=-1 1 i ion i -noi
3 og< + No+PZZ°:1 6kl(kz7’)) The sum in the above expression is a shot-noise process

evaluated inzq, that we will denote byS later on:
is achievable between any two connected nodes. Therefore, a o

fraction § of the nodes can exchange data at rate at |&ast S(zo) := Zl(Hxi — zo|]).
independently ofa.



From this result, we conclude that a hecessary condition for Lower bound
achieving rateR from nodex is 1 \ Upperbound === ]

S(xp) > % (62R —1):=M. 08|

We can then use Theorem 5 in Appendix B to compute
the fraction of nodes that fulfill the above condition. As the
sequence of squaré8, /n] x [0,+/n] is a convex averaging
sequence (see Definition 1 in Appendix B), we conclude from
this theorem that the fraction of nodes that do not fulfill the
condition is equal to

0.6

Fraction of nodes

04 r

0.2 r

P(I < M):=1-0 L ‘ ‘ o

45 5 55 6 6.5 7
where Rate R
I=>"1(ll])
TEN Fig. 3. Upper and lower bounds on the fraction of nodes thatazzhieve

. . . . . given rateR. The lower bound has been improved using the multiple relay
and N is a Poisson point process of intensity 1. As they d@annel result in [4], and the upper bound has been compstad the bound

not fulfill the necessary condition, the fractian- 6 of nodes presented in Section IV-B.2.
cannot for sure send data at rdteo any destination, and are
thus isolated. The fraction of connected nodes is theredbre
mosté. u V. CONCLUSION
The bound given in Theorem 3 is not explicit, as it involves
the cumulative distribution function of a shot-noise. Tdaibh i i . i _
an explicit bound, we can use Chernov's inequality. We know In wireless random networks with a finite spatial density

from Campbell’s theorem that (see [20] page 28 of nodes, the price to pay for full connectivity is high: it
P ( [20] pag ) makes the throughput of any node vanish when the network

E[e*!] = exp {)\/ (esl(HwH) _ 1)dm} _ size gets large. It is impossible to offer a non-zero ratesézye
R2 node of an extended network when the number of nodes tends
Therefore, to infinity. Even in the most optimistic information-thetite
setting (arbitrary complexity of the network encoding, all
P[[>M] < min e *ME[e™] nodes acting as relay for one pair source-destinationrartjt
picked in the network), Theorem 3 shows that if we want to
= IgleiﬂgeXp{)\/Rz (esl(||m||) —1)dz — SM} impose a given ratéR > 0 to any possible transmission in

) ) o ] the network, a fraction — A(R) of nodes will automatically
This bound gives a good approximation whéhis large, pe disconnected. This result is obtained using tools froat sh
but becomes loose whefd is smaller. noise processes and information theory.

C. Discussion On the other hand, if we allow some non zero, but arbitrary

We plot in Figure 3 the upper and lower bounds on thssmall fractiond of nodes to be disconnecged, then Theorem 2

fraction of the nodes that can connect to each other at a gi\%}?ws that it is poss!ble_to find a rafé(e) that any other
rate R. pair of nodes can enjoy in an arbitrarily large network. The

The lower bound indicates that whéhis close to zero, the theorem is proven by continuum percolation techniques, and
fraction of nodes that can achieve this rate tends to ones Tmerefore holds fgr 2-d networks, bqt n(_)t for _j"d networks,
case correspond to the results in [9]. because percolation does not occur in dimension 1.

At the other end, ifR is too large, the lower bound becomes These two results shed some new light on the throughput
zero. In practice, our lower bound represents a percolatidgaling laws of random wireless networks. Relaxing the full
curve that marks a transition at a critical rate vahmlow connectivity requirement and allowing a small fraction of
which a non-zero fraction of the nodes in the network caife nodes to be disconnected is shown to be both necessary
sustain a constant rate. (Theorem 3) and sufficient (Theorem 2) to have nodes com-

The upper bound computed by Chernov’s inequality is nfunicating at a non zero, positive rate, with other nodeisgct
informative for small values of?, but decreases to zero foras potential relays, on an arbitrary large network. Copttar
large values of R. Contrary to the lower bound, the curve hHe full connectivity case, the dimensionality of the netko
a tail for large rates. Although upper and lower bounds al®now a crucial factor.
not tight, we believe that there is also a critical raabpve We therefore believe that these results reinforce the aase f
which each node can only connect to a finite number of othgartial connectivity” (or ‘9-connectivity”), where a fractiof
nodes. This means that under our definition of connectivityf the nodes randomly drawn from the network is connected,
the network would not percolate in this case. as opposed to the traditional full connectivity.



= PK(r)

The sumK (r) converges becauspzl(z)dz < co.

We consider now a four time slots TDMA scheme. During
each slot, only nodes with the same index modulo 4 can
emit. In this way, we guarantee two things: during each time
slot, only odd balls or only even balls are emitting, and each
receiver has its predecessor emitting, but not its succelsso
this way, interferences only come from even (or odd) nodes
that are at distance more tharfrom the receiver. Therefore,
the total interference at each receiver cannot be largar tha
PK(r) (one cannot pack more even (or odd) nodes, starting
Fig. 4. A shortest path fronX to Y in a Boolean model. Filled balls do at distance greater thar).
not overlap, and neither do the empty balls. We can now compute the signal-to-interference-plus-noise
ratio at the receivers:

APPENDIX SINR > #]@(()
A. Path throughput ) 0 ) " _
In a Boolean model with fixed ball radiug'2 and spatial WhereNo is the background noise. The following throughput
density 1, we consider the shortest path between two poins thus achievable for each emitter-receiver pair

x1 and zo that belong to the same cluster. We show in the 1 PI(r)
following theorem an achievable throughput along this path 9 log {1+ No + PK(r)
that does not depend on the number of hops, but only.on .
Theorem 4:In a Boolean model with unit point density andAS we used four time slots, the actual _throughput along the
ball radiusr/2, the following throughput is achievable alondJath is one fourth of the above expression. u

the shortest path between any two nodes of the same cluster:

R= llog (1 + PZO(OT) ) . B. Shot-noise
8 No+ P32, 6k i(kr) We start this section by introducing some notation. For a

] ] setA c R? and a pointz € R¢, we define the sefl + z as
Proof: We look first at the properties of shortest paths ify|ows:

Boolean models. By construction, the distance between any
two consecutive nodes on the path is smaller tharNe
observe furthermore that if we consider every second bdlhen we define the shift operatst. as follows: for a random
along the path, these balls do not overlap. Otherwise, if theneasureV and a Borel set4,

had overlapped, they would have made it possible to take a -

shortcut between them, which would have avoided at least one SeN(A) = N(A+2).

other ball and thus give a shorter path (see Figure 4), wisich i We define now formally the shot-noise process built on a
impossible. More generally, the same reason implies that amo-dimensional Poisson point process, and prove an ergodi
ball can overlap only with its predecessor and its successesult in Theorem 5.

yeA+x iff y—zeA

along the shortest path. Let N be a Poisson point process of intensityn R<. We
With this second observation, we can bound the signdéfine theshot-noiseas
received by a node from all the others. This bound is obtained
if the odd balls and the even balls are optimally packed on I= /Rd\{o} f(@)N(dx) = ZNf("E)
xTE

the plane (honey comb grid) and emit with full pow@r Let
us compute the sum of the signals receivedzgyfrom even for some positive functiorf such that
balls: in a honey comb grid, there are 6 neighbors at distance

r, 6 at distance/3r, etc. We obtain: g fla)dz < oo.
iPl(x — o) Note that because of the properties of the Poisson point
— % 0 process, the Palm distribution df is equal to its original
= distribution.
< P[6I(r) + 61(v3r) + 61(2r) Given a constantl/ > 0, we define byY the random
+12I((2 + ﬁ)r) +...] counting measure that counts the number of pointd afuch

that the value of the shot-noise at this point is less than

< P> 6ki(kr) Y(A):/ 1p(S,N)N(dz)
k=1 A



where E is the event As I(r) is a positive variable, we can use Markov’s inequality,
and state that

E={I <M} _
| | | | P(I(r) > M —m*) < )L
Before stating the main theorem of this Appendix, we need —m*
the following definition: This proves thap(r) tends to zero whem tends to infinity.
Definition 1: A sequence{A4,,} of bounded Borel sets in m
R is aconvex averaging sequenife In the following lemma, we look at the event that a Borel
1) eachA,, is convex set contains no more than a fixed number of points of the
2) A, CApq forn=1,2,... processed” andY (") respectively.
3) r(A4,) — oo, where r(4) = sup{r Lemma 2:Let V andV(r) be two events defined by =
A contains a ball of radius}. {Y(A)dg k} and.V(T) = {Y("(A) < k} for some Borel set
Theorem 5:For a convex averaging sequengel,} of A C R? and an integek > 0. Asr — oo we have
Borel sets inR¢, asn — co we have P(V) = P(V(r)) — 0.
T e(m), |
((Ay) Proof: We observe first that’ (A) < Y (") (A), because
where/(A,,) denotes the area of,,. I(r) < I. Thus we can write
To prove Theorem 5, we need to introduce two new objects: P(V) = P(Y(A)<k)
we first define a truncated shot-noise as follows: = P{Y(A) < k)N (YD (A) < k)]
10)= [ F(@)N (da), +P((Y(4) < k) N (YO (4) > k)
(0,m)\{0} = P(Y"(A) <k)
where B(0, r) is the d-dimensional ball of radius centered +P[(Y(A) < k)N (Y (4) > k)]

on 0. It is clear that/(r) < I and thatlim, .., I(r) = I. We

also define for convenience the complement of the trunca

shot-noise: PP( a point belonging ta” ") but not toY') = p(r)
I(r):=1—1(r).

ljéHrthermore we observe that

wherep(r) is defined in Lemma 1. Then if we look at a region

Itis important to notice thak(r) andI(r) are two independent 4, we can write the following union bound:
variables, because they are computed over two disjoinsare I
Then in a similar way, we define the random meadafe by

modifying the eventt as follows: < Ip(r).

Combining these results, we can write

P(V) —B(V(r))

% (3 a point in A belongs toy " but not toY | N'(A4) = 1)
l

E(r):={I(r) < M}.

Lemma 1:The probabilityp(r) that a pointz of N is such

— (r)

thatS,I(r) < M < S, I tends to zero whentends to infinity. =P(Y(A4) <k) P (A) < k)
=P(Y(A) <knY™(A) > k)

Proof: As the Palm distribution of is equal its original <P(Y(A) <Y (A))

distribution, we can assume without loss of generality that o

o = 0. Denoting by f;( is the probability density function =Y P(N(A) =1n(Y(4) <Y"(A))

of I(r), we have that =0

p(r) = PUI(r)<MnI>M) =D B(N(A) = )P(Y(4) < Y (A)|N(A) =1)
= ]P’(I()<Mﬂf()2M—I(r)) =0

o~ (M)
ff m (m)P(I(r) > M — m)dm :Z AL(A)

= fin(m")PI(r) = M —m”).

. . = (M(A
The last equality come from the mean value theorem, and is < Z : e*M(AUp(r)
true for some valu® < m* < M. = :

Moreover, by Campbell's formula, we have

0
P(a p0|nt is inY™) but not inY|N(A) = 1)

'@

_ )\Z(A) i ()\é(A))lil ef)\E(A)p(T)

B — (I1-1)!
E[I(r)] = A/Rd\gm,r) f(x)dz — 0. _ M(A)Ij »



As p(r) — 0 whenr — oo, we obtain the result.

B This expression tends to zero whengrows to infinity,

In a similar way, we can prove the same result for moiedependently ofz. [ ]

events:

We can now prove Theorem 5. To do this, we will need the

Lemma 3:LetV, V(r), W, W (r) be four events defined by following theorem from [21]:

V ={Y(A) <k} V() = {Y(A) <k}, W ={Y(B) <
I} andW (r) = {Y(")(B) < I} for some Borel setd, B C R?

and integers:, [ > 0. As r — oo we have
P(S,VNW)—-P(S, V(r)nW(r)) — 0,

uniformly in x.
Proof: We observe first that

P(S,V N W)
=P[(Y(A+z) < k)N (Y(B) <)
=P{(Y(A+2) <k)n(Y(B) <)

NV (A+z) <k)n(Y"(B) <)}
+P{(Y(A+2z) <k)N(Y(B) <1)

AY (A +2) > k) U(
=P{(Y(A+z) <k)n(

N (A+z) <k)nY(B) <)}
+P{[(Y(A+2z) <k)N(Y(B) <)
NYD(A+z) >k U[(Y(A+z) <k)

NY(B) <N (Y"(B) > )]}
<P{(Y(A+2)<k)N(Y(B) <)
MY (A+2) <k)n(Y(B) <D}
+P{(Y(A+2z) < Y (A +2))
U(Y(B) <Y(B))}
<P(Y"(A+2) <k)n(Y(B) <)
+P[Y(A+2zUB) <Y (A+zUB)]

so that
P(S,VNW)—=P(S, V(r)nW(r))
P[Y(A4+2UB) <Y (A+zU B)]
=Y P{N(A+xzUB)=m]
rnwlY(AJr:vUB) <Y (A+zUB)|}
=Y P(N(A+zUB)=m)
m=0
PY(A+zUB) <Y (A+2UB)
IN(A+2UB) =m|
_ — [MA+zuB)" —A(¢(A+zUB))
(Elpoint in Y(T) but not inY|N (A +z U B) =1)
< i (A A"‘x UB)] e~ AEA+UB)) )
= 7)7\1 (A+zU B) (r)
< Al(A) +4(B)lp(r)

Theorem 6 (Corollary 10.2.V in [21])Let £ be a station-
ary and metrically transitive random measurefshwith finite
mean densityn, and{4,,} a convex averaging sequence of
Borel sets orR?. Then asn — oo,

§(An)/0(A

») — m (a.s. and inL; norm)

Proof of Theorem 5To use Theorem 6, we have to prove
that the random measurg defined above is stationary and
metrically transitive with finite meanP(B).

Stationarity follows from the definition df and stationarity
of the Poisson point process. To show metrical transitivity
show thatY is actuallymixing According to Lemma 10.3.1I
and Proposition 10.3.111 in [21], it is enough to check that f
any two events/, W of the form{Y (4) < k} with k € N
and A a Borel set inR?, we have

P(S,V NW) —P(V)P(W) — 0 as||z|| — co. (1)

To show that, we choose for eaghthe largest value of
such thatS, V' (r) andW (r) are independent. Such a value of
r exists if ||z|| is large enough. Indeed, whéfx|| is large,
S,V andW depend on the realization of the Poisson process
N on disjoint regions ofR?. Furthermore, clearly; tends to
infinity when ||z|| tends to infinity.

Lemmas 2 and 3 ensure thatrif— oo,

P(S,VNW)—P(S,V(r)NnW(r)) =0

and
PV)P(W) —P(V(r)P(W(r)) —

As we chose r such that P(S,V(r) N W(r)) =
P(S,V(r))P(W(r)) =P(V(r))P(W(r)), we obtain (1). O
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