
Effective Vehicle Teleoperation on the World Wide Web

Sébastien Grange1, Terrence Fong2 and Charles Baur1

1Institut de Systèmes Robotiques 2The Robotics Institute
L’Ecole Polytechnique Fédérale de Lausanne Carnegie Mellon University

CH-1015 Lausanne EPFL, Switzerland Pittsburgh, Pennsylvania 15213 USA

IEEE International Conference on Robotics and Automation (ICRA 2000), San Francisco, CA, April 2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
Abstract

Our goal is to make vehicle teleoperation accessible to
all users. To do this, we are developing easy-to-use yet
capable Web tools which enable efficient, robust teleopera-
tion in unknown and unstructured environments. Web-
based teleoperation, however, raises many research issues,
as well as prohibiting the use of traditional approaches.
Thus, it is essential to develop new methods which minimize
bandwidth usage, which provide sensor fusion displays,
and which optimize human-computer interaction. We
believe that existing systems do not adequately address
these issues and have severely limited capability and per-
formance as a result. In this paper, we present a system
design for safe and reliable Web-based vehicle teleopera-
tion, describe an active and dynamic user interface, and
explain how our approach differs from existing systems.

1 Introduction

Since the 1950’s, vehicle teleoperation has centered pri-
marily on rate-controlled systems for hazardous environ-
ments (e.g., underwater ROV’s). In these systems, a trained
operator controls the vehicle's motion (rotation and transla-
tion rates) via hand-controllers and receives feedback from
cameras and sensors. Recent systems have emphasized the
use of multi-modal operator interfaces and supervisory
control[2][9][16].

Yet, despite decades of research, vehicle teleoperation
remains problematic. In particular, operator interfaces are
often cumbersome, need significant infrastructure, and
require extensive training. Many interfaces overwhelm the
user with multiple displays while simultaneously demand-
ing high levels of cognition and motor skill. As a result,
vehicle teleoperation is a domain for experts.

Our objective is to make vehicle teleoperation accessi-
ble to all users, novices and experts alike. To do this, we
need to make operator interfaces that are easy to deploy,
easy to understand and easy to use. Thus, we are develop-
ing Web-based tools to enable efficient, robust vehicle tele-
operation in unknown, unstructured and dynamic
environments.

Using Web-based tools as a teleoperator interface raises
numerous research issues and concerns. For example, data

transmission through the Internet is often irregular and
unreliable. Consequently, the system must be designed to
handle potentially unbounded delay or loss of data. Addi-
tionally, the available network bandwidth varies greatly,
depending on network hardware and network load. Thus,
the amount and type of information that can be exchanged
between a remote system and a user is severely limited.

In the following sections, we present a system for safe
and efficient, Web-based vehicle teleoperation. We begin
by discussing related research and design issues. We then
describe our system architecture and implementation.
Finally, we present some experiences with this system.

2 Related Research

2.1 Web-based telemanipulation

The first telerobot appeared on the Web in 1994[4].
Since then numerous other Web-based robots have been
deployed, notably [14]. The common characteristic of
these systems is that they only provide interaction with
robot manipulators. This is because the interaction with the
user does not need to be dynamic: a known environment is
subjected to discrete changes caused only by the manipula-
tor. Typically, the following scheme is used:

• the user monitors system state via a static HTML
document (e.g., a still image and numerical data)

• the user enter parameters for the robot to execute
(normally a single motion)

• the robot executes the command without supervi-
sion or further user interaction

• once the command is completed, or if an error
occurs, a new HTML document (containing the
updated system state) is generated

If these systems show that interaction with physical
devices through the Internet is technically possible, they do
not provide tools to deal with unexpected events, such as
dynamic changes in the remote environment. Even though
some systems present the user with enhanced imagery
(e.g., graphic overlays), no real collaboration between the
user and the robot is possible; primarily because the robot
provides no feedback during the motion execution phase.

https://core.ac.uk/display/147896892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2.2 Web-based vehicle teleoperation

More recently, vehicle teleoperation systems have
appeared on the Web[10][12][13][15]. These systems
attempt to provide user-friendly interfaces for remote driv-
ing. As with Web-based telemanipulation, most of these
operated within controlled environments.

KhepOnTheWeb, allows the user to control a Khepera
robot in a static environment[10]. The interface, uses CGI1

programs and server-push video2. An overhead camera
provides continuous views of robot position and an on-
board camera shows the environment. Even though posi-
tion can always be seen, the transmission delay and the lack
of orientation aids, makes the system hard to use. More-
over, because the Khepera operates in a closed environ-
ment, free motion and exploration are impossible.

Another CGI system is the WebPioneer[15], in which
the user drives a Pioneer3 robot in an unknown (i.e. not
described a priori) room. No external view of the robot is
offered, but server-push video from an on-board camera
provides feedback. A graphical command set (translation,
rotation) is used to control the robot. The simplicity of the
interface, though easy to use, severely limits the interactiv-
ity. Additionally, the single video stream is not sufficient
for the user to get or maintain situational awareness.

With both these Web-based vehicle teleoperation sys-
tems, on-board sensors are only used to prevent collision
with immediate obstacles, and no sensor feedback is given
to the user. Moreover, the user is forced to rely entirely on
video feedback to navigate and to detect obstacles. How-
ever, since delay-free transmission cannot currently be
guaranteed on the Web, remote driving with these systems
is often arduous and confusing.

3 Design issues

3.1 Vehicle teleoperation

The design of a vehicle teleoperation system is gov-
erned by many factors. For most systems, however, the pri-
mary constraint is the communication link. In particular,
bandwidth directly restricts the quantity and quality of
information available to the operator for decision making.
Additionally, transmission delay affects the reliability of
remote operation. Beyond a certain delay, manual control
of the vehicle may become highly error prone or impracti-
cal[8]. Thus, when we design a vehicle teleoperation sys-

tem, it is critical that we consider limitations imposed by
the communication link.

Human beings are far from perfect. With manual con-
trol, teleoperation is limited by the operator’s motor skills
and his ability to maintain situational awareness. Fatigue,
lack of concentration, inadequate displays, and poor feed-
back all contribute to reduced performance. Additionally,
humans have difficulty building accurate mental models of
remote environments. Distance estimation, obstacle detec-
tion and attitude judgement are problematic, especially for
untrained operators[8]. Consequently, we must design the
operator interface so that it maximizes usability.

The number and type of sensors carried by a vehicle
also directly influence the user’s ability to perceive the
remote environment and to identify hazards. Even with an
ideal communications link (i.e., unlimited bandwidth and
delay-free), insufficient or inadequate sensors can dramati-
cally reduce teleoperation system performance. As a result,
we need to ensure that we employ appropriate sensing for
the vehicle and environment.

Finally, a robot operating in an unknown or unstruc-
tured environment may be exposed to dynamic hazards.
This is particularly problematic when the hazards are time-
critical or malicious. If the operator is unable to perceive
moving obstacles, or if he sees them too late due to commu-
nication delays, then safeguard functions have to be man-
aged by the robot itself. Thus, it becomes important for the
robot to have some level of autonomy.

Overall, a well-designed vehicle teleoperation system
requires effective and efficient use of the communication
link, a clear and compelling operator interface, and an
architecture which supports local autonomy.

3.2 Web-based teleoperation

In the case of Web-based teleoperation, a computer net-
work provides a communication link with severely limited
bandwidth and variable delay. Given this constraint, data
exchange between the robot and the user must be carefully
managed. As a consequence, both the robot and the opera-
tor interface must perform data pre-processing and encod-
ing before transmission. Additionally, bandwidth-
expensive components (e.g., video) are discouraged and
other mechanisms must be used to convey information.

To date, most Web-based systems have been built using
CGI programs. Due to limitations of CGI, however, these
programs cannot listen to user commands and provide use-
ful feedback at the same time. Moreover, a CGI program
opens and closes a new network connection each time the
program is invoked, resulting in significant overhead and
delay. The use of multiple simultaneous CGI programs
(e.g., to support a interface with multiple HTML frames)

1Common Gateway Interface
2a Netscape™ extension
3Pioneer is a registered trademark of ActivMedia, Inc.



only exacerbates the problem. As a result, we need to seek
alternatives to CGI for handling Web interaction.

The design of any user interface often involves a trade-
off between ease of use and the capacity for complex tasks.
Modern interface design approaches this problem by focus-
ing on the user; i.e., the interface is designed to maximize
usability by a target set of users. Yet, this can be difficult for
Web-based teleoperation because the interface needs to
support users having diverse skills, knowledge, and experi-
ence. In particular, Web interfaces need to be designed so
that novices will feel comfortable, yet must not unduly con-
strain experts. If the interface fails to do either, users will
quickly lose interest and avoid using the system.

To support a wide range of users, a Web-based teleop-
eration interface must present data clearly and concisely.
Complex data, such as robot position and coordinate frame
transforms, should be hidden from the user. Instead, the
interface should present the data using readily accessible
displays (e.g., a moving map).Parameters and operations
which are best handled by the robot (e.g., collision avoid-
ance) should be removed from user control (i.e., the inter-
face only needs to provide feedback). Finally, the interface
must inform the user about the reliability of the data it dis-
plays (so that the user can make informed decisions).

A Web-based vehicle teleoperation interface, however,
has to also consider other parameters. Because of varying
transmission delay, the information displayed may not
match the actual state of the remote system. Thus, the inter-
face has to be designed so that commands will not affected
by delay. Specifically, motion commands should be sent to
the robot relative to the state displayed by the interface.
Moreover, the interface must be robust enough to deal with
communication failure and warn the user if the connection
to the robot is lost.

4 System design

4.1 Overview

We have created a system, WebDriver, for safe and reli-
able Web-based vehicle teleoperation. Our system supports
a wide range of users, novice and experts alike. We
designed WebDriver to minimize bandwidth usage, to pro-
vide a compelling and active user interface, and to optimize
human-computer interaction[5].

The WebDriver architecture (Figure 1) has 3 elements:

User Interface. The user interface is a Java applet
which runs in a Web browser. It accepts user com-
mands and provides continuous feedback from the
robot’s sensors. The user interface is connected to
the rest of the system via a persistent network link.

Base Station. The base station performs three pro-
cessing functions: communication with the user
interface, image processing, and high-level robot
control.

Robot. The teleoperated vehicle is equipped with
on-board sensors (including a pan-tilt camera) and a
motion controller. It is connected to the base station
via a radio modem and analog video transmitter.

4.2 User interface

The WebDriver user interface is shown in Figure 2. The
interface contains two primary tools, the dynamic map and
the image manager, which allow the user to generate com-
mands and to receive feedback. The interface also has con-
trols for manipulating the display and for positioning (pan
angle) the robot’s on-board camera. A proximity light indi-
cates distance between the robot and nearby obstacles.

We designed the interface for ease-of-use and flexibil-
ity: the user is able to see system status at a glance and can
specify robot motion commands (rotation, translation) in
multiple ways. The interface is also designed to support
single-touch interaction (to enable use with touchscreen
displays in Internet kiosks).

Figure 1. WebDriver system architecture

Figure 2. Web interface for vehicle teleoperation

INTERNET
 BROWSER

U
S

E
R

 IN
T

E
R

F
A

C
E

IM
A

G
E

 S
E

R
V

E
Rinternet

link
CAMERA

REMOTE SYSTEM

ROBOT

internet
link C

O
N

T
R

O
LL

E
R

BASE STATION

dynamic map image manager

camera controlsproximity light



Dynamic Map
The dynamic map (see Figure 3) is constructed using

ultrasonic sonar and robot position. Sensor data is filtered,
stored and then displayed as colored points: gray for sensed
obstacles, red for robot position. The color of each point
reflects the confidence value for the point, i.e., certainty
that an obstacle exists in that location or that the robot was
in a specific position. Dark colors indicate high confidence.

The user can drive the robot by clicking on the map at
the location he wants the robot to go. The robot will then
try to move to that point, avoiding obstacles it encounters
on the way. The map also displays locations (blue circles)
at which images were stored by the image manager.

Image manager
The image manager displays and stores images from the

robot’s camera. Unlike other Web-based systems, such as
[10] or [12], we do not use server-push video because it
excessively consumes bandwidth. Instead, we use an event-
driven model to retrieve images when:

• user issues request (for new or stored image)
• robot is stopped and is awaiting command
• obstacle detected
• interframe timer expires (5 seconds)

The timer ensures that the image manager always displays
a recent image (i.e., if no other event occurs, a new image
will be retrieved when the timer).

Figure 4 shows typical image manager displays. On
each image, the camera orientation (pan angle) and indica-
tors for detected obstacles (based on proximity sensor read-
ings) are overlaid. Additionally, if a stored image is shown
(Figure 4, right), a “replay” symbol is added. The user can
change the robot’s heading by clicking in the image (i.e.,
the robot will turn so that the selected feature becomes cen-
tered in the image). Clicking in the white area at the bottom
of the image commands a forward translation.

User Interface Design
We implemented the user interface as a Java applet.

This allows the interface to be easily deployed and used in
any Java-enabled Web browser. Figure 5 shows the Java
object structure of the user interface.

The primary Java object is the virtual robot. When the
user interface is active, the virtual robot maintains an open
connection and mirrors the robot’s state. Messages (status,
sensor readings, etc.) received from the base station are
used to update the virtual robot. In this way, all applet
objects have continuous access to current data.

The other user interface objects process user input and
generate displays. When the user gives a robot command,
the object receiving the input invokes a method in the vir-
tual robot. The virtual robot then forwards this command to
the real robot. This modular design enables control of dif-
ferent mobile robots with the same user interface. Only
messages sent by the virtual robot need to be customized
for each type of robot.

By using a Java applet (instead of HTML/CGI) we are
able to maintain a persistent network connection between
the Web interface and the robot controller. This enables us
to perform data transfer through the connection at any time,
in either direction and with minimal delay. Additionally,
the continuous link allows us to avoid repeated connection
setup/teardown overhead, which reduces network resource
usage and improves overall system responsiveness.

Figure 3. Dynamic map

obstaclesrobot path

command

stored image

Figure 4. Image manager
current image (left), stored image (right)

Figure 5. User interface object structure

camera heading

replay indicator

translation control

obstacle indicator

APPLET

DYNAMIC MAP

IMAGE MANAGER V
IR

TU
A

L 
R

O
B

O
T

U
S

E
R

B
A

S
E

 S
TA

TI
O

N



4.3 Base station

The base station is responsible for communication with
the user interface, image processing, and high-level robot
control. It manages all information exchange between the
user interface and the robot, performing data encoding and
compression to speed transmission, reduce delay and min-
imize bandwidth consumption.

When the user interface is connected, a base station pro-
cess continually sends messages containing robot state and
sensor information. The same process also receives robot
commands from the user interface and relays the messages
to the high-level robot controller.

Image processing is performed by a TCP socket-based
image server. Whenever the user interface requests an
image, the server captures a video frame, converts and
compresses it into a JPEG image, and returns it to the user
interface. Our image server executes quickly (1/20 second
for 1/4 size NTSC), thus providing an efficient, network
friendly (i.e., it consumes minimal bandwidth) solution for
sending video imagery.

The base station performs high-level robot control using
a controller based on Saphira[7]. The controller supports
complex robot behaviors such as motion planning, colli-
sion detection and obstacle avoidance. This gives the robot
the ability to override user commands that would otherwise
jeopardize its safety. We feel this is particularly important
in a context where a command might not arrive in time to
the robot, or when the user might not have sufficient infor-
mation to make an appropriate decision.

4.4 Robot

We designed the WebDriver system for use with a Pio-
neer AT mobile robot. The PioneerAT is a skid-steered
wheeled vehicle which is capable of traversing moderately
rough natural terrain. The PioneerAT has an on-board
microprocessor-based controller which manages vehicle
sensors and performs motion control.

Our PioneerAT (see Figure 6) is equipped with a Sony
EVI-D30 pan-tilt-zoom color CCD camera, a ring of seven
Polaroid piezoelectric ultrasonic sonars, power monitoring,
and drive encoders. An analog NTSC video transmitter and
a RF modem (9600 baud) are used for wireless communi-
cations with the base station.

5 Experiences

We have found that the WebDriver architecture effec-
tively frees the system from bandwidth limitations and
transmission delay imposed by the Web, thus enabling effi-
cient and effective control of the robot. Specifically, the
architectural features that enable this are:

• pre-processing and compressing message data
• avoiding direct control: no time dependent com-

mands, absolute positioning commands only
• giving the robot enough autonomy to ensure safe-

guarding functions
We conducted informal user tests with the WebDriver.

Anecdotal evidence from a range of users suggests that the
system is quite reliable and robust. Additionally, since the
robot performs safeguarding functions (avoiding obstacles
autonomously) continuous user attention is not required,
thus making the system safe and easy to use. Users have
found it easy to explore different rooms and drive along
corridors using only on-board camera images and dynamic
map representations of the environment.

Limitations
The WebDriver system has several limitations. Most

significantly, we estimate robot position using dead-reck-
oned odometry. Since, we use the robot position to register
sensor data, the dynamic map accuracy is limited by dead-
reckoning error. Consequently, the map only presents
locally correlated information. Furthermore, the map’s reli-
ability decreases precipitously with movements involving
large wheel slip.

The limited number and reliability of proximity sensors
(ultrasonic sonar) also impact system performance. The
standard PioneerAT is equipped with 7 forward-facing
sonar devices which provide coverage of a 180 degree
range. Since obstacle detection is limited to the front and
sides of the vehicle, hazards (especially dynamic ones)
located behind the vehicle pose significant problems. Addi-
tionally, since ultrasonic sonar data is often noisy (due to
multiple reflections and environment characteristics) and
imprecise (due to wide beam cone), the resulting dynamic
map may also be noisy and imprecise. Filtering the sonar
data, such as [1], can improve the situation, but is certainly
not a panacea.Figure 6. PioneerAT configuration

video transmitter Sony camera

ultrasonic sonar

RF modem

encoders
drive



Future Work
A number of improvements would make the WebDriver

system more reliable. For the user interface, better sensor
fusion schemes would make the dynamic map more reli-
able over long distances and duration. A higher level of
autonomy would make map self-calibration and automatic
repositioning possible. Also, including the user in the map
building process could improve performance.

On the hardware side, increasing the number and accu-
racy of proximity sensors would provide better obstacle
avoidance. Better positioning could be achieved using an
external system, such as radio beacons or carrier-phase
dGPS. Wheel-slip and wheel-blocked sensors would also
improve safeguarding and provide additional positioning
information.

6 Conclusion

We have created a system, the WebDriver, for efficient,
robust Web-based vehicle teleoperation. The WebDriver
supports a wide range of users with diverse skills, knowl-
edge, and expertise. We designed WebDriver to minimize
network bandwidth usage, to provide an easy-to-use yet
compelling operator interface, and to optimize human-
computer interaction.

Our system differs from existing Web-based telemanip-
ulation systems because it supports teleoperation in
unknown, unstructured and dynamic environments. Our
system differs from other Web-based vehicle teleoperation
systems because it provides greater interactivity and safety
through an active interface and safeguarding autonomy.

Acknowledgments
We would like to thank the Institut de Systèms Robot-

iques (Département de Microtechnique, EPFL) for provid-
ing research facilities, infrastructure and support.

References
[1] Borenstein, J, and Koren, Y., “Histogramic In-motion

Mapping for Mobile Robot Obstacle Avoidance”,
IEEE Journal of Robotics and Automation, Vol. 7, No.
4, 1991.

[2] Fong, T., et. al., “Operator Interfaces and Network-
Based Participation for Dante II”, SAE 25th
International Conference on Environmental Systems,
San Diego, CA, 1995.

[3] Fong, T., et. al., “Collaborative Control: A Robot-
Centric Model for Vehicle Teleoperation”, AAAI 1999
Spring Symposium, Stanford, CA, March 1999.

[4] Goldberg, K., et. al., “Desktop Teleoperation via the
World Wide Web”, IEEE Conference on Robotics and
Automation, Nagoya, Japan, May 1995.

[5] Grange S., “‘Interface Utilisateur Avancee”,
Microengineering Project Report, Swiss Federal
Institute of Technology, Lausanne, February 1999.

[6] Kay, J., STRIPE: Remote Driving Using Limited
Image Data, Ph. D. Thesis, Computer Science,
Carnegie Mellon University, Pittsburgh, PA, 1997.

[7] Konolige, K. and Myers, K. The Saphira Architecture
for Autonomous Mobile Robots, in Artificial
Intelligence and Mobile Robots (Bonasso, R. and
Murphy, R., eds.), MIT Press, Cambridge, MA, 1997.

[8] McGovern, D., “Experiences and Results in
Teleoperation of Land Vehicles”, SAND87-0646,
Sandia National Lab., Albuquerque, NM, 1990.

[9] Meier, R., et. al., “A Sensor Fusion Based User
Interface for Vehicle Teleoperation”, Field and Service
Robots Conference, Pittsburgh, PA, August 1999.

[10] Michel, O. et al., “KhepOnTheWeb: An Experimental
Demonstrator in Telerobotics and Virtual Reality”,
VSMM’97, Geneva, Switzerland, September 1997.

[11] Sheridan, T., “Space teleoperation through time delay
review and prognosis”, IEEE Transactions on
Robotics and Automation, October 1993.

[12] Siegwart, R., and Saucy, P., “Interacting Mobile
Robots on the Web”, workshop, IEEE Conference on
Robotics and Automation, Detroit, MI, April 1998.

[13] Simmons, R., “Where in the World is Xavier, the
robot?”, Robotics and Machine Perception, Special
Issue: Networked Robotics, Vol. 5, No. 1, March 1996.

[14] Taylor, K., Trevelyan, J., “A Telerobot on the World
Wide Web”, National Conference of the Australian
Robot Association, Melbourne, July 1995.

[15] WebPioneer Website, ActivMedia, Inc., http://

webpion.mobilerobots.com, 1998.

[16] Wettergreen, D., et. al., “Operating Nomad During the
Atacama Desert Trek”, Field and Service Robotics
Conference, Canberra, Australia, 1997.


	Abstract
	1 Introduction
	2 Related Research
	2.1 Web-based telemanipulation
	2.2 Web-based vehicle teleoperation

	3 Design issues
	3.1 Vehicle teleoperation
	3.2 Web-based teleoperation

	4 System design
	4.1 Overview
	Figure 1. WebDriver system architecture

	4.2 User interface
	Figure 2. Web interface for vehicle teleoperation
	Figure 3. Dynamic map
	Figure 4. Image manager current image (left), stored image (right)
	Figure 5. User interface object structure

	4.3 Base station
	4.4 Robot
	Figure 6. PioneerAT configuration


	5 Experiences
	6 Conclusion

